Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/****************************************************************************
  3 * Driver for Solarflare network controllers and boards
  4 * Copyright 2018 Solarflare Communications Inc.
  5 * Copyright 2019-2020 Xilinx Inc.
  6 *
  7 * This program is free software; you can redistribute it and/or modify it
  8 * under the terms of the GNU General Public License version 2 as published
  9 * by the Free Software Foundation, incorporated herein by reference.
 10 */
 11
 12#include <net/ip6_checksum.h>
 13
 14#include "net_driver.h"
 15#include "tx_common.h"
 16#include "nic_common.h"
 17#include "mcdi_functions.h"
 18#include "ef100_regs.h"
 19#include "io.h"
 20#include "ef100_tx.h"
 21#include "ef100_nic.h"
 22
 23int ef100_tx_probe(struct efx_tx_queue *tx_queue)
 24{
 25	/* Allocate an extra descriptor for the QMDA status completion entry */
 26	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd,
 27				    (tx_queue->ptr_mask + 2) *
 28				    sizeof(efx_oword_t),
 29				    GFP_KERNEL);
 30}
 31
 32void ef100_tx_init(struct efx_tx_queue *tx_queue)
 33{
 34	/* must be the inverse of lookup in efx_get_tx_channel */
 35	tx_queue->core_txq =
 36		netdev_get_tx_queue(tx_queue->efx->net_dev,
 37				    tx_queue->channel->channel -
 38				    tx_queue->efx->tx_channel_offset);
 39
 40	/* This value is purely documentational; as EF100 never passes through
 41	 * the switch statement in tx.c:__efx_enqueue_skb(), that switch does
 42	 * not handle case 3.  EF100's TSOv3 descriptors are generated by
 43	 * ef100_make_tso_desc().
 44	 * Meanwhile, all efx_mcdi_tx_init() cares about is that it's not 2.
 45	 */
 46	tx_queue->tso_version = 3;
 47	if (efx_mcdi_tx_init(tx_queue))
 48		netdev_WARN(tx_queue->efx->net_dev,
 49			    "failed to initialise TXQ %d\n", tx_queue->queue);
 50}
 51
 52static bool ef100_tx_can_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
 53{
 54	struct efx_nic *efx = tx_queue->efx;
 55	struct ef100_nic_data *nic_data;
 56	struct efx_tx_buffer *buffer;
 57	size_t header_len;
 58	u32 mss;
 59
 60	nic_data = efx->nic_data;
 61
 62	if (!skb_is_gso_tcp(skb))
 63		return false;
 64	if (!(efx->net_dev->features & NETIF_F_TSO))
 65		return false;
 66
 67	mss = skb_shinfo(skb)->gso_size;
 68	if (unlikely(mss < 4)) {
 69		WARN_ONCE(1, "MSS of %u is too small for TSO\n", mss);
 70		return false;
 71	}
 72
 73	header_len = efx_tx_tso_header_length(skb);
 74	if (header_len > nic_data->tso_max_hdr_len)
 75		return false;
 76
 77	if (skb_shinfo(skb)->gso_segs > nic_data->tso_max_payload_num_segs) {
 78		/* net_dev->gso_max_segs should've caught this */
 79		WARN_ON_ONCE(1);
 80		return false;
 81	}
 82
 83	if (skb->data_len / mss > nic_data->tso_max_frames)
 84		return false;
 85
 86	/* net_dev->gso_max_size should've caught this */
 87	if (WARN_ON_ONCE(skb->data_len > nic_data->tso_max_payload_len))
 88		return false;
 89
 90	/* Reserve an empty buffer for the TSO V3 descriptor.
 91	 * Convey the length of the header since we already know it.
 92	 */
 93	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
 94	buffer->flags = EFX_TX_BUF_TSO_V3 | EFX_TX_BUF_CONT;
 95	buffer->len = header_len;
 96	buffer->unmap_len = 0;
 97	buffer->skb = skb;
 98	++tx_queue->insert_count;
 99	return true;
100}
101
102static efx_oword_t *ef100_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
103{
104	if (likely(tx_queue->txd.addr))
105		return ((efx_oword_t *)tx_queue->txd.addr) + index;
106	else
107		return NULL;
108}
109
110static void ef100_notify_tx_desc(struct efx_tx_queue *tx_queue)
111{
112	unsigned int write_ptr;
113	efx_dword_t reg;
114
115	tx_queue->xmit_pending = false;
116
117	if (unlikely(tx_queue->notify_count == tx_queue->write_count))
118		return;
119
120	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
121	/* The write pointer goes into the high word */
122	EFX_POPULATE_DWORD_1(reg, ERF_GZ_TX_RING_PIDX, write_ptr);
123	efx_writed_page(tx_queue->efx, &reg,
124			ER_GZ_TX_RING_DOORBELL, tx_queue->queue);
125	tx_queue->notify_count = tx_queue->write_count;
126}
127
128static void ef100_tx_push_buffers(struct efx_tx_queue *tx_queue)
129{
130	ef100_notify_tx_desc(tx_queue);
131	++tx_queue->pushes;
132}
133
134static void ef100_set_tx_csum_partial(const struct sk_buff *skb,
135				      struct efx_tx_buffer *buffer, efx_oword_t *txd)
136{
137	efx_oword_t csum;
138	int csum_start;
139
140	if (!skb || skb->ip_summed != CHECKSUM_PARTIAL)
141		return;
142
143	/* skb->csum_start has the offset from head, but we need the offset
144	 * from data.
