Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2013 Solarflare Communications Inc.
6 */
7
8#include <linux/bitops.h>
9#include <linux/delay.h>
10#include <linux/interrupt.h>
11#include <linux/pci.h>
12#include <linux/module.h>
13#include <linux/seq_file.h>
14#include <linux/cpu_rmap.h>
15#include "net_driver.h"
16#include "bitfield.h"
17#include "efx.h"
18#include "nic.h"
19#include "ef10_regs.h"
20#include "io.h"
21#include "workarounds.h"
22#include "mcdi_pcol.h"
23
24/**************************************************************************
25 *
26 * Generic buffer handling
27 * These buffers are used for interrupt status, MAC stats, etc.
28 *
29 **************************************************************************/
30
31int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
32 unsigned int len, gfp_t gfp_flags)
33{
34 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
35 &buffer->dma_addr, gfp_flags);
36 if (!buffer->addr)
37 return -ENOMEM;
38 buffer->len = len;
39 return 0;
40}
41
42void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
43{
44 if (buffer->addr) {
45 dma_free_coherent(&efx->pci_dev->dev, buffer->len,
46 buffer->addr, buffer->dma_addr);
47 buffer->addr = NULL;
48 }
49}
50
51/* Check whether an event is present in the eventq at the current
52 * read pointer. Only useful for self-test.
53 */
54bool efx_nic_event_present(struct efx_channel *channel)
55{
56 return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
57}
58
59void efx_nic_event_test_start(struct efx_channel *channel)
60{
61 channel->event_test_cpu = -1;
62 smp_wmb();
63 channel->efx->type->ev_test_generate(channel);
64}
65
66int efx_nic_irq_test_start(struct efx_nic *efx)
67{
68 efx->last_irq_cpu = -1;
69 smp_wmb();
70 return efx->type->irq_test_generate(efx);
71}
72
73/* Hook interrupt handler(s)
74 * Try MSI and then legacy interrupts.
75 */
76int efx_nic_init_interrupt(struct efx_nic *efx)
77{
78 struct efx_channel *channel;
79 unsigned int n_irqs;
80 int rc;
81
82 if (!EFX_INT_MODE_USE_MSI(efx)) {
83 rc = request_irq(efx->legacy_irq,
84 efx->type->irq_handle_legacy, IRQF_SHARED,
85 efx->name, efx);
86 if (rc) {
87 netif_err(efx, drv, efx->net_dev,
88 "failed to hook legacy IRQ %d\n",
89 efx->pci_dev->irq);
90 goto fail1;
91 }
92 efx->irqs_hooked = true;
93 return 0;
94 }
95
96#ifdef CONFIG_RFS_ACCEL
97 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
98 efx->net_dev->rx_cpu_rmap =
99 alloc_irq_cpu_rmap(efx->n_rx_channels);
100 if (!efx->net_dev->rx_cpu_rmap) {
101 rc = -ENOMEM;
102 goto fail1;
103 }
104 }
105#endif
106
107 /* Hook MSI or MSI-X interrupt */
108 n_irqs = 0;
109 efx_for_each_channel(channel, efx) {
110 rc = request_irq(channel->irq, efx->type->irq_handle_msi,
111 IRQF_PROBE_SHARED, /* Not shared */
112 efx->msi_context[channel->channel].name,
113 &efx->msi_context[channel->channel]);
114 if (rc) {
115 netif_err(efx, drv, efx->net_dev,
116 "failed to hook IRQ %d\n", channel->irq);
117 goto fail2;
118 }
119 ++n_irqs;
120
121#ifdef CONFIG_RFS_ACCEL
122 if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
123 channel->channel < efx->n_rx_channels) {
124 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
125 channel->irq);
126 if (rc)
127 goto fail2;
128 }
129#endif
130 }
131
132 efx->irqs_hooked = true;
133 return 0;
134
135 fail2:
136#ifdef CONFIG_RFS_ACCEL
137 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
138 efx->net_dev->rx_cpu_rmap = NULL;
139#endif
140 efx_for_each_channel(channel, efx) {
141 if (n_irqs-- == 0)
142 break;
143 free_irq(channel->irq, &efx->msi_context[channel->channel]);
144 }
145 fail1:
146 return rc;
147}
148
149void efx_nic_fini_interrupt(struct efx_nic *efx)
150{
151 struct efx_channel *channel;
152
153#ifdef CONFIG_RFS_ACCEL
154 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
155 efx->net_dev->rx_cpu_rmap = NULL;
156#endif
157
158 if (!efx->irqs_hooked)
159 return;
160 if (EFX_INT_MODE_USE_MSI(efx)) {
161 /* Disable MSI/MSI-X interrupts */
162 efx_for_each_channel(channel, efx)
