Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */
3
4#include <linux/etherdevice.h>
5#include <linux/netdevice.h>
6#include <linux/if_ether.h>
7#include <linux/if_vlan.h>
8#include <linux/iopoll.h>
9#include <linux/pci.h>
10
11#include "wx_type.h"
12#include "wx_lib.h"
13#include "wx_hw.h"
14
15static int wx_phy_read_reg_mdi(struct mii_bus *bus, int phy_addr, int devnum, int regnum)
16{
17 struct wx *wx = bus->priv;
18 u32 command, val;
19 int ret;
20
21 /* setup and write the address cycle command */
22 command = WX_MSCA_RA(regnum) |
23 WX_MSCA_PA(phy_addr) |
24 WX_MSCA_DA(devnum);
25 wr32(wx, WX_MSCA, command);
26
27 command = WX_MSCC_CMD(WX_MSCA_CMD_READ) | WX_MSCC_BUSY;
28 if (wx->mac.type == wx_mac_em)
29 command |= WX_MDIO_CLK(6);
30 wr32(wx, WX_MSCC, command);
31
32 /* wait to complete */
33 ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000,
34 100000, false, wx, WX_MSCC);
35 if (ret) {
36 wx_err(wx, "Mdio read c22 command did not complete.\n");
37 return ret;
38 }
39
40 return (u16)rd32(wx, WX_MSCC);
41}
42
43static int wx_phy_write_reg_mdi(struct mii_bus *bus, int phy_addr,
44 int devnum, int regnum, u16 value)
45{
46 struct wx *wx = bus->priv;
47 u32 command, val;
48 int ret;
49
50 /* setup and write the address cycle command */
51 command = WX_MSCA_RA(regnum) |
52 WX_MSCA_PA(phy_addr) |
53 WX_MSCA_DA(devnum);
54 wr32(wx, WX_MSCA, command);
55
56 command = value | WX_MSCC_CMD(WX_MSCA_CMD_WRITE) | WX_MSCC_BUSY;
57 if (wx->mac.type == wx_mac_em)
58 command |= WX_MDIO_CLK(6);
59 wr32(wx, WX_MSCC, command);
60
61 /* wait to complete */
62 ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000,
63 100000, false, wx, WX_MSCC);
64 if (ret)
65 wx_err(wx, "Mdio write c22 command did not complete.\n");
66
67 return ret;
68}
69
70int wx_phy_read_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum)
71{
72 struct wx *wx = bus->priv;
73
74 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF);
75 return wx_phy_read_reg_mdi(bus, phy_addr, 0, regnum);
76}
77EXPORT_SYMBOL(wx_phy_read_reg_mdi_c22);
78
79int wx_phy_write_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum, u16 value)
80{
81 struct wx *wx = bus->priv;
82
83 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF);
84 return wx_phy_write_reg_mdi(bus, phy_addr, 0, regnum, value);
85}
86EXPORT_SYMBOL(wx_phy_write_reg_mdi_c22);
87
88int wx_phy_read_reg_mdi_c45(struct mii_bus *bus, int phy_addr, int devnum, int regnum)
89{
90 struct wx *wx = bus->priv;
91
92 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0);
93 return wx_phy_read_reg_mdi(bus, phy_addr, devnum, regnum);
94}
95EXPORT_SYMBOL(wx_phy_read_reg_mdi_c45);
96
97int wx_phy_write_reg_mdi_c45(struct mii_bus *bus, int phy_addr,
98 int devnum, int regnum, u16 value)
99{
100 struct wx *wx = bus->priv;
101
102 wr32(wx, WX_MDIO_CLAUSE_SELECT, 0);
103 return wx_phy_write_reg_mdi(bus, phy_addr, devnum, regnum, value);
104}
105EXPORT_SYMBOL(wx_phy_write_reg_mdi_c45);
106
107static void wx_intr_disable(struct wx *wx, u64 qmask)
108{
109 u32 mask;
110
111 mask = (qmask & U32_MAX);
112 if (mask)
113 wr32(wx, WX_PX_IMS(0), mask);
114
115 if (wx->mac.type == wx_mac_sp) {
116 mask = (qmask >> 32);
117 if (mask)
118 wr32(wx, WX_PX_IMS(1), mask);
119 }
120}
121
122void wx_intr_enable(struct wx *wx, u64 qmask)
123{
124 u32 mask;
125
126 mask = (qmask & U32_MAX);
127 if (mask)
128 wr32(wx, WX_PX_IMC(0), mask);
129 if (wx->mac.type == wx_mac_sp) {
130 mask = (qmask >> 32);
131 if (mask)
132 wr32(wx, WX_PX_IMC(1), mask);
133 }
134}
135EXPORT_SYMBOL(wx_intr_enable);
136
137/**
138 * wx_irq_disable - Mask off interrupt generation on the NIC
139 * @wx: board private structure
140 **/
141void wx_irq_disable(struct wx *wx)
142{
143 struct pci_dev *pdev = wx->pdev;
144
145 wr32(wx, WX_PX_MISC_IEN, 0);
146 wx_intr_disable(wx, WX_INTR_ALL);
147
148 if (pdev->msix_enabled) {
149 int vector;
150
151 for (vector = 0; vector < wx->num_q_vectors; vector++)
152 synchronize_irq(wx->msix_q_entries[vector].vector);
153
154 synchronize_irq(wx->msix_entry->vector);
155 } else {
156 synchronize_irq(pdev->irq);
157 }
158}
159EXPORT_SYMBOL(wx_irq_disable);
160
161/* cmd_addr is used for some special command:
162 * 1. to be sector address, when implemented erase sector command
163 * 2. to be flash address when implemented read, write flash address
164 */
165static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr)
166{
167 u32 cmd_val = 0, val = 0;
168
169 cmd_val = WX_SPI_CMD_CMD(cmd) |
170 WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) |
171 cmd_addr;
172 wr32(wx, WX_SPI_CMD, cmd_val);
173
174 return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000,
175 false, wx, WX_SPI_STATUS);
176}
177
178static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data)
179{
180 int ret = 0;
181
182 ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr);
183 if (ret < 0)
184 return ret;
185
186 *data = rd32(wx, WX_SPI_DATA);
187
188 return ret;
189}
190
191int wx_check_flash_load(struct wx *hw, u32 check_bit)
192{
193 u32 reg = 0;
194 int err = 0;
195
196 /* if there's flash existing */
197 if (!(rd32(hw, WX_SPI_STATUS) &
198 WX_SPI_STATUS_FLASH_BYPASS)) {
199 /* wait hw load flash done */
200 err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000,
201 false, hw, WX_SPI_ILDR_STATUS);
202 if (err < 0)
203 wx_err(hw, "Check flash load timeout.\n");
204 }
205
206 return err;
207}
208EXPORT_SYMBOL(wx_check_flash_load);
209
210void wx_control_hw(struct wx *wx, bool drv)
211{
212 /* True : Let firmware know the driver has taken over
213 * False : Let firmware take over control of hw
214 */
215 wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD,
216 drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0);
217}
218EXPORT_SYMBOL(wx_control_hw);
219
220/**
221 * wx_mng_present - returns 0 when management capability is present
222 * @wx: pointer to hardware structure
223 */
224int wx_mng_present(struct wx *wx)
225{
226 u32 fwsm;
227
228 fwsm = rd32(wx, WX_MIS_ST);
229 if (fwsm & WX_MIS_ST_MNG_INIT_DN)
230 return 0;
231 else
232 return -EACCES;
233}
234EXPORT_SYMBOL(wx_mng_present);
235
236/* Software lock to be held while software semaphore is being accessed. */
237static DEFINE_MUTEX(wx_sw_sync_lock);
238
239/**
240 * wx_release_sw_sync - Release SW semaphore
241 * @wx: pointer to hardware structure
242 * @mask: Mask to specify which semaphore to release
243 *
244 * Releases the SW semaphore for the specified
245 * function (CSR, PHY0, PHY1, EEPROM, Flash)
246 **/
247static void wx_release_sw_sync(struct wx *wx, u32 mask)
248{
249 mutex_lock(&wx_sw_sync_lock);
250 wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0);
251 mutex_unlock(&wx_sw_sync_lock);
252}
253
254/**
255 * wx_acquire_sw_sync - Acquire SW semaphore
256 * @wx: pointer to hardware structure
257 * @mask: Mask to specify which semaphore to acquire
258 *
259 * Acquires the SW semaphore for the specified
260 * function (CSR, PHY0, PHY1, EEPROM, Flash)
261 **/
262static int wx_acquire_sw_sync(struct wx *wx, u32 mask)
263{
264 u32 sem = 0;
265 int ret = 0;
266
267 mutex_lock(&wx_sw_sync_lock);
268 ret = read_poll_timeout(rd32, sem, !(sem & mask),
269 5000, 2000000, false, wx, WX_MNG_SWFW_SYNC);
270 if (!ret) {
271 sem |= mask;
272 wr32(wx, WX_MNG_SWFW_SYNC, sem);
273 } else {
274 wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem);
275 }
276 mutex_unlock(&wx_sw_sync_lock);
277
278 return ret;
279}
280
281/**
282 * wx_host_interface_command - Issue command to manageability block
283 * @wx: pointer to the HW structure
284 * @buffer: contains the command to write and where the return status will
285 * be placed
286 * @length: length of buffer, must be multiple of 4 bytes
287 * @timeout: time in ms to wait for command completion
288 * @return_data: read and return data from the buffer (true) or not (false)
289 * Needed because FW structures are big endian and decoding of
290 * these fields can be 8 bit or 16 bit based on command. Decoding
291 * is not easily understood without making a table of commands.
292 * So we will leave this up to the caller to read back the data
293 * in these cases.
294 **/
295int wx_host_interface_command(struct wx *wx, u32 *buffer,
296 u32 length, u32 timeout, bool return_data)
297{
298 u32 hdr_size = sizeof(struct wx_hic_hdr);
299 u32 hicr, i, bi, buf[64] = {};
300 int status = 0;
301 u32 dword_len;
302 u16 buf_len;
303
304 if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) {
305 wx_err(wx, "Buffer length failure buffersize=%d.\n", length);
306 return -EINVAL;
307 }
308
309 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
310 if (status != 0)
311 return status;
312
313 /* Calculate length in DWORDs. We must be DWORD aligned */
314 if ((length % (sizeof(u32))) != 0) {
315 wx_err(wx, "Buffer length failure, not aligned to dword");
316 status = -EINVAL;
317 goto rel_out;
318 }
319
320 dword_len = length >> 2;
321
322 /* The device driver writes the relevant command block
323 * into the ram area.
324 */
325 for (i = 0; i < dword_len; i++) {
326 wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i]));
327 /* write flush */
328 buf[i] = rd32a(wx, WX_MNG_MBOX, i);
329 }
330 /* Setting this bit tells the ARC that a new command is pending. */
331 wr32m(wx, WX_MNG_MBOX_CTL,
332 WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY);
333
334 status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000,
335 timeout * 1000, false, wx, WX_MNG_MBOX_CTL);
336
337 /* Check command completion */
338 if (status) {
339 wx_dbg(wx, "Command has failed with no status valid.\n");
340
341 buf[0] = rd32(wx, WX_MNG_MBOX);
342 if ((buffer[0] & 0xff) != (~buf[0] >> 24)) {
343 status = -EINVAL;
344 goto rel_out;
345 }
346 if ((buf[0] & 0xff0000) >> 16 == 0x80) {
347 wx_dbg(wx, "It's unknown cmd.\n");
348 status = -EINVAL;
349 goto rel_out;
350 }
351
352 wx_dbg(wx, "write value:\n");
353 for (i = 0; i < dword_len; i++)
354 wx_dbg(wx, "%x ", buffer[i]);
355 wx_dbg(wx, "read value:\n");
356 for (i = 0; i < dword_len; i++)
357 wx_dbg(wx, "%x ", buf[i]);
358 }
359
360 if (!return_data)
361 goto rel_out;
362
363 /* Calculate length in DWORDs */
364 dword_len = hdr_size >> 2;
365
366 /* first pull in the header so we know the buffer length */
367 for (bi = 0; bi < dword_len; bi++) {
368 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
369 le32_to_cpus(&buffer[bi]);
370 }
371
372 /* If there is any thing in data position pull it in */
373 buf_len = ((struct wx_hic_hdr *)buffer)->buf_len;
374 if (buf_len == 0)
375 goto rel_out;
376
377 if (length < buf_len + hdr_size) {
378 wx_err(wx, "Buffer not large enough for reply message.\n");
379 status = -EFAULT;
380 goto rel_out;
381 }
382
383 /* Calculate length in DWORDs, add 3 for odd lengths */
384 dword_len = (buf_len + 3) >> 2;
385
386 /* Pull in the rest of the buffer (bi is where we left off) */
387 for (; bi <= dword_len; bi++) {
388 buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
389 le32_to_cpus(&buffer[bi]);
390 }
391
392rel_out:
393 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
394 return status;
395}
396EXPORT_SYMBOL(wx_host_interface_command);
397
398/**
399 * wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd
400 * assuming that the semaphore is already obtained.
401 * @wx: pointer to hardware structure
402 * @offset: offset of word in the EEPROM to read
403 * @data: word read from the EEPROM
404 *
405 * Reads a 16 bit word from the EEPROM using the hostif.
406 **/
407static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data)
408{
409 struct wx_hic_read_shadow_ram buffer;
410 int status;
411
412 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
413 buffer.hdr.req.buf_lenh = 0;
414 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
415 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
416
417 /* convert offset from words to bytes */
418 buffer.address = (__force u32)cpu_to_be32(offset * 2);
419 /* one word */
420 buffer.length = (__force u16)cpu_to_be16(sizeof(u16));
421
422 status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer),
423 WX_HI_COMMAND_TIMEOUT, false);
424
425 if (status != 0)
426 return status;
427
428 *data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET);
429
430 return status;
431}
432
433/**
434 * wx_read_ee_hostif - Read EEPROM word using a host interface cmd
435 * @wx: pointer to hardware structure
436 * @offset: offset of word in the EEPROM to read
437 * @data: word read from the EEPROM
438 *
439 * Reads a 16 bit word from the EEPROM using the hostif.
440 **/
441int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data)
442{
443 int status = 0;
444
445 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
446 if (status == 0) {
447 status = wx_read_ee_hostif_data(wx, offset, data);
448 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
449 }
450
451 return status;
452}
453EXPORT_SYMBOL(wx_read_ee_hostif);
454
455/**
456 * wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif
457 * @wx: pointer to hardware structure
458 * @offset: offset of word in the EEPROM to read
459 * @words: number of words
460 * @data: word(s) read from the EEPROM
461 *
462 * Reads a 16 bit word(s) from the EEPROM using the hostif.
