Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018-2023, Intel Corporation. */
3
4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <generated/utsrelease.h>
9#include <linux/crash_dump.h>
10#include "ice.h"
11#include "ice_base.h"
12#include "ice_lib.h"
13#include "ice_fltr.h"
14#include "ice_dcb_lib.h"
15#include "ice_dcb_nl.h"
16#include "ice_devlink.h"
17#include "ice_hwmon.h"
18/* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
19 * ice tracepoint functions. This must be done exactly once across the
20 * ice driver.
21 */
22#define CREATE_TRACE_POINTS
23#include "ice_trace.h"
24#include "ice_eswitch.h"
25#include "ice_tc_lib.h"
26#include "ice_vsi_vlan_ops.h"
27#include <net/xdp_sock_drv.h>
28
29#define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
30static const char ice_driver_string[] = DRV_SUMMARY;
31static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
32
33/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
34#define ICE_DDP_PKG_PATH "intel/ice/ddp/"
35#define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
36
37MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
38MODULE_DESCRIPTION(DRV_SUMMARY);
39MODULE_LICENSE("GPL v2");
40MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
41
42static int debug = -1;
43module_param(debug, int, 0644);
44#ifndef CONFIG_DYNAMIC_DEBUG
45MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
46#else
47MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
48#endif /* !CONFIG_DYNAMIC_DEBUG */
49
50DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
51EXPORT_SYMBOL(ice_xdp_locking_key);
52
53/**
54 * ice_hw_to_dev - Get device pointer from the hardware structure
55 * @hw: pointer to the device HW structure
56 *
57 * Used to access the device pointer from compilation units which can't easily
58 * include the definition of struct ice_pf without leading to circular header
59 * dependencies.
60 */
61struct device *ice_hw_to_dev(struct ice_hw *hw)
62{
63 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
64
65 return &pf->pdev->dev;
66}
67
68static struct workqueue_struct *ice_wq;
69struct workqueue_struct *ice_lag_wq;
70static const struct net_device_ops ice_netdev_safe_mode_ops;
71static const struct net_device_ops ice_netdev_ops;
72
73static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
74
75static void ice_vsi_release_all(struct ice_pf *pf);
76
77static int ice_rebuild_channels(struct ice_pf *pf);
78static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
79
80static int
81ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
82 void *cb_priv, enum tc_setup_type type, void *type_data,
83 void *data,
84 void (*cleanup)(struct flow_block_cb *block_cb));
85
86bool netif_is_ice(const struct net_device *dev)
87{
88 return dev && (dev->netdev_ops == &ice_netdev_ops);
89}
90
91/**
92 * ice_get_tx_pending - returns number of Tx descriptors not processed
93 * @ring: the ring of descriptors
94 */
95static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
96{
97 u16 head, tail;
98
99 head = ring->next_to_clean;
100 tail = ring->next_to_use;
101
102 if (head != tail)
103 return (head < tail) ?
104 tail - head : (tail + ring->count - head);
105 return 0;
106}
107
108/**
109 * ice_check_for_hang_subtask - check for and recover hung queues
110 * @pf: pointer to PF struct
111 */
112static void ice_check_for_hang_subtask(struct ice_pf *pf)
113{
114 struct ice_vsi *vsi = NULL;
115 struct ice_hw *hw;
116 unsigned int i;
117 int packets;
118 u32 v;
119
120 ice_for_each_vsi(pf, v)
121 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
122 vsi = pf->vsi[v];
123 break;
124 }
125
126 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
127 return;
128
129 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
130 return;
131
132 hw = &vsi->back->hw;
133
134 ice_for_each_txq(vsi, i) {
135 struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
136 struct ice_ring_stats *ring_stats;
137
138 if (!tx_ring)
139 continue;
140 if (ice_ring_ch_enabled(tx_ring))
141 continue;
142
143 ring_stats = tx_ring->ring_stats;
144 if (!ring_stats)
145 continue;
146
147 if (tx_ring->desc) {
148 /* If packet counter has not changed the queue is
149 * likely stalled, so force an interrupt for this
150 * queue.
151 *
152 * prev_pkt would be negative if there was no
153 * pending work.
154 */
155 packets = ring_stats->stats.pkts & INT_MAX;
156 if (ring_stats->tx_stats.prev_pkt == packets) {
157 /* Trigger sw interrupt to revive the queue */
158 ice_trigger_sw_intr(hw, tx_ring->q_vector);
159 continue;
160 }
161
162 /* Memory barrier between read of packet count and call
163 * to ice_get_tx_pending()
164 */
165 smp_rmb();
166 ring_stats->tx_stats.prev_pkt =
167 ice_get_tx_pending(tx_ring) ? packets : -1;
168 }
169 }
170}
171
172/**
173 * ice_init_mac_fltr - Set initial MAC filters
174 * @pf: board private structure
175 *
176 * Set initial set of MAC filters for PF VSI; configure filters for permanent
177 * address and broadcast address. If an error is encountered, netdevice will be
178 * unregistered.
179 */
180static int ice_init_mac_fltr(struct ice_pf *pf)
181{
182 struct ice_vsi *vsi;
183 u8 *perm_addr;
184
185 vsi = ice_get_main_vsi(pf);
186 if (!vsi)
187 return -EINVAL;
188
189 perm_addr = vsi->port_info->mac.perm_addr;
190 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
191}
192
193/**
194 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
195 * @netdev: the net device on which the sync is happening
196 * @addr: MAC address to sync
197 *
198 * This is a callback function which is called by the in kernel device sync
199 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
200 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
201 * MAC filters from the hardware.
202 */
203static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
204{
205 struct ice_netdev_priv *np = netdev_priv(netdev);
206 struct ice_vsi *vsi = np->vsi;
207
208 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
209 ICE_FWD_TO_VSI))
210 return -EINVAL;
211
212 return 0;
213}
214
215/**
216 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
217 * @netdev: the net device on which the unsync is happening
218 * @addr: MAC address to unsync
219 *
220 * This is a callback function which is called by the in kernel device unsync
221 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
222 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
223 * delete the MAC filters from the hardware.
224 */
225static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
226{
227 struct ice_netdev_priv *np = netdev_priv(netdev);
228 struct ice_vsi *vsi = np->vsi;
229
230 /* Under some circumstances, we might receive a request to delete our
231 * own device address from our uc list. Because we store the device
232 * address in the VSI's MAC filter list, we need to ignore such
233 * requests and not delete our device address from this list.
234 */
235 if (ether_addr_equal(addr, netdev->dev_addr))
236 return 0;
237
238 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
239 ICE_FWD_TO_VSI))
240 return -EINVAL;
241
242 return 0;
243}
244
245/**
246 * ice_vsi_fltr_changed - check if filter state changed
247 * @vsi: VSI to be checked
248 *
249 * returns true if filter state has changed, false otherwise.
250 */
251static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
252{
253 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
254 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
255}
256
257/**
258 * ice_set_promisc - Enable promiscuous mode for a given PF
259 * @vsi: the VSI being configured
260 * @promisc_m: mask of promiscuous config bits
261 *
262 */
263static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
264{
265 int status;
266
267 if (vsi->type != ICE_VSI_PF)
268 return 0;
269
270 if (ice_vsi_has_non_zero_vlans(vsi)) {
271 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
272 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
273 promisc_m);
274 } else {
275 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
276 promisc_m, 0);
277 }
278 if (status && status != -EEXIST)
279 return status;
280
281 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
282 vsi->vsi_num, promisc_m);
283 return 0;
284}
285
286/**
287 * ice_clear_promisc - Disable promiscuous mode for a given PF
288 * @vsi: the VSI being configured
289 * @promisc_m: mask of promiscuous config bits
290 *
291 */
292static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
293{
294 int status;
295
296 if (vsi->type != ICE_VSI_PF)
297 return 0;
298
299 if (ice_vsi_has_non_zero_vlans(vsi)) {
300 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
301 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
302 promisc_m);
303 } else {
304 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
305 promisc_m, 0);
306 }
307
308 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
309 vsi->vsi_num, promisc_m);
310 return status;
311}
312
313/**
314 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
315 * @vsi: ptr to the VSI
316 *
317 * Push any outstanding VSI filter changes through the AdminQ.
318 */
319static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
320{
321 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
322 struct device *dev = ice_pf_to_dev(vsi->back);
323 struct net_device *netdev = vsi->netdev;
324 bool promisc_forced_on = false;
325 struct ice_pf *pf = vsi->back;
326 struct ice_hw *hw = &pf->hw;
327 u32 changed_flags = 0;
328 int err;
329
330 if (!vsi->netdev)
331 return -EINVAL;
332
333 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
334 usleep_range(1000, 2000);
335
336 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
337 vsi->current_netdev_flags = vsi->netdev->flags;
338
339 INIT_LIST_HEAD(&vsi->tmp_sync_list);
340 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
341
342 if (ice_vsi_fltr_changed(vsi)) {
343 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
344 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
345
346 /* grab the netdev's addr_list_lock */
347 netif_addr_lock_bh(netdev);
348 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
349 ice_add_mac_to_unsync_list);
350 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
351 ice_add_mac_to_unsync_list);
352 /* our temp lists are populated. release lock */
353 netif_addr_unlock_bh(netdev);
354 }
355
356 /* Remove MAC addresses in the unsync list */
357 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
358 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
359 if (err) {
360 netdev_err(netdev, "Failed to delete MAC filters\n");
361 /* if we failed because of alloc failures, just bail */
362 if (err == -ENOMEM)
363 goto out;
364 }
365
366 /* Add MAC addresses in the sync list */
367 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
368 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
369 /* If filter is added successfully or already exists, do not go into
370 * 'if' condition and report it as error. Instead continue processing
371 * rest of the function.
372 */
373 if (err && err != -EEXIST) {
374 netdev_err(netdev, "Failed to add MAC filters\n");
375 /* If there is no more space for new umac filters, VSI
376 * should go into promiscuous mode. There should be some
377 * space reserved for promiscuous filters.
378 */
379 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
380 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
381 vsi->state)) {
382 promisc_forced_on = true;
383 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
384 vsi->vsi_num);
385 } else {
386 goto out;
387 }
388 }
389 err = 0;
390 /* check for changes in promiscuous modes */
391 if (changed_flags & IFF_ALLMULTI) {
392 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
393 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
394 if (err) {
395 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
396 goto out_promisc;
397 }
398 } else {
399 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
400 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
401 if (err) {
402 vsi->current_netdev_flags |= IFF_ALLMULTI;
403 goto out_promisc;
404 }
405 }
406 }
407
408 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
409 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
410 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
411 if (vsi->current_netdev_flags & IFF_PROMISC) {
412 /* Apply Rx filter rule to get traffic from wire */
413 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
414 err = ice_set_dflt_vsi(vsi);
415 if (err && err != -EEXIST) {
416 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
417 err, vsi->vsi_num);
418 vsi->current_netdev_flags &=
419 ~IFF_PROMISC;
420 goto out_promisc;
421 }
422 err = 0;
423 vlan_ops->dis_rx_filtering(vsi);
424
425 /* promiscuous mode implies allmulticast so
426 * that VSIs that are in promiscuous mode are
427 * subscribed to multicast packets coming to
428 * the port
429 */
430 err = ice_set_promisc(vsi,
431 ICE_MCAST_PROMISC_BITS);
432 if (err)
433 goto out_promisc;
434 }
435 } else {
436 /* Clear Rx filter to remove traffic from wire */
437 if (ice_is_vsi_dflt_vsi(vsi)) {
438 err = ice_clear_dflt_vsi(vsi);
439 if (err) {
440 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
441 err, vsi->vsi_num);
442 vsi->current_netdev_flags |=
443 IFF_PROMISC;
444 goto out_promisc;
445 }
446 if (vsi->netdev->features &
447 NETIF_F_HW_VLAN_CTAG_FILTER)
448 vlan_ops->ena_rx_filtering(vsi);
449 }
450
451 /* disable allmulti here, but only if allmulti is not
452 * still enabled for the netdev
453 */
454 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
455 err = ice_clear_promisc(vsi,
456 ICE_MCAST_PROMISC_BITS);
457 if (err) {
458 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
459 err, vsi->vsi_num);
460 }
461 }
462 }
463 }
464 goto exit;
465
466out_promisc:
467 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
468 goto exit;
469out:
470 /* if something went wrong then set the changed flag so we try again */
471 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
472 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
473exit:
474 clear_bit(ICE_CFG_BUSY, vsi->state);
475 return err;
476}
477
478/**
479 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
480 * @pf: board private structure
481 */
482static void ice_sync_fltr_subtask(struct ice_pf *pf)
483{
484 int v;
485
486 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
487 return;
488
489 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
490
491 ice_for_each_vsi(pf, v)
492 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
493 ice_vsi_sync_fltr(pf->vsi[v])) {
494 /* come back and try again later */
495 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
496 break;
497 }
498}
499
500/**
501 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
502 * @pf: the PF
503 * @locked: is the rtnl_lock already held
504 */
505static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
506{
507 int node;
508 int v;
509
510 ice_for_each_vsi(pf, v)
511 if (pf->vsi[v])
512 ice_dis_vsi(pf->vsi[v], locked);
513
514 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
515 pf->pf_agg_node[node].num_vsis = 0;
516
517 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
518 pf->vf_agg_node[node].num_vsis = 0;
519}
520
521/**
522 * ice_clear_sw_switch_recipes - clear switch recipes
523 * @pf: board private structure
524 *
525 * Mark switch recipes as not created in sw structures. There are cases where
526 * rules (especially advanced rules) need to be restored, either re-read from
527 * hardware or added again. For example after the reset. 'recp_created' flag
528 * prevents from doing that and need to be cleared upfront.
529 */
530static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
531{
532 struct ice_sw_recipe *recp;
533 u8 i;
534
535 recp = pf->hw.switch_info->recp_list;
536 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
537 recp[i].recp_created = false;
538}
539
540/**
541 * ice_prepare_for_reset - prep for reset
542 * @pf: board private structure
543 * @reset_type: reset type requested
544 *
545 * Inform or close all dependent features in prep for reset.
546 */
547static void
548ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
549{
550 struct ice_hw *hw = &pf->hw;
551 struct ice_vsi *vsi;
552 struct ice_vf *vf;
553 unsigned int bkt;
554
555 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
556
557 /* already prepared for reset */
558 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
559 return;
560
561 ice_unplug_aux_dev(pf);
562
563 /* Notify VFs of impending reset */
564 if (ice_check_sq_alive(hw, &hw->mailboxq))
565 ice_vc_notify_reset(pf);
566
567 /* Disable VFs until reset is completed */
568 mutex_lock(&pf->vfs.table_lock);
569 ice_for_each_vf(pf, bkt, vf)
570 ice_set_vf_state_dis(vf);
571 mutex_unlock(&pf->vfs.table_lock);
572
573 if (ice_is_eswitch_mode_switchdev(pf)) {
574 if (reset_type != ICE_RESET_PFR)
575 ice_clear_sw_switch_recipes(pf);
576 }
577
578 /* release ADQ specific HW and SW resources */
579 vsi = ice_get_main_vsi(pf);
580 if (!vsi)
581 goto skip;
582
583 /* to be on safe side, reset orig_rss_size so that normal flow
584 * of deciding rss_size can take precedence
585 */
586 vsi->orig_rss_size = 0;
587
588 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
589 if (reset_type == ICE_RESET_PFR) {
590 vsi->old_ena_tc = vsi->all_enatc;
591 vsi->old_numtc = vsi->all_numtc;
592 } else {
593 ice_remove_q_channels(vsi, true);
594
595 /* for other reset type, do not support channel rebuild
596 * hence reset needed info
597 */
598 vsi->old_ena_tc = 0;
599 vsi->all_enatc = 0;
600 vsi->old_numtc = 0;
601 vsi->all_numtc = 0;
602 vsi->req_txq = 0;
603 vsi->req_rxq = 0;
604 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
605 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
606 }
607 }
608skip:
609
610 /* clear SW filtering DB */
611 ice_clear_hw_tbls(hw);
612 /* disable the VSIs and their queues that are not already DOWN */
613 ice_pf_dis_all_vsi(pf, false);
614
615 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
616 ice_ptp_prepare_for_reset(pf);
617
618 if (ice_is_feature_supported(pf, ICE_F_GNSS))
619 ice_gnss_exit(pf);
620
621 if (hw->port_info)
622 ice_sched_clear_port(hw->port_info);
623
624 ice_shutdown_all_ctrlq(hw);
625
626 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
627}
628
629/**
630 * ice_do_reset - Initiate one of many types of resets
631 * @pf: board private structure
632 * @reset_type: reset type requested before this function was called.
633 */
634static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
635{
636 struct device *dev = ice_pf_to_dev(pf);
637 struct ice_hw *hw = &pf->hw;
638
639 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
640
641 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
642 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
643 reset_type = ICE_RESET_CORER;
644 }
645
646 ice_prepare_for_reset(pf, reset_type);
647
648 /* trigger the reset */
649 if (ice_reset(hw, reset_type)) {
650 dev_err(dev, "reset %d failed\n", reset_type);
651 set_bit(ICE_RESET_FAILED, pf->state);
652 clear_bit(ICE_RESET_OICR_RECV, pf->state);
653 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
654 clear_bit(ICE_PFR_REQ, pf->state);
655 clear_bit(ICE_CORER_REQ, pf->state);
656 clear_bit(ICE_GLOBR_REQ, pf->state);
657 wake_up(&pf->reset_wait_queue);
658 return;
659 }
660
661 /* PFR is a bit of a special case because it doesn't result in an OICR
662 * interrupt. So for PFR, rebuild after the reset and clear the reset-
663 * associated state bits.
664 */
665 if (reset_type == ICE_RESET_PFR) {
666 pf->pfr_count++;
667 ice_rebuild(pf, reset_type);
668 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
669 clear_bit(ICE_PFR_REQ, pf->state);
670 wake_up(&pf->reset_wait_queue);
671 ice_reset_all_vfs(pf);
672 }
673}
674
675/**
676 * ice_reset_subtask - Set up for resetting the device and driver
677 * @pf: board private structure
678 */
679static void ice_reset_subtask(struct ice_pf *pf)
680{
681 enum ice_reset_req reset_type = ICE_RESET_INVAL;
682
683 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
684 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
685 * of reset is pending and sets bits in pf->state indicating the reset
686 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
687 * prepare for pending reset if not already (for PF software-initiated
688 * global resets the software should already be prepared for it as
689 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
690 * by firmware or software on other PFs, that bit is not set so prepare
691 * for the reset now), poll for reset done, rebuild and return.
692 */
693 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
694 /* Perform the largest reset requested */
695 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
696 reset_type = ICE_RESET_CORER;
697 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
698 reset_type = ICE_RESET_GLOBR;
699 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
700 reset_type = ICE_RESET_EMPR;
701 /* return if no valid reset type requested */
702 if (reset_type == ICE_RESET_INVAL)
703 return;
704 ice_prepare_for_reset(pf, reset_type);
705
706 /* make sure we are ready to rebuild */
707 if (ice_check_reset(&pf->hw)) {
708 set_bit(ICE_RESET_FAILED, pf->state);
709 } else {
710 /* done with reset. start rebuild */
711 pf->hw.reset_ongoing = false;
712 ice_rebuild(pf, reset_type);
713 /* clear bit to resume normal operations, but
714 * ICE_NEEDS_RESTART bit is set in case rebuild failed
715 */
716 clear_bit(ICE_RESET_OICR_RECV, pf->state);
717 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
718 clear_bit(ICE_PFR_REQ, pf->state);
719 clear_bit(ICE_CORER_REQ, pf->state);
720 clear_bit(ICE_GLOBR_REQ, pf->state);
721 wake_up(&pf->reset_wait_queue);
722 ice_reset_all_vfs(pf);
723 }
724
725 return;
726 }
727
728 /* No pending resets to finish processing. Check for new resets */
729 if (test_bit(ICE_PFR_REQ, pf->state)) {
730 reset_type = ICE_RESET_PFR;
731 if (pf->lag && pf->lag->bonded) {
732 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
733 reset_type = ICE_RESET_CORER;
734 }
735 }
736 if (test_bit(ICE_CORER_REQ, pf->state))
737 reset_type = ICE_RESET_CORER;
738 if (test_bit(ICE_GLOBR_REQ, pf->state))
739 reset_type = ICE_RESET_GLOBR;
740 /* If no valid reset type requested just return */
741 if (reset_type == ICE_RESET_INVAL)
742 return;
743
744 /* reset if not already down or busy */
745 if (!test_bit(ICE_DOWN, pf->state) &&
746 !test_bit(ICE_CFG_BUSY, pf->state)) {
747 ice_do_reset(pf, reset_type);
748 }
749}
750
751/**
752 * ice_print_topo_conflict - print topology conflict message
753 * @vsi: the VSI whose topology status is being checked
754 */
755static void ice_print_topo_conflict(struct ice_vsi *vsi)
756{
757 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
758 case ICE_AQ_LINK_TOPO_CONFLICT:
759 case ICE_AQ_LINK_MEDIA_CONFLICT:
760 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
761 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
762 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
763 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
764 break;
765 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
766 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
767 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
768 else
769 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
770 break;
771 default:
772 break;
773 }
774}
775
776/**
777 * ice_print_link_msg - print link up or down message
778 * @vsi: the VSI whose link status is being queried
779 * @isup: boolean for if the link is now up or down
780 */
781void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
782{
783 struct ice_aqc_get_phy_caps_data *caps;
784 const char *an_advertised;
785 const char *fec_req;
786 const char *speed;
787 const char *fec;
788 const char *fc;
789 const char *an;
790 int status;
791
792 if (!vsi)
793 return;
794
795 if (vsi->current_isup == isup)
796 return;
797
798 vsi->current_isup = isup;
799
800 if (!isup) {
801 netdev_info(vsi->netdev, "NIC Link is Down\n");
802 return;
803 }
804
805 switch (vsi->port_info->phy.link_info.link_speed) {
806 case ICE_AQ_LINK_SPEED_100GB:
807 speed = "100 G";
808 break;
809 case ICE_AQ_LINK_SPEED_50GB:
810 speed = "50 G";
811 break;
812 case ICE_AQ_LINK_SPEED_40GB:
813 speed = "40 G";
814 break;
815 case ICE_AQ_LINK_SPEED_25GB:
816 speed = "25 G";
817 break;
818 case ICE_AQ_LINK_SPEED_20GB:
819 speed = "20 G";
820 break;
821 case ICE_AQ_LINK_SPEED_10GB:
822 speed = "10 G";
823 break;
824 case ICE_AQ_LINK_SPEED_5GB:
825 speed = "5 G";
826 break;
827 case ICE_AQ_LINK_SPEED_2500MB:
828 speed = "2.5 G";
829 break;
830 case ICE_AQ_LINK_SPEED_1000MB:
831 speed = "1 G";
832 break;
833 case ICE_AQ_LINK_SPEED_100MB:
834 speed = "100 M";
835 break;
836 default:
837 speed = "Unknown ";
838 break;
839 }
840
841 switch (vsi->port_info->fc.current_mode) {
842 case ICE_FC_FULL:
843 fc = "Rx/Tx";
844 break;
845 case ICE_FC_TX_PAUSE:
846 fc = "Tx";
847 break;
848 case ICE_FC_RX_PAUSE:
849 fc = "Rx";
850 break;
851 case ICE_FC_NONE:
852 fc = "None";
853 break;
854 default:
855 fc = "Unknown";
856 break;
857 }
858
859 /* Get FEC mode based on negotiated link info */
860 switch (vsi->port_info->phy.link_info.fec_info) {
861 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
862 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
863 fec = "RS-FEC";
864 break;
865 case ICE_AQ_LINK_25G_KR_FEC_EN:
866 fec = "FC-FEC/BASE-R";
867 break;
868 default:
869 fec = "NONE";
870 break;
871 }
872
873 /* check if autoneg completed, might be false due to not supported */
874 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
875 an = "True";
876 else
877 an = "False";
878
879 /* Get FEC mode requested based on PHY caps last SW configuration */
880 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
881 if (!caps) {
882 fec_req = "Unknown";
883 an_advertised = "Unknown";
884 goto done;
885 }
886
887 status = ice_aq_get_phy_caps(vsi->port_info, false,
888 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
889 if (status)
890 netdev_info(vsi->netdev, "Get phy capability failed.\n");
891
892 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
893
894 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
895 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
896 fec_req = "RS-FEC";
897 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
898 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
899 fec_req = "FC-FEC/BASE-R";
900 else
901 fec_req = "NONE";
902
903 kfree(caps);
904
905done:
906 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
907 speed, fec_req, fec, an_advertised, an, fc);
908 ice_print_topo_conflict(vsi);
909}
910
911/**
912 * ice_vsi_link_event - update the VSI's netdev
913 * @vsi: the VSI on which the link event occurred
914 * @link_up: whether or not the VSI needs to be set up or down
915 */
916static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
917{
918 if (!vsi)
919 return;
920
921 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
922 return;
923
924 if (vsi->type == ICE_VSI_PF) {
925 if (link_up == netif_carrier_ok(vsi->netdev))
926 return;
927
928 if (link_up) {
929 netif_carrier_on(vsi->netdev);
930 netif_tx_wake_all_queues(vsi->netdev);
931 } else {
932 netif_carrier_off(vsi->netdev);
933 netif_tx_stop_all_queues(vsi->netdev);
934 }
935 }
936}
937
938/**
939 * ice_set_dflt_mib - send a default config MIB to the FW
940 * @pf: private PF struct
941 *
942 * This function sends a default configuration MIB to the FW.
