Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/****************************************************************************
  3 * Driver for Solarflare network controllers and boards
  4 * Copyright 2005-2006 Fen Systems Ltd.
  5 * Copyright 2006-2013 Solarflare Communications Inc.
  6 */
  7
  8#include <linux/bitops.h>
  9#include <linux/delay.h>
 10#include <linux/interrupt.h>
 11#include <linux/pci.h>
 12#include <linux/module.h>
 13#include <linux/seq_file.h>
 14#include <linux/cpu_rmap.h>
 15#include "net_driver.h"
 16#include "bitfield.h"
 17#include "efx.h"
 18#include "nic.h"
 19#include "ef10_regs.h"
 
 20#include "io.h"
 21#include "workarounds.h"
 22#include "mcdi_pcol.h"
 23
 24/**************************************************************************
 25 *
 26 * Generic buffer handling
 27 * These buffers are used for interrupt status, MAC stats, etc.
 28 *
 29 **************************************************************************/
 30
 31int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
 32			 unsigned int len, gfp_t gfp_flags)
 33{
 34	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
 35					  &buffer->dma_addr, gfp_flags);
 36	if (!buffer->addr)
 37		return -ENOMEM;
 38	buffer->len = len;
 39	return 0;
 40}
 41
 42void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
 43{
 44	if (buffer->addr) {
 45		dma_free_coherent(&efx->pci_dev->dev, buffer->len,
 46				  buffer->addr, buffer->dma_addr);
 47		buffer->addr = NULL;
 48	}
 49}
 50
 51/* Check whether an event is present in the eventq at the current
 52 * read pointer.  Only useful for self-test.
 53 */
 54bool efx_nic_event_present(struct efx_channel *channel)
 55{
 56	return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
 57}
 58
 59void efx_nic_event_test_start(struct efx_channel *channel)
 60{
 61	channel->event_test_cpu = -1;
 62	smp_wmb();
 63	channel->efx->type->ev_test_generate(channel);
 64}
 65
 66int efx_nic_irq_test_start(struct efx_nic *efx)
 67{
 68	efx->last_irq_cpu = -1;
 69	smp_wmb();
 70	return efx->type->irq_test_generate(efx);
 71}
 72
 73/* Hook interrupt handler(s)
 74 * Try MSI and then legacy interrupts.
 75 */
 76int efx_nic_init_interrupt(struct efx_nic *efx)
 77{
 78	struct efx_channel *channel;
 79	unsigned int n_irqs;
 80	int rc;
 81
 82	if (!EFX_INT_MODE_USE_MSI(efx)) {
 83		rc = request_irq(efx->legacy_irq,
 84				 efx->type->irq_handle_legacy, IRQF_SHARED,
 85				 efx->name, efx);
 86		if (rc) {
 87			netif_err(efx, drv, efx->net_dev,
 88				  "failed to hook legacy IRQ %d\n",
 89				  efx->pci_dev->irq);
 90			goto fail1;
 91		}
 92		efx->irqs_hooked = true;
 93		return 0;
 94	}
 95
 96#ifdef CONFIG_RFS_ACCEL
 97	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
 98		efx->net_dev->rx_cpu_rmap =
 99			alloc_irq_cpu_rmap(efx->n_rx_channels);
100		if (!efx->net_dev->rx_cpu_rmap) {
101			rc = -ENOMEM;
102			goto fail1;
103		}
104	}
105#endif
106
107	/* Hook MSI or MSI-X interrupt */
108	n_irqs = 0;
109	efx_for_each_channel(channel, efx) {
110		rc = request_irq(channel->irq, efx->type->irq_handle_msi,
111				 IRQF_PROBE_SHARED, /* Not shared */
112				 efx->msi_context[channel->channel].name,
113				 &efx->msi_context[channel->channel]);
114		if (rc) {
115			netif_err(efx, drv, efx->net_dev,
116				  "failed to hook IRQ %d\n", channel->irq);
117			goto fail2;
118		}
119		++n_irqs;
120
121#ifdef CONFIG_RFS_ACCEL
122		if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
123		    channel->channel < efx->n_rx_channels) {
124			rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
125					      channel->irq);
126			if (rc)
127				goto fail2;
128		}
129#endif
130	}
131
132	efx->irqs_hooked = true;
133	return 0;
134
135 fail2:
136#ifdef CONFIG_RFS_ACCEL
137	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
138	efx->net_dev->rx_cpu_rmap = NULL;
139#endif
140	efx_for_each_channel(channel, efx) {
141		if (n_irqs-- == 0)
142			break;
143		free_irq(channel->irq, &efx->msi_context[channel->channel]);
144	}
145 fail1:
146	return rc;
147}
148
149void efx_nic_fini_interrupt(struct efx_nic *efx)
150{
151	struct efx_channel *channel;
152
153#ifdef CONFIG_RFS_ACCEL
154	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
155	efx->net_dev->rx_cpu_rmap = NULL;
156#endif
157
158	if (!efx->irqs_hooked)
159		return;
160	if (EFX_INT_MODE_USE_MSI(efx)) {
161		/* Disable MSI/MSI-X interrupts */
162		efx_for_each_channel(channel, efx)
163			free_irq(channel->irq,
164				 &efx->msi_context[channel->channel]);
165	} else {
166		/* Disable legacy interrupt */
167		free_irq(efx->legacy_irq, efx);
168	}
169	efx->irqs_hooked = false;
170}
171
172/* Register dump */
173
 
