Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/****************************************************************************
  3 * Driver for Solarflare network controllers and boards
  4 * Copyright 2018 Solarflare Communications Inc.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License version 2 as published
  8 * by the Free Software Foundation, incorporated herein by reference.
  9 */
 10
 11#include "net_driver.h"
 12#include "efx.h"
 13#include "nic_common.h"
 14#include "tx_common.h"
 15#include <net/gso.h>
 16
 17static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
 18{
 19	return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
 20			    PAGE_SIZE >> EFX_TX_CB_ORDER);
 21}
 22
 23int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
 24{
 25	struct efx_nic *efx = tx_queue->efx;
 26	unsigned int entries;
 27	int rc;
 28
 29	/* Create the smallest power-of-two aligned ring */
 30	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
 31	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
 32	tx_queue->ptr_mask = entries - 1;
 33
 34	netif_dbg(efx, probe, efx->net_dev,
 35		  "creating TX queue %d size %#x mask %#x\n",
 36		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
 37
 38	/* Allocate software ring */
 39	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
 40				   GFP_KERNEL);
 41	if (!tx_queue->buffer)
 42		return -ENOMEM;
 43
 44	tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
 45				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
 46	if (!tx_queue->cb_page) {
 47		rc = -ENOMEM;
 48		goto fail1;
 49	}
 50
 51	/* Allocate hardware ring, determine TXQ type */
 52	rc = efx_nic_probe_tx(tx_queue);
 53	if (rc)
 54		goto fail2;
 55
 56	tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue;
 57	return 0;
 58
 59fail2:
 60	kfree(tx_queue->cb_page);
 61	tx_queue->cb_page = NULL;
 62fail1:
 63	kfree(tx_queue->buffer);
 64	tx_queue->buffer = NULL;
 65	return rc;
 66}
 67
 68void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
 69{
 70	struct efx_nic *efx = tx_queue->efx;
 71
 72	netif_dbg(efx, drv, efx->net_dev,
 73		  "initialising TX queue %d\n", tx_queue->queue);
 74
 75	tx_queue->insert_count = 0;
 76	tx_queue->notify_count = 0;
 77	tx_queue->write_count = 0;
 78	tx_queue->packet_write_count = 0;
 79	tx_queue->old_write_count = 0;
 80	tx_queue->read_count = 0;
 81	tx_queue->old_read_count = 0;
 82	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
 83	tx_queue->xmit_pending = false;
 84	tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
 85				  tx_queue->channel == efx_ptp_channel(efx));
 86	tx_queue->completed_timestamp_major = 0;
 87	tx_queue->completed_timestamp_minor = 0;
 88
 89	tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
 90	tx_queue->tso_version = 0;
 91
 92	/* Set up TX descriptor ring */
 93	efx_nic_init_tx(tx_queue);
 94
 95	tx_queue->initialised = true;
 96}
 97
 98void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
 99{
100	struct efx_tx_buffer *buffer;
101
102	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
103		  "shutting down TX queue %d\n", tx_queue->queue);
104
105	tx_queue->initialised = false;
106
107	if (!tx_queue->buffer)
108		return;
109
110	/* Free any buffers left in the ring */
111	while (tx_queue->read_count != tx_queue->write_count) {
112		unsigned int pkts_compl = 0, bytes_compl = 0;
113		unsigned int efv_pkts_compl = 0;
114
115		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
116		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
117				   &efv_pkts_compl);
118
119		++tx_queue->read_count;
120	}
121	tx_queue->xmit_pending = false;
122	netdev_tx_reset_queue(tx_queue->core_txq);
123}
124
125void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
126{
127	int i;
128
129	if (!tx_queue->buffer)
130		return;
131
132	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
133		  "destroying TX queue %d\n", tx_queue->queue);
134	efx_nic_remove_tx(tx_queue);
135
136	if (tx_queue->cb_page) {
137		for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
138			efx_nic_free_buffer(tx_queue->efx,
139					    &tx_queue->cb_page[i]);
140		kfree(tx_queue->cb_page);
