Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */
   3
   4#include <linux/etherdevice.h>
   5#include <linux/netdevice.h>
   6#include <linux/if_ether.h>
   7#include <linux/if_vlan.h>
   8#include <linux/iopoll.h>
   9#include <linux/pci.h>
  10
  11#include "wx_type.h"
  12#include "wx_lib.h"
  13#include "wx_hw.h"
  14
  15static int wx_phy_read_reg_mdi(struct mii_bus *bus, int phy_addr, int devnum, int regnum)
  16{
  17	struct wx *wx = bus->priv;
  18	u32 command, val;
  19	int ret;
  20
  21	/* setup and write the address cycle command */
  22	command = WX_MSCA_RA(regnum) |
  23		  WX_MSCA_PA(phy_addr) |
  24		  WX_MSCA_DA(devnum);
  25	wr32(wx, WX_MSCA, command);
  26
  27	command = WX_MSCC_CMD(WX_MSCA_CMD_READ) | WX_MSCC_BUSY;
  28	if (wx->mac.type == wx_mac_em)
  29		command |= WX_MDIO_CLK(6);
  30	wr32(wx, WX_MSCC, command);
  31
  32	/* wait to complete */
  33	ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000,
  34				100000, false, wx, WX_MSCC);
  35	if (ret) {
  36		wx_err(wx, "Mdio read c22 command did not complete.\n");
  37		return ret;
  38	}
  39
  40	return (u16)rd32(wx, WX_MSCC);
  41}
  42
  43static int wx_phy_write_reg_mdi(struct mii_bus *bus, int phy_addr,
  44				int devnum, int regnum, u16 value)
  45{
  46	struct wx *wx = bus->priv;
  47	u32 command, val;
  48	int ret;
  49
  50	/* setup and write the address cycle command */
  51	command = WX_MSCA_RA(regnum) |
  52		  WX_MSCA_PA(phy_addr) |
  53		  WX_MSCA_DA(devnum);
  54	wr32(wx, WX_MSCA, command);
  55
  56	command = value | WX_MSCC_CMD(WX_MSCA_CMD_WRITE) | WX_MSCC_BUSY;
  57	if (wx->mac.type == wx_mac_em)
  58		command |= WX_MDIO_CLK(6);
  59	wr32(wx, WX_MSCC, command);
  60
  61	/* wait to complete */
  62	ret = read_poll_timeout(rd32, val, !(val & WX_MSCC_BUSY), 1000,
  63				100000, false, wx, WX_MSCC);
  64	if (ret)
  65		wx_err(wx, "Mdio write c22 command did not complete.\n");
  66
  67	return ret;
  68}
  69
  70int wx_phy_read_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum)
  71{
  72	struct wx *wx = bus->priv;
  73
  74	wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF);
  75	return wx_phy_read_reg_mdi(bus, phy_addr, 0, regnum);
  76}
  77EXPORT_SYMBOL(wx_phy_read_reg_mdi_c22);
  78
  79int wx_phy_write_reg_mdi_c22(struct mii_bus *bus, int phy_addr, int regnum, u16 value)
  80{
  81	struct wx *wx = bus->priv;
  82
  83	wr32(wx, WX_MDIO_CLAUSE_SELECT, 0xF);
  84	return wx_phy_write_reg_mdi(bus, phy_addr, 0, regnum, value);
  85}
  86EXPORT_SYMBOL(wx_phy_write_reg_mdi_c22);
  87
  88int wx_phy_read_reg_mdi_c45(struct mii_bus *bus, int phy_addr, int devnum, int regnum)
  89{
  90	struct wx *wx = bus->priv;
  91
  92	wr32(wx, WX_MDIO_CLAUSE_SELECT, 0);
  93	return wx_phy_read_reg_mdi(bus, phy_addr, devnum, regnum);
  94}
  95EXPORT_SYMBOL(wx_phy_read_reg_mdi_c45);
  96
  97int wx_phy_write_reg_mdi_c45(struct mii_bus *bus, int phy_addr,
  98			     int devnum, int regnum, u16 value)
  99{
 100	struct wx *wx = bus->priv;
 101
 102	wr32(wx, WX_MDIO_CLAUSE_SELECT, 0);
 103	return wx_phy_write_reg_mdi(bus, phy_addr, devnum, regnum, value);
 104}
 105EXPORT_SYMBOL(wx_phy_write_reg_mdi_c45);
 106
 107static void wx_intr_disable(struct wx *wx, u64 qmask)
 108{
 109	u32 mask;
 110
 111	mask = (qmask & U32_MAX);
 112	if (mask)
 113		wr32(wx, WX_PX_IMS(0), mask);
 114
 115	if (wx->mac.type == wx_mac_sp) {
 116		mask = (qmask >> 32);
 117		if (mask)
 118			wr32(wx, WX_PX_IMS(1), mask);
 119	}
 120}
 121
 122void wx_intr_enable(struct wx *wx, u64 qmask)
 123{
 124	u32 mask;
 125
 126	mask = (qmask & U32_MAX);
 127	if (mask)
 128		wr32(wx, WX_PX_IMC(0), mask);
 129	if (wx->mac.type == wx_mac_sp) {
 130		mask = (qmask >> 32);
 131		if (mask)
 132			wr32(wx, WX_PX_IMC(1), mask);
 133	}
 134}
 135EXPORT_SYMBOL(wx_intr_enable);
 136
 137/**
 138 * wx_irq_disable - Mask off interrupt generation on the NIC
 139 * @wx: board private structure
 140 **/
 141void wx_irq_disable(struct wx *wx)
 142{
 143	struct pci_dev *pdev = wx->pdev;
 144
 145	wr32(wx, WX_PX_MISC_IEN, 0);
 146	wx_intr_disable(wx, WX_INTR_ALL);
 147
 148	if (pdev->msix_enabled) {
 149		int vector;
 150
 151		for (vector = 0; vector < wx->num_q_vectors; vector++)
 152			synchronize_irq(wx->msix_q_entries[vector].vector);
 153
 154		synchronize_irq(wx->msix_entry->vector);
 155	} else {
 156		synchronize_irq(pdev->irq);
 157	}
 158}
 159EXPORT_SYMBOL(wx_irq_disable);
 160
 161/* cmd_addr is used for some special command:
 162 * 1. to be sector address, when implemented erase sector command
 163 * 2. to be flash address when implemented read, write flash address
 164 */
 165static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr)
 166{
 167	u32 cmd_val = 0, val = 0;
 168
 169	cmd_val = WX_SPI_CMD_CMD(cmd) |
 170		  WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) |
 171		  cmd_addr;
 172	wr32(wx, WX_SPI_CMD, cmd_val);
 173
 174	return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000,
 175				 false, wx, WX_SPI_STATUS);
 176}
 177
 178static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data)
 179{
 180	int ret = 0;
 181
 182	ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr);
 183	if (ret < 0)
 184		return ret;
 185
 186	*data = rd32(wx, WX_SPI_DATA);
 187
 188	return ret;
 189}
 190
 191int wx_check_flash_load(struct wx *hw, u32 check_bit)
 192{
 193	u32 reg = 0;
 194	int err = 0;
 195
 196	/* if there's flash existing */
 197	if (!(rd32(hw, WX_SPI_STATUS) &
 198	      WX_SPI_STATUS_FLASH_BYPASS)) {
 199		/* wait hw load flash done */
 200		err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000,
 201					false, hw, WX_SPI_ILDR_STATUS);
 202		if (err < 0)
 203			wx_err(hw, "Check flash load timeout.\n");
 204	}
 205
 206	return err;
 207}
 208EXPORT_SYMBOL(wx_check_flash_load);
 209
 210void wx_control_hw(struct wx *wx, bool drv)
 211{
 212	/* True : Let firmware know the driver has taken over
 213	 * False : Let firmware take over control of hw
 214	 */
 215	wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD,
 216	      drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0);
 
 
 
 
 217}
 218EXPORT_SYMBOL(wx_control_hw);
 219
 220/**
 221 * wx_mng_present - returns 0 when management capability is present
 222 * @wx: pointer to hardware structure
 223 */
 224int wx_mng_present(struct wx *wx)
 225{
 226	u32 fwsm;
 227
 228	fwsm = rd32(wx, WX_MIS_ST);
 229	if (fwsm & WX_MIS_ST_MNG_INIT_DN)
 230		return 0;
 231	else
 232		return -EACCES;
 233}
 234EXPORT_SYMBOL(wx_mng_present);
 235
 236/* Software lock to be held while software semaphore is being accessed. */
 237static DEFINE_MUTEX(wx_sw_sync_lock);
 238
 239/**
 240 *  wx_release_sw_sync - Release SW semaphore
 241 *  @wx: pointer to hardware structure
 242 *  @mask: Mask to specify which semaphore to release
 243 *
 244 *  Releases the SW semaphore for the specified
 245 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 246 **/
 247static void wx_release_sw_sync(struct wx *wx, u32 mask)
 248{
 249	mutex_lock(&wx_sw_sync_lock);
 250	wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0);
 251	mutex_unlock(&wx_sw_sync_lock);
 252}
 253
 254/**
 255 *  wx_acquire_sw_sync - Acquire SW semaphore
 256 *  @wx: pointer to hardware structure
 257 *  @mask: Mask to specify which semaphore to acquire
 258 *
 259 *  Acquires the SW semaphore for the specified
 260 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 261 **/
 262static int wx_acquire_sw_sync(struct wx *wx, u32 mask)
 263{
 264	u32 sem = 0;
 265	int ret = 0;
 266
 267	mutex_lock(&wx_sw_sync_lock);
 268	ret = read_poll_timeout(rd32, sem, !(sem & mask),
 269				5000, 2000000, false, wx, WX_MNG_SWFW_SYNC);
 270	if (!ret) {
 271		sem |= mask;
 272		wr32(wx, WX_MNG_SWFW_SYNC, sem);
 273	} else {
 274		wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem);
 275	}
 276	mutex_unlock(&wx_sw_sync_lock);
 277
 278	return ret;
 279}
 280
 281/**
 282 *  wx_host_interface_command - Issue command to manageability block
 283 *  @wx: pointer to the HW structure
 284 *  @buffer: contains the command to write and where the return status will
 285 *   be placed
 286 *  @length: length of buffer, must be multiple of 4 bytes
 287 *  @timeout: time in ms to wait for command completion
 288 *  @return_data: read and return data from the buffer (true) or not (false)
 289 *   Needed because FW structures are big endian and decoding of
 290 *   these fields can be 8 bit or 16 bit based on command. Decoding
 291 *   is not easily understood without making a table of commands.
 292 *   So we will leave this up to the caller to read back the data
 293 *   in these cases.
 294 **/
 295int wx_host_interface_command(struct wx *wx, u32 *buffer,
 296			      u32 length, u32 timeout, bool return_data)
 297{
 298	u32 hdr_size = sizeof(struct wx_hic_hdr);
 299	u32 hicr, i, bi, buf[64] = {};
 300	int status = 0;
 301	u32 dword_len;
 302	u16 buf_len;
 303
 304	if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) {
 305		wx_err(wx, "Buffer length failure buffersize=%d.\n", length);
 306		return -EINVAL;
 307	}
 308
 309	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
 310	if (status != 0)
 311		return status;
 312
 313	/* Calculate length in DWORDs. We must be DWORD aligned */
 314	if ((length % (sizeof(u32))) != 0) {
 315		wx_err(wx, "Buffer length failure, not aligned to dword");
 316		status = -EINVAL;
 317		goto rel_out;
 318	}
 319
 320	dword_len = length >> 2;
 321
 322	/* The device driver writes the relevant command block
 323	 * into the ram area.
 324	 */
 325	for (i = 0; i < dword_len; i++) {
 326		wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i]));
 327		/* write flush */
 328		buf[i] = rd32a(wx, WX_MNG_MBOX, i);
 329	}
 330	/* Setting this bit tells the ARC that a new command is pending. */
 331	wr32m(wx, WX_MNG_MBOX_CTL,
 332	      WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY);
 333
 334	status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000,
 335				   timeout * 1000, false, wx, WX_MNG_MBOX_CTL);
 336
 337	/* Check command completion */
 338	if (status) {
 339		wx_dbg(wx, "Command has failed with no status valid.\n");
 340
 341		buf[0] = rd32(wx, WX_MNG_MBOX);
 342		if ((buffer[0] & 0xff) != (~buf[0] >> 24)) {
 343			status = -EINVAL;
 344			goto rel_out;
 345		}
 346		if ((buf[0] & 0xff0000) >> 16 == 0x80) {
 347			wx_dbg(wx, "It's unknown cmd.\n");
 348			status = -EINVAL;
 349			goto rel_out;
 350		}
 351
 352		wx_dbg(wx, "write value:\n");
 353		for (i = 0; i < dword_len; i++)
 354			wx_dbg(wx, "%x ", buffer[i]);
 355		wx_dbg(wx, "read value:\n");
 356		for (i = 0; i < dword_len; i++)
 357			wx_dbg(wx, "%x ", buf[i]);
 358	}
 359
 360	if (!return_data)
 361		goto rel_out;
 362
 363	/* Calculate length in DWORDs */
 364	dword_len = hdr_size >> 2;
 365
 366	/* first pull in the header so we know the buffer length */
 367	for (bi = 0; bi < dword_len; bi++) {
 368		buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
 369		le32_to_cpus(&buffer[bi]);
 370	}
 371
 372	/* If there is any thing in data position pull it in */
 373	buf_len = ((struct wx_hic_hdr *)buffer)->buf_len;
 374	if (buf_len == 0)
 375		goto rel_out;
 376
 377	if (length < buf_len + hdr_size) {
 378		wx_err(wx, "Buffer not large enough for reply message.\n");
 379		status = -EFAULT;
 380		goto rel_out;
 381	}
 382
 383	/* Calculate length in DWORDs, add 3 for odd lengths */
 384	dword_len = (buf_len + 3) >> 2;
 385
 386	/* Pull in the rest of the buffer (bi is where we left off) */
 387	for (; bi <= dword_len; bi++) {
 388		buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
 389		le32_to_cpus(&buffer[bi]);
 390	}
 391
 392rel_out:
 393	wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
 394	return status;
 395}
 396EXPORT_SYMBOL(wx_host_interface_command);
 397
 398/**
 399 *  wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd
 400 *  assuming that the semaphore is already obtained.
 401 *  @wx: pointer to hardware structure
 402 *  @offset: offset of  word in the EEPROM to read
 403 *  @data: word read from the EEPROM
 404 *
 405 *  Reads a 16 bit word from the EEPROM using the hostif.
 406 **/
 407static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data)
 408{
 409	struct wx_hic_read_shadow_ram buffer;
 410	int status;
 411
 412	buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
 413	buffer.hdr.req.buf_lenh = 0;
 414	buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
 415	buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
 416
 417	/* convert offset from words to bytes */
 418	buffer.address = (__force u32)cpu_to_be32(offset * 2);
 419	/* one word */
 420	buffer.length = (__force u16)cpu_to_be16(sizeof(u16));
 421
 422	status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer),
 423					   WX_HI_COMMAND_TIMEOUT, false);
 424
 425	if (status != 0)
 426		return status;
 427
 428	*data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET);
 429
 430	return status;
 431}
 432
 433/**
 434 *  wx_read_ee_hostif - Read EEPROM word using a host interface cmd
 435 *  @wx: pointer to hardware structure
 436 *  @offset: offset of  word in the EEPROM to read
 437 *  @data: word read from the EEPROM
 438 *
 439 *  Reads a 16 bit word from the EEPROM using the hostif.
 440 **/
 441int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data)
 442{
 443	int status = 0;
 444
 445	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
 446	if (status == 0) {
 447		status = wx_read_ee_hostif_data(wx, offset, data);
 448		wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
 449	}
 450
 451	return status;
 452}
 453EXPORT_SYMBOL(wx_read_ee_hostif);
 454
 455/**
 456 *  wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif
 457 *  @wx: pointer to hardware structure
 458 *  @offset: offset of  word in the EEPROM to read
 459 *  @words: number of words
 460 *  @data: word(s) read from the EEPROM
 461 *
 462 *  Reads a 16 bit word(s) from the EEPROM using the hostif.
 463 **/
 464int wx_read_ee_hostif_buffer(struct wx *wx,
 465			     u16 offset, u16 words, u16 *data)
 466{
 467	struct wx_hic_read_shadow_ram buffer;
 468	u32 current_word = 0;
 469	u16 words_to_read;
 470	u32 value = 0;
 471	int status;
 472	u32 i;
 473
 474	/* Take semaphore for the entire operation. */
 475	status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
 476	if (status != 0)
 477		return status;
 478
 479	while (words) {
 480		if (words > FW_MAX_READ_BUFFER_SIZE / 2)
 481			words_to_read = FW_MAX_READ_BUFFER_SIZE / 2;
 482		else
 483			words_to_read = words;
 484
 485		buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
 486		buffer.hdr.req.buf_lenh = 0;
 487		buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
 488		buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
 489
 490		/* convert offset from words to bytes */
 491		buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2);
 492		buffer.length = (__force u16)cpu_to_be16(words_to_read * 2);
 493
 494		status = wx_host_interface_command(wx, (u32 *)&buffer,
 495						   sizeof(buffer),
 496						   WX_HI_COMMAND_TIMEOUT,
 497						   false);
 498
 499		if (status != 0) {
 500			wx_err(wx, "Host interface command failed\n");
 501			goto out;
 502		}
 503
 504		for (i = 0; i < words_to_read; i++) {
 505			u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i;
 506
 507			value = rd32(wx, reg);
 508			data[current_word] = (u16)(value & 0xffff);
 509			current_word++;
 510			i++;
 511			if (i < words_to_read) {
 512				value >>= 16;
 513				data[current_word] = (u16)(value & 0xffff);
 514				current_word++;
 515			}
 516		}
 517		words -= words_to_read;
 518	}
 519
 520out:
 521	wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
 522	return status;
 523}
 524EXPORT_SYMBOL(wx_read_ee_hostif_buffer);
 525
 526/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 527 *  wx_init_eeprom_params - Initialize EEPROM params
 528 *  @wx: pointer to hardware structure
 529 *
 530 *  Initializes the EEPROM parameters wx_eeprom_info within the
 531 *  wx_hw struct in order to set up EEPROM access.
 532 **/
 533void wx_init_eeprom_params(struct wx *wx)
 534{
 535	struct wx_eeprom_info *eeprom = &wx->eeprom;
 536	u16 eeprom_size;
 537	u16 data = 0x80;
 538
 539	if (eeprom->type == wx_eeprom_uninitialized) {
 540		eeprom->semaphore_delay = 10;
 541		eeprom->type = wx_eeprom_none;
 542
 543		if (!(rd32(wx, WX_SPI_STATUS) &
 544		      WX_SPI_STATUS_FLASH_BYPASS)) {
 545			eeprom->type = wx_flash;
 546
 547			eeprom_size = 4096;
 548			eeprom->word_size = eeprom_size >> 1;
 549
 550			wx_dbg(wx, "Eeprom params: type = %d, size = %d\n",
 551			       eeprom->type, eeprom->word_size);
 552		}
 553	}
 554
 555	if (wx->mac.type == wx_mac_sp) {
 556		if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) {
 557			wx_err(wx, "NVM Read Error\n");
 558			return;
 559		}
 560		data = data >> 1;
 561	}
 562
 563	eeprom->sw_region_offset = data;
 564}
 565EXPORT_SYMBOL(wx_init_eeprom_params);
 566
 567/**
 568 *  wx_get_mac_addr - Generic get MAC address
 569 *  @wx: pointer to hardware structure
 570 *  @mac_addr: Adapter MAC address
 571 *
 572 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 573 *  A reset of the adapter must be performed prior to calling this function
 574 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 575 **/
 576void wx_get_mac_addr(struct wx *wx, u8 *mac_addr)
 577{
 578	u32 rar_high;
 579	u32 rar_low;
 580	u16 i;
 581
 582	wr32(wx, WX_PSR_MAC_SWC_IDX, 0);
 583	rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H);
 584	rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L);
 585
 586	for (i = 0; i < 2; i++)
 587		mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
 588
 589	for (i = 0; i < 4; i++)
 590		mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
 591}
 592EXPORT_SYMBOL(wx_get_mac_addr);
 593
 594/**
 595 *  wx_set_rar - Set Rx address register
 596 *  @wx: pointer to hardware structure
 597 *  @index: Receive address register to write
 598 *  @addr: Address to put into receive address register
 599 *  @pools: VMDq "set" or "pool" index
 600 *  @enable_addr: set flag that address is active
 601 *
 602 *  Puts an ethernet address into a receive address register.
 603 **/
 604static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools,
 605		      u32 enable_addr)
 606{
 607	u32 rar_entries = wx->mac.num_rar_entries;
 608	u32 rar_low, rar_high;
 609
 610	/* Make sure we are using a valid rar index range */
 611	if (index >= rar_entries) {
 612		wx_err(wx, "RAR index %d is out of range.\n", index);
 613		return -EINVAL;
 614	}
 615
 616	/* select the MAC address */
 617	wr32(wx, WX_PSR_MAC_SWC_IDX, index);
 618
 619	/* setup VMDq pool mapping */
 620	wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF);
 621	if (wx->mac.type == wx_mac_sp)
 622		wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32);
 623
 624	/* HW expects these in little endian so we reverse the byte
 625	 * order from network order (big endian) to little endian
 626	 *
 627	 * Some parts put the VMDq setting in the extra RAH bits,
 628	 * so save everything except the lower 16 bits that hold part
 629	 * of the address and the address valid bit.
 630	 */
 631	rar_low = ((u32)addr[5] |
 632		  ((u32)addr[4] << 8) |
 633		  ((u32)addr[3] << 16) |
 634		  ((u32)addr[2] << 24));
 635	rar_high = ((u32)addr[1] |
 636		   ((u32)addr[0] << 8));
 637	if (enable_addr != 0)
 638		rar_high |= WX_PSR_MAC_SWC_AD_H_AV;
 639
 640	wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low);
 641	wr32m(wx, WX_PSR_MAC_SWC_AD_H,
 642	      (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
 643	       WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
 644	       WX_PSR_MAC_SWC_AD_H_AV),
 645	      rar_high);
 646
 647	return 0;
 648}
 