 
 
 
174#define REGISTER_REVISION_ED	4
175#define REGISTER_REVISION_EZ	4	/* latest EF10 revision */
176
177struct efx_nic_reg {
178	u32 offset:24;
179	u32 min_revision:3, max_revision:3;
180};
181
182#define REGISTER(name, arch, min_rev, max_rev) {			\
183	arch ## R_ ## min_rev ## max_rev ## _ ## name,			\
184	REGISTER_REVISION_ ## arch ## min_rev,				\
185	REGISTER_REVISION_ ## arch ## max_rev				\
186}
 
 
 
 
 
 
187#define REGISTER_DZ(name) REGISTER(name, E, D, Z)
188
189static const struct efx_nic_reg efx_nic_regs[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
191	/* XX_CORE_STAT is partly RC */
192	REGISTER_DZ(BIU_HW_REV_ID),
193	REGISTER_DZ(MC_DB_LWRD),
194	REGISTER_DZ(MC_DB_HWRD),
195};
196
197struct efx_nic_reg_table {
198	u32 offset:24;
199	u32 min_revision:3, max_revision:3;
200	u32 step:6, rows:21;
201};
202
203#define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \
204	offset,								\
205	REGISTER_REVISION_ ## arch ## min_rev,				\
206	REGISTER_REVISION_ ## arch ## max_rev,				\
207	step, rows							\
208}
209#define REGISTER_TABLE(name, arch, min_rev, max_rev)			\
210	REGISTER_TABLE_DIMENSIONS(					\
211		name, arch ## R_ ## min_rev ## max_rev ## _ ## name,	\
212		arch, min_rev, max_rev,					\
213		arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
214		arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
 
 
 
 
 
 
 
 
 
 
 
 
215#define REGISTER_TABLE_DZ(name) REGISTER_TABLE(name, E, D, Z)
216
217static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218	REGISTER_TABLE_DZ(BIU_MC_SFT_STATUS),
219};
220
221size_t efx_nic_get_regs_len(struct efx_nic *efx)
222{
223	const struct efx_nic_reg *reg;
224	const struct efx_nic_reg_table *table;
225	size_t len = 0;
226
227	for (reg = efx_nic_regs;
228	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
229	     reg++)
230		if (efx->type->revision >= reg->min_revision &&
231		    efx->type->revision <= reg->max_revision)
232			len += sizeof(efx_oword_t);
233
234	for (table = efx_nic_reg_tables;
235	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
236	     table++)
237		if (efx->type->revision >= table->min_revision &&
238		    efx->type->revision <= table->max_revision)
239			len += table->rows * min_t(size_t, table->step, 16);
240
241	return len;
242}
243
244void efx_nic_get_regs(struct efx_nic *efx, void *buf)
245{
246	const struct efx_nic_reg *reg;
247	const struct efx_nic_reg_table *table;
248
249	for (reg = efx_nic_regs;
250	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
251	     reg++) {
252		if (efx->type->revision >= reg->min_revision &&
253		    efx->type->revision <= reg->max_revision) {
254			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
255			buf += sizeof(efx_oword_t);
256		}
257	}
258
259	for (table = efx_nic_reg_tables;
260	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
261	     table++) {
262		size_t size, i;
263
264		if (!(efx->type->revision >= table->min_revision &&
265		      efx->type->revision <= table->max_revision))
266			continue;
267
268		size = min_t(size_t, table->step, 16);
269
270		for (i = 0; i < table->rows; i++) {
271			switch (table->step) {
272			case 4: /* 32-bit SRAM */
273				efx_readd(efx, buf, table->offset + 4 * i);
 