463 **/
464int wx_read_ee_hostif_buffer(struct wx *wx,
465 u16 offset, u16 words, u16 *data)
466{
467 struct wx_hic_read_shadow_ram buffer;
468 u32 current_word = 0;
469 u16 words_to_read;
470 u32 value = 0;
471 int status;
472 u32 i;
473
474 /* Take semaphore for the entire operation. */
475 status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
476 if (status != 0)
477 return status;
478
479 while (words) {
480 if (words > FW_MAX_READ_BUFFER_SIZE / 2)
481 words_to_read = FW_MAX_READ_BUFFER_SIZE / 2;
482 else
483 words_to_read = words;
484
485 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
486 buffer.hdr.req.buf_lenh = 0;
487 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
488 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
489
490 /* convert offset from words to bytes */
491 buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2);
492 buffer.length = (__force u16)cpu_to_be16(words_to_read * 2);
493
494 status = wx_host_interface_command(wx, (u32 *)&buffer,
495 sizeof(buffer),
496 WX_HI_COMMAND_TIMEOUT,
497 false);
498
499 if (status != 0) {
500 wx_err(wx, "Host interface command failed\n");
501 goto out;
502 }
503
504 for (i = 0; i < words_to_read; i++) {
505 u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i;
506
507 value = rd32(wx, reg);
508 data[current_word] = (u16)(value & 0xffff);
509 current_word++;
510 i++;
511 if (i < words_to_read) {
512 value >>= 16;
513 data[current_word] = (u16)(value & 0xffff);
514 current_word++;
515 }
516 }
517 words -= words_to_read;
518 }
519
520out:
521 wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
522 return status;
523}
524EXPORT_SYMBOL(wx_read_ee_hostif_buffer);
525
526/**
527 * wx_init_eeprom_params - Initialize EEPROM params
528 * @wx: pointer to hardware structure
529 *
530 * Initializes the EEPROM parameters wx_eeprom_info within the
531 * wx_hw struct in order to set up EEPROM access.
532 **/
533void wx_init_eeprom_params(struct wx *wx)
534{
535 struct wx_eeprom_info *eeprom = &wx->eeprom;
536 u16 eeprom_size;
537 u16 data = 0x80;
538
539 if (eeprom->type == wx_eeprom_uninitialized) {
540 eeprom->semaphore_delay = 10;
541 eeprom->type = wx_eeprom_none;
542
543 if (!(rd32(wx, WX_SPI_STATUS) &
544 WX_SPI_STATUS_FLASH_BYPASS)) {
545 eeprom->type = wx_flash;
546
547 eeprom_size = 4096;
548 eeprom->word_size = eeprom_size >> 1;
549
550 wx_dbg(wx, "Eeprom params: type = %d, size = %d\n",
551 eeprom->type, eeprom->word_size);
552 }
553 }
554
555 if (wx->mac.type == wx_mac_sp) {
556 if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) {
557 wx_err(wx, "NVM Read Error\n");
558 return;
559 }
560 data = data >> 1;
561 }
562
563 eeprom->sw_region_offset = data;
564}
565EXPORT_SYMBOL(wx_init_eeprom_params);
566
567/**
568 * wx_get_mac_addr - Generic get MAC address
569 * @wx: pointer to hardware structure
570 * @mac_addr: Adapter MAC address
571 *
572 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
573 * A reset of the adapter must be performed prior to calling this function
574 * in order for the MAC address to have been loaded from the EEPROM into RAR0
575 **/
576void wx_get_mac_addr(struct wx *wx, u8 *mac_addr)
577{
578 u32 rar_high;
579 u32 rar_low;
580 u16 i;
581
582 wr32(wx, WX_PSR_MAC_SWC_IDX, 0);
583 rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H);
584 rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L);
585
586 for (i = 0; i < 2; i++)
587 mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
588
589 for (i = 0; i < 4; i++)
590 mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
591}
592EXPORT_SYMBOL(wx_get_mac_addr);
593
594/**
595 * wx_set_rar - Set Rx address register
596 * @wx: pointer to hardware structure
597 * @index: Receive address register to write
598 * @addr: Address to put into receive address register
599 * @pools: VMDq "set" or "pool" index
600 * @enable_addr: set flag that address is active
601 *
602 * Puts an ethernet address into a receive address register.
603 **/
604static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools,
605 u32 enable_addr)
606{
607 u32 rar_entries = wx->mac.num_rar_entries;
608 u32 rar_low, rar_high;
609
610 /* Make sure we are using a valid rar index range */
611 if (index >= rar_entries) {
612 wx_err(wx, "RAR index %d is out of range.\n", index);
613 return -EINVAL;
614 }
615
616 /* select the MAC address */
617 wr32(wx, WX_PSR_MAC_SWC_IDX, index);
618
619 /* setup VMDq pool mapping */
620 wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF);
621 if (wx->mac.type == wx_mac_sp)
622 wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32);
623
624 /* HW expects these in little endian so we reverse the byte
625 * order from network order (big endian) to little endian
626 *
627 * Some parts put the VMDq setting in the extra RAH bits,
628 * so save everything except the lower 16 bits that hold part
629 * of the address and the address valid bit.
630 */
631 rar_low = ((u32)addr[5] |
632 ((u32)addr[4] << 8) |
633 ((u32)addr[3] << 16) |
634 ((u32)addr[2] << 24));
635 rar_high = ((u32)addr[1] |
636 ((u32)addr[0] << 8));
637 if (enable_addr != 0)
638 rar_high |= WX_PSR_MAC_SWC_AD_H_AV;
639
640 wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low);
641 wr32m(wx, WX_PSR_MAC_SWC_AD_H,
642 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
643 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
644 WX_PSR_MAC_SWC_AD_H_AV),
645 rar_high);
646
647 return 0;
648}
649
650/**
651 * wx_clear_rar - Remove Rx address register
652 * @wx: pointer to hardware structure
653 * @index: Receive address register to write
654 *
655 * Clears an ethernet address from a receive address register.
656 **/
657static int wx_clear_rar(struct wx *wx, u32 index)
658{
659 u32 rar_entries = wx->mac.num_rar_entries;
660
661 /* Make sure we are using a valid rar index range */
662 if (index >= rar_entries) {
663 wx_err(wx, "RAR index %d is out of range.\n", index);
664 return -EINVAL;
665 }
666
667 /* Some parts put the VMDq setting in the extra RAH bits,
668 * so save everything except the lower 16 bits that hold part
669 * of the address and the address valid bit.
670 */
671 wr32(wx, WX_PSR_MAC_SWC_IDX, index);
672
673 wr32(wx, WX_PSR_MAC_SWC_VM_L, 0);
674 wr32(wx, WX_PSR_MAC_SWC_VM_H, 0);
675
676 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
677 wr32m(wx, WX_PSR_MAC_SWC_AD_H,
678 (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
679 WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
680 WX_PSR_MAC_SWC_AD_H_AV),
681 0);
682
683 return 0;
684}
685
686/**
687 * wx_clear_vmdq - Disassociate a VMDq pool index from a rx address
688 * @wx: pointer to hardware struct
689 * @rar: receive address register index to disassociate
690 * @vmdq: VMDq pool index to remove from the rar
691 **/
692static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq)
693{
694 u32 rar_entries = wx->mac.num_rar_entries;
695 u32 mpsar_lo, mpsar_hi;
696
697 /* Make sure we are using a valid rar index range */
698 if (rar >= rar_entries) {
699 wx_err(wx, "RAR index %d is out of range.\n", rar);
700 return -EINVAL;
701 }
702
703 wr32(wx, WX_PSR_MAC_SWC_IDX, rar);
704 mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L);
705 mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H);
706
707 if (!mpsar_lo && !mpsar_hi)
708 return 0;
709
710 /* was that the last pool using this rar? */
711 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
712 wx_clear_rar(wx, rar);
713
714 return 0;
715}
716
717/**
718 * wx_init_uta_tables - Initialize the Unicast Table Array
719 * @wx: pointer to hardware structure
720 **/
721static void wx_init_uta_tables(struct wx *wx)
722{
723 int i;
724
725 wx_dbg(wx, " Clearing UTA\n");
726
727 for (i = 0; i < 128; i++)
728 wr32(wx, WX_PSR_UC_TBL(i), 0);
729}
730
731/**
732 * wx_init_rx_addrs - Initializes receive address filters.
733 * @wx: pointer to hardware structure
734 *
735 * Places the MAC address in receive address register 0 and clears the rest
736 * of the receive address registers. Clears the multicast table. Assumes
737 * the receiver is in reset when the routine is called.
738 **/
739void wx_init_rx_addrs(struct wx *wx)
740{
741 u32 rar_entries = wx->mac.num_rar_entries;
742 u32 psrctl;
743 int i;
744
745 /* If the current mac address is valid, assume it is a software override
746 * to the permanent address.
747 * Otherwise, use the permanent address from the eeprom.
748 */
749 if (!is_valid_ether_addr(wx->mac.addr)) {
750 /* Get the MAC address from the RAR0 for later reference */
751 wx_get_mac_addr(wx, wx->mac.addr);
752 wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr);
753 } else {
754 /* Setup the receive address. */
755 wx_dbg(wx, "Overriding MAC Address in RAR[0]\n");
756 wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr);
757
758 wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV);
759
760 if (wx->mac.type == wx_mac_sp) {
761 /* clear VMDq pool/queue selection for RAR 0 */
762 wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL);
763 }
764 }
765
766 /* Zero out the other receive addresses. */
767 wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1);
768 for (i = 1; i < rar_entries; i++) {
769 wr32(wx, WX_PSR_MAC_SWC_IDX, i);
770 wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
771 wr32(wx, WX_PSR_MAC_SWC_AD_H, 0);
772 }
773
774 /* Clear the MTA */
775 wx->addr_ctrl.mta_in_use = 0;
776 psrctl = rd32(wx, WX_PSR_CTL);
777 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
778 psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT;
779 wr32(wx, WX_PSR_CTL, psrctl);
780 wx_dbg(wx, " Clearing MTA\n");
781 for (i = 0; i < wx->mac.mcft_size; i++)
782 wr32(wx, WX_PSR_MC_TBL(i), 0);
783
784 wx_init_uta_tables(wx);
785}
786EXPORT_SYMBOL(wx_init_rx_addrs);
787
788static void wx_sync_mac_table(struct wx *wx)
789{
790 int i;
791
792 for (i = 0; i < wx->mac.num_rar_entries; i++) {
793 if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) {
794 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
795 wx_set_rar(wx, i,
796 wx->mac_table[i].addr,
797 wx->mac_table[i].pools,
798 WX_PSR_MAC_SWC_AD_H_AV);
799 } else {
800 wx_clear_rar(wx, i);
801 }
802 wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED);
803 }
804 }
805}
806
807/* this function destroys the first RAR entry */
808void wx_mac_set_default_filter(struct wx *wx, u8 *addr)
809{
810 memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN);
811 wx->mac_table[0].pools = 1ULL;
812 wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE);
813 wx_set_rar(wx, 0, wx->mac_table[0].addr,
814 wx->mac_table[0].pools,
815 WX_PSR_MAC_SWC_AD_H_AV);
816}
817EXPORT_SYMBOL(wx_mac_set_default_filter);
818
819void wx_flush_sw_mac_table(struct wx *wx)
820{
821 u32 i;
822
823 for (i = 0; i < wx->mac.num_rar_entries; i++) {
824 if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE))
825 continue;
826
827 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
828 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
829 memset(wx->mac_table[i].addr, 0, ETH_ALEN);
830 wx->mac_table[i].pools = 0;
831 }
832 wx_sync_mac_table(wx);
833}
834EXPORT_SYMBOL(wx_flush_sw_mac_table);
835
836static int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool)
837{
838 u32 i;
839
840 if (is_zero_ether_addr(addr))
841 return -EINVAL;
842
843 for (i = 0; i < wx->mac.num_rar_entries; i++) {
844 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
845 if (ether_addr_equal(addr, wx->mac_table[i].addr)) {
846 if (wx->mac_table[i].pools != (1ULL << pool)) {
847 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
848 wx->mac_table[i].pools |= (1ULL << pool);
849 wx_sync_mac_table(wx);
850 return i;
851 }
852 }
853 }
854
855 if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE)
856 continue;
857 wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED |
858 WX_MAC_STATE_IN_USE);
859 memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
860 wx->mac_table[i].pools |= (1ULL << pool);
861 wx_sync_mac_table(wx);
862 return i;
863 }
864 return -ENOMEM;
865}
866
867static int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool)
868{
869 u32 i;
870
871 if (is_zero_ether_addr(addr))
872 return -EINVAL;
873
874 /* search table for addr, if found, set to 0 and sync */
875 for (i = 0; i < wx->mac.num_rar_entries; i++) {
876 if (!ether_addr_equal(addr, wx->mac_table[i].addr))
877 continue;
878
879 wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
880 wx->mac_table[i].pools &= ~(1ULL << pool);
881 if (!wx->mac_table[i].pools) {
882 wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
883 memset(wx->mac_table[i].addr, 0, ETH_ALEN);
884 }
885 wx_sync_mac_table(wx);
886 return 0;
887 }
888 return -ENOMEM;
889}
890
891static int wx_available_rars(struct wx *wx)
892{
893 u32 i, count = 0;
894
895 for (i = 0; i < wx->mac.num_rar_entries; i++) {
896 if (wx->mac_table[i].state == 0)
897 count++;
898 }
899
900 return count;
901}
902
903/**
904 * wx_write_uc_addr_list - write unicast addresses to RAR table
905 * @netdev: network interface device structure
906 * @pool: index for mac table
907 *
908 * Writes unicast address list to the RAR table.
909 * Returns: -ENOMEM on failure/insufficient address space
910 * 0 on no addresses written
911 * X on writing X addresses to the RAR table
912 **/
913static int wx_write_uc_addr_list(struct net_device *netdev, int pool)
914{
915 struct wx *wx = netdev_priv(netdev);
916 int count = 0;
917
918 /* return ENOMEM indicating insufficient memory for addresses */
919 if (netdev_uc_count(netdev) > wx_available_rars(wx))
920 return -ENOMEM;
921
922 if (!netdev_uc_empty(netdev)) {
923 struct netdev_hw_addr *ha;
924
925 netdev_for_each_uc_addr(ha, netdev) {
926 wx_del_mac_filter(wx, ha->addr, pool);
927 wx_add_mac_filter(wx, ha->addr, pool);
928 count++;
929 }
930 }
931 return count;
932}
933
934/**
935 * wx_mta_vector - Determines bit-vector in multicast table to set
936 * @wx: pointer to private structure
937 * @mc_addr: the multicast address
938 *
939 * Extracts the 12 bits, from a multicast address, to determine which
940 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
941 * incoming rx multicast addresses, to determine the bit-vector to check in
942 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
943 * by the MO field of the MCSTCTRL. The MO field is set during initialization
944 * to mc_filter_type.