 649
 650/**
 651 *  wx_clear_rar - Remove Rx address register
 652 *  @wx: pointer to hardware structure
 653 *  @index: Receive address register to write
 654 *
 655 *  Clears an ethernet address from a receive address register.
 656 **/
 657static int wx_clear_rar(struct wx *wx, u32 index)
 658{
 659	u32 rar_entries = wx->mac.num_rar_entries;
 660
 661	/* Make sure we are using a valid rar index range */
 662	if (index >= rar_entries) {
 663		wx_err(wx, "RAR index %d is out of range.\n", index);
 664		return -EINVAL;
 665	}
 666
 667	/* Some parts put the VMDq setting in the extra RAH bits,
 668	 * so save everything except the lower 16 bits that hold part
 669	 * of the address and the address valid bit.
 670	 */
 671	wr32(wx, WX_PSR_MAC_SWC_IDX, index);
 672
 673	wr32(wx, WX_PSR_MAC_SWC_VM_L, 0);
 674	wr32(wx, WX_PSR_MAC_SWC_VM_H, 0);
 675
 676	wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
 677	wr32m(wx, WX_PSR_MAC_SWC_AD_H,
 678	      (WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
 679	       WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
 680	       WX_PSR_MAC_SWC_AD_H_AV),
 681	      0);
 682
 683	return 0;
 684}
 