145	 */
146	csum_start = skb_checksum_start_offset(skb);
147	EFX_POPULATE_OWORD_3(csum,
148			     ESF_GZ_TX_SEND_CSO_PARTIAL_EN, 1,
149			     ESF_GZ_TX_SEND_CSO_PARTIAL_START_W,
150			     csum_start >> 1,
151			     ESF_GZ_TX_SEND_CSO_PARTIAL_CSUM_W,
152			     skb->csum_offset >> 1);
153	EFX_OR_OWORD(*txd, *txd, csum);
154}
155
156static void ef100_set_tx_hw_vlan(const struct sk_buff *skb, efx_oword_t *txd)
157{
158	u16 vlan_tci = skb_vlan_tag_get(skb);
159	efx_oword_t vlan;
160
161	EFX_POPULATE_OWORD_2(vlan,
162			     ESF_GZ_TX_SEND_VLAN_INSERT_EN, 1,
163			     ESF_GZ_TX_SEND_VLAN_INSERT_TCI, vlan_tci);
164	EFX_OR_OWORD(*txd, *txd, vlan);
165}
166
167static void ef100_make_send_desc(struct efx_nic *efx,
168				 const struct sk_buff *skb,
169				 struct efx_tx_buffer *buffer, efx_oword_t *txd,
170				 unsigned int segment_count)
171{
172	/* TX send descriptor */
173	EFX_POPULATE_OWORD_3(*txd,
174			     ESF_GZ_TX_SEND_NUM_SEGS, segment_count,
175			     ESF_GZ_TX_SEND_LEN, buffer->len,
176			     ESF_GZ_TX_SEND_ADDR, buffer->dma_addr);
177
178	if (likely(efx->net_dev->features & NETIF_F_HW_CSUM))
179		ef100_set_tx_csum_partial(skb, buffer, txd);
180	if (efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_TX &&
181	    skb && skb_vlan_tag_present(skb))
182		ef100_set_tx_hw_vlan(skb, txd);
183}
184
185static void ef100_make_tso_desc(struct efx_nic *efx,
186				const struct sk_buff *skb,
187				struct efx_tx_buffer *buffer, efx_oword_t *txd,
188				unsigned int segment_count)
189{
190	bool gso_partial = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
191	unsigned int len, ip_offset, tcp_offset, payload_segs;
192	u32 mangleid = ESE_GZ_TX_DESC_IP4_ID_INC_MOD16;
193	unsigned int outer_ip_offset, outer_l4_offset;
194	u16 vlan_tci = skb_vlan_tag_get(skb);
195	u32 mss = skb_shinfo(skb)->gso_size;
196	bool encap = skb->encapsulation;
197	bool udp_encap = false;
198	u16 vlan_enable = 0;
199	struct tcphdr *tcp;
200	bool outer_csum;
201	u32 paylen;
202
203	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID)
204		mangleid = ESE_GZ_TX_DESC_IP4_ID_NO_OP;
205	if (efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_TX)
206		vlan_enable = skb_vlan_tag_present(skb);
207
208	len = skb->len - buffer->len;
209	/* We use 1 for the TSO descriptor and 1 for the header */
210	payload_segs = segment_count - 2;
211	if (encap) {
212		outer_ip_offset = skb_network_offset(skb);
213		outer_l4_offset = skb_transport_offset(skb);
214		ip_offset = skb_inner_network_offset(skb);
215		tcp_offset = skb_inner_transport_offset(skb);
216		if (skb_shinfo(skb)->gso_type &
217		    (SKB_GSO_UDP_TUNNEL | SKB_GSO_UDP_TUNNEL_CSUM))
218			udp_encap = true;
219	} else {
220		ip_offset =  skb_network_offset(skb);
221		tcp_offset = skb_transport_offset(skb);
222		outer_ip_offset = outer_l4_offset = 0;
223	}
224	outer_csum = skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM;
225
226	/* subtract TCP payload length from inner checksum */
227	tcp = (void *)skb->data + tcp_offset;
228	paylen = skb->len - tcp_offset;
229	csum_replace_by_diff(&tcp->check, (__force __wsum)htonl(paylen));
230
231	EFX_POPULATE_OWORD_19(*txd,
232			      ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_TSO,
233			      ESF_GZ_TX_TSO_MSS, mss,
234			      ESF_GZ_TX_TSO_HDR_NUM_SEGS, 1,
235			      ESF_GZ_TX_TSO_PAYLOAD_NUM_SEGS, payload_segs,
236			      ESF_GZ_TX_TSO_HDR_LEN_W, buffer->len >> 1,
237			      ESF_GZ_TX_TSO_PAYLOAD_LEN, len,
238			      ESF_GZ_TX_TSO_CSO_OUTER_L4, outer_csum,
239			      ESF_GZ_TX_TSO_CSO_INNER_L4, 1,
240			      ESF_GZ_TX_TSO_INNER_L3_OFF_W, ip_offset >> 1,
241			      ESF_GZ_TX_TSO_INNER_L4_OFF_W, tcp_offset >> 1,
242			      ESF_GZ_TX_TSO_ED_INNER_IP4_ID, mangleid,
243			      ESF_GZ_TX_TSO_ED_INNER_IP_LEN, 1,
244			      ESF_GZ_TX_TSO_OUTER_L3_OFF_W, outer_ip_offset >> 1,
245			      ESF_GZ_TX_TSO_OUTER_L4_OFF_W, outer_l4_offset >> 1,
246			      ESF_GZ_TX_TSO_ED_OUTER_UDP_LEN, udp_encap && !gso_partial,
247			      ESF_GZ_TX_TSO_ED_OUTER_IP_LEN, encap && !gso_partial,