163 free_irq(channel->irq,
164 &efx->msi_context[channel->channel]);
165 } else {
166 /* Disable legacy interrupt */
167 free_irq(efx->legacy_irq, efx);
168 }
169 efx->irqs_hooked = false;
170}
171
172/* Register dump */
173
174#define REGISTER_REVISION_ED 4
175#define REGISTER_REVISION_EZ 4 /* latest EF10 revision */
176
177struct efx_nic_reg {
178 u32 offset:24;
179 u32 min_revision:3, max_revision:3;
180};
181
182#define REGISTER(name, arch, min_rev, max_rev) { \
183 arch ## R_ ## min_rev ## max_rev ## _ ## name, \
184 REGISTER_REVISION_ ## arch ## min_rev, \
185 REGISTER_REVISION_ ## arch ## max_rev \
186}
187#define REGISTER_DZ(name) REGISTER(name, E, D, Z)
188
189static const struct efx_nic_reg efx_nic_regs[] = {
190 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
191 /* XX_CORE_STAT is partly RC */
192 REGISTER_DZ(BIU_HW_REV_ID),
193 REGISTER_DZ(MC_DB_LWRD),
194 REGISTER_DZ(MC_DB_HWRD),
195};
196
197struct efx_nic_reg_table {
198 u32 offset:24;
199 u32 min_revision:3, max_revision:3;
200 u32 step:6, rows:21;
201};
202
203#define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \
204 offset, \
205 REGISTER_REVISION_ ## arch ## min_rev, \
206 REGISTER_REVISION_ ## arch ## max_rev, \
207 step, rows \
208}
209#define REGISTER_TABLE(name, arch, min_rev, max_rev) \
210 REGISTER_TABLE_DIMENSIONS( \
211 name, arch ## R_ ## min_rev ## max_rev ## _ ## name, \
212 arch, min_rev, max_rev, \
213 arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
214 arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
215#define REGISTER_TABLE_DZ(name) REGISTER_TABLE(name, E, D, Z)
216
217static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
218 REGISTER_TABLE_DZ(BIU_MC_SFT_STATUS),
219};
220
221size_t efx_nic_get_regs_len(struct efx_nic *efx)
222{
223 const struct efx_nic_reg *reg;
224 const struct efx_nic_reg_table *table;
225 size_t len = 0;
226
227 for (reg = efx_nic_regs;
228 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
229 reg++)
230 if (efx->type->revision >= reg->min_revision &&
231 efx->type->revision <= reg->max_revision)
232 len += sizeof(efx_oword_t);
233
234 for (table = efx_nic_reg_tables;
235 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
236 table++)
237 if (efx->type->revision >= table->min_revision &&
238 efx->type->revision <= table->max_revision)
239 len += table->rows * min_t(size_t, table->step, 16);
240
241 return len;
242}
243
244void efx_nic_get_regs(struct efx_nic *efx, void *buf)
245{
246 const struct efx_nic_reg *reg;
247 const struct efx_nic_reg_table *table;
248
249 for (reg = efx_nic_regs;
250 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
251 reg++) {
252 if (efx->type->revision >= reg->min_revision &&
253 efx->type->revision <= reg->max_revision) {
254 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
255 buf += sizeof(efx_oword_t);
256 }
257 }
258
259 for (table = efx_nic_reg_tables;
260 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
261 table++) {
262 size_t size, i;
263
264 if (!(efx->type->revision >= table->min_revision &&
265 efx->type->revision <= table->max_revision))
266 continue;
267
268 size = min_t(size_t, table->step, 16);
269
270 for (i = 0; i < table->rows; i++) {
271 switch (table->step) {
272 case 4: /* 32-bit SRAM */
273 efx_readd(efx, buf, table->offset + 4 * i);
274 break;
275 case 16: /* 128-bit-readable register */
276 efx_reado_table(efx, buf, table->offset, i);
277 break;
278 case 32: /* 128-bit register, interleaved */
279 efx_reado_table(efx, buf, table->offset, 2 * i);
280 break;
281 default:
282 WARN_ON(1);
283 return;
284 }
285 buf += size;
286 }
287 }
288}
289
290/**
291 * efx_nic_describe_stats - Describe supported statistics for ethtool
292 * @desc: Array of &struct efx_hw_stat_desc describing the statistics
293 * @count: Length of the @desc array
294 * @mask: Bitmask of which elements of @desc are enabled
295 * @names: Buffer to copy names to, or %NULL. The names are copied
296 * starting at intervals of %ETH_GSTRING_LEN bytes.
