Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2010-2012 Solarflare Communications Inc.
   5 */
   6#include <linux/pci.h>
   7#include <linux/module.h>
   8#include "net_driver.h"
   9#include "efx.h"
  10#include "efx_channels.h"
  11#include "nic.h"
  12#include "io.h"
  13#include "mcdi.h"
  14#include "filter.h"
  15#include "mcdi_pcol.h"
  16#include "farch_regs.h"
  17#include "siena_sriov.h"
  18#include "vfdi.h"
  19
  20/* Number of longs required to track all the VIs in a VF */
  21#define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)
  22
  23/* Maximum number of RX queues supported */
  24#define VF_MAX_RX_QUEUES 63
  25
  26/**
  27 * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
  28 * @VF_TX_FILTER_OFF: Disabled
  29 * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
  30 *	2 TX queues allowed per VF.
  31 * @VF_TX_FILTER_ON: Enabled
  32 */
  33enum efx_vf_tx_filter_mode {
  34	VF_TX_FILTER_OFF,
  35	VF_TX_FILTER_AUTO,
  36	VF_TX_FILTER_ON,
  37};
  38
  39/**
  40 * struct siena_vf - Back-end resource and protocol state for a PCI VF
  41 * @efx: The Efx NIC owning this VF
  42 * @pci_rid: The PCI requester ID for this VF
  43 * @pci_name: The PCI name (formatted address) of this VF
  44 * @index: Index of VF within its port and PF.
  45 * @req: VFDI incoming request work item. Incoming USR_EV events are received
  46 *	by the NAPI handler, but must be handled by executing MCDI requests
  47 *	inside a work item.
  48 * @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
  49 * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
  50 * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
  51 * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
  52 *	@status_lock
  53 * @busy: VFDI request queued to be processed or being processed. Receiving
  54 *	a VFDI request when @busy is set is an error condition.
  55 * @buf: Incoming VFDI requests are DMA from the VF into this buffer.
  56 * @buftbl_base: Buffer table entries for this VF start at this index.
  57 * @rx_filtering: Receive filtering has been requested by the VF driver.
  58 * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
  59 * @rx_filter_qid: VF relative qid for RX filter requested by VF.
  60 * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
  61 * @tx_filter_mode: Transmit MAC filtering mode.
  62 * @tx_filter_id: Transmit MAC filter ID.
  63 * @addr: The MAC address and outer vlan tag of the VF.
  64 * @status_addr: VF DMA address of page for &struct vfdi_status updates.
  65 * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
  66 *	@peer_page_addrs and @peer_page_count from simultaneous
  67 *	updates by the VM and consumption by
  68 *	efx_siena_sriov_update_vf_addr()
  69 * @peer_page_addrs: Pointer to an array of guest pages for local addresses.
  70 * @peer_page_count: Number of entries in @peer_page_count.
  71 * @evq0_addrs: Array of guest pages backing evq0.
  72 * @evq0_count: Number of entries in @evq0_addrs.
  73 * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
  74 *	to wait for flush completions.
  75 * @txq_lock: Mutex for TX queue allocation.
  76 * @txq_mask: Mask of initialized transmit queues.
  77 * @txq_count: Number of initialized transmit queues.
  78 * @rxq_mask: Mask of initialized receive queues.
  79 * @rxq_count: Number of initialized receive queues.
  80 * @rxq_retry_mask: Mask or receive queues that need to be flushed again
  81 *	due to flush failure.
  82 * @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
  83 * @reset_work: Work item to schedule a VF reset.
  84 */
  85struct siena_vf {
  86	struct efx_nic *efx;
  87	unsigned int pci_rid;
  88	char pci_name[13]; /* dddd:bb:dd.f */
  89	unsigned int index;
  90	struct work_struct req;
  91	u64 req_addr;
  92	int req_type;
  93	unsigned req_seqno;
  94	unsigned msg_seqno;
  95	bool busy;
  96	struct efx_buffer buf;
  97	unsigned buftbl_base;
  98	bool rx_filtering;
  99	enum efx_filter_flags rx_filter_flags;
 100	unsigned rx_filter_qid;
 101	int rx_filter_id;
 102	enum efx_vf_tx_filter_mode tx_filter_mode;
 103	int tx_filter_id;
 104	struct vfdi_endpoint addr;
 105	u64 status_addr;
 106	struct mutex status_lock;
 107	u64 *peer_page_addrs;
 108	unsigned peer_page_count;
 109	u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
 110		       EFX_BUF_SIZE];
 111	unsigned evq0_count;
 112	wait_queue_head_t flush_waitq;
 113	struct mutex txq_lock;
 114	unsigned long txq_mask[VI_MASK_LENGTH];
 115	unsigned txq_count;
 116	unsigned long rxq_mask[VI_MASK_LENGTH];
 117	unsigned rxq_count;
 118	unsigned long rxq_retry_mask[VI_MASK_LENGTH];
 119	atomic_t rxq_retry_count;
 120	struct work_struct reset_work;
 121};
 122
 123struct efx_memcpy_req {
 124	unsigned int from_rid;
 125	void *from_buf;
 126	u64 from_addr;
 127	unsigned int to_rid;
 128	u64 to_addr;
 129	unsigned length;
 130};
 131
 132/**
 133 * struct efx_local_addr - A MAC address on the vswitch without a VF.
 134 *
 135 * Siena does not have a switch, so VFs can't transmit data to each
 136 * other. Instead the VFs must be made aware of the local addresses
 137 * on the vswitch, so that they can arrange for an alternative
 138 * software datapath to be used.
 139 *
 140 * @link: List head for insertion into efx->local_addr_list.
 141 * @addr: Ethernet address
 142 */
 143struct efx_local_addr {
 144	struct list_head link;
 145	u8 addr[ETH_ALEN];
 146};
 147
 148/**
 149 * struct efx_endpoint_page - Page of vfdi_endpoint structures
 150 *
 151 * @link: List head for insertion into efx->local_page_list.
 152 * @ptr: Pointer to page.
 153 * @addr: DMA address of page.
 154 */
 155struct efx_endpoint_page {
 156	struct list_head link;
 157	void *ptr;
 158	dma_addr_t addr;
 159};
 160
 161/* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
 162#define EFX_BUFTBL_TXQ_BASE(_vf, _qid)					\
 163	((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
 164#define EFX_BUFTBL_RXQ_BASE(_vf, _qid)					\
 165	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
 166	 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
 167#define EFX_BUFTBL_EVQ_BASE(_vf, _qid)					\
 168	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
 169	 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
 170
 171#define EFX_FIELD_MASK(_field)			\
 172	((1 << _field ## _WIDTH) - 1)
 173
 174/* VFs can only use this many transmit channels */
 175static unsigned int vf_max_tx_channels = 2;
 176module_param(vf_max_tx_channels, uint, 0444);
 177MODULE_PARM_DESC(vf_max_tx_channels,
 178		 "Limit the number of TX channels VFs can use");
 179
 180static int max_vfs = -1;
 181module_param(max_vfs, int, 0444);
 182MODULE_PARM_DESC(max_vfs,
 183		 "Reduce the number of VFs initialized by the driver");
 184
 185/* Workqueue used by VFDI communication.  We can't use the global
 186 * workqueue because it may be running the VF driver's probe()
 187 * routine, which will be blocked there waiting for a VFDI response.
 188 */
 189static struct workqueue_struct *vfdi_workqueue;
 190
 191static unsigned abs_index(struct siena_vf *vf, unsigned index)
 192{
 193	return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
 194}
 195
 196static int efx_siena_sriov_cmd(struct efx_nic *efx, bool enable,
 197			       unsigned *vi_scale_out, unsigned *vf_total_out)
 198{
 199	MCDI_DECLARE_BUF(inbuf, MC_CMD_SRIOV_IN_LEN);
 200	MCDI_DECLARE_BUF(outbuf, MC_CMD_SRIOV_OUT_LEN);
 201	unsigned vi_scale, vf_total;
 202	size_t outlen;
 203	int rc;
 204
 205	MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
 206	MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
 207	MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);
 208
 209	rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_SRIOV, inbuf,
 210				      MC_CMD_SRIOV_IN_LEN, outbuf,
 211				      MC_CMD_SRIOV_OUT_LEN, &outlen);
 212	if (rc)
 213		return rc;
 214	if (outlen < MC_CMD_SRIOV_OUT_LEN)
 215		return -EIO;
 216
 217	vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
 218	vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
 219	if (vi_scale > EFX_VI_SCALE_MAX)
 220		return -EOPNOTSUPP;
 221
 222	if (vi_scale_out)
 223		*vi_scale_out = vi_scale;
 224	if (vf_total_out)
 225		*vf_total_out = vf_total;
 226
 227	return 0;
 228}
 229
 230static void efx_siena_sriov_usrev(struct efx_nic *efx, bool enabled)
 231{
 232	struct siena_nic_data *nic_data = efx->nic_data;
 233	efx_oword_t reg;
 234
 235	EFX_POPULATE_OWORD_2(reg,
 236			     FRF_CZ_USREV_DIS, enabled ? 0 : 1,
 237			     FRF_CZ_DFLT_EVQ, nic_data->vfdi_channel->channel);
 238	efx_writeo(efx, &reg, FR_CZ_USR_EV_CFG);
 239}
 240
 241static int efx_siena_sriov_memcpy(struct efx_nic *efx,
 242				  struct efx_memcpy_req *req,
 243				  unsigned int count)
 244{
 245	MCDI_DECLARE_BUF(inbuf, MCDI_CTL_SDU_LEN_MAX_V1);
 246	MCDI_DECLARE_STRUCT_PTR(record);
 247	unsigned int index, used;
 248	u64 from_addr;
 249	u32 from_rid;
 250	int rc;
 251
 252	mb();	/* Finish writing source/reading dest before DMA starts */
 253
 254	if (WARN_ON(count > MC_CMD_MEMCPY_IN_RECORD_MAXNUM))
 255		return -ENOBUFS;
 256	used = MC_CMD_MEMCPY_IN_LEN(count);
 257
 258	for (index = 0; index < count; index++) {
 259		record = MCDI_ARRAY_STRUCT_PTR(inbuf, MEMCPY_IN_RECORD, index);
 260		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_NUM_RECORDS,
 261			       count);
 262		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
 263			       req->to_rid);
 264		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR,
 265			       req->to_addr);
 266		if (req->from_buf == NULL) {
 267			from_rid = req->from_rid;
 268			from_addr = req->from_addr;
 269		} else {
 270			if (WARN_ON(used + req->length >
 271				    MCDI_CTL_SDU_LEN_MAX_V1)) {
 272				rc = -ENOBUFS;
 273				goto out;
 274			}
 275
 276			from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
 277			from_addr = used;
 278			memcpy(_MCDI_PTR(inbuf, used), req->from_buf,
 279			       req->length);
 280			used += req->length;
 281		}
 282
 283		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
 284		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR,
 285			       from_addr);
 286		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
 287			       req->length);
 288
 289		++req;
 290	}
 291
 292	rc = efx_siena_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
 293out:
 294	mb();	/* Don't write source/read dest before DMA is complete */
 295
 296	return rc;
 297}
 298
 299/* The TX filter is entirely controlled by this driver, and is modified
 300 * underneath the feet of the VF
 301 */
 302static void efx_siena_sriov_reset_tx_filter(struct siena_vf *vf)
 303{
 304	struct efx_nic *efx = vf->efx;
 305	struct efx_filter_spec filter;
 306	u16 vlan;
 307	int rc;
 308
 309	if (vf->tx_filter_id != -1) {
 310		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 311					  vf->tx_filter_id);
 312		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
 313			  vf->pci_name, vf->tx_filter_id);
 314		vf->tx_filter_id = -1;
 315	}
 316
 317	if (is_zero_ether_addr(vf->addr.mac_addr))
 318		return;
 319
 320	/* Turn on TX filtering automatically if not explicitly
 321	 * enabled or disabled.
 322	 */
 323	if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
 324		vf->tx_filter_mode = VF_TX_FILTER_ON;
 325
 326	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
 327	efx_filter_init_tx(&filter, abs_index(vf, 0));
 328	rc = efx_filter_set_eth_local(&filter,
 329				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
 330				      vf->addr.mac_addr);
 331	BUG_ON(rc);
 332
 333	rc = efx_filter_insert_filter(efx, &filter, true);
 334	if (rc < 0) {
 335		netif_warn(efx, hw, efx->net_dev,
 336			   "Unable to migrate tx filter for vf %s\n",
 337			   vf->pci_name);
 338	} else {
 339		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
 340			  vf->pci_name, rc);
 341		vf->tx_filter_id = rc;
 342	}
 343}
 344
 345/* The RX filter is managed here on behalf of the VF driver */
 346static void efx_siena_sriov_reset_rx_filter(struct siena_vf *vf)
 347{
 348	struct efx_nic *efx = vf->efx;
 349	struct efx_filter_spec filter;
 350	u16 vlan;
 351	int rc;
 352
 353	if (vf->rx_filter_id != -1) {
 354		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 355					  vf->rx_filter_id);
 356		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
 357			  vf->pci_name, vf->rx_filter_id);
 358		vf->rx_filter_id = -1;
 359	}
 360
 361	if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
 362		return;
 363
 364	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
 365	efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
 366			   vf->rx_filter_flags,
 367			   abs_index(vf, vf->rx_filter_qid));
 368	rc = efx_filter_set_eth_local(&filter,
 369				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
 370				      vf->addr.mac_addr);
 371	BUG_ON(rc);
 372
 373	rc = efx_filter_insert_filter(efx, &filter, true);
 374	if (rc < 0) {
 375		netif_warn(efx, hw, efx->net_dev,
 376			   "Unable to insert rx filter for vf %s\n",
 377			   vf->pci_name);
 378	} else {
 379		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
 380			  vf->pci_name, rc);
 381		vf->rx_filter_id = rc;
 382	}
 383}
 384
 385static void __efx_siena_sriov_update_vf_addr(struct siena_vf *vf)
 386{
 387	struct efx_nic *efx = vf->efx;
 388	struct siena_nic_data *nic_data = efx->nic_data;
 389
 390	efx_siena_sriov_reset_tx_filter(vf);
 391	efx_siena_sriov_reset_rx_filter(vf);
 392	queue_work(vfdi_workqueue, &nic_data->peer_work);
 393}
 394
 395/* Push the peer list to this VF. The caller must hold status_lock to interlock
 396 * with VFDI requests, and they must be serialised against manipulation of
 397 * local_page_list, either by acquiring local_lock or by running from
 398 * efx_siena_sriov_peer_work()
 399 */
 400static void __efx_siena_sriov_push_vf_status(struct siena_vf *vf)
 401{
 402	struct efx_nic *efx = vf->efx;
 403	struct siena_nic_data *nic_data = efx->nic_data;
 404	struct vfdi_status *status = nic_data->vfdi_status.addr;
 405	struct efx_memcpy_req copy[4];
 406	struct efx_endpoint_page *epp;
 407	unsigned int pos, count;
 408	unsigned data_offset;
 409	efx_qword_t event;
 410
 411	WARN_ON(!mutex_is_locked(&vf->status_lock));
 412	WARN_ON(!vf->status_addr);
 413
 414	status->local = vf->addr;
 415	status->generation_end = ++status->generation_start;
 416
 417	memset(copy, '\0', sizeof(copy));
 418	/* Write generation_start */
 419	copy[0].from_buf = &status->generation_start;
 420	copy[0].to_rid = vf->pci_rid;
 421	copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
 422						     generation_start);
 423	copy[0].length = sizeof(status->generation_start);
 424	/* DMA the rest of the structure (excluding the generations). This
 425	 * assumes that the non-generation portion of vfdi_status is in
 426	 * one chunk starting at the version member.