141		tx_queue->cb_page = NULL;
142	}
143
144	kfree(tx_queue->buffer);
145	tx_queue->buffer = NULL;
146	tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL;
147}
148
149void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
150			struct efx_tx_buffer *buffer,
151			unsigned int *pkts_compl,
152			unsigned int *bytes_compl,
153			unsigned int *efv_pkts_compl)
154{
155	if (buffer->unmap_len) {
156		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
157		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
158
159		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
160			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
161					 DMA_TO_DEVICE);
162		else
163			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
164				       DMA_TO_DEVICE);
165		buffer->unmap_len = 0;
166	}
167
168	if (buffer->flags & EFX_TX_BUF_SKB) {
169		struct sk_buff *skb = (struct sk_buff *)buffer->skb;
170
171		if (unlikely(buffer->flags & EFX_TX_BUF_EFV)) {
172			EFX_WARN_ON_PARANOID(!efv_pkts_compl);
173			(*efv_pkts_compl)++;
174		} else {
175			EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
176			(*pkts_compl)++;
177			(*bytes_compl) += skb->len;
178		}
179
180		if (tx_queue->timestamping &&
181		    (tx_queue->completed_timestamp_major ||
182		     tx_queue->completed_timestamp_minor)) {
183			struct skb_shared_hwtstamps hwtstamp;
184
185			hwtstamp.hwtstamp =
186				efx_ptp_nic_to_kernel_time(tx_queue);
187			skb_tstamp_tx(skb, &hwtstamp);
188
189			tx_queue->completed_timestamp_major = 0;
190			tx_queue->completed_timestamp_minor = 0;
191		}
192		dev_consume_skb_any((struct sk_buff *)buffer->skb);
193		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
194			   "TX queue %d transmission id %x complete\n",
195			   tx_queue->queue, tx_queue->read_count);
196	} else if (buffer->flags & EFX_TX_BUF_XDP) {
197		xdp_return_frame_rx_napi(buffer->xdpf);
198	}
199
200	buffer->len = 0;
201	buffer->flags = 0;
202}
203
204/* Remove packets from the TX queue
205 *
206 * This removes packets from the TX queue, up to and including the
207 * specified index.
208 */
209static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
210				unsigned int index,
211				unsigned int *pkts_compl,
212				unsigned int *bytes_compl,
213				unsigned int *efv_pkts_compl)
214{
215	struct efx_nic *efx = tx_queue->efx;
216	unsigned int stop_index, read_ptr;
217
218	stop_index = (index + 1) & tx_queue->ptr_mask;
219	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
220
221	while (read_ptr != stop_index) {
222		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
223
224		if (!efx_tx_buffer_in_use(buffer)) {
225			netif_err(efx, tx_err, efx->net_dev,
226				  "TX queue %d spurious TX completion id %d\n",
227				  tx_queue->queue, read_ptr);
228			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
229			return;
230		}
231
232		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl,
233				   efv_pkts_compl);
234
235		++tx_queue->read_count;
236		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
237	}
238}
239
240void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
241{
242	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
243		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
244		if (tx_queue->read_count == tx_queue->old_write_count) {
245			/* Ensure that read_count is flushed. */
246			smp_mb();
247			tx_queue->empty_read_count =
248				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
249		}
250	}
251}
252
253int efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
254{
255	unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
256	unsigned int efv_pkts_compl = 0;
257	struct efx_nic *efx = tx_queue->efx;
258
259	EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
260
261	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl,
262			    &efv_pkts_compl);
263	tx_queue->pkts_compl += pkts_compl;
264	tx_queue->bytes_compl += bytes_compl;
265
266	if (pkts_compl + efv_pkts_compl > 1)
267		++tx_queue->merge_events;
268
269	/* See if we need to restart the netif queue.  This memory
270	 * barrier ensures that we write read_count (inside
271	 * efx_dequeue_buffers()) before reading the queue status.