 
 
 
 
274				break;
275			case 16: /* 128-bit-readable register */
276				efx_reado_table(efx, buf, table->offset, i);
277				break;
278			case 32: /* 128-bit register, interleaved */
279				efx_reado_table(efx, buf, table->offset, 2 * i);
280				break;
281			default:
282				WARN_ON(1);
283				return;
284			}
285			buf += size;
286		}
287	}
288}
289
290/**
291 * efx_nic_describe_stats - Describe supported statistics for ethtool
292 * @desc: Array of &struct efx_hw_stat_desc describing the statistics
293 * @count: Length of the @desc array
294 * @mask: Bitmask of which elements of @desc are enabled
295 * @names: Buffer to copy names to, or %NULL.  The names are copied
296 *	starting at intervals of %ETH_GSTRING_LEN bytes.
297 *
298 * Returns the number of visible statistics, i.e. the number of set
299 * bits in the first @count bits of @mask for which a name is defined.
300 */
301size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
302			      const unsigned long *mask, u8 *names)
303{
304	size_t visible = 0;
305	size_t index;
306
307	for_each_set_bit(index, mask, count) {
308		if (desc[index].name) {
309			if (names) {
310				strscpy(names, desc[index].name,
311					ETH_GSTRING_LEN);
312				names += ETH_GSTRING_LEN;
313			}
314			++visible;
315		}
316	}
317
318	return visible;
319}
320
321/**
322 * efx_nic_copy_stats - Copy stats from the DMA buffer in to an
323 *	intermediate buffer. This is used to get a consistent
324 *	set of stats while the DMA buffer can be written at any time
325 *	by the NIC.
326 * @efx: The associated NIC.
327 * @dest: Destination buffer. Must be the same size as the DMA buffer.
328 */
329int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest)
330{
331	__le64 *dma_stats = efx->stats_buffer.addr;
332	__le64 generation_start, generation_end;
333	int rc = 0, retry;
334
335	if (!dest)
336		return 0;
337
338	if (!dma_stats)
339		goto return_zeroes;
340
341	/* If we're unlucky enough to read statistics during the DMA, wait
342	 * up to 10ms for it to finish (typically takes <500us)
343	 */
344	for (retry = 0; retry < 100; ++retry) {
345		generation_end = dma_stats[efx->num_mac_stats - 1];
346		if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
347			goto return_zeroes;
348		rmb();
349		memcpy(dest, dma_stats, efx->num_mac_stats * sizeof(__le64));
350		rmb();
351		generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
352		if (generation_end == generation_start)
353			return 0; /* return good data */
354		udelay(100);
355	}
356
357	rc = -EIO;
358
359return_zeroes:
360	memset(dest, 0, efx->num_mac_stats * sizeof(u64));
361	return rc;
362}
363
364/**
365 * efx_nic_update_stats - Convert statistics DMA buffer to array of u64
366 * @desc: Array of &struct efx_hw_stat_desc describing the DMA buffer
367 *	layout.  DMA widths of 0, 16, 32 and 64 are supported; where
368 *	the width is specified as 0 the corresponding element of
369 *	@stats is not updated.
370 * @count: Length of the @desc array
371 * @mask: Bitmask of which elements of @desc are enabled
372 * @stats: Buffer to update with the converted statistics.  The length
373 *	of this array must be at least @count.
374 * @dma_buf: DMA buffer containing hardware statistics
375 * @accumulate: If set, the converted values will be added rather than
376 *	directly stored to the corresponding elements of @stats
377 */
378void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
379			  const unsigned long *mask,
380			  u64 *stats, const void *dma_buf, bool accumulate)
381{
382	size_t index;
383
384	for_each_set_bit(index, mask, count) {
385		if (desc[index].dma_width) {
386			const void *addr = dma_buf + desc[index].offset;
387			u64 val;
388
389			switch (desc[index].dma_width) {
390			case 16:
391				val = le16_to_cpup((__le16 *)addr);
392				break;
393			case 32:
394				val = le32_to_cpup((__le32 *)addr);
395				break;
396			case 64:
397				val = le64_to_cpup((__le64 *)addr);
398				break;
399			default:
400				WARN_ON(1);
401				val = 0;
402				break;
403			}
404
405			if (accumulate)
406				stats[index] += val;
407			else
408				stats[index] = val;
409		}
410	}
411}
412
413void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops)
414{
415	/* if down, or this is the first update after coming up */
416	if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state)
417		efx->rx_nodesc_drops_while_down +=
418			*rx_nodesc_drops - efx->rx_nodesc_drops_total;
419	efx->rx_nodesc_drops_total = *rx_nodesc_drops;
420	efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP);
421	*rx_nodesc_drops -= efx->rx_nodesc_drops_while_down;
422}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/****************************************************************************
  3 * Driver for Solarflare network controllers and boards
  4 * Copyright 2005-2006 Fen Systems Ltd.
  5 * Copyright 2006-2013 Solarflare Communications Inc.
  6 */
  7
  8#include <linux/bitops.h>
  9#include <linux/delay.h>
 10#include <linux/interrupt.h>
 11#include <linux/pci.h>
 12#include <linux/module.h>
 13#include <linux/seq_file.h>
 14#include <linux/cpu_rmap.h>
 15#include "net_driver.h"
 16#include "bitfield.h"
 17#include "efx.h"
 18#include "nic.h"
 19#include "ef10_regs.h"
 20#include "farch_regs.h"
 21#include "io.h"
 22#include "workarounds.h"
 23#include "mcdi_pcol.h"
 24
 25/**************************************************************************
 26 *
 27 * Generic buffer handling
 28 * These buffers are used for interrupt status, MAC stats, etc.
 29 *
 30 **************************************************************************/
 31
 32int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
 33			 unsigned int len, gfp_t gfp_flags)
 34{
 35	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
 36					  &buffer->dma_addr, gfp_flags);
 37	if (!buffer->addr)
 38		return -ENOMEM;
 39	buffer->len = len;
 40	return 0;
 41}
 42
 43void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
 44{
 45	if (buffer->addr) {
 46		dma_free_coherent(&efx->pci_dev->dev, buffer->len,
 47				  buffer->addr, buffer->dma_addr);
 48		buffer->addr = NULL;
 49	}
 50}
 51
 52/* Check whether an event is present in the eventq at the current
 53 * read pointer.  Only useful for self-test.
 54 */
 55bool efx_nic_event_present(struct efx_channel *channel)
 56{
 57	return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
 58}
 59
 60void efx_nic_event_test_start(struct efx_channel *channel)
 61{
 62	channel->event_test_cpu = -1;
 63	smp_wmb();
 64	channel->efx->type->ev_test_generate(channel);
 65}
 66
 67int efx_nic_irq_test_start(struct efx_nic *efx)
 68{
 69	efx->last_irq_cpu = -1;
 70	smp_wmb();
 71	return efx->type->irq_test_generate(efx);
 72}
 73
 74/* Hook interrupt handler(s)
 75 * Try MSI and then legacy interrupts.
 76 */
 77int efx_nic_init_interrupt(struct efx_nic *efx)
 78{
 79	struct efx_channel *channel;
 80	unsigned int n_irqs;
 81	int rc;
 82
 83	if (!EFX_INT_MODE_USE_MSI(efx)) {
 84		rc = request_irq(efx->legacy_irq,
 85				 efx->type->irq_handle_legacy, IRQF_SHARED,
 86				 efx->name, efx);
 87		if (rc) {
 88			netif_err(efx, drv, efx->net_dev,
 89				  "failed to hook legacy IRQ %d\n",
 90				  efx->pci_dev->irq);
 91			goto fail1;
 92		}
 93		efx->irqs_hooked = true;
 94		return 0;
 95	}
 96
 97#ifdef CONFIG_RFS_ACCEL
 98	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
 99		efx->net_dev->rx_cpu_rmap =
100			alloc_irq_cpu_rmap(efx->n_rx_channels);
101		if (!efx->net_dev->rx_cpu_rmap) {
102			rc = -ENOMEM;
103			goto fail1;
104		}
105	}
106#endif
107
108	/* Hook MSI or MSI-X interrupt */
109	n_irqs = 0;
110	efx_for_each_channel(channel, efx) {