 427	 */
 428	data_offset = offsetof(struct vfdi_status, version);
 429	copy[1].from_rid = efx->pci_dev->devfn;
 430	copy[1].from_addr = nic_data->vfdi_status.dma_addr + data_offset;
 431	copy[1].to_rid = vf->pci_rid;
 432	copy[1].to_addr = vf->status_addr + data_offset;
 433	copy[1].length =  status->length - data_offset;
 434
 435	/* Copy the peer pages */
 436	pos = 2;
 437	count = 0;
 438	list_for_each_entry(epp, &nic_data->local_page_list, link) {
 439		if (count == vf->peer_page_count) {
 440			/* The VF driver will know they need to provide more
 441			 * pages because peer_addr_count is too large.
 442			 */
 443			break;
 444		}
 445		copy[pos].from_buf = NULL;
 446		copy[pos].from_rid = efx->pci_dev->devfn;
 447		copy[pos].from_addr = epp->addr;
 448		copy[pos].to_rid = vf->pci_rid;
 449		copy[pos].to_addr = vf->peer_page_addrs[count];
 450		copy[pos].length = EFX_PAGE_SIZE;
 451
 452		if (++pos == ARRAY_SIZE(copy)) {
 453			efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
 454			pos = 0;
 455		}
 456		++count;
 457	}
 458
 459	/* Write generation_end */
 460	copy[pos].from_buf = &status->generation_end;
 461	copy[pos].to_rid = vf->pci_rid;
 462	copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
 463						       generation_end);
 464	copy[pos].length = sizeof(status->generation_end);
 465	efx_siena_sriov_memcpy(efx, copy, pos + 1);
 466
 467	/* Notify the guest */
 468	EFX_POPULATE_QWORD_3(event,
 469			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
 470			     VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
 471			     VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
 472	++vf->msg_seqno;
 473	efx_farch_generate_event(efx,
 474				 EFX_VI_BASE + vf->index * efx_vf_size(efx),
 475				 &event);
 476}
 477
 478static void efx_siena_sriov_bufs(struct efx_nic *efx, unsigned offset,
 479				 u64 *addr, unsigned count)
 480{
 481	efx_qword_t buf;
 482	unsigned pos;
 483
 484	for (pos = 0; pos < count; ++pos) {
 485		EFX_POPULATE_QWORD_3(buf,
 486				     FRF_AZ_BUF_ADR_REGION, 0,
 487				     FRF_AZ_BUF_ADR_FBUF,
 488				     addr ? addr[pos] >> 12 : 0,
 489				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 490		efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
 491				&buf, offset + pos);
 492	}
 493}
 494
 495static bool bad_vf_index(struct efx_nic *efx, unsigned index)
 496{
 497	return index >= efx_vf_size(efx);
 498}
 499
 500static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
 501{
 502	unsigned max_buf_count = max_entry_count *
 503		sizeof(efx_qword_t) / EFX_BUF_SIZE;
 504
 505	return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
 506}
 507
 508/* Check that VI specified by per-port index belongs to a VF.
 509 * Optionally set VF index and VI index within the VF.
 510 */
 511static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
 512			 struct siena_vf **vf_out, unsigned *rel_index_out)
 513{
 514	struct siena_nic_data *nic_data = efx->nic_data;
 515	unsigned vf_i;
 516
 517	if (abs_index < EFX_VI_BASE)
 518		return true;
 519	vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
 520	if (vf_i >= efx->vf_init_count)
 521		return true;
 522
 523	if (vf_out)
 524		*vf_out = nic_data->vf + vf_i;
 525	if (rel_index_out)
 526		*rel_index_out = abs_index % efx_vf_size(efx);
 527	return false;
 528}
 529
 530static int efx_vfdi_init_evq(struct siena_vf *vf)
 531{
 532	struct efx_nic *efx = vf->efx;
 533	struct vfdi_req *req = vf->buf.addr;
 534	unsigned vf_evq = req->u.init_evq.index;
 535	unsigned buf_count = req->u.init_evq.buf_count;
 536	unsigned abs_evq = abs_index(vf, vf_evq);
 537	unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
 538	efx_oword_t reg;
 539
 540	if (bad_vf_index(efx, vf_evq) ||
 541	    bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
 542		if (net_ratelimit())
 543			netif_err(efx, hw, efx->net_dev,
 544				  "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
 545				  vf->pci_name, vf_evq, buf_count);
 546		return VFDI_RC_EINVAL;
 547	}
 548
 549	efx_siena_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);
 550
 551	EFX_POPULATE_OWORD_3(reg,
 552			     FRF_CZ_TIMER_Q_EN, 1,
 553			     FRF_CZ_HOST_NOTIFY_MODE, 0,
 554			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
 555	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
 556	EFX_POPULATE_OWORD_3(reg,
 557			     FRF_AZ_EVQ_EN, 1,
 558			     FRF_AZ_EVQ_SIZE, __ffs(buf_count),
 559			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
 560	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
 561
 562	if (vf_evq == 0) {
 563		memcpy(vf->evq0_addrs, req->u.init_evq.addr,
 564		       buf_count * sizeof(u64));
 565		vf->evq0_count = buf_count;
 566	}
 567
 568	return VFDI_RC_SUCCESS;
 569}
 570
 571static int efx_vfdi_init_rxq(struct siena_vf *vf)
 572{
 573	struct efx_nic *efx = vf->efx;
 574	struct vfdi_req *req = vf->buf.addr;
 575	unsigned vf_rxq = req->u.init_rxq.index;
 576	unsigned vf_evq = req->u.init_rxq.evq;
 577	unsigned buf_count = req->u.init_rxq.buf_count;
 578	unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
 579	unsigned label;
 580	efx_oword_t reg;
 581
 582	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
 583	    vf_rxq >= VF_MAX_RX_QUEUES ||
 584	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
 585		if (net_ratelimit())
 586			netif_err(efx, hw, efx->net_dev,
 587				  "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
 588				  "buf_count %d\n", vf->pci_name, vf_rxq,
 589				  vf_evq, buf_count);
 590		return VFDI_RC_EINVAL;
 591	}
 592	if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
 593		++vf->rxq_count;
 594	efx_siena_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);
 595
 596	label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
 597	EFX_POPULATE_OWORD_6(reg,
 598			     FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
 599			     FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
 600			     FRF_AZ_RX_DESCQ_LABEL, label,
 601			     FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
 602			     FRF_AZ_RX_DESCQ_JUMBO,
 603			     !!(req->u.init_rxq.flags &
 604				VFDI_RXQ_FLAG_SCATTER_EN),
 605			     FRF_AZ_RX_DESCQ_EN, 1);
 606	efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
 607			 abs_index(vf, vf_rxq));
 608
 609	return VFDI_RC_SUCCESS;
 610}
 611
 612static int efx_vfdi_init_txq(struct siena_vf *vf)
 613{
 614	struct efx_nic *efx = vf->efx;
 615	struct vfdi_req *req = vf->buf.addr;
 616	unsigned vf_txq = req->u.init_txq.index;
 617	unsigned vf_evq = req->u.init_txq.evq;
 618	unsigned buf_count = req->u.init_txq.buf_count;
 619	unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
 620	unsigned label, eth_filt_en;
 621	efx_oword_t reg;
 622
 623	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
 624	    vf_txq >= vf_max_tx_channels ||
 625	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
 626		if (net_ratelimit())
 627			netif_err(efx, hw, efx->net_dev,
 628				  "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
 629				  "buf_count %d\n", vf->pci_name, vf_txq,
 630				  vf_evq, buf_count);
 631		return VFDI_RC_EINVAL;
 632	}
 633
 634	mutex_lock(&vf->txq_lock);
 635	if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
 636		++vf->txq_count;
 637	mutex_unlock(&vf->txq_lock);
 638	efx_siena_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);
 639
 640	eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;
 641
 642	label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
 643	EFX_POPULATE_OWORD_8(reg,
 644			     FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
 645			     FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
 646			     FRF_AZ_TX_DESCQ_EN, 1,
 647			     FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
 648			     FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
 649			     FRF_AZ_TX_DESCQ_LABEL, label,
 650			     FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
 651			     FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 652	efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
 653			 abs_index(vf, vf_txq));
 654
 655	return VFDI_RC_SUCCESS;
 656}
 657
 658/* Returns true when efx_vfdi_fini_all_queues should wake */
 659static bool efx_vfdi_flush_wake(struct siena_vf *vf)
 660{
 661	/* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
 662	smp_mb();
 663
 664	return (!vf->txq_count && !vf->rxq_count) ||
 665		atomic_read(&vf->rxq_retry_count);
 666}
 667
 668static void efx_vfdi_flush_clear(struct siena_vf *vf)
 669{
 670	memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
 671	vf->txq_count = 0;
 672	memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
 673	vf->rxq_count = 0;
 674	memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
 675	atomic_set(&vf->rxq_retry_count, 0);
 676}
 677
 678static int efx_vfdi_fini_all_queues(struct siena_vf *vf)
 679{
 680	struct efx_nic *efx = vf->efx;
 681	efx_oword_t reg;
 682	unsigned count = efx_vf_size(efx);
 683	unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
 684	unsigned timeout = HZ;
 685	unsigned index, rxqs_count;
 686	MCDI_DECLARE_BUF(inbuf, MC_CMD_FLUSH_RX_QUEUES_IN_LENMAX);
 687	int rc;
 688
 689	BUILD_BUG_ON(VF_MAX_RX_QUEUES >
 690		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
 691
 692	rtnl_lock();
 693	efx_siena_prepare_flush(efx);
 694	rtnl_unlock();
 695
 696	/* Flush all the initialized queues */
 697	rxqs_count = 0;
 698	for (index = 0; index < count; ++index) {
 699		if (test_bit(index, vf->txq_mask)) {
 700			EFX_POPULATE_OWORD_2(reg,
 701					     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 702					     FRF_AZ_TX_FLUSH_DESCQ,
 703					     vf_offset + index);
 704			efx_writeo(efx, &reg, FR_AZ_TX_FLUSH_DESCQ);
 705		}
 706		if (test_bit(index, vf->rxq_mask)) {
 707			MCDI_SET_ARRAY_DWORD(
 708				inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
 709				rxqs_count, vf_offset + index);
 710			rxqs_count++;
 711		}
 712	}
 713
 714	atomic_set(&vf->rxq_retry_count, 0);
 715	while (timeout && (vf->rxq_count || vf->txq_count)) {
 716		rc = efx_siena_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
 717				  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(rxqs_count),
 718				  NULL, 0, NULL);
 719		WARN_ON(rc < 0);
 720
 721		timeout = wait_event_timeout(vf->flush_waitq,
 722					     efx_vfdi_flush_wake(vf),
 723					     timeout);
 724		rxqs_count = 0;
 725		for (index = 0; index < count; ++index) {
 726			if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
 727				atomic_dec(&vf->rxq_retry_count);
 728				MCDI_SET_ARRAY_DWORD(
 729					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
 730					rxqs_count, vf_offset + index);
 731				rxqs_count++;
 732			}
 733		}
 734	}
 735
 736	rtnl_lock();
 737	siena_finish_flush(efx);
 738	rtnl_unlock();
 739
 740	/* Irrespective of success/failure, fini the queues */
 741	EFX_ZERO_OWORD(reg);
 742	for (index = 0; index < count; ++index) {
 743		efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
 744				 vf_offset + index);
 745		efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
 746				 vf_offset + index);
 747		efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL,
 748				 vf_offset + index);
 749		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL,
 750				 vf_offset + index);
 751	}
 752	efx_siena_sriov_bufs(efx, vf->buftbl_base, NULL,
 753			     EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
 754	efx_vfdi_flush_clear(vf);
 755
 756	vf->evq0_count = 0;
 757
 758	return timeout ? 0 : VFDI_RC_ETIMEDOUT;
 759}
 760
 761static int efx_vfdi_insert_filter(struct siena_vf *vf)
 762{
 763	struct efx_nic *efx = vf->efx;
 764	struct siena_nic_data *nic_data = efx->nic_data;
 765	struct vfdi_req *req = vf->buf.addr;
 766	unsigned vf_rxq = req->u.mac_filter.rxq;
 767	unsigned flags;
 768
 769	if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
 770		if (net_ratelimit())
 771			netif_err(efx, hw, efx->net_dev,
 772				  "ERROR: Invalid INSERT_FILTER from %s: rxq %d "
 773				  "flags 0x%x\n", vf->pci_name, vf_rxq,
 774				  req->u.mac_filter.flags);
 775		return VFDI_RC_EINVAL;
 776	}
 777
 778	flags = 0;
 779	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
 780		flags |= EFX_FILTER_FLAG_RX_RSS;
 781	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
 782		flags |= EFX_FILTER_FLAG_RX_SCATTER;
 783	vf->rx_filter_flags = flags;
 784	vf->rx_filter_qid = vf_rxq;
 785	vf->rx_filtering = true;
 786
 787	efx_siena_sriov_reset_rx_filter(vf);
 788	queue_work(vfdi_workqueue, &nic_data->peer_work);
 789
 790	return VFDI_RC_SUCCESS;
 791}
 792
 793static int efx_vfdi_remove_all_filters(struct siena_vf *vf)
 794{
 795	struct efx_nic *efx = vf->efx;
 796	struct siena_nic_data *nic_data = efx->nic_data;
 797
 798	vf->rx_filtering = false;
 799	efx_siena_sriov_reset_rx_filter(vf);
 800	queue_work(vfdi_workqueue, &nic_data->peer_work);
 801
 802	return VFDI_RC_SUCCESS;
 803}
 804
 805static int efx_vfdi_set_status_page(struct siena_vf *vf)
 806{
 807	struct efx_nic *efx = vf->efx;
 808	struct siena_nic_data *nic_data = efx->nic_data;
 809	struct vfdi_req *req = vf->buf.addr;
 810	u64 page_count = req->u.set_status_page.peer_page_count;
 811	u64 max_page_count =
 812		(EFX_PAGE_SIZE -
 813		 offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
 814		/ sizeof(req->u.set_status_page.peer_page_addr[0]);
 815
 816	if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
 817		if (net_ratelimit())
 818			netif_err(efx, hw, efx->net_dev,
 819				  "ERROR: Invalid SET_STATUS_PAGE from %s\n",
 820				  vf->pci_name);
 821		return VFDI_RC_EINVAL;
 822	}
 823
 824	mutex_lock(&nic_data->local_lock);
 825	mutex_lock(&vf->status_lock);
 826	vf->status_addr = req->u.set_status_page.dma_addr;
 827
 828	kfree(vf->peer_page_addrs);
 829	vf->peer_page_addrs = NULL;
 830	vf->peer_page_count = 0;
 831
 832	if (page_count) {
 833		vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
 834					      GFP_KERNEL);
 835		if (vf->peer_page_addrs) {
 836			memcpy(vf->peer_page_addrs,
 837			       req->u.set_status_page.peer_page_addr,
 838			       page_count * sizeof(u64));
 839			vf->peer_page_count = page_count;
 840		}
 841	}
 842
 843	__efx_siena_sriov_push_vf_status(vf);
 844	mutex_unlock(&vf->status_lock);
 845	mutex_unlock(&nic_data->local_lock);
 846
 847	return VFDI_RC_SUCCESS;
 848}
 849
 850static int efx_vfdi_clear_status_page(struct siena_vf *vf)
 851{
 852	mutex_lock(&vf->status_lock);
 853	vf->status_addr = 0;
 854	mutex_unlock(&vf->status_lock);
 855
 856	return VFDI_RC_SUCCESS;
 857}
 858
 859typedef int (*efx_vfdi_op_t)(struct siena_vf *vf);
 860
 861static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
 862	[VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
 863	[VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
 864	[VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
 865	[VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
 866	[VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
 867	[VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
 868	[VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
 869	[VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
 870};
 871
 872static void efx_siena_sriov_vfdi(struct work_struct *work)
 873{
 874	struct siena_vf *vf = container_of(work, struct siena_vf, req);
 875	struct efx_nic *efx = vf->efx;
 876	struct vfdi_req *req = vf->buf.addr;
 877	struct efx_memcpy_req copy[2];
 878	int rc;
 879
 880	/* Copy this page into the local address space */
 881	memset(copy, '\0', sizeof(copy));
 882	copy[0].from_rid = vf->pci_rid;
 883	copy[0].from_addr = vf->req_addr;
 884	copy[0].to_rid = efx->pci_dev->devfn;
 885	copy[0].to_addr = vf->buf.dma_addr;
 886	copy[0].length = EFX_PAGE_SIZE;
 887	rc = efx_siena_sriov_memcpy(efx, copy, 1);
 888	if (rc) {
 889		/* If we can't get the request, we can't reply to the caller */
 890		if (net_ratelimit())
 891			netif_err(efx, hw, efx->net_dev,
 892				  "ERROR: Unable to fetch VFDI request from %s rc %d\n",
 893				  vf->pci_name, -rc);
 894		vf->busy = false;
 895		return;
 896	}
 897
 898	if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
 899		rc = vfdi_ops[req->op](vf);
 900		if (rc == 0) {
 901			netif_dbg(efx, hw, efx->net_dev,
 902				  "vfdi request %d from %s ok\n",
 903				  req->op, vf->pci_name);
 904		}
 905	} else {
 906		netif_dbg(efx, hw, efx->net_dev,
 907			  "ERROR: Unrecognised request %d from VF %s addr "
 908			  "%llx\n", req->op, vf->pci_name,
 909			  (unsigned long long)vf->req_addr);
 910		rc = VFDI_RC_EOPNOTSUPP;
 911	}
 912
 913	/* Allow subsequent VF requests */
 914	vf->busy = false;
 915	smp_wmb();
 916
 917	/* Respond to the request */
 918	req->rc = rc;
 919	req->op = VFDI_OP_RESPONSE;
 920
 921	memset(copy, '\0', sizeof(copy));
 922	copy[0].from_buf = &req->rc;
 923	copy[0].to_rid = vf->pci_rid;
 924	copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
 925	copy[0].length = sizeof(req->rc);
 926	copy[1].from_buf = &req->op;
 927	copy[1].to_rid = vf->pci_rid;
 928	copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
 929	copy[1].length = sizeof(req->op);
 930
 931	(void)efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
 932}
 933
 934
 935
 936/* After a reset the event queues inside the guests no longer exist. Fill the
 937 * event ring in guest memory with VFDI reset events, then (re-initialise) the
 938 * event queue to raise an interrupt. The guest driver will then recover.