297 *
298 * Returns the number of visible statistics, i.e. the number of set
299 * bits in the first @count bits of @mask for which a name is defined.
300 */
301size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
302 const unsigned long *mask, u8 *names)
303{
304 size_t visible = 0;
305 size_t index;
306
307 for_each_set_bit(index, mask, count) {
308 if (desc[index].name) {
309 if (names) {
310 strscpy(names, desc[index].name,
311 ETH_GSTRING_LEN);
312 names += ETH_GSTRING_LEN;
313 }
314 ++visible;
315 }
316 }
317
318 return visible;
319}
320
321/**
322 * efx_nic_copy_stats - Copy stats from the DMA buffer in to an
323 * intermediate buffer. This is used to get a consistent
324 * set of stats while the DMA buffer can be written at any time
325 * by the NIC.
326 * @efx: The associated NIC.
327 * @dest: Destination buffer. Must be the same size as the DMA buffer.
328 */
329int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest)
330{
331 __le64 *dma_stats = efx->stats_buffer.addr;
332 __le64 generation_start, generation_end;
333 int rc = 0, retry;
334
335 if (!dest)
336 return 0;
337
338 if (!dma_stats)
339 goto return_zeroes;
340
341 /* If we're unlucky enough to read statistics during the DMA, wait
342 * up to 10ms for it to finish (typically takes <500us)
343 */
344 for (retry = 0; retry < 100; ++retry) {
345 generation_end = dma_stats[efx->num_mac_stats - 1];
346 if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
347 goto return_zeroes;
348 rmb();
349 memcpy(dest, dma_stats, efx->num_mac_stats * sizeof(__le64));
350 rmb();
351 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
352 if (generation_end == generation_start)
353 return 0; /* return good data */
354 udelay(100);
355 }
356
357 rc = -EIO;
358
359return_zeroes:
360 memset(dest, 0, efx->num_mac_stats * sizeof(u64));
361 return rc;
362}
363
364/**
365 * efx_nic_update_stats - Convert statistics DMA buffer to array of u64
366 * @desc: Array of &struct efx_hw_stat_desc describing the DMA buffer
367 * layout. DMA widths of 0, 16, 32 and 64 are supported; where
368 * the width is specified as 0 the corresponding element of
369 * @stats is not updated.
370 * @count: Length of the @desc array
371 * @mask: Bitmask of which elements of @desc are enabled
372 * @stats: Buffer to update with the converted statistics. The length
373 * of this array must be at least @count.
374 * @dma_buf: DMA buffer containing hardware statistics
375 * @accumulate: If set, the converted values will be added rather than
376 * directly stored to the corresponding elements of @stats
377 */
378void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
379 const unsigned long *mask,
380 u64 *stats, const void *dma_buf, bool accumulate)
381{
382 size_t index;
383
384 for_each_set_bit(index, mask, count) {
385 if (desc[index].dma_width) {
386 const void *addr = dma_buf + desc[index].offset;
387 u64 val;
388
389 switch (desc[index].dma_width) {
390 case 16:
391 val = le16_to_cpup((__le16 *)addr);
392 break;
393 case 32:
394 val = le32_to_cpup((__le32 *)addr);
395 break;
396 case 64:
397 val = le64_to_cpup((__le64 *)addr);
398 break;
399 default:
400 WARN_ON(1);
401 val = 0;
402 break;
403 }
404
405 if (accumulate)
406 stats[index] += val;
407 else
408 stats[index] = val;
409 }
410 }
411}
412
413void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops)
414{
415 /* if down, or this is the first update after coming up */
416 if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state)
417 efx->rx_nodesc_drops_while_down +=
418 *rx_nodesc_drops - efx->rx_nodesc_drops_total;
419 efx->rx_nodesc_drops_total = *rx_nodesc_drops;
420 efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP);
421 *rx_nodesc_drops -= efx->rx_nodesc_drops_while_down;
422}
1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2013 Solarflare Communications Inc.