 685
 686/**
 687 *  wx_clear_vmdq - Disassociate a VMDq pool index from a rx address
 688 *  @wx: pointer to hardware struct
 689 *  @rar: receive address register index to disassociate
 690 *  @vmdq: VMDq pool index to remove from the rar
 691 **/
 692static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq)
 693{
 694	u32 rar_entries = wx->mac.num_rar_entries;
 695	u32 mpsar_lo, mpsar_hi;
 696
 697	/* Make sure we are using a valid rar index range */
 698	if (rar >= rar_entries) {
 699		wx_err(wx, "RAR index %d is out of range.\n", rar);
 700		return -EINVAL;
 701	}
 702
 703	wr32(wx, WX_PSR_MAC_SWC_IDX, rar);
 704	mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L);
 705	mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H);
 706
 707	if (!mpsar_lo && !mpsar_hi)
 708		return 0;
 709
 710	/* was that the last pool using this rar? */
 711	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
 712		wx_clear_rar(wx, rar);
 713
 714	return 0;
 715}
 716
 717/**
 718 *  wx_init_uta_tables - Initialize the Unicast Table Array
 719 *  @wx: pointer to hardware structure
 720 **/
 721static void wx_init_uta_tables(struct wx *wx)
 722{
 723	int i;
 724
 725	wx_dbg(wx, " Clearing UTA\n");
 726
 727	for (i = 0; i < 128; i++)
 728		wr32(wx, WX_PSR_UC_TBL(i), 0);
 729}
 730
 731/**
 732 *  wx_init_rx_addrs - Initializes receive address filters.
 733 *  @wx: pointer to hardware structure
 734 *
 735 *  Places the MAC address in receive address register 0 and clears the rest
 736 *  of the receive address registers. Clears the multicast table. Assumes
 737 *  the receiver is in reset when the routine is called.
 738 **/
 739void wx_init_rx_addrs(struct wx *wx)
 740{
 741	u32 rar_entries = wx->mac.num_rar_entries;
 742	u32 psrctl;
 743	int i;
 744
 745	/* If the current mac address is valid, assume it is a software override
 746	 * to the permanent address.
 747	 * Otherwise, use the permanent address from the eeprom.
 748	 */
 749	if (!is_valid_ether_addr(wx->mac.addr)) {
 750		/* Get the MAC address from the RAR0 for later reference */
 751		wx_get_mac_addr(wx, wx->mac.addr);
 752		wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr);
 753	} else {
 754		/* Setup the receive address. */
 755		wx_dbg(wx, "Overriding MAC Address in RAR[0]\n");
 756		wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr);
 757
 758		wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV);
 759
 760		if (wx->mac.type == wx_mac_sp) {
 761			/* clear VMDq pool/queue selection for RAR 0 */
 762			wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL);
 763		}
 764	}
 765
 766	/* Zero out the other receive addresses. */
 767	wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1);
 768	for (i = 1; i < rar_entries; i++) {
 769		wr32(wx, WX_PSR_MAC_SWC_IDX, i);
 770		wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
 771		wr32(wx, WX_PSR_MAC_SWC_AD_H, 0);
 772	}
 773
 774	/* Clear the MTA */
 775	wx->addr_ctrl.mta_in_use = 0;
 776	psrctl = rd32(wx, WX_PSR_CTL);
 777	psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
 778	psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT;
 779	wr32(wx, WX_PSR_CTL, psrctl);
 780	wx_dbg(wx, " Clearing MTA\n");
 781	for (i = 0; i < wx->mac.mcft_size; i++)
 782		wr32(wx, WX_PSR_MC_TBL(i), 0);
 783
 784	wx_init_uta_tables(wx);
 785}
 786EXPORT_SYMBOL(wx_init_rx_addrs);
 787
 788static void wx_sync_mac_table(struct wx *wx)
 789{
 790	int i;
 791
 792	for (i = 0; i < wx->mac.num_rar_entries; i++) {
 793		if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) {
 794			if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
 795				wx_set_rar(wx, i,
 796					   wx->mac_table[i].addr,
 797					   wx->mac_table[i].pools,
 798					   WX_PSR_MAC_SWC_AD_H_AV);
 799			} else {
 800				wx_clear_rar(wx, i);
 801			}
 802			wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED);
 803		}
 804	}
 805}
 806
 807/* this function destroys the first RAR entry */
 808void wx_mac_set_default_filter(struct wx *wx, u8 *addr)
 809{
 810	memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN);
 811	wx->mac_table[0].pools = 1ULL;
 812	wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE);
 813	wx_set_rar(wx, 0, wx->mac_table[0].addr,
 814		   wx->mac_table[0].pools,
 815		   WX_PSR_MAC_SWC_AD_H_AV);
 816}
 817EXPORT_SYMBOL(wx_mac_set_default_filter);
 818
 819void wx_flush_sw_mac_table(struct wx *wx)
 820{
 821	u32 i;
 822
 823	for (i = 0; i < wx->mac.num_rar_entries; i++) {
 824		if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE))
 825			continue;
 826
 827		wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
 828		wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
 829		memset(wx->mac_table[i].addr, 0, ETH_ALEN);
 830		wx->mac_table[i].pools = 0;
 831	}
 832	wx_sync_mac_table(wx);
 833}
 834EXPORT_SYMBOL(wx_flush_sw_mac_table);
 835
 836static int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool)
 837{
 838	u32 i;
 839
 840	if (is_zero_ether_addr(addr))
 841		return -EINVAL;
 842
 843	for (i = 0; i < wx->mac.num_rar_entries; i++) {
 844		if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
 845			if (ether_addr_equal(addr, wx->mac_table[i].addr)) {
 846				if (wx->mac_table[i].pools != (1ULL << pool)) {
 847					memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
 848					wx->mac_table[i].pools |= (1ULL << pool);
 849					wx_sync_mac_table(wx);
 850					return i;
 851				}
 852			}
 853		}
 854
 855		if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE)
 856			continue;
 857		wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED |
 858					   WX_MAC_STATE_IN_USE);
 859		memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
 860		wx->mac_table[i].pools |= (1ULL << pool);
 861		wx_sync_mac_table(wx);
 862		return i;
 863	}
 864	return -ENOMEM;
 865}
 866
 867static int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool)
 868{
 869	u32 i;
 870
 871	if (is_zero_ether_addr(addr))
 872		return -EINVAL;
 873
 874	/* search table for addr, if found, set to 0 and sync */
 875	for (i = 0; i < wx->mac.num_rar_entries; i++) {
 876		if (!ether_addr_equal(addr, wx->mac_table[i].addr))
 877			continue;
 878
 879		wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
 880		wx->mac_table[i].pools &= ~(1ULL << pool);
 881		if (!wx->mac_table[i].pools) {
 882			wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
 883			memset(wx->mac_table[i].addr, 0, ETH_ALEN);
 884		}
 885		wx_sync_mac_table(wx);
 886		return 0;
 887	}
 888	return -ENOMEM;
 889}
 890
 891static int wx_available_rars(struct wx *wx)
 892{
 893	u32 i, count = 0;
 894
 895	for (i = 0; i < wx->mac.num_rar_entries; i++) {
 896		if (wx->mac_table[i].state == 0)
 897			count++;
 898	}
 899
 900	return count;
 901}
 902
 903/**
 904 * wx_write_uc_addr_list - write unicast addresses to RAR table
 905 * @netdev: network interface device structure
 906 * @pool: index for mac table
 907 *
 908 * Writes unicast address list to the RAR table.
 909 * Returns: -ENOMEM on failure/insufficient address space
 910 *                0 on no addresses written
 911 *                X on writing X addresses to the RAR table
 912 **/
 913static int wx_write_uc_addr_list(struct net_device *netdev, int pool)
 914{
 915	struct wx *wx = netdev_priv(netdev);
 916	int count = 0;
 917
 918	/* return ENOMEM indicating insufficient memory for addresses */
 919	if (netdev_uc_count(netdev) > wx_available_rars(wx))
 920		return -ENOMEM;
 921
 922	if (!netdev_uc_empty(netdev)) {
 923		struct netdev_hw_addr *ha;
 924
 925		netdev_for_each_uc_addr(ha, netdev) {
 926			wx_del_mac_filter(wx, ha->addr, pool);
 927			wx_add_mac_filter(wx, ha->addr, pool);
 928			count++;
 929		}
 930	}
 931	return count;
 932}
 933
 934/**
 935 *  wx_mta_vector - Determines bit-vector in multicast table to set
 936 *  @wx: pointer to private structure
 937 *  @mc_addr: the multicast address
 938 *
 939 *  Extracts the 12 bits, from a multicast address, to determine which
 940 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
 941 *  incoming rx multicast addresses, to determine the bit-vector to check in
 942 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
 943 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
 944 *  to mc_filter_type.
 945 **/
 946static u32 wx_mta_vector(struct wx *wx, u8 *mc_addr)
 947{
 948	u32 vector = 0;
 949
 950	switch (wx->mac.mc_filter_type) {
 951	case 0:   /* use bits [47:36] of the address */
 952		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
 953		break;
 954	case 1:   /* use bits [46:35] of the address */
 955		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
 956		break;
 957	case 2:   /* use bits [45:34] of the address */
 958		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
 959		break;
 960	case 3:   /* use bits [43:32] of the address */
 961		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
 962		break;
 963	default:  /* Invalid mc_filter_type */
 964		wx_err(wx, "MC filter type param set incorrectly\n");
 965		break;
 966	}
 967
 968	/* vector can only be 12-bits or boundary will be exceeded */
 969	vector &= 0xFFF;
 970	return vector;
 971}
 972
 973/**
 974 *  wx_set_mta - Set bit-vector in multicast table
 975 *  @wx: pointer to private structure
 976 *  @mc_addr: Multicast address
 977 *
 978 *  Sets the bit-vector in the multicast table.
 979 **/
 980static void wx_set_mta(struct wx *wx, u8 *mc_addr)
 981{
 982	u32 vector, vector_bit, vector_reg;
 983
 984	wx->addr_ctrl.mta_in_use++;
 985
 986	vector = wx_mta_vector(wx, mc_addr);
 987	wx_dbg(wx, " bit-vector = 0x%03X\n", vector);
 988
 989	/* The MTA is a register array of 128 32-bit registers. It is treated
 990	 * like an array of 4096 bits.  We want to set bit
 991	 * BitArray[vector_value]. So we figure out what register the bit is
 992	 * in, read it, OR in the new bit, then write back the new value.  The
 993	 * register is determined by the upper 7 bits of the vector value and
 994	 * the bit within that register are determined by the lower 5 bits of
 995	 * the value.
 996	 */
 997	vector_reg = (vector >> 5) & 0x7F;
 998	vector_bit = vector & 0x1F;
 999	wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1000}
1001
1002/**
1003 *  wx_update_mc_addr_list - Updates MAC list of multicast addresses
1004 *  @wx: pointer to private structure
1005 *  @netdev: pointer to net device structure
1006 *
1007 *  The given list replaces any existing list. Clears the MC addrs from receive
1008 *  address registers and the multicast table. Uses unused receive address
1009 *  registers for the first multicast addresses, and hashes the rest into the
1010 *  multicast table.
1011 **/
1012static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev)
1013{
1014	struct netdev_hw_addr *ha;
1015	u32 i, psrctl;
1016
1017	/* Set the new number of MC addresses that we are being requested to
1018	 * use.
1019	 */
1020	wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1021	wx->addr_ctrl.mta_in_use = 0;
1022
1023	/* Clear mta_shadow */
1024	wx_dbg(wx, " Clearing MTA\n");
1025	memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow));
1026
1027	/* Update mta_shadow */
1028	netdev_for_each_mc_addr(ha, netdev) {
1029		wx_dbg(wx, " Adding the multicast addresses:\n");
1030		wx_set_mta(wx, ha->addr);
1031	}
1032
1033	/* Enable mta */
1034	for (i = 0; i < wx->mac.mcft_size; i++)
1035		wr32a(wx, WX_PSR_MC_TBL(0), i,
1036		      wx->mac.mta_shadow[i]);
1037
1038	if (wx->addr_ctrl.mta_in_use > 0) {
1039		psrctl = rd32(wx, WX_PSR_CTL);
1040		psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
1041		psrctl |= WX_PSR_CTL_MFE |
1042			  (wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT);
1043		wr32(wx, WX_PSR_CTL, psrctl);
1044	}
1045
1046	wx_dbg(wx, "Update mc addr list Complete\n");
1047}
1048
1049/**
1050 * wx_write_mc_addr_list - write multicast addresses to MTA
1051 * @netdev: network interface device structure
1052 *
1053 * Writes multicast address list to the MTA hash table.
1054 * Returns: 0 on no addresses written
1055 *          X on writing X addresses to MTA
1056 **/
1057static int wx_write_mc_addr_list(struct net_device *netdev)
1058{
1059	struct wx *wx = netdev_priv(netdev);
1060
1061	if (!netif_running(netdev))
1062		return 0;
1063
1064	wx_update_mc_addr_list(wx, netdev);
1065
1066	return netdev_mc_count(netdev);
1067}
1068
1069/**
1070 * wx_set_mac - Change the Ethernet Address of the NIC
1071 * @netdev: network interface device structure
1072 * @p: pointer to an address structure
1073 *
1074 * Returns 0 on success, negative on failure
1075 **/
1076int wx_set_mac(struct net_device *netdev, void *p)
1077{
1078	struct wx *wx = netdev_priv(netdev);
1079	struct sockaddr *addr = p;
1080	int retval;
1081
1082	retval = eth_prepare_mac_addr_change(netdev, addr);
1083	if (retval)
1084		return retval;
1085
1086	wx_del_mac_filter(wx, wx->mac.addr, 0);
1087	eth_hw_addr_set(netdev, addr->sa_data);
1088	memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len);
1089
1090	wx_mac_set_default_filter(wx, wx->mac.addr);
1091
1092	return 0;
1093}
1094EXPORT_SYMBOL(wx_set_mac);
1095
1096void wx_disable_rx(struct wx *wx)
1097{
1098	u32 pfdtxgswc;
1099	u32 rxctrl;
1100
1101	rxctrl = rd32(wx, WX_RDB_PB_CTL);
1102	if (rxctrl & WX_RDB_PB_CTL_RXEN) {
1103		pfdtxgswc = rd32(wx, WX_PSR_CTL);