 939 */
 940
 941static void efx_siena_sriov_reset_vf(struct siena_vf *vf,
 942				     struct efx_buffer *buffer)
 943{
 944	struct efx_nic *efx = vf->efx;
 945	struct efx_memcpy_req copy_req[4];
 946	efx_qword_t event;
 947	unsigned int pos, count, k, buftbl, abs_evq;
 948	efx_oword_t reg;
 949	efx_dword_t ptr;
 950	int rc;
 951
 952	BUG_ON(buffer->len != EFX_PAGE_SIZE);
 953
 954	if (!vf->evq0_count)
 955		return;
 956	BUG_ON(vf->evq0_count & (vf->evq0_count - 1));
 957
 958	mutex_lock(&vf->status_lock);
 959	EFX_POPULATE_QWORD_3(event,
 960			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
 961			     VFDI_EV_SEQ, vf->msg_seqno,
 962			     VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
 963	vf->msg_seqno++;
 964	for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
 965		memcpy(buffer->addr + pos, &event, sizeof(event));
 966
 967	for (pos = 0; pos < vf->evq0_count; pos += count) {
 968		count = min_t(unsigned, vf->evq0_count - pos,
 969			      ARRAY_SIZE(copy_req));
 970		for (k = 0; k < count; k++) {
 971			copy_req[k].from_buf = NULL;
 972			copy_req[k].from_rid = efx->pci_dev->devfn;
 973			copy_req[k].from_addr = buffer->dma_addr;
 974			copy_req[k].to_rid = vf->pci_rid;
 975			copy_req[k].to_addr = vf->evq0_addrs[pos + k];
 976			copy_req[k].length = EFX_PAGE_SIZE;
 977		}
 978		rc = efx_siena_sriov_memcpy(efx, copy_req, count);
 979		if (rc) {
 980			if (net_ratelimit())
 981				netif_err(efx, hw, efx->net_dev,
 982					  "ERROR: Unable to notify %s of reset"
 983					  ": %d\n", vf->pci_name, -rc);
 984			break;
 985		}
 986	}
 987
 988	/* Reinitialise, arm and trigger evq0 */
 989	abs_evq = abs_index(vf, 0);
 990	buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
 991	efx_siena_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);
 992
 993	EFX_POPULATE_OWORD_3(reg,
 994			     FRF_CZ_TIMER_Q_EN, 1,
 995			     FRF_CZ_HOST_NOTIFY_MODE, 0,
 996			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
 997	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
 998	EFX_POPULATE_OWORD_3(reg,
 999			     FRF_AZ_EVQ_EN, 1,
1000			     FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
1001			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
1002	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
1003	EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
1004	efx_writed(efx, &ptr, FR_BZ_EVQ_RPTR + FR_BZ_EVQ_RPTR_STEP * abs_evq);
1005
1006	mutex_unlock(&vf->status_lock);
1007}
1008
1009static void efx_siena_sriov_reset_vf_work(struct work_struct *work)
1010{
1011	struct siena_vf *vf = container_of(work, struct siena_vf, req);
1012	struct efx_nic *efx = vf->efx;
1013	struct efx_buffer buf;
1014
1015	if (!efx_siena_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO)) {
1016		efx_siena_sriov_reset_vf(vf, &buf);
1017		efx_siena_free_buffer(efx, &buf);
1018	}
1019}
1020
1021static void efx_siena_sriov_handle_no_channel(struct efx_nic *efx)
1022{
1023	netif_err(efx, drv, efx->net_dev,
1024		  "ERROR: IOV requires MSI-X and 1 additional interrupt"
1025		  "vector. IOV disabled\n");
1026	efx->vf_count = 0;
1027}
1028
1029static int efx_siena_sriov_probe_channel(struct efx_channel *channel)
1030{
1031	struct siena_nic_data *nic_data = channel->efx->nic_data;
1032	nic_data->vfdi_channel = channel;
1033
1034	return 0;
1035}
1036
1037static void
1038efx_siena_sriov_get_channel_name(struct efx_channel *channel,
1039				 char *buf, size_t len)
1040{
1041	snprintf(buf, len, "%s-iov", channel->efx->name);
1042}
1043
1044static const struct efx_channel_type efx_siena_sriov_channel_type = {
1045	.handle_no_channel	= efx_siena_sriov_handle_no_channel,
1046	.pre_probe		= efx_siena_sriov_probe_channel,
1047	.post_remove		= efx_siena_channel_dummy_op_void,
1048	.get_name		= efx_siena_sriov_get_channel_name,
1049	/* no copy operation; channel must not be reallocated */
1050	.keep_eventq		= true,
1051};
1052
1053void efx_siena_sriov_probe(struct efx_nic *efx)
1054{
1055	unsigned count;
1056
1057	if (!max_vfs)
1058		return;
1059
1060	if (efx_siena_sriov_cmd(efx, false, &efx->vi_scale, &count)) {
1061		pci_info(efx->pci_dev, "no SR-IOV VFs probed\n");
1062		return;
1063	}
1064	if (count > 0 && count > max_vfs)
1065		count = max_vfs;
1066
1067	/* efx_nic_dimension_resources() will reduce vf_count as appopriate */
1068	efx->vf_count = count;
1069
1070	efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_siena_sriov_channel_type;
1071}
1072
1073/* Copy the list of individual addresses into the vfdi_status.peers
1074 * array and auxiliary pages, protected by %local_lock. Drop that lock
1075 * and then broadcast the address list to every VF.
1076 */
1077static void efx_siena_sriov_peer_work(struct work_struct *data)
1078{
1079	struct siena_nic_data *nic_data = container_of(data,
1080						       struct siena_nic_data,
1081						       peer_work);
1082	struct efx_nic *efx = nic_data->efx;
1083	struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
1084	struct siena_vf *vf;
1085	struct efx_local_addr *local_addr;
1086	struct vfdi_endpoint *peer;
1087	struct efx_endpoint_page *epp;
1088	struct list_head pages;
1089	unsigned int peer_space;
1090	unsigned int peer_count;
1091	unsigned int pos;
1092
1093	mutex_lock(&nic_data->local_lock);
1094
1095	/* Move the existing peer pages off %local_page_list */
1096	INIT_LIST_HEAD(&pages);
1097	list_splice_tail_init(&nic_data->local_page_list, &pages);
1098
1099	/* Populate the VF addresses starting from entry 1 (entry 0 is
1100	 * the PF address)
1101	 */
1102	peer = vfdi_status->peers + 1;
1103	peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
1104	peer_count = 1;
1105	for (pos = 0; pos < efx->vf_count; ++pos) {
1106		vf = nic_data->vf + pos;
1107
1108		mutex_lock(&vf->status_lock);
1109		if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
1110			*peer++ = vf->addr;
1111			++peer_count;
1112			--peer_space;
1113			BUG_ON(peer_space == 0);
1114		}
1115		mutex_unlock(&vf->status_lock);
1116	}
1117
1118	/* Fill the remaining addresses */
1119	list_for_each_entry(local_addr, &nic_data->local_addr_list, link) {
1120		ether_addr_copy(peer->mac_addr, local_addr->addr);
1121		peer->tci = 0;
1122		++peer;
1123		++peer_count;
1124		if (--peer_space == 0) {
1125			if (list_empty(&pages)) {
1126				epp = kmalloc(sizeof(*epp), GFP_KERNEL);
1127				if (!epp)
1128					break;
1129				epp->ptr = dma_alloc_coherent(
1130					&efx->pci_dev->dev, EFX_PAGE_SIZE,
1131					&epp->addr, GFP_KERNEL);
1132				if (!epp->ptr) {
1133					kfree(epp);
1134					break;
1135				}
1136			} else {
1137				epp = list_first_entry(
1138					&pages, struct efx_endpoint_page, link);
1139				list_del(&epp->link);
1140			}
1141
1142			list_add_tail(&epp->link, &nic_data->local_page_list);
1143			peer = (struct vfdi_endpoint *)epp->ptr;
1144			peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
1145		}
1146	}
1147	vfdi_status->peer_count = peer_count;
1148	mutex_unlock(&nic_data->local_lock);
1149
1150	/* Free any now unused endpoint pages */
1151	while (!list_empty(&pages)) {
1152		epp = list_first_entry(
1153			&pages, struct efx_endpoint_page, link);
1154		list_del(&epp->link);
1155		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1156				  epp->ptr, epp->addr);
1157		kfree(epp);
1158	}
1159
1160	/* Finally, push the pages */
1161	for (pos = 0; pos < efx->vf_count; ++pos) {
1162		vf = nic_data->vf + pos;
1163
1164		mutex_lock(&vf->status_lock);
1165		if (vf->status_addr)
1166			__efx_siena_sriov_push_vf_status(vf);
1167		mutex_unlock(&vf->status_lock);
1168	}
1169}
1170
1171static void efx_siena_sriov_free_local(struct efx_nic *efx)
1172{
1173	struct siena_nic_data *nic_data = efx->nic_data;
1174	struct efx_local_addr *local_addr;
1175	struct efx_endpoint_page *epp;
1176
1177	while (!list_empty(&nic_data->local_addr_list)) {
1178		local_addr = list_first_entry(&nic_data->local_addr_list,
1179					      struct efx_local_addr, link);
1180		list_del(&local_addr->link);
1181		kfree(local_addr);
1182	}
1183
1184	while (!list_empty(&nic_data->local_page_list)) {
1185		epp = list_first_entry(&nic_data->local_page_list,
1186				       struct efx_endpoint_page, link);
1187		list_del(&epp->link);
1188		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1189				  epp->ptr, epp->addr);
1190		kfree(epp);
1191	}
1192}
1193
1194static int efx_siena_sriov_vf_alloc(struct efx_nic *efx)
1195{
1196	unsigned index;
1197	struct siena_vf *vf;
1198	struct siena_nic_data *nic_data = efx->nic_data;
1199
1200	nic_data->vf = kcalloc(efx->vf_count, sizeof(*nic_data->vf),
1201			       GFP_KERNEL);
1202	if (!nic_data->vf)
1203		return -ENOMEM;
1204
1205	for (index = 0; index < efx->vf_count; ++index) {
1206		vf = nic_data->vf + index;
1207
1208		vf->efx = efx;
1209		vf->index = index;
1210		vf->rx_filter_id = -1;
1211		vf->tx_filter_mode = VF_TX_FILTER_AUTO;
1212		vf->tx_filter_id = -1;
1213		INIT_WORK(&vf->req, efx_siena_sriov_vfdi);
1214		INIT_WORK(&vf->reset_work, efx_siena_sriov_reset_vf_work);
1215		init_waitqueue_head(&vf->flush_waitq);
1216		mutex_init(&vf->status_lock);
1217		mutex_init(&vf->txq_lock);
1218	}
1219
1220	return 0;
1221}
1222
1223static void efx_siena_sriov_vfs_fini(struct efx_nic *efx)
1224{
1225	struct siena_nic_data *nic_data = efx->nic_data;
1226	struct siena_vf *vf;
1227	unsigned int pos;
1228
1229	for (pos = 0; pos < efx->vf_count; ++pos) {
1230		vf = nic_data->vf + pos;
1231
1232		efx_siena_free_buffer(efx, &vf->buf);
1233		kfree(vf->peer_page_addrs);
1234		vf->peer_page_addrs = NULL;
1235		vf->peer_page_count = 0;
1236
1237		vf->evq0_count = 0;
1238	}
1239}
1240
1241static int efx_siena_sriov_vfs_init(struct efx_nic *efx)
1242{
1243	struct pci_dev *pci_dev = efx->pci_dev;
1244	struct siena_nic_data *nic_data = efx->nic_data;
1245	unsigned index, devfn, sriov, buftbl_base;
1246	u16 offset, stride;
1247	struct siena_vf *vf;
1248	int rc;
1249
1250	sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
1251	if (!sriov)
1252		return -ENOENT;
1253
1254	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
1255	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);
1256
1257	buftbl_base = nic_data->vf_buftbl_base;
1258	devfn = pci_dev->devfn + offset;
1259	for (index = 0; index < efx->vf_count; ++index) {
1260		vf = nic_data->vf + index;
1261
1262		/* Reserve buffer entries */
1263		vf->buftbl_base = buftbl_base;
1264		buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);
1265
1266		vf->pci_rid = devfn;
1267		snprintf(vf->pci_name, sizeof(vf->pci_name),
1268			 "%04x:%02x:%02x.%d",
1269			 pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
1270			 PCI_SLOT(devfn), PCI_FUNC(devfn));
1271
1272		rc = efx_siena_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE,
1273					    GFP_KERNEL);
1274		if (rc)
1275			goto fail;
1276
1277		devfn += stride;
1278	}
1279
1280	return 0;
1281
1282fail:
1283	efx_siena_sriov_vfs_fini(efx);
1284	return rc;
1285}
1286
1287int efx_siena_sriov_init(struct efx_nic *efx)
1288{
1289	struct net_device *net_dev = efx->net_dev;
1290	struct siena_nic_data *nic_data = efx->nic_data;
1291	struct vfdi_status *vfdi_status;
1292	int rc;
1293
1294	/* Ensure there's room for vf_channel */
1295	BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
1296	/* Ensure that VI_BASE is aligned on VI_SCALE */