945 **/
946static u32 wx_mta_vector(struct wx *wx, u8 *mc_addr)
947{
948 u32 vector = 0;
949
950 switch (wx->mac.mc_filter_type) {
951 case 0: /* use bits [47:36] of the address */
952 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
953 break;
954 case 1: /* use bits [46:35] of the address */
955 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
956 break;
957 case 2: /* use bits [45:34] of the address */
958 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
959 break;
960 case 3: /* use bits [43:32] of the address */
961 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
962 break;
963 default: /* Invalid mc_filter_type */
964 wx_err(wx, "MC filter type param set incorrectly\n");
965 break;
966 }
967
968 /* vector can only be 12-bits or boundary will be exceeded */
969 vector &= 0xFFF;
970 return vector;
971}
972
973/**
974 * wx_set_mta - Set bit-vector in multicast table
975 * @wx: pointer to private structure
976 * @mc_addr: Multicast address
977 *
978 * Sets the bit-vector in the multicast table.
979 **/
980static void wx_set_mta(struct wx *wx, u8 *mc_addr)
981{
982 u32 vector, vector_bit, vector_reg;
983
984 wx->addr_ctrl.mta_in_use++;
985
986 vector = wx_mta_vector(wx, mc_addr);
987 wx_dbg(wx, " bit-vector = 0x%03X\n", vector);
988
989 /* The MTA is a register array of 128 32-bit registers. It is treated
990 * like an array of 4096 bits. We want to set bit
991 * BitArray[vector_value]. So we figure out what register the bit is
992 * in, read it, OR in the new bit, then write back the new value. The
993 * register is determined by the upper 7 bits of the vector value and
994 * the bit within that register are determined by the lower 5 bits of
995 * the value.
996 */
997 vector_reg = (vector >> 5) & 0x7F;
998 vector_bit = vector & 0x1F;
999 wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1000}
1001
1002/**
1003 * wx_update_mc_addr_list - Updates MAC list of multicast addresses
1004 * @wx: pointer to private structure
1005 * @netdev: pointer to net device structure
1006 *
1007 * The given list replaces any existing list. Clears the MC addrs from receive
1008 * address registers and the multicast table. Uses unused receive address
1009 * registers for the first multicast addresses, and hashes the rest into the
1010 * multicast table.
1011 **/
1012static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev)
1013{
1014 struct netdev_hw_addr *ha;
1015 u32 i, psrctl;
1016
1017 /* Set the new number of MC addresses that we are being requested to
1018 * use.
1019 */
1020 wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1021 wx->addr_ctrl.mta_in_use = 0;
1022
1023 /* Clear mta_shadow */
1024 wx_dbg(wx, " Clearing MTA\n");
1025 memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow));
1026
1027 /* Update mta_shadow */
1028 netdev_for_each_mc_addr(ha, netdev) {
1029 wx_dbg(wx, " Adding the multicast addresses:\n");
1030 wx_set_mta(wx, ha->addr);
1031 }
1032
1033 /* Enable mta */
1034 for (i = 0; i < wx->mac.mcft_size; i++)
1035 wr32a(wx, WX_PSR_MC_TBL(0), i,
1036 wx->mac.mta_shadow[i]);
1037
1038 if (wx->addr_ctrl.mta_in_use > 0) {
1039 psrctl = rd32(wx, WX_PSR_CTL);
1040 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
1041 psrctl |= WX_PSR_CTL_MFE |
1042 (wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT);
1043 wr32(wx, WX_PSR_CTL, psrctl);
1044 }
1045
1046 wx_dbg(wx, "Update mc addr list Complete\n");
1047}
1048
1049/**
1050 * wx_write_mc_addr_list - write multicast addresses to MTA
1051 * @netdev: network interface device structure
1052 *
1053 * Writes multicast address list to the MTA hash table.
1054 * Returns: 0 on no addresses written
1055 * X on writing X addresses to MTA
1056 **/
1057static int wx_write_mc_addr_list(struct net_device *netdev)
1058{
1059 struct wx *wx = netdev_priv(netdev);
1060
1061 if (!netif_running(netdev))
1062 return 0;
1063
1064 wx_update_mc_addr_list(wx, netdev);
1065
1066 return netdev_mc_count(netdev);
1067}
1068
1069/**
1070 * wx_set_mac - Change the Ethernet Address of the NIC
1071 * @netdev: network interface device structure
1072 * @p: pointer to an address structure
1073 *
1074 * Returns 0 on success, negative on failure
1075 **/
1076int wx_set_mac(struct net_device *netdev, void *p)
1077{
1078 struct wx *wx = netdev_priv(netdev);
1079 struct sockaddr *addr = p;
1080 int retval;
1081
1082 retval = eth_prepare_mac_addr_change(netdev, addr);
1083 if (retval)
1084 return retval;
1085
1086 wx_del_mac_filter(wx, wx->mac.addr, 0);
1087 eth_hw_addr_set(netdev, addr->sa_data);
1088 memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len);
1089
1090 wx_mac_set_default_filter(wx, wx->mac.addr);
1091
1092 return 0;
1093}
1094EXPORT_SYMBOL(wx_set_mac);
1095
1096void wx_disable_rx(struct wx *wx)
1097{
1098 u32 pfdtxgswc;
1099 u32 rxctrl;
1100
1101 rxctrl = rd32(wx, WX_RDB_PB_CTL);
1102 if (rxctrl & WX_RDB_PB_CTL_RXEN) {
1103 pfdtxgswc = rd32(wx, WX_PSR_CTL);
1104 if (pfdtxgswc & WX_PSR_CTL_SW_EN) {
1105 pfdtxgswc &= ~WX_PSR_CTL_SW_EN;
1106 wr32(wx, WX_PSR_CTL, pfdtxgswc);
1107 wx->mac.set_lben = true;
1108 } else {
1109 wx->mac.set_lben = false;
1110 }
1111 rxctrl &= ~WX_RDB_PB_CTL_RXEN;
1112 wr32(wx, WX_RDB_PB_CTL, rxctrl);
1113
1114 if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) ||
1115 ((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) {
1116 /* disable mac receiver */
1117 wr32m(wx, WX_MAC_RX_CFG,
1118 WX_MAC_RX_CFG_RE, 0);
1119 }
1120 }
1121}
1122EXPORT_SYMBOL(wx_disable_rx);
1123
1124static void wx_enable_rx(struct wx *wx)
1125{
1126 u32 psrctl;
1127
1128 /* enable mac receiver */
1129 wr32m(wx, WX_MAC_RX_CFG,
1130 WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE);
1131
1132 wr32m(wx, WX_RDB_PB_CTL,
1133 WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN);
1134
1135 if (wx->mac.set_lben) {
1136 psrctl = rd32(wx, WX_PSR_CTL);
1137 psrctl |= WX_PSR_CTL_SW_EN;
1138 wr32(wx, WX_PSR_CTL, psrctl);
1139 wx->mac.set_lben = false;
1140 }
1141}
1142
1143/**
1144 * wx_set_rxpba - Initialize Rx packet buffer
1145 * @wx: pointer to private structure
1146 **/
1147static void wx_set_rxpba(struct wx *wx)
1148{
1149 u32 rxpktsize, txpktsize, txpbthresh;
1150
1151 rxpktsize = wx->mac.rx_pb_size << WX_RDB_PB_SZ_SHIFT;
1152 wr32(wx, WX_RDB_PB_SZ(0), rxpktsize);
1153
1154 /* Only support an equally distributed Tx packet buffer strategy. */
1155 txpktsize = wx->mac.tx_pb_size;
1156 txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX;
1157 wr32(wx, WX_TDB_PB_SZ(0), txpktsize);
1158 wr32(wx, WX_TDM_PB_THRE(0), txpbthresh);
1159}
1160
1161#define WX_ETH_FRAMING 20
1162
1163/**
1164 * wx_hpbthresh - calculate high water mark for flow control
1165 *
1166 * @wx: board private structure to calculate for
1167 **/
1168static int wx_hpbthresh(struct wx *wx)
1169{
1170 struct net_device *dev = wx->netdev;
1171 int link, tc, kb, marker;
1172 u32 dv_id, rx_pba;
1173
1174 /* Calculate max LAN frame size */
1175 link = dev->mtu + ETH_HLEN + ETH_FCS_LEN + WX_ETH_FRAMING;
1176 tc = link;
1177
1178 /* Calculate delay value for device */
1179 dv_id = WX_DV(link, tc);
1180
1181 /* Delay value is calculated in bit times convert to KB */
1182 kb = WX_BT2KB(dv_id);
1183 rx_pba = rd32(wx, WX_RDB_PB_SZ(0)) >> WX_RDB_PB_SZ_SHIFT;
1184
1185 marker = rx_pba - kb;
1186
1187 /* It is possible that the packet buffer is not large enough
1188 * to provide required headroom. In this case throw an error
1189 * to user and a do the best we can.
1190 */
1191 if (marker < 0) {
1192 dev_warn(&wx->pdev->dev,
1193 "Packet Buffer can not provide enough headroom to support flow control. Decrease MTU or number of traffic classes\n");
1194 marker = tc + 1;
1195 }
1196
1197 return marker;
1198}
1199
1200/**
1201 * wx_lpbthresh - calculate low water mark for flow control
1202 *
1203 * @wx: board private structure to calculate for
1204 **/
1205static int wx_lpbthresh(struct wx *wx)
1206{
1207 struct net_device *dev = wx->netdev;
1208 u32 dv_id;
1209 int tc;
1210
1211 /* Calculate max LAN frame size */
1212 tc = dev->mtu + ETH_HLEN + ETH_FCS_LEN;
1213
1214 /* Calculate delay value for device */
1215 dv_id = WX_LOW_DV(tc);
1216
1217 /* Delay value is calculated in bit times convert to KB */
1218 return WX_BT2KB(dv_id);
1219}
1220
1221/**
1222 * wx_pbthresh_setup - calculate and setup high low water marks
1223 *
1224 * @wx: board private structure to calculate for
1225 **/
1226static void wx_pbthresh_setup(struct wx *wx)
1227{
1228 wx->fc.high_water = wx_hpbthresh(wx);
1229 wx->fc.low_water = wx_lpbthresh(wx);
1230
1231 /* Low water marks must not be larger than high water marks */
1232 if (wx->fc.low_water > wx->fc.high_water)
1233 wx->fc.low_water = 0;
1234}
1235
1236static void wx_configure_port(struct wx *wx)
1237{
1238 u32 value, i;
1239
1240 value = WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ;
1241 wr32m(wx, WX_CFG_PORT_CTL,
1242 WX_CFG_PORT_CTL_D_VLAN |
1243 WX_CFG_PORT_CTL_QINQ,
1244 value);
1245
1246 wr32(wx, WX_CFG_TAG_TPID(0),
1247 ETH_P_8021Q | ETH_P_8021AD << 16);
1248 wx->tpid[0] = ETH_P_8021Q;
1249 wx->tpid[1] = ETH_P_8021AD;
1250 for (i = 1; i < 4; i++)
1251 wr32(wx, WX_CFG_TAG_TPID(i),
1252 ETH_P_8021Q | ETH_P_8021Q << 16);
1253 for (i = 2; i < 8; i++)
1254 wx->tpid[i] = ETH_P_8021Q;
1255}
1256
1257/**
1258 * wx_disable_sec_rx_path - Stops the receive data path
1259 * @wx: pointer to private structure
1260 *
1261 * Stops the receive data path and waits for the HW to internally empty
1262 * the Rx security block
1263 **/
1264static int wx_disable_sec_rx_path(struct wx *wx)
1265{
1266 u32 secrx;
1267
1268 wr32m(wx, WX_RSC_CTL,
1269 WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS);
1270
1271 return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY,
1272 1000, 40000, false, wx, WX_RSC_ST);
1273}
1274
1275/**
1276 * wx_enable_sec_rx_path - Enables the receive data path
1277 * @wx: pointer to private structure
1278 *
1279 * Enables the receive data path.