943 *
944 * If this function errors out at any point, the driver is still able to
945 * function. The main impact is that LFC may not operate as expected.
946 * Therefore an error state in this function should be treated with a DBG
947 * message and continue on with driver rebuild/reenable.
948 */
949static void ice_set_dflt_mib(struct ice_pf *pf)
950{
951 struct device *dev = ice_pf_to_dev(pf);
952 u8 mib_type, *buf, *lldpmib = NULL;
953 u16 len, typelen, offset = 0;
954 struct ice_lldp_org_tlv *tlv;
955 struct ice_hw *hw = &pf->hw;
956 u32 ouisubtype;
957
958 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
959 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
960 if (!lldpmib) {
961 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
962 __func__);
963 return;
964 }
965
966 /* Add ETS CFG TLV */
967 tlv = (struct ice_lldp_org_tlv *)lldpmib;
968 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
969 ICE_IEEE_ETS_TLV_LEN);
970 tlv->typelen = htons(typelen);
971 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
972 ICE_IEEE_SUBTYPE_ETS_CFG);
973 tlv->ouisubtype = htonl(ouisubtype);
974
975 buf = tlv->tlvinfo;
976 buf[0] = 0;
977
978 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
979 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
980 * Octets 13 - 20 are TSA values - leave as zeros
981 */
982 buf[5] = 0x64;
983 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
984 offset += len + 2;
985 tlv = (struct ice_lldp_org_tlv *)
986 ((char *)tlv + sizeof(tlv->typelen) + len);
987
988 /* Add ETS REC TLV */
989 buf = tlv->tlvinfo;
990 tlv->typelen = htons(typelen);
991
992 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
993 ICE_IEEE_SUBTYPE_ETS_REC);
994 tlv->ouisubtype = htonl(ouisubtype);
995
996 /* First octet of buf is reserved
997 * Octets 1 - 4 map UP to TC - all UPs map to zero
998 * Octets 5 - 12 are BW values - set TC 0 to 100%.
999 * Octets 13 - 20 are TSA value - leave as zeros
1000 */
1001 buf[5] = 0x64;
1002 offset += len + 2;
1003 tlv = (struct ice_lldp_org_tlv *)
1004 ((char *)tlv + sizeof(tlv->typelen) + len);
1005
1006 /* Add PFC CFG TLV */
1007 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1008 ICE_IEEE_PFC_TLV_LEN);
1009 tlv->typelen = htons(typelen);
1010
1011 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1012 ICE_IEEE_SUBTYPE_PFC_CFG);
1013 tlv->ouisubtype = htonl(ouisubtype);
1014
1015 /* Octet 1 left as all zeros - PFC disabled */
1016 buf[0] = 0x08;
1017 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
1018 offset += len + 2;
1019
1020 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1021 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1022
1023 kfree(lldpmib);
1024}
1025
1026/**
1027 * ice_check_phy_fw_load - check if PHY FW load failed
1028 * @pf: pointer to PF struct
1029 * @link_cfg_err: bitmap from the link info structure
1030 *
1031 * check if external PHY FW load failed and print an error message if it did
1032 */
1033static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1034{
1035 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1036 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1037 return;
1038 }
1039
1040 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1041 return;
1042
1043 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1044 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1045 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1046 }
1047}
1048
1049/**
1050 * ice_check_module_power
1051 * @pf: pointer to PF struct
1052 * @link_cfg_err: bitmap from the link info structure
1053 *
1054 * check module power level returned by a previous call to aq_get_link_info
1055 * and print error messages if module power level is not supported
1056 */
1057static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1058{
1059 /* if module power level is supported, clear the flag */
1060 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1061 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1062 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1063 return;
1064 }
1065
1066 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1067 * above block didn't clear this bit, there's nothing to do
1068 */
1069 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1070 return;
1071
1072 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1073 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1074 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1075 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1076 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1077 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1078 }
1079}
1080
1081/**
1082 * ice_check_link_cfg_err - check if link configuration failed
1083 * @pf: pointer to the PF struct
1084 * @link_cfg_err: bitmap from the link info structure
1085 *
1086 * print if any link configuration failure happens due to the value in the
1087 * link_cfg_err parameter in the link info structure
1088 */
1089static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1090{
1091 ice_check_module_power(pf, link_cfg_err);
1092 ice_check_phy_fw_load(pf, link_cfg_err);
1093}
1094
1095/**
1096 * ice_link_event - process the link event
1097 * @pf: PF that the link event is associated with
1098 * @pi: port_info for the port that the link event is associated with
1099 * @link_up: true if the physical link is up and false if it is down
1100 * @link_speed: current link speed received from the link event
1101 *
1102 * Returns 0 on success and negative on failure
1103 */
1104static int
1105ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1106 u16 link_speed)
1107{
1108 struct device *dev = ice_pf_to_dev(pf);
1109 struct ice_phy_info *phy_info;
1110 struct ice_vsi *vsi;
1111 u16 old_link_speed;
1112 bool old_link;
1113 int status;
1114
1115 phy_info = &pi->phy;
1116 phy_info->link_info_old = phy_info->link_info;
1117
1118 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1119 old_link_speed = phy_info->link_info_old.link_speed;
1120
1121 /* update the link info structures and re-enable link events,
1122 * don't bail on failure due to other book keeping needed
1123 */
1124 status = ice_update_link_info(pi);
1125 if (status)
1126 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1127 pi->lport, status,
1128 ice_aq_str(pi->hw->adminq.sq_last_status));
1129
1130 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1131
1132 /* Check if the link state is up after updating link info, and treat
1133 * this event as an UP event since the link is actually UP now.
1134 */
1135 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1136 link_up = true;
1137
1138 vsi = ice_get_main_vsi(pf);
1139 if (!vsi || !vsi->port_info)
1140 return -EINVAL;
1141
1142 /* turn off PHY if media was removed */
1143 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1144 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1145 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1146 ice_set_link(vsi, false);
1147 }
1148
1149 /* if the old link up/down and speed is the same as the new */
1150 if (link_up == old_link && link_speed == old_link_speed)
1151 return 0;
1152
1153 ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1154
1155 if (ice_is_dcb_active(pf)) {
1156 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1157 ice_dcb_rebuild(pf);
1158 } else {
1159 if (link_up)
1160 ice_set_dflt_mib(pf);
1161 }
1162 ice_vsi_link_event(vsi, link_up);
1163 ice_print_link_msg(vsi, link_up);
1164
1165 ice_vc_notify_link_state(pf);
1166
1167 return 0;
1168}
1169
1170/**
1171 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1172 * @pf: board private structure
1173 */
1174static void ice_watchdog_subtask(struct ice_pf *pf)
1175{
1176 int i;
1177
1178 /* if interface is down do nothing */
1179 if (test_bit(ICE_DOWN, pf->state) ||
1180 test_bit(ICE_CFG_BUSY, pf->state))
1181 return;
1182
1183 /* make sure we don't do these things too often */
1184 if (time_before(jiffies,
1185 pf->serv_tmr_prev + pf->serv_tmr_period))
1186 return;
1187
1188 pf->serv_tmr_prev = jiffies;
1189
1190 /* Update the stats for active netdevs so the network stack
1191 * can look at updated numbers whenever it cares to
1192 */
1193 ice_update_pf_stats(pf);
1194 ice_for_each_vsi(pf, i)
1195 if (pf->vsi[i] && pf->vsi[i]->netdev)
1196 ice_update_vsi_stats(pf->vsi[i]);
1197}
1198
1199/**
1200 * ice_init_link_events - enable/initialize link events
1201 * @pi: pointer to the port_info instance
1202 *
1203 * Returns -EIO on failure, 0 on success
1204 */
1205static int ice_init_link_events(struct ice_port_info *pi)
1206{
1207 u16 mask;
1208
1209 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1210 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1211 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1212
1213 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1214 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1215 pi->lport);
1216 return -EIO;
1217 }
1218
1219 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1220 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1221 pi->lport);
1222 return -EIO;
1223 }
1224
1225 return 0;
1226}
1227
1228/**
1229 * ice_handle_link_event - handle link event via ARQ
1230 * @pf: PF that the link event is associated with
1231 * @event: event structure containing link status info
1232 */
1233static int
1234ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1235{
1236 struct ice_aqc_get_link_status_data *link_data;
1237 struct ice_port_info *port_info;
1238 int status;
1239
1240 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1241 port_info = pf->hw.port_info;
1242 if (!port_info)
1243 return -EINVAL;
1244
1245 status = ice_link_event(pf, port_info,
1246 !!(link_data->link_info & ICE_AQ_LINK_UP),
1247 le16_to_cpu(link_data->link_speed));
1248 if (status)
1249 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1250 status);
1251
1252 return status;
1253}
1254
1255/**
1256 * ice_get_fwlog_data - copy the FW log data from ARQ event
1257 * @pf: PF that the FW log event is associated with
1258 * @event: event structure containing FW log data
1259 */
1260static void
1261ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event)
1262{
1263 struct ice_fwlog_data *fwlog;
1264 struct ice_hw *hw = &pf->hw;
1265
1266 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail];
1267
1268 memset(fwlog->data, 0, PAGE_SIZE);
1269 fwlog->data_size = le16_to_cpu(event->desc.datalen);
1270
1271 memcpy(fwlog->data, event->msg_buf, fwlog->data_size);
1272 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size);
1273
1274 if (ice_fwlog_ring_full(&hw->fwlog_ring)) {
1275 /* the rings are full so bump the head to create room */
1276 ice_fwlog_ring_increment(&hw->fwlog_ring.head,
1277 hw->fwlog_ring.size);
1278 }
1279}
1280
1281/**
1282 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1283 * @pf: pointer to the PF private structure
1284 * @task: intermediate helper storage and identifier for waiting
1285 * @opcode: the opcode to wait for
1286 *
1287 * Prepares to wait for a specific AdminQ completion event on the ARQ for
1288 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1289 *
1290 * Calls are separated to allow caller registering for event before sending
1291 * the command, which mitigates a race between registering and FW responding.
1292 *
1293 * To obtain only the descriptor contents, pass an task->event with null
1294 * msg_buf. If the complete data buffer is desired, allocate the
1295 * task->event.msg_buf with enough space ahead of time.
1296 */
1297void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1298 u16 opcode)
1299{
1300 INIT_HLIST_NODE(&task->entry);
1301 task->opcode = opcode;
1302 task->state = ICE_AQ_TASK_WAITING;
1303
1304 spin_lock_bh(&pf->aq_wait_lock);
1305 hlist_add_head(&task->entry, &pf->aq_wait_list);
1306 spin_unlock_bh(&pf->aq_wait_lock);
1307}
1308
1309/**
1310 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1311 * @pf: pointer to the PF private structure
1312 * @task: ptr prepared by ice_aq_prep_for_event()
1313 * @timeout: how long to wait, in jiffies
1314 *
1315 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1316 * current thread will be put to sleep until the specified event occurs or
1317 * until the given timeout is reached.
1318 *
1319 * Returns: zero on success, or a negative error code on failure.
1320 */
1321int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1322 unsigned long timeout)
1323{
1324 enum ice_aq_task_state *state = &task->state;
1325 struct device *dev = ice_pf_to_dev(pf);
1326 unsigned long start = jiffies;
1327 long ret;
1328 int err;
1329
1330 ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1331 *state != ICE_AQ_TASK_WAITING,
1332 timeout);
1333 switch (*state) {
1334 case ICE_AQ_TASK_NOT_PREPARED:
1335 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1336 err = -EINVAL;
1337 break;
1338 case ICE_AQ_TASK_WAITING:
1339 err = ret < 0 ? ret : -ETIMEDOUT;
1340 break;
1341 case ICE_AQ_TASK_CANCELED:
1342 err = ret < 0 ? ret : -ECANCELED;
1343 break;
1344 case ICE_AQ_TASK_COMPLETE:
1345 err = ret < 0 ? ret : 0;
1346 break;
1347 default:
1348 WARN(1, "Unexpected AdminQ wait task state %u", *state);
1349 err = -EINVAL;
1350 break;
1351 }
1352
1353 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1354 jiffies_to_msecs(jiffies - start),
1355 jiffies_to_msecs(timeout),
1356 task->opcode);
1357
1358 spin_lock_bh(&pf->aq_wait_lock);
1359 hlist_del(&task->entry);
1360 spin_unlock_bh(&pf->aq_wait_lock);
1361
1362 return err;
1363}
1364
1365/**
1366 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1367 * @pf: pointer to the PF private structure
1368 * @opcode: the opcode of the event
1369 * @event: the event to check
1370 *
1371 * Loops over the current list of pending threads waiting for an AdminQ event.
1372 * For each matching task, copy the contents of the event into the task
1373 * structure and wake up the thread.
1374 *
1375 * If multiple threads wait for the same opcode, they will all be woken up.
1376 *
1377 * Note that event->msg_buf will only be duplicated if the event has a buffer
1378 * with enough space already allocated. Otherwise, only the descriptor and
1379 * message length will be copied.
1380 *
1381 * Returns: true if an event was found, false otherwise
1382 */
1383static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1384 struct ice_rq_event_info *event)
1385{
1386 struct ice_rq_event_info *task_ev;
1387 struct ice_aq_task *task;
1388 bool found = false;
1389
1390 spin_lock_bh(&pf->aq_wait_lock);
1391 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1392 if (task->state != ICE_AQ_TASK_WAITING)
1393 continue;
1394 if (task->opcode != opcode)
1395 continue;
1396
1397 task_ev = &task->event;
1398 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1399 task_ev->msg_len = event->msg_len;
1400
1401 /* Only copy the data buffer if a destination was set */
1402 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1403 memcpy(task_ev->msg_buf, event->msg_buf,
1404 event->buf_len);
1405 task_ev->buf_len = event->buf_len;
1406 }
1407
1408 task->state = ICE_AQ_TASK_COMPLETE;
1409 found = true;
1410 }
1411 spin_unlock_bh(&pf->aq_wait_lock);
1412
1413 if (found)
1414 wake_up(&pf->aq_wait_queue);
1415}
1416
1417/**
1418 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1419 * @pf: the PF private structure
1420 *
1421 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1422 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1423 */
1424static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1425{
1426 struct ice_aq_task *task;
1427
1428 spin_lock_bh(&pf->aq_wait_lock);
1429 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1430 task->state = ICE_AQ_TASK_CANCELED;
1431 spin_unlock_bh(&pf->aq_wait_lock);
1432
1433 wake_up(&pf->aq_wait_queue);
1434}
1435
1436#define ICE_MBX_OVERFLOW_WATERMARK 64
1437
1438/**
1439 * __ice_clean_ctrlq - helper function to clean controlq rings
1440 * @pf: ptr to struct ice_pf
1441 * @q_type: specific Control queue type
1442 */
1443static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1444{
1445 struct device *dev = ice_pf_to_dev(pf);
1446 struct ice_rq_event_info event;
1447 struct ice_hw *hw = &pf->hw;
1448 struct ice_ctl_q_info *cq;
1449 u16 pending, i = 0;
1450 const char *qtype;
1451 u32 oldval, val;
1452
1453 /* Do not clean control queue if/when PF reset fails */
1454 if (test_bit(ICE_RESET_FAILED, pf->state))
1455 return 0;
1456
1457 switch (q_type) {
1458 case ICE_CTL_Q_ADMIN:
1459 cq = &hw->adminq;
1460 qtype = "Admin";
1461 break;
1462 case ICE_CTL_Q_SB:
1463 cq = &hw->sbq;
1464 qtype = "Sideband";
1465 break;
1466 case ICE_CTL_Q_MAILBOX:
1467 cq = &hw->mailboxq;
1468 qtype = "Mailbox";
1469 /* we are going to try to detect a malicious VF, so set the
1470 * state to begin detection
1471 */
1472 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1473 break;
1474 default:
1475 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1476 return 0;
1477 }
1478
1479 /* check for error indications - PF_xx_AxQLEN register layout for
1480 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1481 */
1482 val = rd32(hw, cq->rq.len);
1483 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1484 PF_FW_ARQLEN_ARQCRIT_M)) {
1485 oldval = val;
1486 if (val & PF_FW_ARQLEN_ARQVFE_M)
1487 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1488 qtype);
1489 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1490 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1491 qtype);
1492 }
1493 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1494 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1495 qtype);
1496 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1497 PF_FW_ARQLEN_ARQCRIT_M);
1498 if (oldval != val)
1499 wr32(hw, cq->rq.len, val);
1500 }
1501
1502 val = rd32(hw, cq->sq.len);
1503 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1504 PF_FW_ATQLEN_ATQCRIT_M)) {
1505 oldval = val;
1506 if (val & PF_FW_ATQLEN_ATQVFE_M)
1507 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1508 qtype);
1509 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1510 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1511 qtype);
1512 }
1513 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1514 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1515 qtype);
1516 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1517 PF_FW_ATQLEN_ATQCRIT_M);
1518 if (oldval != val)
1519 wr32(hw, cq->sq.len, val);
1520 }
1521
1522 event.buf_len = cq->rq_buf_size;
1523 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1524 if (!event.msg_buf)
1525 return 0;
1526
1527 do {
1528 struct ice_mbx_data data = {};
1529 u16 opcode;
1530 int ret;
1531
1532 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1533 if (ret == -EALREADY)
1534 break;
1535 if (ret) {
1536 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1537 ret);
1538 break;
1539 }
1540
1541 opcode = le16_to_cpu(event.desc.opcode);
1542
1543 /* Notify any thread that might be waiting for this event */
1544 ice_aq_check_events(pf, opcode, &event);
1545
1546 switch (opcode) {
1547 case ice_aqc_opc_get_link_status:
1548 if (ice_handle_link_event(pf, &event))
1549 dev_err(dev, "Could not handle link event\n");
1550 break;
1551 case ice_aqc_opc_event_lan_overflow:
1552 ice_vf_lan_overflow_event(pf, &event);
1553 break;
1554 case ice_mbx_opc_send_msg_to_pf:
1555 data.num_msg_proc = i;
1556 data.num_pending_arq = pending;
1557 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries;
1558 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
1559
1560 ice_vc_process_vf_msg(pf, &event, &data);
1561 break;
1562 case ice_aqc_opc_fw_logs_event:
1563 ice_get_fwlog_data(pf, &event);
1564 break;
1565 case ice_aqc_opc_lldp_set_mib_change:
1566 ice_dcb_process_lldp_set_mib_change(pf, &event);
1567 break;
1568 default:
1569 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1570 qtype, opcode);
1571 break;
1572 }
1573 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1574
1575 kfree(event.msg_buf);
1576
1577 return pending && (i == ICE_DFLT_IRQ_WORK);
1578}
1579
1580/**
1581 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1582 * @hw: pointer to hardware info
1583 * @cq: control queue information
1584 *
1585 * returns true if there are pending messages in a queue, false if there aren't
1586 */
1587static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1588{
1589 u16 ntu;
1590
1591 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1592 return cq->rq.next_to_clean != ntu;
1593}
1594
1595/**
1596 * ice_clean_adminq_subtask - clean the AdminQ rings
1597 * @pf: board private structure
1598 */
1599static void ice_clean_adminq_subtask(struct ice_pf *pf)
1600{
1601 struct ice_hw *hw = &pf->hw;
1602
1603 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1604 return;
1605
1606 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1607 return;
1608
1609 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1610
1611 /* There might be a situation where new messages arrive to a control
1612 * queue between processing the last message and clearing the
1613 * EVENT_PENDING bit. So before exiting, check queue head again (using
1614 * ice_ctrlq_pending) and process new messages if any.