272	 */
273	smp_mb();
274	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
275	    likely(efx->port_enabled) &&
276	    likely(netif_device_present(efx->net_dev))) {
277		fill_level = efx_channel_tx_fill_level(tx_queue->channel);
278		if (fill_level <= efx->txq_wake_thresh)
279			netif_tx_wake_queue(tx_queue->core_txq);
280	}
281
282	efx_xmit_done_check_empty(tx_queue);
283
284	return pkts_compl + efv_pkts_compl;
285}
286
287/* Remove buffers put into a tx_queue for the current packet.
288 * None of the buffers must have an skb attached.
289 */
290void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
291			unsigned int insert_count)
292{
293	unsigned int efv_pkts_compl = 0;
294	struct efx_tx_buffer *buffer;
295	unsigned int bytes_compl = 0;
296	unsigned int pkts_compl = 0;
297
298	/* Work backwards until we hit the original insert pointer value */
299	while (tx_queue->insert_count != insert_count) {
300		--tx_queue->insert_count;
301		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
302		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
303				   &efv_pkts_compl);
304	}
305}
306
307struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
308				       dma_addr_t dma_addr, size_t len)
309{
310	const struct efx_nic_type *nic_type = tx_queue->efx->type;
311	struct efx_tx_buffer *buffer;
312	unsigned int dma_len;
313
314	/* Map the fragment taking account of NIC-dependent DMA limits. */
315	do {
316		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
317
318		if (nic_type->tx_limit_len)
319			dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
320		else
321			dma_len = len;
322
323		buffer->len = dma_len;
324		buffer->dma_addr = dma_addr;
325		buffer->flags = EFX_TX_BUF_CONT;
326		len -= dma_len;
327		dma_addr += dma_len;
328		++tx_queue->insert_count;
329	} while (len);
330
331	return buffer;
332}
333
334int efx_tx_tso_header_length(struct sk_buff *skb)
335{
336	size_t header_len;
337
338	if (skb->encapsulation)
339		header_len = skb_inner_transport_header(skb) -
340				skb->data +
341				(inner_tcp_hdr(skb)->doff << 2u);
342	else
343		header_len = skb_transport_header(skb) - skb->data +
344				(tcp_hdr(skb)->doff << 2u);
345	return header_len;
346}
347
348/* Map all data from an SKB for DMA and create descriptors on the queue. */
349int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
350		    unsigned int segment_count)
351{
352	struct efx_nic *efx = tx_queue->efx;
353	struct device *dma_dev = &efx->pci_dev->dev;
354	unsigned int frag_index, nr_frags;
355	dma_addr_t dma_addr, unmap_addr;
356	unsigned short dma_flags;
357	size_t len, unmap_len;
358
359	nr_frags = skb_shinfo(skb)->nr_frags;
360	frag_index = 0;
361
362	/* Map header data. */
363	len = skb_headlen(skb);
364	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
365	dma_flags = EFX_TX_BUF_MAP_SINGLE;
366	unmap_len = len;
367	unmap_addr = dma_addr;
368
369	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
370		return -EIO;
371
372	if (segment_count) {
373		/* For TSO we need to put the header in to a separate
374		 * descriptor. Map this separately if necessary.
375		 */
376		size_t header_len = efx_tx_tso_header_length(skb);
377
378		if (header_len != len) {
379			tx_queue->tso_long_headers++;
380			efx_tx_map_chunk(tx_queue, dma_addr, header_len);
381			len -= header_len;
382			dma_addr += header_len;
383		}
384	}
385
386	/* Add descriptors for each fragment. */
387	do {
388		struct efx_tx_buffer *buffer;
389		skb_frag_t *fragment;
390
391		buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
392
393		/* The final descriptor for a fragment is responsible for
394		 * unmapping the whole fragment.