1297	BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));
1298
1299	if (efx->vf_count == 0)
1300		return 0;
1301
1302	rc = efx_siena_sriov_cmd(efx, true, NULL, NULL);
1303	if (rc)
1304		goto fail_cmd;
1305
1306	rc = efx_siena_alloc_buffer(efx, &nic_data->vfdi_status,
1307				    sizeof(*vfdi_status), GFP_KERNEL);
1308	if (rc)
1309		goto fail_status;
1310	vfdi_status = nic_data->vfdi_status.addr;
1311	memset(vfdi_status, 0, sizeof(*vfdi_status));
1312	vfdi_status->version = 1;
1313	vfdi_status->length = sizeof(*vfdi_status);
1314	vfdi_status->max_tx_channels = vf_max_tx_channels;
1315	vfdi_status->vi_scale = efx->vi_scale;
1316	vfdi_status->rss_rxq_count = efx->rss_spread;
1317	vfdi_status->peer_count = 1 + efx->vf_count;
1318	vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;
1319
1320	rc = efx_siena_sriov_vf_alloc(efx);
1321	if (rc)
1322		goto fail_alloc;
1323
1324	mutex_init(&nic_data->local_lock);
1325	INIT_WORK(&nic_data->peer_work, efx_siena_sriov_peer_work);
1326	INIT_LIST_HEAD(&nic_data->local_addr_list);
1327	INIT_LIST_HEAD(&nic_data->local_page_list);
1328
1329	rc = efx_siena_sriov_vfs_init(efx);
1330	if (rc)
1331		goto fail_vfs;
1332
1333	rtnl_lock();
1334	ether_addr_copy(vfdi_status->peers[0].mac_addr, net_dev->dev_addr);
1335	efx->vf_init_count = efx->vf_count;
1336	rtnl_unlock();
1337
1338	efx_siena_sriov_usrev(efx, true);
1339
1340	/* At this point we must be ready to accept VFDI requests */
1341
1342	rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
1343	if (rc)
1344		goto fail_pci;
1345
1346	netif_info(efx, probe, net_dev,
1347		   "enabled SR-IOV for %d VFs, %d VI per VF\n",
1348		   efx->vf_count, efx_vf_size(efx));
1349	return 0;
1350
1351fail_pci:
1352	efx_siena_sriov_usrev(efx, false);
1353	rtnl_lock();
1354	efx->vf_init_count = 0;
1355	rtnl_unlock();
1356	efx_siena_sriov_vfs_fini(efx);
1357fail_vfs:
1358	cancel_work_sync(&nic_data->peer_work);
1359	efx_siena_sriov_free_local(efx);
1360	kfree(nic_data->vf);
1361fail_alloc:
1362	efx_siena_free_buffer(efx, &nic_data->vfdi_status);
1363fail_status:
1364	efx_siena_sriov_cmd(efx, false, NULL, NULL);
1365fail_cmd:
1366	return rc;
1367}
1368
1369void efx_siena_sriov_fini(struct efx_nic *efx)
1370{
1371	struct siena_vf *vf;
1372	unsigned int pos;
1373	struct siena_nic_data *nic_data = efx->nic_data;
1374
1375	if (efx->vf_init_count == 0)
1376		return;
1377
1378	/* Disable all interfaces to reconfiguration */
1379	BUG_ON(nic_data->vfdi_channel->enabled);
1380	efx_siena_sriov_usrev(efx, false);
1381	rtnl_lock();
1382	efx->vf_init_count = 0;
1383	rtnl_unlock();
1384
1385	/* Flush all reconfiguration work */
1386	for (pos = 0; pos < efx->vf_count; ++pos) {
1387		vf = nic_data->vf + pos;
1388		cancel_work_sync(&vf->req);
1389		cancel_work_sync(&vf->reset_work);
1390	}
1391	cancel_work_sync(&nic_data->peer_work);
1392
1393	pci_disable_sriov(efx->pci_dev);
1394
1395	/* Tear down back-end state */
1396	efx_siena_sriov_vfs_fini(efx);
1397	efx_siena_sriov_free_local(efx);
1398	kfree(nic_data->vf);
1399	efx_siena_free_buffer(efx, &nic_data->vfdi_status);
1400	efx_siena_sriov_cmd(efx, false, NULL, NULL);
1401}
1402
1403void efx_siena_sriov_event(struct efx_channel *channel, efx_qword_t *event)
1404{
1405	struct efx_nic *efx = channel->efx;
1406	struct siena_vf *vf;
1407	unsigned qid, seq, type, data;
1408
1409	qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);
1410
1411	/* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
1412	BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
1413	seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
1414	type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
1415	data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);
1416
1417	netif_vdbg(efx, hw, efx->net_dev,
1418		   "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
1419		   qid, seq, type, data);
1420
1421	if (map_vi_index(efx, qid, &vf, NULL))
1422		return;
1423	if (vf->busy)
1424		goto error;
1425
1426	if (type == VFDI_EV_TYPE_REQ_WORD0) {
1427		/* Resynchronise */
1428		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1429		vf->req_seqno = seq + 1;
1430		vf->req_addr = 0;
1431	} else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
1432		goto error;
1433
1434	switch (vf->req_type) {
1435	case VFDI_EV_TYPE_REQ_WORD0:
1436	case VFDI_EV_TYPE_REQ_WORD1:
1437	case VFDI_EV_TYPE_REQ_WORD2:
1438		vf->req_addr |= (u64)data << (vf->req_type << 4);
1439		++vf->req_type;
1440		return;
1441
1442	case VFDI_EV_TYPE_REQ_WORD3:
1443		vf->req_addr |= (u64)data << 48;
1444		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1445		vf->busy = true;
1446		queue_work(vfdi_workqueue, &vf->req);
1447		return;
1448	}
1449
1450error:
1451	if (net_ratelimit())
1452		netif_err(efx, hw, efx->net_dev,
1453			  "ERROR: Screaming VFDI request from %s\n",
1454			  vf->pci_name);
1455	/* Reset the request and sequence number */
1456	vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1457	vf->req_seqno = seq + 1;
1458}
1459
1460void efx_siena_sriov_flr(struct efx_nic *efx, unsigned vf_i)
1461{
1462	struct siena_nic_data *nic_data = efx->nic_data;
1463	struct siena_vf *vf;
1464
1465	if (vf_i > efx->vf_init_count)
1466		return;
1467	vf = nic_data->vf + vf_i;
1468	netif_info(efx, hw, efx->net_dev,
1469		   "FLR on VF %s\n", vf->pci_name);
1470
1471	vf->status_addr = 0;
1472	efx_vfdi_remove_all_filters(vf);
1473	efx_vfdi_flush_clear(vf);
1474
1475	vf->evq0_count = 0;
1476}
1477
1478int efx_siena_sriov_mac_address_changed(struct efx_nic *efx)
1479{
1480	struct siena_nic_data *nic_data = efx->nic_data;
1481	struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
1482
1483	if (!efx->vf_init_count)
1484		return 0;
1485	ether_addr_copy(vfdi_status->peers[0].mac_addr,
1486			efx->net_dev->dev_addr);
1487	queue_work(vfdi_workqueue, &nic_data->peer_work);
1488
1489	return 0;
1490}
1491
1492void efx_siena_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1493{
1494	struct siena_vf *vf;
1495	unsigned queue, qid;
1496
1497	queue = EFX_QWORD_FIELD(*event,  FSF_AZ_DRIVER_EV_SUBDATA);
1498	if (map_vi_index(efx, queue, &vf, &qid))
1499		return;
1500	/* Ignore flush completions triggered by an FLR */
1501	if (!test_bit(qid, vf->txq_mask))
1502		return;
1503
1504	__clear_bit(qid, vf->txq_mask);
1505	--vf->txq_count;
1506
1507	if (efx_vfdi_flush_wake(vf))
1508		wake_up(&vf->flush_waitq);
1509}
1510
1511void efx_siena_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1512{
1513	struct siena_vf *vf;
1514	unsigned ev_failed, queue, qid;
1515
1516	queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1517	ev_failed = EFX_QWORD_FIELD(*event,
1518				    FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1519	if (map_vi_index(efx, queue, &vf, &qid))
1520		return;
1521	if (!test_bit(qid, vf->rxq_mask))
1522		return;
1523
1524	if (ev_failed) {
1525		set_bit(qid, vf->rxq_retry_mask);
1526		atomic_inc(&vf->rxq_retry_count);
1527	} else {
1528		__clear_bit(qid, vf->rxq_mask);
1529		--vf->rxq_count;
1530	}
1531	if (efx_vfdi_flush_wake(vf))
1532		wake_up(&vf->flush_waitq);
1533}
1534
1535/* Called from napi. Schedule the reset work item */
1536void efx_siena_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
1537{
1538	struct siena_vf *vf;
1539	unsigned int rel;
1540
1541	if (map_vi_index(efx, dmaq, &vf, &rel))
1542		return;
1543
1544	if (net_ratelimit())
1545		netif_err(efx, hw, efx->net_dev,
1546			  "VF %d DMA Q %d reports descriptor fetch error.\n",
1547			  vf->index, rel);
1548	queue_work(vfdi_workqueue, &vf->reset_work);
1549}
1550
1551/* Reset all VFs */
1552void efx_siena_sriov_reset(struct efx_nic *efx)
1553{
1554	struct siena_nic_data *nic_data = efx->nic_data;
1555	unsigned int vf_i;
1556	struct efx_buffer buf;
1557	struct siena_vf *vf;
1558
1559	ASSERT_RTNL();
1560
1561	if (efx->vf_init_count == 0)
1562		return;
1563
1564	efx_siena_sriov_usrev(efx, true);
1565	(void)efx_siena_sriov_cmd(efx, true, NULL, NULL);
1566
1567	if (efx_siena_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO))
1568		return;
1569
1570	for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
1571		vf = nic_data->vf + vf_i;
1572		efx_siena_sriov_reset_vf(vf, &buf);
1573	}
1574
1575	efx_siena_free_buffer(efx, &buf);
1576}
1577
1578int efx_init_sriov(void)
1579{
1580	/* A single threaded workqueue is sufficient. efx_siena_sriov_vfdi() and
1581	 * efx_siena_sriov_peer_work() spend almost all their time sleeping for
1582	 * MCDI to complete anyway
1583	 */
1584	vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
1585	if (!vfdi_workqueue)
1586		return -ENOMEM;
1587	return 0;
1588}
1589
1590void efx_fini_sriov(void)
1591{
1592	destroy_workqueue(vfdi_workqueue);
1593}
1594
1595int efx_siena_sriov_set_vf_mac(struct efx_nic *efx, int vf_i, const u8 *mac)
1596{
1597	struct siena_nic_data *nic_data = efx->nic_data;
1598	struct siena_vf *vf;
1599
1600	if (vf_i >= efx->vf_init_count)
1601		return -EINVAL;
1602	vf = nic_data->vf + vf_i;
1603
1604	mutex_lock(&vf->status_lock);
1605	ether_addr_copy(vf->addr.mac_addr, mac);
1606	__efx_siena_sriov_update_vf_addr(vf);
1607	mutex_unlock(&vf->status_lock);
1608
1609	return 0;
1610}
1611
1612int efx_siena_sriov_set_vf_vlan(struct efx_nic *efx, int vf_i,
1613				u16 vlan, u8 qos)
1614{
1615	struct siena_nic_data *nic_data = efx->nic_data;
1616	struct siena_vf *vf;
1617	u16 tci;
1618
1619	if (vf_i >= efx->vf_init_count)
1620		return -EINVAL;
1621	vf = nic_data->vf + vf_i;
1622
1623	mutex_lock(&vf->status_lock);
1624	tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
1625	vf->addr.tci = htons(tci);
1626	__efx_siena_sriov_update_vf_addr(vf);
1627	mutex_unlock(&vf->status_lock);
1628
1629	return 0;
1630}
1631
1632int efx_siena_sriov_set_vf_spoofchk(struct efx_nic *efx, int vf_i,
1633				    bool spoofchk)
1634{
1635	struct siena_nic_data *nic_data = efx->nic_data;
1636	struct siena_vf *vf;
1637	int rc;
1638
1639	if (vf_i >= efx->vf_init_count)
1640		return -EINVAL;
1641	vf = nic_data->vf + vf_i;
1642
1643	mutex_lock(&vf->txq_lock);
1644	if (vf->txq_count == 0) {
1645		vf->tx_filter_mode =
1646			spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
1647		rc = 0;
1648	} else {
1649		/* This cannot be changed while TX queues are running */
1650		rc = -EBUSY;
1651	}
1652	mutex_unlock(&vf->txq_lock);
1653	return rc;
1654}
1655
1656int efx_siena_sriov_get_vf_config(struct efx_nic *efx, int vf_i,
1657				  struct ifla_vf_info *ivi)
1658{
1659	struct siena_nic_data *nic_data = efx->nic_data;
1660	struct siena_vf *vf;
1661	u16 tci;
1662
1663	if (vf_i >= efx->vf_init_count)
1664		return -EINVAL;
1665	vf = nic_data->vf + vf_i;
1666
1667	ivi->vf = vf_i;
1668	ether_addr_copy(ivi->mac, vf->addr.mac_addr);
1669	ivi->max_tx_rate = 0;
1670	ivi->min_tx_rate = 0;
1671	tci = ntohs(vf->addr.tci);
1672	ivi->vlan = tci & VLAN_VID_MASK;
1673	ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
1674	ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;
1675
1676	return 0;
1677}
1678
1679bool efx_siena_sriov_wanted(struct efx_nic *efx)
1680{
1681	return efx->vf_count != 0;
1682}
1683
1684int efx_siena_sriov_configure(struct efx_nic *efx, int num_vfs)
1685{
1686	return 0;
1687}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2010-2012 Solarflare Communications Inc.