1615 */
1616 if (ice_ctrlq_pending(hw, &hw->adminq))
1617 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1618
1619 ice_flush(hw);
1620}
1621
1622/**
1623 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1624 * @pf: board private structure
1625 */
1626static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1627{
1628 struct ice_hw *hw = &pf->hw;
1629
1630 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1631 return;
1632
1633 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1634 return;
1635
1636 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1637
1638 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1639 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1640
1641 ice_flush(hw);
1642}
1643
1644/**
1645 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1646 * @pf: board private structure
1647 */
1648static void ice_clean_sbq_subtask(struct ice_pf *pf)
1649{
1650 struct ice_hw *hw = &pf->hw;
1651
1652 /* Nothing to do here if sideband queue is not supported */
1653 if (!ice_is_sbq_supported(hw)) {
1654 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1655 return;
1656 }
1657
1658 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1659 return;
1660
1661 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1662 return;
1663
1664 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1665
1666 if (ice_ctrlq_pending(hw, &hw->sbq))
1667 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1668
1669 ice_flush(hw);
1670}
1671
1672/**
1673 * ice_service_task_schedule - schedule the service task to wake up
1674 * @pf: board private structure
1675 *
1676 * If not already scheduled, this puts the task into the work queue.
1677 */
1678void ice_service_task_schedule(struct ice_pf *pf)
1679{
1680 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1681 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1682 !test_bit(ICE_NEEDS_RESTART, pf->state))
1683 queue_work(ice_wq, &pf->serv_task);
1684}
1685
1686/**
1687 * ice_service_task_complete - finish up the service task
1688 * @pf: board private structure
1689 */
1690static void ice_service_task_complete(struct ice_pf *pf)
1691{
1692 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1693
1694 /* force memory (pf->state) to sync before next service task */
1695 smp_mb__before_atomic();
1696 clear_bit(ICE_SERVICE_SCHED, pf->state);
1697}
1698
1699/**
1700 * ice_service_task_stop - stop service task and cancel works
1701 * @pf: board private structure
1702 *
1703 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1704 * 1 otherwise.
1705 */
1706static int ice_service_task_stop(struct ice_pf *pf)
1707{
1708 int ret;
1709
1710 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1711
1712 if (pf->serv_tmr.function)
1713 del_timer_sync(&pf->serv_tmr);
1714 if (pf->serv_task.func)
1715 cancel_work_sync(&pf->serv_task);
1716
1717 clear_bit(ICE_SERVICE_SCHED, pf->state);
1718 return ret;
1719}
1720
1721/**
1722 * ice_service_task_restart - restart service task and schedule works
1723 * @pf: board private structure
1724 *
1725 * This function is needed for suspend and resume works (e.g WoL scenario)
1726 */
1727static void ice_service_task_restart(struct ice_pf *pf)
1728{
1729 clear_bit(ICE_SERVICE_DIS, pf->state);
1730 ice_service_task_schedule(pf);
1731}
1732
1733/**
1734 * ice_service_timer - timer callback to schedule service task
1735 * @t: pointer to timer_list
1736 */
1737static void ice_service_timer(struct timer_list *t)
1738{
1739 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1740
1741 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1742 ice_service_task_schedule(pf);
1743}
1744
1745/**
1746 * ice_handle_mdd_event - handle malicious driver detect event
1747 * @pf: pointer to the PF structure
1748 *
1749 * Called from service task. OICR interrupt handler indicates MDD event.
1750 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1751 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1752 * disable the queue, the PF can be configured to reset the VF using ethtool
1753 * private flag mdd-auto-reset-vf.
1754 */
1755static void ice_handle_mdd_event(struct ice_pf *pf)
1756{
1757 struct device *dev = ice_pf_to_dev(pf);
1758 struct ice_hw *hw = &pf->hw;
1759 struct ice_vf *vf;
1760 unsigned int bkt;
1761 u32 reg;
1762
1763 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1764 /* Since the VF MDD event logging is rate limited, check if
1765 * there are pending MDD events.
1766 */
1767 ice_print_vfs_mdd_events(pf);
1768 return;
1769 }
1770
1771 /* find what triggered an MDD event */
1772 reg = rd32(hw, GL_MDET_TX_PQM);
1773 if (reg & GL_MDET_TX_PQM_VALID_M) {
1774 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
1775 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
1776 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
1777 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
1778
1779 if (netif_msg_tx_err(pf))
1780 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1781 event, queue, pf_num, vf_num);
1782 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1783 }
1784
1785 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1786 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1787 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
1788 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
1789 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
1790 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
1791
1792 if (netif_msg_tx_err(pf))
1793 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1794 event, queue, pf_num, vf_num);
1795 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1796 }
1797
1798 reg = rd32(hw, GL_MDET_RX);
1799 if (reg & GL_MDET_RX_VALID_M) {
1800 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
1801 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
1802 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
1803 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
1804
1805 if (netif_msg_rx_err(pf))
1806 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1807 event, queue, pf_num, vf_num);
1808 wr32(hw, GL_MDET_RX, 0xffffffff);
1809 }
1810
1811 /* check to see if this PF caused an MDD event */
1812 reg = rd32(hw, PF_MDET_TX_PQM);
1813 if (reg & PF_MDET_TX_PQM_VALID_M) {
1814 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1815 if (netif_msg_tx_err(pf))
1816 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1817 }
1818
1819 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1820 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1821 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1822 if (netif_msg_tx_err(pf))
1823 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1824 }
1825
1826 reg = rd32(hw, PF_MDET_RX);
1827 if (reg & PF_MDET_RX_VALID_M) {
1828 wr32(hw, PF_MDET_RX, 0xFFFF);
1829 if (netif_msg_rx_err(pf))
1830 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1831 }
1832
1833 /* Check to see if one of the VFs caused an MDD event, and then
1834 * increment counters and set print pending
1835 */
1836 mutex_lock(&pf->vfs.table_lock);
1837 ice_for_each_vf(pf, bkt, vf) {
1838 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1839 if (reg & VP_MDET_TX_PQM_VALID_M) {
1840 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1841 vf->mdd_tx_events.count++;
1842 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1843 if (netif_msg_tx_err(pf))
1844 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1845 vf->vf_id);
1846 }
1847
1848 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1849 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1850 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1851 vf->mdd_tx_events.count++;
1852 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1853 if (netif_msg_tx_err(pf))
1854 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1855 vf->vf_id);
1856 }
1857
1858 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1859 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1860 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1861 vf->mdd_tx_events.count++;
1862 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1863 if (netif_msg_tx_err(pf))
1864 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1865 vf->vf_id);
1866 }
1867
1868 reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1869 if (reg & VP_MDET_RX_VALID_M) {
1870 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1871 vf->mdd_rx_events.count++;
1872 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1873 if (netif_msg_rx_err(pf))
1874 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1875 vf->vf_id);
1876
1877 /* Since the queue is disabled on VF Rx MDD events, the
1878 * PF can be configured to reset the VF through ethtool
1879 * private flag mdd-auto-reset-vf.
1880 */
1881 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1882 /* VF MDD event counters will be cleared by
1883 * reset, so print the event prior to reset.
1884 */
1885 ice_print_vf_rx_mdd_event(vf);
1886 ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1887 }
1888 }
1889 }
1890 mutex_unlock(&pf->vfs.table_lock);
1891
1892 ice_print_vfs_mdd_events(pf);
1893}
1894
1895/**
1896 * ice_force_phys_link_state - Force the physical link state
1897 * @vsi: VSI to force the physical link state to up/down
1898 * @link_up: true/false indicates to set the physical link to up/down
1899 *
1900 * Force the physical link state by getting the current PHY capabilities from
1901 * hardware and setting the PHY config based on the determined capabilities. If
1902 * link changes a link event will be triggered because both the Enable Automatic
1903 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1904 *
1905 * Returns 0 on success, negative on failure
1906 */
1907static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1908{
1909 struct ice_aqc_get_phy_caps_data *pcaps;
1910 struct ice_aqc_set_phy_cfg_data *cfg;
1911 struct ice_port_info *pi;
1912 struct device *dev;
1913 int retcode;
1914
1915 if (!vsi || !vsi->port_info || !vsi->back)
1916 return -EINVAL;
1917 if (vsi->type != ICE_VSI_PF)
1918 return 0;
1919
1920 dev = ice_pf_to_dev(vsi->back);
1921
1922 pi = vsi->port_info;
1923
1924 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1925 if (!pcaps)
1926 return -ENOMEM;
1927
1928 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1929 NULL);
1930 if (retcode) {
1931 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1932 vsi->vsi_num, retcode);
1933 retcode = -EIO;
1934 goto out;
1935 }
1936
1937 /* No change in link */
1938 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1939 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1940 goto out;
1941
1942 /* Use the current user PHY configuration. The current user PHY
1943 * configuration is initialized during probe from PHY capabilities
1944 * software mode, and updated on set PHY configuration.
1945 */
1946 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1947 if (!cfg) {
1948 retcode = -ENOMEM;
1949 goto out;
1950 }
1951
1952 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1953 if (link_up)
1954 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1955 else
1956 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1957
1958 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1959 if (retcode) {
1960 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1961 vsi->vsi_num, retcode);
1962 retcode = -EIO;
1963 }
1964
1965 kfree(cfg);
1966out:
1967 kfree(pcaps);
1968 return retcode;
1969}
1970
1971/**
1972 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1973 * @pi: port info structure
1974 *
1975 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1976 */
1977static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1978{
1979 struct ice_aqc_get_phy_caps_data *pcaps;
1980 struct ice_pf *pf = pi->hw->back;
1981 int err;
1982
1983 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1984 if (!pcaps)
1985 return -ENOMEM;
1986
1987 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1988 pcaps, NULL);
1989
1990 if (err) {
1991 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1992 goto out;
1993 }
1994
1995 pf->nvm_phy_type_hi = pcaps->phy_type_high;
1996 pf->nvm_phy_type_lo = pcaps->phy_type_low;
1997
1998out:
1999 kfree(pcaps);
2000 return err;
2001}
2002
2003/**
2004 * ice_init_link_dflt_override - Initialize link default override
2005 * @pi: port info structure
2006 *
2007 * Initialize link default override and PHY total port shutdown during probe
2008 */
2009static void ice_init_link_dflt_override(struct ice_port_info *pi)
2010{
2011 struct ice_link_default_override_tlv *ldo;
2012 struct ice_pf *pf = pi->hw->back;
2013
2014 ldo = &pf->link_dflt_override;
2015 if (ice_get_link_default_override(ldo, pi))
2016 return;
2017
2018 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2019 return;
2020
2021 /* Enable Total Port Shutdown (override/replace link-down-on-close
2022 * ethtool private flag) for ports with Port Disable bit set.
2023 */
2024 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2025 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2026}
2027
2028/**
2029 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2030 * @pi: port info structure
2031 *
2032 * If default override is enabled, initialize the user PHY cfg speed and FEC
2033 * settings using the default override mask from the NVM.
2034 *
2035 * The PHY should only be configured with the default override settings the
2036 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2037 * is used to indicate that the user PHY cfg default override is initialized
2038 * and the PHY has not been configured with the default override settings. The
2039 * state is set here, and cleared in ice_configure_phy the first time the PHY is
2040 * configured.
2041 *
2042 * This function should be called only if the FW doesn't support default
2043 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2044 */
2045static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2046{
2047 struct ice_link_default_override_tlv *ldo;
2048 struct ice_aqc_set_phy_cfg_data *cfg;
2049 struct ice_phy_info *phy = &pi->phy;
2050 struct ice_pf *pf = pi->hw->back;
2051
2052 ldo = &pf->link_dflt_override;
2053
2054 /* If link default override is enabled, use to mask NVM PHY capabilities
2055 * for speed and FEC default configuration.
2056 */
2057 cfg = &phy->curr_user_phy_cfg;
2058
2059 if (ldo->phy_type_low || ldo->phy_type_high) {
2060 cfg->phy_type_low = pf->nvm_phy_type_lo &
2061 cpu_to_le64(ldo->phy_type_low);
2062 cfg->phy_type_high = pf->nvm_phy_type_hi &
2063 cpu_to_le64(ldo->phy_type_high);
2064 }
2065 cfg->link_fec_opt = ldo->fec_options;
2066 phy->curr_user_fec_req = ICE_FEC_AUTO;
2067
2068 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2069}
2070
2071/**
2072 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2073 * @pi: port info structure
2074 *
2075 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2076 * mode to default. The PHY defaults are from get PHY capabilities topology
2077 * with media so call when media is first available. An error is returned if
2078 * called when media is not available. The PHY initialization completed state is
2079 * set here.
2080 *
2081 * These configurations are used when setting PHY
2082 * configuration. The user PHY configuration is updated on set PHY
2083 * configuration. Returns 0 on success, negative on failure
2084 */
2085static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2086{
2087 struct ice_aqc_get_phy_caps_data *pcaps;
2088 struct ice_phy_info *phy = &pi->phy;
2089 struct ice_pf *pf = pi->hw->back;
2090 int err;
2091
2092 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2093 return -EIO;
2094
2095 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2096 if (!pcaps)
2097 return -ENOMEM;
2098
2099 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2100 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2101 pcaps, NULL);
2102 else
2103 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2104 pcaps, NULL);
2105 if (err) {
2106 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2107 goto err_out;
2108 }
2109
2110 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2111
2112 /* check if lenient mode is supported and enabled */
2113 if (ice_fw_supports_link_override(pi->hw) &&
2114 !(pcaps->module_compliance_enforcement &
2115 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2116 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2117
2118 /* if the FW supports default PHY configuration mode, then the driver
2119 * does not have to apply link override settings. If not,
2120 * initialize user PHY configuration with link override values
2121 */
2122 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2123 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2124 ice_init_phy_cfg_dflt_override(pi);
2125 goto out;
2126 }
2127 }
2128
2129 /* if link default override is not enabled, set user flow control and
2130 * FEC settings based on what get_phy_caps returned
2131 */
2132 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2133 pcaps->link_fec_options);
2134 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2135
2136out:
2137 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2138 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2139err_out:
2140 kfree(pcaps);
2141 return err;
2142}
2143
2144/**
2145 * ice_configure_phy - configure PHY
2146 * @vsi: VSI of PHY
2147 *
2148 * Set the PHY configuration. If the current PHY configuration is the same as
2149 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2150 * configure the based get PHY capabilities for topology with media.
2151 */
2152static int ice_configure_phy(struct ice_vsi *vsi)
2153{
2154 struct device *dev = ice_pf_to_dev(vsi->back);
2155 struct ice_port_info *pi = vsi->port_info;
2156 struct ice_aqc_get_phy_caps_data *pcaps;
2157 struct ice_aqc_set_phy_cfg_data *cfg;
2158 struct ice_phy_info *phy = &pi->phy;
2159 struct ice_pf *pf = vsi->back;
2160 int err;
2161
2162 /* Ensure we have media as we cannot configure a medialess port */
2163 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2164 return -ENOMEDIUM;
2165
2166 ice_print_topo_conflict(vsi);
2167
2168 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2169 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2170 return -EPERM;
2171
2172 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2173 return ice_force_phys_link_state(vsi, true);
2174
2175 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2176 if (!pcaps)
2177 return -ENOMEM;
2178
2179 /* Get current PHY config */
2180 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2181 NULL);
2182 if (err) {
2183 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2184 vsi->vsi_num, err);
2185 goto done;
2186 }
2187
2188 /* If PHY enable link is configured and configuration has not changed,
2189 * there's nothing to do
2190 */
2191 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2192 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2193 goto done;
2194
2195 /* Use PHY topology as baseline for configuration */
2196 memset(pcaps, 0, sizeof(*pcaps));
2197 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2198 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2199 pcaps, NULL);
2200 else
2201 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2202 pcaps, NULL);
2203 if (err) {
2204 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2205 vsi->vsi_num, err);
2206 goto done;
2207 }
2208
2209 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2210 if (!cfg) {
2211 err = -ENOMEM;
2212 goto done;
2213 }
2214
2215 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2216
2217 /* Speed - If default override pending, use curr_user_phy_cfg set in
2218 * ice_init_phy_user_cfg_ldo.
2219 */
2220 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2221 vsi->back->state)) {
2222 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2223 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2224 } else {
2225 u64 phy_low = 0, phy_high = 0;
2226
2227 ice_update_phy_type(&phy_low, &phy_high,
2228 pi->phy.curr_user_speed_req);
2229 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2230 cfg->phy_type_high = pcaps->phy_type_high &
2231 cpu_to_le64(phy_high);
2232 }
2233
2234 /* Can't provide what was requested; use PHY capabilities */
2235 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2236 cfg->phy_type_low = pcaps->phy_type_low;
2237 cfg->phy_type_high = pcaps->phy_type_high;
2238 }
2239
2240 /* FEC */
2241 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2242
2243 /* Can't provide what was requested; use PHY capabilities */
2244 if (cfg->link_fec_opt !=
2245 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2246 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2247 cfg->link_fec_opt = pcaps->link_fec_options;
2248 }
2249
2250 /* Flow Control - always supported; no need to check against
2251 * capabilities
2252 */
2253 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2254
2255 /* Enable link and link update */
2256 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2257
2258 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2259 if (err)
2260 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2261 vsi->vsi_num, err);
2262
2263 kfree(cfg);
2264done:
2265 kfree(pcaps);
2266 return err;
2267}
2268
2269/**
2270 * ice_check_media_subtask - Check for media
2271 * @pf: pointer to PF struct
2272 *
2273 * If media is available, then initialize PHY user configuration if it is not
2274 * been, and configure the PHY if the interface is up.
2275 */
2276static void ice_check_media_subtask(struct ice_pf *pf)
2277{
2278 struct ice_port_info *pi;
2279 struct ice_vsi *vsi;
2280 int err;
2281
2282 /* No need to check for media if it's already present */
2283 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2284 return;
2285
2286 vsi = ice_get_main_vsi(pf);
2287 if (!vsi)
2288 return;
2289
2290 /* Refresh link info and check if media is present */
2291 pi = vsi->port_info;
2292 err = ice_update_link_info(pi);
2293 if (err)
2294 return;
2295
2296 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2297
2298 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2299 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2300 ice_init_phy_user_cfg(pi);
2301
2302 /* PHY settings are reset on media insertion, reconfigure
2303 * PHY to preserve settings.
2304 */
2305 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2306 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2307 return;
2308
2309 err = ice_configure_phy(vsi);
2310 if (!err)
2311 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2312
2313 /* A Link Status Event will be generated; the event handler
2314 * will complete bringing the interface up
2315 */
2316 }
2317}
2318
2319/**
2320 * ice_service_task - manage and run subtasks
2321 * @work: pointer to work_struct contained by the PF struct
2322 */
2323static void ice_service_task(struct work_struct *work)
2324{
2325 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2326 unsigned long start_time = jiffies;
2327
2328 /* subtasks */
2329
2330 /* process reset requests first */
2331 ice_reset_subtask(pf);
2332
2333 /* bail if a reset/recovery cycle is pending or rebuild failed */
2334 if (ice_is_reset_in_progress(pf->state) ||
2335 test_bit(ICE_SUSPENDED, pf->state) ||
2336 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2337 ice_service_task_complete(pf);
2338 return;
2339 }
2340
2341 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2342 struct iidc_event *event;
2343
2344 event = kzalloc(sizeof(*event), GFP_KERNEL);
2345 if (event) {
2346 set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2347 /* report the entire OICR value to AUX driver */
2348 swap(event->reg, pf->oicr_err_reg);
2349 ice_send_event_to_aux(pf, event);
2350 kfree(event);
2351 }
2352 }
2353
2354 /* unplug aux dev per request, if an unplug request came in
2355 * while processing a plug request, this will handle it
2356 */
2357 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2358 ice_unplug_aux_dev(pf);
2359
2360 /* Plug aux device per request */
2361 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2362 ice_plug_aux_dev(pf);
2363
2364 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2365 struct iidc_event *event;
2366
2367 event = kzalloc(sizeof(*event), GFP_KERNEL);
2368 if (event) {
2369 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2370 ice_send_event_to_aux(pf, event);
2371 kfree(event);
2372 }
2373 }
2374
2375 ice_clean_adminq_subtask(pf);
2376 ice_check_media_subtask(pf);
2377 ice_check_for_hang_subtask(pf);
2378 ice_sync_fltr_subtask(pf);
2379 ice_handle_mdd_event(pf);
2380 ice_watchdog_subtask(pf);
2381
2382 if (ice_is_safe_mode(pf)) {
2383 ice_service_task_complete(pf);
2384 return;
2385 }
2386
2387 ice_process_vflr_event(pf);
2388 ice_clean_mailboxq_subtask(pf);
2389 ice_clean_sbq_subtask(pf);
2390 ice_sync_arfs_fltrs(pf);
2391 ice_flush_fdir_ctx(pf);
2392
2393 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2394 ice_service_task_complete(pf);
2395
2396 /* If the tasks have taken longer than one service timer period
2397 * or there is more work to be done, reset the service timer to
2398 * schedule the service task now.