1280 **/
1281static void wx_enable_sec_rx_path(struct wx *wx)
1282{
1283 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0);
1284 WX_WRITE_FLUSH(wx);
1285}
1286
1287static void wx_vlan_strip_control(struct wx *wx, bool enable)
1288{
1289 int i, j;
1290
1291 for (i = 0; i < wx->num_rx_queues; i++) {
1292 struct wx_ring *ring = wx->rx_ring[i];
1293
1294 j = ring->reg_idx;
1295 wr32m(wx, WX_PX_RR_CFG(j), WX_PX_RR_CFG_VLAN,
1296 enable ? WX_PX_RR_CFG_VLAN : 0);
1297 }
1298}
1299
1300void wx_set_rx_mode(struct net_device *netdev)
1301{
1302 struct wx *wx = netdev_priv(netdev);
1303 netdev_features_t features;
1304 u32 fctrl, vmolr, vlnctrl;
1305 int count;
1306
1307 features = netdev->features;
1308
1309 /* Check for Promiscuous and All Multicast modes */
1310 fctrl = rd32(wx, WX_PSR_CTL);
1311 fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE);
1312 vmolr = rd32(wx, WX_PSR_VM_L2CTL(0));
1313 vmolr &= ~(WX_PSR_VM_L2CTL_UPE |
1314 WX_PSR_VM_L2CTL_MPE |
1315 WX_PSR_VM_L2CTL_ROPE |
1316 WX_PSR_VM_L2CTL_ROMPE);
1317 vlnctrl = rd32(wx, WX_PSR_VLAN_CTL);
1318 vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN);
1319
1320 /* set all bits that we expect to always be set */
1321 fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE;
1322 vmolr |= WX_PSR_VM_L2CTL_BAM |
1323 WX_PSR_VM_L2CTL_AUPE |
1324 WX_PSR_VM_L2CTL_VACC;
1325 vlnctrl |= WX_PSR_VLAN_CTL_VFE;
1326
1327 wx->addr_ctrl.user_set_promisc = false;
1328 if (netdev->flags & IFF_PROMISC) {
1329 wx->addr_ctrl.user_set_promisc = true;
1330 fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE;
1331 /* pf don't want packets routing to vf, so clear UPE */
1332 vmolr |= WX_PSR_VM_L2CTL_MPE;
1333 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1334 }
1335
1336 if (netdev->flags & IFF_ALLMULTI) {
1337 fctrl |= WX_PSR_CTL_MPE;
1338 vmolr |= WX_PSR_VM_L2CTL_MPE;
1339 }
1340
1341 if (netdev->features & NETIF_F_RXALL) {
1342 vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE);
1343 vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1344 /* receive bad packets */
1345 wr32m(wx, WX_RSC_CTL,
1346 WX_RSC_CTL_SAVE_MAC_ERR,
1347 WX_RSC_CTL_SAVE_MAC_ERR);
1348 } else {
1349 vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE;
1350 }
1351
1352 /* Write addresses to available RAR registers, if there is not
1353 * sufficient space to store all the addresses then enable
1354 * unicast promiscuous mode
1355 */
1356 count = wx_write_uc_addr_list(netdev, 0);
1357 if (count < 0) {
1358 vmolr &= ~WX_PSR_VM_L2CTL_ROPE;
1359 vmolr |= WX_PSR_VM_L2CTL_UPE;
1360 }
1361
1362 /* Write addresses to the MTA, if the attempt fails
1363 * then we should just turn on promiscuous mode so
1364 * that we can at least receive multicast traffic
1365 */
1366 count = wx_write_mc_addr_list(netdev);
1367 if (count < 0) {
1368 vmolr &= ~WX_PSR_VM_L2CTL_ROMPE;
1369 vmolr |= WX_PSR_VM_L2CTL_MPE;
1370 }
1371
1372 wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
1373 wr32(wx, WX_PSR_CTL, fctrl);
1374 wr32(wx, WX_PSR_VM_L2CTL(0), vmolr);
1375
1376 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1377 (features & NETIF_F_HW_VLAN_STAG_RX))
1378 wx_vlan_strip_control(wx, true);
1379 else
1380 wx_vlan_strip_control(wx, false);
1381
1382}
1383EXPORT_SYMBOL(wx_set_rx_mode);
1384
1385static void wx_set_rx_buffer_len(struct wx *wx)
1386{
1387 struct net_device *netdev = wx->netdev;
1388 u32 mhadd, max_frame;
1389
1390 max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1391 /* adjust max frame to be at least the size of a standard frame */
1392 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
1393 max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN);
1394
1395 mhadd = rd32(wx, WX_PSR_MAX_SZ);
1396 if (max_frame != mhadd)
1397 wr32(wx, WX_PSR_MAX_SZ, max_frame);
1398}
1399
1400/**
1401 * wx_change_mtu - Change the Maximum Transfer Unit
1402 * @netdev: network interface device structure
1403 * @new_mtu: new value for maximum frame size
1404 *
1405 * Returns 0 on success, negative on failure
1406 **/
1407int wx_change_mtu(struct net_device *netdev, int new_mtu)
1408{
1409 struct wx *wx = netdev_priv(netdev);
1410
1411 netdev->mtu = new_mtu;
1412 wx_set_rx_buffer_len(wx);
1413
1414 return 0;
1415}
1416EXPORT_SYMBOL(wx_change_mtu);
1417
1418/* Disable the specified rx queue */
1419void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring)
1420{
1421 u8 reg_idx = ring->reg_idx;
1422 u32 rxdctl;
1423 int ret;
1424
1425 /* write value back with RRCFG.EN bit cleared */
1426 wr32m(wx, WX_PX_RR_CFG(reg_idx),
1427 WX_PX_RR_CFG_RR_EN, 0);
1428
1429 /* the hardware may take up to 100us to really disable the rx queue */
1430 ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN),
1431 10, 100, true, wx, WX_PX_RR_CFG(reg_idx));
1432
1433 if (ret == -ETIMEDOUT) {
1434 /* Just for information */
1435 wx_err(wx,
1436 "RRCFG.EN on Rx queue %d not cleared within the polling period\n",
1437 reg_idx);
1438 }
1439}
1440EXPORT_SYMBOL(wx_disable_rx_queue);
1441
1442static void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring)
1443{
1444 u8 reg_idx = ring->reg_idx;
1445 u32 rxdctl;
1446 int ret;
1447
1448 ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN,
1449 1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx));
1450
1451 if (ret == -ETIMEDOUT) {
1452 /* Just for information */
1453 wx_err(wx,
1454 "RRCFG.EN on Rx queue %d not set within the polling period\n",
1455 reg_idx);
1456 }
1457}
1458
1459static void wx_configure_srrctl(struct wx *wx,
1460 struct wx_ring *rx_ring)
1461{
1462 u16 reg_idx = rx_ring->reg_idx;
1463 u32 srrctl;
1464
1465 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1466 srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ |
1467 WX_PX_RR_CFG_RR_BUF_SZ |
1468 WX_PX_RR_CFG_SPLIT_MODE);
1469 /* configure header buffer length, needed for RSC */
1470 srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT;
1471
1472 /* configure the packet buffer length */
1473 srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT;
1474
1475 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
1476}
1477
1478static void wx_configure_tx_ring(struct wx *wx,
1479 struct wx_ring *ring)
1480{
1481 u32 txdctl = WX_PX_TR_CFG_ENABLE;
1482 u8 reg_idx = ring->reg_idx;
1483 u64 tdba = ring->dma;
1484 int ret;
1485
1486 /* disable queue to avoid issues while updating state */
1487 wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH);
1488 WX_WRITE_FLUSH(wx);
1489
1490 wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32));
1491 wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba));
1492
1493 /* reset head and tail pointers */
1494 wr32(wx, WX_PX_TR_RP(reg_idx), 0);
1495 wr32(wx, WX_PX_TR_WP(reg_idx), 0);
1496 ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx);
1497
1498 if (ring->count < WX_MAX_TXD)
1499 txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT;
1500 txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT;
1501
1502 /* reinitialize tx_buffer_info */
1503 memset(ring->tx_buffer_info, 0,
1504 sizeof(struct wx_tx_buffer) * ring->count);
1505
1506 /* enable queue */
1507 wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl);
1508
1509 /* poll to verify queue is enabled */
1510 ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE,
1511 1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx));
1512 if (ret == -ETIMEDOUT)
1513 wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx);
1514}
1515
1516static void wx_configure_rx_ring(struct wx *wx,
1517 struct wx_ring *ring)
1518{
1519 u16 reg_idx = ring->reg_idx;
1520 union wx_rx_desc *rx_desc;
1521 u64 rdba = ring->dma;
1522 u32 rxdctl;
1523
1524 /* disable queue to avoid issues while updating state */
1525 rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1526 wx_disable_rx_queue(wx, ring);
1527
1528 wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32));
1529 wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba));
1530
1531 if (ring->count == WX_MAX_RXD)
1532 rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1533 else
1534 rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1535
1536 rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT;
1537 wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl);
1538
1539 /* reset head and tail pointers */
1540 wr32(wx, WX_PX_RR_RP(reg_idx), 0);
1541 wr32(wx, WX_PX_RR_WP(reg_idx), 0);
1542 ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx);
1543
1544 wx_configure_srrctl(wx, ring);
1545
1546 /* initialize rx_buffer_info */
1547 memset(ring->rx_buffer_info, 0,
1548 sizeof(struct wx_rx_buffer) * ring->count);
1549
1550 /* initialize Rx descriptor 0 */
1551 rx_desc = WX_RX_DESC(ring, 0);
1552 rx_desc->wb.upper.length = 0;
1553
1554 /* enable receive descriptor ring */
1555 wr32m(wx, WX_PX_RR_CFG(reg_idx),
1556 WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN);
1557
1558 wx_enable_rx_queue(wx, ring);
1559 wx_alloc_rx_buffers(ring, wx_desc_unused(ring));
1560}
1561
1562/**
1563 * wx_configure_tx - Configure Transmit Unit after Reset
1564 * @wx: pointer to private structure
1565 *
1566 * Configure the Tx unit of the MAC after a reset.
1567 **/
1568static void wx_configure_tx(struct wx *wx)
1569{
1570 u32 i;
1571
1572 /* TDM_CTL.TE must be before Tx queues are enabled */
1573 wr32m(wx, WX_TDM_CTL,
1574 WX_TDM_CTL_TE, WX_TDM_CTL_TE);
1575
1576 /* Setup the HW Tx Head and Tail descriptor pointers */
1577 for (i = 0; i < wx->num_tx_queues; i++)
1578 wx_configure_tx_ring(wx, wx->tx_ring[i]);
1579
1580 wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10);
1581
1582 if (wx->mac.type == wx_mac_em)
1583 wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1);
1584
1585 /* enable mac transmitter */
1586 wr32m(wx, WX_MAC_TX_CFG,
1587 WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE);
1588}
1589
1590static void wx_restore_vlan(struct wx *wx)
1591{
1592 u16 vid = 1;
1593
1594 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), 0);
1595
1596 for_each_set_bit_from(vid, wx->active_vlans, VLAN_N_VID)
1597 wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), vid);
1598}
1599
1600static void wx_store_reta(struct wx *wx)
1601{
1602 u8 *indir_tbl = wx->rss_indir_tbl;
1603 u32 reta = 0;
1604 u32 i;
1605
1606 /* Fill out the redirection table as follows:
1607 * - 8 bit wide entries containing 4 bit RSS index
1608 */
1609 for (i = 0; i < WX_MAX_RETA_ENTRIES; i++) {
1610 reta |= indir_tbl[i] << (i & 0x3) * 8;
1611 if ((i & 3) == 3) {
1612 wr32(wx, WX_RDB_RSSTBL(i >> 2), reta);
1613 reta = 0;
1614 }
1615 }
1616}
1617
1618static void wx_setup_reta(struct wx *wx)
1619{
1620 u16 rss_i = wx->ring_feature[RING_F_RSS].indices;
1621 u32 random_key_size = WX_RSS_KEY_SIZE / 4;
1622 u32 i, j;
1623
1624 /* Fill out hash function seeds */
1625 for (i = 0; i < random_key_size; i++)
1626 wr32(wx, WX_RDB_RSSRK(i), wx->rss_key[i]);
1627
1628 /* Fill out redirection table */
1629 memset(wx->rss_indir_tbl, 0, sizeof(wx->rss_indir_tbl));
1630
1631 for (i = 0, j = 0; i < WX_MAX_RETA_ENTRIES; i++, j++) {
1632 if (j == rss_i)
1633 j = 0;
1634
1635 wx->rss_indir_tbl[i] = j;
1636 }
1637
1638 wx_store_reta(wx);
1639}
1640
1641static void wx_setup_mrqc(struct wx *wx)
1642{
1643 u32 rss_field = 0;
1644
1645 /* Disable indicating checksum in descriptor, enables RSS hash */
1646 wr32m(wx, WX_PSR_CTL, WX_PSR_CTL_PCSD, WX_PSR_CTL_PCSD);
1647
1648 /* Perform hash on these packet types */
1649 rss_field = WX_RDB_RA_CTL_RSS_IPV4 |
1650 WX_RDB_RA_CTL_RSS_IPV4_TCP |
1651 WX_RDB_RA_CTL_RSS_IPV4_UDP |
1652 WX_RDB_RA_CTL_RSS_IPV6 |
1653 WX_RDB_RA_CTL_RSS_IPV6_TCP |
1654 WX_RDB_RA_CTL_RSS_IPV6_UDP;
1655
1656 netdev_rss_key_fill(wx->rss_key, sizeof(wx->rss_key));
1657
1658 wx_setup_reta(wx);
1659
1660 if (wx->rss_enabled)
1661 rss_field |= WX_RDB_RA_CTL_RSS_EN;
1662
1663 wr32(wx, WX_RDB_RA_CTL, rss_field);
1664}
1665
1666/**
1667 * wx_configure_rx - Configure Receive Unit after Reset
1668 * @wx: pointer to private structure
1669 *
1670 * Configure the Rx unit of the MAC after a reset.
1671 **/
1672void wx_configure_rx(struct wx *wx)
1673{
1674 u32 psrtype, i;
1675 int ret;
1676
1677 wx_disable_rx(wx);
1678
1679 psrtype = WX_RDB_PL_CFG_L4HDR |
1680 WX_RDB_PL_CFG_L3HDR |
1681 WX_RDB_PL_CFG_L2HDR |
1682 WX_RDB_PL_CFG_TUN_TUNHDR;
1683 wr32(wx, WX_RDB_PL_CFG(0), psrtype);
1684
1685 /* enable hw crc stripping */
1686 wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP);
1687
1688 if (wx->mac.type == wx_mac_sp) {
1689 u32 psrctl;
1690
1691 /* RSC Setup */
1692 psrctl = rd32(wx, WX_PSR_CTL);
1693 psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */
1694 psrctl |= WX_PSR_CTL_RSC_DIS;
1695 wr32(wx, WX_PSR_CTL, psrctl);
1696 }
1697
1698 wx_setup_mrqc(wx);
1699
1700 /* set_rx_buffer_len must be called before ring initialization */
1701 wx_set_rx_buffer_len(wx);
1702
1703 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1704 * the Base and Length of the Rx Descriptor Ring
1705 */
1706 for (i = 0; i < wx->num_rx_queues; i++)
1707 wx_configure_rx_ring(wx, wx->rx_ring[i]);
1708
1709 /* Enable all receives, disable security engine prior to block traffic */
1710 ret = wx_disable_sec_rx_path(wx);
1711 if (ret < 0)
1712 wx_err(wx, "The register status is abnormal, please check device.");
1713
1714 wx_enable_rx(wx);
1715 wx_enable_sec_rx_path(wx);
1716}
1717EXPORT_SYMBOL(wx_configure_rx);
1718
1719static void wx_configure_isb(struct wx *wx)
1720{
1721 /* set ISB Address */
1722 wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32));
1723 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
1724 wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma));
1725}
1726
1727void wx_configure(struct wx *wx)
1728{
1729 wx_set_rxpba(wx);
1730 wx_pbthresh_setup(wx);
1731 wx_configure_port(wx);
1732
1733 wx_set_rx_mode(wx->netdev);
1734 wx_restore_vlan(wx);
1735 wx_enable_sec_rx_path(wx);
1736
1737 wx_configure_tx(wx);
1738 wx_configure_rx(wx);
1739 wx_configure_isb(wx);
1740}
1741EXPORT_SYMBOL(wx_configure);
1742
1743/**
1744 * wx_disable_pcie_master - Disable PCI-express master access
1745 * @wx: pointer to hardware structure
1746 *
1747 * Disables PCI-Express master access and verifies there are no pending
1748 * requests.
1749 **/
1750int wx_disable_pcie_master(struct wx *wx)
1751{
1752 int status = 0;
1753 u32 val;
1754
1755 /* Always set this bit to ensure any future transactions are blocked */
1756 pci_clear_master(wx->pdev);
1757
1758 /* Exit if master requests are blocked */
1759 if (!(rd32(wx, WX_PX_TRANSACTION_PENDING)))
1760 return 0;
1761
1762 /* Poll for master request bit to clear */
1763 status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT,
1764 false, wx, WX_PX_TRANSACTION_PENDING);
1765 if (status < 0)
1766 wx_err(wx, "PCIe transaction pending bit did not clear.\n");
1767
1768 return status;
1769}
1770EXPORT_SYMBOL(wx_disable_pcie_master);
1771
1772/**
1773 * wx_stop_adapter - Generic stop Tx/Rx units
1774 * @wx: pointer to hardware structure
1775 *
1776 * Sets the adapter_stopped flag within wx_hw struct. Clears interrupts,
1777 * disables transmit and receive units. The adapter_stopped flag is used by
1778 * the shared code and drivers to determine if the adapter is in a stopped
1779 * state and should not touch the hardware.