   5 */
   6#include <linux/pci.h>
   7#include <linux/module.h>
   8#include "net_driver.h"
   9#include "efx.h"
  10#include "efx_channels.h"
  11#include "nic.h"
  12#include "io.h"
  13#include "mcdi.h"
  14#include "filter.h"
  15#include "mcdi_pcol.h"
  16#include "farch_regs.h"
  17#include "siena_sriov.h"
  18#include "vfdi.h"
  19
  20/* Number of longs required to track all the VIs in a VF */
  21#define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)
  22
  23/* Maximum number of RX queues supported */
  24#define VF_MAX_RX_QUEUES 63
  25
  26/**
  27 * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
  28 * @VF_TX_FILTER_OFF: Disabled
  29 * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
  30 *	2 TX queues allowed per VF.
  31 * @VF_TX_FILTER_ON: Enabled
  32 */
  33enum efx_vf_tx_filter_mode {
  34	VF_TX_FILTER_OFF,
  35	VF_TX_FILTER_AUTO,
  36	VF_TX_FILTER_ON,
  37};
  38
  39/**
  40 * struct siena_vf - Back-end resource and protocol state for a PCI VF
  41 * @efx: The Efx NIC owning this VF
  42 * @pci_rid: The PCI requester ID for this VF
  43 * @pci_name: The PCI name (formatted address) of this VF
  44 * @index: Index of VF within its port and PF.
  45 * @req: VFDI incoming request work item. Incoming USR_EV events are received
  46 *	by the NAPI handler, but must be handled by executing MCDI requests
  47 *	inside a work item.
  48 * @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
  49 * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
  50 * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
  51 * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
  52 *	@status_lock
  53 * @busy: VFDI request queued to be processed or being processed. Receiving
  54 *	a VFDI request when @busy is set is an error condition.
  55 * @buf: Incoming VFDI requests are DMA from the VF into this buffer.
  56 * @buftbl_base: Buffer table entries for this VF start at this index.
  57 * @rx_filtering: Receive filtering has been requested by the VF driver.
  58 * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
  59 * @rx_filter_qid: VF relative qid for RX filter requested by VF.
  60 * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
  61 * @tx_filter_mode: Transmit MAC filtering mode.
  62 * @tx_filter_id: Transmit MAC filter ID.
  63 * @addr: The MAC address and outer vlan tag of the VF.
  64 * @status_addr: VF DMA address of page for &struct vfdi_status updates.
  65 * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
  66 *	@peer_page_addrs and @peer_page_count from simultaneous
  67 *	updates by the VM and consumption by
  68 *	efx_siena_sriov_update_vf_addr()
  69 * @peer_page_addrs: Pointer to an array of guest pages for local addresses.
  70 * @peer_page_count: Number of entries in @peer_page_count.
  71 * @evq0_addrs: Array of guest pages backing evq0.
  72 * @evq0_count: Number of entries in @evq0_addrs.
  73 * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
  74 *	to wait for flush completions.
  75 * @txq_lock: Mutex for TX queue allocation.
  76 * @txq_mask: Mask of initialized transmit queues.
  77 * @txq_count: Number of initialized transmit queues.
  78 * @rxq_mask: Mask of initialized receive queues.
  79 * @rxq_count: Number of initialized receive queues.
  80 * @rxq_retry_mask: Mask or receive queues that need to be flushed again
  81 *	due to flush failure.
  82 * @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
  83 * @reset_work: Work item to schedule a VF reset.
  84 */
  85struct siena_vf {
  86	struct efx_nic *efx;
  87	unsigned int pci_rid;
  88	char pci_name[13]; /* dddd:bb:dd.f */
  89	unsigned int index;
  90	struct work_struct req;
  91	u64 req_addr;
  92	int req_type;
  93	unsigned req_seqno;
  94	unsigned msg_seqno;
  95	bool busy;
  96	struct efx_buffer buf;
  97	unsigned buftbl_base;
  98	bool rx_filtering;
  99	enum efx_filter_flags rx_filter_flags;
 100	unsigned rx_filter_qid;
 101	int rx_filter_id;
 102	enum efx_vf_tx_filter_mode tx_filter_mode;
 103	int tx_filter_id;
 104	struct vfdi_endpoint addr;
 105	u64 status_addr;
 106	struct mutex status_lock;
 107	u64 *peer_page_addrs;
 108	unsigned peer_page_count;
 109	u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
 110		       EFX_BUF_SIZE];
 111	unsigned evq0_count;
 112	wait_queue_head_t flush_waitq;
 113	struct mutex txq_lock;
 114	unsigned long txq_mask[VI_MASK_LENGTH];
 115	unsigned txq_count;
 116	unsigned long rxq_mask[VI_MASK_LENGTH];
 117	unsigned rxq_count;
 118	unsigned long rxq_retry_mask[VI_MASK_LENGTH];
 119	atomic_t rxq_retry_count;
 120	struct work_struct reset_work;
 121};
 122
 123struct efx_memcpy_req {
 124	unsigned int from_rid;
 125	void *from_buf;
 126	u64 from_addr;
 127	unsigned int to_rid;
 128	u64 to_addr;
 129	unsigned length;
 130};
 131
 132/**
 133 * struct efx_local_addr - A MAC address on the vswitch without a VF.
 134 *
 135 * Siena does not have a switch, so VFs can't transmit data to each
 136 * other. Instead the VFs must be made aware of the local addresses
 137 * on the vswitch, so that they can arrange for an alternative
 138 * software datapath to be used.
 139 *
 140 * @link: List head for insertion into efx->local_addr_list.
 141 * @addr: Ethernet address
 142 */
 143struct efx_local_addr {
 144	struct list_head link;
 145	u8 addr[ETH_ALEN];
 146};
 147
 148/**
 149 * struct efx_endpoint_page - Page of vfdi_endpoint structures
 150 *
 151 * @link: List head for insertion into efx->local_page_list.
 152 * @ptr: Pointer to page.
 153 * @addr: DMA address of page.
 154 */
 155struct efx_endpoint_page {
 156	struct list_head link;
 157	void *ptr;
 158	dma_addr_t addr;
 159};
 160
 161/* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
 162#define EFX_BUFTBL_TXQ_BASE(_vf, _qid)					\
 163	((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
 164#define EFX_BUFTBL_RXQ_BASE(_vf, _qid)					\
 165	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
 166	 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
 167#define EFX_BUFTBL_EVQ_BASE(_vf, _qid)					\
 168	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
 169	 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
 170
 171#define EFX_FIELD_MASK(_field)			\
 172	((1 << _field ## _WIDTH) - 1)
 173
 174/* VFs can only use this many transmit channels */
 175static unsigned int vf_max_tx_channels = 2;
 176module_param(vf_max_tx_channels, uint, 0444);
 177MODULE_PARM_DESC(vf_max_tx_channels,
 178		 "Limit the number of TX channels VFs can use");
 179
 180static int max_vfs = -1;
 181module_param(max_vfs, int, 0444);
 182MODULE_PARM_DESC(max_vfs,
 183		 "Reduce the number of VFs initialized by the driver");
 184
 185/* Workqueue used by VFDI communication.  We can't use the global
 186 * workqueue because it may be running the VF driver's probe()
 187 * routine, which will be blocked there waiting for a VFDI response.
 188 */
 189static struct workqueue_struct *vfdi_workqueue;
 190
 191static unsigned abs_index(struct siena_vf *vf, unsigned index)
 192{
 193	return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
 194}
 195
 196static int efx_siena_sriov_cmd(struct efx_nic *efx, bool enable,
 197			       unsigned *vi_scale_out, unsigned *vf_total_out)
 198{
 199	MCDI_DECLARE_BUF(inbuf, MC_CMD_SRIOV_IN_LEN);
 200	MCDI_DECLARE_BUF(outbuf, MC_CMD_SRIOV_OUT_LEN);
 201	unsigned vi_scale, vf_total;
 202	size_t outlen;
 203	int rc;
 204
 205	MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
 206	MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
 207	MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);
 208
 209	rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_SRIOV, inbuf,
 210				      MC_CMD_SRIOV_IN_LEN, outbuf,
 211				      MC_CMD_SRIOV_OUT_LEN, &outlen);
 212	if (rc)
 213		return rc;
 214	if (outlen < MC_CMD_SRIOV_OUT_LEN)
 215		return -EIO;
 216
 217	vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
 218	vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
 219	if (vi_scale > EFX_VI_SCALE_MAX)
 220		return -EOPNOTSUPP;
 221
 222	if (vi_scale_out)
 223		*vi_scale_out = vi_scale;
 224	if (vf_total_out)
 225		*vf_total_out = vf_total;
 226
 227	return 0;
 228}
 229
 230static void efx_siena_sriov_usrev(struct efx_nic *efx, bool enabled)
 231{
 232	struct siena_nic_data *nic_data = efx->nic_data;
 233	efx_oword_t reg;
 234
 235	EFX_POPULATE_OWORD_2(reg,
 236			     FRF_CZ_USREV_DIS, enabled ? 0 : 1,
 237			     FRF_CZ_DFLT_EVQ, nic_data->vfdi_channel->channel);
 238	efx_writeo(efx, &reg, FR_CZ_USR_EV_CFG);
 239}
 240
 241static int efx_siena_sriov_memcpy(struct efx_nic *efx,
 242				  struct efx_memcpy_req *req,
 243				  unsigned int count)
 244{
 245	MCDI_DECLARE_BUF(inbuf, MCDI_CTL_SDU_LEN_MAX_V1);
 246	MCDI_DECLARE_STRUCT_PTR(record);
 247	unsigned int index, used;
 248	u64 from_addr;
 249	u32 from_rid;
 250	int rc;
 251
 252	mb();	/* Finish writing source/reading dest before DMA starts */
 253
 254	if (WARN_ON(count > MC_CMD_MEMCPY_IN_RECORD_MAXNUM))
 255		return -ENOBUFS;
 256	used = MC_CMD_MEMCPY_IN_LEN(count);
 257
 258	for (index = 0; index < count; index++) {
 259		record = MCDI_ARRAY_STRUCT_PTR(inbuf, MEMCPY_IN_RECORD, index);
 260		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_NUM_RECORDS,
 261			       count);
 262		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
 263			       req->to_rid);
 264		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR,
 265			       req->to_addr);
 266		if (req->from_buf == NULL) {
 267			from_rid = req->from_rid;
 268			from_addr = req->from_addr;
 269		} else {
 270			if (WARN_ON(used + req->length >
 271				    MCDI_CTL_SDU_LEN_MAX_V1)) {
 272				rc = -ENOBUFS;
 273				goto out;
 274			}
 275
 276			from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
 277			from_addr = used;
 278			memcpy(_MCDI_PTR(inbuf, used), req->from_buf,
 279			       req->length);
 280			used += req->length;
 281		}
 282
 283		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
 284		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR,
 285			       from_addr);
 286		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
 287			       req->length);
 288
 289		++req;
 290	}
 291
 292	rc = efx_siena_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
 293out:
 294	mb();	/* Don't write source/read dest before DMA is complete */
 295
 296	return rc;
 297}
 298
 299/* The TX filter is entirely controlled by this driver, and is modified
 300 * underneath the feet of the VF
 301 */
 302static void efx_siena_sriov_reset_tx_filter(struct siena_vf *vf)
 303{
 304	struct efx_nic *efx = vf->efx;
 305	struct efx_filter_spec filter;
 306	u16 vlan;
 307	int rc;
 308
 309	if (vf->tx_filter_id != -1) {
 310		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 311					  vf->tx_filter_id);
 312		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
 313			  vf->pci_name, vf->tx_filter_id);
 314		vf->tx_filter_id = -1;
 315	}
 316
 317	if (is_zero_ether_addr(vf->addr.mac_addr))
 318		return;
 319
 320	/* Turn on TX filtering automatically if not explicitly
 321	 * enabled or disabled.
 322	 */
 323	if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
 324		vf->tx_filter_mode = VF_TX_FILTER_ON;
 325
 326	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
 327	efx_filter_init_tx(&filter, abs_index(vf, 0));
 328	rc = efx_filter_set_eth_local(&filter,
 329				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
 330				      vf->addr.mac_addr);
 331	BUG_ON(rc);
 332
 333	rc = efx_filter_insert_filter(efx, &filter, true);
 334	if (rc < 0) {
 335		netif_warn(efx, hw, efx->net_dev,
 336			   "Unable to migrate tx filter for vf %s\n",
 337			   vf->pci_name);
 338	} else {
 339		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
 340			  vf->pci_name, rc);
 341		vf->tx_filter_id = rc;
 342	}
 343}
 344
 345/* The RX filter is managed here on behalf of the VF driver */
 346static void efx_siena_sriov_reset_rx_filter(struct siena_vf *vf)
 347{
 348	struct efx_nic *efx = vf->efx;
 349	struct efx_filter_spec filter;
 350	u16 vlan;
 351	int rc;
 352
 353	if (vf->rx_filter_id != -1) {
 354		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 355					  vf->rx_filter_id);
 356		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
 357			  vf->pci_name, vf->rx_filter_id);
 358		vf->rx_filter_id = -1;
 359	}
 360
 361	if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
 362		return;
 363
 364	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
 365	efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
 366			   vf->rx_filter_flags,
 367			   abs_index(vf, vf->rx_filter_qid));
 368	rc = efx_filter_set_eth_local(&filter,
 369				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
 370				      vf->addr.mac_addr);
 371	BUG_ON(rc);
 372
 373	rc = efx_filter_insert_filter(efx, &filter, true);
 374	if (rc < 0) {
 375		netif_warn(efx, hw, efx->net_dev,
 376			   "Unable to insert rx filter for vf %s\n",
 377			   vf->pci_name);
 378	} else {
 379		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
 380			  vf->pci_name, rc);
 381		vf->rx_filter_id = rc;
 382	}
 383}
 384
 385static void __efx_siena_sriov_update_vf_addr(struct siena_vf *vf)
 386{
 387	struct efx_nic *efx = vf->efx;
 388	struct siena_nic_data *nic_data = efx->nic_data;
 389
 390	efx_siena_sriov_reset_tx_filter(vf);
 391	efx_siena_sriov_reset_rx_filter(vf);
 392	queue_work(vfdi_workqueue, &nic_data->peer_work);
 393}
 394
 395/* Push the peer list to this VF. The caller must hold status_lock to interlock
 396 * with VFDI requests, and they must be serialised against manipulation of
 397 * local_page_list, either by acquiring local_lock or by running from
 398 * efx_siena_sriov_peer_work()
 399 */
 400static void __efx_siena_sriov_push_vf_status(struct siena_vf *vf)
 401{
 402	struct efx_nic *efx = vf->efx;
 403	struct siena_nic_data *nic_data = efx->nic_data;
 404	struct vfdi_status *status = nic_data->vfdi_status.addr;
 405	struct efx_memcpy_req copy[4];
 406	struct efx_endpoint_page *epp;
 407	unsigned int pos, count;
 408	unsigned data_offset;
 409	efx_qword_t event;
 410
 411	WARN_ON(!mutex_is_locked(&vf->status_lock));
 412	WARN_ON(!vf->status_addr);
 413
 414	status->local = vf->addr;
 415	status->generation_end = ++status->generation_start;
 416
 417	memset(copy, '\0', sizeof(copy));
 418	/* Write generation_start */
 419	copy[0].from_buf = &status->generation_start;
 420	copy[0].to_rid = vf->pci_rid;
 421	copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
 422						     generation_start);
 423	copy[0].length = sizeof(status->generation_start);
 424	/* DMA the rest of the structure (excluding the generations). This
 425	 * assumes that the non-generation portion of vfdi_status is in
 426	 * one chunk starting at the version member.