395		 */
396		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
397		buffer->unmap_len = unmap_len;
398		buffer->dma_offset = buffer->dma_addr - unmap_addr;
399
400		if (frag_index >= nr_frags) {
401			/* Store SKB details with the final buffer for
402			 * the completion.
403			 */
404			buffer->skb = skb;
405			buffer->flags = EFX_TX_BUF_SKB | dma_flags;
406			return 0;
407		}
408
409		/* Move on to the next fragment. */
410		fragment = &skb_shinfo(skb)->frags[frag_index++];
411		len = skb_frag_size(fragment);
412		dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
413					    DMA_TO_DEVICE);
414		dma_flags = 0;
415		unmap_len = len;
416		unmap_addr = dma_addr;
417
418		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
419			return -EIO;
420	} while (1);
421}
422
423unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
424{
425	/* Header and payload descriptor for each output segment, plus
426	 * one for every input fragment boundary within a segment
427	 */
428	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
429
430	/* Possibly one more per segment for option descriptors */
431	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
432		max_descs += EFX_TSO_MAX_SEGS;
433
434	/* Possibly more for PCIe page boundaries within input fragments */
435	if (PAGE_SIZE > EFX_PAGE_SIZE)
436		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
437				   DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE,
438						EFX_PAGE_SIZE));
439
440	return max_descs;
441}
442
443/*
444 * Fallback to software TSO.
445 *
446 * This is used if we are unable to send a GSO packet through hardware TSO.
447 * This should only ever happen due to per-queue restrictions - unsupported
448 * packets should first be filtered by the feature flags.
449 *
450 * Returns 0 on success, error code otherwise.
451 */
452int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
453{
454	struct sk_buff *segments, *next;
455
456	segments = skb_gso_segment(skb, 0);
457	if (IS_ERR(segments))
458		return PTR_ERR(segments);
459
460	dev_consume_skb_any(skb);
461
462	skb_list_walk_safe(segments, skb, next) {
463		skb_mark_not_on_list(skb);
464		efx_enqueue_skb(tx_queue, skb);
465	}
466
467	return 0;
468}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/****************************************************************************
  3 * Driver for Solarflare network controllers and boards
  4 * Copyright 2018 Solarflare Communications Inc.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License version 2 as published
  8 * by the Free Software Foundation, incorporated herein by reference.
  9 */
 10
 11#include "net_driver.h"
 12#include "efx.h"
 13#include "nic_common.h"
 14#include "tx_common.h"
 
 15
 16static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
 17{
 18	return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
 19			    PAGE_SIZE >> EFX_TX_CB_ORDER);
 20}
 21
 22int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
 23{
 24	struct efx_nic *efx = tx_queue->efx;
 25	unsigned int entries;
 26	int rc;
 27
 28	/* Create the smallest power-of-two aligned ring */
 29	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
 30	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
 31	tx_queue->ptr_mask = entries - 1;
 32
 33	netif_dbg(efx, probe, efx->net_dev,
 34		  "creating TX queue %d size %#x mask %#x\n",
 35		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
 36
 37	/* Allocate software ring */
 38	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
 39				   GFP_KERNEL);
 40	if (!tx_queue->buffer)
 41		return -ENOMEM;
 42
 43	tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
 44				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
 45	if (!tx_queue->cb_page) {
 46		rc = -ENOMEM;
 47		goto fail1;
 48	}
 49
 50	/* Allocate hardware ring, determine TXQ type */
 51	rc = efx_nic_probe_tx(tx_queue);
 52	if (rc)
 53		goto fail2;
 54
 55	tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue;
 56	return 0;
 57
 58fail2:
 59	kfree(tx_queue->cb_page);
 60	tx_queue->cb_page = NULL;
 61fail1:
 62	kfree(tx_queue->buffer);
 63	tx_queue->buffer = NULL;
 64	return rc;
 65}
 66
 67void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
 68{