2399 */
2400 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2401 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2402 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2403 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2404 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2405 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2406 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2407 mod_timer(&pf->serv_tmr, jiffies);
2408}
2409
2410/**
2411 * ice_set_ctrlq_len - helper function to set controlq length
2412 * @hw: pointer to the HW instance
2413 */
2414static void ice_set_ctrlq_len(struct ice_hw *hw)
2415{
2416 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2417 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2418 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2419 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2420 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2421 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2422 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2423 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2424 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2425 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2426 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2427 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2428}
2429
2430/**
2431 * ice_schedule_reset - schedule a reset
2432 * @pf: board private structure
2433 * @reset: reset being requested
2434 */
2435int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2436{
2437 struct device *dev = ice_pf_to_dev(pf);
2438
2439 /* bail out if earlier reset has failed */
2440 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2441 dev_dbg(dev, "earlier reset has failed\n");
2442 return -EIO;
2443 }
2444 /* bail if reset/recovery already in progress */
2445 if (ice_is_reset_in_progress(pf->state)) {
2446 dev_dbg(dev, "Reset already in progress\n");
2447 return -EBUSY;
2448 }
2449
2450 switch (reset) {
2451 case ICE_RESET_PFR:
2452 set_bit(ICE_PFR_REQ, pf->state);
2453 break;
2454 case ICE_RESET_CORER:
2455 set_bit(ICE_CORER_REQ, pf->state);
2456 break;
2457 case ICE_RESET_GLOBR:
2458 set_bit(ICE_GLOBR_REQ, pf->state);
2459 break;
2460 default:
2461 return -EINVAL;
2462 }
2463
2464 ice_service_task_schedule(pf);
2465 return 0;
2466}
2467
2468/**
2469 * ice_irq_affinity_notify - Callback for affinity changes
2470 * @notify: context as to what irq was changed
2471 * @mask: the new affinity mask
2472 *
2473 * This is a callback function used by the irq_set_affinity_notifier function
2474 * so that we may register to receive changes to the irq affinity masks.
2475 */
2476static void
2477ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2478 const cpumask_t *mask)
2479{
2480 struct ice_q_vector *q_vector =
2481 container_of(notify, struct ice_q_vector, affinity_notify);
2482
2483 cpumask_copy(&q_vector->affinity_mask, mask);
2484}
2485
2486/**
2487 * ice_irq_affinity_release - Callback for affinity notifier release
2488 * @ref: internal core kernel usage
2489 *
2490 * This is a callback function used by the irq_set_affinity_notifier function
2491 * to inform the current notification subscriber that they will no longer
2492 * receive notifications.
2493 */
2494static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2495
2496/**
2497 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2498 * @vsi: the VSI being configured
2499 */
2500static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2501{
2502 struct ice_hw *hw = &vsi->back->hw;
2503 int i;
2504
2505 ice_for_each_q_vector(vsi, i)
2506 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2507
2508 ice_flush(hw);
2509 return 0;
2510}
2511
2512/**
2513 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2514 * @vsi: the VSI being configured
2515 * @basename: name for the vector
2516 */
2517static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2518{
2519 int q_vectors = vsi->num_q_vectors;
2520 struct ice_pf *pf = vsi->back;
2521 struct device *dev;
2522 int rx_int_idx = 0;
2523 int tx_int_idx = 0;
2524 int vector, err;
2525 int irq_num;
2526
2527 dev = ice_pf_to_dev(pf);
2528 for (vector = 0; vector < q_vectors; vector++) {
2529 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2530
2531 irq_num = q_vector->irq.virq;
2532
2533 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2534 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2535 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2536 tx_int_idx++;
2537 } else if (q_vector->rx.rx_ring) {
2538 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2539 "%s-%s-%d", basename, "rx", rx_int_idx++);
2540 } else if (q_vector->tx.tx_ring) {
2541 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2542 "%s-%s-%d", basename, "tx", tx_int_idx++);
2543 } else {
2544 /* skip this unused q_vector */
2545 continue;
2546 }
2547 if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2548 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2549 IRQF_SHARED, q_vector->name,
2550 q_vector);
2551 else
2552 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2553 0, q_vector->name, q_vector);
2554 if (err) {
2555 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2556 err);
2557 goto free_q_irqs;
2558 }
2559
2560 /* register for affinity change notifications */
2561 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2562 struct irq_affinity_notify *affinity_notify;
2563
2564 affinity_notify = &q_vector->affinity_notify;
2565 affinity_notify->notify = ice_irq_affinity_notify;
2566 affinity_notify->release = ice_irq_affinity_release;
2567 irq_set_affinity_notifier(irq_num, affinity_notify);
2568 }
2569
2570 /* assign the mask for this irq */
2571 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2572 }
2573
2574 err = ice_set_cpu_rx_rmap(vsi);
2575 if (err) {
2576 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2577 vsi->vsi_num, ERR_PTR(err));
2578 goto free_q_irqs;
2579 }
2580
2581 vsi->irqs_ready = true;
2582 return 0;
2583
2584free_q_irqs:
2585 while (vector--) {
2586 irq_num = vsi->q_vectors[vector]->irq.virq;
2587 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2588 irq_set_affinity_notifier(irq_num, NULL);
2589 irq_set_affinity_hint(irq_num, NULL);
2590 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2591 }
2592 return err;
2593}
2594
2595/**
2596 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2597 * @vsi: VSI to setup Tx rings used by XDP
2598 *
2599 * Return 0 on success and negative value on error
2600 */
2601static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2602{
2603 struct device *dev = ice_pf_to_dev(vsi->back);
2604 struct ice_tx_desc *tx_desc;
2605 int i, j;
2606
2607 ice_for_each_xdp_txq(vsi, i) {
2608 u16 xdp_q_idx = vsi->alloc_txq + i;
2609 struct ice_ring_stats *ring_stats;
2610 struct ice_tx_ring *xdp_ring;
2611
2612 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2613 if (!xdp_ring)
2614 goto free_xdp_rings;
2615
2616 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2617 if (!ring_stats) {
2618 ice_free_tx_ring(xdp_ring);
2619 goto free_xdp_rings;
2620 }
2621
2622 xdp_ring->ring_stats = ring_stats;
2623 xdp_ring->q_index = xdp_q_idx;
2624 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2625 xdp_ring->vsi = vsi;
2626 xdp_ring->netdev = NULL;
2627 xdp_ring->dev = dev;
2628 xdp_ring->count = vsi->num_tx_desc;
2629 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2630 if (ice_setup_tx_ring(xdp_ring))
2631 goto free_xdp_rings;
2632 ice_set_ring_xdp(xdp_ring);
2633 spin_lock_init(&xdp_ring->tx_lock);
2634 for (j = 0; j < xdp_ring->count; j++) {
2635 tx_desc = ICE_TX_DESC(xdp_ring, j);
2636 tx_desc->cmd_type_offset_bsz = 0;
2637 }
2638 }
2639
2640 return 0;
2641
2642free_xdp_rings:
2643 for (; i >= 0; i--) {
2644 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2645 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2646 vsi->xdp_rings[i]->ring_stats = NULL;
2647 ice_free_tx_ring(vsi->xdp_rings[i]);
2648 }
2649 }
2650 return -ENOMEM;
2651}
2652
2653/**
2654 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2655 * @vsi: VSI to set the bpf prog on
2656 * @prog: the bpf prog pointer
2657 */
2658static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2659{
2660 struct bpf_prog *old_prog;
2661 int i;
2662
2663 old_prog = xchg(&vsi->xdp_prog, prog);
2664 ice_for_each_rxq(vsi, i)
2665 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2666
2667 if (old_prog)
2668 bpf_prog_put(old_prog);
2669}
2670
2671/**
2672 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2673 * @vsi: VSI to bring up Tx rings used by XDP
2674 * @prog: bpf program that will be assigned to VSI
2675 *
2676 * Return 0 on success and negative value on error
2677 */
2678int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2679{
2680 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2681 int xdp_rings_rem = vsi->num_xdp_txq;
2682 struct ice_pf *pf = vsi->back;
2683 struct ice_qs_cfg xdp_qs_cfg = {
2684 .qs_mutex = &pf->avail_q_mutex,
2685 .pf_map = pf->avail_txqs,
2686 .pf_map_size = pf->max_pf_txqs,
2687 .q_count = vsi->num_xdp_txq,
2688 .scatter_count = ICE_MAX_SCATTER_TXQS,
2689 .vsi_map = vsi->txq_map,
2690 .vsi_map_offset = vsi->alloc_txq,
2691 .mapping_mode = ICE_VSI_MAP_CONTIG
2692 };
2693 struct device *dev;
2694 int i, v_idx;
2695 int status;
2696
2697 dev = ice_pf_to_dev(pf);
2698 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2699 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2700 if (!vsi->xdp_rings)
2701 return -ENOMEM;
2702
2703 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2704 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2705 goto err_map_xdp;
2706
2707 if (static_key_enabled(&ice_xdp_locking_key))
2708 netdev_warn(vsi->netdev,
2709 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2710
2711 if (ice_xdp_alloc_setup_rings(vsi))
2712 goto clear_xdp_rings;
2713
2714 /* follow the logic from ice_vsi_map_rings_to_vectors */
2715 ice_for_each_q_vector(vsi, v_idx) {
2716 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2717 int xdp_rings_per_v, q_id, q_base;
2718
2719 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2720 vsi->num_q_vectors - v_idx);
2721 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2722
2723 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2724 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2725
2726 xdp_ring->q_vector = q_vector;
2727 xdp_ring->next = q_vector->tx.tx_ring;
2728 q_vector->tx.tx_ring = xdp_ring;
2729 }
2730 xdp_rings_rem -= xdp_rings_per_v;
2731 }
2732
2733 ice_for_each_rxq(vsi, i) {
2734 if (static_key_enabled(&ice_xdp_locking_key)) {
2735 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2736 } else {
2737 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2738 struct ice_tx_ring *ring;
2739
2740 ice_for_each_tx_ring(ring, q_vector->tx) {
2741 if (ice_ring_is_xdp(ring)) {
2742 vsi->rx_rings[i]->xdp_ring = ring;
2743 break;
2744 }
2745 }
2746 }
2747 ice_tx_xsk_pool(vsi, i);
2748 }
2749
2750 /* omit the scheduler update if in reset path; XDP queues will be
2751 * taken into account at the end of ice_vsi_rebuild, where
2752 * ice_cfg_vsi_lan is being called
2753 */
2754 if (ice_is_reset_in_progress(pf->state))
2755 return 0;
2756
2757 /* tell the Tx scheduler that right now we have
2758 * additional queues
2759 */
2760 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2761 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2762
2763 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2764 max_txqs);
2765 if (status) {
2766 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2767 status);
2768 goto clear_xdp_rings;
2769 }
2770
2771 /* assign the prog only when it's not already present on VSI;
2772 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2773 * VSI rebuild that happens under ethtool -L can expose us to
2774 * the bpf_prog refcount issues as we would be swapping same
2775 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2776 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2777 * this is not harmful as dev_xdp_install bumps the refcount
2778 * before calling the op exposed by the driver;
2779 */
2780 if (!ice_is_xdp_ena_vsi(vsi))
2781 ice_vsi_assign_bpf_prog(vsi, prog);
2782
2783 return 0;
2784clear_xdp_rings:
2785 ice_for_each_xdp_txq(vsi, i)
2786 if (vsi->xdp_rings[i]) {
2787 kfree_rcu(vsi->xdp_rings[i], rcu);
2788 vsi->xdp_rings[i] = NULL;
2789 }
2790
2791err_map_xdp:
2792 mutex_lock(&pf->avail_q_mutex);
2793 ice_for_each_xdp_txq(vsi, i) {
2794 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2795 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2796 }
2797 mutex_unlock(&pf->avail_q_mutex);
2798
2799 devm_kfree(dev, vsi->xdp_rings);
2800 return -ENOMEM;
2801}
2802
2803/**
2804 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2805 * @vsi: VSI to remove XDP rings
2806 *
2807 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2808 * resources
2809 */
2810int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2811{
2812 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2813 struct ice_pf *pf = vsi->back;
2814 int i, v_idx;
2815
2816 /* q_vectors are freed in reset path so there's no point in detaching
2817 * rings; in case of rebuild being triggered not from reset bits
2818 * in pf->state won't be set, so additionally check first q_vector
2819 * against NULL
2820 */
2821 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2822 goto free_qmap;
2823
2824 ice_for_each_q_vector(vsi, v_idx) {
2825 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2826 struct ice_tx_ring *ring;
2827
2828 ice_for_each_tx_ring(ring, q_vector->tx)
2829 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2830 break;
2831
2832 /* restore the value of last node prior to XDP setup */
2833 q_vector->tx.tx_ring = ring;
2834 }
2835
2836free_qmap:
2837 mutex_lock(&pf->avail_q_mutex);
2838 ice_for_each_xdp_txq(vsi, i) {
2839 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2840 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2841 }
2842 mutex_unlock(&pf->avail_q_mutex);
2843
2844 ice_for_each_xdp_txq(vsi, i)
2845 if (vsi->xdp_rings[i]) {
2846 if (vsi->xdp_rings[i]->desc) {
2847 synchronize_rcu();
2848 ice_free_tx_ring(vsi->xdp_rings[i]);
2849 }
2850 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2851 vsi->xdp_rings[i]->ring_stats = NULL;
2852 kfree_rcu(vsi->xdp_rings[i], rcu);
2853 vsi->xdp_rings[i] = NULL;
2854 }
2855
2856 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2857 vsi->xdp_rings = NULL;
2858
2859 if (static_key_enabled(&ice_xdp_locking_key))
2860 static_branch_dec(&ice_xdp_locking_key);
2861
2862 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2863 return 0;
2864
2865 ice_vsi_assign_bpf_prog(vsi, NULL);
2866
2867 /* notify Tx scheduler that we destroyed XDP queues and bring
2868 * back the old number of child nodes
2869 */
2870 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2871 max_txqs[i] = vsi->num_txq;
2872
2873 /* change number of XDP Tx queues to 0 */
2874 vsi->num_xdp_txq = 0;
2875
2876 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2877 max_txqs);
2878}
2879
2880/**
2881 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2882 * @vsi: VSI to schedule napi on
2883 */
2884static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2885{
2886 int i;
2887
2888 ice_for_each_rxq(vsi, i) {
2889 struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2890
2891 if (rx_ring->xsk_pool)
2892 napi_schedule(&rx_ring->q_vector->napi);
2893 }
2894}
2895
2896/**
2897 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2898 * @vsi: VSI to determine the count of XDP Tx qs
2899 *
2900 * returns 0 if Tx qs count is higher than at least half of CPU count,
2901 * -ENOMEM otherwise
2902 */
2903int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2904{
2905 u16 avail = ice_get_avail_txq_count(vsi->back);
2906 u16 cpus = num_possible_cpus();
2907
2908 if (avail < cpus / 2)
2909 return -ENOMEM;
2910
2911 vsi->num_xdp_txq = min_t(u16, avail, cpus);
2912
2913 if (vsi->num_xdp_txq < cpus)
2914 static_branch_inc(&ice_xdp_locking_key);
2915
2916 return 0;
2917}
2918
2919/**
2920 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2921 * @vsi: Pointer to VSI structure
2922 */
2923static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2924{
2925 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2926 return ICE_RXBUF_1664;
2927 else
2928 return ICE_RXBUF_3072;
2929}
2930
2931/**
2932 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2933 * @vsi: VSI to setup XDP for
2934 * @prog: XDP program
2935 * @extack: netlink extended ack
2936 */
2937static int
2938ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2939 struct netlink_ext_ack *extack)
2940{
2941 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2942 bool if_running = netif_running(vsi->netdev);
2943 int ret = 0, xdp_ring_err = 0;
2944
2945 if (prog && !prog->aux->xdp_has_frags) {
2946 if (frame_size > ice_max_xdp_frame_size(vsi)) {
2947 NL_SET_ERR_MSG_MOD(extack,
2948 "MTU is too large for linear frames and XDP prog does not support frags");
2949 return -EOPNOTSUPP;
2950 }
2951 }
2952
2953 /* hot swap progs and avoid toggling link */
2954 if (ice_is_xdp_ena_vsi(vsi) == !!prog) {
2955 ice_vsi_assign_bpf_prog(vsi, prog);
2956 return 0;
2957 }
2958
2959 /* need to stop netdev while setting up the program for Rx rings */
2960 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2961 ret = ice_down(vsi);
2962 if (ret) {
2963 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2964 return ret;
2965 }
2966 }
2967
2968 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2969 xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2970 if (xdp_ring_err) {
2971 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2972 } else {
2973 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2974 if (xdp_ring_err)
2975 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2976 }
2977 xdp_features_set_redirect_target(vsi->netdev, true);
2978 /* reallocate Rx queues that are used for zero-copy */
2979 xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2980 if (xdp_ring_err)
2981 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2982 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2983 xdp_features_clear_redirect_target(vsi->netdev);
2984 xdp_ring_err = ice_destroy_xdp_rings(vsi);
2985 if (xdp_ring_err)
2986 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2987 /* reallocate Rx queues that were used for zero-copy */
2988 xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2989 if (xdp_ring_err)
2990 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2991 }
2992
2993 if (if_running)
2994 ret = ice_up(vsi);
2995
2996 if (!ret && prog)
2997 ice_vsi_rx_napi_schedule(vsi);
2998
2999 return (ret || xdp_ring_err) ? -ENOMEM : 0;
3000}
3001
3002/**
3003 * ice_xdp_safe_mode - XDP handler for safe mode
3004 * @dev: netdevice
3005 * @xdp: XDP command
3006 */
3007static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3008 struct netdev_bpf *xdp)
3009{
3010 NL_SET_ERR_MSG_MOD(xdp->extack,
3011 "Please provide working DDP firmware package in order to use XDP\n"
3012 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3013 return -EOPNOTSUPP;
3014}
3015
3016/**
3017 * ice_xdp - implements XDP handler
3018 * @dev: netdevice
3019 * @xdp: XDP command
3020 */
3021static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3022{
3023 struct ice_netdev_priv *np = netdev_priv(dev);
3024 struct ice_vsi *vsi = np->vsi;
3025
3026 if (vsi->type != ICE_VSI_PF) {
3027 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
3028 return -EINVAL;
3029 }
3030
3031 switch (xdp->command) {
3032 case XDP_SETUP_PROG:
3033 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3034 case XDP_SETUP_XSK_POOL:
3035 return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
3036 xdp->xsk.queue_id);
3037 default:
3038 return -EINVAL;
3039 }
3040}
3041
3042/**
3043 * ice_ena_misc_vector - enable the non-queue interrupts
3044 * @pf: board private structure
3045 */
3046static void ice_ena_misc_vector(struct ice_pf *pf)
3047{
3048 struct ice_hw *hw = &pf->hw;
3049 u32 pf_intr_start_offset;
3050 u32 val;
3051
3052 /* Disable anti-spoof detection interrupt to prevent spurious event
3053 * interrupts during a function reset. Anti-spoof functionally is
3054 * still supported.
3055 */
3056 val = rd32(hw, GL_MDCK_TX_TDPU);
3057 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3058 wr32(hw, GL_MDCK_TX_TDPU, val);
3059
3060 /* clear things first */
3061 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
3062 rd32(hw, PFINT_OICR); /* read to clear */
3063
3064 val = (PFINT_OICR_ECC_ERR_M |
3065 PFINT_OICR_MAL_DETECT_M |
3066 PFINT_OICR_GRST_M |
3067 PFINT_OICR_PCI_EXCEPTION_M |
3068 PFINT_OICR_VFLR_M |
3069 PFINT_OICR_HMC_ERR_M |
3070 PFINT_OICR_PE_PUSH_M |
3071 PFINT_OICR_PE_CRITERR_M);
3072
3073 wr32(hw, PFINT_OICR_ENA, val);
3074
3075 /* SW_ITR_IDX = 0, but don't change INTENA */
3076 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3077 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3078
3079 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3080 return;
3081 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3082 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3083 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3084}
3085
3086/**
3087 * ice_ll_ts_intr - ll_ts interrupt handler
3088 * @irq: interrupt number
3089 * @data: pointer to a q_vector
3090 */
3091static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data)
3092{
3093 struct ice_pf *pf = data;
3094 u32 pf_intr_start_offset;
3095 struct ice_ptp_tx *tx;
3096 unsigned long flags;
3097 struct ice_hw *hw;
3098 u32 val;
3099 u8 idx;
3100
3101 hw = &pf->hw;
3102 tx = &pf->ptp.port.tx;
3103 spin_lock_irqsave(&tx->lock, flags);
3104 ice_ptp_complete_tx_single_tstamp(tx);
3105
3106 idx = find_next_bit_wrap(tx->in_use, tx->len,
3107 tx->last_ll_ts_idx_read + 1);
3108 if (idx != tx->len)
3109 ice_ptp_req_tx_single_tstamp(tx, idx);
3110 spin_unlock_irqrestore(&tx->lock, flags);
3111
3112 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
3113 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
3114 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3115 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3116 val);
3117
3118 return IRQ_HANDLED;
3119}
3120
3121/**
3122 * ice_misc_intr - misc interrupt handler
3123 * @irq: interrupt number
3124 * @data: pointer to a q_vector
3125 */
3126static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3127{
3128 struct ice_pf *pf = (struct ice_pf *)data;
3129 irqreturn_t ret = IRQ_HANDLED;
3130 struct ice_hw *hw = &pf->hw;
3131 struct device *dev;
3132 u32 oicr, ena_mask;
3133
3134 dev = ice_pf_to_dev(pf);
3135 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3136 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3137 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3138
3139 oicr = rd32(hw, PFINT_OICR);
3140 ena_mask = rd32(hw, PFINT_OICR_ENA);
3141
3142 if (oicr & PFINT_OICR_SWINT_M) {
3143 ena_mask &= ~PFINT_OICR_SWINT_M;
3144 pf->sw_int_count++;
3145 }
3146
3147 if (oicr & PFINT_OICR_MAL_DETECT_M) {
3148 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3149 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3150 }
3151 if (oicr & PFINT_OICR_VFLR_M) {
3152 /* disable any further VFLR event notifications */
3153 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3154 u32 reg = rd32(hw, PFINT_OICR_ENA);
3155
3156 reg &= ~PFINT_OICR_VFLR_M;
3157 wr32(hw, PFINT_OICR_ENA, reg);
3158 } else {
3159 ena_mask &= ~PFINT_OICR_VFLR_M;
3160 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3161 }
3162 }
3163
3164 if (oicr & PFINT_OICR_GRST_M) {
3165 u32 reset;
3166
3167 /* we have a reset warning */
3168 ena_mask &= ~PFINT_OICR_GRST_M;
3169 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
3170 rd32(hw, GLGEN_RSTAT));
3171
3172 if (reset == ICE_RESET_CORER)
3173 pf->corer_count++;
3174 else if (reset == ICE_RESET_GLOBR)
3175 pf->globr_count++;
3176 else if (reset == ICE_RESET_EMPR)
3177 pf->empr_count++;
3178 else
3179 dev_dbg(dev, "Invalid reset type %d\n", reset);
3180
3181 /* If a reset cycle isn't already in progress, we set a bit in
3182 * pf->state so that the service task can start a reset/rebuild.