6 */
7
8#include <linux/bitops.h>
9#include <linux/delay.h>
10#include <linux/interrupt.h>
11#include <linux/pci.h>
12#include <linux/module.h>
13#include <linux/seq_file.h>
14#include <linux/cpu_rmap.h>
15#include "net_driver.h"
16#include "bitfield.h"
17#include "efx.h"
18#include "nic.h"
19#include "ef10_regs.h"
20#include "farch_regs.h"
21#include "io.h"
22#include "workarounds.h"
23#include "mcdi_pcol.h"
24
25/**************************************************************************
26 *
27 * Generic buffer handling
28 * These buffers are used for interrupt status, MAC stats, etc.
29 *
30 **************************************************************************/
31
32int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
33 unsigned int len, gfp_t gfp_flags)
34{
35 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
36 &buffer->dma_addr, gfp_flags);
37 if (!buffer->addr)
38 return -ENOMEM;
39 buffer->len = len;
40 return 0;
41}
42
43void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
44{
45 if (buffer->addr) {
46 dma_free_coherent(&efx->pci_dev->dev, buffer->len,
47 buffer->addr, buffer->dma_addr);
48 buffer->addr = NULL;
49 }
50}
51
52/* Check whether an event is present in the eventq at the current
53 * read pointer. Only useful for self-test.
54 */
55bool efx_nic_event_present(struct efx_channel *channel)
56{
57 return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
58}
59
60void efx_nic_event_test_start(struct efx_channel *channel)
61{
62 channel->event_test_cpu = -1;
63 smp_wmb();
64 channel->efx->type->ev_test_generate(channel);
65}
66
67int efx_nic_irq_test_start(struct efx_nic *efx)
68{
69 efx->last_irq_cpu = -1;
70 smp_wmb();
71 return efx->type->irq_test_generate(efx);
72}
73
74/* Hook interrupt handler(s)
75 * Try MSI and then legacy interrupts.
76 */
77int efx_nic_init_interrupt(struct efx_nic *efx)
78{
79 struct efx_channel *channel;
80 unsigned int n_irqs;
81 int rc;
82
83 if (!EFX_INT_MODE_USE_MSI(efx)) {
84 rc = request_irq(efx->legacy_irq,
85 efx->type->irq_handle_legacy, IRQF_SHARED,
86 efx->name, efx);
87 if (rc) {
88 netif_err(efx, drv, efx->net_dev,
89 "failed to hook legacy IRQ %d\n",
90 efx->pci_dev->irq);
91 goto fail1;
92 }
93 efx->irqs_hooked = true;
94 return 0;
95 }
96
97#ifdef CONFIG_RFS_ACCEL
98 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
99 efx->net_dev->rx_cpu_rmap =
100 alloc_irq_cpu_rmap(efx->n_rx_channels);
101 if (!efx->net_dev->rx_cpu_rmap) {
102 rc = -ENOMEM;
103 goto fail1;
104 }
105 }
106#endif
107
108 /* Hook MSI or MSI-X interrupt */
109 n_irqs = 0;
110 efx_for_each_channel(channel, efx) {
111 rc = request_irq(channel->irq, efx->type->irq_handle_msi,
112 IRQF_PROBE_SHARED, /* Not shared */
113 efx->msi_context[channel->channel].name,
114 &efx->msi_context[channel->channel]);
115 if (rc) {
116 netif_err(efx, drv, efx->net_dev,
117 "failed to hook IRQ %d\n", channel->irq);
118 goto fail2;
119 }
120 ++n_irqs;
121
122#ifdef CONFIG_RFS_ACCEL
123 if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
124 channel->channel < efx->n_rx_channels) {
125 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
126 channel->irq);
127 if (rc)
128 goto fail2;
129 }
130#endif
131 }
132
133 efx->irqs_hooked = true;
134 return 0;
135
136 fail2:
137#ifdef CONFIG_RFS_ACCEL
138 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
139 efx->net_dev->rx_cpu_rmap = NULL;
140#endif
141 efx_for_each_channel(channel, efx) {
142 if (n_irqs-- == 0)