1780 **/
1781int wx_stop_adapter(struct wx *wx)
1782{
1783 u16 i;
1784
1785 /* Set the adapter_stopped flag so other driver functions stop touching
1786 * the hardware
1787 */
1788 wx->adapter_stopped = true;
1789
1790 /* Disable the receive unit */
1791 wx_disable_rx(wx);
1792
1793 /* Set interrupt mask to stop interrupts from being generated */
1794 wx_intr_disable(wx, WX_INTR_ALL);
1795
1796 /* Clear any pending interrupts, flush previous writes */
1797 wr32(wx, WX_PX_MISC_IC, 0xffffffff);
1798 wr32(wx, WX_BME_CTL, 0x3);
1799
1800 /* Disable the transmit unit. Each queue must be disabled. */
1801 for (i = 0; i < wx->mac.max_tx_queues; i++) {
1802 wr32m(wx, WX_PX_TR_CFG(i),
1803 WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE,
1804 WX_PX_TR_CFG_SWFLSH);
1805 }
1806
1807 /* Disable the receive unit by stopping each queue */
1808 for (i = 0; i < wx->mac.max_rx_queues; i++) {
1809 wr32m(wx, WX_PX_RR_CFG(i),
1810 WX_PX_RR_CFG_RR_EN, 0);
1811 }
1812
1813 /* flush all queues disables */
1814 WX_WRITE_FLUSH(wx);
1815
1816 /* Prevent the PCI-E bus from hanging by disabling PCI-E master
1817 * access and verify no pending requests
1818 */
1819 return wx_disable_pcie_master(wx);
1820}
1821EXPORT_SYMBOL(wx_stop_adapter);
1822
1823void wx_reset_misc(struct wx *wx)
1824{
1825 int i;
1826
1827 /* receive packets that size > 2048 */
1828 wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE);
1829
1830 /* clear counters on read */
1831 wr32m(wx, WX_MMC_CONTROL,
1832 WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD);
1833
1834 wr32m(wx, WX_MAC_RX_FLOW_CTRL,
1835 WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE);
1836
1837 wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR);
1838
1839 wr32m(wx, WX_MIS_RST_ST,
1840 WX_MIS_RST_ST_RST_INIT, 0x1E00);
1841
1842 /* errata 4: initialize mng flex tbl and wakeup flex tbl*/
1843 wr32(wx, WX_PSR_MNG_FLEX_SEL, 0);
1844 for (i = 0; i < 16; i++) {
1845 wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0);
1846 wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0);
1847 wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0);
1848 }
1849 wr32(wx, WX_PSR_LAN_FLEX_SEL, 0);
1850 for (i = 0; i < 16; i++) {
1851 wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0);
1852 wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0);
1853 wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0);
1854 }
1855
1856 /* set pause frame dst mac addr */
1857 wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001);
1858 wr32(wx, WX_RDB_PFCMACDAH, 0x0180);
1859}
1860EXPORT_SYMBOL(wx_reset_misc);
1861
1862/**
1863 * wx_get_pcie_msix_counts - Gets MSI-X vector count
1864 * @wx: pointer to hardware structure
1865 * @msix_count: number of MSI interrupts that can be obtained
1866 * @max_msix_count: number of MSI interrupts that mac need
1867 *
1868 * Read PCIe configuration space, and get the MSI-X vector count from
1869 * the capabilities table.
1870 **/
1871int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count)
1872{
1873 struct pci_dev *pdev = wx->pdev;
1874 struct device *dev = &pdev->dev;
1875 int pos;
1876
1877 *msix_count = 1;
1878 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
1879 if (!pos) {
1880 dev_err(dev, "Unable to find MSI-X Capabilities\n");
1881 return -EINVAL;
1882 }
1883 pci_read_config_word(pdev,
1884 pos + PCI_MSIX_FLAGS,
1885 msix_count);
1886 *msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK;
1887 /* MSI-X count is zero-based in HW */
1888 *msix_count += 1;
1889
1890 if (*msix_count > max_msix_count)
1891 *msix_count = max_msix_count;
1892
1893 return 0;
1894}
1895EXPORT_SYMBOL(wx_get_pcie_msix_counts);
1896
1897/**
1898 * wx_init_rss_key - Initialize wx RSS key
1899 * @wx: device handle
1900 *
1901 * Allocates and initializes the RSS key if it is not allocated.
1902 **/
1903static int wx_init_rss_key(struct wx *wx)
1904{
1905 u32 *rss_key;
1906
1907 if (!wx->rss_key) {
1908 rss_key = kzalloc(WX_RSS_KEY_SIZE, GFP_KERNEL);
1909 if (unlikely(!rss_key))
1910 return -ENOMEM;
1911
1912 netdev_rss_key_fill(rss_key, WX_RSS_KEY_SIZE);
1913 wx->rss_key = rss_key;
1914 }
1915
1916 return 0;
1917}
1918
1919int wx_sw_init(struct wx *wx)
1920{
1921 struct pci_dev *pdev = wx->pdev;
1922 u32 ssid = 0;
1923 int err = 0;
1924
1925 wx->vendor_id = pdev->vendor;
1926 wx->device_id = pdev->device;
1927 wx->revision_id = pdev->revision;
1928 wx->oem_svid = pdev->subsystem_vendor;
1929 wx->oem_ssid = pdev->subsystem_device;
1930 wx->bus.device = PCI_SLOT(pdev->devfn);
1931 wx->bus.func = PCI_FUNC(pdev->devfn);
1932
1933 if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN) {
1934 wx->subsystem_vendor_id = pdev->subsystem_vendor;
1935 wx->subsystem_device_id = pdev->subsystem_device;
1936 } else {
1937 err = wx_flash_read_dword(wx, 0xfffdc, &ssid);
1938 if (err < 0) {
1939 wx_err(wx, "read of internal subsystem device id failed\n");
1940 return err;
1941 }
1942
1943 wx->subsystem_device_id = swab16((u16)ssid);
1944 }
1945
1946 err = wx_init_rss_key(wx);
1947 if (err < 0) {
1948 wx_err(wx, "rss key allocation failed\n");
1949 return err;
1950 }
1951
1952 wx->mac_table = kcalloc(wx->mac.num_rar_entries,
1953 sizeof(struct wx_mac_addr),
1954 GFP_KERNEL);
1955 if (!wx->mac_table) {
1956 wx_err(wx, "mac_table allocation failed\n");
1957 kfree(wx->rss_key);
1958 return -ENOMEM;
1959 }
1960
1961 wx->msix_in_use = false;
1962
1963 return 0;
1964}
1965EXPORT_SYMBOL(wx_sw_init);
1966
1967/**
1968 * wx_find_vlvf_slot - find the vlanid or the first empty slot
1969 * @wx: pointer to hardware structure
1970 * @vlan: VLAN id to write to VLAN filter
1971 *
1972 * return the VLVF index where this VLAN id should be placed
1973 *
1974 **/
1975static int wx_find_vlvf_slot(struct wx *wx, u32 vlan)
1976{
1977 u32 bits = 0, first_empty_slot = 0;
1978 int regindex;
1979
1980 /* short cut the special case */
1981 if (vlan == 0)
1982 return 0;
1983
1984 /* Search for the vlan id in the VLVF entries. Save off the first empty
1985 * slot found along the way
1986 */
1987 for (regindex = 1; regindex < WX_PSR_VLAN_SWC_ENTRIES; regindex++) {
1988 wr32(wx, WX_PSR_VLAN_SWC_IDX, regindex);
1989 bits = rd32(wx, WX_PSR_VLAN_SWC);
1990 if (!bits && !(first_empty_slot))
1991 first_empty_slot = regindex;
1992 else if ((bits & 0x0FFF) == vlan)
1993 break;
1994 }
1995
1996 if (regindex >= WX_PSR_VLAN_SWC_ENTRIES) {
1997 if (first_empty_slot)
1998 regindex = first_empty_slot;
1999 else
2000 regindex = -ENOMEM;
2001 }
2002
2003 return regindex;
2004}
2005
2006/**
2007 * wx_set_vlvf - Set VLAN Pool Filter
2008 * @wx: pointer to hardware structure
2009 * @vlan: VLAN id to write to VLAN filter
2010 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2011 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2012 * @vfta_changed: pointer to boolean flag which indicates whether VFTA
2013 * should be changed
2014 *
2015 * Turn on/off specified bit in VLVF table.
2016 **/
2017static int wx_set_vlvf(struct wx *wx, u32 vlan, u32 vind, bool vlan_on,
2018 bool *vfta_changed)
2019{
2020 int vlvf_index;
2021 u32 vt, bits;
2022
2023 /* If VT Mode is set
2024 * Either vlan_on
2025 * make sure the vlan is in VLVF
2026 * set the vind bit in the matching VLVFB
2027 * Or !vlan_on
2028 * clear the pool bit and possibly the vind
2029 */
2030 vt = rd32(wx, WX_CFG_PORT_CTL);
2031 if (!(vt & WX_CFG_PORT_CTL_NUM_VT_MASK))
2032 return 0;
2033
2034 vlvf_index = wx_find_vlvf_slot(wx, vlan);
2035 if (vlvf_index < 0)
2036 return vlvf_index;
2037
2038 wr32(wx, WX_PSR_VLAN_SWC_IDX, vlvf_index);
2039 if (vlan_on) {
2040 /* set the pool bit */
2041 if (vind < 32) {
2042 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2043 bits |= (1 << vind);
2044 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
2045 } else {
2046 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2047 bits |= (1 << (vind - 32));
2048 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
2049 }
2050 } else {
2051 /* clear the pool bit */
2052 if (vind < 32) {
2053 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2054 bits &= ~(1 << vind);
2055 wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
2056 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2057 } else {
2058 bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2059 bits &= ~(1 << (vind - 32));
2060 wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
2061 bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2062 }
2063 }
2064
2065 if (bits) {
2066 wr32(wx, WX_PSR_VLAN_SWC, (WX_PSR_VLAN_SWC_VIEN | vlan));
2067 if (!vlan_on && vfta_changed)
2068 *vfta_changed = false;
2069 } else {
2070 wr32(wx, WX_PSR_VLAN_SWC, 0);
2071 }
2072
2073 return 0;
2074}
2075
2076/**
2077 * wx_set_vfta - Set VLAN filter table
2078 * @wx: pointer to hardware structure
2079 * @vlan: VLAN id to write to VLAN filter
2080 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2081 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2082 *
2083 * Turn on/off specified VLAN in the VLAN filter table.
2084 **/
2085static int wx_set_vfta(struct wx *wx, u32 vlan, u32 vind, bool vlan_on)
2086{
2087 u32 bitindex, vfta, targetbit;
2088 bool vfta_changed = false;
2089 int regindex, ret;
2090
2091 /* this is a 2 part operation - first the VFTA, then the
2092 * VLVF and VLVFB if VT Mode is set
2093 * We don't write the VFTA until we know the VLVF part succeeded.
2094 */
2095
2096 /* Part 1
2097 * The VFTA is a bitstring made up of 128 32-bit registers
2098 * that enable the particular VLAN id, much like the MTA:
2099 * bits[11-5]: which register
2100 * bits[4-0]: which bit in the register
2101 */
2102 regindex = (vlan >> 5) & 0x7F;
2103 bitindex = vlan & 0x1F;
2104 targetbit = (1 << bitindex);
2105 /* errata 5 */
2106 vfta = wx->mac.vft_shadow[regindex];
2107 if (vlan_on) {
2108 if (!(vfta & targetbit)) {
2109 vfta |= targetbit;
2110 vfta_changed = true;
2111 }
2112 } else {
2113 if ((vfta & targetbit)) {
2114 vfta &= ~targetbit;
2115 vfta_changed = true;
2116 }
2117 }
2118 /* Part 2
2119 * Call wx_set_vlvf to set VLVFB and VLVF
2120 */
2121 ret = wx_set_vlvf(wx, vlan, vind, vlan_on, &vfta_changed);
2122 if (ret != 0)
2123 return ret;
2124
2125 if (vfta_changed)
2126 wr32(wx, WX_PSR_VLAN_TBL(regindex), vfta);
2127 wx->mac.vft_shadow[regindex] = vfta;
2128
2129 return 0;
2130}
2131
2132/**
2133 * wx_clear_vfta - Clear VLAN filter table
2134 * @wx: pointer to hardware structure
2135 *
2136 * Clears the VLAN filer table, and the VMDq index associated with the filter
2137 **/
2138static void wx_clear_vfta(struct wx *wx)
2139{
2140 u32 offset;
2141
2142 for (offset = 0; offset < wx->mac.vft_size; offset++) {
2143 wr32(wx, WX_PSR_VLAN_TBL(offset), 0);
2144 wx->mac.vft_shadow[offset] = 0;
2145 }
2146
2147 for (offset = 0; offset < WX_PSR_VLAN_SWC_ENTRIES; offset++) {
2148 wr32(wx, WX_PSR_VLAN_SWC_IDX, offset);
2149 wr32(wx, WX_PSR_VLAN_SWC, 0);
2150 wr32(wx, WX_PSR_VLAN_SWC_VM_L, 0);
2151 wr32(wx, WX_PSR_VLAN_SWC_VM_H, 0);
2152 }
2153}
2154
2155int wx_vlan_rx_add_vid(struct net_device *netdev,
2156 __be16 proto, u16 vid)
2157{
2158 struct wx *wx = netdev_priv(netdev);
2159
2160 /* add VID to filter table */
2161 wx_set_vfta(wx, vid, VMDQ_P(0), true);
2162 set_bit(vid, wx->active_vlans);
2163
2164 return 0;
2165}
2166EXPORT_SYMBOL(wx_vlan_rx_add_vid);
2167
2168int wx_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
2169{
2170 struct wx *wx = netdev_priv(netdev);
2171
2172 /* remove VID from filter table */
2173 if (vid)
2174 wx_set_vfta(wx, vid, VMDQ_P(0), false);
2175 clear_bit(vid, wx->active_vlans);
2176
2177 return 0;
2178}
2179EXPORT_SYMBOL(wx_vlan_rx_kill_vid);
2180
2181static void wx_enable_rx_drop(struct wx *wx, struct wx_ring *ring)
2182{
2183 u16 reg_idx = ring->reg_idx;
2184 u32 srrctl;
2185
2186 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
2187 srrctl |= WX_PX_RR_CFG_DROP_EN;
2188
2189 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
2190}
2191
2192static void wx_disable_rx_drop(struct wx *wx, struct wx_ring *ring)
2193{
2194 u16 reg_idx = ring->reg_idx;
2195 u32 srrctl;
2196
2197 srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
2198 srrctl &= ~WX_PX_RR_CFG_DROP_EN;
2199
2200 wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
2201}
2202
2203int wx_fc_enable(struct wx *wx, bool tx_pause, bool rx_pause)
2204{
2205 u16 pause_time = WX_DEFAULT_FCPAUSE;
2206 u32 mflcn_reg, fccfg_reg, reg;
2207 u32 fcrtl, fcrth;
2208 int i;
2209
2210 /* Low water mark of zero causes XOFF floods */
2211 if (tx_pause && wx->fc.high_water) {
2212 if (!wx->fc.low_water || wx->fc.low_water >= wx->fc.high_water) {
2213 wx_err(wx, "Invalid water mark configuration\n");
2214 return -EINVAL;
2215 }
2216 }
2217
2218 /* Disable any previous flow control settings */
2219 mflcn_reg = rd32(wx, WX_MAC_RX_FLOW_CTRL);
2220 mflcn_reg &= ~WX_MAC_RX_FLOW_CTRL_RFE;
2221
2222 fccfg_reg = rd32(wx, WX_RDB_RFCC);
2223 fccfg_reg &= ~WX_RDB_RFCC_RFCE_802_3X;
2224
2225 if (rx_pause)
2226 mflcn_reg |= WX_MAC_RX_FLOW_CTRL_RFE;
2227 if (tx_pause)
2228 fccfg_reg |= WX_RDB_RFCC_RFCE_802_3X;
2229
2230 /* Set 802.3x based flow control settings. */
2231 wr32(wx, WX_MAC_RX_FLOW_CTRL, mflcn_reg);
2232 wr32(wx, WX_RDB_RFCC, fccfg_reg);
2233
2234 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2235 if (tx_pause && wx->fc.high_water) {
2236 fcrtl = (wx->fc.low_water << 10) | WX_RDB_RFCL_XONE;
2237 wr32(wx, WX_RDB_RFCL, fcrtl);
2238 fcrth = (wx->fc.high_water << 10) | WX_RDB_RFCH_XOFFE;
2239 } else {
2240 wr32(wx, WX_RDB_RFCL, 0);
2241 /* In order to prevent Tx hangs when the internal Tx
2242 * switch is enabled we must set the high water mark
2243 * to the Rx packet buffer size - 24KB. This allows
2244 * the Tx switch to function even under heavy Rx
2245 * workloads.