248			      ESF_GZ_TX_TSO_ED_OUTER_IP4_ID, encap ? mangleid :
249								     ESE_GZ_TX_DESC_IP4_ID_NO_OP,
250			      ESF_GZ_TX_TSO_VLAN_INSERT_EN, vlan_enable,
251			      ESF_GZ_TX_TSO_VLAN_INSERT_TCI, vlan_tci
252		);
253}
254
255static void ef100_tx_make_descriptors(struct efx_tx_queue *tx_queue,
256				      const struct sk_buff *skb,
257				      unsigned int segment_count,
258				      struct efx_rep *efv)
259{
260	unsigned int old_write_count = tx_queue->write_count;
261	unsigned int new_write_count = old_write_count;
262	struct efx_tx_buffer *buffer;
263	unsigned int next_desc_type;
264	unsigned int write_ptr;
265	efx_oword_t *txd;
266	unsigned int nr_descs = tx_queue->insert_count - old_write_count;
267
268	if (unlikely(nr_descs == 0))
269		return;
270
271	if (segment_count)
272		next_desc_type = ESE_GZ_TX_DESC_TYPE_TSO;
273	else
274		next_desc_type = ESE_GZ_TX_DESC_TYPE_SEND;
275
276	if (unlikely(efv)) {
277		/* Create TX override descriptor */
278		write_ptr = new_write_count & tx_queue->ptr_mask;
279		txd = ef100_tx_desc(tx_queue, write_ptr);
280		++new_write_count;
281
282		tx_queue->packet_write_count = new_write_count;
283		EFX_POPULATE_OWORD_3(*txd,
284				     ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_PREFIX,
285				     ESF_GZ_TX_PREFIX_EGRESS_MPORT, efv->mport,
286				     ESF_GZ_TX_PREFIX_EGRESS_MPORT_EN, 1);
287		nr_descs--;
288	}
289
290	/* if it's a raw write (such as XDP) then always SEND single frames */
291	if (!skb)
292		nr_descs = 1;
293
294	do {
295		write_ptr = new_write_count & tx_queue->ptr_mask;
296		buffer = &tx_queue->buffer[write_ptr];
297		txd = ef100_tx_desc(tx_queue, write_ptr);
298		++new_write_count;
299
300		/* Create TX descriptor ring entry */
301		tx_queue->packet_write_count = new_write_count;
302
303		switch (next_desc_type) {
304		case ESE_GZ_TX_DESC_TYPE_SEND:
305			ef100_make_send_desc(tx_queue->efx, skb,
306					     buffer, txd, nr_descs);
307			break;
308		case ESE_GZ_TX_DESC_TYPE_TSO:
309			/* TX TSO descriptor */
310			WARN_ON_ONCE(!(buffer->flags & EFX_TX_BUF_TSO_V3));
311			ef100_make_tso_desc(tx_queue->efx, skb,
312					    buffer, txd, nr_descs);
313			break;
314		default:
315			/* TX segment descriptor */
316			EFX_POPULATE_OWORD_3(*txd,
317					     ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_SEG,
318					     ESF_GZ_TX_SEG_LEN, buffer->len,
319					     ESF_GZ_TX_SEG_ADDR, buffer->dma_addr);
320		}
321		/* if it's a raw write (such as XDP) then always SEND */
322		next_desc_type = skb ? ESE_GZ_TX_DESC_TYPE_SEG :
323				       ESE_GZ_TX_DESC_TYPE_SEND;
324		/* mark as an EFV buffer if applicable */
325		if (unlikely(efv))
326			buffer->flags |= EFX_TX_BUF_EFV;
327
328	} while (new_write_count != tx_queue->insert_count);
329
330	wmb(); /* Ensure descriptors are written before they are fetched */
331
332	tx_queue->write_count = new_write_count;
333
334	/* The write_count above must be updated before reading
335	 * channel->holdoff_doorbell to avoid a race with the
336	 * completion path, so ensure these operations are not
337	 * re-ordered.  This also flushes the update of write_count
338	 * back into the cache.
339	 */
340	smp_mb();
341}
342
343void ef100_tx_write(struct efx_tx_queue *tx_queue)
344{
345	ef100_tx_make_descriptors(tx_queue, NULL, 0, NULL);
346	ef100_tx_push_buffers(tx_queue);
347}
348
349int ef100_ev_tx(struct efx_channel *channel, const efx_qword_t *p_event)
350{
351	unsigned int tx_done =
352		EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_TXCMPL_NUM_DESC);
353	unsigned int qlabel =
354		EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_TXCMPL_Q_LABEL);
355	struct efx_tx_queue *tx_queue =
356		efx_channel_get_tx_queue(channel, qlabel);
357	unsigned int tx_index = (tx_queue->read_count + tx_done - 1) &
358				tx_queue->ptr_mask;
359
360	return efx_xmit_done(tx_queue, tx_index);
361}
362
363/* Add a socket buffer to a TX queue
364 *
365 * You must hold netif_tx_lock() to call this function.