3183 */
3184 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3185 if (reset == ICE_RESET_CORER)
3186 set_bit(ICE_CORER_RECV, pf->state);
3187 else if (reset == ICE_RESET_GLOBR)
3188 set_bit(ICE_GLOBR_RECV, pf->state);
3189 else
3190 set_bit(ICE_EMPR_RECV, pf->state);
3191
3192 /* There are couple of different bits at play here.
3193 * hw->reset_ongoing indicates whether the hardware is
3194 * in reset. This is set to true when a reset interrupt
3195 * is received and set back to false after the driver
3196 * has determined that the hardware is out of reset.
3197 *
3198 * ICE_RESET_OICR_RECV in pf->state indicates
3199 * that a post reset rebuild is required before the
3200 * driver is operational again. This is set above.
3201 *
3202 * As this is the start of the reset/rebuild cycle, set
3203 * both to indicate that.
3204 */
3205 hw->reset_ongoing = true;
3206 }
3207 }
3208
3209 if (oicr & PFINT_OICR_TSYN_TX_M) {
3210 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3211 if (ice_pf_state_is_nominal(pf) &&
3212 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) {
3213 struct ice_ptp_tx *tx = &pf->ptp.port.tx;
3214 unsigned long flags;
3215 u8 idx;
3216
3217 spin_lock_irqsave(&tx->lock, flags);
3218 idx = find_next_bit_wrap(tx->in_use, tx->len,
3219 tx->last_ll_ts_idx_read + 1);
3220 if (idx != tx->len)
3221 ice_ptp_req_tx_single_tstamp(tx, idx);
3222 spin_unlock_irqrestore(&tx->lock, flags);
3223 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) {
3224 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
3225 ret = IRQ_WAKE_THREAD;
3226 }
3227 }
3228
3229 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3230 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3231 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3232
3233 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3234
3235 if (ice_pf_src_tmr_owned(pf)) {
3236 /* Save EVENTs from GLTSYN register */
3237 pf->ptp.ext_ts_irq |= gltsyn_stat &
3238 (GLTSYN_STAT_EVENT0_M |
3239 GLTSYN_STAT_EVENT1_M |
3240 GLTSYN_STAT_EVENT2_M);
3241
3242 ice_ptp_extts_event(pf);
3243 }
3244 }
3245
3246#define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3247 if (oicr & ICE_AUX_CRIT_ERR) {
3248 pf->oicr_err_reg |= oicr;
3249 set_bit(ICE_AUX_ERR_PENDING, pf->state);
3250 ena_mask &= ~ICE_AUX_CRIT_ERR;
3251 }
3252
3253 /* Report any remaining unexpected interrupts */
3254 oicr &= ena_mask;
3255 if (oicr) {
3256 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3257 /* If a critical error is pending there is no choice but to
3258 * reset the device.
3259 */
3260 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3261 PFINT_OICR_ECC_ERR_M)) {
3262 set_bit(ICE_PFR_REQ, pf->state);
3263 }
3264 }
3265 ice_service_task_schedule(pf);
3266 if (ret == IRQ_HANDLED)
3267 ice_irq_dynamic_ena(hw, NULL, NULL);
3268
3269 return ret;
3270}
3271
3272/**
3273 * ice_misc_intr_thread_fn - misc interrupt thread function
3274 * @irq: interrupt number
3275 * @data: pointer to a q_vector
3276 */
3277static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3278{
3279 struct ice_pf *pf = data;
3280 struct ice_hw *hw;
3281
3282 hw = &pf->hw;
3283
3284 if (ice_is_reset_in_progress(pf->state))
3285 goto skip_irq;
3286
3287 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3288 /* Process outstanding Tx timestamps. If there is more work,
3289 * re-arm the interrupt to trigger again.
3290 */
3291 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3292 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3293 ice_flush(hw);
3294 }
3295 }
3296
3297skip_irq:
3298 ice_irq_dynamic_ena(hw, NULL, NULL);
3299
3300 return IRQ_HANDLED;
3301}
3302
3303/**
3304 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3305 * @hw: pointer to HW structure
3306 */
3307static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3308{
3309 /* disable Admin queue Interrupt causes */
3310 wr32(hw, PFINT_FW_CTL,
3311 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3312
3313 /* disable Mailbox queue Interrupt causes */
3314 wr32(hw, PFINT_MBX_CTL,
3315 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3316
3317 wr32(hw, PFINT_SB_CTL,
3318 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3319
3320 /* disable Control queue Interrupt causes */
3321 wr32(hw, PFINT_OICR_CTL,
3322 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3323
3324 ice_flush(hw);
3325}
3326
3327/**
3328 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup
3329 * @pf: board private structure
3330 */
3331static void ice_free_irq_msix_ll_ts(struct ice_pf *pf)
3332{
3333 int irq_num = pf->ll_ts_irq.virq;
3334
3335 synchronize_irq(irq_num);
3336 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf);
3337
3338 ice_free_irq(pf, pf->ll_ts_irq);
3339}
3340
3341/**
3342 * ice_free_irq_msix_misc - Unroll misc vector setup
3343 * @pf: board private structure
3344 */
3345static void ice_free_irq_msix_misc(struct ice_pf *pf)
3346{
3347 int misc_irq_num = pf->oicr_irq.virq;
3348 struct ice_hw *hw = &pf->hw;
3349
3350 ice_dis_ctrlq_interrupts(hw);
3351
3352 /* disable OICR interrupt */
3353 wr32(hw, PFINT_OICR_ENA, 0);
3354 ice_flush(hw);
3355
3356 synchronize_irq(misc_irq_num);
3357 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3358
3359 ice_free_irq(pf, pf->oicr_irq);
3360 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3361 ice_free_irq_msix_ll_ts(pf);
3362}
3363
3364/**
3365 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3366 * @hw: pointer to HW structure
3367 * @reg_idx: HW vector index to associate the control queue interrupts with
3368 */
3369static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3370{
3371 u32 val;
3372
3373 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3374 PFINT_OICR_CTL_CAUSE_ENA_M);
3375 wr32(hw, PFINT_OICR_CTL, val);
3376
3377 /* enable Admin queue Interrupt causes */
3378 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3379 PFINT_FW_CTL_CAUSE_ENA_M);
3380 wr32(hw, PFINT_FW_CTL, val);
3381
3382 /* enable Mailbox queue Interrupt causes */
3383 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3384 PFINT_MBX_CTL_CAUSE_ENA_M);
3385 wr32(hw, PFINT_MBX_CTL, val);
3386
3387 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) {
3388 /* enable Sideband queue Interrupt causes */
3389 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3390 PFINT_SB_CTL_CAUSE_ENA_M);
3391 wr32(hw, PFINT_SB_CTL, val);
3392 }
3393
3394 ice_flush(hw);
3395}
3396
3397/**
3398 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3399 * @pf: board private structure
3400 *
3401 * This sets up the handler for MSIX 0, which is used to manage the
3402 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3403 * when in MSI or Legacy interrupt mode.
3404 */
3405static int ice_req_irq_msix_misc(struct ice_pf *pf)
3406{
3407 struct device *dev = ice_pf_to_dev(pf);
3408 struct ice_hw *hw = &pf->hw;
3409 u32 pf_intr_start_offset;
3410 struct msi_map irq;
3411 int err = 0;
3412
3413 if (!pf->int_name[0])
3414 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3415 dev_driver_string(dev), dev_name(dev));
3416
3417 if (!pf->int_name_ll_ts[0])
3418 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1,
3419 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev));
3420 /* Do not request IRQ but do enable OICR interrupt since settings are
3421 * lost during reset. Note that this function is called only during
3422 * rebuild path and not while reset is in progress.
3423 */
3424 if (ice_is_reset_in_progress(pf->state))
3425 goto skip_req_irq;
3426
3427 /* reserve one vector in irq_tracker for misc interrupts */
3428 irq = ice_alloc_irq(pf, false);
3429 if (irq.index < 0)
3430 return irq.index;
3431
3432 pf->oicr_irq = irq;
3433 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3434 ice_misc_intr_thread_fn, 0,
3435 pf->int_name, pf);
3436 if (err) {
3437 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3438 pf->int_name, err);
3439 ice_free_irq(pf, pf->oicr_irq);
3440 return err;
3441 }
3442
3443 /* reserve one vector in irq_tracker for ll_ts interrupt */
3444 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3445 goto skip_req_irq;
3446
3447 irq = ice_alloc_irq(pf, false);
3448 if (irq.index < 0)
3449 return irq.index;
3450
3451 pf->ll_ts_irq = irq;
3452 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0,
3453 pf->int_name_ll_ts, pf);
3454 if (err) {
3455 dev_err(dev, "devm_request_irq for %s failed: %d\n",
3456 pf->int_name_ll_ts, err);
3457 ice_free_irq(pf, pf->ll_ts_irq);
3458 return err;
3459 }
3460
3461skip_req_irq:
3462 ice_ena_misc_vector(pf);
3463
3464 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3465 /* This enables LL TS interrupt */
3466 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3467 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3468 wr32(hw, PFINT_SB_CTL,
3469 ((pf->ll_ts_irq.index + pf_intr_start_offset) &
3470 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M);
3471 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3472 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3473
3474 ice_flush(hw);
3475 ice_irq_dynamic_ena(hw, NULL, NULL);
3476
3477 return 0;
3478}
3479
3480/**
3481 * ice_napi_add - register NAPI handler for the VSI
3482 * @vsi: VSI for which NAPI handler is to be registered
3483 *
3484 * This function is only called in the driver's load path. Registering the NAPI
3485 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3486 * reset/rebuild, etc.)
3487 */
3488static void ice_napi_add(struct ice_vsi *vsi)
3489{
3490 int v_idx;
3491
3492 if (!vsi->netdev)
3493 return;
3494
3495 ice_for_each_q_vector(vsi, v_idx) {
3496 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3497 ice_napi_poll);
3498 __ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false);
3499 }
3500}
3501
3502/**
3503 * ice_set_ops - set netdev and ethtools ops for the given netdev
3504 * @vsi: the VSI associated with the new netdev
3505 */
3506static void ice_set_ops(struct ice_vsi *vsi)
3507{
3508 struct net_device *netdev = vsi->netdev;
3509 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3510
3511 if (ice_is_safe_mode(pf)) {
3512 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3513 ice_set_ethtool_safe_mode_ops(netdev);
3514 return;
3515 }
3516
3517 netdev->netdev_ops = &ice_netdev_ops;
3518 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3519 netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3520 ice_set_ethtool_ops(netdev);
3521
3522 if (vsi->type != ICE_VSI_PF)
3523 return;
3524
3525 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3526 NETDEV_XDP_ACT_XSK_ZEROCOPY |
3527 NETDEV_XDP_ACT_RX_SG;
3528 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3529}
3530
3531/**
3532 * ice_set_netdev_features - set features for the given netdev
3533 * @netdev: netdev instance
3534 */
3535static void ice_set_netdev_features(struct net_device *netdev)
3536{
3537 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3538 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3539 netdev_features_t csumo_features;
3540 netdev_features_t vlano_features;
3541 netdev_features_t dflt_features;
3542 netdev_features_t tso_features;
3543
3544 if (ice_is_safe_mode(pf)) {
3545 /* safe mode */
3546 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3547 netdev->hw_features = netdev->features;
3548 return;
3549 }
3550
3551 dflt_features = NETIF_F_SG |
3552 NETIF_F_HIGHDMA |
3553 NETIF_F_NTUPLE |
3554 NETIF_F_RXHASH;
3555
3556 csumo_features = NETIF_F_RXCSUM |
3557 NETIF_F_IP_CSUM |
3558 NETIF_F_SCTP_CRC |
3559 NETIF_F_IPV6_CSUM;
3560
3561 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3562 NETIF_F_HW_VLAN_CTAG_TX |
3563 NETIF_F_HW_VLAN_CTAG_RX;
3564
3565 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3566 if (is_dvm_ena)
3567 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3568
3569 tso_features = NETIF_F_TSO |
3570 NETIF_F_TSO_ECN |
3571 NETIF_F_TSO6 |
3572 NETIF_F_GSO_GRE |
3573 NETIF_F_GSO_UDP_TUNNEL |
3574 NETIF_F_GSO_GRE_CSUM |
3575 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3576 NETIF_F_GSO_PARTIAL |
3577 NETIF_F_GSO_IPXIP4 |
3578 NETIF_F_GSO_IPXIP6 |
3579 NETIF_F_GSO_UDP_L4;
3580
3581 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3582 NETIF_F_GSO_GRE_CSUM;
3583 /* set features that user can change */
3584 netdev->hw_features = dflt_features | csumo_features |
3585 vlano_features | tso_features;
3586
3587 /* add support for HW_CSUM on packets with MPLS header */
3588 netdev->mpls_features = NETIF_F_HW_CSUM |
3589 NETIF_F_TSO |
3590 NETIF_F_TSO6;
3591
3592 /* enable features */
3593 netdev->features |= netdev->hw_features;
3594
3595 netdev->hw_features |= NETIF_F_HW_TC;
3596 netdev->hw_features |= NETIF_F_LOOPBACK;
3597
3598 /* encap and VLAN devices inherit default, csumo and tso features */
3599 netdev->hw_enc_features |= dflt_features | csumo_features |
3600 tso_features;
3601 netdev->vlan_features |= dflt_features | csumo_features |
3602 tso_features;
3603
3604 /* advertise support but don't enable by default since only one type of
3605 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3606 * type turns on the other has to be turned off. This is enforced by the
3607 * ice_fix_features() ndo callback.
3608 */
3609 if (is_dvm_ena)
3610 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3611 NETIF_F_HW_VLAN_STAG_TX;
3612
3613 /* Leave CRC / FCS stripping enabled by default, but allow the value to
3614 * be changed at runtime
3615 */
3616 netdev->hw_features |= NETIF_F_RXFCS;
3617
3618 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3619}
3620
3621/**
3622 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3623 * @lut: Lookup table
3624 * @rss_table_size: Lookup table size
3625 * @rss_size: Range of queue number for hashing
3626 */
3627void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3628{
3629 u16 i;
3630
3631 for (i = 0; i < rss_table_size; i++)
3632 lut[i] = i % rss_size;
3633}
3634
3635/**
3636 * ice_pf_vsi_setup - Set up a PF VSI
3637 * @pf: board private structure
3638 * @pi: pointer to the port_info instance
3639 *
3640 * Returns pointer to the successfully allocated VSI software struct
3641 * on success, otherwise returns NULL on failure.
3642 */
3643static struct ice_vsi *
3644ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3645{
3646 struct ice_vsi_cfg_params params = {};
3647
3648 params.type = ICE_VSI_PF;
3649 params.pi = pi;
3650 params.flags = ICE_VSI_FLAG_INIT;
3651
3652 return ice_vsi_setup(pf, ¶ms);
3653}
3654
3655static struct ice_vsi *
3656ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3657 struct ice_channel *ch)
3658{
3659 struct ice_vsi_cfg_params params = {};
3660
3661 params.type = ICE_VSI_CHNL;
3662 params.pi = pi;
3663 params.ch = ch;
3664 params.flags = ICE_VSI_FLAG_INIT;
3665
3666 return ice_vsi_setup(pf, ¶ms);
3667}
3668
3669/**
3670 * ice_ctrl_vsi_setup - Set up a control VSI
3671 * @pf: board private structure
3672 * @pi: pointer to the port_info instance
3673 *
3674 * Returns pointer to the successfully allocated VSI software struct
3675 * on success, otherwise returns NULL on failure.
3676 */
3677static struct ice_vsi *
3678ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3679{
3680 struct ice_vsi_cfg_params params = {};
3681
3682 params.type = ICE_VSI_CTRL;
3683 params.pi = pi;
3684 params.flags = ICE_VSI_FLAG_INIT;
3685
3686 return ice_vsi_setup(pf, ¶ms);
3687}
3688
3689/**
3690 * ice_lb_vsi_setup - Set up a loopback VSI
3691 * @pf: board private structure
3692 * @pi: pointer to the port_info instance
3693 *
3694 * Returns pointer to the successfully allocated VSI software struct
3695 * on success, otherwise returns NULL on failure.
3696 */
3697struct ice_vsi *
3698ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3699{
3700 struct ice_vsi_cfg_params params = {};
3701
3702 params.type = ICE_VSI_LB;
3703 params.pi = pi;
3704 params.flags = ICE_VSI_FLAG_INIT;
3705
3706 return ice_vsi_setup(pf, ¶ms);
3707}
3708
3709/**
3710 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3711 * @netdev: network interface to be adjusted
3712 * @proto: VLAN TPID
3713 * @vid: VLAN ID to be added
3714 *
3715 * net_device_ops implementation for adding VLAN IDs
3716 */
3717static int
3718ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3719{
3720 struct ice_netdev_priv *np = netdev_priv(netdev);
3721 struct ice_vsi_vlan_ops *vlan_ops;
3722 struct ice_vsi *vsi = np->vsi;
3723 struct ice_vlan vlan;
3724 int ret;
3725
3726 /* VLAN 0 is added by default during load/reset */
3727 if (!vid)
3728 return 0;
3729
3730 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3731 usleep_range(1000, 2000);
3732
3733 /* Add multicast promisc rule for the VLAN ID to be added if
3734 * all-multicast is currently enabled.
3735 */
3736 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3737 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3738 ICE_MCAST_VLAN_PROMISC_BITS,
3739 vid);
3740 if (ret)
3741 goto finish;
3742 }
3743
3744 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3745
3746 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3747 * packets aren't pruned by the device's internal switch on Rx
3748 */
3749 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3750 ret = vlan_ops->add_vlan(vsi, &vlan);
3751 if (ret)
3752 goto finish;
3753
3754 /* If all-multicast is currently enabled and this VLAN ID is only one
3755 * besides VLAN-0 we have to update look-up type of multicast promisc
3756 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3757 */
3758 if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3759 ice_vsi_num_non_zero_vlans(vsi) == 1) {
3760 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3761 ICE_MCAST_PROMISC_BITS, 0);
3762 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3763 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3764 }
3765
3766finish:
3767 clear_bit(ICE_CFG_BUSY, vsi->state);
3768
3769 return ret;
3770}
3771
3772/**
3773 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3774 * @netdev: network interface to be adjusted
3775 * @proto: VLAN TPID
3776 * @vid: VLAN ID to be removed
3777 *
3778 * net_device_ops implementation for removing VLAN IDs
3779 */
3780static int
3781ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3782{
3783 struct ice_netdev_priv *np = netdev_priv(netdev);
3784 struct ice_vsi_vlan_ops *vlan_ops;
3785 struct ice_vsi *vsi = np->vsi;
3786 struct ice_vlan vlan;
3787 int ret;
3788
3789 /* don't allow removal of VLAN 0 */
3790 if (!vid)
3791 return 0;
3792
3793 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3794 usleep_range(1000, 2000);
3795
3796 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3797 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3798 if (ret) {
3799 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3800 vsi->vsi_num);
3801 vsi->current_netdev_flags |= IFF_ALLMULTI;
3802 }
3803
3804 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3805
3806 /* Make sure VLAN delete is successful before updating VLAN
3807 * information
3808 */
3809 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3810 ret = vlan_ops->del_vlan(vsi, &vlan);
3811 if (ret)
3812 goto finish;
3813
3814 /* Remove multicast promisc rule for the removed VLAN ID if
3815 * all-multicast is enabled.