2246 */
2247 fcrth = rd32(wx, WX_RDB_PB_SZ(0)) - 24576;
2248 }
2249
2250 wr32(wx, WX_RDB_RFCH, fcrth);
2251
2252 /* Configure pause time */
2253 reg = pause_time * 0x00010001;
2254 wr32(wx, WX_RDB_RFCV, reg);
2255
2256 /* Configure flow control refresh threshold value */
2257 wr32(wx, WX_RDB_RFCRT, pause_time / 2);
2258
2259 /* We should set the drop enable bit if:
2260 * Number of Rx queues > 1 and flow control is disabled
2261 *
2262 * This allows us to avoid head of line blocking for security
2263 * and performance reasons.
2264 */
2265 if (wx->num_rx_queues > 1 && !tx_pause) {
2266 for (i = 0; i < wx->num_rx_queues; i++)
2267 wx_enable_rx_drop(wx, wx->rx_ring[i]);
2268 } else {
2269 for (i = 0; i < wx->num_rx_queues; i++)
2270 wx_disable_rx_drop(wx, wx->rx_ring[i]);
2271 }
2272
2273 return 0;
2274}
2275EXPORT_SYMBOL(wx_fc_enable);
2276
2277/**
2278 * wx_update_stats - Update the board statistics counters.
2279 * @wx: board private structure
2280 **/
2281void wx_update_stats(struct wx *wx)
2282{
2283 struct wx_hw_stats *hwstats = &wx->stats;
2284
2285 u64 non_eop_descs = 0, alloc_rx_buff_failed = 0;
2286 u64 hw_csum_rx_good = 0, hw_csum_rx_error = 0;
2287 u64 restart_queue = 0, tx_busy = 0;
2288 u32 i;
2289
2290 /* gather some stats to the wx struct that are per queue */
2291 for (i = 0; i < wx->num_rx_queues; i++) {
2292 struct wx_ring *rx_ring = wx->rx_ring[i];
2293
2294 non_eop_descs += rx_ring->rx_stats.non_eop_descs;
2295 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
2296 hw_csum_rx_good += rx_ring->rx_stats.csum_good_cnt;
2297 hw_csum_rx_error += rx_ring->rx_stats.csum_err;
2298 }
2299 wx->non_eop_descs = non_eop_descs;
2300 wx->alloc_rx_buff_failed = alloc_rx_buff_failed;
2301 wx->hw_csum_rx_error = hw_csum_rx_error;
2302 wx->hw_csum_rx_good = hw_csum_rx_good;
2303
2304 for (i = 0; i < wx->num_tx_queues; i++) {
2305 struct wx_ring *tx_ring = wx->tx_ring[i];
2306
2307 restart_queue += tx_ring->tx_stats.restart_queue;
2308 tx_busy += tx_ring->tx_stats.tx_busy;
2309 }
2310 wx->restart_queue = restart_queue;
2311 wx->tx_busy = tx_busy;
2312
2313 hwstats->gprc += rd32(wx, WX_RDM_PKT_CNT);
2314 hwstats->gptc += rd32(wx, WX_TDM_PKT_CNT);
2315 hwstats->gorc += rd64(wx, WX_RDM_BYTE_CNT_LSB);
2316 hwstats->gotc += rd64(wx, WX_TDM_BYTE_CNT_LSB);
2317 hwstats->tpr += rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L);
2318 hwstats->tpt += rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L);
2319 hwstats->crcerrs += rd64(wx, WX_RX_CRC_ERROR_FRAMES_L);
2320 hwstats->rlec += rd64(wx, WX_RX_LEN_ERROR_FRAMES_L);
2321 hwstats->bprc += rd64(wx, WX_RX_BC_FRAMES_GOOD_L);
2322 hwstats->bptc += rd64(wx, WX_TX_BC_FRAMES_GOOD_L);
2323 hwstats->mprc += rd64(wx, WX_RX_MC_FRAMES_GOOD_L);
2324 hwstats->mptc += rd64(wx, WX_TX_MC_FRAMES_GOOD_L);
2325 hwstats->roc += rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD);
2326 hwstats->ruc += rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD);
2327 hwstats->lxonoffrxc += rd32(wx, WX_MAC_LXONOFFRXC);
2328 hwstats->lxontxc += rd32(wx, WX_RDB_LXONTXC);
2329 hwstats->lxofftxc += rd32(wx, WX_RDB_LXOFFTXC);
2330 hwstats->o2bgptc += rd32(wx, WX_TDM_OS2BMC_CNT);
2331 hwstats->b2ospc += rd32(wx, WX_MNG_BMC2OS_CNT);
2332 hwstats->o2bspc += rd32(wx, WX_MNG_OS2BMC_CNT);
2333 hwstats->b2ogprc += rd32(wx, WX_RDM_BMC2OS_CNT);
2334 hwstats->rdmdrop += rd32(wx, WX_RDM_DRP_PKT);
2335
2336 for (i = 0; i < wx->mac.max_rx_queues; i++)
2337 hwstats->qmprc += rd32(wx, WX_PX_MPRC(i));
2338}
2339EXPORT_SYMBOL(wx_update_stats);
2340
2341/**
2342 * wx_clear_hw_cntrs - Generic clear hardware counters
2343 * @wx: board private structure
2344 *
2345 * Clears all hardware statistics counters by reading them from the hardware
2346 * Statistics counters are clear on read.
2347 **/
2348void wx_clear_hw_cntrs(struct wx *wx)
2349{
2350 u16 i = 0;
2351
2352 for (i = 0; i < wx->mac.max_rx_queues; i++)
2353 wr32(wx, WX_PX_MPRC(i), 0);
2354
2355 rd32(wx, WX_RDM_PKT_CNT);
2356 rd32(wx, WX_TDM_PKT_CNT);
2357 rd64(wx, WX_RDM_BYTE_CNT_LSB);
2358 rd32(wx, WX_TDM_BYTE_CNT_LSB);
2359 rd32(wx, WX_RDM_DRP_PKT);
2360 rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD);
2361 rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD);
2362 rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L);
2363 rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L);
2364 rd64(wx, WX_RX_MC_FRAMES_GOOD_L);
2365 rd64(wx, WX_TX_MC_FRAMES_GOOD_L);
2366 rd64(wx, WX_RX_BC_FRAMES_GOOD_L);
2367 rd64(wx, WX_TX_BC_FRAMES_GOOD_L);
2368 rd64(wx, WX_RX_CRC_ERROR_FRAMES_L);
2369 rd64(wx, WX_RX_LEN_ERROR_FRAMES_L);
2370 rd32(wx, WX_RDB_LXONTXC);
2371 rd32(wx, WX_RDB_LXOFFTXC);
2372 rd32(wx, WX_MAC_LXONOFFRXC);
2373}
2374EXPORT_SYMBOL(wx_clear_hw_cntrs);
2375
2376/**
2377 * wx_start_hw - Prepare hardware for Tx/Rx
2378 * @wx: pointer to hardware structure
2379 *
2380 * Starts the hardware using the generic start_hw function
2381 * and the generation start_hw function.
2382 * Then performs revision-specific operations, if any.
2383 **/
2384void wx_start_hw(struct wx *wx)
2385{
2386 int i;
2387
2388 /* Clear the VLAN filter table */
2389 wx_clear_vfta(wx);
2390 WX_WRITE_FLUSH(wx);
2391 /* Clear the rate limiters */
2392 for (i = 0; i < wx->mac.max_tx_queues; i++) {
2393 wr32(wx, WX_TDM_RP_IDX, i);
2394 wr32(wx, WX_TDM_RP_RATE, 0);
2395 }
2396}
2397EXPORT_SYMBOL(wx_start_hw);
2398
2399MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */
3
4#include <linux/etherdevice.h>
5#include <linux/if_ether.h>
6#include <linux/iopoll.h>
7#include <linux/pci.h>
8
9#include "wx_type.h"
10#include "wx_hw.h"
11
12static void wx_intr_disable(struct wx_hw *wxhw, u64 qmask)
13{
14 u32 mask;
15
16 mask = (qmask & 0xFFFFFFFF);
17 if (mask)
18 wr32(wxhw, WX_PX_IMS(0), mask);
19
20 if (wxhw->mac.type == wx_mac_sp) {
21 mask = (qmask >> 32);
22 if (mask)
23 wr32(wxhw, WX_PX_IMS(1), mask);
24 }
25}
26
27/* cmd_addr is used for some special command:
28 * 1. to be sector address, when implemented erase sector command
29 * 2. to be flash address when implemented read, write flash address
30 */
31static int wx_fmgr_cmd_op(struct wx_hw *wxhw, u32 cmd, u32 cmd_addr)
32{
33 u32 cmd_val = 0, val = 0;
34
35 cmd_val = WX_SPI_CMD_CMD(cmd) |
36 WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) |
37 cmd_addr;
38 wr32(wxhw, WX_SPI_CMD, cmd_val);
39
40 return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000,
41 false, wxhw, WX_SPI_STATUS);
42}
43
44static int wx_flash_read_dword(struct wx_hw *wxhw, u32 addr, u32 *data)
45{
46 int ret = 0;
47
48 ret = wx_fmgr_cmd_op(wxhw, WX_SPI_CMD_READ_DWORD, addr);
49 if (ret < 0)
50 return ret;
51
52 *data = rd32(wxhw, WX_SPI_DATA);
53
54 return ret;
55}
56
57int wx_check_flash_load(struct wx_hw *hw, u32 check_bit)
58{
59 u32 reg = 0;
60 int err = 0;
61
62 /* if there's flash existing */
63 if (!(rd32(hw, WX_SPI_STATUS) &
64 WX_SPI_STATUS_FLASH_BYPASS)) {
65 /* wait hw load flash done */
66 err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000,
67 false, hw, WX_SPI_ILDR_STATUS);
68 if (err < 0)
69 wx_err(hw, "Check flash load timeout.\n");
70 }
71
72 return err;
73}
74EXPORT_SYMBOL(wx_check_flash_load);
75
76void wx_control_hw(struct wx_hw *wxhw, bool drv)
77{
78 if (drv) {
79 /* Let firmware know the driver has taken over */
80 wr32m(wxhw, WX_CFG_PORT_CTL,
81 WX_CFG_PORT_CTL_DRV_LOAD, WX_CFG_PORT_CTL_DRV_LOAD);
82 } else {
83 /* Let firmware take over control of hw */
84 wr32m(wxhw, WX_CFG_PORT_CTL,
85 WX_CFG_PORT_CTL_DRV_LOAD, 0);
86 }
87}
88EXPORT_SYMBOL(wx_control_hw);
89
90/**
91 * wx_mng_present - returns 0 when management capability is present
92 * @wxhw: pointer to hardware structure
93 */
94int wx_mng_present(struct wx_hw *wxhw)
95{
96 u32 fwsm;
97
98 fwsm = rd32(wxhw, WX_MIS_ST);
99 if (fwsm & WX_MIS_ST_MNG_INIT_DN)
100 return 0;
101 else
102 return -EACCES;
103}
104EXPORT_SYMBOL(wx_mng_present);
105
106/* Software lock to be held while software semaphore is being accessed. */
107static DEFINE_MUTEX(wx_sw_sync_lock);
108
109/**
110 * wx_release_sw_sync - Release SW semaphore
111 * @wxhw: pointer to hardware structure
112 * @mask: Mask to specify which semaphore to release
113 *
114 * Releases the SW semaphore for the specified
115 * function (CSR, PHY0, PHY1, EEPROM, Flash)
116 **/
117static void wx_release_sw_sync(struct wx_hw *wxhw, u32 mask)
118{
119 mutex_lock(&wx_sw_sync_lock);
120 wr32m(wxhw, WX_MNG_SWFW_SYNC, mask, 0);
121 mutex_unlock(&wx_sw_sync_lock);
122}
123
124/**
125 * wx_acquire_sw_sync - Acquire SW semaphore
126 * @wxhw: pointer to hardware structure
127 * @mask: Mask to specify which semaphore to acquire
128 *
129 * Acquires the SW semaphore for the specified
130 * function (CSR, PHY0, PHY1, EEPROM, Flash)
131 **/
132static int wx_acquire_sw_sync(struct wx_hw *wxhw, u32 mask)
133{
134 u32 sem = 0;
135 int ret = 0;
136
137 mutex_lock(&wx_sw_sync_lock);
138 ret = read_poll_timeout(rd32, sem, !(sem & mask),
139 5000, 2000000, false, wxhw, WX_MNG_SWFW_SYNC);
140 if (!ret) {
141 sem |= mask;
142 wr32(wxhw, WX_MNG_SWFW_SYNC, sem);
143 } else {
144 wx_err(wxhw, "SW Semaphore not granted: 0x%x.\n", sem);
145 }
146 mutex_unlock(&wx_sw_sync_lock);
147
148 return ret;
149}
150
151/**
152 * wx_host_interface_command - Issue command to manageability block
153 * @wxhw: pointer to the HW structure
154 * @buffer: contains the command to write and where the return status will
155 * be placed
156 * @length: length of buffer, must be multiple of 4 bytes
157 * @timeout: time in ms to wait for command completion
158 * @return_data: read and return data from the buffer (true) or not (false)
159 * Needed because FW structures are big endian and decoding of
160 * these fields can be 8 bit or 16 bit based on command. Decoding
161 * is not easily understood without making a table of commands.