1104		if (pfdtxgswc & WX_PSR_CTL_SW_EN) {
1105			pfdtxgswc &= ~WX_PSR_CTL_SW_EN;
1106			wr32(wx, WX_PSR_CTL, pfdtxgswc);
1107			wx->mac.set_lben = true;
1108		} else {
1109			wx->mac.set_lben = false;
1110		}
1111		rxctrl &= ~WX_RDB_PB_CTL_RXEN;
1112		wr32(wx, WX_RDB_PB_CTL, rxctrl);
1113
1114		if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) ||
1115		      ((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) {
1116			/* disable mac receiver */
1117			wr32m(wx, WX_MAC_RX_CFG,
1118			      WX_MAC_RX_CFG_RE, 0);
1119		}
1120	}
1121}
1122EXPORT_SYMBOL(wx_disable_rx);
1123
1124static void wx_enable_rx(struct wx *wx)
1125{
1126	u32 psrctl;
1127
1128	/* enable mac receiver */
1129	wr32m(wx, WX_MAC_RX_CFG,
1130	      WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE);
1131
1132	wr32m(wx, WX_RDB_PB_CTL,
1133	      WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN);
1134
1135	if (wx->mac.set_lben) {
1136		psrctl = rd32(wx, WX_PSR_CTL);
1137		psrctl |= WX_PSR_CTL_SW_EN;
1138		wr32(wx, WX_PSR_CTL, psrctl);
1139		wx->mac.set_lben = false;
1140	}
1141}
1142
1143/**
1144 * wx_set_rxpba - Initialize Rx packet buffer
1145 * @wx: pointer to private structure
1146 **/
1147static void wx_set_rxpba(struct wx *wx)
1148{
1149	u32 rxpktsize, txpktsize, txpbthresh;
1150
1151	rxpktsize = wx->mac.rx_pb_size << WX_RDB_PB_SZ_SHIFT;
1152	wr32(wx, WX_RDB_PB_SZ(0), rxpktsize);
1153
1154	/* Only support an equally distributed Tx packet buffer strategy. */
1155	txpktsize = wx->mac.tx_pb_size;
1156	txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX;
1157	wr32(wx, WX_TDB_PB_SZ(0), txpktsize);
1158	wr32(wx, WX_TDM_PB_THRE(0), txpbthresh);
1159}
1160
1161#define WX_ETH_FRAMING 20
1162
1163/**
1164 * wx_hpbthresh - calculate high water mark for flow control
1165 *
1166 * @wx: board private structure to calculate for
1167 **/
1168static int wx_hpbthresh(struct wx *wx)
1169{
1170	struct net_device *dev = wx->netdev;
1171	int link, tc, kb, marker;
1172	u32 dv_id, rx_pba;
1173
1174	/* Calculate max LAN frame size */
1175	link = dev->mtu + ETH_HLEN + ETH_FCS_LEN + WX_ETH_FRAMING;
1176	tc = link;
1177
1178	/* Calculate delay value for device */
1179	dv_id = WX_DV(link, tc);
1180
1181	/* Delay value is calculated in bit times convert to KB */
1182	kb = WX_BT2KB(dv_id);
1183	rx_pba = rd32(wx, WX_RDB_PB_SZ(0)) >> WX_RDB_PB_SZ_SHIFT;
1184
1185	marker = rx_pba - kb;
1186
1187	/* It is possible that the packet buffer is not large enough
1188	 * to provide required headroom. In this case throw an error
1189	 * to user and a do the best we can.
1190	 */
1191	if (marker < 0) {
1192		dev_warn(&wx->pdev->dev,
1193			 "Packet Buffer can not provide enough headroom to support flow control. Decrease MTU or number of traffic classes\n");
1194		marker = tc + 1;
1195	}
1196
1197	return marker;
1198}
1199
1200/**
1201 * wx_lpbthresh - calculate low water mark for flow control
1202 *
1203 * @wx: board private structure to calculate for
1204 **/
1205static int wx_lpbthresh(struct wx *wx)
1206{
1207	struct net_device *dev = wx->netdev;
1208	u32 dv_id;
1209	int tc;
1210
1211	/* Calculate max LAN frame size */
1212	tc = dev->mtu + ETH_HLEN + ETH_FCS_LEN;
1213
1214	/* Calculate delay value for device */
1215	dv_id = WX_LOW_DV(tc);
1216
1217	/* Delay value is calculated in bit times convert to KB */
1218	return WX_BT2KB(dv_id);
1219}
1220
1221/**
1222 * wx_pbthresh_setup - calculate and setup high low water marks
1223 *
1224 * @wx: board private structure to calculate for
1225 **/
1226static void wx_pbthresh_setup(struct wx *wx)
1227{
1228	wx->fc.high_water = wx_hpbthresh(wx);
1229	wx->fc.low_water = wx_lpbthresh(wx);
1230
1231	/* Low water marks must not be larger than high water marks */
1232	if (wx->fc.low_water > wx->fc.high_water)
1233		wx->fc.low_water = 0;
1234}
1235
1236static void wx_configure_port(struct wx *wx)
1237{
1238	u32 value, i;
1239
1240	value = WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ;
1241	wr32m(wx, WX_CFG_PORT_CTL,
1242	      WX_CFG_PORT_CTL_D_VLAN |
1243	      WX_CFG_PORT_CTL_QINQ,
1244	      value);
1245
1246	wr32(wx, WX_CFG_TAG_TPID(0),
1247	     ETH_P_8021Q | ETH_P_8021AD << 16);
1248	wx->tpid[0] = ETH_P_8021Q;
1249	wx->tpid[1] = ETH_P_8021AD;
1250	for (i = 1; i < 4; i++)
1251		wr32(wx, WX_CFG_TAG_TPID(i),
1252		     ETH_P_8021Q | ETH_P_8021Q << 16);
1253	for (i = 2; i < 8; i++)
1254		wx->tpid[i] = ETH_P_8021Q;
1255}
1256
1257/**
1258 *  wx_disable_sec_rx_path - Stops the receive data path
1259 *  @wx: pointer to private structure
1260 *
1261 *  Stops the receive data path and waits for the HW to internally empty
1262 *  the Rx security block
1263 **/
1264static int wx_disable_sec_rx_path(struct wx *wx)
1265{
1266	u32 secrx;
1267
1268	wr32m(wx, WX_RSC_CTL,
1269	      WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS);
1270
1271	return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY,
1272				 1000, 40000, false, wx, WX_RSC_ST);
1273}
1274
1275/**
1276 *  wx_enable_sec_rx_path - Enables the receive data path
1277 *  @wx: pointer to private structure
1278 *
1279 *  Enables the receive data path.
1280 **/
1281static void wx_enable_sec_rx_path(struct wx *wx)
1282{
1283	wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0);
1284	WX_WRITE_FLUSH(wx);
1285}
1286
1287static void wx_vlan_strip_control(struct wx *wx, bool enable)
1288{
1289	int i, j;
1290
1291	for (i = 0; i < wx->num_rx_queues; i++) {
1292		struct wx_ring *ring = wx->rx_ring[i];
1293
1294		j = ring->reg_idx;
1295		wr32m(wx, WX_PX_RR_CFG(j), WX_PX_RR_CFG_VLAN,
1296		      enable ? WX_PX_RR_CFG_VLAN : 0);
1297	}
1298}
1299
1300void wx_set_rx_mode(struct net_device *netdev)
1301{
1302	struct wx *wx = netdev_priv(netdev);
1303	netdev_features_t features;
1304	u32 fctrl, vmolr, vlnctrl;
1305	int count;
1306
1307	features = netdev->features;
1308
1309	/* Check for Promiscuous and All Multicast modes */
1310	fctrl = rd32(wx, WX_PSR_CTL);
1311	fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE);
1312	vmolr = rd32(wx, WX_PSR_VM_L2CTL(0));
1313	vmolr &= ~(WX_PSR_VM_L2CTL_UPE |
1314		   WX_PSR_VM_L2CTL_MPE |
1315		   WX_PSR_VM_L2CTL_ROPE |
1316		   WX_PSR_VM_L2CTL_ROMPE);
1317	vlnctrl = rd32(wx, WX_PSR_VLAN_CTL);
1318	vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN);
1319
1320	/* set all bits that we expect to always be set */
1321	fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE;
1322	vmolr |= WX_PSR_VM_L2CTL_BAM |
1323		 WX_PSR_VM_L2CTL_AUPE |
1324		 WX_PSR_VM_L2CTL_VACC;
1325	vlnctrl |= WX_PSR_VLAN_CTL_VFE;
1326
1327	wx->addr_ctrl.user_set_promisc = false;
1328	if (netdev->flags & IFF_PROMISC) {
1329		wx->addr_ctrl.user_set_promisc = true;
1330		fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE;
1331		/* pf don't want packets routing to vf, so clear UPE */
1332		vmolr |= WX_PSR_VM_L2CTL_MPE;
1333		vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1334	}
1335
1336	if (netdev->flags & IFF_ALLMULTI) {
1337		fctrl |= WX_PSR_CTL_MPE;
1338		vmolr |= WX_PSR_VM_L2CTL_MPE;
1339	}
1340
1341	if (netdev->features & NETIF_F_RXALL) {
1342		vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE);
1343		vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
1344		/* receive bad packets */
1345		wr32m(wx, WX_RSC_CTL,
1346		      WX_RSC_CTL_SAVE_MAC_ERR,
1347		      WX_RSC_CTL_SAVE_MAC_ERR);
1348	} else {
1349		vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE;
1350	}
1351
1352	/* Write addresses to available RAR registers, if there is not
1353	 * sufficient space to store all the addresses then enable
1354	 * unicast promiscuous mode
1355	 */
1356	count = wx_write_uc_addr_list(netdev, 0);
1357	if (count < 0) {
1358		vmolr &= ~WX_PSR_VM_L2CTL_ROPE;
1359		vmolr |= WX_PSR_VM_L2CTL_UPE;
1360	}
1361
1362	/* Write addresses to the MTA, if the attempt fails
1363	 * then we should just turn on promiscuous mode so
1364	 * that we can at least receive multicast traffic
1365	 */
1366	count = wx_write_mc_addr_list(netdev);
1367	if (count < 0) {
1368		vmolr &= ~WX_PSR_VM_L2CTL_ROMPE;
1369		vmolr |= WX_PSR_VM_L2CTL_MPE;
1370	}
1371
1372	wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
1373	wr32(wx, WX_PSR_CTL, fctrl);
1374	wr32(wx, WX_PSR_VM_L2CTL(0), vmolr);
1375
1376	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1377	    (features & NETIF_F_HW_VLAN_STAG_RX))
1378		wx_vlan_strip_control(wx, true);
1379	else
1380		wx_vlan_strip_control(wx, false);
1381
1382}
1383EXPORT_SYMBOL(wx_set_rx_mode);
1384
1385static void wx_set_rx_buffer_len(struct wx *wx)
1386{
1387	struct net_device *netdev = wx->netdev;
1388	u32 mhadd, max_frame;
1389
1390	max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1391	/* adjust max frame to be at least the size of a standard frame */
1392	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
1393		max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN);
1394
1395	mhadd = rd32(wx, WX_PSR_MAX_SZ);
1396	if (max_frame != mhadd)
1397		wr32(wx, WX_PSR_MAX_SZ, max_frame);
1398}
1399
1400/**
1401 * wx_change_mtu - Change the Maximum Transfer Unit
1402 * @netdev: network interface device structure
1403 * @new_mtu: new value for maximum frame size
1404 *
1405 * Returns 0 on success, negative on failure
1406 **/
1407int wx_change_mtu(struct net_device *netdev, int new_mtu)
1408{
1409	struct wx *wx = netdev_priv(netdev);
1410
1411	netdev->mtu = new_mtu;
1412	wx_set_rx_buffer_len(wx);
1413
1414	return 0;
1415}
1416EXPORT_SYMBOL(wx_change_mtu);
1417
1418/* Disable the specified rx queue */
1419void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring)
1420{
1421	u8 reg_idx = ring->reg_idx;
1422	u32 rxdctl;
1423	int ret;
1424
1425	/* write value back with RRCFG.EN bit cleared */
1426	wr32m(wx, WX_PX_RR_CFG(reg_idx),
1427	      WX_PX_RR_CFG_RR_EN, 0);
1428
1429	/* the hardware may take up to 100us to really disable the rx queue */
1430	ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN),
1431				10, 100, true, wx, WX_PX_RR_CFG(reg_idx));
1432
1433	if (ret == -ETIMEDOUT) {
1434		/* Just for information */
1435		wx_err(wx,
1436		       "RRCFG.EN on Rx queue %d not cleared within the polling period\n",
1437		       reg_idx);
1438	}
1439}
1440EXPORT_SYMBOL(wx_disable_rx_queue);
1441
1442static void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring)
1443{
1444	u8 reg_idx = ring->reg_idx;
1445	u32 rxdctl;
1446	int ret;
1447
1448	ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN,
1449				1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx));
1450
1451	if (ret == -ETIMEDOUT) {
1452		/* Just for information */
1453		wx_err(wx,
1454		       "RRCFG.EN on Rx queue %d not set within the polling period\n",
1455		       reg_idx);
1456	}
1457}
1458
1459static void wx_configure_srrctl(struct wx *wx,
1460				struct wx_ring *rx_ring)
1461{
1462	u16 reg_idx = rx_ring->reg_idx;
1463	u32 srrctl;
1464
1465	srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1466	srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ |
1467		    WX_PX_RR_CFG_RR_BUF_SZ |
1468		    WX_PX_RR_CFG_SPLIT_MODE);
1469	/* configure header buffer length, needed for RSC */
1470	srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT;
1471
1472	/* configure the packet buffer length */
1473	srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT;
1474
1475	wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
1476}
1477
1478static void wx_configure_tx_ring(struct wx *wx,
1479				 struct wx_ring *ring)
1480{
1481	u32 txdctl = WX_PX_TR_CFG_ENABLE;
1482	u8 reg_idx = ring->reg_idx;
1483	u64 tdba = ring->dma;
1484	int ret;
1485
1486	/* disable queue to avoid issues while updating state */
1487	wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH);
1488	WX_WRITE_FLUSH(wx);
1489
1490	wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32));
1491	wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba));
1492
1493	/* reset head and tail pointers */
1494	wr32(wx, WX_PX_TR_RP(reg_idx), 0);
1495	wr32(wx, WX_PX_TR_WP(reg_idx), 0);
1496	ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx);
1497
1498	if (ring->count < WX_MAX_TXD)
1499		txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT;
1500	txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT;
1501
1502	/* reinitialize tx_buffer_info */
1503	memset(ring->tx_buffer_info, 0,
1504	       sizeof(struct wx_tx_buffer) * ring->count);
1505
1506	/* enable queue */
1507	wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl);
1508
1509	/* poll to verify queue is enabled */
1510	ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE,
1511				1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx));
1512	if (ret == -ETIMEDOUT)
1513		wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx);
1514}
1515
1516static void wx_configure_rx_ring(struct wx *wx,
1517				 struct wx_ring *ring)
1518{
1519	u16 reg_idx = ring->reg_idx;
1520	union wx_rx_desc *rx_desc;
1521	u64 rdba = ring->dma;
1522	u32 rxdctl;
1523
1524	/* disable queue to avoid issues while updating state */
1525	rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
1526	wx_disable_rx_queue(wx, ring);
1527
1528	wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32));
1529	wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba));
1530
1531	if (ring->count == WX_MAX_RXD)
1532		rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1533	else
1534		rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT;
1535