143 break;
144 free_irq(channel->irq, &efx->msi_context[channel->channel]);
145 }
146 fail1:
147 return rc;
148}
149
150void efx_nic_fini_interrupt(struct efx_nic *efx)
151{
152 struct efx_channel *channel;
153
154#ifdef CONFIG_RFS_ACCEL
155 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
156 efx->net_dev->rx_cpu_rmap = NULL;
157#endif
158
159 if (!efx->irqs_hooked)
160 return;
161 if (EFX_INT_MODE_USE_MSI(efx)) {
162 /* Disable MSI/MSI-X interrupts */
163 efx_for_each_channel(channel, efx)
164 free_irq(channel->irq,
165 &efx->msi_context[channel->channel]);
166 } else {
167 /* Disable legacy interrupt */
168 free_irq(efx->legacy_irq, efx);
169 }
170 efx->irqs_hooked = false;
171}
172
173/* Register dump */
174
175#define REGISTER_REVISION_FA 1
176#define REGISTER_REVISION_FB 2
177#define REGISTER_REVISION_FC 3
178#define REGISTER_REVISION_FZ 3 /* last Falcon arch revision */
179#define REGISTER_REVISION_ED 4
180#define REGISTER_REVISION_EZ 4 /* latest EF10 revision */
181
182struct efx_nic_reg {
183 u32 offset:24;
184 u32 min_revision:3, max_revision:3;
185};
186
187#define REGISTER(name, arch, min_rev, max_rev) { \
188 arch ## R_ ## min_rev ## max_rev ## _ ## name, \
189 REGISTER_REVISION_ ## arch ## min_rev, \
190 REGISTER_REVISION_ ## arch ## max_rev \
191}
192#define REGISTER_AA(name) REGISTER(name, F, A, A)
193#define REGISTER_AB(name) REGISTER(name, F, A, B)
194#define REGISTER_AZ(name) REGISTER(name, F, A, Z)
195#define REGISTER_BB(name) REGISTER(name, F, B, B)
196#define REGISTER_BZ(name) REGISTER(name, F, B, Z)
197#define REGISTER_CZ(name) REGISTER(name, F, C, Z)
198#define REGISTER_DZ(name) REGISTER(name, E, D, Z)
199
200static const struct efx_nic_reg efx_nic_regs[] = {
201 REGISTER_AZ(ADR_REGION),
202 REGISTER_AZ(INT_EN_KER),
203 REGISTER_BZ(INT_EN_CHAR),
204 REGISTER_AZ(INT_ADR_KER),
205 REGISTER_BZ(INT_ADR_CHAR),
206 /* INT_ACK_KER is WO */
207 /* INT_ISR0 is RC */
208 REGISTER_AZ(HW_INIT),
209 REGISTER_CZ(USR_EV_CFG),
210 REGISTER_AB(EE_SPI_HCMD),
211 REGISTER_AB(EE_SPI_HADR),
212 REGISTER_AB(EE_SPI_HDATA),
213 REGISTER_AB(EE_BASE_PAGE),
214 REGISTER_AB(EE_VPD_CFG0),
215 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
216 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
217 /* PCIE_CORE_INDIRECT is indirect */
218 REGISTER_AB(NIC_STAT),
219 REGISTER_AB(GPIO_CTL),
220 REGISTER_AB(GLB_CTL),
221 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
222 REGISTER_BZ(DP_CTRL),
223 REGISTER_AZ(MEM_STAT),
224 REGISTER_AZ(CS_DEBUG),
225 REGISTER_AZ(ALTERA_BUILD),
226 REGISTER_AZ(CSR_SPARE),
227 REGISTER_AB(PCIE_SD_CTL0123),
228 REGISTER_AB(PCIE_SD_CTL45),
229 REGISTER_AB(PCIE_PCS_CTL_STAT),
230 /* DEBUG_DATA_OUT is not used */
231 /* DRV_EV is WO */
232 REGISTER_AZ(EVQ_CTL),
233 REGISTER_AZ(EVQ_CNT1),
234 REGISTER_AZ(EVQ_CNT2),
235 REGISTER_AZ(BUF_TBL_CFG),
236 REGISTER_AZ(SRM_RX_DC_CFG),
237 REGISTER_AZ(SRM_TX_DC_CFG),
238 REGISTER_AZ(SRM_CFG),
239 /* BUF_TBL_UPD is WO */
240 REGISTER_AZ(SRM_UPD_EVQ),
241 REGISTER_AZ(SRAM_PARITY),
242 REGISTER_AZ(RX_CFG),
243 REGISTER_BZ(RX_FILTER_CTL),
244 /* RX_FLUSH_DESCQ is WO */
245 REGISTER_AZ(RX_DC_CFG),
246 REGISTER_AZ(RX_DC_PF_WM),
247 REGISTER_BZ(RX_RSS_TKEY),
248 /* RX_NODESC_DROP is RC */
249 REGISTER_AA(RX_SELF_RST),
250 /* RX_DEBUG, RX_PUSH_DROP are not used */
251 REGISTER_CZ(RX_RSS_IPV6_REG1),
252 REGISTER_CZ(RX_RSS_IPV6_REG2),
253 REGISTER_CZ(RX_RSS_IPV6_REG3),
254 /* TX_FLUSH_DESCQ is WO */