111		rc = request_irq(channel->irq, efx->type->irq_handle_msi,
112				 IRQF_PROBE_SHARED, /* Not shared */
113				 efx->msi_context[channel->channel].name,
114				 &efx->msi_context[channel->channel]);
115		if (rc) {
116			netif_err(efx, drv, efx->net_dev,
117				  "failed to hook IRQ %d\n", channel->irq);
118			goto fail2;
119		}
120		++n_irqs;
121
122#ifdef CONFIG_RFS_ACCEL
123		if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
124		    channel->channel < efx->n_rx_channels) {
125			rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
126					      channel->irq);
127			if (rc)
128				goto fail2;
129		}
130#endif
131	}
132
133	efx->irqs_hooked = true;
134	return 0;
135
136 fail2:
137#ifdef CONFIG_RFS_ACCEL
138	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
139	efx->net_dev->rx_cpu_rmap = NULL;
140#endif
141	efx_for_each_channel(channel, efx) {
142		if (n_irqs-- == 0)
143			break;
144		free_irq(channel->irq, &efx->msi_context[channel->channel]);
145	}
146 fail1:
147	return rc;
148}
149
150void efx_nic_fini_interrupt(struct efx_nic *efx)
151{
152	struct efx_channel *channel;
153
154#ifdef CONFIG_RFS_ACCEL
155	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
156	efx->net_dev->rx_cpu_rmap = NULL;
157#endif
158
159	if (!efx->irqs_hooked)
160		return;
161	if (EFX_INT_MODE_USE_MSI(efx)) {
162		/* Disable MSI/MSI-X interrupts */
163		efx_for_each_channel(channel, efx)
164			free_irq(channel->irq,
165				 &efx->msi_context[channel->channel]);
166	} else {
167		/* Disable legacy interrupt */
168		free_irq(efx->legacy_irq, efx);
169	}
170	efx->irqs_hooked = false;
171}
172
173/* Register dump */
174
175#define REGISTER_REVISION_FA	1
176#define REGISTER_REVISION_FB	2
177#define REGISTER_REVISION_FC	3
178#define REGISTER_REVISION_FZ	3	/* last Falcon arch revision */
179#define REGISTER_REVISION_ED	4
180#define REGISTER_REVISION_EZ	4	/* latest EF10 revision */
181
182struct efx_nic_reg {
183	u32 offset:24;
184	u32 min_revision:3, max_revision:3;
185};
186
187#define REGISTER(name, arch, min_rev, max_rev) {			\
188	arch ## R_ ## min_rev ## max_rev ## _ ## name,			\
189	REGISTER_REVISION_ ## arch ## min_rev,				\
190	REGISTER_REVISION_ ## arch ## max_rev				\
191}
192#define REGISTER_AA(name) REGISTER(name, F, A, A)
193#define REGISTER_AB(name) REGISTER(name, F, A, B)
194#define REGISTER_AZ(name) REGISTER(name, F, A, Z)
195#define REGISTER_BB(name) REGISTER(name, F, B, B)
196#define REGISTER_BZ(name) REGISTER(name, F, B, Z)
197#define REGISTER_CZ(name) REGISTER(name, F, C, Z)
198#define REGISTER_DZ(name) REGISTER(name, E, D, Z)
199
200static const struct efx_nic_reg efx_nic_regs[] = {
201	REGISTER_AZ(ADR_REGION),
202	REGISTER_AZ(INT_EN_KER),
203	REGISTER_BZ(INT_EN_CHAR),
204	REGISTER_AZ(INT_ADR_KER),
205	REGISTER_BZ(INT_ADR_CHAR),
206	/* INT_ACK_KER is WO */
207	/* INT_ISR0 is RC */
208	REGISTER_AZ(HW_INIT),
209	REGISTER_CZ(USR_EV_CFG),
210	REGISTER_AB(EE_SPI_HCMD),
211	REGISTER_AB(EE_SPI_HADR),
212	REGISTER_AB(EE_SPI_HDATA),
213	REGISTER_AB(EE_BASE_PAGE),
214	REGISTER_AB(EE_VPD_CFG0),
215	/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
216	/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
217	/* PCIE_CORE_INDIRECT is indirect */
218	REGISTER_AB(NIC_STAT),
219	REGISTER_AB(GPIO_CTL),
220	REGISTER_AB(GLB_CTL),
221	/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
222	REGISTER_BZ(DP_CTRL),
223	REGISTER_AZ(MEM_STAT),
224	REGISTER_AZ(CS_DEBUG),
225	REGISTER_AZ(ALTERA_BUILD),
226	REGISTER_AZ(CSR_SPARE),
227	REGISTER_AB(PCIE_SD_CTL0123),
228	REGISTER_AB(PCIE_SD_CTL45),
229	REGISTER_AB(PCIE_PCS_CTL_STAT),
230	/* DEBUG_DATA_OUT is not used */
231	/* DRV_EV is WO */
232	REGISTER_AZ(EVQ_CTL),
233	REGISTER_AZ(EVQ_CNT1),
234	REGISTER_AZ(EVQ_CNT2),
235	REGISTER_AZ(BUF_TBL_CFG),
236	REGISTER_AZ(SRM_RX_DC_CFG),
237	REGISTER_AZ(SRM_TX_DC_CFG),
238	REGISTER_AZ(SRM_CFG),