 69	struct efx_nic *efx = tx_queue->efx;
 70
 71	netif_dbg(efx, drv, efx->net_dev,
 72		  "initialising TX queue %d\n", tx_queue->queue);
 73
 74	tx_queue->insert_count = 0;
 75	tx_queue->notify_count = 0;
 76	tx_queue->write_count = 0;
 77	tx_queue->packet_write_count = 0;
 78	tx_queue->old_write_count = 0;
 79	tx_queue->read_count = 0;
 80	tx_queue->old_read_count = 0;
 81	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
 82	tx_queue->xmit_pending = false;
 83	tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
 84				  tx_queue->channel == efx_ptp_channel(efx));
 85	tx_queue->completed_timestamp_major = 0;
 86	tx_queue->completed_timestamp_minor = 0;
 87
 88	tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
 89	tx_queue->tso_version = 0;
 90
 91	/* Set up TX descriptor ring */
 92	efx_nic_init_tx(tx_queue);
 93
 94	tx_queue->initialised = true;
 95}
 96
 97void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
 98{
 99	struct efx_tx_buffer *buffer;
100
101	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
102		  "shutting down TX queue %d\n", tx_queue->queue);
103
104	tx_queue->initialised = false;
105
106	if (!tx_queue->buffer)
107		return;
108
109	/* Free any buffers left in the ring */
110	while (tx_queue->read_count != tx_queue->write_count) {
111		unsigned int pkts_compl = 0, bytes_compl = 0;
112		unsigned int efv_pkts_compl = 0;
113
114		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
115		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
116				   &efv_pkts_compl);
117
118		++tx_queue->read_count;
119	}
120	tx_queue->xmit_pending = false;
121	netdev_tx_reset_queue(tx_queue->core_txq);
122}
123
124void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
125{
126	int i;
127
128	if (!tx_queue->buffer)
129		return;
130
131	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
132		  "destroying TX queue %d\n", tx_queue->queue);
133	efx_nic_remove_tx(tx_queue);
134
135	if (tx_queue->cb_page) {
136		for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
137			efx_nic_free_buffer(tx_queue->efx,
138					    &tx_queue->cb_page[i]);
139		kfree(tx_queue->cb_page);
140		tx_queue->cb_page = NULL;
141	}
142
143	kfree(tx_queue->buffer);
144	tx_queue->buffer = NULL;
145	tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL;
146}
147
148void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
149			struct efx_tx_buffer *buffer,
150			unsigned int *pkts_compl,
151			unsigned int *bytes_compl,
152			unsigned int *efv_pkts_compl)
153{
154	if (buffer->unmap_len) {
155		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
156		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
157
158		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
159			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
160					 DMA_TO_DEVICE);
161		else
162			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
163				       DMA_TO_DEVICE);
164		buffer->unmap_len = 0;
165	}
166
167	if (buffer->flags & EFX_TX_BUF_SKB) {
168		struct sk_buff *skb = (struct sk_buff *)buffer->skb;
169
170		if (unlikely(buffer->flags & EFX_TX_BUF_EFV)) {
171			EFX_WARN_ON_PARANOID(!efv_pkts_compl);
172			(*efv_pkts_compl)++;
173		} else {
174			EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
175			(*pkts_compl)++;
176			(*bytes_compl) += skb->len;
177		}
178
179		if (tx_queue->timestamping &&
180		    (tx_queue->completed_timestamp_major ||
181		     tx_queue->completed_timestamp_minor)) {
182			struct skb_shared_hwtstamps hwtstamp;
183
184			hwtstamp.hwtstamp =
185				efx_ptp_nic_to_kernel_time(tx_queue);
186			skb_tstamp_tx(skb, &hwtstamp);
187
188			tx_queue->completed_timestamp_major = 0;
189			tx_queue->completed_timestamp_minor = 0;
190		}
191		dev_consume_skb_any((struct sk_buff *)buffer->skb);
192		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
193			   "TX queue %d transmission id %x complete\n",
194			   tx_queue->queue, tx_queue->read_count);
195	} else if (buffer->flags & EFX_TX_BUF_XDP) {
196		xdp_return_frame_rx_napi(buffer->xdpf);
197	}
198
199	buffer->len = 0;
200	buffer->flags = 0;
201}
202
203/* Remove packets from the TX queue
204 *
205 * This removes packets from the TX queue, up to and including the
206 * specified index.