3816 */
3817 if (vsi->current_netdev_flags & IFF_ALLMULTI)
3818 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3819 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3820
3821 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3822 /* Update look-up type of multicast promisc rule for VLAN 0
3823 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3824 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3825 */
3826 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3827 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3828 ICE_MCAST_VLAN_PROMISC_BITS,
3829 0);
3830 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3831 ICE_MCAST_PROMISC_BITS, 0);
3832 }
3833 }
3834
3835finish:
3836 clear_bit(ICE_CFG_BUSY, vsi->state);
3837
3838 return ret;
3839}
3840
3841/**
3842 * ice_rep_indr_tc_block_unbind
3843 * @cb_priv: indirection block private data
3844 */
3845static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3846{
3847 struct ice_indr_block_priv *indr_priv = cb_priv;
3848
3849 list_del(&indr_priv->list);
3850 kfree(indr_priv);
3851}
3852
3853/**
3854 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3855 * @vsi: VSI struct which has the netdev
3856 */
3857static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3858{
3859 struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3860
3861 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3862 ice_rep_indr_tc_block_unbind);
3863}
3864
3865/**
3866 * ice_tc_indir_block_register - Register TC indirect block notifications
3867 * @vsi: VSI struct which has the netdev
3868 *
3869 * Returns 0 on success, negative value on failure
3870 */
3871static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3872{
3873 struct ice_netdev_priv *np;
3874
3875 if (!vsi || !vsi->netdev)
3876 return -EINVAL;
3877
3878 np = netdev_priv(vsi->netdev);
3879
3880 INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3881 return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3882}
3883
3884/**
3885 * ice_get_avail_q_count - Get count of queues in use
3886 * @pf_qmap: bitmap to get queue use count from
3887 * @lock: pointer to a mutex that protects access to pf_qmap
3888 * @size: size of the bitmap
3889 */
3890static u16
3891ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3892{
3893 unsigned long bit;
3894 u16 count = 0;
3895
3896 mutex_lock(lock);
3897 for_each_clear_bit(bit, pf_qmap, size)
3898 count++;
3899 mutex_unlock(lock);
3900
3901 return count;
3902}
3903
3904/**
3905 * ice_get_avail_txq_count - Get count of Tx queues in use
3906 * @pf: pointer to an ice_pf instance
3907 */
3908u16 ice_get_avail_txq_count(struct ice_pf *pf)
3909{
3910 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3911 pf->max_pf_txqs);
3912}
3913
3914/**
3915 * ice_get_avail_rxq_count - Get count of Rx queues in use
3916 * @pf: pointer to an ice_pf instance
3917 */
3918u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3919{
3920 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3921 pf->max_pf_rxqs);
3922}
3923
3924/**
3925 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3926 * @pf: board private structure to initialize
3927 */
3928static void ice_deinit_pf(struct ice_pf *pf)
3929{
3930 ice_service_task_stop(pf);
3931 mutex_destroy(&pf->lag_mutex);
3932 mutex_destroy(&pf->adev_mutex);
3933 mutex_destroy(&pf->sw_mutex);
3934 mutex_destroy(&pf->tc_mutex);
3935 mutex_destroy(&pf->avail_q_mutex);
3936 mutex_destroy(&pf->vfs.table_lock);
3937
3938 if (pf->avail_txqs) {
3939 bitmap_free(pf->avail_txqs);
3940 pf->avail_txqs = NULL;
3941 }
3942
3943 if (pf->avail_rxqs) {
3944 bitmap_free(pf->avail_rxqs);
3945 pf->avail_rxqs = NULL;
3946 }
3947
3948 if (pf->ptp.clock)
3949 ptp_clock_unregister(pf->ptp.clock);
3950}
3951
3952/**
3953 * ice_set_pf_caps - set PFs capability flags
3954 * @pf: pointer to the PF instance
3955 */
3956static void ice_set_pf_caps(struct ice_pf *pf)
3957{
3958 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3959
3960 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3961 if (func_caps->common_cap.rdma)
3962 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3963 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3964 if (func_caps->common_cap.dcb)
3965 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3966 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3967 if (func_caps->common_cap.sr_iov_1_1) {
3968 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3969 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3970 ICE_MAX_SRIOV_VFS);
3971 }
3972 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3973 if (func_caps->common_cap.rss_table_size)
3974 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3975
3976 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3977 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3978 u16 unused;
3979
3980 /* ctrl_vsi_idx will be set to a valid value when flow director
3981 * is setup by ice_init_fdir
3982 */
3983 pf->ctrl_vsi_idx = ICE_NO_VSI;
3984 set_bit(ICE_FLAG_FD_ENA, pf->flags);
3985 /* force guaranteed filter pool for PF */
3986 ice_alloc_fd_guar_item(&pf->hw, &unused,
3987 func_caps->fd_fltr_guar);
3988 /* force shared filter pool for PF */
3989 ice_alloc_fd_shrd_item(&pf->hw, &unused,
3990 func_caps->fd_fltr_best_effort);
3991 }
3992
3993 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3994 if (func_caps->common_cap.ieee_1588 &&
3995 !(pf->hw.mac_type == ICE_MAC_E830))
3996 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3997
3998 pf->max_pf_txqs = func_caps->common_cap.num_txq;
3999 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
4000}
4001
4002/**
4003 * ice_init_pf - Initialize general software structures (struct ice_pf)
4004 * @pf: board private structure to initialize
4005 */
4006static int ice_init_pf(struct ice_pf *pf)
4007{
4008 ice_set_pf_caps(pf);
4009
4010 mutex_init(&pf->sw_mutex);
4011 mutex_init(&pf->tc_mutex);
4012 mutex_init(&pf->adev_mutex);
4013 mutex_init(&pf->lag_mutex);
4014
4015 INIT_HLIST_HEAD(&pf->aq_wait_list);
4016 spin_lock_init(&pf->aq_wait_lock);
4017 init_waitqueue_head(&pf->aq_wait_queue);
4018
4019 init_waitqueue_head(&pf->reset_wait_queue);
4020
4021 /* setup service timer and periodic service task */
4022 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
4023 pf->serv_tmr_period = HZ;
4024 INIT_WORK(&pf->serv_task, ice_service_task);
4025 clear_bit(ICE_SERVICE_SCHED, pf->state);
4026
4027 mutex_init(&pf->avail_q_mutex);
4028 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4029 if (!pf->avail_txqs)
4030 return -ENOMEM;
4031
4032 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
4033 if (!pf->avail_rxqs) {
4034 bitmap_free(pf->avail_txqs);
4035 pf->avail_txqs = NULL;
4036 return -ENOMEM;
4037 }
4038
4039 mutex_init(&pf->vfs.table_lock);
4040 hash_init(pf->vfs.table);
4041 ice_mbx_init_snapshot(&pf->hw);
4042
4043 return 0;
4044}
4045
4046/**
4047 * ice_is_wol_supported - check if WoL is supported
4048 * @hw: pointer to hardware info
4049 *
4050 * Check if WoL is supported based on the HW configuration.
4051 * Returns true if NVM supports and enables WoL for this port, false otherwise
4052 */
4053bool ice_is_wol_supported(struct ice_hw *hw)
4054{
4055 u16 wol_ctrl;
4056
4057 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4058 * word) indicates WoL is not supported on the corresponding PF ID.
4059 */
4060 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4061 return false;
4062
4063 return !(BIT(hw->port_info->lport) & wol_ctrl);
4064}
4065
4066/**
4067 * ice_vsi_recfg_qs - Change the number of queues on a VSI
4068 * @vsi: VSI being changed
4069 * @new_rx: new number of Rx queues
4070 * @new_tx: new number of Tx queues
4071 * @locked: is adev device_lock held
4072 *
4073 * Only change the number of queues if new_tx, or new_rx is non-0.
4074 *
4075 * Returns 0 on success.
4076 */
4077int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4078{
4079 struct ice_pf *pf = vsi->back;
4080 int err = 0, timeout = 50;
4081
4082 if (!new_rx && !new_tx)
4083 return -EINVAL;
4084
4085 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4086 timeout--;
4087 if (!timeout)
4088 return -EBUSY;
4089 usleep_range(1000, 2000);
4090 }
4091
4092 if (new_tx)
4093 vsi->req_txq = (u16)new_tx;
4094 if (new_rx)
4095 vsi->req_rxq = (u16)new_rx;
4096
4097 /* set for the next time the netdev is started */
4098 if (!netif_running(vsi->netdev)) {
4099 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4100 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4101 goto done;
4102 }
4103
4104 ice_vsi_close(vsi);
4105 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4106 ice_pf_dcb_recfg(pf, locked);
4107 ice_vsi_open(vsi);
4108done:
4109 clear_bit(ICE_CFG_BUSY, pf->state);
4110 return err;
4111}
4112
4113/**
4114 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4115 * @pf: PF to configure
4116 *
4117 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4118 * VSI can still Tx/Rx VLAN tagged packets.
4119 */
4120static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4121{
4122 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4123 struct ice_vsi_ctx *ctxt;
4124 struct ice_hw *hw;
4125 int status;
4126
4127 if (!vsi)
4128 return;
4129
4130 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4131 if (!ctxt)
4132 return;
4133
4134 hw = &pf->hw;
4135 ctxt->info = vsi->info;
4136
4137 ctxt->info.valid_sections =
4138 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4139 ICE_AQ_VSI_PROP_SECURITY_VALID |
4140 ICE_AQ_VSI_PROP_SW_VALID);
4141
4142 /* disable VLAN anti-spoof */
4143 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4144 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4145
4146 /* disable VLAN pruning and keep all other settings */
4147 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4148
4149 /* allow all VLANs on Tx and don't strip on Rx */
4150 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4151 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4152
4153 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4154 if (status) {
4155 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4156 status, ice_aq_str(hw->adminq.sq_last_status));
4157 } else {
4158 vsi->info.sec_flags = ctxt->info.sec_flags;
4159 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4160 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4161 }
4162
4163 kfree(ctxt);
4164}
4165
4166/**
4167 * ice_log_pkg_init - log result of DDP package load
4168 * @hw: pointer to hardware info
4169 * @state: state of package load
4170 */
4171static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4172{
4173 struct ice_pf *pf = hw->back;
4174 struct device *dev;
4175
4176 dev = ice_pf_to_dev(pf);
4177
4178 switch (state) {
4179 case ICE_DDP_PKG_SUCCESS:
4180 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4181 hw->active_pkg_name,
4182 hw->active_pkg_ver.major,
4183 hw->active_pkg_ver.minor,
4184 hw->active_pkg_ver.update,
4185 hw->active_pkg_ver.draft);
4186 break;
4187 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4188 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4189 hw->active_pkg_name,
4190 hw->active_pkg_ver.major,
4191 hw->active_pkg_ver.minor,
4192 hw->active_pkg_ver.update,
4193 hw->active_pkg_ver.draft);
4194 break;
4195 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4196 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
4197 hw->active_pkg_name,
4198 hw->active_pkg_ver.major,
4199 hw->active_pkg_ver.minor,
4200 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4201 break;
4202 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4203 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4204 hw->active_pkg_name,
4205 hw->active_pkg_ver.major,
4206 hw->active_pkg_ver.minor,
4207 hw->active_pkg_ver.update,
4208 hw->active_pkg_ver.draft,
4209 hw->pkg_name,
4210 hw->pkg_ver.major,
4211 hw->pkg_ver.minor,
4212 hw->pkg_ver.update,
4213 hw->pkg_ver.draft);
4214 break;
4215 case ICE_DDP_PKG_FW_MISMATCH:
4216 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
4217 break;
4218 case ICE_DDP_PKG_INVALID_FILE:
4219 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4220 break;
4221 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4222 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
4223 break;
4224 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4225 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
4226 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4227 break;
4228 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4229 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
4230 break;
4231 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4232 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
4233 break;
4234 case ICE_DDP_PKG_LOAD_ERROR:
4235 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
4236 /* poll for reset to complete */
4237 if (ice_check_reset(hw))
4238 dev_err(dev, "Error resetting device. Please reload the driver\n");
4239 break;
4240 case ICE_DDP_PKG_ERR:
4241 default:
4242 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
4243 break;
4244 }
4245}
4246
4247/**
4248 * ice_load_pkg - load/reload the DDP Package file
4249 * @firmware: firmware structure when firmware requested or NULL for reload
4250 * @pf: pointer to the PF instance
4251 *
4252 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4253 * initialize HW tables.
4254 */
4255static void
4256ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4257{
4258 enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4259 struct device *dev = ice_pf_to_dev(pf);
4260 struct ice_hw *hw = &pf->hw;
4261
4262 /* Load DDP Package */
4263 if (firmware && !hw->pkg_copy) {
4264 state = ice_copy_and_init_pkg(hw, firmware->data,
4265 firmware->size);
4266 ice_log_pkg_init(hw, state);
4267 } else if (!firmware && hw->pkg_copy) {
4268 /* Reload package during rebuild after CORER/GLOBR reset */
4269 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4270 ice_log_pkg_init(hw, state);
4271 } else {
4272 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4273 }
4274
4275 if (!ice_is_init_pkg_successful(state)) {
4276 /* Safe Mode */
4277 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4278 return;
4279 }
4280
4281 /* Successful download package is the precondition for advanced
4282 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4283 */
4284 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4285}
4286
4287/**
4288 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4289 * @pf: pointer to the PF structure
4290 *
4291 * There is no error returned here because the driver should be able to handle
4292 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4293 * specifically with Tx.
4294 */
4295static void ice_verify_cacheline_size(struct ice_pf *pf)
4296{
4297 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4298 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4299 ICE_CACHE_LINE_BYTES);
4300}
4301
4302/**
4303 * ice_send_version - update firmware with driver version
4304 * @pf: PF struct
4305 *
4306 * Returns 0 on success, else error code
4307 */
4308static int ice_send_version(struct ice_pf *pf)
4309{
4310 struct ice_driver_ver dv;
4311
4312 dv.major_ver = 0xff;
4313 dv.minor_ver = 0xff;
4314 dv.build_ver = 0xff;
4315 dv.subbuild_ver = 0;
4316 strscpy((char *)dv.driver_string, UTS_RELEASE,
4317 sizeof(dv.driver_string));
4318 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4319}
4320
4321/**
4322 * ice_init_fdir - Initialize flow director VSI and configuration
4323 * @pf: pointer to the PF instance
4324 *
4325 * returns 0 on success, negative on error
4326 */
4327static int ice_init_fdir(struct ice_pf *pf)
4328{
4329 struct device *dev = ice_pf_to_dev(pf);
4330 struct ice_vsi *ctrl_vsi;
4331 int err;
4332
4333 /* Side Band Flow Director needs to have a control VSI.
4334 * Allocate it and store it in the PF.
4335 */
4336 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4337 if (!ctrl_vsi) {
4338 dev_dbg(dev, "could not create control VSI\n");
4339 return -ENOMEM;
4340 }
4341
4342 err = ice_vsi_open_ctrl(ctrl_vsi);
4343 if (err) {
4344 dev_dbg(dev, "could not open control VSI\n");
4345 goto err_vsi_open;
4346 }
4347
4348 mutex_init(&pf->hw.fdir_fltr_lock);
4349
4350 err = ice_fdir_create_dflt_rules(pf);
4351 if (err)
4352 goto err_fdir_rule;
4353
4354 return 0;
4355
4356err_fdir_rule:
4357 ice_fdir_release_flows(&pf->hw);
4358 ice_vsi_close(ctrl_vsi);
4359err_vsi_open:
4360 ice_vsi_release(ctrl_vsi);
4361 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4362 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4363 pf->ctrl_vsi_idx = ICE_NO_VSI;
4364 }
4365 return err;
4366}
4367
4368static void ice_deinit_fdir(struct ice_pf *pf)
4369{
4370 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4371
4372 if (!vsi)
4373 return;
4374
4375 ice_vsi_manage_fdir(vsi, false);
4376 ice_vsi_release(vsi);
4377 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4378 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4379 pf->ctrl_vsi_idx = ICE_NO_VSI;
4380 }
4381
4382 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4383}
4384
4385/**
4386 * ice_get_opt_fw_name - return optional firmware file name or NULL
4387 * @pf: pointer to the PF instance
4388 */
4389static char *ice_get_opt_fw_name(struct ice_pf *pf)
4390{
4391 /* Optional firmware name same as default with additional dash
4392 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4393 */
4394 struct pci_dev *pdev = pf->pdev;
4395 char *opt_fw_filename;
4396 u64 dsn;
4397
4398 /* Determine the name of the optional file using the DSN (two
4399 * dwords following the start of the DSN Capability).
4400 */
4401 dsn = pci_get_dsn(pdev);
4402 if (!dsn)
4403 return NULL;
4404
4405 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4406 if (!opt_fw_filename)
4407 return NULL;
4408
4409 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4410 ICE_DDP_PKG_PATH, dsn);
4411
4412 return opt_fw_filename;
4413}
4414
4415/**
4416 * ice_request_fw - Device initialization routine
4417 * @pf: pointer to the PF instance
4418 */
4419static void ice_request_fw(struct ice_pf *pf)
4420{
4421 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4422 const struct firmware *firmware = NULL;
4423 struct device *dev = ice_pf_to_dev(pf);
4424 int err = 0;
4425
4426 /* optional device-specific DDP (if present) overrides the default DDP
4427 * package file. kernel logs a debug message if the file doesn't exist,
4428 * and warning messages for other errors.
4429 */
4430 if (opt_fw_filename) {
4431 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4432 if (err) {
4433 kfree(opt_fw_filename);
4434 goto dflt_pkg_load;
4435 }
4436
4437 /* request for firmware was successful. Download to device */
4438 ice_load_pkg(firmware, pf);
4439 kfree(opt_fw_filename);
4440 release_firmware(firmware);
4441 return;
4442 }
4443
4444dflt_pkg_load:
4445 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4446 if (err) {
4447 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4448 return;
4449 }
4450
4451 /* request for firmware was successful. Download to device */
4452 ice_load_pkg(firmware, pf);
4453 release_firmware(firmware);
4454}
4455
4456/**
4457 * ice_print_wake_reason - show the wake up cause in the log
4458 * @pf: pointer to the PF struct
4459 */
4460static void ice_print_wake_reason(struct ice_pf *pf)
4461{
4462 u32 wus = pf->wakeup_reason;
4463 const char *wake_str;
4464
4465 /* if no wake event, nothing to print */
4466 if (!wus)
4467 return;
4468
4469 if (wus & PFPM_WUS_LNKC_M)
4470 wake_str = "Link\n";
4471 else if (wus & PFPM_WUS_MAG_M)
4472 wake_str = "Magic Packet\n";
4473 else if (wus & PFPM_WUS_MNG_M)
4474 wake_str = "Management\n";
4475 else if (wus & PFPM_WUS_FW_RST_WK_M)
4476 wake_str = "Firmware Reset\n";
4477 else
4478 wake_str = "Unknown\n";
4479
4480 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4481}
4482
4483/**
4484 * ice_pf_fwlog_update_module - update 1 module
4485 * @pf: pointer to the PF struct
4486 * @log_level: log_level to use for the @module
4487 * @module: module to update
4488 */
4489void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module)
4490{
4491 struct ice_hw *hw = &pf->hw;
4492
4493 hw->fwlog_cfg.module_entries[module].log_level = log_level;
4494}
4495
4496/**
4497 * ice_register_netdev - register netdev
4498 * @vsi: pointer to the VSI struct
4499 */
4500static int ice_register_netdev(struct ice_vsi *vsi)
4501{
4502 int err;
4503
4504 if (!vsi || !vsi->netdev)
4505 return -EIO;
4506
4507 err = register_netdev(vsi->netdev);
4508 if (err)
4509 return err;
4510
4511 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4512 netif_carrier_off(vsi->netdev);
4513 netif_tx_stop_all_queues(vsi->netdev);
4514
4515 return 0;
4516}
4517
4518static void ice_unregister_netdev(struct ice_vsi *vsi)
4519{
4520 if (!vsi || !vsi->netdev)
4521 return;
4522
4523 unregister_netdev(vsi->netdev);
4524 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4525}
4526
4527/**
4528 * ice_cfg_netdev - Allocate, configure and register a netdev
4529 * @vsi: the VSI associated with the new netdev
4530 *
4531 * Returns 0 on success, negative value on failure
4532 */
4533static int ice_cfg_netdev(struct ice_vsi *vsi)
4534{
4535 struct ice_netdev_priv *np;
4536 struct net_device *netdev;
4537 u8 mac_addr[ETH_ALEN];
4538
4539 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4540 vsi->alloc_rxq);
4541 if (!netdev)
4542 return -ENOMEM;
4543
4544 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4545 vsi->netdev = netdev;
4546 np = netdev_priv(netdev);
4547 np->vsi = vsi;
4548
4549 ice_set_netdev_features(netdev);
4550 ice_set_ops(vsi);
4551
4552 if (vsi->type == ICE_VSI_PF) {
4553 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4554 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4555 eth_hw_addr_set(netdev, mac_addr);
4556 }
4557
4558 netdev->priv_flags |= IFF_UNICAST_FLT;
4559
4560 /* Setup netdev TC information */
4561 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4562
4563 netdev->max_mtu = ICE_MAX_MTU;
4564
4565 return 0;
4566}
4567
4568static void ice_decfg_netdev(struct ice_vsi *vsi)
4569{
4570 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4571 free_netdev(vsi->netdev);
4572 vsi->netdev = NULL;
4573}
4574
4575static int ice_start_eth(struct ice_vsi *vsi)
4576{
4577 int err;
4578
4579 err = ice_init_mac_fltr(vsi->back);
4580 if (err)
4581 return err;
4582
4583 err = ice_vsi_open(vsi);
4584 if (err)
4585 ice_fltr_remove_all(vsi);
4586
4587 return err;
4588}
4589
4590static void ice_stop_eth(struct ice_vsi *vsi)
4591{
4592 ice_fltr_remove_all(vsi);
4593 ice_vsi_close(vsi);
4594}
4595
4596static int ice_init_eth(struct ice_pf *pf)
4597{
4598 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4599 int err;
4600
4601 if (!vsi)
4602 return -EINVAL;
4603
4604 /* init channel list */
4605 INIT_LIST_HEAD(&vsi->ch_list);
4606
4607 err = ice_cfg_netdev(vsi);
4608 if (err)
4609 return err;
4610 /* Setup DCB netlink interface */
4611 ice_dcbnl_setup(vsi);
4612
4613 err = ice_init_mac_fltr(pf);
4614 if (err)
4615 goto err_init_mac_fltr;
4616
4617 err = ice_devlink_create_pf_port(pf);
4618 if (err)
4619 goto err_devlink_create_pf_port;
4620
4621 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
4622
4623 err = ice_register_netdev(vsi);
4624 if (err)
4625 goto err_register_netdev;
4626
4627 err = ice_tc_indir_block_register(vsi);
4628 if (err)
4629 goto err_tc_indir_block_register;
4630
4631 ice_napi_add(vsi);
4632
4633 return 0;
4634
4635err_tc_indir_block_register:
4636 ice_unregister_netdev(vsi);
4637err_register_netdev:
4638 ice_devlink_destroy_pf_port(pf);
4639err_devlink_create_pf_port:
4640err_init_mac_fltr:
4641 ice_decfg_netdev(vsi);
4642 return err;
4643}
4644
4645static void ice_deinit_eth(struct ice_pf *pf)
4646{
4647 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4648
4649 if (!vsi)
4650 return;
4651
4652 ice_vsi_close(vsi);
4653 ice_unregister_netdev(vsi);
4654 ice_devlink_destroy_pf_port(pf);
4655 ice_tc_indir_block_unregister(vsi);
4656 ice_decfg_netdev(vsi);
4657}
4658
4659/**
4660 * ice_wait_for_fw - wait for full FW readiness
4661 * @hw: pointer to the hardware structure
4662 * @timeout: milliseconds that can elapse before timing out
4663 */
4664static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
4665{
4666 int fw_loading;
4667 u32 elapsed = 0;
4668
4669 while (elapsed <= timeout) {
4670 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
4671
4672 /* firmware was not yet loaded, we have to wait more */
4673 if (fw_loading) {
4674 elapsed += 100;
4675 msleep(100);
4676 continue;
4677 }
4678 return 0;
4679 }
4680
4681 return -ETIMEDOUT;
4682}
4683
4684static int ice_init_dev(struct ice_pf *pf)
4685{
4686 struct device *dev = ice_pf_to_dev(pf);
4687 struct ice_hw *hw = &pf->hw;
4688 int err;
4689
4690 err = ice_init_hw(hw);
4691 if (err) {
4692 dev_err(dev, "ice_init_hw failed: %d\n", err);
4693 return err;
4694 }
4695
4696 /* Some cards require longer initialization times
4697 * due to necessity of loading FW from an external source.