 427	 */
 428	data_offset = offsetof(struct vfdi_status, version);
 429	copy[1].from_rid = efx->pci_dev->devfn;
 430	copy[1].from_addr = nic_data->vfdi_status.dma_addr + data_offset;
 431	copy[1].to_rid = vf->pci_rid;
 432	copy[1].to_addr = vf->status_addr + data_offset;
 433	copy[1].length =  status->length - data_offset;
 434
 435	/* Copy the peer pages */
 436	pos = 2;
 437	count = 0;
 438	list_for_each_entry(epp, &nic_data->local_page_list, link) {
 439		if (count == vf->peer_page_count) {
 440			/* The VF driver will know they need to provide more
 441			 * pages because peer_addr_count is too large.
 442			 */
 443			break;
 444		}
 445		copy[pos].from_buf = NULL;
 446		copy[pos].from_rid = efx->pci_dev->devfn;
 447		copy[pos].from_addr = epp->addr;
 448		copy[pos].to_rid = vf->pci_rid;
 449		copy[pos].to_addr = vf->peer_page_addrs[count];
 450		copy[pos].length = EFX_PAGE_SIZE;
 451
 452		if (++pos == ARRAY_SIZE(copy)) {
 453			efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
 454			pos = 0;
 455		}
 456		++count;
 457	}
 458
 459	/* Write generation_end */
 460	copy[pos].from_buf = &status->generation_end;
 461	copy[pos].to_rid = vf->pci_rid;
 462	copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
 463						       generation_end);
 464	copy[pos].length = sizeof(status->generation_end);
 465	efx_siena_sriov_memcpy(efx, copy, pos + 1);
 466
 467	/* Notify the guest */
 468	EFX_POPULATE_QWORD_3(event,
 469			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
 470			     VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
 471			     VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
 472	++vf->msg_seqno;
 473	efx_farch_generate_event(efx,
 474				 EFX_VI_BASE + vf->index * efx_vf_size(efx),
 475				 &event);
 476}
 477
 478static void efx_siena_sriov_bufs(struct efx_nic *efx, unsigned offset,
 479				 u64 *addr, unsigned count)
 480{
 481	efx_qword_t buf;
 482	unsigned pos;
 483
 484	for (pos = 0; pos < count; ++pos) {
 485		EFX_POPULATE_QWORD_3(buf,
 486				     FRF_AZ_BUF_ADR_REGION, 0,
 487				     FRF_AZ_BUF_ADR_FBUF,
 488				     addr ? addr[pos] >> 12 : 0,
 489				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 490		efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
 491				&buf, offset + pos);
 492	}
 493}
 494
 495static bool bad_vf_index(struct efx_nic *efx, unsigned index)
 496{
 497	return index >= efx_vf_size(efx);
 498}
 499
 500static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
 501{
 502	unsigned max_buf_count = max_entry_count *
 503		sizeof(efx_qword_t) / EFX_BUF_SIZE;
 504
 505	return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
 506}
 507
 508/* Check that VI specified by per-port index belongs to a VF.
 509 * Optionally set VF index and VI index within the VF.
 510 */
 511static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
 512			 struct siena_vf **vf_out, unsigned *rel_index_out)
 513{
 514	struct siena_nic_data *nic_data = efx->nic_data;
 515	unsigned vf_i;
 516
 517	if (abs_index < EFX_VI_BASE)
 518		return true;
 519	vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
 520	if (vf_i >= efx->vf_init_count)
 521		return true;
 522
 523	if (vf_out)
 524		*vf_out = nic_data->vf + vf_i;
 525	if (rel_index_out)
 526		*rel_index_out = abs_index % efx_vf_size(efx);
 527	return false;
 528}
 529
 530static int efx_vfdi_init_evq(struct siena_vf *vf)
 531{
 532	struct efx_nic *efx = vf->efx;
 533	struct vfdi_req *req = vf->buf.addr;
 534	unsigned vf_evq = req->u.init_evq.index;
 535	unsigned buf_count = req->u.init_evq.buf_count;
 536	unsigned abs_evq = abs_index(vf, vf_evq);
 537	unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
 538	efx_oword_t reg;
 539
 540	if (bad_vf_index(efx, vf_evq) ||
 541	    bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
 542		if (net_ratelimit())
 543			netif_err(efx, hw, efx->net_dev,
 544				  "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
 545				  vf->pci_name, vf_evq, buf_count);
 546		return VFDI_RC_EINVAL;
 547	}
 548
 549	efx_siena_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);
 550
 551	EFX_POPULATE_OWORD_3(reg,
 552			     FRF_CZ_TIMER_Q_EN, 1,
 553			     FRF_CZ_HOST_NOTIFY_MODE, 0,
 554			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
 555	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
 556	EFX_POPULATE_OWORD_3(reg,
 557			     FRF_AZ_EVQ_EN, 1,
 558			     FRF_AZ_EVQ_SIZE, __ffs(buf_count),
 559			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
 560	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
 561
 562	if (vf_evq == 0) {
 563		memcpy(vf->evq0_addrs, req->u.init_evq.addr,
 564		       buf_count * sizeof(u64));
 565		vf->evq0_count = buf_count;
 566	}
 567
 568	return VFDI_RC_SUCCESS;
 569}
 570
 571static int efx_vfdi_init_rxq(struct siena_vf *vf)
 572{
 573	struct efx_nic *efx = vf->efx;
 574	struct vfdi_req *req = vf->buf.addr;
 575	unsigned vf_rxq = req->u.init_rxq.index;
 576	unsigned vf_evq = req->u.init_rxq.evq;
 577	unsigned buf_count = req->u.init_rxq.buf_count;
 578	unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
 579	unsigned label;
 580	efx_oword_t reg;
 581
 582	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
 583	    vf_rxq >= VF_MAX_RX_QUEUES ||
 584	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
 585		if (net_ratelimit())
 586			netif_err(efx, hw, efx->net_dev,
 587				  "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
 588				  "buf_count %d\n", vf->pci_name, vf_rxq,
 589				  vf_evq, buf_count);
 590		return VFDI_RC_EINVAL;
 591	}
 592	if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
 593		++vf->rxq_count;
 594	efx_siena_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);
 595
 596	label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
 597	EFX_POPULATE_OWORD_6(reg,
 598			     FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
 599			     FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
 600			     FRF_AZ_RX_DESCQ_LABEL, label,
 601			     FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
 602			     FRF_AZ_RX_DESCQ_JUMBO,
 603			     !!(req->u.init_rxq.flags &
 604				VFDI_RXQ_FLAG_SCATTER_EN),
 605			     FRF_AZ_RX_DESCQ_EN, 1);
 606	efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
 607			 abs_index(vf, vf_rxq));
 608
 609	return VFDI_RC_SUCCESS;
 610}
 611
 612static int efx_vfdi_init_txq(struct siena_vf *vf)
 613{
 614	struct efx_nic *efx = vf->efx;
 615	struct vfdi_req *req = vf->buf.addr;
 616	unsigned vf_txq = req->u.init_txq.index;
 617	unsigned vf_evq = req->u.init_txq.evq;
 618	unsigned buf_count = req->u.init_txq.buf_count;
 619	unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
 620	unsigned label, eth_filt_en;
 621	efx_oword_t reg;
 622
 623	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
 624	    vf_txq >= vf_max_tx_channels ||
 625	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
 626		if (net_ratelimit())
 627			netif_err(efx, hw, efx->net_dev,
 628				  "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
 629				  "buf_count %d\n", vf->pci_name, vf_txq,
 630				  vf_evq, buf_count);
 631		return VFDI_RC_EINVAL;
 632	}
 633
 634	mutex_lock(&vf->txq_lock);
 635	if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
 636		++vf->txq_count;
 637	mutex_unlock(&vf->txq_lock);
 638	efx_siena_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);
 639
 640	eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;
 641
 642	label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
 643	EFX_POPULATE_OWORD_8(reg,
 644			     FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
 645			     FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
 646			     FRF_AZ_TX_DESCQ_EN, 1,
 647			     FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
 648			     FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
 649			     FRF_AZ_TX_DESCQ_LABEL, label,
 650			     FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
 651			     FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 652	efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
 653			 abs_index(vf, vf_txq));
 654
 655	return VFDI_RC_SUCCESS;
 656}
 657
 658/* Returns true when efx_vfdi_fini_all_queues should wake */
 659static bool efx_vfdi_flush_wake(struct siena_vf *vf)
 660{
 661	/* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
 662	smp_mb();
 663
 664	return (!vf->txq_count && !vf->rxq_count) ||
 665		atomic_read(&vf->rxq_retry_count);
 666}
 667
 668static void efx_vfdi_flush_clear(struct siena_vf *vf)
 669{
 670	memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
 671	vf->txq_count = 0;
 672	memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
 673	vf->rxq_count = 0;
 674	memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
 675	atomic_set(&vf->rxq_retry_count, 0);
 676}
 677
 678static int efx_vfdi_fini_all_queues(struct siena_vf *vf)
 679{
 680	struct efx_nic *efx = vf->efx;
 681	efx_oword_t reg;
 682	unsigned count = efx_vf_size(efx);
 683	unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
 684	unsigned timeout = HZ;
 685	unsigned index, rxqs_count;
 686	MCDI_DECLARE_BUF(inbuf, MC_CMD_FLUSH_RX_QUEUES_IN_LENMAX);
 687	int rc;
 688
 689	BUILD_BUG_ON(VF_MAX_RX_QUEUES >
 690		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
 691
 692	rtnl_lock();
 693	efx_siena_prepare_flush(efx);
 694	rtnl_unlock();
 695
 696	/* Flush all the initialized queues */
 697	rxqs_count = 0;
 698	for (index = 0; index < count; ++index) {
 699		if (test_bit(index, vf->txq_mask)) {
 700			EFX_POPULATE_OWORD_2(reg,
 701					     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 702					     FRF_AZ_TX_FLUSH_DESCQ,
 703					     vf_offset + index);
 704			efx_writeo(efx, &reg, FR_AZ_TX_FLUSH_DESCQ);
 705		}
 706		if (test_bit(index, vf->rxq_mask)) {
 707			MCDI_SET_ARRAY_DWORD(
 708				inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
 709				rxqs_count, vf_offset + index);
 710			rxqs_count++;
 711		}
 712	}
 713
 714	atomic_set(&vf->rxq_retry_count, 0);
 715	while (timeout && (vf->rxq_count || vf->txq_count)) {
 716		rc = efx_siena_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
 717				  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(rxqs_count),
 718				  NULL, 0, NULL);
 719		WARN_ON(rc < 0);
 720
 721		timeout = wait_event_timeout(vf->flush_waitq,
 722					     efx_vfdi_flush_wake(vf),
 723					     timeout);
 724		rxqs_count = 0;
 725		for (index = 0; index < count; ++index) {
 726			if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
 727				atomic_dec(&vf->rxq_retry_count);
 728				MCDI_SET_ARRAY_DWORD(
 729					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
 730					rxqs_count, vf_offset + index);
 731				rxqs_count++;
 732			}
 733		}
 734	}
 735
 736	rtnl_lock();
 737	siena_finish_flush(efx);
 738	rtnl_unlock();
 739
 740	/* Irrespective of success/failure, fini the queues */
 741	EFX_ZERO_OWORD(reg);
 742	for (index = 0; index < count; ++index) {
 743		efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
 744				 vf_offset + index);
 745		efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
 746				 vf_offset + index);
 747		efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL,
 748				 vf_offset + index);
 749		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL,
 750				 vf_offset + index);
 751	}
 752	efx_siena_sriov_bufs(efx, vf->buftbl_base, NULL,
 753			     EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
 754	efx_vfdi_flush_clear(vf);
 755
 756	vf->evq0_count = 0;
 757
 758	return timeout ? 0 : VFDI_RC_ETIMEDOUT;
 759}
 760
 761static int efx_vfdi_insert_filter(struct siena_vf *vf)
 762{
 763	struct efx_nic *efx = vf->efx;
 764	struct siena_nic_data *nic_data = efx->nic_data;
 765	struct vfdi_req *req = vf->buf.addr;
 766	unsigned vf_rxq = req->u.mac_filter.rxq;
 767	unsigned flags;
 768
 769	if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
 770		if (net_ratelimit())
 771			netif_err(efx, hw, efx->net_dev,
 772				  "ERROR: Invalid INSERT_FILTER from %s: rxq %d "
 773				  "flags 0x%x\n", vf->pci_name, vf_rxq,
 774				  req->u.mac_filter.flags);
 775		return VFDI_RC_EINVAL;
 776	}
 777
 778	flags = 0;
 779	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
 780		flags |= EFX_FILTER_FLAG_RX_RSS;
 781	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
 782		flags |= EFX_FILTER_FLAG_RX_SCATTER;
 783	vf->rx_filter_flags = flags;
 784	vf->rx_filter_qid = vf_rxq;
 785	vf->rx_filtering = true;
 786
 787	efx_siena_sriov_reset_rx_filter(vf);
 788	queue_work(vfdi_workqueue, &nic_data->peer_work);
 789
 790	return VFDI_RC_SUCCESS;
 791}
 792
 793static int efx_vfdi_remove_all_filters(struct siena_vf *vf)
 794{
 795	struct efx_nic *efx = vf->efx;
 796	struct siena_nic_data *nic_data = efx->nic_data;
 797
 798	vf->rx_filtering = false;
 799	efx_siena_sriov_reset_rx_filter(vf);
 800	queue_work(vfdi_workqueue, &nic_data->peer_work);
 801
 802	return VFDI_RC_SUCCESS;
 803}
 804
 805static int efx_vfdi_set_status_page(struct siena_vf *vf)
 806{
 807	struct efx_nic *efx = vf->efx;
 808	struct siena_nic_data *nic_data = efx->nic_data;
 809	struct vfdi_req *req = vf->buf.addr;
 810	u64 page_count = req->u.set_status_page.peer_page_count;
 811	u64 max_page_count =
 812		(EFX_PAGE_SIZE -
 813		 offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
 814		/ sizeof(req->u.set_status_page.peer_page_addr[0]);
 815
 816	if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
 817		if (net_ratelimit())
 818			netif_err(efx, hw, efx->net_dev,
 819				  "ERROR: Invalid SET_STATUS_PAGE from %s\n",
 820				  vf->pci_name);
 821		return VFDI_RC_EINVAL;
 822	}
 823
 824	mutex_lock(&nic_data->local_lock);
 825	mutex_lock(&vf->status_lock);
 826	vf->status_addr = req->u.set_status_page.dma_addr;
 827
 828	kfree(vf->peer_page_addrs);
 829	vf->peer_page_addrs = NULL;
 830	vf->peer_page_count = 0;
 831
 832	if (page_count) {
 833		vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
 834					      GFP_KERNEL);
 835		if (vf->peer_page_addrs) {
 836			memcpy(vf->peer_page_addrs,
 837			       req->u.set_status_page.peer_page_addr,
 838			       page_count * sizeof(u64));
 839			vf->peer_page_count = page_count;
 840		}
 841	}
 842
 843	__efx_siena_sriov_push_vf_status(vf);
 844	mutex_unlock(&vf->status_lock);
 845	mutex_unlock(&nic_data->local_lock);
 846
 847	return VFDI_RC_SUCCESS;
 848}
 849
 850static int efx_vfdi_clear_status_page(struct siena_vf *vf)
 851{
 852	mutex_lock(&vf->status_lock);
 853	vf->status_addr = 0;
 854	mutex_unlock(&vf->status_lock);
 855
 856	return VFDI_RC_SUCCESS;
 857}
 858
 859typedef int (*efx_vfdi_op_t)(struct siena_vf *vf);
 860
 861static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
 862	[VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
 863	[VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
 864	[VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
 865	[VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
 866	[VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
 867	[VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
 868	[VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
 869	[VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
 870};
 871
 872static void efx_siena_sriov_vfdi(struct work_struct *work)
 873{
 874	struct siena_vf *vf = container_of(work, struct siena_vf, req);
 875	struct efx_nic *efx = vf->efx;
 876	struct vfdi_req *req = vf->buf.addr;
 877	struct efx_memcpy_req copy[2];
 878	int rc;
 879
 880	/* Copy this page into the local address space */
 881	memset(copy, '\0', sizeof(copy));
 882	copy[0].from_rid = vf->pci_rid;
 883	copy[0].from_addr = vf->req_addr;
 884	copy[0].to_rid = efx->pci_dev->devfn;
 885	copy[0].to_addr = vf->buf.dma_addr;
 886	copy[0].length = EFX_PAGE_SIZE;
 887	rc = efx_siena_sriov_memcpy(efx, copy, 1);
 888	if (rc) {
 889		/* If we can't get the request, we can't reply to the caller */
 890		if (net_ratelimit())
 891			netif_err(efx, hw, efx->net_dev,
 892				  "ERROR: Unable to fetch VFDI request from %s rc %d\n",
 893				  vf->pci_name, -rc);
 894		vf->busy = false;
 895		return;
 896	}
 897
 898	if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
 899		rc = vfdi_ops[req->op](vf);
 900		if (rc == 0) {
 901			netif_dbg(efx, hw, efx->net_dev,
 902				  "vfdi request %d from %s ok\n",
 903				  req->op, vf->pci_name);
 904		}
 905	} else {
 906		netif_dbg(efx, hw, efx->net_dev,
 907			  "ERROR: Unrecognised request %d from VF %s addr "
 908			  "%llx\n", req->op, vf->pci_name,
 909			  (unsigned long long)vf->req_addr);
 910		rc = VFDI_RC_EOPNOTSUPP;
 911	}
 912
 913	/* Allow subsequent VF requests */
 914	vf->busy = false;
 915	smp_wmb();
 916
 917	/* Respond to the request */
 918	req->rc = rc;
 919	req->op = VFDI_OP_RESPONSE;
 920
 921	memset(copy, '\0', sizeof(copy));
 922	copy[0].from_buf = &req->rc;
 923	copy[0].to_rid = vf->pci_rid;
 924	copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
 925	copy[0].length = sizeof(req->rc);
 926	copy[1].from_buf = &req->op;
 927	copy[1].to_rid = vf->pci_rid;
 928	copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
 929	copy[1].length = sizeof(req->op);
 930
 931	(void)efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
 932}
 933
 934
 935
 936/* After a reset the event queues inside the guests no longer exist. Fill the
 937 * event ring in guest memory with VFDI reset events, then (re-initialise) the
 938 * event queue to raise an interrupt. The guest driver will then recover.