255 REGISTER_AZ(TX_DC_CFG),
256 REGISTER_AA(TX_CHKSM_CFG),
257 REGISTER_AZ(TX_CFG),
258 /* TX_PUSH_DROP is not used */
259 REGISTER_AZ(TX_RESERVED),
260 REGISTER_BZ(TX_PACE),
261 /* TX_PACE_DROP_QID is RC */
262 REGISTER_BB(TX_VLAN),
263 REGISTER_BZ(TX_IPFIL_PORTEN),
264 REGISTER_AB(MD_TXD),
265 REGISTER_AB(MD_RXD),
266 REGISTER_AB(MD_CS),
267 REGISTER_AB(MD_PHY_ADR),
268 REGISTER_AB(MD_ID),
269 /* MD_STAT is RC */
270 REGISTER_AB(MAC_STAT_DMA),
271 REGISTER_AB(MAC_CTRL),
272 REGISTER_BB(GEN_MODE),
273 REGISTER_AB(MAC_MC_HASH_REG0),
274 REGISTER_AB(MAC_MC_HASH_REG1),
275 REGISTER_AB(GM_CFG1),
276 REGISTER_AB(GM_CFG2),
277 /* GM_IPG and GM_HD are not used */
278 REGISTER_AB(GM_MAX_FLEN),
279 /* GM_TEST is not used */
280 REGISTER_AB(GM_ADR1),
281 REGISTER_AB(GM_ADR2),
282 REGISTER_AB(GMF_CFG0),
283 REGISTER_AB(GMF_CFG1),
284 REGISTER_AB(GMF_CFG2),
285 REGISTER_AB(GMF_CFG3),
286 REGISTER_AB(GMF_CFG4),
287 REGISTER_AB(GMF_CFG5),
288 REGISTER_BB(TX_SRC_MAC_CTL),
289 REGISTER_AB(XM_ADR_LO),
290 REGISTER_AB(XM_ADR_HI),
291 REGISTER_AB(XM_GLB_CFG),
292 REGISTER_AB(XM_TX_CFG),
293 REGISTER_AB(XM_RX_CFG),
294 REGISTER_AB(XM_MGT_INT_MASK),
295 REGISTER_AB(XM_FC),
296 REGISTER_AB(XM_PAUSE_TIME),
297 REGISTER_AB(XM_TX_PARAM),
298 REGISTER_AB(XM_RX_PARAM),
299 /* XM_MGT_INT_MSK (note no 'A') is RC */
300 REGISTER_AB(XX_PWR_RST),
301 REGISTER_AB(XX_SD_CTL),
302 REGISTER_AB(XX_TXDRV_CTL),
303 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
304 /* XX_CORE_STAT is partly RC */
305 REGISTER_DZ(BIU_HW_REV_ID),
306 REGISTER_DZ(MC_DB_LWRD),
307 REGISTER_DZ(MC_DB_HWRD),
308};
309
310struct efx_nic_reg_table {
311 u32 offset:24;
312 u32 min_revision:3, max_revision:3;
313 u32 step:6, rows:21;
314};
315
316#define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \
317 offset, \
318 REGISTER_REVISION_ ## arch ## min_rev, \
319 REGISTER_REVISION_ ## arch ## max_rev, \
320 step, rows \
321}
322#define REGISTER_TABLE(name, arch, min_rev, max_rev) \
323 REGISTER_TABLE_DIMENSIONS( \
324 name, arch ## R_ ## min_rev ## max_rev ## _ ## name, \
325 arch, min_rev, max_rev, \
326 arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
327 arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
328#define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, F, A, A)
329#define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, F, A, Z)
330#define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, F, B, B)
331#define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, F, B, Z)
332#define REGISTER_TABLE_BB_CZ(name) \
333 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, B, B, \
334 FR_BZ_ ## name ## _STEP, \
335 FR_BB_ ## name ## _ROWS), \
336 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, C, Z, \
337 FR_BZ_ ## name ## _STEP, \
338 FR_CZ_ ## name ## _ROWS)
339#define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, F, C, Z)
340#define REGISTER_TABLE_DZ(name) REGISTER_TABLE(name, E, D, Z)
341
342static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
343 /* DRIVER is not used */
344 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
345 REGISTER_TABLE_BB(TX_IPFIL_TBL),
346 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
347 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
348 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
349 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
350 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
351 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