162 * So we will leave this up to the caller to read back the data
163 * in these cases.
164 **/
165int wx_host_interface_command(struct wx_hw *wxhw, u32 *buffer,
166 u32 length, u32 timeout, bool return_data)
167{
168 u32 hdr_size = sizeof(struct wx_hic_hdr);
169 u32 hicr, i, bi, buf[64] = {};
170 int status = 0;
171 u32 dword_len;
172 u16 buf_len;
173
174 if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) {
175 wx_err(wxhw, "Buffer length failure buffersize=%d.\n", length);
176 return -EINVAL;
177 }
178
179 status = wx_acquire_sw_sync(wxhw, WX_MNG_SWFW_SYNC_SW_MB);
180 if (status != 0)
181 return status;
182
183 /* Calculate length in DWORDs. We must be DWORD aligned */
184 if ((length % (sizeof(u32))) != 0) {
185 wx_err(wxhw, "Buffer length failure, not aligned to dword");
186 status = -EINVAL;
187 goto rel_out;
188 }
189
190 dword_len = length >> 2;
191
192 /* The device driver writes the relevant command block
193 * into the ram area.
194 */
195 for (i = 0; i < dword_len; i++) {
196 wr32a(wxhw, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i]));
197 /* write flush */
198 buf[i] = rd32a(wxhw, WX_MNG_MBOX, i);
199 }
200 /* Setting this bit tells the ARC that a new command is pending. */
201 wr32m(wxhw, WX_MNG_MBOX_CTL,
202 WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY);
203
204 status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000,
205 timeout * 1000, false, wxhw, WX_MNG_MBOX_CTL);
206
207 /* Check command completion */
208 if (status) {
209 wx_dbg(wxhw, "Command has failed with no status valid.\n");
210
211 buf[0] = rd32(wxhw, WX_MNG_MBOX);
212 if ((buffer[0] & 0xff) != (~buf[0] >> 24)) {
213 status = -EINVAL;
214 goto rel_out;
215 }
216 if ((buf[0] & 0xff0000) >> 16 == 0x80) {
217 wx_dbg(wxhw, "It's unknown cmd.\n");
218 status = -EINVAL;
219 goto rel_out;
220 }
221
222 wx_dbg(wxhw, "write value:\n");
223 for (i = 0; i < dword_len; i++)
224 wx_dbg(wxhw, "%x ", buffer[i]);
225 wx_dbg(wxhw, "read value:\n");
226 for (i = 0; i < dword_len; i++)
227 wx_dbg(wxhw, "%x ", buf[i]);
228 }
229
230 if (!return_data)
231 goto rel_out;
232
233 /* Calculate length in DWORDs */
234 dword_len = hdr_size >> 2;
235
236 /* first pull in the header so we know the buffer length */
237 for (bi = 0; bi < dword_len; bi++) {
238 buffer[bi] = rd32a(wxhw, WX_MNG_MBOX, bi);
239 le32_to_cpus(&buffer[bi]);
240 }
241
242 /* If there is any thing in data position pull it in */
243 buf_len = ((struct wx_hic_hdr *)buffer)->buf_len;
244 if (buf_len == 0)
245 goto rel_out;
246
247 if (length < buf_len + hdr_size) {
248 wx_err(wxhw, "Buffer not large enough for reply message.\n");
249 status = -EFAULT;
250 goto rel_out;
251 }
252
253 /* Calculate length in DWORDs, add 3 for odd lengths */
254 dword_len = (buf_len + 3) >> 2;
255
256 /* Pull in the rest of the buffer (bi is where we left off) */
257 for (; bi <= dword_len; bi++) {
258 buffer[bi] = rd32a(wxhw, WX_MNG_MBOX, bi);
259 le32_to_cpus(&buffer[bi]);
260 }
261
262rel_out:
263 wx_release_sw_sync(wxhw, WX_MNG_SWFW_SYNC_SW_MB);
264 return status;
265}
266EXPORT_SYMBOL(wx_host_interface_command);
267
268/**
269 * wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd
270 * assuming that the semaphore is already obtained.
271 * @wxhw: pointer to hardware structure
272 * @offset: offset of word in the EEPROM to read
273 * @data: word read from the EEPROM
274 *
275 * Reads a 16 bit word from the EEPROM using the hostif.
276 **/
277static int wx_read_ee_hostif_data(struct wx_hw *wxhw, u16 offset, u16 *data)
278{
279 struct wx_hic_read_shadow_ram buffer;
280 int status;
281
282 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
283 buffer.hdr.req.buf_lenh = 0;
284 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
285 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
286
287 /* convert offset from words to bytes */
288 buffer.address = (__force u32)cpu_to_be32(offset * 2);
289 /* one word */
290 buffer.length = (__force u16)cpu_to_be16(sizeof(u16));
291
292 status = wx_host_interface_command(wxhw, (u32 *)&buffer, sizeof(buffer),
293 WX_HI_COMMAND_TIMEOUT, false);
294
295 if (status != 0)
296 return status;
297
298 *data = (u16)rd32a(wxhw, WX_MNG_MBOX, FW_NVM_DATA_OFFSET);
299
300 return status;
301}
302
303/**
304 * wx_read_ee_hostif - Read EEPROM word using a host interface cmd
305 * @wxhw: pointer to hardware structure
306 * @offset: offset of word in the EEPROM to read
307 * @data: word read from the EEPROM
308 *
309 * Reads a 16 bit word from the EEPROM using the hostif.
310 **/
311int wx_read_ee_hostif(struct wx_hw *wxhw, u16 offset, u16 *data)
312{
313 int status = 0;
314
315 status = wx_acquire_sw_sync(wxhw, WX_MNG_SWFW_SYNC_SW_FLASH);
316 if (status == 0) {
317 status = wx_read_ee_hostif_data(wxhw, offset, data);
318 wx_release_sw_sync(wxhw, WX_MNG_SWFW_SYNC_SW_FLASH);
319 }
320
321 return status;
322}
323EXPORT_SYMBOL(wx_read_ee_hostif);
324
325/**
326 * wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif
327 * @wxhw: pointer to hardware structure
328 * @offset: offset of word in the EEPROM to read
329 * @words: number of words
330 * @data: word(s) read from the EEPROM
331 *
332 * Reads a 16 bit word(s) from the EEPROM using the hostif.
333 **/
334int wx_read_ee_hostif_buffer(struct wx_hw *wxhw,
335 u16 offset, u16 words, u16 *data)
336{
337 struct wx_hic_read_shadow_ram buffer;
338 u32 current_word = 0;
339 u16 words_to_read;
340 u32 value = 0;
341 int status;
342 u32 i;
343
344 /* Take semaphore for the entire operation. */
345 status = wx_acquire_sw_sync(wxhw, WX_MNG_SWFW_SYNC_SW_FLASH);
346 if (status != 0)
347 return status;
348
349 while (words) {
350 if (words > FW_MAX_READ_BUFFER_SIZE / 2)
351 words_to_read = FW_MAX_READ_BUFFER_SIZE / 2;
352 else
353 words_to_read = words;
354
355 buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
356 buffer.hdr.req.buf_lenh = 0;
357 buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
358 buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
359
360 /* convert offset from words to bytes */
361 buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2);
362 buffer.length = (__force u16)cpu_to_be16(words_to_read * 2);
363
364 status = wx_host_interface_command(wxhw, (u32 *)&buffer,
365 sizeof(buffer),
366 WX_HI_COMMAND_TIMEOUT,
367 false);
368
369 if (status != 0) {
370 wx_err(wxhw, "Host interface command failed\n");
371 goto out;
372 }
373
374 for (i = 0; i < words_to_read; i++) {
375 u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i;
376
377 value = rd32(wxhw, reg);
378 data[current_word] = (u16)(value & 0xffff);
379 current_word++;
380 i++;
381 if (i < words_to_read) {
382 value >>= 16;
383 data[current_word] = (u16)(value & 0xffff);
384 current_word++;
385 }
386 }
387 words -= words_to_read;
388 }
389
390out:
391 wx_release_sw_sync(wxhw, WX_MNG_SWFW_SYNC_SW_FLASH);
392 return status;
393}
394EXPORT_SYMBOL(wx_read_ee_hostif_buffer);
395
396/**
397 * wx_calculate_checksum - Calculate checksum for buffer
398 * @buffer: pointer to EEPROM
399 * @length: size of EEPROM to calculate a checksum for
400 * Calculates the checksum for some buffer on a specified length. The
401 * checksum calculated is returned.
402 **/
403static u8 wx_calculate_checksum(u8 *buffer, u32 length)
404{
405 u8 sum = 0;
406 u32 i;
407
408 if (!buffer)
409 return 0;
410
411 for (i = 0; i < length; i++)
412 sum += buffer[i];
413
414 return (u8)(0 - sum);
415}
416
417/**
418 * wx_reset_hostif - send reset cmd to fw
419 * @wxhw: pointer to hardware structure
420 *
421 * Sends reset cmd to firmware through the manageability
422 * block.
423 **/
424int wx_reset_hostif(struct wx_hw *wxhw)
425{
426 struct wx_hic_reset reset_cmd;
427 int ret_val = 0;
428 int i;
429
430 reset_cmd.hdr.cmd = FW_RESET_CMD;
431 reset_cmd.hdr.buf_len = FW_RESET_LEN;
432 reset_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
433 reset_cmd.lan_id = wxhw->bus.func;
434 reset_cmd.reset_type = (u16)wxhw->reset_type;
435 reset_cmd.hdr.checksum = 0;
436 reset_cmd.hdr.checksum = wx_calculate_checksum((u8 *)&reset_cmd,
437 (FW_CEM_HDR_LEN +
438 reset_cmd.hdr.buf_len));
439
440 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
441 ret_val = wx_host_interface_command(wxhw, (u32 *)&reset_cmd,
442 sizeof(reset_cmd),
443 WX_HI_COMMAND_TIMEOUT,
444 true);
445 if (ret_val != 0)
446 continue;
447
448 if (reset_cmd.hdr.cmd_or_resp.ret_status ==
449 FW_CEM_RESP_STATUS_SUCCESS)
450 ret_val = 0;
451 else
452 ret_val = -EFAULT;
453
454 break;
455 }
456
457 return ret_val;
458}
459EXPORT_SYMBOL(wx_reset_hostif);
460
461/**
462 * wx_init_eeprom_params - Initialize EEPROM params
463 * @wxhw: pointer to hardware structure
464 *
465 * Initializes the EEPROM parameters wx_eeprom_info within the
466 * wx_hw struct in order to set up EEPROM access.
467 **/
468void wx_init_eeprom_params(struct wx_hw *wxhw)
469{
470 struct wx_eeprom_info *eeprom = &wxhw->eeprom;
471 u16 eeprom_size;
472 u16 data = 0x80;
473
474 if (eeprom->type == wx_eeprom_uninitialized) {
475 eeprom->semaphore_delay = 10;
476 eeprom->type = wx_eeprom_none;
477
478 if (!(rd32(wxhw, WX_SPI_STATUS) &
479 WX_SPI_STATUS_FLASH_BYPASS)) {
480 eeprom->type = wx_flash;
481
482 eeprom_size = 4096;
483 eeprom->word_size = eeprom_size >> 1;
484
485 wx_dbg(wxhw, "Eeprom params: type = %d, size = %d\n",
486 eeprom->type, eeprom->word_size);
487 }
488 }
489
490 if (wxhw->mac.type == wx_mac_sp) {
491 if (wx_read_ee_hostif(wxhw, WX_SW_REGION_PTR, &data)) {
492 wx_err(wxhw, "NVM Read Error\n");
493 return;
494 }
495 data = data >> 1;
496 }
497
498 eeprom->sw_region_offset = data;
499}
500EXPORT_SYMBOL(wx_init_eeprom_params);
501
502/**
503 * wx_get_mac_addr - Generic get MAC address
504 * @wxhw: pointer to hardware structure
505 * @mac_addr: Adapter MAC address
506 *
507 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
508 * A reset of the adapter must be performed prior to calling this function
509 * in order for the MAC address to have been loaded from the EEPROM into RAR0
510 **/
511void wx_get_mac_addr(struct wx_hw *wxhw, u8 *mac_addr)
512{
513 u32 rar_high;
514 u32 rar_low;
515 u16 i;
516
517 wr32(wxhw, WX_PSR_MAC_SWC_IDX, 0);
518 rar_high = rd32(wxhw, WX_PSR_MAC_SWC_AD_H);
519 rar_low = rd32(wxhw, WX_PSR_MAC_SWC_AD_L);
520
521 for (i = 0; i < 2; i++)
522 mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
523
524 for (i = 0; i < 4; i++)
525 mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
526}
527EXPORT_SYMBOL(wx_get_mac_addr);
528
529/**
530 * wx_set_rar - Set Rx address register
531 * @wxhw: pointer to hardware structure
532 * @index: Receive address register to write
533 * @addr: Address to put into receive address register
534 * @pools: VMDq "set" or "pool" index
535 * @enable_addr: set flag that address is active
536 *
537 * Puts an ethernet address into a receive address register.
538 **/
539int wx_set_rar(struct wx_hw *wxhw, u32 index, u8 *addr, u64 pools,
540 u32 enable_addr)
541{
542 u32 rar_entries = wxhw->mac.num_rar_entries;
543 u32 rar_low, rar_high;
544
545 /* Make sure we are using a valid rar index range */
546 if (index >= rar_entries) {
547 wx_err(wxhw, "RAR index %d is out of range.\n", index);
548 return -EINVAL;
549 }
550
551 /* select the MAC address */
552 wr32(wxhw, WX_PSR_MAC_SWC_IDX, index);
553
554 /* setup VMDq pool mapping */
555 wr32(wxhw, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF);
556 if (wxhw->mac.type == wx_mac_sp)
557 wr32(wxhw, WX_PSR_MAC_SWC_VM_H, pools >> 32);
558
559 /* HW expects these in little endian so we reverse the byte
560 * order from network order (big endian) to little endian
561 *
562 * Some parts put the VMDq setting in the extra RAH bits,
563 * so save everything except the lower 16 bits that hold part
564 * of the address and the address valid bit.