366 *
367 * Returns 0 on success, error code otherwise. In case of an error this
368 * function will free the SKB.
369 */
370netdev_tx_t ef100_enqueue_skb(struct efx_tx_queue *tx_queue,
371			      struct sk_buff *skb)
372{
373	return __ef100_enqueue_skb(tx_queue, skb, NULL);
374}
375
376int __ef100_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
377			struct efx_rep *efv)
378{
379	unsigned int old_insert_count = tx_queue->insert_count;
380	struct efx_nic *efx = tx_queue->efx;
381	bool xmit_more = netdev_xmit_more();
382	unsigned int fill_level;
383	unsigned int segments;
384	int rc;
385
386	if (!tx_queue->buffer || !tx_queue->ptr_mask) {
387		netif_stop_queue(efx->net_dev);
388		dev_kfree_skb_any(skb);
389		return -ENODEV;
390	}
391
392	segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
393	if (segments == 1)
394		segments = 0;	/* Don't use TSO/GSO for a single segment. */
395	if (segments && !ef100_tx_can_tso(tx_queue, skb)) {
396		rc = efx_tx_tso_fallback(tx_queue, skb);
397		tx_queue->tso_fallbacks++;
398		if (rc)
399			goto err;
400		else
401			return 0;
402	}
403
404	if (unlikely(efv)) {
405		struct efx_tx_buffer *buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
406
407		/* Drop representor packets if the queue is stopped.
408		 * We currently don't assert backoff to representors so this is
409		 * to make sure representor traffic can't starve the main
410		 * net device.
411		 * And, of course, if there are no TX descriptors left.
412		 */
413		if (netif_tx_queue_stopped(tx_queue->core_txq) ||
414		    unlikely(efx_tx_buffer_in_use(buffer))) {
415			atomic64_inc(&efv->stats.tx_errors);
416			rc = -ENOSPC;
417			goto err;
418		}
419
420		/* Also drop representor traffic if it could cause us to
421		 * stop the queue. If we assert backoff and we haven't
422		 * received traffic on the main net device recently then the
423		 * TX watchdog can go off erroneously.
424		 */
425		fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
426		fill_level += efx_tx_max_skb_descs(efx);
427		if (fill_level > efx->txq_stop_thresh) {
428			struct efx_tx_queue *txq2;
429
430			/* Refresh cached fill level and re-check */
431			efx_for_each_channel_tx_queue(txq2, tx_queue->channel)
432				txq2->old_read_count = READ_ONCE(txq2->read_count);
433
434			fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
435			fill_level += efx_tx_max_skb_descs(efx);
436			if (fill_level > efx->txq_stop_thresh) {
437				atomic64_inc(&efv->stats.tx_errors);
438				rc = -ENOSPC;
439				goto err;
440			}
441		}
442
443		buffer->flags = EFX_TX_BUF_OPTION | EFX_TX_BUF_EFV;
444		tx_queue->insert_count++;
445	}
446
447	/* Map for DMA and create descriptors */
448	rc = efx_tx_map_data(tx_queue, skb, segments);
449	if (rc)
450		goto err;
451	ef100_tx_make_descriptors(tx_queue, skb, segments, efv);
452
453	fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
454	if (fill_level > efx->txq_stop_thresh) {
455		struct efx_tx_queue *txq2;
456
457		/* Because of checks above, representor traffic should
458		 * not be able to stop the queue.
459		 */
460		WARN_ON(efv);
461
462		netif_tx_stop_queue(tx_queue->core_txq);
463		/* Re-read after a memory barrier in case we've raced with
464		 * the completion path. Otherwise there's a danger we'll never
465		 * restart the queue if all completions have just happened.
466		 */
467		smp_mb();
468		efx_for_each_channel_tx_queue(txq2, tx_queue->channel)
469			txq2->old_read_count = READ_ONCE(txq2->read_count);
470		fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
471		if (fill_level < efx->txq_stop_thresh)
472			netif_tx_start_queue(tx_queue->core_txq);
473	}
474
475	tx_queue->xmit_pending = true;
476
477	/* If xmit_more then we don't need to push the doorbell, unless there
478	 * are 256 descriptors already queued in which case we have to push to
479	 * ensure we never push more than 256 at once.
480	 *
481	 * Always push for representor traffic, and don't account it to parent
482	 * PF netdevice's BQL.
483	 */
484	if (unlikely(efv) ||
485	    __netdev_tx_sent_queue(tx_queue->core_txq, skb->len, xmit_more) ||
486	    tx_queue->write_count - tx_queue->notify_count > 255)
487		ef100_tx_push_buffers(tx_queue);
488
489	if (segments) {
490		tx_queue->tso_bursts++;
491		tx_queue->tso_packets += segments;
492		tx_queue->tx_packets  += segments;
493	} else {
494		tx_queue->tx_packets++;
495	}
496	return 0;
497
498err:
499	efx_enqueue_unwind(tx_queue, old_insert_count);
500	if (!IS_ERR_OR_NULL(skb))
501		dev_kfree_skb_any(skb);
502
503	/* If we're not expecting another transmit and we had something to push
504	 * on this queue then we need to push here to get the previous packets
505	 * out.  We only enter this branch from before the xmit_more handling
506	 * above, so xmit_pending still refers to the old state.
507	 */
508	if (tx_queue->xmit_pending && !xmit_more)
509		ef100_tx_push_buffers(tx_queue);
510	return rc;
511}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/****************************************************************************
  3 * Driver for Solarflare network controllers and boards
  4 * Copyright 2018 Solarflare Communications Inc.