1536	rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT;
1537	wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl);
1538
1539	/* reset head and tail pointers */
1540	wr32(wx, WX_PX_RR_RP(reg_idx), 0);
1541	wr32(wx, WX_PX_RR_WP(reg_idx), 0);
1542	ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx);
1543
1544	wx_configure_srrctl(wx, ring);
1545
1546	/* initialize rx_buffer_info */
1547	memset(ring->rx_buffer_info, 0,
1548	       sizeof(struct wx_rx_buffer) * ring->count);
1549
1550	/* initialize Rx descriptor 0 */
1551	rx_desc = WX_RX_DESC(ring, 0);
1552	rx_desc->wb.upper.length = 0;
1553
1554	/* enable receive descriptor ring */
1555	wr32m(wx, WX_PX_RR_CFG(reg_idx),
1556	      WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN);
1557
1558	wx_enable_rx_queue(wx, ring);
1559	wx_alloc_rx_buffers(ring, wx_desc_unused(ring));
1560}
1561
1562/**
1563 * wx_configure_tx - Configure Transmit Unit after Reset
1564 * @wx: pointer to private structure
1565 *
1566 * Configure the Tx unit of the MAC after a reset.
1567 **/
1568static void wx_configure_tx(struct wx *wx)
1569{
1570	u32 i;
1571
1572	/* TDM_CTL.TE must be before Tx queues are enabled */
1573	wr32m(wx, WX_TDM_CTL,
1574	      WX_TDM_CTL_TE, WX_TDM_CTL_TE);
1575
1576	/* Setup the HW Tx Head and Tail descriptor pointers */
1577	for (i = 0; i < wx->num_tx_queues; i++)
1578		wx_configure_tx_ring(wx, wx->tx_ring[i]);
1579
1580	wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10);
1581
1582	if (wx->mac.type == wx_mac_em)
1583		wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1);
1584
1585	/* enable mac transmitter */
1586	wr32m(wx, WX_MAC_TX_CFG,
1587	      WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE);
1588}
1589
1590static void wx_restore_vlan(struct wx *wx)
1591{
1592	u16 vid = 1;
1593
1594	wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), 0);
1595
1596	for_each_set_bit_from(vid, wx->active_vlans, VLAN_N_VID)
1597		wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), vid);
1598}
1599
1600static void wx_store_reta(struct wx *wx)
1601{
1602	u8 *indir_tbl = wx->rss_indir_tbl;
1603	u32 reta = 0;
1604	u32 i;
1605
1606	/* Fill out the redirection table as follows:
1607	 *  - 8 bit wide entries containing 4 bit RSS index
1608	 */
1609	for (i = 0; i < WX_MAX_RETA_ENTRIES; i++) {
1610		reta |= indir_tbl[i] << (i & 0x3) * 8;
1611		if ((i & 3) == 3) {
1612			wr32(wx, WX_RDB_RSSTBL(i >> 2), reta);
1613			reta = 0;
1614		}
1615	}
1616}
1617
1618static void wx_setup_reta(struct wx *wx)
1619{
1620	u16 rss_i = wx->ring_feature[RING_F_RSS].indices;
1621	u32 random_key_size = WX_RSS_KEY_SIZE / 4;
1622	u32 i, j;
1623
1624	/* Fill out hash function seeds */
1625	for (i = 0; i < random_key_size; i++)
1626		wr32(wx, WX_RDB_RSSRK(i), wx->rss_key[i]);
1627
1628	/* Fill out redirection table */
1629	memset(wx->rss_indir_tbl, 0, sizeof(wx->rss_indir_tbl));
1630
1631	for (i = 0, j = 0; i < WX_MAX_RETA_ENTRIES; i++, j++) {
1632		if (j == rss_i)
1633			j = 0;
1634
1635		wx->rss_indir_tbl[i] = j;
1636	}
1637
1638	wx_store_reta(wx);
1639}
1640
1641static void wx_setup_mrqc(struct wx *wx)
1642{
1643	u32 rss_field = 0;
1644
1645	/* Disable indicating checksum in descriptor, enables RSS hash */
1646	wr32m(wx, WX_PSR_CTL, WX_PSR_CTL_PCSD, WX_PSR_CTL_PCSD);
1647
1648	/* Perform hash on these packet types */
1649	rss_field = WX_RDB_RA_CTL_RSS_IPV4 |
1650		    WX_RDB_RA_CTL_RSS_IPV4_TCP |
1651		    WX_RDB_RA_CTL_RSS_IPV4_UDP |
1652		    WX_RDB_RA_CTL_RSS_IPV6 |
1653		    WX_RDB_RA_CTL_RSS_IPV6_TCP |
1654		    WX_RDB_RA_CTL_RSS_IPV6_UDP;
1655
1656	netdev_rss_key_fill(wx->rss_key, sizeof(wx->rss_key));
1657
1658	wx_setup_reta(wx);
1659
1660	if (wx->rss_enabled)
1661		rss_field |= WX_RDB_RA_CTL_RSS_EN;
1662
1663	wr32(wx, WX_RDB_RA_CTL, rss_field);
1664}
1665
1666/**
1667 * wx_configure_rx - Configure Receive Unit after Reset
1668 * @wx: pointer to private structure
1669 *
1670 * Configure the Rx unit of the MAC after a reset.
1671 **/
1672void wx_configure_rx(struct wx *wx)
1673{
1674	u32 psrtype, i;
1675	int ret;
1676
1677	wx_disable_rx(wx);
1678
1679	psrtype = WX_RDB_PL_CFG_L4HDR |
1680		  WX_RDB_PL_CFG_L3HDR |
1681		  WX_RDB_PL_CFG_L2HDR |
1682		  WX_RDB_PL_CFG_TUN_TUNHDR;
1683	wr32(wx, WX_RDB_PL_CFG(0), psrtype);
1684
1685	/* enable hw crc stripping */
1686	wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP);
1687
1688	if (wx->mac.type == wx_mac_sp) {
1689		u32 psrctl;
1690
1691		/* RSC Setup */
1692		psrctl = rd32(wx, WX_PSR_CTL);
1693		psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */
1694		psrctl |= WX_PSR_CTL_RSC_DIS;
1695		wr32(wx, WX_PSR_CTL, psrctl);
1696	}
1697
1698	wx_setup_mrqc(wx);
1699
1700	/* set_rx_buffer_len must be called before ring initialization */
1701	wx_set_rx_buffer_len(wx);
1702
1703	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1704	 * the Base and Length of the Rx Descriptor Ring
1705	 */
1706	for (i = 0; i < wx->num_rx_queues; i++)
1707		wx_configure_rx_ring(wx, wx->rx_ring[i]);
1708
1709	/* Enable all receives, disable security engine prior to block traffic */
1710	ret = wx_disable_sec_rx_path(wx);
1711	if (ret < 0)
1712		wx_err(wx, "The register status is abnormal, please check device.");
1713
1714	wx_enable_rx(wx);
1715	wx_enable_sec_rx_path(wx);
1716}
1717EXPORT_SYMBOL(wx_configure_rx);
1718
1719static void wx_configure_isb(struct wx *wx)
1720{
1721	/* set ISB Address */
1722	wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32));
1723	if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
1724		wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma));
1725}
1726
1727void wx_configure(struct wx *wx)
1728{
1729	wx_set_rxpba(wx);
1730	wx_pbthresh_setup(wx);
1731	wx_configure_port(wx);
1732
1733	wx_set_rx_mode(wx->netdev);
1734	wx_restore_vlan(wx);
1735	wx_enable_sec_rx_path(wx);
1736
1737	wx_configure_tx(wx);
1738	wx_configure_rx(wx);
1739	wx_configure_isb(wx);
1740}
1741EXPORT_SYMBOL(wx_configure);
1742
1743/**
1744 *  wx_disable_pcie_master - Disable PCI-express master access
1745 *  @wx: pointer to hardware structure
1746 *
1747 *  Disables PCI-Express master access and verifies there are no pending
1748 *  requests.
1749 **/
1750int wx_disable_pcie_master(struct wx *wx)
1751{
1752	int status = 0;
1753	u32 val;
1754
1755	/* Always set this bit to ensure any future transactions are blocked */
1756	pci_clear_master(wx->pdev);
1757
1758	/* Exit if master requests are blocked */
1759	if (!(rd32(wx, WX_PX_TRANSACTION_PENDING)))
1760		return 0;
1761
1762	/* Poll for master request bit to clear */
1763	status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT,
1764				   false, wx, WX_PX_TRANSACTION_PENDING);
1765	if (status < 0)
1766		wx_err(wx, "PCIe transaction pending bit did not clear.\n");
1767
1768	return status;
1769}
1770EXPORT_SYMBOL(wx_disable_pcie_master);
1771
1772/**
1773 *  wx_stop_adapter - Generic stop Tx/Rx units
1774 *  @wx: pointer to hardware structure
1775 *
1776 *  Sets the adapter_stopped flag within wx_hw struct. Clears interrupts,
1777 *  disables transmit and receive units. The adapter_stopped flag is used by
1778 *  the shared code and drivers to determine if the adapter is in a stopped
1779 *  state and should not touch the hardware.
1780 **/
1781int wx_stop_adapter(struct wx *wx)
1782{
1783	u16 i;
1784
1785	/* Set the adapter_stopped flag so other driver functions stop touching
1786	 * the hardware
1787	 */
1788	wx->adapter_stopped = true;
1789
1790	/* Disable the receive unit */
1791	wx_disable_rx(wx);
1792
1793	/* Set interrupt mask to stop interrupts from being generated */
1794	wx_intr_disable(wx, WX_INTR_ALL);
1795
1796	/* Clear any pending interrupts, flush previous writes */
1797	wr32(wx, WX_PX_MISC_IC, 0xffffffff);
1798	wr32(wx, WX_BME_CTL, 0x3);
1799
1800	/* Disable the transmit unit.  Each queue must be disabled. */
1801	for (i = 0; i < wx->mac.max_tx_queues; i++) {
1802		wr32m(wx, WX_PX_TR_CFG(i),
1803		      WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE,
1804		      WX_PX_TR_CFG_SWFLSH);
1805	}
1806
1807	/* Disable the receive unit by stopping each queue */
1808	for (i = 0; i < wx->mac.max_rx_queues; i++) {
1809		wr32m(wx, WX_PX_RR_CFG(i),
1810		      WX_PX_RR_CFG_RR_EN, 0);
1811	}
1812
1813	/* flush all queues disables */
1814	WX_WRITE_FLUSH(wx);
1815
1816	/* Prevent the PCI-E bus from hanging by disabling PCI-E master
1817	 * access and verify no pending requests
1818	 */
1819	return wx_disable_pcie_master(wx);
1820}
1821EXPORT_SYMBOL(wx_stop_adapter);
1822
1823void wx_reset_misc(struct wx *wx)
1824{
1825	int i;
1826
1827	/* receive packets that size > 2048 */
1828	wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE);
1829
1830	/* clear counters on read */
1831	wr32m(wx, WX_MMC_CONTROL,
1832	      WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD);
1833
1834	wr32m(wx, WX_MAC_RX_FLOW_CTRL,
1835	      WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE);
1836
1837	wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR);
1838
1839	wr32m(wx, WX_MIS_RST_ST,
1840	      WX_MIS_RST_ST_RST_INIT, 0x1E00);
1841
1842	/* errata 4: initialize mng flex tbl and wakeup flex tbl*/
1843	wr32(wx, WX_PSR_MNG_FLEX_SEL, 0);
1844	for (i = 0; i < 16; i++) {
1845		wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0);
1846		wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0);
1847		wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0);
1848	}
1849	wr32(wx, WX_PSR_LAN_FLEX_SEL, 0);
1850	for (i = 0; i < 16; i++) {
1851		wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0);
1852		wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0);
1853		wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0);
1854	}
1855
1856	/* set pause frame dst mac addr */
1857	wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001);
1858	wr32(wx, WX_RDB_PFCMACDAH, 0x0180);
1859}
1860EXPORT_SYMBOL(wx_reset_misc);
1861
1862/**
1863 *  wx_get_pcie_msix_counts - Gets MSI-X vector count
1864 *  @wx: pointer to hardware structure
1865 *  @msix_count: number of MSI interrupts that can be obtained
1866 *  @max_msix_count: number of MSI interrupts that mac need
1867 *
1868 *  Read PCIe configuration space, and get the MSI-X vector count from
1869 *  the capabilities table.
1870 **/
1871int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count)
1872{
1873	struct pci_dev *pdev = wx->pdev;
1874	struct device *dev = &pdev->dev;
1875	int pos;
1876
1877	*msix_count = 1;
1878	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
1879	if (!pos) {
1880		dev_err(dev, "Unable to find MSI-X Capabilities\n");
1881		return -EINVAL;
1882	}
1883	pci_read_config_word(pdev,
1884			     pos + PCI_MSIX_FLAGS,
1885			     msix_count);
1886	*msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK;
1887	/* MSI-X count is zero-based in HW */
1888	*msix_count += 1;
1889
1890	if (*msix_count > max_msix_count)
1891		*msix_count = max_msix_count;
1892
1893	return 0;
1894}
1895EXPORT_SYMBOL(wx_get_pcie_msix_counts);
1896
1897/**
1898 * wx_init_rss_key - Initialize wx RSS key
1899 * @wx: device handle
1900 *
1901 * Allocates and initializes the RSS key if it is not allocated.
1902 **/
1903static int wx_init_rss_key(struct wx *wx)
1904{
1905	u32 *rss_key;
1906
1907	if (!wx->rss_key) {
1908		rss_key = kzalloc(WX_RSS_KEY_SIZE, GFP_KERNEL);
1909		if (unlikely(!rss_key))
1910			return -ENOMEM;
1911
1912		netdev_rss_key_fill(rss_key, WX_RSS_KEY_SIZE);
1913		wx->rss_key = rss_key;
1914	}
1915
1916	return 0;
1917}
1918
1919int wx_sw_init(struct wx *wx)
1920{
1921	struct pci_dev *pdev = wx->pdev;
1922	u32 ssid = 0;
1923	int err = 0;
1924
1925	wx->vendor_id = pdev->vendor;
1926	wx->device_id = pdev->device;
1927	wx->revision_id = pdev->revision;
1928	wx->oem_svid = pdev->subsystem_vendor;
1929	wx->oem_ssid = pdev->subsystem_device;
1930	wx->bus.device = PCI_SLOT(pdev->devfn);
1931	wx->bus.func = PCI_FUNC(pdev->devfn);
1932
1933	if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN) {
1934		wx->subsystem_vendor_id = pdev->subsystem_vendor;
1935		wx->subsystem_device_id = pdev->subsystem_device;
1936	} else {
1937		err = wx_flash_read_dword(wx, 0xfffdc, &ssid);
1938		if (err < 0) {
1939			wx_err(wx, "read of internal subsystem device id failed\n");
1940			return err;
1941		}
1942
1943		wx->subsystem_device_id = swab16((u16)ssid);
1944	}
1945
1946	err = wx_init_rss_key(wx);
1947	if (err < 0) {
1948		wx_err(wx, "rss key allocation failed\n");
1949		return err;
1950	}
1951
1952	wx->mac_table = kcalloc(wx->mac.num_rar_entries,
1953				sizeof(struct wx_mac_addr),
1954				GFP_KERNEL);
1955	if (!wx->mac_table) {
1956		wx_err(wx, "mac_table allocation failed\n");
1957		kfree(wx->rss_key);
1958		return -ENOMEM;
1959	}
1960
1961	wx->msix_in_use = false;
1962
1963	return 0;
1964}
1965EXPORT_SYMBOL(wx_sw_init);
1966
1967/**
1968 *  wx_find_vlvf_slot - find the vlanid or the first empty slot
1969 *  @wx: pointer to hardware structure
1970 *  @vlan: VLAN id to write to VLAN filter
1971 *
1972 *  return the VLVF index where this VLAN id should be placed
1973 *
1974 **/
1975static int wx_find_vlvf_slot(struct wx *wx, u32 vlan)
1976{
1977	u32 bits = 0, first_empty_slot = 0;
1978	int regindex;
1979
1980	/* short cut the special case */
1981	if (vlan == 0)
1982		return 0;
1983
1984	/* Search for the vlan id in the VLVF entries. Save off the first empty
1985	 * slot found along the way