352 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
353 /* We can't reasonably read all of the buffer table (up to 8MB!).
354 * However this driver will only use a few entries. Reading
355 * 1K entries allows for some expansion of queue count and
356 * size before we need to change the version. */
357 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
358 F, A, A, 8, 1024),
359 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
360 F, B, Z, 8, 1024),
361 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
362 REGISTER_TABLE_BB_CZ(TIMER_TBL),
363 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
364 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
365 /* TX_FILTER_TBL0 is huge and not used by this driver */
366 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
367 REGISTER_TABLE_CZ(MC_TREG_SMEM),
368 /* MSIX_PBA_TABLE is not mapped */
369 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
370 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
371 REGISTER_TABLE_DZ(BIU_MC_SFT_STATUS),
372};
373
374size_t efx_nic_get_regs_len(struct efx_nic *efx)
375{
376 const struct efx_nic_reg *reg;
377 const struct efx_nic_reg_table *table;
378 size_t len = 0;
379
380 for (reg = efx_nic_regs;
381 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
382 reg++)
383 if (efx->type->revision >= reg->min_revision &&
384 efx->type->revision <= reg->max_revision)
385 len += sizeof(efx_oword_t);
386
387 for (table = efx_nic_reg_tables;
388 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
389 table++)
390 if (efx->type->revision >= table->min_revision &&
391 efx->type->revision <= table->max_revision)
392 len += table->rows * min_t(size_t, table->step, 16);
393
394 return len;
395}
396
397void efx_nic_get_regs(struct efx_nic *efx, void *buf)
398{
399 const struct efx_nic_reg *reg;
400 const struct efx_nic_reg_table *table;
401
402 for (reg = efx_nic_regs;
403 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
404 reg++) {
405 if (efx->type->revision >= reg->min_revision &&
406 efx->type->revision <= reg->max_revision) {
407 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
408 buf += sizeof(efx_oword_t);
409 }
410 }
411
412 for (table = efx_nic_reg_tables;
413 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
414 table++) {
415 size_t size, i;
416
417 if (!(efx->type->revision >= table->min_revision &&
418 efx->type->revision <= table->max_revision))
419 continue;
420
421 size = min_t(size_t, table->step, 16);
422
423 for (i = 0; i < table->rows; i++) {
424 switch (table->step) {
425 case 4: /* 32-bit SRAM */
426 efx_readd(efx, buf, table->offset + 4 * i);
427 break;
428 case 8: /* 64-bit SRAM */
429 efx_sram_readq(efx,
430 efx->membase + table->offset,
431 buf, i);
432 break;
433 case 16: /* 128-bit-readable register */
434 efx_reado_table(efx, buf, table->offset, i);
435 break;
436 case 32: /* 128-bit register, interleaved */
437 efx_reado_table(efx, buf, table->offset, 2 * i);
438 break;
439 default:
440 WARN_ON(1);
441 return;
442 }
443 buf += size;
444 }
445 }
446}
447
448/**
449 * efx_nic_describe_stats - Describe supported statistics for ethtool
450 * @desc: Array of &struct efx_hw_stat_desc describing the statistics
451 * @count: Length of the @desc array
452 * @mask: Bitmask of which elements of @desc are enabled
453 * @names: Buffer to copy names to, or %NULL. The names are copied
454 * starting at intervals of %ETH_GSTRING_LEN bytes.