  5 * Copyright 2019-2020 Xilinx Inc.
  6 *
  7 * This program is free software; you can redistribute it and/or modify it
  8 * under the terms of the GNU General Public License version 2 as published
  9 * by the Free Software Foundation, incorporated herein by reference.
 10 */
 11
 12#include <net/ip6_checksum.h>
 13
 14#include "net_driver.h"
 15#include "tx_common.h"
 16#include "nic_common.h"
 17#include "mcdi_functions.h"
 18#include "ef100_regs.h"
 19#include "io.h"
 20#include "ef100_tx.h"
 21#include "ef100_nic.h"
 22
 23int ef100_tx_probe(struct efx_tx_queue *tx_queue)
 24{
 25	/* Allocate an extra descriptor for the QMDA status completion entry */
 26	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
 27				    (tx_queue->ptr_mask + 2) *
 28				    sizeof(efx_oword_t),
 29				    GFP_KERNEL);
 30}
 31
 32void ef100_tx_init(struct efx_tx_queue *tx_queue)
 33{
 34	/* must be the inverse of lookup in efx_get_tx_channel */
 35	tx_queue->core_txq =
 36		netdev_get_tx_queue(tx_queue->efx->net_dev,
 37				    tx_queue->channel->channel -
 38				    tx_queue->efx->tx_channel_offset);
 39
 40	/* This value is purely documentational; as EF100 never passes through
 41	 * the switch statement in tx.c:__efx_enqueue_skb(), that switch does
 42	 * not handle case 3.  EF100's TSOv3 descriptors are generated by
 43	 * ef100_make_tso_desc().
 44	 * Meanwhile, all efx_mcdi_tx_init() cares about is that it's not 2.
 45	 */
 46	tx_queue->tso_version = 3;
 47	if (efx_mcdi_tx_init(tx_queue))
 48		netdev_WARN(tx_queue->efx->net_dev,
 49			    "failed to initialise TXQ %d\n", tx_queue->queue);
 50}
 51
 52static bool ef100_tx_can_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
 53{
 54	struct efx_nic *efx = tx_queue->efx;
 55	struct ef100_nic_data *nic_data;
 56	struct efx_tx_buffer *buffer;
 57	size_t header_len;
 58	u32 mss;
 59
 60	nic_data = efx->nic_data;
 61
 62	if (!skb_is_gso_tcp(skb))
 63		return false;
 64	if (!(efx->net_dev->features & NETIF_F_TSO))
 65		return false;
 66
 67	mss = skb_shinfo(skb)->gso_size;
 68	if (unlikely(mss < 4)) {
 69		WARN_ONCE(1, "MSS of %u is too small for TSO\n", mss);
 70		return false;
 71	}
 72
 73	header_len = efx_tx_tso_header_length(skb);
 74	if (header_len > nic_data->tso_max_hdr_len)
 75		return false;
 76
 77	if (skb_shinfo(skb)->gso_segs > nic_data->tso_max_payload_num_segs) {
 78		/* net_dev->gso_max_segs should've caught this */
 79		WARN_ON_ONCE(1);
 80		return false;
 81	}
 82
 83	if (skb->data_len / mss > nic_data->tso_max_frames)
 84		return false;
 85
 86	/* net_dev->gso_max_size should've caught this */
 87	if (WARN_ON_ONCE(skb->data_len > nic_data->tso_max_payload_len))
 88		return false;
 89
 90	/* Reserve an empty buffer for the TSO V3 descriptor.
 91	 * Convey the length of the header since we already know it.
 92	 */
 93	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
 94	buffer->flags = EFX_TX_BUF_TSO_V3 | EFX_TX_BUF_CONT;
 95	buffer->len = header_len;
 96	buffer->unmap_len = 0;
 97	buffer->skb = skb;
 98	++tx_queue->insert_count;
 99	return true;
100}
101
102static efx_oword_t *ef100_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
103{
104	if (likely(tx_queue->txd.buf.addr))
105		return ((efx_oword_t *)tx_queue->txd.buf.addr) + index;
106	else
107		return NULL;
108}
109
110static void ef100_notify_tx_desc(struct efx_tx_queue *tx_queue)
111{
112	unsigned int write_ptr;
113	efx_dword_t reg;
114
115	tx_queue->xmit_pending = false;
116
117	if (unlikely(tx_queue->notify_count == tx_queue->write_count))
118		return;
119
120	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
121	/* The write pointer goes into the high word */
122	EFX_POPULATE_DWORD_1(reg, ERF_GZ_TX_RING_PIDX, write_ptr);
123	efx_writed_page(tx_queue->efx, &reg,
124			ER_GZ_TX_RING_DOORBELL, tx_queue->queue);
125	tx_queue->notify_count = tx_queue->write_count;
126}
127
128static void ef100_tx_push_buffers(struct efx_tx_queue *tx_queue)
129{
130	ef100_notify_tx_desc(tx_queue);
131	++tx_queue->pushes;
132}
133
134static void ef100_set_tx_csum_partial(const struct sk_buff *skb,
135				      struct efx_tx_buffer *buffer, efx_oword_t *txd)
136{
137	efx_oword_t csum;
138	int csum_start;
139
140	if (!skb || skb->ip_summed != CHECKSUM_PARTIAL)
141		return;
142
143	/* skb->csum_start has the offset from head, but we need the offset
144	 * from data.