 939 */
 940
 941static void efx_siena_sriov_reset_vf(struct siena_vf *vf,
 942				     struct efx_buffer *buffer)
 943{
 944	struct efx_nic *efx = vf->efx;
 945	struct efx_memcpy_req copy_req[4];
 946	efx_qword_t event;
 947	unsigned int pos, count, k, buftbl, abs_evq;
 948	efx_oword_t reg;
 949	efx_dword_t ptr;
 950	int rc;
 951
 952	BUG_ON(buffer->len != EFX_PAGE_SIZE);
 953
 954	if (!vf->evq0_count)
 955		return;
 956	BUG_ON(vf->evq0_count & (vf->evq0_count - 1));
 957
 958	mutex_lock(&vf->status_lock);
 959	EFX_POPULATE_QWORD_3(event,
 960			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
 961			     VFDI_EV_SEQ, vf->msg_seqno,
 962			     VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
 963	vf->msg_seqno++;
 964	for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
 965		memcpy(buffer->addr + pos, &event, sizeof(event));
 966
 967	for (pos = 0; pos < vf->evq0_count; pos += count) {
 968		count = min_t(unsigned, vf->evq0_count - pos,
 969			      ARRAY_SIZE(copy_req));
 970		for (k = 0; k < count; k++) {
 971			copy_req[k].from_buf = NULL;
 972			copy_req[k].from_rid = efx->pci_dev->devfn;
 973			copy_req[k].from_addr = buffer->dma_addr;
 974			copy_req[k].to_rid = vf->pci_rid;
 975			copy_req[k].to_addr = vf->evq0_addrs[pos + k];
 976			copy_req[k].length = EFX_PAGE_SIZE;
 977		}
 978		rc = efx_siena_sriov_memcpy(efx, copy_req, count);
 979		if (rc) {
 980			if (net_ratelimit())
 981				netif_err(efx, hw, efx->net_dev,
 982					  "ERROR: Unable to notify %s of reset"
 983					  ": %d\n", vf->pci_name, -rc);
 984			break;
 985		}
 986	}
 987
 988	/* Reinitialise, arm and trigger evq0 */
 989	abs_evq = abs_index(vf, 0);
 990	buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
 991	efx_siena_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);
 992
 993	EFX_POPULATE_OWORD_3(reg,
 994			     FRF_CZ_TIMER_Q_EN, 1,
 995			     FRF_CZ_HOST_NOTIFY_MODE, 0,
 996			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
 997	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
 998	EFX_POPULATE_OWORD_3(reg,
 999			     FRF_AZ_EVQ_EN, 1,
1000			     FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
1001			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
1002	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
1003	EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
1004	efx_writed(efx, &ptr, FR_BZ_EVQ_RPTR + FR_BZ_EVQ_RPTR_STEP * abs_evq);
1005
1006	mutex_unlock(&vf->status_lock);
1007}
1008
1009static void efx_siena_sriov_reset_vf_work(struct work_struct *work)
1010{
1011	struct siena_vf *vf = container_of(work, struct siena_vf, req);
1012	struct efx_nic *efx = vf->efx;
1013	struct efx_buffer buf;
1014
1015	if (!efx_siena_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO)) {
1016		efx_siena_sriov_reset_vf(vf, &buf);
1017		efx_siena_free_buffer(efx, &buf);
1018	}
1019}
1020
1021static void efx_siena_sriov_handle_no_channel(struct efx_nic *efx)
1022{
1023	netif_err(efx, drv, efx->net_dev,
1024		  "ERROR: IOV requires MSI-X and 1 additional interrupt"
1025		  "vector. IOV disabled\n");
1026	efx->vf_count = 0;
1027}
1028
1029static int efx_siena_sriov_probe_channel(struct efx_channel *channel)
1030{
1031	struct siena_nic_data *nic_data = channel->efx->nic_data;
1032	nic_data->vfdi_channel = channel;
1033
1034	return 0;
1035}
1036
1037static void
1038efx_siena_sriov_get_channel_name(struct efx_channel *channel,
1039				 char *buf, size_t len)
1040{
1041	snprintf(buf, len, "%s-iov", channel->efx->name);
1042}
1043
1044static const struct efx_channel_type efx_siena_sriov_channel_type = {
1045	.handle_no_channel	= efx_siena_sriov_handle_no_channel,
1046	.pre_probe		= efx_siena_sriov_probe_channel,
1047	.post_remove		= efx_siena_channel_dummy_op_void,
1048	.get_name		= efx_siena_sriov_get_channel_name,
1049	/* no copy operation; channel must not be reallocated */
1050	.keep_eventq		= true,
1051};
1052
1053void efx_siena_sriov_probe(struct efx_nic *efx)
1054{
1055	unsigned count;
1056
1057	if (!max_vfs)
1058		return;
1059
1060	if (efx_siena_sriov_cmd(efx, false, &efx->vi_scale, &count)) {
1061		pci_info(efx->pci_dev, "no SR-IOV VFs probed\n");
1062		return;
1063	}
1064	if (count > 0 && count > max_vfs)
1065		count = max_vfs;
1066
1067	/* efx_nic_dimension_resources() will reduce vf_count as appopriate */
1068	efx->vf_count = count;
1069
1070	efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_siena_sriov_channel_type;
1071}
1072
1073/* Copy the list of individual addresses into the vfdi_status.peers
1074 * array and auxiliary pages, protected by %local_lock. Drop that lock
1075 * and then broadcast the address list to every VF.
1076 */
1077static void efx_siena_sriov_peer_work(struct work_struct *data)
1078{
1079	struct siena_nic_data *nic_data = container_of(data,
1080						       struct siena_nic_data,
1081						       peer_work);
1082	struct efx_nic *efx = nic_data->efx;
1083	struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
1084	struct siena_vf *vf;
1085	struct efx_local_addr *local_addr;
1086	struct vfdi_endpoint *peer;
1087	struct efx_endpoint_page *epp;
1088	struct list_head pages;
1089	unsigned int peer_space;
1090	unsigned int peer_count;
1091	unsigned int pos;
1092
1093	mutex_lock(&nic_data->local_lock);
1094
1095	/* Move the existing peer pages off %local_page_list */
1096	INIT_LIST_HEAD(&pages);
1097	list_splice_tail_init(&nic_data->local_page_list, &pages);
1098
1099	/* Populate the VF addresses starting from entry 1 (entry 0 is
1100	 * the PF address)
1101	 */
1102	peer = vfdi_status->peers + 1;
1103	peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
1104	peer_count = 1;
1105	for (pos = 0; pos < efx->vf_count; ++pos) {
1106		vf = nic_data->vf + pos;
1107
1108		mutex_lock(&vf->status_lock);
1109		if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
1110			*peer++ = vf->addr;
1111			++peer_count;
1112			--peer_space;
1113			BUG_ON(peer_space == 0);
1114		}
1115		mutex_unlock(&vf->status_lock);
1116	}
1117
1118	/* Fill the remaining addresses */
1119	list_for_each_entry(local_addr, &nic_data->local_addr_list, link) {
1120		ether_addr_copy(peer->mac_addr, local_addr->addr);
1121		peer->tci = 0;
1122		++peer;
1123		++peer_count;
1124		if (--peer_space == 0) {
1125			if (list_empty(&pages)) {
1126				epp = kmalloc(sizeof(*epp), GFP_KERNEL);
1127				if (!epp)
1128					break;
1129				epp->ptr = dma_alloc_coherent(
1130					&efx->pci_dev->dev, EFX_PAGE_SIZE,
1131					&epp->addr, GFP_KERNEL);
1132				if (!epp->ptr) {
1133					kfree(epp);
1134					break;
1135				}
1136			} else {
1137				epp = list_first_entry(
1138					&pages, struct efx_endpoint_page, link);
1139				list_del(&epp->link);
1140			}
1141
1142			list_add_tail(&epp->link, &nic_data->local_page_list);
1143			peer = (struct vfdi_endpoint *)epp->ptr;
1144			peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
1145		}
1146	}
1147	vfdi_status->peer_count = peer_count;
1148	mutex_unlock(&nic_data->local_lock);
1149
1150	/* Free any now unused endpoint pages */
1151	while (!list_empty(&pages)) {
1152		epp = list_first_entry(
1153			&pages, struct efx_endpoint_page, link);
1154		list_del(&epp->link);
1155		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1156				  epp->ptr, epp->addr);
1157		kfree(epp);
1158	}
1159
1160	/* Finally, push the pages */
1161	for (pos = 0; pos < efx->vf_count; ++pos) {
1162		vf = nic_data->vf + pos;
1163
1164		mutex_lock(&vf->status_lock);
1165		if (vf->status_addr)
1166			__efx_siena_sriov_push_vf_status(vf);
1167		mutex_unlock(&vf->status_lock);
1168	}
1169}
1170
1171static void efx_siena_sriov_free_local(struct efx_nic *efx)
1172{
1173	struct siena_nic_data *nic_data = efx->nic_data;
1174	struct efx_local_addr *local_addr;
1175	struct efx_endpoint_page *epp;
1176
1177	while (!list_empty(&nic_data->local_addr_list)) {
1178		local_addr = list_first_entry(&nic_data->local_addr_list,
1179					      struct efx_local_addr, link);
1180		list_del(&local_addr->link);
1181		kfree(local_addr);
1182	}
1183
1184	while (!list_empty(&nic_data->local_page_list)) {
1185		epp = list_first_entry(&nic_data->local_page_list,
1186				       struct efx_endpoint_page, link);
1187		list_del(&epp->link);
1188		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1189				  epp->ptr, epp->addr);
1190		kfree(epp);
1191	}
1192}
1193
1194static int efx_siena_sriov_vf_alloc(struct efx_nic *efx)
1195{
1196	unsigned index;
1197	struct siena_vf *vf;
1198	struct siena_nic_data *nic_data = efx->nic_data;
1199
1200	nic_data->vf = kcalloc(efx->vf_count, sizeof(*nic_data->vf),
1201			       GFP_KERNEL);
1202	if (!nic_data->vf)
1203		return -ENOMEM;
1204
1205	for (index = 0; index < efx->vf_count; ++index) {
1206		vf = nic_data->vf + index;
1207
1208		vf->efx = efx;
1209		vf->index = index;
1210		vf->rx_filter_id = -1;
1211		vf->tx_filter_mode = VF_TX_FILTER_AUTO;
1212		vf->tx_filter_id = -1;
1213		INIT_WORK(&vf->req, efx_siena_sriov_vfdi);
1214		INIT_WORK(&vf->reset_work, efx_siena_sriov_reset_vf_work);
1215		init_waitqueue_head(&vf->flush_waitq);
1216		mutex_init(&vf->status_lock);
1217		mutex_init(&vf->txq_lock);
1218	}
1219
1220	return 0;
1221}
1222
1223static void efx_siena_sriov_vfs_fini(struct efx_nic *efx)
1224{
1225	struct siena_nic_data *nic_data = efx->nic_data;
1226	struct siena_vf *vf;
1227	unsigned int pos;
1228
1229	for (pos = 0; pos < efx->vf_count; ++pos) {
1230		vf = nic_data->vf + pos;
1231
1232		efx_siena_free_buffer(efx, &vf->buf);
1233		kfree(vf->peer_page_addrs);
1234		vf->peer_page_addrs = NULL;
1235		vf->peer_page_count = 0;
1236
1237		vf->evq0_count = 0;
1238	}
1239}
1240
1241static int efx_siena_sriov_vfs_init(struct efx_nic *efx)
1242{
1243	struct pci_dev *pci_dev = efx->pci_dev;
1244	struct siena_nic_data *nic_data = efx->nic_data;
1245	unsigned index, devfn, sriov, buftbl_base;
1246	u16 offset, stride;
1247	struct siena_vf *vf;
1248	int rc;
1249
1250	sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
1251	if (!sriov)
1252		return -ENOENT;
1253
1254	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
1255	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);
1256
1257	buftbl_base = nic_data->vf_buftbl_base;
1258	devfn = pci_dev->devfn + offset;
1259	for (index = 0; index < efx->vf_count; ++index) {
1260		vf = nic_data->vf + index;
1261
1262		/* Reserve buffer entries */
1263		vf->buftbl_base = buftbl_base;
1264		buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);
1265
1266		vf->pci_rid = devfn;
1267		snprintf(vf->pci_name, sizeof(vf->pci_name),
1268			 "%04x:%02x:%02x.%d",
1269			 pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
1270			 PCI_SLOT(devfn), PCI_FUNC(devfn));
1271
1272		rc = efx_siena_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE,
1273					    GFP_KERNEL);
1274		if (rc)
1275			goto fail;
1276
1277		devfn += stride;
1278	}
1279
1280	return 0;
1281
1282fail:
1283	efx_siena_sriov_vfs_fini(efx);
1284	return rc;
1285}
1286
1287int efx_siena_sriov_init(struct efx_nic *efx)
1288{
1289	struct net_device *net_dev = efx->net_dev;
1290	struct siena_nic_data *nic_data = efx->nic_data;
1291	struct vfdi_status *vfdi_status;
1292	int rc;
1293
1294	/* Ensure there's room for vf_channel */
1295	BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