239	/* BUF_TBL_UPD is WO */
240	REGISTER_AZ(SRM_UPD_EVQ),
241	REGISTER_AZ(SRAM_PARITY),
242	REGISTER_AZ(RX_CFG),
243	REGISTER_BZ(RX_FILTER_CTL),
244	/* RX_FLUSH_DESCQ is WO */
245	REGISTER_AZ(RX_DC_CFG),
246	REGISTER_AZ(RX_DC_PF_WM),
247	REGISTER_BZ(RX_RSS_TKEY),
248	/* RX_NODESC_DROP is RC */
249	REGISTER_AA(RX_SELF_RST),
250	/* RX_DEBUG, RX_PUSH_DROP are not used */
251	REGISTER_CZ(RX_RSS_IPV6_REG1),
252	REGISTER_CZ(RX_RSS_IPV6_REG2),
253	REGISTER_CZ(RX_RSS_IPV6_REG3),
254	/* TX_FLUSH_DESCQ is WO */
255	REGISTER_AZ(TX_DC_CFG),
256	REGISTER_AA(TX_CHKSM_CFG),
257	REGISTER_AZ(TX_CFG),
258	/* TX_PUSH_DROP is not used */
259	REGISTER_AZ(TX_RESERVED),
260	REGISTER_BZ(TX_PACE),
261	/* TX_PACE_DROP_QID is RC */
262	REGISTER_BB(TX_VLAN),
263	REGISTER_BZ(TX_IPFIL_PORTEN),
264	REGISTER_AB(MD_TXD),
265	REGISTER_AB(MD_RXD),
266	REGISTER_AB(MD_CS),
267	REGISTER_AB(MD_PHY_ADR),
268	REGISTER_AB(MD_ID),
269	/* MD_STAT is RC */
270	REGISTER_AB(MAC_STAT_DMA),
271	REGISTER_AB(MAC_CTRL),
272	REGISTER_BB(GEN_MODE),
273	REGISTER_AB(MAC_MC_HASH_REG0),
274	REGISTER_AB(MAC_MC_HASH_REG1),
275	REGISTER_AB(GM_CFG1),
276	REGISTER_AB(GM_CFG2),
277	/* GM_IPG and GM_HD are not used */
278	REGISTER_AB(GM_MAX_FLEN),
279	/* GM_TEST is not used */
280	REGISTER_AB(GM_ADR1),
281	REGISTER_AB(GM_ADR2),
282	REGISTER_AB(GMF_CFG0),
283	REGISTER_AB(GMF_CFG1),
284	REGISTER_AB(GMF_CFG2),
285	REGISTER_AB(GMF_CFG3),
286	REGISTER_AB(GMF_CFG4),
287	REGISTER_AB(GMF_CFG5),
288	REGISTER_BB(TX_SRC_MAC_CTL),
289	REGISTER_AB(XM_ADR_LO),
290	REGISTER_AB(XM_ADR_HI),
291	REGISTER_AB(XM_GLB_CFG),
292	REGISTER_AB(XM_TX_CFG),
293	REGISTER_AB(XM_RX_CFG),
294	REGISTER_AB(XM_MGT_INT_MASK),
295	REGISTER_AB(XM_FC),
296	REGISTER_AB(XM_PAUSE_TIME),
297	REGISTER_AB(XM_TX_PARAM),
298	REGISTER_AB(XM_RX_PARAM),
299	/* XM_MGT_INT_MSK (note no 'A') is RC */
300	REGISTER_AB(XX_PWR_RST),
301	REGISTER_AB(XX_SD_CTL),
302	REGISTER_AB(XX_TXDRV_CTL),
303	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
304	/* XX_CORE_STAT is partly RC */
305	REGISTER_DZ(BIU_HW_REV_ID),
306	REGISTER_DZ(MC_DB_LWRD),
307	REGISTER_DZ(MC_DB_HWRD),
308};
309
310struct efx_nic_reg_table {
311	u32 offset:24;
312	u32 min_revision:3, max_revision:3;
313	u32 step:6, rows:21;
314};
315
316#define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \
317	offset,								\
318	REGISTER_REVISION_ ## arch ## min_rev,				\
319	REGISTER_REVISION_ ## arch ## max_rev,				\
320	step, rows							\
321}
322#define REGISTER_TABLE(name, arch, min_rev, max_rev)			\
323	REGISTER_TABLE_DIMENSIONS(					\
324		name, arch ## R_ ## min_rev ## max_rev ## _ ## name,	\
325		arch, min_rev, max_rev,					\
326		arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
327		arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
328#define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, F, A, A)
329#define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, F, A, Z)
330#define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, F, B, B)
331#define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, F, B, Z)
332#define REGISTER_TABLE_BB_CZ(name)					\
333	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, B, B,	\
334				  FR_BZ_ ## name ## _STEP,		\
335				  FR_BB_ ## name ## _ROWS),		\
336	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, C, Z,	\
337				  FR_BZ_ ## name ## _STEP,		\
338				  FR_CZ_ ## name ## _ROWS)
339#define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, F, C, Z)
340#define REGISTER_TABLE_DZ(name) REGISTER_TABLE(name, E, D, Z)
341
342static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
343	/* DRIVER is not used */
344	/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
345	REGISTER_TABLE_BB(TX_IPFIL_TBL),
346	REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
347	REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