145	 */
146	csum_start = skb_checksum_start_offset(skb);
147	EFX_POPULATE_OWORD_3(csum,
148			     ESF_GZ_TX_SEND_CSO_PARTIAL_EN, 1,
149			     ESF_GZ_TX_SEND_CSO_PARTIAL_START_W,
150			     csum_start >> 1,
151			     ESF_GZ_TX_SEND_CSO_PARTIAL_CSUM_W,
152			     skb->csum_offset >> 1);
153	EFX_OR_OWORD(*txd, *txd, csum);
154}
155
156static void ef100_set_tx_hw_vlan(const struct sk_buff *skb, efx_oword_t *txd)
157{
158	u16 vlan_tci = skb_vlan_tag_get(skb);
159	efx_oword_t vlan;
160
161	EFX_POPULATE_OWORD_2(vlan,
162			     ESF_GZ_TX_SEND_VLAN_INSERT_EN, 1,
163			     ESF_GZ_TX_SEND_VLAN_INSERT_TCI, vlan_tci);
164	EFX_OR_OWORD(*txd, *txd, vlan);
165}
166
167static void ef100_make_send_desc(struct efx_nic *efx,
168				 const struct sk_buff *skb,
169				 struct efx_tx_buffer *buffer, efx_oword_t *txd,
170				 unsigned int segment_count)
171{
172	/* TX send descriptor */
173	EFX_POPULATE_OWORD_3(*txd,
174			     ESF_GZ_TX_SEND_NUM_SEGS, segment_count,
175			     ESF_GZ_TX_SEND_LEN, buffer->len,
176			     ESF_GZ_TX_SEND_ADDR, buffer->dma_addr);
177
178	if (likely(efx->net_dev->features & NETIF_F_HW_CSUM))
179		ef100_set_tx_csum_partial(skb, buffer, txd);
180	if (efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_TX &&
181	    skb && skb_vlan_tag_present(skb))
182		ef100_set_tx_hw_vlan(skb, txd);
183}
184
185static void ef100_make_tso_desc(struct efx_nic *efx,
186				const struct sk_buff *skb,
187				struct efx_tx_buffer *buffer, efx_oword_t *txd,
188				unsigned int segment_count)
189{
190	bool gso_partial = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
191	unsigned int len, ip_offset, tcp_offset, payload_segs;
192	u32 mangleid = ESE_GZ_TX_DESC_IP4_ID_INC_MOD16;
193	unsigned int outer_ip_offset, outer_l4_offset;
194	u16 vlan_tci = skb_vlan_tag_get(skb);
195	u32 mss = skb_shinfo(skb)->gso_size;
196	bool encap = skb->encapsulation;
197	bool udp_encap = false;
198	u16 vlan_enable = 0;
199	struct tcphdr *tcp;
200	bool outer_csum;
201	u32 paylen;
202
203	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID)
204		mangleid = ESE_GZ_TX_DESC_IP4_ID_NO_OP;
205	if (efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_TX)
206		vlan_enable = skb_vlan_tag_present(skb);
207
208	len = skb->len - buffer->len;
209	/* We use 1 for the TSO descriptor and 1 for the header */
210	payload_segs = segment_count - 2;
211	if (encap) {
212		outer_ip_offset = skb_network_offset(skb);
213		outer_l4_offset = skb_transport_offset(skb);
214		ip_offset = skb_inner_network_offset(skb);
215		tcp_offset = skb_inner_transport_offset(skb);
216		if (skb_shinfo(skb)->gso_type &
217		    (SKB_GSO_UDP_TUNNEL | SKB_GSO_UDP_TUNNEL_CSUM))
218			udp_encap = true;
219	} else {
220		ip_offset =  skb_network_offset(skb);
221		tcp_offset = skb_transport_offset(skb);
222		outer_ip_offset = outer_l4_offset = 0;
223	}
224	outer_csum = skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM;
225
226	/* subtract TCP payload length from inner checksum */
227	tcp = (void *)skb->data + tcp_offset;
228	paylen = skb->len - tcp_offset;
229	csum_replace_by_diff(&tcp->check, (__force __wsum)htonl(paylen));
230
231	EFX_POPULATE_OWORD_19(*txd,
232			      ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_TSO,
233			      ESF_GZ_TX_TSO_MSS, mss,
234			      ESF_GZ_TX_TSO_HDR_NUM_SEGS, 1,
235			      ESF_GZ_TX_TSO_PAYLOAD_NUM_SEGS, payload_segs,
236			      ESF_GZ_TX_TSO_HDR_LEN_W, buffer->len >> 1,
237			      ESF_GZ_TX_TSO_PAYLOAD_LEN, len,
238			      ESF_GZ_TX_TSO_CSO_OUTER_L4, outer_csum,
239			      ESF_GZ_TX_TSO_CSO_INNER_L4, 1,
240			      ESF_GZ_TX_TSO_INNER_L3_OFF_W, ip_offset >> 1,
241			      ESF_GZ_TX_TSO_INNER_L4_OFF_W, tcp_offset >> 1,
242			      ESF_GZ_TX_TSO_ED_INNER_IP4_ID, mangleid,
243			      ESF_GZ_TX_TSO_ED_INNER_IP_LEN, 1,
244			      ESF_GZ_TX_TSO_OUTER_L3_OFF_W, outer_ip_offset >> 1,
245			      ESF_GZ_TX_TSO_OUTER_L4_OFF_W, outer_l4_offset >> 1,
246			      ESF_GZ_TX_TSO_ED_OUTER_UDP_LEN, udp_encap && !gso_partial,