207 */
208static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
209				unsigned int index,
210				unsigned int *pkts_compl,
211				unsigned int *bytes_compl,
212				unsigned int *efv_pkts_compl)
213{
214	struct efx_nic *efx = tx_queue->efx;
215	unsigned int stop_index, read_ptr;
216
217	stop_index = (index + 1) & tx_queue->ptr_mask;
218	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
219
220	while (read_ptr != stop_index) {
221		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
222
223		if (!efx_tx_buffer_in_use(buffer)) {
224			netif_err(efx, tx_err, efx->net_dev,
225				  "TX queue %d spurious TX completion id %d\n",
226				  tx_queue->queue, read_ptr);
227			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
228			return;
229		}
230
231		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl,
232				   efv_pkts_compl);
233
234		++tx_queue->read_count;
235		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
236	}
237}
238
239void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
240{
241	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
242		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
243		if (tx_queue->read_count == tx_queue->old_write_count) {
244			/* Ensure that read_count is flushed. */
245			smp_mb();
246			tx_queue->empty_read_count =
247				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
248		}
249	}
250}
251
252void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
253{
254	unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
255	unsigned int efv_pkts_compl = 0;
256	struct efx_nic *efx = tx_queue->efx;
257
258	EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
259
260	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl,
261			    &efv_pkts_compl);
262	tx_queue->pkts_compl += pkts_compl;
263	tx_queue->bytes_compl += bytes_compl;
264
265	if (pkts_compl + efv_pkts_compl > 1)
266		++tx_queue->merge_events;
267
268	/* See if we need to restart the netif queue.  This memory
269	 * barrier ensures that we write read_count (inside
270	 * efx_dequeue_buffers()) before reading the queue status.
271	 */
272	smp_mb();
273	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
274	    likely(efx->port_enabled) &&
275	    likely(netif_device_present(efx->net_dev))) {
276		fill_level = efx_channel_tx_fill_level(tx_queue->channel);
277		if (fill_level <= efx->txq_wake_thresh)
278			netif_tx_wake_queue(tx_queue->core_txq);
279	}
280
281	efx_xmit_done_check_empty(tx_queue);
 
 
282}
283
284/* Remove buffers put into a tx_queue for the current packet.
285 * None of the buffers must have an skb attached.
286 */
287void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
288			unsigned int insert_count)
289{
290	unsigned int efv_pkts_compl = 0;
291	struct efx_tx_buffer *buffer;
292	unsigned int bytes_compl = 0;
293	unsigned int pkts_compl = 0;
294
295	/* Work backwards until we hit the original insert pointer value */
296	while (tx_queue->insert_count != insert_count) {
297		--tx_queue->insert_count;
298		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
299		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
300				   &efv_pkts_compl);
301	}
302}
303
304struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
305				       dma_addr_t dma_addr, size_t len)
306{
307	const struct efx_nic_type *nic_type = tx_queue->efx->type;
308	struct efx_tx_buffer *buffer;
309	unsigned int dma_len;
310
311	/* Map the fragment taking account of NIC-dependent DMA limits. */
312	do {
313		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
314
315		if (nic_type->tx_limit_len)
316			dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
317		else
318			dma_len = len;
319
320		buffer->len = dma_len;
321		buffer->dma_addr = dma_addr;
322		buffer->flags = EFX_TX_BUF_CONT;
323		len -= dma_len;
324		dma_addr += dma_len;
325		++tx_queue->insert_count;
326	} while (len);
327
328	return buffer;
329}
330
331int efx_tx_tso_header_length(struct sk_buff *skb)
332{