1986	 */
1987	for (regindex = 1; regindex < WX_PSR_VLAN_SWC_ENTRIES; regindex++) {
1988		wr32(wx, WX_PSR_VLAN_SWC_IDX, regindex);
1989		bits = rd32(wx, WX_PSR_VLAN_SWC);
1990		if (!bits && !(first_empty_slot))
1991			first_empty_slot = regindex;
1992		else if ((bits & 0x0FFF) == vlan)
1993			break;
1994	}
1995
1996	if (regindex >= WX_PSR_VLAN_SWC_ENTRIES) {
1997		if (first_empty_slot)
1998			regindex = first_empty_slot;
1999		else
2000			regindex = -ENOMEM;
2001	}
2002
2003	return regindex;
2004}
2005
2006/**
2007 *  wx_set_vlvf - Set VLAN Pool Filter
2008 *  @wx: pointer to hardware structure
2009 *  @vlan: VLAN id to write to VLAN filter
2010 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2011 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2012 *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
2013 *                 should be changed
2014 *
2015 *  Turn on/off specified bit in VLVF table.
2016 **/
2017static int wx_set_vlvf(struct wx *wx, u32 vlan, u32 vind, bool vlan_on,
2018		       bool *vfta_changed)
2019{
2020	int vlvf_index;
2021	u32 vt, bits;
2022
2023	/* If VT Mode is set
2024	 *   Either vlan_on
2025	 *     make sure the vlan is in VLVF
2026	 *     set the vind bit in the matching VLVFB
2027	 *   Or !vlan_on
2028	 *     clear the pool bit and possibly the vind
2029	 */
2030	vt = rd32(wx, WX_CFG_PORT_CTL);
2031	if (!(vt & WX_CFG_PORT_CTL_NUM_VT_MASK))
2032		return 0;
2033
2034	vlvf_index = wx_find_vlvf_slot(wx, vlan);
2035	if (vlvf_index < 0)
2036		return vlvf_index;
2037
2038	wr32(wx, WX_PSR_VLAN_SWC_IDX, vlvf_index);
2039	if (vlan_on) {
2040		/* set the pool bit */
2041		if (vind < 32) {
2042			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2043			bits |= (1 << vind);
2044			wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
2045		} else {
2046			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2047			bits |= (1 << (vind - 32));
2048			wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
2049		}
2050	} else {
2051		/* clear the pool bit */
2052		if (vind < 32) {
2053			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2054			bits &= ~(1 << vind);
2055			wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
2056			bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2057		} else {
2058			bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
2059			bits &= ~(1 << (vind - 32));
2060			wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
2061			bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_L);
2062		}
2063	}
2064
2065	if (bits) {
2066		wr32(wx, WX_PSR_VLAN_SWC, (WX_PSR_VLAN_SWC_VIEN | vlan));
2067		if (!vlan_on && vfta_changed)
2068			*vfta_changed = false;
2069	} else {
2070		wr32(wx, WX_PSR_VLAN_SWC, 0);
2071	}
2072
2073	return 0;
2074}
2075
2076/**
2077 *  wx_set_vfta - Set VLAN filter table
2078 *  @wx: pointer to hardware structure
2079 *  @vlan: VLAN id to write to VLAN filter
2080 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2081 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2082 *
2083 *  Turn on/off specified VLAN in the VLAN filter table.
2084 **/
2085static int wx_set_vfta(struct wx *wx, u32 vlan, u32 vind, bool vlan_on)
2086{
2087	u32 bitindex, vfta, targetbit;
2088	bool vfta_changed = false;
2089	int regindex, ret;
2090
2091	/* this is a 2 part operation - first the VFTA, then the
2092	 * VLVF and VLVFB if VT Mode is set
2093	 * We don't write the VFTA until we know the VLVF part succeeded.
2094	 */
2095
2096	/* Part 1
2097	 * The VFTA is a bitstring made up of 128 32-bit registers
2098	 * that enable the particular VLAN id, much like the MTA:
2099	 *    bits[11-5]: which register
2100	 *    bits[4-0]:  which bit in the register
2101	 */
2102	regindex = (vlan >> 5) & 0x7F;
2103	bitindex = vlan & 0x1F;
2104	targetbit = (1 << bitindex);
2105	/* errata 5 */
2106	vfta = wx->mac.vft_shadow[regindex];
2107	if (vlan_on) {
2108		if (!(vfta & targetbit)) {
2109			vfta |= targetbit;
2110			vfta_changed = true;
2111		}
2112	} else {
2113		if ((vfta & targetbit)) {
2114			vfta &= ~targetbit;
2115			vfta_changed = true;
2116		}
2117	}
2118	/* Part 2
2119	 * Call wx_set_vlvf to set VLVFB and VLVF
2120	 */
2121	ret = wx_set_vlvf(wx, vlan, vind, vlan_on, &vfta_changed);
2122	if (ret != 0)
2123		return ret;
2124
2125	if (vfta_changed)
2126		wr32(wx, WX_PSR_VLAN_TBL(regindex), vfta);
2127	wx->mac.vft_shadow[regindex] = vfta;
2128
2129	return 0;
2130}
2131
2132/**
2133 *  wx_clear_vfta - Clear VLAN filter table
2134 *  @wx: pointer to hardware structure
2135 *
2136 *  Clears the VLAN filer table, and the VMDq index associated with the filter
2137 **/
2138static void wx_clear_vfta(struct wx *wx)
2139{
2140	u32 offset;
2141
2142	for (offset = 0; offset < wx->mac.vft_size; offset++) {
2143		wr32(wx, WX_PSR_VLAN_TBL(offset), 0);
2144		wx->mac.vft_shadow[offset] = 0;
2145	}
2146
2147	for (offset = 0; offset < WX_PSR_VLAN_SWC_ENTRIES; offset++) {
2148		wr32(wx, WX_PSR_VLAN_SWC_IDX, offset);
2149		wr32(wx, WX_PSR_VLAN_SWC, 0);
2150		wr32(wx, WX_PSR_VLAN_SWC_VM_L, 0);
2151		wr32(wx, WX_PSR_VLAN_SWC_VM_H, 0);
2152	}
2153}
2154
2155int wx_vlan_rx_add_vid(struct net_device *netdev,
2156		       __be16 proto, u16 vid)
2157{
2158	struct wx *wx = netdev_priv(netdev);
2159
2160	/* add VID to filter table */
2161	wx_set_vfta(wx, vid, VMDQ_P(0), true);
2162	set_bit(vid, wx->active_vlans);
2163
2164	return 0;
2165}
2166EXPORT_SYMBOL(wx_vlan_rx_add_vid);
2167
2168int wx_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
2169{
2170	struct wx *wx = netdev_priv(netdev);
2171
2172	/* remove VID from filter table */
2173	if (vid)
2174		wx_set_vfta(wx, vid, VMDQ_P(0), false);
2175	clear_bit(vid, wx->active_vlans);
2176
2177	return 0;
2178}
2179EXPORT_SYMBOL(wx_vlan_rx_kill_vid);
2180
2181static void wx_enable_rx_drop(struct wx *wx, struct wx_ring *ring)
2182{
2183	u16 reg_idx = ring->reg_idx;
2184	u32 srrctl;
2185
2186	srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
2187	srrctl |= WX_PX_RR_CFG_DROP_EN;
2188
2189	wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
2190}
2191
2192static void wx_disable_rx_drop(struct wx *wx, struct wx_ring *ring)
2193{
2194	u16 reg_idx = ring->reg_idx;
2195	u32 srrctl;
2196
2197	srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
2198	srrctl &= ~WX_PX_RR_CFG_DROP_EN;
2199
2200	wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
2201}
2202
2203int wx_fc_enable(struct wx *wx, bool tx_pause, bool rx_pause)
2204{
2205	u16 pause_time = WX_DEFAULT_FCPAUSE;
2206	u32 mflcn_reg, fccfg_reg, reg;
2207	u32 fcrtl, fcrth;
2208	int i;
2209
2210	/* Low water mark of zero causes XOFF floods */
2211	if (tx_pause && wx->fc.high_water) {
2212		if (!wx->fc.low_water || wx->fc.low_water >= wx->fc.high_water) {
2213			wx_err(wx, "Invalid water mark configuration\n");
2214			return -EINVAL;
2215		}
2216	}
2217
2218	/* Disable any previous flow control settings */
2219	mflcn_reg = rd32(wx, WX_MAC_RX_FLOW_CTRL);
2220	mflcn_reg &= ~WX_MAC_RX_FLOW_CTRL_RFE;
2221
2222	fccfg_reg = rd32(wx, WX_RDB_RFCC);
2223	fccfg_reg &= ~WX_RDB_RFCC_RFCE_802_3X;
2224
2225	if (rx_pause)
2226		mflcn_reg |= WX_MAC_RX_FLOW_CTRL_RFE;
2227	if (tx_pause)
2228		fccfg_reg |= WX_RDB_RFCC_RFCE_802_3X;
2229
2230	/* Set 802.3x based flow control settings. */
2231	wr32(wx, WX_MAC_RX_FLOW_CTRL, mflcn_reg);
2232	wr32(wx, WX_RDB_RFCC, fccfg_reg);
2233
2234	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2235	if (tx_pause && wx->fc.high_water) {
2236		fcrtl = (wx->fc.low_water << 10) | WX_RDB_RFCL_XONE;
2237		wr32(wx, WX_RDB_RFCL, fcrtl);
2238		fcrth = (wx->fc.high_water << 10) | WX_RDB_RFCH_XOFFE;
2239	} else {
2240		wr32(wx, WX_RDB_RFCL, 0);
2241		/* In order to prevent Tx hangs when the internal Tx
2242		 * switch is enabled we must set the high water mark
2243		 * to the Rx packet buffer size - 24KB.  This allows
2244		 * the Tx switch to function even under heavy Rx
2245		 * workloads.
2246		 */
2247		fcrth = rd32(wx, WX_RDB_PB_SZ(0)) - 24576;
2248	}
2249
2250	wr32(wx, WX_RDB_RFCH, fcrth);
2251
2252	/* Configure pause time */
2253	reg = pause_time * 0x00010001;
2254	wr32(wx, WX_RDB_RFCV, reg);
2255
2256	/* Configure flow control refresh threshold value */
2257	wr32(wx, WX_RDB_RFCRT, pause_time / 2);
2258
2259	/*  We should set the drop enable bit if:
2260	 *  Number of Rx queues > 1 and flow control is disabled
2261	 *
2262	 *  This allows us to avoid head of line blocking for security
2263	 *  and performance reasons.
2264	 */
2265	if (wx->num_rx_queues > 1 && !tx_pause) {
2266		for (i = 0; i < wx->num_rx_queues; i++)
2267			wx_enable_rx_drop(wx, wx->rx_ring[i]);
2268	} else {
2269		for (i = 0; i < wx->num_rx_queues; i++)
2270			wx_disable_rx_drop(wx, wx->rx_ring[i]);
2271	}
2272
2273	return 0;
2274}
2275EXPORT_SYMBOL(wx_fc_enable);
2276
2277/**
2278 * wx_update_stats - Update the board statistics counters.
2279 * @wx: board private structure
2280 **/
2281void wx_update_stats(struct wx *wx)
2282{
2283	struct wx_hw_stats *hwstats = &wx->stats;
2284
2285	u64 non_eop_descs = 0, alloc_rx_buff_failed = 0;
2286	u64 hw_csum_rx_good = 0, hw_csum_rx_error = 0;
2287	u64 restart_queue = 0, tx_busy = 0;
2288	u32 i;
2289
2290	/* gather some stats to the wx struct that are per queue */
2291	for (i = 0; i < wx->num_rx_queues; i++) {
2292		struct wx_ring *rx_ring = wx->rx_ring[i];
2293
2294		non_eop_descs += rx_ring->rx_stats.non_eop_descs;
2295		alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
2296		hw_csum_rx_good += rx_ring->rx_stats.csum_good_cnt;
2297		hw_csum_rx_error += rx_ring->rx_stats.csum_err;
2298	}
2299	wx->non_eop_descs = non_eop_descs;
2300	wx->alloc_rx_buff_failed = alloc_rx_buff_failed;
2301	wx->hw_csum_rx_error = hw_csum_rx_error;
2302	wx->hw_csum_rx_good = hw_csum_rx_good;
2303
2304	for (i = 0; i < wx->num_tx_queues; i++) {
2305		struct wx_ring *tx_ring = wx->tx_ring[i];
2306
2307		restart_queue += tx_ring->tx_stats.restart_queue;
2308		tx_busy += tx_ring->tx_stats.tx_busy;
2309	}
2310	wx->restart_queue = restart_queue;
2311	wx->tx_busy = tx_busy;
2312
2313	hwstats->gprc += rd32(wx, WX_RDM_PKT_CNT);
2314	hwstats->gptc += rd32(wx, WX_TDM_PKT_CNT);
2315	hwstats->gorc += rd64(wx, WX_RDM_BYTE_CNT_LSB);
2316	hwstats->gotc += rd64(wx, WX_TDM_BYTE_CNT_LSB);
2317	hwstats->tpr += rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L);
2318	hwstats->tpt += rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L);
2319	hwstats->crcerrs += rd64(wx, WX_RX_CRC_ERROR_FRAMES_L);
2320	hwstats->rlec += rd64(wx, WX_RX_LEN_ERROR_FRAMES_L);
2321	hwstats->bprc += rd64(wx, WX_RX_BC_FRAMES_GOOD_L);
2322	hwstats->bptc += rd64(wx, WX_TX_BC_FRAMES_GOOD_L);
2323	hwstats->mprc += rd64(wx, WX_RX_MC_FRAMES_GOOD_L);
2324	hwstats->mptc += rd64(wx, WX_TX_MC_FRAMES_GOOD_L);
2325	hwstats->roc += rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD);
2326	hwstats->ruc += rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD);
2327	hwstats->lxonoffrxc += rd32(wx, WX_MAC_LXONOFFRXC);
2328	hwstats->lxontxc += rd32(wx, WX_RDB_LXONTXC);
2329	hwstats->lxofftxc += rd32(wx, WX_RDB_LXOFFTXC);
2330	hwstats->o2bgptc += rd32(wx, WX_TDM_OS2BMC_CNT);
2331	hwstats->b2ospc += rd32(wx, WX_MNG_BMC2OS_CNT);
2332	hwstats->o2bspc += rd32(wx, WX_MNG_OS2BMC_CNT);
2333	hwstats->b2ogprc += rd32(wx, WX_RDM_BMC2OS_CNT);
2334	hwstats->rdmdrop += rd32(wx, WX_RDM_DRP_PKT);
2335
2336	for (i = 0; i < wx->mac.max_rx_queues; i++)
2337		hwstats->qmprc += rd32(wx, WX_PX_MPRC(i));
2338}
2339EXPORT_SYMBOL(wx_update_stats);
2340
2341/**
2342 *  wx_clear_hw_cntrs - Generic clear hardware counters
2343 *  @wx: board private structure
2344 *
2345 *  Clears all hardware statistics counters by reading them from the hardware
2346 *  Statistics counters are clear on read.
2347 **/
2348void wx_clear_hw_cntrs(struct wx *wx)
2349{
2350	u16 i = 0;
2351
2352	for (i = 0; i < wx->mac.max_rx_queues; i++)
2353		wr32(wx, WX_PX_MPRC(i), 0);
2354
2355	rd32(wx, WX_RDM_PKT_CNT);
2356	rd32(wx, WX_TDM_PKT_CNT);
2357	rd64(wx, WX_RDM_BYTE_CNT_LSB);
2358	rd32(wx, WX_TDM_BYTE_CNT_LSB);
2359	rd32(wx, WX_RDM_DRP_PKT);
2360	rd32(wx, WX_RX_UNDERSIZE_FRAMES_GOOD);
2361	rd32(wx, WX_RX_OVERSIZE_FRAMES_GOOD);
2362	rd64(wx, WX_RX_FRAME_CNT_GOOD_BAD_L);
2363	rd64(wx, WX_TX_FRAME_CNT_GOOD_BAD_L);
2364	rd64(wx, WX_RX_MC_FRAMES_GOOD_L);
2365	rd64(wx, WX_TX_MC_FRAMES_GOOD_L);
2366	rd64(wx, WX_RX_BC_FRAMES_GOOD_L);
2367	rd64(wx, WX_TX_BC_FRAMES_GOOD_L);
2368	rd64(wx, WX_RX_CRC_ERROR_FRAMES_L);
2369	rd64(wx, WX_RX_LEN_ERROR_FRAMES_L);
2370	rd32(wx, WX_RDB_LXONTXC);
2371	rd32(wx, WX_RDB_LXOFFTXC);
2372	rd32(wx, WX_MAC_LXONOFFRXC);
2373}
2374EXPORT_SYMBOL(wx_clear_hw_cntrs);
2375
2376/**
2377 *  wx_start_hw - Prepare hardware for Tx/Rx
2378 *  @wx: pointer to hardware structure
2379 *
2380 *  Starts the hardware using the generic start_hw function
2381 *  and the generation start_hw function.
2382 *  Then performs revision-specific operations, if any.
2383 **/
2384void wx_start_hw(struct wx *wx)
2385{
2386	int i;
2387
2388	/* Clear the VLAN filter table */
2389	wx_clear_vfta(wx);
2390	WX_WRITE_FLUSH(wx);
2391	/* Clear the rate limiters */
2392	for (i = 0; i < wx->mac.max_tx_queues; i++) {
2393		wr32(wx, WX_TDM_RP_IDX, i);
2394		wr32(wx, WX_TDM_RP_RATE, 0);
2395	}
2396}
2397EXPORT_SYMBOL(wx_start_hw);
2398
2399MODULE_LICENSE("GPL");
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */
  3
  4#include <linux/etherdevice.h>
 