565 */
566 rar_low = ((u32)addr[5] |
567 ((u32)addr[4] << 8) |
568 ((u32)addr[3] << 16) |
569 ((u32)addr[2] << 24));
570 rar_high = ((u32)addr[1] |
571 ((u32)addr[0] << 8));
572 if (enable_addr != 0)
573 rar_high |= WX_PSR_MAC_SWC_AD_H_AV;
574
575 wr32(wxhw, WX_PSR_MAC_SWC_AD_L, rar_low);
576 wr32m(wxhw, WX_PSR_MAC_SWC_AD_H,
577 (WX_PSR_MAC_SWC_AD_H_AD(~0) |
578 WX_PSR_MAC_SWC_AD_H_ADTYPE(~0) |
579 WX_PSR_MAC_SWC_AD_H_AV),
580 rar_high);
581
582 return 0;
583}
584EXPORT_SYMBOL(wx_set_rar);
585
586/**
587 * wx_clear_rar - Remove Rx address register
588 * @wxhw: pointer to hardware structure
589 * @index: Receive address register to write
590 *
591 * Clears an ethernet address from a receive address register.
592 **/
593int wx_clear_rar(struct wx_hw *wxhw, u32 index)
594{
595 u32 rar_entries = wxhw->mac.num_rar_entries;
596
597 /* Make sure we are using a valid rar index range */
598 if (index >= rar_entries) {
599 wx_err(wxhw, "RAR index %d is out of range.\n", index);
600 return -EINVAL;
601 }
602
603 /* Some parts put the VMDq setting in the extra RAH bits,
604 * so save everything except the lower 16 bits that hold part
605 * of the address and the address valid bit.
606 */
607 wr32(wxhw, WX_PSR_MAC_SWC_IDX, index);
608
609 wr32(wxhw, WX_PSR_MAC_SWC_VM_L, 0);
610 wr32(wxhw, WX_PSR_MAC_SWC_VM_H, 0);
611
612 wr32(wxhw, WX_PSR_MAC_SWC_AD_L, 0);
613 wr32m(wxhw, WX_PSR_MAC_SWC_AD_H,
614 (WX_PSR_MAC_SWC_AD_H_AD(~0) |
615 WX_PSR_MAC_SWC_AD_H_ADTYPE(~0) |
616 WX_PSR_MAC_SWC_AD_H_AV),
617 0);
618
619 return 0;
620}
621EXPORT_SYMBOL(wx_clear_rar);
622
623/**
624 * wx_clear_vmdq - Disassociate a VMDq pool index from a rx address
625 * @wxhw: pointer to hardware struct
626 * @rar: receive address register index to disassociate
627 * @vmdq: VMDq pool index to remove from the rar
628 **/
629static int wx_clear_vmdq(struct wx_hw *wxhw, u32 rar, u32 __maybe_unused vmdq)
630{
631 u32 rar_entries = wxhw->mac.num_rar_entries;
632 u32 mpsar_lo, mpsar_hi;
633
634 /* Make sure we are using a valid rar index range */
635 if (rar >= rar_entries) {
636 wx_err(wxhw, "RAR index %d is out of range.\n", rar);
637 return -EINVAL;
638 }
639
640 wr32(wxhw, WX_PSR_MAC_SWC_IDX, rar);
641 mpsar_lo = rd32(wxhw, WX_PSR_MAC_SWC_VM_L);
642 mpsar_hi = rd32(wxhw, WX_PSR_MAC_SWC_VM_H);
643
644 if (!mpsar_lo && !mpsar_hi)
645 return 0;
646
647 /* was that the last pool using this rar? */
648 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
649 wx_clear_rar(wxhw, rar);
650
651 return 0;
652}
653
654/**
655 * wx_init_uta_tables - Initialize the Unicast Table Array
656 * @wxhw: pointer to hardware structure
657 **/
658static void wx_init_uta_tables(struct wx_hw *wxhw)
659{
660 int i;
661
662 wx_dbg(wxhw, " Clearing UTA\n");
663
664 for (i = 0; i < 128; i++)
665 wr32(wxhw, WX_PSR_UC_TBL(i), 0);
666}
667
668/**
669 * wx_init_rx_addrs - Initializes receive address filters.
670 * @wxhw: pointer to hardware structure
671 *
672 * Places the MAC address in receive address register 0 and clears the rest
673 * of the receive address registers. Clears the multicast table. Assumes
674 * the receiver is in reset when the routine is called.
675 **/
676void wx_init_rx_addrs(struct wx_hw *wxhw)
677{
678 u32 rar_entries = wxhw->mac.num_rar_entries;
679 u32 psrctl;
680 int i;
681
682 /* If the current mac address is valid, assume it is a software override
683 * to the permanent address.
684 * Otherwise, use the permanent address from the eeprom.
685 */
686 if (!is_valid_ether_addr(wxhw->mac.addr)) {
687 /* Get the MAC address from the RAR0 for later reference */
688 wx_get_mac_addr(wxhw, wxhw->mac.addr);
689 wx_dbg(wxhw, "Keeping Current RAR0 Addr = %pM\n", wxhw->mac.addr);
690 } else {
691 /* Setup the receive address. */
692 wx_dbg(wxhw, "Overriding MAC Address in RAR[0]\n");
693 wx_dbg(wxhw, "New MAC Addr = %pM\n", wxhw->mac.addr);
694
695 wx_set_rar(wxhw, 0, wxhw->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV);
696
697 if (wxhw->mac.type == wx_mac_sp) {
698 /* clear VMDq pool/queue selection for RAR 0 */
699 wx_clear_vmdq(wxhw, 0, WX_CLEAR_VMDQ_ALL);
700 }
701 }
702
703 /* Zero out the other receive addresses. */
704 wx_dbg(wxhw, "Clearing RAR[1-%d]\n", rar_entries - 1);
705 for (i = 1; i < rar_entries; i++) {
706 wr32(wxhw, WX_PSR_MAC_SWC_IDX, i);
707 wr32(wxhw, WX_PSR_MAC_SWC_AD_L, 0);
708 wr32(wxhw, WX_PSR_MAC_SWC_AD_H, 0);
709 }
710
711 /* Clear the MTA */
712 wxhw->addr_ctrl.mta_in_use = 0;
713 psrctl = rd32(wxhw, WX_PSR_CTL);
714 psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
715 psrctl |= wxhw->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT;
716 wr32(wxhw, WX_PSR_CTL, psrctl);
717 wx_dbg(wxhw, " Clearing MTA\n");
718 for (i = 0; i < wxhw->mac.mcft_size; i++)
719 wr32(wxhw, WX_PSR_MC_TBL(i), 0);
720
721 wx_init_uta_tables(wxhw);
722}
723EXPORT_SYMBOL(wx_init_rx_addrs);
724
725void wx_disable_rx(struct wx_hw *wxhw)
726{
727 u32 pfdtxgswc;
728 u32 rxctrl;
729
730 rxctrl = rd32(wxhw, WX_RDB_PB_CTL);
731 if (rxctrl & WX_RDB_PB_CTL_RXEN) {
732 pfdtxgswc = rd32(wxhw, WX_PSR_CTL);
733 if (pfdtxgswc & WX_PSR_CTL_SW_EN) {
734 pfdtxgswc &= ~WX_PSR_CTL_SW_EN;
735 wr32(wxhw, WX_PSR_CTL, pfdtxgswc);
736 wxhw->mac.set_lben = true;
737 } else {
738 wxhw->mac.set_lben = false;
739 }
740 rxctrl &= ~WX_RDB_PB_CTL_RXEN;
741 wr32(wxhw, WX_RDB_PB_CTL, rxctrl);
742
743 if (!(((wxhw->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) ||
744 ((wxhw->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) {
745 /* disable mac receiver */
746 wr32m(wxhw, WX_MAC_RX_CFG,
747 WX_MAC_RX_CFG_RE, 0);
748 }
749 }
750}
751EXPORT_SYMBOL(wx_disable_rx);
752
753/**
754 * wx_disable_pcie_master - Disable PCI-express master access
755 * @wxhw: pointer to hardware structure
756 *
757 * Disables PCI-Express master access and verifies there are no pending
758 * requests.
759 **/
760int wx_disable_pcie_master(struct wx_hw *wxhw)
761{
762 int status = 0;
763 u32 val;
764
765 /* Always set this bit to ensure any future transactions are blocked */
766 pci_clear_master(wxhw->pdev);
767
768 /* Exit if master requests are blocked */
769 if (!(rd32(wxhw, WX_PX_TRANSACTION_PENDING)))
770 return 0;
771
772 /* Poll for master request bit to clear */
773 status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT,
774 false, wxhw, WX_PX_TRANSACTION_PENDING);
775 if (status < 0)
776 wx_err(wxhw, "PCIe transaction pending bit did not clear.\n");
777
778 return status;
779}
780EXPORT_SYMBOL(wx_disable_pcie_master);
781
782/**
783 * wx_stop_adapter - Generic stop Tx/Rx units
784 * @wxhw: pointer to hardware structure
785 *
786 * Sets the adapter_stopped flag within wx_hw struct. Clears interrupts,
787 * disables transmit and receive units. The adapter_stopped flag is used by
788 * the shared code and drivers to determine if the adapter is in a stopped
789 * state and should not touch the hardware.
790 **/
791int wx_stop_adapter(struct wx_hw *wxhw)
792{
793 u16 i;
794
795 /* Set the adapter_stopped flag so other driver functions stop touching
796 * the hardware
797 */
798 wxhw->adapter_stopped = true;
799
800 /* Disable the receive unit */
801 wx_disable_rx(wxhw);
802
803 /* Set interrupt mask to stop interrupts from being generated */
804 wx_intr_disable(wxhw, WX_INTR_ALL);
805
806 /* Clear any pending interrupts, flush previous writes */
807 wr32(wxhw, WX_PX_MISC_IC, 0xffffffff);
808 wr32(wxhw, WX_BME_CTL, 0x3);
809
810 /* Disable the transmit unit. Each queue must be disabled. */
811 for (i = 0; i < wxhw->mac.max_tx_queues; i++) {
812 wr32m(wxhw, WX_PX_TR_CFG(i),
813 WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE,
814 WX_PX_TR_CFG_SWFLSH);
815 }
816
817 /* Disable the receive unit by stopping each queue */
818 for (i = 0; i < wxhw->mac.max_rx_queues; i++) {
819 wr32m(wxhw, WX_PX_RR_CFG(i),
820 WX_PX_RR_CFG_RR_EN, 0);
821 }
822
823 /* flush all queues disables */
824 WX_WRITE_FLUSH(wxhw);
825
826 /* Prevent the PCI-E bus from hanging by disabling PCI-E master
827 * access and verify no pending requests
828 */
829 return wx_disable_pcie_master(wxhw);
830}
831EXPORT_SYMBOL(wx_stop_adapter);
832
833void wx_reset_misc(struct wx_hw *wxhw)
834{
835 int i;
836
837 /* receive packets that size > 2048 */
838 wr32m(wxhw, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE);
839
840 /* clear counters on read */
841 wr32m(wxhw, WX_MMC_CONTROL,
842 WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD);
843
844 wr32m(wxhw, WX_MAC_RX_FLOW_CTRL,
845 WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE);
846
847 wr32(wxhw, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR);
848
849 wr32m(wxhw, WX_MIS_RST_ST,
850 WX_MIS_RST_ST_RST_INIT, 0x1E00);
851
852 /* errata 4: initialize mng flex tbl and wakeup flex tbl*/
853 wr32(wxhw, WX_PSR_MNG_FLEX_SEL, 0);
854 for (i = 0; i < 16; i++) {
855 wr32(wxhw, WX_PSR_MNG_FLEX_DW_L(i), 0);
856 wr32(wxhw, WX_PSR_MNG_FLEX_DW_H(i), 0);
857 wr32(wxhw, WX_PSR_MNG_FLEX_MSK(i), 0);
858 }
859 wr32(wxhw, WX_PSR_LAN_FLEX_SEL, 0);
860 for (i = 0; i < 16; i++) {
861 wr32(wxhw, WX_PSR_LAN_FLEX_DW_L(i), 0);
862 wr32(wxhw, WX_PSR_LAN_FLEX_DW_H(i), 0);
863 wr32(wxhw, WX_PSR_LAN_FLEX_MSK(i), 0);
864 }
865
866 /* set pause frame dst mac addr */
867 wr32(wxhw, WX_RDB_PFCMACDAL, 0xC2000001);
868 wr32(wxhw, WX_RDB_PFCMACDAH, 0x0180);
869}
870EXPORT_SYMBOL(wx_reset_misc);
871
872/**
873 * wx_get_pcie_msix_counts - Gets MSI-X vector count
874 * @wxhw: pointer to hardware structure
875 * @msix_count: number of MSI interrupts that can be obtained
876 * @max_msix_count: number of MSI interrupts that mac need
877 *
878 * Read PCIe configuration space, and get the MSI-X vector count from
879 * the capabilities table.
880 **/
881int wx_get_pcie_msix_counts(struct wx_hw *wxhw, u16 *msix_count, u16 max_msix_count)
882{
883 struct pci_dev *pdev = wxhw->pdev;
884 struct device *dev = &pdev->dev;
885 int pos;
886
887 *msix_count = 1;
888 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
889 if (!pos) {
890 dev_err(dev, "Unable to find MSI-X Capabilities\n");
891 return -EINVAL;
892 }
893 pci_read_config_word(pdev,
894 pos + PCI_MSIX_FLAGS,
895 msix_count);
896 *msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK;
897 /* MSI-X count is zero-based in HW */
898 *msix_count += 1;
899
900 if (*msix_count > max_msix_count)
901 *msix_count = max_msix_count;
902
903 return 0;
904}
905EXPORT_SYMBOL(wx_get_pcie_msix_counts);
906
907int wx_sw_init(struct wx_hw *wxhw)
908{
909 struct pci_dev *pdev = wxhw->pdev;
910 u32 ssid = 0;
911 int err = 0;
912
913 wxhw->vendor_id = pdev->vendor;
914 wxhw->device_id = pdev->device;
915 wxhw->revision_id = pdev->revision;
916 wxhw->oem_svid = pdev->subsystem_vendor;
917 wxhw->oem_ssid = pdev->subsystem_device;
918 wxhw->bus.device = PCI_SLOT(pdev->devfn);
919 wxhw->bus.func = PCI_FUNC(pdev->devfn);
920
921 if (wxhw->oem_svid == PCI_VENDOR_ID_WANGXUN) {
922 wxhw->subsystem_vendor_id = pdev->subsystem_vendor;
923 wxhw->subsystem_device_id = pdev->subsystem_device;
924 } else {
925 err = wx_flash_read_dword(wxhw, 0xfffdc, &ssid);
926 if (!err)
927 wxhw->subsystem_device_id = swab16((u16)ssid);
928
929 return err;
930 }
931
932 return 0;
933}
934EXPORT_SYMBOL(wx_sw_init);
935
936MODULE_LICENSE("GPL");