4698 * This can take even half a minute.
4699 */
4700 if (ice_is_pf_c827(hw)) {
4701 err = ice_wait_for_fw(hw, 30000);
4702 if (err) {
4703 dev_err(dev, "ice_wait_for_fw timed out");
4704 return err;
4705 }
4706 }
4707
4708 ice_init_feature_support(pf);
4709
4710 ice_request_fw(pf);
4711
4712 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4713 * set in pf->state, which will cause ice_is_safe_mode to return
4714 * true
4715 */
4716 if (ice_is_safe_mode(pf)) {
4717 /* we already got function/device capabilities but these don't
4718 * reflect what the driver needs to do in safe mode. Instead of
4719 * adding conditional logic everywhere to ignore these
4720 * device/function capabilities, override them.
4721 */
4722 ice_set_safe_mode_caps(hw);
4723 }
4724
4725 err = ice_init_pf(pf);
4726 if (err) {
4727 dev_err(dev, "ice_init_pf failed: %d\n", err);
4728 goto err_init_pf;
4729 }
4730
4731 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4732 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4733 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4734 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4735 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4736 pf->hw.udp_tunnel_nic.tables[0].n_entries =
4737 pf->hw.tnl.valid_count[TNL_VXLAN];
4738 pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4739 UDP_TUNNEL_TYPE_VXLAN;
4740 }
4741 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4742 pf->hw.udp_tunnel_nic.tables[1].n_entries =
4743 pf->hw.tnl.valid_count[TNL_GENEVE];
4744 pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4745 UDP_TUNNEL_TYPE_GENEVE;
4746 }
4747
4748 err = ice_init_interrupt_scheme(pf);
4749 if (err) {
4750 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4751 err = -EIO;
4752 goto err_init_interrupt_scheme;
4753 }
4754
4755 /* In case of MSIX we are going to setup the misc vector right here
4756 * to handle admin queue events etc. In case of legacy and MSI
4757 * the misc functionality and queue processing is combined in
4758 * the same vector and that gets setup at open.
4759 */
4760 err = ice_req_irq_msix_misc(pf);
4761 if (err) {
4762 dev_err(dev, "setup of misc vector failed: %d\n", err);
4763 goto err_req_irq_msix_misc;
4764 }
4765
4766 return 0;
4767
4768err_req_irq_msix_misc:
4769 ice_clear_interrupt_scheme(pf);
4770err_init_interrupt_scheme:
4771 ice_deinit_pf(pf);
4772err_init_pf:
4773 ice_deinit_hw(hw);
4774 return err;
4775}
4776
4777static void ice_deinit_dev(struct ice_pf *pf)
4778{
4779 ice_free_irq_msix_misc(pf);
4780 ice_deinit_pf(pf);
4781 ice_deinit_hw(&pf->hw);
4782
4783 /* Service task is already stopped, so call reset directly. */
4784 ice_reset(&pf->hw, ICE_RESET_PFR);
4785 pci_wait_for_pending_transaction(pf->pdev);
4786 ice_clear_interrupt_scheme(pf);
4787}
4788
4789static void ice_init_features(struct ice_pf *pf)
4790{
4791 struct device *dev = ice_pf_to_dev(pf);
4792
4793 if (ice_is_safe_mode(pf))
4794 return;
4795
4796 /* initialize DDP driven features */
4797 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4798 ice_ptp_init(pf);
4799
4800 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4801 ice_gnss_init(pf);
4802
4803 if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4804 ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4805 ice_dpll_init(pf);
4806
4807 /* Note: Flow director init failure is non-fatal to load */
4808 if (ice_init_fdir(pf))
4809 dev_err(dev, "could not initialize flow director\n");
4810
4811 /* Note: DCB init failure is non-fatal to load */
4812 if (ice_init_pf_dcb(pf, false)) {
4813 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4814 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4815 } else {
4816 ice_cfg_lldp_mib_change(&pf->hw, true);
4817 }
4818
4819 if (ice_init_lag(pf))
4820 dev_warn(dev, "Failed to init link aggregation support\n");
4821
4822 ice_hwmon_init(pf);
4823}
4824
4825static void ice_deinit_features(struct ice_pf *pf)
4826{
4827 if (ice_is_safe_mode(pf))
4828 return;
4829
4830 ice_deinit_lag(pf);
4831 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4832 ice_cfg_lldp_mib_change(&pf->hw, false);
4833 ice_deinit_fdir(pf);
4834 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4835 ice_gnss_exit(pf);
4836 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4837 ice_ptp_release(pf);
4838 if (test_bit(ICE_FLAG_DPLL, pf->flags))
4839 ice_dpll_deinit(pf);
4840 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4841 xa_destroy(&pf->eswitch.reprs);
4842}
4843
4844static void ice_init_wakeup(struct ice_pf *pf)
4845{
4846 /* Save wakeup reason register for later use */
4847 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4848
4849 /* check for a power management event */
4850 ice_print_wake_reason(pf);
4851
4852 /* clear wake status, all bits */
4853 wr32(&pf->hw, PFPM_WUS, U32_MAX);
4854
4855 /* Disable WoL at init, wait for user to enable */
4856 device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4857}
4858
4859static int ice_init_link(struct ice_pf *pf)
4860{
4861 struct device *dev = ice_pf_to_dev(pf);
4862 int err;
4863
4864 err = ice_init_link_events(pf->hw.port_info);
4865 if (err) {
4866 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4867 return err;
4868 }
4869
4870 /* not a fatal error if this fails */
4871 err = ice_init_nvm_phy_type(pf->hw.port_info);
4872 if (err)
4873 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4874
4875 /* not a fatal error if this fails */
4876 err = ice_update_link_info(pf->hw.port_info);
4877 if (err)
4878 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4879
4880 ice_init_link_dflt_override(pf->hw.port_info);
4881
4882 ice_check_link_cfg_err(pf,
4883 pf->hw.port_info->phy.link_info.link_cfg_err);
4884
4885 /* if media available, initialize PHY settings */
4886 if (pf->hw.port_info->phy.link_info.link_info &
4887 ICE_AQ_MEDIA_AVAILABLE) {
4888 /* not a fatal error if this fails */
4889 err = ice_init_phy_user_cfg(pf->hw.port_info);
4890 if (err)
4891 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4892
4893 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4894 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4895
4896 if (vsi)
4897 ice_configure_phy(vsi);
4898 }
4899 } else {
4900 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4901 }
4902
4903 return err;
4904}
4905
4906static int ice_init_pf_sw(struct ice_pf *pf)
4907{
4908 bool dvm = ice_is_dvm_ena(&pf->hw);
4909 struct ice_vsi *vsi;
4910 int err;
4911
4912 /* create switch struct for the switch element created by FW on boot */
4913 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4914 if (!pf->first_sw)
4915 return -ENOMEM;
4916
4917 if (pf->hw.evb_veb)
4918 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4919 else
4920 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4921
4922 pf->first_sw->pf = pf;
4923
4924 /* record the sw_id available for later use */
4925 pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4926
4927 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4928 if (err)
4929 goto err_aq_set_port_params;
4930
4931 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4932 if (!vsi) {
4933 err = -ENOMEM;
4934 goto err_pf_vsi_setup;
4935 }
4936
4937 return 0;
4938
4939err_pf_vsi_setup:
4940err_aq_set_port_params:
4941 kfree(pf->first_sw);
4942 return err;
4943}
4944
4945static void ice_deinit_pf_sw(struct ice_pf *pf)
4946{
4947 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4948
4949 if (!vsi)
4950 return;
4951
4952 ice_vsi_release(vsi);
4953 kfree(pf->first_sw);
4954}
4955
4956static int ice_alloc_vsis(struct ice_pf *pf)
4957{
4958 struct device *dev = ice_pf_to_dev(pf);
4959
4960 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
4961 if (!pf->num_alloc_vsi)
4962 return -EIO;
4963
4964 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4965 dev_warn(dev,
4966 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4967 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4968 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4969 }
4970
4971 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4972 GFP_KERNEL);
4973 if (!pf->vsi)
4974 return -ENOMEM;
4975
4976 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4977 sizeof(*pf->vsi_stats), GFP_KERNEL);
4978 if (!pf->vsi_stats) {
4979 devm_kfree(dev, pf->vsi);
4980 return -ENOMEM;
4981 }
4982
4983 return 0;
4984}
4985
4986static void ice_dealloc_vsis(struct ice_pf *pf)
4987{
4988 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
4989 pf->vsi_stats = NULL;
4990
4991 pf->num_alloc_vsi = 0;
4992 devm_kfree(ice_pf_to_dev(pf), pf->vsi);
4993 pf->vsi = NULL;
4994}
4995
4996static int ice_init_devlink(struct ice_pf *pf)
4997{
4998 int err;
4999
5000 err = ice_devlink_register_params(pf);
5001 if (err)
5002 return err;
5003
5004 ice_devlink_init_regions(pf);
5005 ice_devlink_register(pf);
5006
5007 return 0;
5008}
5009
5010static void ice_deinit_devlink(struct ice_pf *pf)
5011{
5012 ice_devlink_unregister(pf);
5013 ice_devlink_destroy_regions(pf);
5014 ice_devlink_unregister_params(pf);
5015}
5016
5017static int ice_init(struct ice_pf *pf)
5018{
5019 int err;
5020
5021 err = ice_init_dev(pf);
5022 if (err)
5023 return err;
5024
5025 err = ice_alloc_vsis(pf);
5026 if (err)
5027 goto err_alloc_vsis;
5028
5029 err = ice_init_pf_sw(pf);
5030 if (err)
5031 goto err_init_pf_sw;
5032
5033 ice_init_wakeup(pf);
5034
5035 err = ice_init_link(pf);
5036 if (err)
5037 goto err_init_link;
5038
5039 err = ice_send_version(pf);
5040 if (err)
5041 goto err_init_link;
5042
5043 ice_verify_cacheline_size(pf);
5044
5045 if (ice_is_safe_mode(pf))
5046 ice_set_safe_mode_vlan_cfg(pf);
5047 else
5048 /* print PCI link speed and width */
5049 pcie_print_link_status(pf->pdev);
5050
5051 /* ready to go, so clear down state bit */
5052 clear_bit(ICE_DOWN, pf->state);
5053 clear_bit(ICE_SERVICE_DIS, pf->state);
5054
5055 /* since everything is good, start the service timer */
5056 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5057
5058 return 0;
5059
5060err_init_link:
5061 ice_deinit_pf_sw(pf);
5062err_init_pf_sw:
5063 ice_dealloc_vsis(pf);
5064err_alloc_vsis:
5065 ice_deinit_dev(pf);
5066 return err;
5067}
5068
5069static void ice_deinit(struct ice_pf *pf)
5070{
5071 set_bit(ICE_SERVICE_DIS, pf->state);
5072 set_bit(ICE_DOWN, pf->state);
5073
5074 ice_deinit_pf_sw(pf);
5075 ice_dealloc_vsis(pf);
5076 ice_deinit_dev(pf);
5077}
5078
5079/**
5080 * ice_load - load pf by init hw and starting VSI
5081 * @pf: pointer to the pf instance
5082 */
5083int ice_load(struct ice_pf *pf)
5084{
5085 struct ice_vsi_cfg_params params = {};
5086 struct ice_vsi *vsi;
5087 int err;
5088
5089 err = ice_init_dev(pf);
5090 if (err)
5091 return err;
5092
5093 vsi = ice_get_main_vsi(pf);
5094
5095 params = ice_vsi_to_params(vsi);
5096 params.flags = ICE_VSI_FLAG_INIT;
5097
5098 rtnl_lock();
5099 err = ice_vsi_cfg(vsi, ¶ms);
5100 if (err)
5101 goto err_vsi_cfg;
5102
5103 err = ice_start_eth(ice_get_main_vsi(pf));
5104 if (err)
5105 goto err_start_eth;
5106 rtnl_unlock();
5107
5108 err = ice_init_rdma(pf);
5109 if (err)
5110 goto err_init_rdma;
5111
5112 ice_init_features(pf);
5113 ice_service_task_restart(pf);
5114
5115 clear_bit(ICE_DOWN, pf->state);
5116
5117 return 0;
5118
5119err_init_rdma:
5120 ice_vsi_close(ice_get_main_vsi(pf));
5121 rtnl_lock();
5122err_start_eth:
5123 ice_vsi_decfg(ice_get_main_vsi(pf));
5124err_vsi_cfg:
5125 rtnl_unlock();
5126 ice_deinit_dev(pf);
5127 return err;
5128}
5129
5130/**
5131 * ice_unload - unload pf by stopping VSI and deinit hw
5132 * @pf: pointer to the pf instance
5133 */
5134void ice_unload(struct ice_pf *pf)
5135{
5136 ice_deinit_features(pf);
5137 ice_deinit_rdma(pf);
5138 rtnl_lock();
5139 ice_stop_eth(ice_get_main_vsi(pf));
5140 ice_vsi_decfg(ice_get_main_vsi(pf));
5141 rtnl_unlock();
5142 ice_deinit_dev(pf);
5143}
5144
5145/**
5146 * ice_probe - Device initialization routine
5147 * @pdev: PCI device information struct
5148 * @ent: entry in ice_pci_tbl
5149 *
5150 * Returns 0 on success, negative on failure
5151 */
5152static int
5153ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5154{
5155 struct device *dev = &pdev->dev;
5156 struct ice_pf *pf;
5157 struct ice_hw *hw;
5158 int err;
5159
5160 if (pdev->is_virtfn) {
5161 dev_err(dev, "can't probe a virtual function\n");
5162 return -EINVAL;
5163 }
5164
5165 /* when under a kdump kernel initiate a reset before enabling the
5166 * device in order to clear out any pending DMA transactions. These
5167 * transactions can cause some systems to machine check when doing
5168 * the pcim_enable_device() below.
5169 */
5170 if (is_kdump_kernel()) {
5171 pci_save_state(pdev);
5172 pci_clear_master(pdev);
5173 err = pcie_flr(pdev);
5174 if (err)
5175 return err;
5176 pci_restore_state(pdev);
5177 }
5178
5179 /* this driver uses devres, see
5180 * Documentation/driver-api/driver-model/devres.rst
5181 */
5182 err = pcim_enable_device(pdev);
5183 if (err)
5184 return err;
5185
5186 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5187 if (err) {
5188 dev_err(dev, "BAR0 I/O map error %d\n", err);
5189 return err;
5190 }
5191
5192 pf = ice_allocate_pf(dev);
5193 if (!pf)
5194 return -ENOMEM;
5195
5196 /* initialize Auxiliary index to invalid value */
5197 pf->aux_idx = -1;
5198
5199 /* set up for high or low DMA */
5200 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5201 if (err) {
5202 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5203 return err;
5204 }
5205
5206 pci_set_master(pdev);
5207
5208 pf->pdev = pdev;
5209 pci_set_drvdata(pdev, pf);
5210 set_bit(ICE_DOWN, pf->state);
5211 /* Disable service task until DOWN bit is cleared */
5212 set_bit(ICE_SERVICE_DIS, pf->state);
5213
5214 hw = &pf->hw;
5215 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5216 pci_save_state(pdev);
5217
5218 hw->back = pf;
5219 hw->port_info = NULL;
5220 hw->vendor_id = pdev->vendor;
5221 hw->device_id = pdev->device;
5222 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5223 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5224 hw->subsystem_device_id = pdev->subsystem_device;
5225 hw->bus.device = PCI_SLOT(pdev->devfn);
5226 hw->bus.func = PCI_FUNC(pdev->devfn);
5227 ice_set_ctrlq_len(hw);
5228
5229 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5230
5231#ifndef CONFIG_DYNAMIC_DEBUG
5232 if (debug < -1)
5233 hw->debug_mask = debug;
5234#endif
5235
5236 err = ice_init(pf);
5237 if (err)
5238 goto err_init;
5239
5240 err = ice_init_eth(pf);
5241 if (err)
5242 goto err_init_eth;
5243
5244 err = ice_init_rdma(pf);
5245 if (err)
5246 goto err_init_rdma;
5247
5248 err = ice_init_devlink(pf);
5249 if (err)
5250 goto err_init_devlink;
5251
5252 ice_init_features(pf);
5253
5254 return 0;
5255
5256err_init_devlink:
5257 ice_deinit_rdma(pf);
5258err_init_rdma:
5259 ice_deinit_eth(pf);
5260err_init_eth:
5261 ice_deinit(pf);
5262err_init:
5263 pci_disable_device(pdev);
5264 return err;
5265}
5266
5267/**
5268 * ice_set_wake - enable or disable Wake on LAN
5269 * @pf: pointer to the PF struct
5270 *
5271 * Simple helper for WoL control
5272 */
5273static void ice_set_wake(struct ice_pf *pf)
5274{
5275 struct ice_hw *hw = &pf->hw;
5276 bool wol = pf->wol_ena;
5277
5278 /* clear wake state, otherwise new wake events won't fire */
5279 wr32(hw, PFPM_WUS, U32_MAX);
5280
5281 /* enable / disable APM wake up, no RMW needed */
5282 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5283
5284 /* set magic packet filter enabled */
5285 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5286}
5287
5288/**
5289 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5290 * @pf: pointer to the PF struct
5291 *
5292 * Issue firmware command to enable multicast magic wake, making
5293 * sure that any locally administered address (LAA) is used for
5294 * wake, and that PF reset doesn't undo the LAA.
5295 */
5296static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5297{
5298 struct device *dev = ice_pf_to_dev(pf);
5299 struct ice_hw *hw = &pf->hw;
5300 u8 mac_addr[ETH_ALEN];
5301 struct ice_vsi *vsi;
5302 int status;
5303 u8 flags;
5304
5305 if (!pf->wol_ena)
5306 return;
5307
5308 vsi = ice_get_main_vsi(pf);
5309 if (!vsi)
5310 return;
5311
5312 /* Get current MAC address in case it's an LAA */
5313 if (vsi->netdev)
5314 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5315 else
5316 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5317
5318 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5319 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5320 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5321
5322 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5323 if (status)
5324 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5325 status, ice_aq_str(hw->adminq.sq_last_status));
5326}
5327
5328/**
5329 * ice_remove - Device removal routine
5330 * @pdev: PCI device information struct
5331 */
5332static void ice_remove(struct pci_dev *pdev)
5333{
5334 struct ice_pf *pf = pci_get_drvdata(pdev);
5335 int i;
5336
5337 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5338 if (!ice_is_reset_in_progress(pf->state))
5339 break;
5340 msleep(100);
5341 }
5342
5343 ice_debugfs_exit();
5344
5345 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5346 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5347 ice_free_vfs(pf);
5348 }
5349
5350 ice_hwmon_exit(pf);
5351
5352 ice_service_task_stop(pf);
5353 ice_aq_cancel_waiting_tasks(pf);
5354 set_bit(ICE_DOWN, pf->state);
5355
5356 if (!ice_is_safe_mode(pf))
5357 ice_remove_arfs(pf);
5358 ice_deinit_features(pf);
5359 ice_deinit_devlink(pf);
5360 ice_deinit_rdma(pf);
5361 ice_deinit_eth(pf);
5362 ice_deinit(pf);
5363
5364 ice_vsi_release_all(pf);
5365
5366 ice_setup_mc_magic_wake(pf);
5367 ice_set_wake(pf);
5368
5369 pci_disable_device(pdev);
5370}
5371
5372/**
5373 * ice_shutdown - PCI callback for shutting down device
5374 * @pdev: PCI device information struct
5375 */
5376static void ice_shutdown(struct pci_dev *pdev)
5377{
5378 struct ice_pf *pf = pci_get_drvdata(pdev);
5379
5380 ice_remove(pdev);
5381
5382 if (system_state == SYSTEM_POWER_OFF) {
5383 pci_wake_from_d3(pdev, pf->wol_ena);
5384 pci_set_power_state(pdev, PCI_D3hot);
5385 }
5386}
5387
5388#ifdef CONFIG_PM
5389/**
5390 * ice_prepare_for_shutdown - prep for PCI shutdown
5391 * @pf: board private structure
5392 *
5393 * Inform or close all dependent features in prep for PCI device shutdown
5394 */
5395static void ice_prepare_for_shutdown(struct ice_pf *pf)
5396{
5397 struct ice_hw *hw = &pf->hw;
5398 u32 v;
5399
5400 /* Notify VFs of impending reset */
5401 if (ice_check_sq_alive(hw, &hw->mailboxq))
5402 ice_vc_notify_reset(pf);
5403
5404 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5405
5406 /* disable the VSIs and their queues that are not already DOWN */
5407 ice_pf_dis_all_vsi(pf, false);
5408
5409 ice_for_each_vsi(pf, v)
5410 if (pf->vsi[v])
5411 pf->vsi[v]->vsi_num = 0;
5412
5413 ice_shutdown_all_ctrlq(hw);
5414}
5415
5416/**
5417 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5418 * @pf: board private structure to reinitialize
5419 *
5420 * This routine reinitialize interrupt scheme that was cleared during
5421 * power management suspend callback.
5422 *
5423 * This should be called during resume routine to re-allocate the q_vectors
5424 * and reacquire interrupts.
5425 */
5426static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5427{
5428 struct device *dev = ice_pf_to_dev(pf);
5429 int ret, v;
5430
5431 /* Since we clear MSIX flag during suspend, we need to
5432 * set it back during resume...
5433 */
5434
5435 ret = ice_init_interrupt_scheme(pf);
5436 if (ret) {
5437 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5438 return ret;
5439 }
5440
5441 /* Remap vectors and rings, after successful re-init interrupts */
5442 ice_for_each_vsi(pf, v) {
5443 if (!pf->vsi[v])
5444 continue;
5445
5446 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5447 if (ret)
5448 goto err_reinit;
5449 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5450 ice_vsi_set_napi_queues(pf->vsi[v]);
5451 }
5452
5453 ret = ice_req_irq_msix_misc(pf);
5454 if (ret) {
5455 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5456 ret);
5457 goto err_reinit;
5458 }
5459
5460 return 0;
5461
5462err_reinit:
5463 while (v--)
5464 if (pf->vsi[v])
5465 ice_vsi_free_q_vectors(pf->vsi[v]);
5466
5467 return ret;
5468}
5469
5470/**
5471 * ice_suspend
5472 * @dev: generic device information structure
5473 *
5474 * Power Management callback to quiesce the device and prepare
5475 * for D3 transition.