247			      ESF_GZ_TX_TSO_ED_OUTER_IP_LEN, encap && !gso_partial,
248			      ESF_GZ_TX_TSO_ED_OUTER_IP4_ID, encap ? mangleid :
249								     ESE_GZ_TX_DESC_IP4_ID_NO_OP,
250			      ESF_GZ_TX_TSO_VLAN_INSERT_EN, vlan_enable,
251			      ESF_GZ_TX_TSO_VLAN_INSERT_TCI, vlan_tci
252		);
253}
254
255static void ef100_tx_make_descriptors(struct efx_tx_queue *tx_queue,
256				      const struct sk_buff *skb,
257				      unsigned int segment_count,
258				      struct efx_rep *efv)
259{
260	unsigned int old_write_count = tx_queue->write_count;
261	unsigned int new_write_count = old_write_count;
262	struct efx_tx_buffer *buffer;
263	unsigned int next_desc_type;
264	unsigned int write_ptr;
265	efx_oword_t *txd;
266	unsigned int nr_descs = tx_queue->insert_count - old_write_count;
267
268	if (unlikely(nr_descs == 0))
269		return;
270
271	if (segment_count)
272		next_desc_type = ESE_GZ_TX_DESC_TYPE_TSO;
273	else
274		next_desc_type = ESE_GZ_TX_DESC_TYPE_SEND;
275
276	if (unlikely(efv)) {
277		/* Create TX override descriptor */
278		write_ptr = new_write_count & tx_queue->ptr_mask;
279		txd = ef100_tx_desc(tx_queue, write_ptr);
280		++new_write_count;
281
282		tx_queue->packet_write_count = new_write_count;
283		EFX_POPULATE_OWORD_3(*txd,
284				     ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_PREFIX,
285				     ESF_GZ_TX_PREFIX_EGRESS_MPORT, efv->mport,
286				     ESF_GZ_TX_PREFIX_EGRESS_MPORT_EN, 1);
287		nr_descs--;
288	}
289
290	/* if it's a raw write (such as XDP) then always SEND single frames */
291	if (!skb)
292		nr_descs = 1;
293
294	do {
295		write_ptr = new_write_count & tx_queue->ptr_mask;
296		buffer = &tx_queue->buffer[write_ptr];
297		txd = ef100_tx_desc(tx_queue, write_ptr);
298		++new_write_count;
299
300		/* Create TX descriptor ring entry */
301		tx_queue->packet_write_count = new_write_count;
302
303		switch (next_desc_type) {
304		case ESE_GZ_TX_DESC_TYPE_SEND:
305			ef100_make_send_desc(tx_queue->efx, skb,
306					     buffer, txd, nr_descs);
307			break;
308		case ESE_GZ_TX_DESC_TYPE_TSO:
309			/* TX TSO descriptor */
310			WARN_ON_ONCE(!(buffer->flags & EFX_TX_BUF_TSO_V3));
311			ef100_make_tso_desc(tx_queue->efx, skb,
312					    buffer, txd, nr_descs);
313			break;
314		default:
315			/* TX segment descriptor */
316			EFX_POPULATE_OWORD_3(*txd,
317					     ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_SEG,
318					     ESF_GZ_TX_SEG_LEN, buffer->len,
319					     ESF_GZ_TX_SEG_ADDR, buffer->dma_addr);
320		}
321		/* if it's a raw write (such as XDP) then always SEND */
322		next_desc_type = skb ? ESE_GZ_TX_DESC_TYPE_SEG :
323				       ESE_GZ_TX_DESC_TYPE_SEND;
324		/* mark as an EFV buffer if applicable */
325		if (unlikely(efv))
326			buffer->flags |= EFX_TX_BUF_EFV;
327
328	} while (new_write_count != tx_queue->insert_count);
329
330	wmb(); /* Ensure descriptors are written before they are fetched */
331
332	tx_queue->write_count = new_write_count;
333
334	/* The write_count above must be updated before reading
335	 * channel->holdoff_doorbell to avoid a race with the
336	 * completion path, so ensure these operations are not
337	 * re-ordered.  This also flushes the update of write_count
338	 * back into the cache.
339	 */
340	smp_mb();
341}
342
343void ef100_tx_write(struct efx_tx_queue *tx_queue)
344{
345	ef100_tx_make_descriptors(tx_queue, NULL, 0, NULL);
346	ef100_tx_push_buffers(tx_queue);
347}
348
349void ef100_ev_tx(struct efx_channel *channel, const efx_qword_t *p_event)
350{
351	unsigned int tx_done =
352		EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_TXCMPL_NUM_DESC);
353	unsigned int qlabel =
354		EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_TXCMPL_Q_LABEL);
355	struct efx_tx_queue *tx_queue =
356		efx_channel_get_tx_queue(channel, qlabel);
357	unsigned int tx_index = (tx_queue->read_count + tx_done - 1) &
358				tx_queue->ptr_mask;
359
360	efx_xmit_done(tx_queue, tx_index);
361}
362
363/* Add a socket buffer to a TX queue
364 *
365 * You must hold netif_tx_lock() to call this function.