348	REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
349	REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
350	REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
351	REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
352	REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
353	/* We can't reasonably read all of the buffer table (up to 8MB!).
354	 * However this driver will only use a few entries.  Reading
355	 * 1K entries allows for some expansion of queue count and
356	 * size before we need to change the version. */
357	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
358				  F, A, A, 8, 1024),
359	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
360				  F, B, Z, 8, 1024),
361	REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
362	REGISTER_TABLE_BB_CZ(TIMER_TBL),
363	REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
364	REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
365	/* TX_FILTER_TBL0 is huge and not used by this driver */
366	REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
367	REGISTER_TABLE_CZ(MC_TREG_SMEM),
368	/* MSIX_PBA_TABLE is not mapped */
369	/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
370	REGISTER_TABLE_BZ(RX_FILTER_TBL0),
371	REGISTER_TABLE_DZ(BIU_MC_SFT_STATUS),
372};
373
374size_t efx_nic_get_regs_len(struct efx_nic *efx)
375{
376	const struct efx_nic_reg *reg;
377	const struct efx_nic_reg_table *table;
378	size_t len = 0;
379
380	for (reg = efx_nic_regs;
381	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
382	     reg++)
383		if (efx->type->revision >= reg->min_revision &&
384		    efx->type->revision <= reg->max_revision)
385			len += sizeof(efx_oword_t);
386
387	for (table = efx_nic_reg_tables;
388	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
389	     table++)
390		if (efx->type->revision >= table->min_revision &&
391		    efx->type->revision <= table->max_revision)
392			len += table->rows * min_t(size_t, table->step, 16);
393
394	return len;
395}
396
397void efx_nic_get_regs(struct efx_nic *efx, void *buf)
398{
399	const struct efx_nic_reg *reg;
400	const struct efx_nic_reg_table *table;
401
402	for (reg = efx_nic_regs;
403	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
404	     reg++) {
405		if (efx->type->revision >= reg->min_revision &&
406		    efx->type->revision <= reg->max_revision) {
407			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
408			buf += sizeof(efx_oword_t);
409		}
410	}
411
412	for (table = efx_nic_reg_tables;
413	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
414	     table++) {
415		size_t size, i;
416
417		if (!(efx->type->revision >= table->min_revision &&
418		      efx->type->revision <= table->max_revision))
419			continue;
420
421		size = min_t(size_t, table->step, 16);
422
423		for (i = 0; i < table->rows; i++) {
424			switch (table->step) {
425			case 4: /* 32-bit SRAM */
426				efx_readd(efx, buf, table->offset + 4 * i);
427				break;
428			case 8: /* 64-bit SRAM */
429				efx_sram_readq(efx,
430					       efx->membase + table->offset,
431					       buf, i);
432				break;
433			case 16: /* 128-bit-readable register */
434				efx_reado_table(efx, buf, table->offset, i);
435				break;
436			case 32: /* 128-bit register, interleaved */
437				efx_reado_table(efx, buf, table->offset, 2 * i);
438				break;
439			default:
440				WARN_ON(1);
441				return;
442			}
443			buf += size;
444		}
445	}
446}
447
448/**
449 * efx_nic_describe_stats - Describe supported statistics for ethtool
450 * @desc: Array of &struct efx_hw_stat_desc describing the statistics
451 * @count: Length of the @desc array
452 * @mask: Bitmask of which elements of @desc are enabled
453 * @names: Buffer to copy names to, or %NULL.  The names are copied
454 *	starting at intervals of %ETH_GSTRING_LEN bytes.
455 *