  5#include <linux/if_ether.h>
 
  6#include <linux/iopoll.h>
  7#include <linux/pci.h>
  8
  9#include "wx_type.h"
 
 10#include "wx_hw.h"
 11
 12static void wx_intr_disable(struct wx_hw *wxhw, u64 qmask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 13{
 14	u32 mask;
 15
 16	mask = (qmask & 0xFFFFFFFF);
 17	if (mask)
 18		wr32(wxhw, WX_PX_IMS(0), mask);
 
 
 
 
 
 
 
 
 
 
 
 19
 20	if (wxhw->mac.type == wx_mac_sp) {
 
 
 
 21		mask = (qmask >> 32);
 22		if (mask)
 23			wr32(wxhw, WX_PX_IMS(1), mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24	}
 25}
 
 26
 27/* cmd_addr is used for some special command:
 28 * 1. to be sector address, when implemented erase sector command
 29 * 2. to be flash address when implemented read, write flash address
 30 */
 31static int wx_fmgr_cmd_op(struct wx_hw *wxhw, u32 cmd, u32 cmd_addr)
 32{
 33	u32 cmd_val = 0, val = 0;
 34
 35	cmd_val = WX_SPI_CMD_CMD(cmd) |
 36		  WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) |
 37		  cmd_addr;
 38	wr32(wxhw, WX_SPI_CMD, cmd_val);
 39
 40	return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000,
 41				 false, wxhw, WX_SPI_STATUS);
 42}
 43
 44static int wx_flash_read_dword(struct wx_hw *wxhw, u32 addr, u32 *data)
 45{
 46	int ret = 0;
 47
 48	ret = wx_fmgr_cmd_op(wxhw, WX_SPI_CMD_READ_DWORD, addr);
 49	if (ret < 0)
 50		return ret;
 51
 52	*data = rd32(wxhw, WX_SPI_DATA);
 53
 54	return ret;
 55}
 56
 57int wx_check_flash_load(struct wx_hw *hw, u32 check_bit)
 58{
 59	u32 reg = 0;
 60	int err = 0;
 61
 62	/* if there's flash existing */
 63	if (!(rd32(hw, WX_SPI_STATUS) &
 64	      WX_SPI_STATUS_FLASH_BYPASS)) {
 65		/* wait hw load flash done */
 66		err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000,
 67					false, hw, WX_SPI_ILDR_STATUS);
 68		if (err < 0)
 69			wx_err(hw, "Check flash load timeout.\n");
 70	}
 71
 72	return err;
 73}
 74EXPORT_SYMBOL(wx_check_flash_load);
 75
 76void wx_control_hw(struct wx_hw *wxhw, bool drv)
 77{
 78	if (drv) {
 79		/* Let firmware know the driver has taken over */
 80		wr32m(wxhw, WX_CFG_PORT_CTL,
 81		      WX_CFG_PORT_CTL_DRV_LOAD, WX_CFG_PORT_CTL_DRV_LOAD);
 82	} else {
 83		/* Let firmware take over control of hw */
 84		wr32m(wxhw, WX_CFG_PORT_CTL,
 85		      WX_CFG_PORT_CTL_DRV_LOAD, 0);
 86	}
 87}
 88EXPORT_SYMBOL(wx_control_hw);
 89
 90/**
 91 * wx_mng_present - returns 0 when management capability is present
 92 * @wxhw: pointer to hardware structure
 93 */
 94int wx_mng_present(struct wx_hw *wxhw)
 95{
 96	u32 fwsm;
 97
 98	fwsm = rd32(wxhw, WX_MIS_ST);
 99	if (fwsm & WX_MIS_ST_MNG_INIT_DN)
100		return 0;
101	else
102		return -EACCES;
103}
104EXPORT_SYMBOL(wx_mng_present);
105
106/* Software lock to be held while software semaphore is being accessed. */
107static DEFINE_MUTEX(wx_sw_sync_lock);
108
109/**
110 *  wx_release_sw_sync - Release SW semaphore
111 *  @wxhw: pointer to hardware structure
112 *  @mask: Mask to specify which semaphore to release
113 *
114 *  Releases the SW semaphore for the specified
115 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
116 **/
117static void wx_release_sw_sync(struct wx_hw *wxhw, u32 mask)
118{
119	mutex_lock(&wx_sw_sync_lock);
120	wr32m(wxhw, WX_MNG_SWFW_SYNC, mask, 0);
121	mutex_unlock(&wx_sw_sync_lock);
122}
123
124/**
125 *  wx_acquire_sw_sync - Acquire SW semaphore
126 *  @wxhw: pointer to hardware structure
127 *  @mask: Mask to specify which semaphore to acquire
128 *
129 *  Acquires the SW semaphore for the specified
130 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
131 **/
132static int wx_acquire_sw_sync(struct wx_hw *wxhw, u32 mask)
133{
134	u32 sem = 0;
135	int ret = 0;
136
137	mutex_lock(&wx_sw_sync_lock);
138	ret = read_poll_timeout(rd32, sem, !(sem & mask),
139				5000, 2000000, false, wxhw, WX_MNG_SWFW_SYNC);
140	if (!ret) {
141		sem |= mask;
142		wr32(wxhw, WX_MNG_SWFW_SYNC, sem);
143	} else {
144		wx_err(wxhw, "SW Semaphore not granted: 0x%x.\n", sem);
145	}
146	mutex_unlock(&wx_sw_sync_lock);
147
148	return ret;
149}
150
151/**
152 *  wx_host_interface_command - Issue command to manageability block
153 *  @wxhw: pointer to the HW structure
154 *  @buffer: contains the command to write and where the return status will
155 *   be placed
156 *  @length: length of buffer, must be multiple of 4 bytes
157 *  @timeout: time in ms to wait for command completion
158 *  @return_data: read and return data from the buffer (true) or not (false)
159 *   Needed because FW structures are big endian and decoding of
160 *   these fields can be 8 bit or 16 bit based on command. Decoding
161 *   is not easily understood without making a table of commands.
162 *   So we will leave this up to the caller to read back the data
163 *   in these cases.
164 **/
165int wx_host_interface_command(struct wx_hw *wxhw, u32 *buffer,
166			      u32 length, u32 timeout, bool return_data)
167{
168	u32 hdr_size = sizeof(struct wx_hic_hdr);
169	u32 hicr, i, bi, buf[64] = {};
170	int status = 0;
171	u32 dword_len;
172	u16 buf_len;
173
174	if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) {
175		wx_err(wxhw, "Buffer length failure buffersize=%d.\n", length);
176		return -EINVAL;
177	}
178
179	status = wx_acquire_sw_sync(wxhw, WX_MNG_SWFW_SYNC_SW_MB);
180	if (status != 0)
181		return status;
182
183	/* Calculate length in DWORDs. We must be DWORD aligned */
184	if ((length % (sizeof(u32))) != 0) {
185		wx_err(wxhw, "Buffer length failure, not aligned to dword");
186		status = -EINVAL;
187		goto rel_out;
188	}
189
190	dword_len = length >> 2;
191
192	/* The device driver writes the relevant command block
193	 * into the ram area.
194	 */
195	for (i = 0; i < dword_len; i++) {
196		wr32a(wxhw, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i]));
197		/* write flush */
198		buf[i] = rd32a(wxhw, WX_MNG_MBOX, i);
199	}
200	/* Setting this bit tells the ARC that a new command is pending. */
201	wr32m(wxhw, WX_MNG_MBOX_CTL,
202	      WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY);
203
204	status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000,
205				   timeout * 1000, false, wxhw, WX_MNG_MBOX_CTL);
206
207	/* Check command completion */
208	if (status) {
209		wx_dbg(wxhw, "Command has failed with no status valid.\n");
210
211		buf[0] = rd32(wxhw, WX_MNG_MBOX);
212		if ((buffer[0] & 0xff) != (~buf[0] >> 24)) {
213			status = -EINVAL;
214			goto rel_out;
215		}
216		if ((buf[0] & 0xff0000) >> 16 == 0x80) {
217			wx_dbg(wxhw, "It's unknown cmd.\n");
218			status = -EINVAL;
219			goto rel_out;
220		}
221
222		wx_dbg(wxhw, "write value:\n");
223		for (i = 0; i < dword_len; i++)
224			wx_dbg(wxhw, "%x ", buffer[i]);
225		wx_dbg(wxhw, "read value:\n");
226		for (i = 0; i < dword_len; i++)
227			wx_dbg(wxhw, "%x ", buf[i]);
228	}
229
230	if (!return_data)
231		goto rel_out;
232
233	/* Calculate length in DWORDs */
234	dword_len = hdr_size >> 2;
235
236	/* first pull in the header so we know the buffer length */
237	for (bi = 0; bi < dword_len; bi++) {
238		buffer[bi] = rd32a(wxhw, WX_MNG_MBOX, bi);
239		le32_to_cpus(&buffer[bi]);
240	}
241
242	/* If there is any thing in data position pull it in */
243	buf_len = ((struct wx_hic_hdr *)buffer)->buf_len;
244	if (buf_len == 0)
245		goto rel_out;
246
247	if (length < buf_len + hdr_size) {
248		wx_err(wxhw, "Buffer not large enough for reply message.\n");
249		status = -EFAULT;
250		goto rel_out;
251	}
252
253	/* Calculate length in DWORDs, add 3 for odd lengths */
254	dword_len = (buf_len + 3) >> 2;
255
256	/* Pull in the rest of the buffer (bi is where we left off) */
257	for (; bi <= dword_len; bi++) {
258		buffer[bi] = rd32a(wxhw, WX_MNG_MBOX, bi);
259		le32_to_cpus(&buffer[bi]);
260	}
261
262rel_out:
263	wx_release_sw_sync(wxhw, WX_MNG_SWFW_SYNC_SW_MB);
264	return status;
265}
266EXPORT_SYMBOL(wx_host_interface_command);
267
268/**
269 *  wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd
270 *  assuming that the semaphore is already obtained.
271 *  @wxhw: pointer to hardware structure
272 *  @offset: offset of  word in the EEPROM to read
273 *  @data: word read from the EEPROM
274 *
275 *  Reads a 16 bit word from the EEPROM using the hostif.
276 **/
277static int wx_read_ee_hostif_data(struct wx_hw *wxhw, u16 offset, u16 *data)
278{
279	struct wx_hic_read_shadow_ram buffer;
280	int status;
281
282	buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
283	buffer.hdr.req.buf_lenh = 0;
284	buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
285	buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
286
287	/* convert offset from words to bytes */
288	buffer.address = (__force u32)cpu_to_be32(offset * 2);
289	/* one word */
290	buffer.length = (__force u16)cpu_to_be16(sizeof(u16));
291
292	status = wx_host_interface_command(wxhw, (u32 *)&buffer, sizeof(buffer),
293					   WX_HI_COMMAND_TIMEOUT, false);
294
295	if (status != 0)
296		return status;
297
298	*data = (u16)rd32a(wxhw, WX_MNG_MBOX, FW_NVM_DATA_OFFSET);
299
300	return status;
301}
302
303/**
304 *  wx_read_ee_hostif - Read EEPROM word using a host interface cmd
305 *  @wxhw: pointer to hardware structure
306 *  @offset: offset of  word in the EEPROM to read
307 *  @data: word read from the EEPROM
308 *
309 *  Reads a 16 bit word from the EEPROM using the hostif.
310 **/
311int wx_read_ee_hostif(struct wx_hw *wxhw, u16 offset, u16 *data)
312{
313	int status = 0;
314
315	status = wx_acquire_sw_sync(wxhw, WX_MNG_SWFW_SYNC_SW_FLASH);
316	if (status == 0) {
317		status = wx_read_ee_hostif_data(wxhw, offset, data);
318		wx_release_sw_sync(wxhw, WX_MNG_SWFW_SYNC_SW_FLASH);
319	}
320
321	return status;
322}
323EXPORT_SYMBOL(wx_read_ee_hostif);
324
325/**
326 *  wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif
327 *  @wxhw: pointer to hardware structure
328 *  @offset: offset of  word in the EEPROM to read
329 *  @words: number of words
330 *  @data: word(s) read from the EEPROM
331 *
332 *  Reads a 16 bit word(s) from the EEPROM using the hostif.
333 **/
334int wx_read_ee_hostif_buffer(struct wx_hw *wxhw,
335			     u16 offset, u16 words, u16 *data)
336{
337	struct wx_hic_read_shadow_ram buffer;
338	u32 current_word = 0;
339	u16 words_to_read;
340	u32 value = 0;
341	int status;
342	u32 i;
343
344	/* Take semaphore for the entire operation. */
345	status = wx_acquire_sw_sync(wxhw, WX_MNG_SWFW_SYNC_SW_FLASH);
346	if (status != 0)
347		return status;
348
349	while (words) {
350		if (words > FW_MAX_READ_BUFFER_SIZE / 2)
351			words_to_read = FW_MAX_READ_BUFFER_SIZE / 2;
352		else
353			words_to_read = words;
354
355		buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
356		buffer.hdr.req.buf_lenh = 0;
357		buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
358		buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
359
360		/* convert offset from words to bytes */
361		buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2);
362		buffer.length = (__force u16)cpu_to_be16(words_to_read * 2);
363
364		status = wx_host_interface_command(wxhw, (u32 *)&buffer,
365						   sizeof(buffer),
366						   WX_HI_COMMAND_TIMEOUT,
367						   false);
368
369		if (status != 0) {
370			wx_err(wxhw, "Host interface command failed\n");
371			goto out;
372		}
373
374		for (i = 0; i < words_to_read; i++) {
375			u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i;
376
377			value = rd32(wxhw, reg);
378			data[current_word] = (u16)(value & 0xffff);
379			current_word++;
380			i++;
381			if (i < words_to_read) {
382				value >>= 16;
383				data[current_word] = (u16)(value & 0xffff);
384				current_word++;
385			}
386		}
387		words -= words_to_read;
388	}
389
390out:
391	wx_release_sw_sync(wxhw, WX_MNG_SWFW_SYNC_SW_FLASH);
392	return status;
393}
394EXPORT_SYMBOL(wx_read_ee_hostif_buffer);
395
396/**
397 *  wx_calculate_checksum - Calculate checksum for buffer
398 *  @buffer: pointer to EEPROM
399 *  @length: size of EEPROM to calculate a checksum for
400 *  Calculates the checksum for some buffer on a specified length.  The
401 *  checksum calculated is returned.
402 **/
403static u8 wx_calculate_checksum(u8 *buffer, u32 length)
404{
405	u8 sum = 0;
406	u32 i;
407
408	if (!buffer)
409		return 0;
410
411	for (i = 0; i < length; i++)
412		sum += buffer[i];
413
414	return (u8)(0 - sum);
415}
416
417/**
418 *  wx_reset_hostif - send reset cmd to fw
419 *  @wxhw: pointer to hardware structure
420 *
421 *  Sends reset cmd to firmware through the manageability
422 *  block.
423 **/
424int wx_reset_hostif(struct wx_hw *wxhw)
425{
426	struct wx_hic_reset reset_cmd;
427	int ret_val = 0;
428	int i;
429
430	reset_cmd.hdr.cmd = FW_RESET_CMD;
431	reset_cmd.hdr.buf_len = FW_RESET_LEN;
432	reset_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
433	reset_cmd.lan_id = wxhw->bus.func;
434	reset_cmd.reset_type = (u16)wxhw->reset_type;
435	reset_cmd.hdr.checksum = 0;
436	reset_cmd.hdr.checksum = wx_calculate_checksum((u8 *)&reset_cmd,
437						       (FW_CEM_HDR_LEN +
438							reset_cmd.hdr.buf_len));
439
440	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
441		ret_val = wx_host_interface_command(wxhw, (u32 *)&reset_cmd,
442						    sizeof(reset_cmd),
443						    WX_HI_COMMAND_TIMEOUT,
444						    true);
445		if (ret_val != 0)
446			continue;
447
448		if (reset_cmd.hdr.cmd_or_resp.ret_status ==
449		    FW_CEM_RESP_STATUS_SUCCESS)
450			ret_val = 0;
451		else
452			ret_val = -EFAULT;
453
454		break;
455	}
456
457	return ret_val;
458}
459EXPORT_SYMBOL(wx_reset_hostif);
460
461/**
462 *  wx_init_eeprom_params - Initialize EEPROM params
463 *  @wxhw: pointer to hardware structure
464 *
465 *  Initializes the EEPROM parameters wx_eeprom_info within the
466 *  wx_hw struct in order to set up EEPROM access.
467 **/
468void wx_init_eeprom_params(struct wx_hw *wxhw)
469{
470	struct wx_eeprom_info *eeprom = &wxhw->eeprom;
471	u16 eeprom_size;
472	u16 data = 0x80;
473
474	if (eeprom->type == wx_eeprom_uninitialized) {
475		eeprom->semaphore_delay = 10;
476		eeprom->type = wx_eeprom_none;
477
478		if (!(rd32(wxhw, WX_SPI_STATUS) &
479		      WX_SPI_STATUS_FLASH_BYPASS)) {
480			eeprom->type = wx_flash;
481
482			eeprom_size = 4096;
483			eeprom->word_size = eeprom_size >> 1;
484
485			wx_dbg(wxhw, "Eeprom params: type = %d, size = %d\n",