366 *
367 * Returns 0 on success, error code otherwise. In case of an error this
368 * function will free the SKB.
369 */
370netdev_tx_t ef100_enqueue_skb(struct efx_tx_queue *tx_queue,
371			      struct sk_buff *skb)
372{
373	return __ef100_enqueue_skb(tx_queue, skb, NULL);
374}
375
376int __ef100_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
377			struct efx_rep *efv)
378{
379	unsigned int old_insert_count = tx_queue->insert_count;
380	struct efx_nic *efx = tx_queue->efx;
381	bool xmit_more = netdev_xmit_more();
382	unsigned int fill_level;
383	unsigned int segments;
384	int rc;
385
386	if (!tx_queue->buffer || !tx_queue->ptr_mask) {
387		netif_stop_queue(efx->net_dev);
388		dev_kfree_skb_any(skb);
389		return -ENODEV;
390	}
391
392	segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
393	if (segments == 1)
394		segments = 0;	/* Don't use TSO/GSO for a single segment. */
395	if (segments && !ef100_tx_can_tso(tx_queue, skb)) {
396		rc = efx_tx_tso_fallback(tx_queue, skb);
397		tx_queue->tso_fallbacks++;
398		if (rc)
399			goto err;
400		else
401			return 0;
402	}
403
404	if (unlikely(efv)) {
405		struct efx_tx_buffer *buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
406
407		/* Drop representor packets if the queue is stopped.
408		 * We currently don't assert backoff to representors so this is
409		 * to make sure representor traffic can't starve the main
410		 * net device.
411		 * And, of course, if there are no TX descriptors left.
412		 */
413		if (netif_tx_queue_stopped(tx_queue->core_txq) ||
414		    unlikely(efx_tx_buffer_in_use(buffer))) {
415			atomic64_inc(&efv->stats.tx_errors);
416			rc = -ENOSPC;
417			goto err;
418		}
419
420		/* Also drop representor traffic if it could cause us to
421		 * stop the queue. If we assert backoff and we haven't
422		 * received traffic on the main net device recently then the
423		 * TX watchdog can go off erroneously.
424		 */
425		fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
426		fill_level += efx_tx_max_skb_descs(efx);
427		if (fill_level > efx->txq_stop_thresh) {
428			struct efx_tx_queue *txq2;
429
430			/* Refresh cached fill level and re-check */
431			efx_for_each_channel_tx_queue(txq2, tx_queue->channel)
432				txq2->old_read_count = READ_ONCE(txq2->read_count);
433
434			fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
435			fill_level += efx_tx_max_skb_descs(efx);
436			if (fill_level > efx->txq_stop_thresh) {
437				atomic64_inc(&efv->stats.tx_errors);
438				rc = -ENOSPC;
439				goto err;
440			}
441		}
442
443		buffer->flags = EFX_TX_BUF_OPTION | EFX_TX_BUF_EFV;
444		tx_queue->insert_count++;
445	}
446
447	/* Map for DMA and create descriptors */
448	rc = efx_tx_map_data(tx_queue, skb, segments);
449	if (rc)
450		goto err;
451	ef100_tx_make_descriptors(tx_queue, skb, segments, efv);
452
453	fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
454	if (fill_level > efx->txq_stop_thresh) {
455		struct efx_tx_queue *txq2;
456
457		/* Because of checks above, representor traffic should
458		 * not be able to stop the queue.
459		 */
460		WARN_ON(efv);
461
462		netif_tx_stop_queue(tx_queue->core_txq);
463		/* Re-read after a memory barrier in case we've raced with
464		 * the completion path. Otherwise there's a danger we'll never
465		 * restart the queue if all completions have just happened.
466		 */
467		smp_mb();
468		efx_for_each_channel_tx_queue(txq2, tx_queue->channel)
469			txq2->old_read_count = READ_ONCE(txq2->read_count);
470		fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
471		if (fill_level < efx->txq_stop_thresh)
472			netif_tx_start_queue(tx_queue->core_txq);
473	}
474
475	tx_queue->xmit_pending = true;
476
477	/* If xmit_more then we don't need to push the doorbell, unless there
478	 * are 256 descriptors already queued in which case we have to push to
479	 * ensure we never push more than 256 at once.
480	 *
481	 * Always push for representor traffic, and don't account it to parent
482	 * PF netdevice's BQL.
483	 */
484	if (unlikely(efv) ||
485	    __netdev_tx_sent_queue(tx_queue->core_txq, skb->len, xmit_more) ||
486	    tx_queue->write_count - tx_queue->notify_count > 255)
487		ef100_tx_push_buffers(tx_queue);
488
489	if (segments) {
490		tx_queue->tso_bursts++;
491		tx_queue->tso_packets += segments;
492		tx_queue->tx_packets  += segments;
493	} else {
494		tx_queue->tx_packets++;
495	}
496	return 0;
497
498err:
499	efx_enqueue_unwind(tx_queue, old_insert_count);
500	if (!IS_ERR_OR_NULL(skb))
501		dev_kfree_skb_any(skb);
502
503	/* If we're not expecting another transmit and we had something to push
504	 * on this queue then we need to push here to get the previous packets
505	 * out.  We only enter this branch from before the xmit_more handling
506	 * above, so xmit_pending still refers to the old state.
507	 */
508	if (tx_queue->xmit_pending && !xmit_more)
509		ef100_tx_push_buffers(tx_queue);
510	return rc;
511}