456 * Returns the number of visible statistics, i.e. the number of set
457 * bits in the first @count bits of @mask for which a name is defined.
458 */
459size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
460			      const unsigned long *mask, u8 *names)
461{
462	size_t visible = 0;
463	size_t index;
464
465	for_each_set_bit(index, mask, count) {
466		if (desc[index].name) {
467			if (names) {
468				strscpy(names, desc[index].name,
469					ETH_GSTRING_LEN);
470				names += ETH_GSTRING_LEN;
471			}
472			++visible;
473		}
474	}
475
476	return visible;
477}
478
479/**
480 * efx_nic_copy_stats - Copy stats from the DMA buffer in to an
481 *	intermediate buffer. This is used to get a consistent
482 *	set of stats while the DMA buffer can be written at any time
483 *	by the NIC.
484 * @efx: The associated NIC.
485 * @dest: Destination buffer. Must be the same size as the DMA buffer.
486 */
487int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest)
488{
489	__le64 *dma_stats = efx->stats_buffer.addr;
490	__le64 generation_start, generation_end;
491	int rc = 0, retry;
492
493	if (!dest)
494		return 0;
495
496	if (!dma_stats)
497		goto return_zeroes;
498
499	/* If we're unlucky enough to read statistics during the DMA, wait
500	 * up to 10ms for it to finish (typically takes <500us)
501	 */
502	for (retry = 0; retry < 100; ++retry) {
503		generation_end = dma_stats[efx->num_mac_stats - 1];
504		if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
505			goto return_zeroes;
506		rmb();
507		memcpy(dest, dma_stats, efx->num_mac_stats * sizeof(__le64));
508		rmb();
509		generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
510		if (generation_end == generation_start)
511			return 0; /* return good data */
512		udelay(100);
513	}
514
515	rc = -EIO;
516
517return_zeroes:
518	memset(dest, 0, efx->num_mac_stats * sizeof(u64));
519	return rc;
520}
521
522/**
523 * efx_nic_update_stats - Convert statistics DMA buffer to array of u64
524 * @desc: Array of &struct efx_hw_stat_desc describing the DMA buffer
525 *	layout.  DMA widths of 0, 16, 32 and 64 are supported; where
526 *	the width is specified as 0 the corresponding element of
527 *	@stats is not updated.
528 * @count: Length of the @desc array
529 * @mask: Bitmask of which elements of @desc are enabled
530 * @stats: Buffer to update with the converted statistics.  The length
531 *	of this array must be at least @count.
532 * @dma_buf: DMA buffer containing hardware statistics
533 * @accumulate: If set, the converted values will be added rather than
534 *	directly stored to the corresponding elements of @stats
535 */
536void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
537			  const unsigned long *mask,
538			  u64 *stats, const void *dma_buf, bool accumulate)
539{
540	size_t index;
541
542	for_each_set_bit(index, mask, count) {
543		if (desc[index].dma_width) {
544			const void *addr = dma_buf + desc[index].offset;
545			u64 val;
546
547			switch (desc[index].dma_width) {
548			case 16:
549				val = le16_to_cpup((__le16 *)addr);
550				break;
551			case 32:
552				val = le32_to_cpup((__le32 *)addr);
553				break;
554			case 64:
555				val = le64_to_cpup((__le64 *)addr);
556				break;
557			default:
558				WARN_ON(1);
559				val = 0;
560				break;
561			}
562
563			if (accumulate)
564				stats[index] += val;
565			else
566				stats[index] = val;
567		}
568	}
569}
570
571void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops)
572{
573	/* if down, or this is the first update after coming up */
574	if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state)
575		efx->rx_nodesc_drops_while_down +=
576			*rx_nodesc_drops - efx->rx_nodesc_drops_total;
577	efx->rx_nodesc_drops_total = *rx_nodesc_drops;
578	efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP);
579	*rx_nodesc_drops -= efx->rx_nodesc_drops_while_down;
580}