455 *
456 * Returns the number of visible statistics, i.e. the number of set
457 * bits in the first @count bits of @mask for which a name is defined.
458 */
459size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
460 const unsigned long *mask, u8 *names)
461{
462 size_t visible = 0;
463 size_t index;
464
465 for_each_set_bit(index, mask, count) {
466 if (desc[index].name) {
467 if (names) {
468 strscpy(names, desc[index].name,
469 ETH_GSTRING_LEN);
470 names += ETH_GSTRING_LEN;
471 }
472 ++visible;
473 }
474 }
475
476 return visible;
477}
478
479/**
480 * efx_nic_copy_stats - Copy stats from the DMA buffer in to an
481 * intermediate buffer. This is used to get a consistent
482 * set of stats while the DMA buffer can be written at any time
483 * by the NIC.
484 * @efx: The associated NIC.
485 * @dest: Destination buffer. Must be the same size as the DMA buffer.
486 */
487int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest)
488{
489 __le64 *dma_stats = efx->stats_buffer.addr;
490 __le64 generation_start, generation_end;
491 int rc = 0, retry;
492
493 if (!dest)
494 return 0;
495
496 if (!dma_stats)
497 goto return_zeroes;
498
499 /* If we're unlucky enough to read statistics during the DMA, wait
500 * up to 10ms for it to finish (typically takes <500us)
501 */
502 for (retry = 0; retry < 100; ++retry) {
503 generation_end = dma_stats[efx->num_mac_stats - 1];
504 if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
505 goto return_zeroes;
506 rmb();
507 memcpy(dest, dma_stats, efx->num_mac_stats * sizeof(__le64));
508 rmb();
509 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
510 if (generation_end == generation_start)
511 return 0; /* return good data */
512 udelay(100);
513 }
514
515 rc = -EIO;
516
517return_zeroes:
518 memset(dest, 0, efx->num_mac_stats * sizeof(u64));
519 return rc;
520}
521
522/**
523 * efx_nic_update_stats - Convert statistics DMA buffer to array of u64
524 * @desc: Array of &struct efx_hw_stat_desc describing the DMA buffer
525 * layout. DMA widths of 0, 16, 32 and 64 are supported; where
526 * the width is specified as 0 the corresponding element of
527 * @stats is not updated.
528 * @count: Length of the @desc array
529 * @mask: Bitmask of which elements of @desc are enabled
530 * @stats: Buffer to update with the converted statistics. The length
531 * of this array must be at least @count.
532 * @dma_buf: DMA buffer containing hardware statistics
533 * @accumulate: If set, the converted values will be added rather than
534 * directly stored to the corresponding elements of @stats
535 */
536void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
537 const unsigned long *mask,
538 u64 *stats, const void *dma_buf, bool accumulate)
539{
540 size_t index;
541
542 for_each_set_bit(index, mask, count) {
543 if (desc[index].dma_width) {
544 const void *addr = dma_buf + desc[index].offset;
545 u64 val;
546
547 switch (desc[index].dma_width) {
548 case 16:
549 val = le16_to_cpup((__le16 *)addr);
550 break;
551 case 32:
552 val = le32_to_cpup((__le32 *)addr);
553 break;
554 case 64:
555 val = le64_to_cpup((__le64 *)addr);
556 break;
557 default:
558 WARN_ON(1);
559 val = 0;
560 break;
561 }
562
563 if (accumulate)
564 stats[index] += val;
565 else
566 stats[index] = val;
567 }
568 }
569}
570
571void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops)
572{
573 /* if down, or this is the first update after coming up */
574 if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state)
575 efx->rx_nodesc_drops_while_down +=
576 *rx_nodesc_drops - efx->rx_nodesc_drops_total;
577 efx->rx_nodesc_drops_total = *rx_nodesc_drops;
578 efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP);
579 *rx_nodesc_drops -= efx->rx_nodesc_drops_while_down;
580}