333	size_t header_len;
334
335	if (skb->encapsulation)
336		header_len = skb_inner_transport_header(skb) -
337				skb->data +
338				(inner_tcp_hdr(skb)->doff << 2u);
339	else
340		header_len = skb_transport_header(skb) - skb->data +
341				(tcp_hdr(skb)->doff << 2u);
342	return header_len;
343}
344
345/* Map all data from an SKB for DMA and create descriptors on the queue. */
346int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
347		    unsigned int segment_count)
348{
349	struct efx_nic *efx = tx_queue->efx;
350	struct device *dma_dev = &efx->pci_dev->dev;
351	unsigned int frag_index, nr_frags;
352	dma_addr_t dma_addr, unmap_addr;
353	unsigned short dma_flags;
354	size_t len, unmap_len;
355
356	nr_frags = skb_shinfo(skb)->nr_frags;
357	frag_index = 0;
358
359	/* Map header data. */
360	len = skb_headlen(skb);
361	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
362	dma_flags = EFX_TX_BUF_MAP_SINGLE;
363	unmap_len = len;
364	unmap_addr = dma_addr;
365
366	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
367		return -EIO;
368
369	if (segment_count) {
370		/* For TSO we need to put the header in to a separate
371		 * descriptor. Map this separately if necessary.
372		 */
373		size_t header_len = efx_tx_tso_header_length(skb);
374
375		if (header_len != len) {
376			tx_queue->tso_long_headers++;
377			efx_tx_map_chunk(tx_queue, dma_addr, header_len);
378			len -= header_len;
379			dma_addr += header_len;
380		}
381	}
382
383	/* Add descriptors for each fragment. */
384	do {
385		struct efx_tx_buffer *buffer;
386		skb_frag_t *fragment;
387
388		buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
389
390		/* The final descriptor for a fragment is responsible for
391		 * unmapping the whole fragment.
392		 */
393		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
394		buffer->unmap_len = unmap_len;
395		buffer->dma_offset = buffer->dma_addr - unmap_addr;
396
397		if (frag_index >= nr_frags) {
398			/* Store SKB details with the final buffer for
399			 * the completion.
400			 */
401			buffer->skb = skb;
402			buffer->flags = EFX_TX_BUF_SKB | dma_flags;
403			return 0;
404		}
405
406		/* Move on to the next fragment. */
407		fragment = &skb_shinfo(skb)->frags[frag_index++];
408		len = skb_frag_size(fragment);
409		dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
410					    DMA_TO_DEVICE);
411		dma_flags = 0;
412		unmap_len = len;
413		unmap_addr = dma_addr;
414
415		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
416			return -EIO;
417	} while (1);
418}
419
420unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
421{
422	/* Header and payload descriptor for each output segment, plus
423	 * one for every input fragment boundary within a segment
424	 */
425	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
426
427	/* Possibly one more per segment for option descriptors */
428	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
429		max_descs += EFX_TSO_MAX_SEGS;
430
431	/* Possibly more for PCIe page boundaries within input fragments */
432	if (PAGE_SIZE > EFX_PAGE_SIZE)
433		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
434				   DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE,
435						EFX_PAGE_SIZE));
436
437	return max_descs;
438}
439
440/*
441 * Fallback to software TSO.
442 *
443 * This is used if we are unable to send a GSO packet through hardware TSO.
444 * This should only ever happen due to per-queue restrictions - unsupported
445 * packets should first be filtered by the feature flags.
446 *
447 * Returns 0 on success, error code otherwise.
448 */
449int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
450{
451	struct sk_buff *segments, *next;
452
453	segments = skb_gso_segment(skb, 0);
454	if (IS_ERR(segments))
455		return PTR_ERR(segments);
456
457	dev_consume_skb_any(skb);
458
459	skb_list_walk_safe(segments, skb, next) {
460		skb_mark_not_on_list(skb);
461		efx_enqueue_skb(tx_queue, skb);
462	}
463
464	return 0;
465}