486			       eeprom->type, eeprom->word_size);
487		}
488	}
489
490	if (wxhw->mac.type == wx_mac_sp) {
491		if (wx_read_ee_hostif(wxhw, WX_SW_REGION_PTR, &data)) {
492			wx_err(wxhw, "NVM Read Error\n");
493			return;
494		}
495		data = data >> 1;
496	}
497
498	eeprom->sw_region_offset = data;
499}
500EXPORT_SYMBOL(wx_init_eeprom_params);
501
502/**
503 *  wx_get_mac_addr - Generic get MAC address
504 *  @wxhw: pointer to hardware structure
505 *  @mac_addr: Adapter MAC address
506 *
507 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
508 *  A reset of the adapter must be performed prior to calling this function
509 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
510 **/
511void wx_get_mac_addr(struct wx_hw *wxhw, u8 *mac_addr)
512{
513	u32 rar_high;
514	u32 rar_low;
515	u16 i;
516
517	wr32(wxhw, WX_PSR_MAC_SWC_IDX, 0);
518	rar_high = rd32(wxhw, WX_PSR_MAC_SWC_AD_H);
519	rar_low = rd32(wxhw, WX_PSR_MAC_SWC_AD_L);
520
521	for (i = 0; i < 2; i++)
522		mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
523
524	for (i = 0; i < 4; i++)
525		mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
526}
527EXPORT_SYMBOL(wx_get_mac_addr);
528
529/**
530 *  wx_set_rar - Set Rx address register
531 *  @wxhw: pointer to hardware structure
532 *  @index: Receive address register to write
533 *  @addr: Address to put into receive address register
534 *  @pools: VMDq "set" or "pool" index
535 *  @enable_addr: set flag that address is active
536 *
537 *  Puts an ethernet address into a receive address register.
538 **/
539int wx_set_rar(struct wx_hw *wxhw, u32 index, u8 *addr, u64 pools,
540	       u32 enable_addr)
541{
542	u32 rar_entries = wxhw->mac.num_rar_entries;
543	u32 rar_low, rar_high;
544
545	/* Make sure we are using a valid rar index range */
546	if (index >= rar_entries) {
547		wx_err(wxhw, "RAR index %d is out of range.\n", index);
548		return -EINVAL;
549	}
550
551	/* select the MAC address */
552	wr32(wxhw, WX_PSR_MAC_SWC_IDX, index);
553
554	/* setup VMDq pool mapping */
555	wr32(wxhw, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF);
556	if (wxhw->mac.type == wx_mac_sp)
557		wr32(wxhw, WX_PSR_MAC_SWC_VM_H, pools >> 32);
558
559	/* HW expects these in little endian so we reverse the byte
560	 * order from network order (big endian) to little endian
561	 *
562	 * Some parts put the VMDq setting in the extra RAH bits,
563	 * so save everything except the lower 16 bits that hold part
564	 * of the address and the address valid bit.
565	 */
566	rar_low = ((u32)addr[5] |
567		  ((u32)addr[4] << 8) |
568		  ((u32)addr[3] << 16) |
569		  ((u32)addr[2] << 24));
570	rar_high = ((u32)addr[1] |
571		   ((u32)addr[0] << 8));
572	if (enable_addr != 0)
573		rar_high |= WX_PSR_MAC_SWC_AD_H_AV;
574
575	wr32(wxhw, WX_PSR_MAC_SWC_AD_L, rar_low);
576	wr32m(wxhw, WX_PSR_MAC_SWC_AD_H,
577	      (WX_PSR_MAC_SWC_AD_H_AD(~0) |
578	       WX_PSR_MAC_SWC_AD_H_ADTYPE(~0) |
579	       WX_PSR_MAC_SWC_AD_H_AV),
580	      rar_high);
581
582	return 0;
583}
584EXPORT_SYMBOL(wx_set_rar);
585
586/**
587 *  wx_clear_rar - Remove Rx address register
588 *  @wxhw: pointer to hardware structure
589 *  @index: Receive address register to write
590 *
591 *  Clears an ethernet address from a receive address register.
592 **/
593int wx_clear_rar(struct wx_hw *wxhw, u32 index)
594{
595	u32 rar_entries = wxhw->mac.num_rar_entries;
596
597	/* Make sure we are using a valid rar index range */
598	if (index >= rar_entries) {
599		wx_err(wxhw, "RAR index %d is out of range.\n", index);
600		return -EINVAL;
601	}
602
603	/* Some parts put the VMDq setting in the extra RAH bits,
604	 * so save everything except the lower 16 bits that hold part
605	 * of the address and the address valid bit.
606	 */
607	wr32(wxhw, WX_PSR_MAC_SWC_IDX, index);
608
609	wr32(wxhw, WX_PSR_MAC_SWC_VM_L, 0);
610	wr32(wxhw, WX_PSR_MAC_SWC_VM_H, 0);
611
612	wr32(wxhw, WX_PSR_MAC_SWC_AD_L, 0);
613	wr32m(wxhw, WX_PSR_MAC_SWC_AD_H,
614	      (WX_PSR_MAC_SWC_AD_H_AD(~0) |
615	       WX_PSR_MAC_SWC_AD_H_ADTYPE(~0) |
616	       WX_PSR_MAC_SWC_AD_H_AV),
617	      0);
618
619	return 0;
620}
621EXPORT_SYMBOL(wx_clear_rar);
622
623/**
624 *  wx_clear_vmdq - Disassociate a VMDq pool index from a rx address
625 *  @wxhw: pointer to hardware struct
626 *  @rar: receive address register index to disassociate
627 *  @vmdq: VMDq pool index to remove from the rar
628 **/
629static int wx_clear_vmdq(struct wx_hw *wxhw, u32 rar, u32 __maybe_unused vmdq)
630{
631	u32 rar_entries = wxhw->mac.num_rar_entries;
632	u32 mpsar_lo, mpsar_hi;
633
634	/* Make sure we are using a valid rar index range */
635	if (rar >= rar_entries) {
636		wx_err(wxhw, "RAR index %d is out of range.\n", rar);
637		return -EINVAL;
638	}
639
640	wr32(wxhw, WX_PSR_MAC_SWC_IDX, rar);
641	mpsar_lo = rd32(wxhw, WX_PSR_MAC_SWC_VM_L);
642	mpsar_hi = rd32(wxhw, WX_PSR_MAC_SWC_VM_H);
643
644	if (!mpsar_lo && !mpsar_hi)
645		return 0;
646
647	/* was that the last pool using this rar? */
648	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
649		wx_clear_rar(wxhw, rar);
650
651	return 0;
652}
653
654/**
655 *  wx_init_uta_tables - Initialize the Unicast Table Array
656 *  @wxhw: pointer to hardware structure
657 **/
658static void wx_init_uta_tables(struct wx_hw *wxhw)
659{
660	int i;
661
662	wx_dbg(wxhw, " Clearing UTA\n");
663
664	for (i = 0; i < 128; i++)
665		wr32(wxhw, WX_PSR_UC_TBL(i), 0);
666}
667
668/**
669 *  wx_init_rx_addrs - Initializes receive address filters.
670 *  @wxhw: pointer to hardware structure
671 *
672 *  Places the MAC address in receive address register 0 and clears the rest
673 *  of the receive address registers. Clears the multicast table. Assumes
674 *  the receiver is in reset when the routine is called.
675 **/
676void wx_init_rx_addrs(struct wx_hw *wxhw)
677{
678	u32 rar_entries = wxhw->mac.num_rar_entries;
679	u32 psrctl;
680	int i;
681
682	/* If the current mac address is valid, assume it is a software override
683	 * to the permanent address.
684	 * Otherwise, use the permanent address from the eeprom.
685	 */
686	if (!is_valid_ether_addr(wxhw->mac.addr)) {
687		/* Get the MAC address from the RAR0 for later reference */
688		wx_get_mac_addr(wxhw, wxhw->mac.addr);
689		wx_dbg(wxhw, "Keeping Current RAR0 Addr = %pM\n", wxhw->mac.addr);
690	} else {
691		/* Setup the receive address. */
692		wx_dbg(wxhw, "Overriding MAC Address in RAR[0]\n");
693		wx_dbg(wxhw, "New MAC Addr = %pM\n", wxhw->mac.addr);
694
695		wx_set_rar(wxhw, 0, wxhw->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV);
696
697		if (wxhw->mac.type == wx_mac_sp) {
698			/* clear VMDq pool/queue selection for RAR 0 */
699			wx_clear_vmdq(wxhw, 0, WX_CLEAR_VMDQ_ALL);
700		}
701	}
702
703	/* Zero out the other receive addresses. */
704	wx_dbg(wxhw, "Clearing RAR[1-%d]\n", rar_entries - 1);
705	for (i = 1; i < rar_entries; i++) {
706		wr32(wxhw, WX_PSR_MAC_SWC_IDX, i);
707		wr32(wxhw, WX_PSR_MAC_SWC_AD_L, 0);
708		wr32(wxhw, WX_PSR_MAC_SWC_AD_H, 0);
709	}
710
711	/* Clear the MTA */
712	wxhw->addr_ctrl.mta_in_use = 0;
713	psrctl = rd32(wxhw, WX_PSR_CTL);
714	psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
715	psrctl |= wxhw->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT;
716	wr32(wxhw, WX_PSR_CTL, psrctl);
717	wx_dbg(wxhw, " Clearing MTA\n");
718	for (i = 0; i < wxhw->mac.mcft_size; i++)
719		wr32(wxhw, WX_PSR_MC_TBL(i), 0);
720
721	wx_init_uta_tables(wxhw);
722}
723EXPORT_SYMBOL(wx_init_rx_addrs);
724
725void wx_disable_rx(struct wx_hw *wxhw)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
726{
727	u32 pfdtxgswc;
728	u32 rxctrl;
729
730	rxctrl = rd32(wxhw, WX_RDB_PB_CTL);
731	if (rxctrl & WX_RDB_PB_CTL_RXEN) {
732		pfdtxgswc = rd32(wxhw, WX_PSR_CTL);
733		if (pfdtxgswc & WX_PSR_CTL_SW_EN) {
734			pfdtxgswc &= ~WX_PSR_CTL_SW_EN;
735			wr32(wxhw, WX_PSR_CTL, pfdtxgswc);
736			wxhw->mac.set_lben = true;
737		} else {
738			wxhw->mac.set_lben = false;
739		}
740		rxctrl &= ~WX_RDB_PB_CTL_RXEN;
741		wr32(wxhw, WX_RDB_PB_CTL, rxctrl);
742
743		if (!(((wxhw->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) ||
744		      ((wxhw->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) {
745			/* disable mac receiver */
746			wr32m(wxhw, WX_MAC_RX_CFG,
747			      WX_MAC_RX_CFG_RE, 0);
748		}
749	}
750}
751EXPORT_SYMBOL(wx_disable_rx);
752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
753/**
754 *  wx_disable_pcie_master - Disable PCI-express master access
755 *  @wxhw: pointer to hardware structure
756 *
757 *  Disables PCI-Express master access and verifies there are no pending
758 *  requests.
759 **/
760int wx_disable_pcie_master(struct wx_hw *wxhw)
761{
762	int status = 0;
763	u32 val;
764
765	/* Always set this bit to ensure any future transactions are blocked */
766	pci_clear_master(wxhw->pdev);
767
768	/* Exit if master requests are blocked */
769	if (!(rd32(wxhw, WX_PX_TRANSACTION_PENDING)))
770		return 0;
771
772	/* Poll for master request bit to clear */
773	status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT,
774				   false, wxhw, WX_PX_TRANSACTION_PENDING);
775	if (status < 0)
776		wx_err(wxhw, "PCIe transaction pending bit did not clear.\n");
777
778	return status;
779}
780EXPORT_SYMBOL(wx_disable_pcie_master);
781
782/**
783 *  wx_stop_adapter - Generic stop Tx/Rx units
784 *  @wxhw: pointer to hardware structure
785 *
786 *  Sets the adapter_stopped flag within wx_hw struct. Clears interrupts,
787 *  disables transmit and receive units. The adapter_stopped flag is used by
788 *  the shared code and drivers to determine if the adapter is in a stopped
789 *  state and should not touch the hardware.
790 **/
791int wx_stop_adapter(struct wx_hw *wxhw)
792{
793	u16 i;
794
795	/* Set the adapter_stopped flag so other driver functions stop touching
796	 * the hardware
797	 */
798	wxhw->adapter_stopped = true;
799
800	/* Disable the receive unit */
801	wx_disable_rx(wxhw);
802
803	/* Set interrupt mask to stop interrupts from being generated */
804	wx_intr_disable(wxhw, WX_INTR_ALL);
805
806	/* Clear any pending interrupts, flush previous writes */
807	wr32(wxhw, WX_PX_MISC_IC, 0xffffffff);
808	wr32(wxhw, WX_BME_CTL, 0x3);
809
810	/* Disable the transmit unit.  Each queue must be disabled. */
811	for (i = 0; i < wxhw->mac.max_tx_queues; i++) {
812		wr32m(wxhw, WX_PX_TR_CFG(i),
813		      WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE,
814		      WX_PX_TR_CFG_SWFLSH);
815	}
816
817	/* Disable the receive unit by stopping each queue */
818	for (i = 0; i < wxhw->mac.max_rx_queues; i++) {
819		wr32m(wxhw, WX_PX_RR_CFG(i),
820		      WX_PX_RR_CFG_RR_EN, 0);
821	}
822
823	/* flush all queues disables */
824	WX_WRITE_FLUSH(wxhw);
825
826	/* Prevent the PCI-E bus from hanging by disabling PCI-E master
827	 * access and verify no pending requests
828	 */
829	return wx_disable_pcie_master(wxhw);
830}
831EXPORT_SYMBOL(wx_stop_adapter);
832
833void wx_reset_misc(struct wx_hw *wxhw)
834{
835	int i;
836
837	/* receive packets that size > 2048 */
838	wr32m(wxhw, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE);
839
840	/* clear counters on read */
841	wr32m(wxhw, WX_MMC_CONTROL,
842	      WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD);
843
844	wr32m(wxhw, WX_MAC_RX_FLOW_CTRL,
845	      WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE);
846
847	wr32(wxhw, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR);
848
849	wr32m(wxhw, WX_MIS_RST_ST,
850	      WX_MIS_RST_ST_RST_INIT, 0x1E00);
851
852	/* errata 4: initialize mng flex tbl and wakeup flex tbl*/
853	wr32(wxhw, WX_PSR_MNG_FLEX_SEL, 0);
854	for (i = 0; i < 16; i++) {
855		wr32(wxhw, WX_PSR_MNG_FLEX_DW_L(i), 0);
856		wr32(wxhw, WX_PSR_MNG_FLEX_DW_H(i), 0);
857		wr32(wxhw, WX_PSR_MNG_FLEX_MSK(i), 0);
858	}
859	wr32(wxhw, WX_PSR_LAN_FLEX_SEL, 0);
860	for (i = 0; i < 16; i++) {
861		wr32(wxhw, WX_PSR_LAN_FLEX_DW_L(i), 0);
862		wr32(wxhw, WX_PSR_LAN_FLEX_DW_H(i), 0);
863		wr32(wxhw, WX_PSR_LAN_FLEX_MSK(i), 0);
864	}
865
866	/* set pause frame dst mac addr */
867	wr32(wxhw, WX_RDB_PFCMACDAL, 0xC2000001);
868	wr32(wxhw, WX_RDB_PFCMACDAH, 0x0180);
869}
870EXPORT_SYMBOL(wx_reset_misc);
871
872/**
873 *  wx_get_pcie_msix_counts - Gets MSI-X vector count
874 *  @wxhw: pointer to hardware structure
875 *  @msix_count: number of MSI interrupts that can be obtained
876 *  @max_msix_count: number of MSI interrupts that mac need
877 *
878 *  Read PCIe configuration space, and get the MSI-X vector count from
879 *  the capabilities table.
880 **/
881int wx_get_pcie_msix_counts(struct wx_hw *wxhw, u16 *msix_count, u16 max_msix_count)
882{
883	struct pci_dev *pdev = wxhw->pdev;
884	struct device *dev = &pdev->dev;
885	int pos;
886
887	*msix_count = 1;
888	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
889	if (!pos) {
890		dev_err(dev, "Unable to find MSI-X Capabilities\n");
891		return -EINVAL;
892	}
893	pci_read_config_word(pdev,
894			     pos + PCI_MSIX_FLAGS,
895			     msix_count);
896	*msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK;
897	/* MSI-X count is zero-based in HW */
898	*msix_count += 1;
899
900	if (*msix_count > max_msix_count)
901		*msix_count = max_msix_count;
902
903	return 0;
904}
905EXPORT_SYMBOL(wx_get_pcie_msix_counts);
906
907int wx_sw_init(struct wx_hw *wxhw)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
908{
909	struct pci_dev *pdev = wxhw->pdev;
910	u32 ssid = 0;
911	int err = 0;
912
913	wxhw->vendor_id = pdev->vendor;
914	wxhw->device_id = pdev->device;
915	wxhw->revision_id = pdev->revision;
916	wxhw->oem_svid = pdev->subsystem_vendor;
917	wxhw->oem_ssid = pdev->subsystem_device;
918	wxhw->bus.device = PCI_SLOT(pdev->devfn);
919	wxhw->bus.func = PCI_FUNC(pdev->devfn);
920
921	if (wxhw->oem_svid == PCI_VENDOR_ID_WANGXUN) {
922		wxhw->subsystem_vendor_id = pdev->subsystem_vendor;
923		wxhw->subsystem_device_id = pdev->subsystem_device;
924	} else {
925		err = wx_flash_read_dword(wxhw, 0xfffdc, &ssid);
926		if (!err)
927			wxhw->subsystem_device_id = swab16((u16)ssid);
 
 
 
 
 
928
 
 
 
929		return err;
930	}
931
 
 
 
 
 
 
 
 
 
 
 
932	return 0;
933}
934EXPORT_SYMBOL(wx_sw_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
935
936MODULE_LICENSE("GPL");