1296	/* Ensure that VI_BASE is aligned on VI_SCALE */
1297	BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));
1298
1299	if (efx->vf_count == 0)
1300		return 0;
1301
1302	rc = efx_siena_sriov_cmd(efx, true, NULL, NULL);
1303	if (rc)
1304		goto fail_cmd;
1305
1306	rc = efx_siena_alloc_buffer(efx, &nic_data->vfdi_status,
1307				    sizeof(*vfdi_status), GFP_KERNEL);
1308	if (rc)
1309		goto fail_status;
1310	vfdi_status = nic_data->vfdi_status.addr;
1311	memset(vfdi_status, 0, sizeof(*vfdi_status));
1312	vfdi_status->version = 1;
1313	vfdi_status->length = sizeof(*vfdi_status);
1314	vfdi_status->max_tx_channels = vf_max_tx_channels;
1315	vfdi_status->vi_scale = efx->vi_scale;
1316	vfdi_status->rss_rxq_count = efx->rss_spread;
1317	vfdi_status->peer_count = 1 + efx->vf_count;
1318	vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;
1319
1320	rc = efx_siena_sriov_vf_alloc(efx);
1321	if (rc)
1322		goto fail_alloc;
1323
1324	mutex_init(&nic_data->local_lock);
1325	INIT_WORK(&nic_data->peer_work, efx_siena_sriov_peer_work);
1326	INIT_LIST_HEAD(&nic_data->local_addr_list);
1327	INIT_LIST_HEAD(&nic_data->local_page_list);
1328
1329	rc = efx_siena_sriov_vfs_init(efx);
1330	if (rc)
1331		goto fail_vfs;
1332
1333	rtnl_lock();
1334	ether_addr_copy(vfdi_status->peers[0].mac_addr, net_dev->dev_addr);
1335	efx->vf_init_count = efx->vf_count;
1336	rtnl_unlock();
1337
1338	efx_siena_sriov_usrev(efx, true);
1339
1340	/* At this point we must be ready to accept VFDI requests */
1341
1342	rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
1343	if (rc)
1344		goto fail_pci;
1345
1346	netif_info(efx, probe, net_dev,
1347		   "enabled SR-IOV for %d VFs, %d VI per VF\n",
1348		   efx->vf_count, efx_vf_size(efx));
1349	return 0;
1350
1351fail_pci:
1352	efx_siena_sriov_usrev(efx, false);
1353	rtnl_lock();
1354	efx->vf_init_count = 0;
1355	rtnl_unlock();
1356	efx_siena_sriov_vfs_fini(efx);
1357fail_vfs:
1358	cancel_work_sync(&nic_data->peer_work);
1359	efx_siena_sriov_free_local(efx);
1360	kfree(nic_data->vf);
1361fail_alloc:
1362	efx_siena_free_buffer(efx, &nic_data->vfdi_status);
1363fail_status:
1364	efx_siena_sriov_cmd(efx, false, NULL, NULL);
1365fail_cmd:
1366	return rc;
1367}
1368
1369void efx_siena_sriov_fini(struct efx_nic *efx)
1370{
1371	struct siena_vf *vf;
1372	unsigned int pos;
1373	struct siena_nic_data *nic_data = efx->nic_data;
1374
1375	if (efx->vf_init_count == 0)
1376		return;
1377
1378	/* Disable all interfaces to reconfiguration */
1379	BUG_ON(nic_data->vfdi_channel->enabled);
1380	efx_siena_sriov_usrev(efx, false);
1381	rtnl_lock();
1382	efx->vf_init_count = 0;
1383	rtnl_unlock();
1384
1385	/* Flush all reconfiguration work */
1386	for (pos = 0; pos < efx->vf_count; ++pos) {
1387		vf = nic_data->vf + pos;
1388		cancel_work_sync(&vf->req);
1389		cancel_work_sync(&vf->reset_work);
1390	}
1391	cancel_work_sync(&nic_data->peer_work);
1392
1393	pci_disable_sriov(efx->pci_dev);
1394
1395	/* Tear down back-end state */
1396	efx_siena_sriov_vfs_fini(efx);
1397	efx_siena_sriov_free_local(efx);
1398	kfree(nic_data->vf);
1399	efx_siena_free_buffer(efx, &nic_data->vfdi_status);
1400	efx_siena_sriov_cmd(efx, false, NULL, NULL);
1401}
1402
1403void efx_siena_sriov_event(struct efx_channel *channel, efx_qword_t *event)
1404{
1405	struct efx_nic *efx = channel->efx;
1406	struct siena_vf *vf;
1407	unsigned qid, seq, type, data;
1408
1409	qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);
1410
1411	/* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
1412	BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
1413	seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
1414	type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
1415	data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);
1416
1417	netif_vdbg(efx, hw, efx->net_dev,
1418		   "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
1419		   qid, seq, type, data);
1420
1421	if (map_vi_index(efx, qid, &vf, NULL))
1422		return;
1423	if (vf->busy)
1424		goto error;
1425
1426	if (type == VFDI_EV_TYPE_REQ_WORD0) {
1427		/* Resynchronise */
1428		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1429		vf->req_seqno = seq + 1;
1430		vf->req_addr = 0;
1431	} else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
1432		goto error;
1433
1434	switch (vf->req_type) {
1435	case VFDI_EV_TYPE_REQ_WORD0:
1436	case VFDI_EV_TYPE_REQ_WORD1:
1437	case VFDI_EV_TYPE_REQ_WORD2:
1438		vf->req_addr |= (u64)data << (vf->req_type << 4);
1439		++vf->req_type;
1440		return;
1441
1442	case VFDI_EV_TYPE_REQ_WORD3:
1443		vf->req_addr |= (u64)data << 48;
1444		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1445		vf->busy = true;
1446		queue_work(vfdi_workqueue, &vf->req);
1447		return;
1448	}
1449
1450error:
1451	if (net_ratelimit())
1452		netif_err(efx, hw, efx->net_dev,
1453			  "ERROR: Screaming VFDI request from %s\n",
1454			  vf->pci_name);
1455	/* Reset the request and sequence number */
1456	vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1457	vf->req_seqno = seq + 1;
1458}
1459
1460void efx_siena_sriov_flr(struct efx_nic *efx, unsigned vf_i)
1461{
1462	struct siena_nic_data *nic_data = efx->nic_data;
1463	struct siena_vf *vf;
1464
1465	if (vf_i > efx->vf_init_count)
1466		return;
1467	vf = nic_data->vf + vf_i;
1468	netif_info(efx, hw, efx->net_dev,
1469		   "FLR on VF %s\n", vf->pci_name);
1470
1471	vf->status_addr = 0;
1472	efx_vfdi_remove_all_filters(vf);
1473	efx_vfdi_flush_clear(vf);
1474
1475	vf->evq0_count = 0;
1476}
1477
1478int efx_siena_sriov_mac_address_changed(struct efx_nic *efx)
1479{
1480	struct siena_nic_data *nic_data = efx->nic_data;
1481	struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
1482
1483	if (!efx->vf_init_count)
1484		return 0;
1485	ether_addr_copy(vfdi_status->peers[0].mac_addr,
1486			efx->net_dev->dev_addr);
1487	queue_work(vfdi_workqueue, &nic_data->peer_work);
1488
1489	return 0;
1490}
1491
1492void efx_siena_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1493{
1494	struct siena_vf *vf;
1495	unsigned queue, qid;
1496
1497	queue = EFX_QWORD_FIELD(*event,  FSF_AZ_DRIVER_EV_SUBDATA);
1498	if (map_vi_index(efx, queue, &vf, &qid))
1499		return;
1500	/* Ignore flush completions triggered by an FLR */
1501	if (!test_bit(qid, vf->txq_mask))
1502		return;
1503
1504	__clear_bit(qid, vf->txq_mask);
1505	--vf->txq_count;
1506
1507	if (efx_vfdi_flush_wake(vf))
1508		wake_up(&vf->flush_waitq);
1509}
1510
1511void efx_siena_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1512{
1513	struct siena_vf *vf;
1514	unsigned ev_failed, queue, qid;
1515
1516	queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1517	ev_failed = EFX_QWORD_FIELD(*event,
1518				    FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1519	if (map_vi_index(efx, queue, &vf, &qid))
1520		return;
1521	if (!test_bit(qid, vf->rxq_mask))
1522		return;
1523
1524	if (ev_failed) {
1525		set_bit(qid, vf->rxq_retry_mask);
1526		atomic_inc(&vf->rxq_retry_count);
1527	} else {
1528		__clear_bit(qid, vf->rxq_mask);
1529		--vf->rxq_count;
1530	}
1531	if (efx_vfdi_flush_wake(vf))
1532		wake_up(&vf->flush_waitq);
1533}
1534
1535/* Called from napi. Schedule the reset work item */
1536void efx_siena_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
1537{
1538	struct siena_vf *vf;
1539	unsigned int rel;
1540
1541	if (map_vi_index(efx, dmaq, &vf, &rel))
1542		return;
1543
1544	if (net_ratelimit())
1545		netif_err(efx, hw, efx->net_dev,
1546			  "VF %d DMA Q %d reports descriptor fetch error.\n",
1547			  vf->index, rel);
1548	queue_work(vfdi_workqueue, &vf->reset_work);
1549}
1550
1551/* Reset all VFs */
1552void efx_siena_sriov_reset(struct efx_nic *efx)
1553{
1554	struct siena_nic_data *nic_data = efx->nic_data;
1555	unsigned int vf_i;
1556	struct efx_buffer buf;
1557	struct siena_vf *vf;
1558
1559	ASSERT_RTNL();
1560
1561	if (efx->vf_init_count == 0)
1562		return;
1563
1564	efx_siena_sriov_usrev(efx, true);
1565	(void)efx_siena_sriov_cmd(efx, true, NULL, NULL);
1566
1567	if (efx_siena_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO))
1568		return;
1569
1570	for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
1571		vf = nic_data->vf + vf_i;
1572		efx_siena_sriov_reset_vf(vf, &buf);
1573	}
1574
1575	efx_siena_free_buffer(efx, &buf);
1576}
1577
1578int efx_init_sriov(void)
1579{
1580	/* A single threaded workqueue is sufficient. efx_siena_sriov_vfdi() and
1581	 * efx_siena_sriov_peer_work() spend almost all their time sleeping for
1582	 * MCDI to complete anyway
1583	 */
1584	vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
1585	if (!vfdi_workqueue)
1586		return -ENOMEM;
1587	return 0;
1588}
1589
1590void efx_fini_sriov(void)
1591{
1592	destroy_workqueue(vfdi_workqueue);
1593}
1594
1595int efx_siena_sriov_set_vf_mac(struct efx_nic *efx, int vf_i, const u8 *mac)
1596{
1597	struct siena_nic_data *nic_data = efx->nic_data;
1598	struct siena_vf *vf;
1599
1600	if (vf_i >= efx->vf_init_count)
1601		return -EINVAL;
1602	vf = nic_data->vf + vf_i;
1603
1604	mutex_lock(&vf->status_lock);
1605	ether_addr_copy(vf->addr.mac_addr, mac);
1606	__efx_siena_sriov_update_vf_addr(vf);
1607	mutex_unlock(&vf->status_lock);
1608
1609	return 0;
1610}
1611
1612int efx_siena_sriov_set_vf_vlan(struct efx_nic *efx, int vf_i,
1613				u16 vlan, u8 qos)
1614{
1615	struct siena_nic_data *nic_data = efx->nic_data;
1616	struct siena_vf *vf;
1617	u16 tci;
1618
1619	if (vf_i >= efx->vf_init_count)
1620		return -EINVAL;
1621	vf = nic_data->vf + vf_i;
1622
1623	mutex_lock(&vf->status_lock);
1624	tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
1625	vf->addr.tci = htons(tci);
1626	__efx_siena_sriov_update_vf_addr(vf);
1627	mutex_unlock(&vf->status_lock);
1628
1629	return 0;
1630}
1631
1632int efx_siena_sriov_set_vf_spoofchk(struct efx_nic *efx, int vf_i,
1633				    bool spoofchk)
1634{
1635	struct siena_nic_data *nic_data = efx->nic_data;
1636	struct siena_vf *vf;
1637	int rc;
1638
1639	if (vf_i >= efx->vf_init_count)
1640		return -EINVAL;
1641	vf = nic_data->vf + vf_i;
1642
1643	mutex_lock(&vf->txq_lock);
1644	if (vf->txq_count == 0) {
1645		vf->tx_filter_mode =
1646			spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
1647		rc = 0;
1648	} else {
1649		/* This cannot be changed while TX queues are running */
1650		rc = -EBUSY;
1651	}
1652	mutex_unlock(&vf->txq_lock);
1653	return rc;
1654}
1655
1656int efx_siena_sriov_get_vf_config(struct efx_nic *efx, int vf_i,
1657				  struct ifla_vf_info *ivi)
1658{
1659	struct siena_nic_data *nic_data = efx->nic_data;
1660	struct siena_vf *vf;
1661	u16 tci;
1662
1663	if (vf_i >= efx->vf_init_count)
1664		return -EINVAL;
1665	vf = nic_data->vf + vf_i;
1666
1667	ivi->vf = vf_i;
1668	ether_addr_copy(ivi->mac, vf->addr.mac_addr);
1669	ivi->max_tx_rate = 0;
1670	ivi->min_tx_rate = 0;
1671	tci = ntohs(vf->addr.tci);
1672	ivi->vlan = tci & VLAN_VID_MASK;
1673	ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
1674	ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;
1675
1676	return 0;
1677}
1678
1679bool efx_siena_sriov_wanted(struct efx_nic *efx)
1680{
1681	return efx->vf_count != 0;
1682}
1683
1684int efx_siena_sriov_configure(struct efx_nic *efx, int num_vfs)
1685{
1686	return 0;
1687}