5476 */
5477static int __maybe_unused ice_suspend(struct device *dev)
5478{
5479 struct pci_dev *pdev = to_pci_dev(dev);
5480 struct ice_pf *pf;
5481 int disabled, v;
5482
5483 pf = pci_get_drvdata(pdev);
5484
5485 if (!ice_pf_state_is_nominal(pf)) {
5486 dev_err(dev, "Device is not ready, no need to suspend it\n");
5487 return -EBUSY;
5488 }
5489
5490 /* Stop watchdog tasks until resume completion.
5491 * Even though it is most likely that the service task is
5492 * disabled if the device is suspended or down, the service task's
5493 * state is controlled by a different state bit, and we should
5494 * store and honor whatever state that bit is in at this point.
5495 */
5496 disabled = ice_service_task_stop(pf);
5497
5498 ice_unplug_aux_dev(pf);
5499
5500 /* Already suspended?, then there is nothing to do */
5501 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5502 if (!disabled)
5503 ice_service_task_restart(pf);
5504 return 0;
5505 }
5506
5507 if (test_bit(ICE_DOWN, pf->state) ||
5508 ice_is_reset_in_progress(pf->state)) {
5509 dev_err(dev, "can't suspend device in reset or already down\n");
5510 if (!disabled)
5511 ice_service_task_restart(pf);
5512 return 0;
5513 }
5514
5515 ice_setup_mc_magic_wake(pf);
5516
5517 ice_prepare_for_shutdown(pf);
5518
5519 ice_set_wake(pf);
5520
5521 /* Free vectors, clear the interrupt scheme and release IRQs
5522 * for proper hibernation, especially with large number of CPUs.
5523 * Otherwise hibernation might fail when mapping all the vectors back
5524 * to CPU0.
5525 */
5526 ice_free_irq_msix_misc(pf);
5527 ice_for_each_vsi(pf, v) {
5528 if (!pf->vsi[v])
5529 continue;
5530 ice_vsi_free_q_vectors(pf->vsi[v]);
5531 }
5532 ice_clear_interrupt_scheme(pf);
5533
5534 pci_save_state(pdev);
5535 pci_wake_from_d3(pdev, pf->wol_ena);
5536 pci_set_power_state(pdev, PCI_D3hot);
5537 return 0;
5538}
5539
5540/**
5541 * ice_resume - PM callback for waking up from D3
5542 * @dev: generic device information structure
5543 */
5544static int __maybe_unused ice_resume(struct device *dev)
5545{
5546 struct pci_dev *pdev = to_pci_dev(dev);
5547 enum ice_reset_req reset_type;
5548 struct ice_pf *pf;
5549 struct ice_hw *hw;
5550 int ret;
5551
5552 pci_set_power_state(pdev, PCI_D0);
5553 pci_restore_state(pdev);
5554 pci_save_state(pdev);
5555
5556 if (!pci_device_is_present(pdev))
5557 return -ENODEV;
5558
5559 ret = pci_enable_device_mem(pdev);
5560 if (ret) {
5561 dev_err(dev, "Cannot enable device after suspend\n");
5562 return ret;
5563 }
5564
5565 pf = pci_get_drvdata(pdev);
5566 hw = &pf->hw;
5567
5568 pf->wakeup_reason = rd32(hw, PFPM_WUS);
5569 ice_print_wake_reason(pf);
5570
5571 /* We cleared the interrupt scheme when we suspended, so we need to
5572 * restore it now to resume device functionality.
5573 */
5574 ret = ice_reinit_interrupt_scheme(pf);
5575 if (ret)
5576 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5577
5578 clear_bit(ICE_DOWN, pf->state);
5579 /* Now perform PF reset and rebuild */
5580 reset_type = ICE_RESET_PFR;
5581 /* re-enable service task for reset, but allow reset to schedule it */
5582 clear_bit(ICE_SERVICE_DIS, pf->state);
5583
5584 if (ice_schedule_reset(pf, reset_type))
5585 dev_err(dev, "Reset during resume failed.\n");
5586
5587 clear_bit(ICE_SUSPENDED, pf->state);
5588 ice_service_task_restart(pf);
5589
5590 /* Restart the service task */
5591 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5592
5593 return 0;
5594}
5595#endif /* CONFIG_PM */
5596
5597/**
5598 * ice_pci_err_detected - warning that PCI error has been detected
5599 * @pdev: PCI device information struct
5600 * @err: the type of PCI error
5601 *
5602 * Called to warn that something happened on the PCI bus and the error handling
5603 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
5604 */
5605static pci_ers_result_t
5606ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5607{
5608 struct ice_pf *pf = pci_get_drvdata(pdev);
5609
5610 if (!pf) {
5611 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5612 __func__, err);
5613 return PCI_ERS_RESULT_DISCONNECT;
5614 }
5615
5616 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5617 ice_service_task_stop(pf);
5618
5619 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5620 set_bit(ICE_PFR_REQ, pf->state);
5621 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5622 }
5623 }
5624
5625 return PCI_ERS_RESULT_NEED_RESET;
5626}
5627
5628/**
5629 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5630 * @pdev: PCI device information struct
5631 *
5632 * Called to determine if the driver can recover from the PCI slot reset by
5633 * using a register read to determine if the device is recoverable.
5634 */
5635static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5636{
5637 struct ice_pf *pf = pci_get_drvdata(pdev);
5638 pci_ers_result_t result;
5639 int err;
5640 u32 reg;
5641
5642 err = pci_enable_device_mem(pdev);
5643 if (err) {
5644 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5645 err);
5646 result = PCI_ERS_RESULT_DISCONNECT;
5647 } else {
5648 pci_set_master(pdev);
5649 pci_restore_state(pdev);
5650 pci_save_state(pdev);
5651 pci_wake_from_d3(pdev, false);
5652
5653 /* Check for life */
5654 reg = rd32(&pf->hw, GLGEN_RTRIG);
5655 if (!reg)
5656 result = PCI_ERS_RESULT_RECOVERED;
5657 else
5658 result = PCI_ERS_RESULT_DISCONNECT;
5659 }
5660
5661 return result;
5662}
5663
5664/**
5665 * ice_pci_err_resume - restart operations after PCI error recovery
5666 * @pdev: PCI device information struct
5667 *
5668 * Called to allow the driver to bring things back up after PCI error and/or
5669 * reset recovery have finished
5670 */
5671static void ice_pci_err_resume(struct pci_dev *pdev)
5672{
5673 struct ice_pf *pf = pci_get_drvdata(pdev);
5674
5675 if (!pf) {
5676 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5677 __func__);
5678 return;
5679 }
5680
5681 if (test_bit(ICE_SUSPENDED, pf->state)) {
5682 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5683 __func__);
5684 return;
5685 }
5686
5687 ice_restore_all_vfs_msi_state(pf);
5688
5689 ice_do_reset(pf, ICE_RESET_PFR);
5690 ice_service_task_restart(pf);
5691 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5692}
5693
5694/**
5695 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5696 * @pdev: PCI device information struct
5697 */
5698static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5699{
5700 struct ice_pf *pf = pci_get_drvdata(pdev);
5701
5702 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5703 ice_service_task_stop(pf);
5704
5705 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5706 set_bit(ICE_PFR_REQ, pf->state);
5707 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5708 }
5709 }
5710}
5711
5712/**
5713 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5714 * @pdev: PCI device information struct
5715 */
5716static void ice_pci_err_reset_done(struct pci_dev *pdev)
5717{
5718 ice_pci_err_resume(pdev);
5719}
5720
5721/* ice_pci_tbl - PCI Device ID Table
5722 *
5723 * Wildcard entries (PCI_ANY_ID) should come last
5724 * Last entry must be all 0s
5725 *
5726 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5727 * Class, Class Mask, private data (not used) }
5728 */
5729static const struct pci_device_id ice_pci_tbl[] = {
5730 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5731 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5732 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5733 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5734 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5735 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5736 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5737 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5738 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5739 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5740 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5741 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5742 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5743 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5744 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5745 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5746 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5747 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5748 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5749 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5750 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5751 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5752 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5753 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5754 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5755 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5756 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_BACKPLANE) },
5757 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_QSFP56) },
5758 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP) },
5759 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP_DD) },
5760 /* required last entry */
5761 {}
5762};
5763MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5764
5765static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5766
5767static const struct pci_error_handlers ice_pci_err_handler = {
5768 .error_detected = ice_pci_err_detected,
5769 .slot_reset = ice_pci_err_slot_reset,
5770 .reset_prepare = ice_pci_err_reset_prepare,
5771 .reset_done = ice_pci_err_reset_done,
5772 .resume = ice_pci_err_resume
5773};
5774
5775static struct pci_driver ice_driver = {
5776 .name = KBUILD_MODNAME,
5777 .id_table = ice_pci_tbl,
5778 .probe = ice_probe,
5779 .remove = ice_remove,
5780#ifdef CONFIG_PM
5781 .driver.pm = &ice_pm_ops,
5782#endif /* CONFIG_PM */
5783 .shutdown = ice_shutdown,
5784 .sriov_configure = ice_sriov_configure,
5785 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5786 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5787 .err_handler = &ice_pci_err_handler
5788};
5789
5790/**
5791 * ice_module_init - Driver registration routine
5792 *
5793 * ice_module_init is the first routine called when the driver is
5794 * loaded. All it does is register with the PCI subsystem.
5795 */
5796static int __init ice_module_init(void)
5797{
5798 int status = -ENOMEM;
5799
5800 pr_info("%s\n", ice_driver_string);
5801 pr_info("%s\n", ice_copyright);
5802
5803 ice_adv_lnk_speed_maps_init();
5804
5805 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5806 if (!ice_wq) {
5807 pr_err("Failed to create workqueue\n");
5808 return status;
5809 }
5810
5811 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5812 if (!ice_lag_wq) {
5813 pr_err("Failed to create LAG workqueue\n");
5814 goto err_dest_wq;
5815 }
5816
5817 ice_debugfs_init();
5818
5819 status = pci_register_driver(&ice_driver);
5820 if (status) {
5821 pr_err("failed to register PCI driver, err %d\n", status);
5822 goto err_dest_lag_wq;
5823 }
5824
5825 return 0;
5826
5827err_dest_lag_wq:
5828 destroy_workqueue(ice_lag_wq);
5829 ice_debugfs_exit();
5830err_dest_wq:
5831 destroy_workqueue(ice_wq);
5832 return status;
5833}
5834module_init(ice_module_init);
5835
5836/**
5837 * ice_module_exit - Driver exit cleanup routine
5838 *
5839 * ice_module_exit is called just before the driver is removed
5840 * from memory.
5841 */
5842static void __exit ice_module_exit(void)
5843{
5844 pci_unregister_driver(&ice_driver);
5845 destroy_workqueue(ice_wq);
5846 destroy_workqueue(ice_lag_wq);
5847 pr_info("module unloaded\n");
5848}
5849module_exit(ice_module_exit);
5850
5851/**
5852 * ice_set_mac_address - NDO callback to set MAC address
5853 * @netdev: network interface device structure
5854 * @pi: pointer to an address structure
5855 *
5856 * Returns 0 on success, negative on failure
5857 */
5858static int ice_set_mac_address(struct net_device *netdev, void *pi)
5859{
5860 struct ice_netdev_priv *np = netdev_priv(netdev);
5861 struct ice_vsi *vsi = np->vsi;
5862 struct ice_pf *pf = vsi->back;
5863 struct ice_hw *hw = &pf->hw;
5864 struct sockaddr *addr = pi;
5865 u8 old_mac[ETH_ALEN];
5866 u8 flags = 0;
5867 u8 *mac;
5868 int err;
5869
5870 mac = (u8 *)addr->sa_data;
5871
5872 if (!is_valid_ether_addr(mac))
5873 return -EADDRNOTAVAIL;
5874
5875 if (test_bit(ICE_DOWN, pf->state) ||
5876 ice_is_reset_in_progress(pf->state)) {
5877 netdev_err(netdev, "can't set mac %pM. device not ready\n",
5878 mac);
5879 return -EBUSY;
5880 }
5881
5882 if (ice_chnl_dmac_fltr_cnt(pf)) {
5883 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5884 mac);
5885 return -EAGAIN;
5886 }
5887
5888 netif_addr_lock_bh(netdev);
5889 ether_addr_copy(old_mac, netdev->dev_addr);
5890 /* change the netdev's MAC address */
5891 eth_hw_addr_set(netdev, mac);
5892 netif_addr_unlock_bh(netdev);
5893
5894 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
5895 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5896 if (err && err != -ENOENT) {
5897 err = -EADDRNOTAVAIL;
5898 goto err_update_filters;
5899 }
5900
5901 /* Add filter for new MAC. If filter exists, return success */
5902 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5903 if (err == -EEXIST) {
5904 /* Although this MAC filter is already present in hardware it's
5905 * possible in some cases (e.g. bonding) that dev_addr was
5906 * modified outside of the driver and needs to be restored back
5907 * to this value.
5908 */
5909 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5910
5911 return 0;
5912 } else if (err) {
5913 /* error if the new filter addition failed */
5914 err = -EADDRNOTAVAIL;
5915 }
5916
5917err_update_filters:
5918 if (err) {
5919 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5920 mac);
5921 netif_addr_lock_bh(netdev);
5922 eth_hw_addr_set(netdev, old_mac);
5923 netif_addr_unlock_bh(netdev);
5924 return err;
5925 }
5926
5927 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5928 netdev->dev_addr);
5929
5930 /* write new MAC address to the firmware */
5931 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5932 err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5933 if (err) {
5934 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5935 mac, err);
5936 }
5937 return 0;
5938}
5939
5940/**
5941 * ice_set_rx_mode - NDO callback to set the netdev filters
5942 * @netdev: network interface device structure
5943 */
5944static void ice_set_rx_mode(struct net_device *netdev)
5945{
5946 struct ice_netdev_priv *np = netdev_priv(netdev);
5947 struct ice_vsi *vsi = np->vsi;
5948
5949 if (!vsi || ice_is_switchdev_running(vsi->back))
5950 return;
5951
5952 /* Set the flags to synchronize filters
5953 * ndo_set_rx_mode may be triggered even without a change in netdev
5954 * flags
5955 */
5956 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5957 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5958 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5959
5960 /* schedule our worker thread which will take care of
5961 * applying the new filter changes
5962 */
5963 ice_service_task_schedule(vsi->back);
5964}
5965
5966/**
5967 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5968 * @netdev: network interface device structure
5969 * @queue_index: Queue ID
5970 * @maxrate: maximum bandwidth in Mbps
5971 */
5972static int
5973ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5974{
5975 struct ice_netdev_priv *np = netdev_priv(netdev);
5976 struct ice_vsi *vsi = np->vsi;
5977 u16 q_handle;
5978 int status;
5979 u8 tc;
5980
5981 /* Validate maxrate requested is within permitted range */
5982 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5983 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5984 maxrate, queue_index);
5985 return -EINVAL;
5986 }
5987
5988 q_handle = vsi->tx_rings[queue_index]->q_handle;
5989 tc = ice_dcb_get_tc(vsi, queue_index);
5990
5991 vsi = ice_locate_vsi_using_queue(vsi, queue_index);
5992 if (!vsi) {
5993 netdev_err(netdev, "Invalid VSI for given queue %d\n",
5994 queue_index);
5995 return -EINVAL;
5996 }
5997
5998 /* Set BW back to default, when user set maxrate to 0 */
5999 if (!maxrate)
6000 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
6001 q_handle, ICE_MAX_BW);
6002 else
6003 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
6004 q_handle, ICE_MAX_BW, maxrate * 1000);
6005 if (status)
6006 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
6007 status);
6008
6009 return status;
6010}
6011
6012/**
6013 * ice_fdb_add - add an entry to the hardware database
6014 * @ndm: the input from the stack
6015 * @tb: pointer to array of nladdr (unused)
6016 * @dev: the net device pointer
6017 * @addr: the MAC address entry being added
6018 * @vid: VLAN ID
6019 * @flags: instructions from stack about fdb operation
6020 * @extack: netlink extended ack
6021 */
6022static int
6023ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
6024 struct net_device *dev, const unsigned char *addr, u16 vid,
6025 u16 flags, struct netlink_ext_ack __always_unused *extack)
6026{
6027 int err;
6028
6029 if (vid) {
6030 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
6031 return -EINVAL;
6032 }
6033 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
6034 netdev_err(dev, "FDB only supports static addresses\n");
6035 return -EINVAL;
6036 }
6037
6038 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
6039 err = dev_uc_add_excl(dev, addr);
6040 else if (is_multicast_ether_addr(addr))
6041 err = dev_mc_add_excl(dev, addr);
6042 else
6043 err = -EINVAL;
6044
6045 /* Only return duplicate errors if NLM_F_EXCL is set */
6046 if (err == -EEXIST && !(flags & NLM_F_EXCL))
6047 err = 0;
6048
6049 return err;
6050}
6051
6052/**
6053 * ice_fdb_del - delete an entry from the hardware database
6054 * @ndm: the input from the stack
6055 * @tb: pointer to array of nladdr (unused)
6056 * @dev: the net device pointer
6057 * @addr: the MAC address entry being added
6058 * @vid: VLAN ID
6059 * @extack: netlink extended ack
6060 */
6061static int
6062ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
6063 struct net_device *dev, const unsigned char *addr,
6064 __always_unused u16 vid, struct netlink_ext_ack *extack)
6065{
6066 int err;
6067
6068 if (ndm->ndm_state & NUD_PERMANENT) {
6069 netdev_err(dev, "FDB only supports static addresses\n");
6070 return -EINVAL;
6071 }
6072
6073 if (is_unicast_ether_addr(addr))
6074 err = dev_uc_del(dev, addr);
6075 else if (is_multicast_ether_addr(addr))
6076 err = dev_mc_del(dev, addr);
6077 else
6078 err = -EINVAL;
6079
6080 return err;
6081}
6082
6083#define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6084 NETIF_F_HW_VLAN_CTAG_TX | \
6085 NETIF_F_HW_VLAN_STAG_RX | \
6086 NETIF_F_HW_VLAN_STAG_TX)
6087
6088#define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6089 NETIF_F_HW_VLAN_STAG_RX)
6090
6091#define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
6092 NETIF_F_HW_VLAN_STAG_FILTER)
6093
6094/**
6095 * ice_fix_features - fix the netdev features flags based on device limitations
6096 * @netdev: ptr to the netdev that flags are being fixed on
6097 * @features: features that need to be checked and possibly fixed
6098 *
6099 * Make sure any fixups are made to features in this callback. This enables the
6100 * driver to not have to check unsupported configurations throughout the driver
6101 * because that's the responsiblity of this callback.
6102 *
6103 * Single VLAN Mode (SVM) Supported Features:
6104 * NETIF_F_HW_VLAN_CTAG_FILTER
6105 * NETIF_F_HW_VLAN_CTAG_RX
6106 * NETIF_F_HW_VLAN_CTAG_TX
6107 *
6108 * Double VLAN Mode (DVM) Supported Features:
6109 * NETIF_F_HW_VLAN_CTAG_FILTER
6110 * NETIF_F_HW_VLAN_CTAG_RX
6111 * NETIF_F_HW_VLAN_CTAG_TX
6112 *
6113 * NETIF_F_HW_VLAN_STAG_FILTER
6114 * NETIF_HW_VLAN_STAG_RX
6115 * NETIF_HW_VLAN_STAG_TX
6116 *
6117 * Features that need fixing:
6118 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6119 * These are mutually exlusive as the VSI context cannot support multiple
6120 * VLAN ethertypes simultaneously for stripping and/or insertion. If this
6121 * is not done, then default to clearing the requested STAG offload
6122 * settings.
6123 *
6124 * All supported filtering has to be enabled or disabled together. For
6125 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6126 * together. If this is not done, then default to VLAN filtering disabled.
6127 * These are mutually exclusive as there is currently no way to
6128 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6129 * prune rules.
6130 */
6131static netdev_features_t
6132ice_fix_features(struct net_device *netdev, netdev_features_t features)
6133{
6134 struct ice_netdev_priv *np = netdev_priv(netdev);
6135 netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6136 bool cur_ctag, cur_stag, req_ctag, req_stag;
6137
6138 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6139 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6140 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6141
6142 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6143 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6144 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6145
6146 if (req_vlan_fltr != cur_vlan_fltr) {
6147 if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6148 if (req_ctag && req_stag) {
6149 features |= NETIF_VLAN_FILTERING_FEATURES;
6150 } else if (!req_ctag && !req_stag) {
6151 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6152 } else if ((!cur_ctag && req_ctag && !cur_stag) ||
6153 (!cur_stag && req_stag && !cur_ctag)) {
6154 features |= NETIF_VLAN_FILTERING_FEATURES;
6155 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6156 } else if ((cur_ctag && !req_ctag && cur_stag) ||
6157 (cur_stag && !req_stag && cur_ctag)) {
6158 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6159 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6160 }
6161 } else {
6162 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6163 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6164
6165 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6166 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6167 }
6168 }
6169
6170 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6171 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6172 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6173 features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6174 NETIF_F_HW_VLAN_STAG_TX);
6175 }
6176
6177 if (!(netdev->features & NETIF_F_RXFCS) &&
6178 (features & NETIF_F_RXFCS) &&
6179 (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6180 !ice_vsi_has_non_zero_vlans(np->vsi)) {
6181 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6182 features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6183 }
6184
6185 return features;
6186}
6187
6188/**
6189 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6190 * @vsi: PF's VSI
6191 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6192 *
6193 * Store current stripped VLAN proto in ring packet context,
6194 * so it can be accessed more efficiently by packet processing code.
6195 */
6196static void
6197ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6198{
6199 u16 i;
6200
6201 ice_for_each_alloc_rxq(vsi, i)
6202 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6203}
6204
6205/**
6206 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6207 * @vsi: PF's VSI
6208 * @features: features used to determine VLAN offload settings
6209 *
6210 * First, determine the vlan_ethertype based on the VLAN offload bits in
6211 * features. Then determine if stripping and insertion should be enabled or
6212 * disabled. Finally enable or disable VLAN stripping and insertion.
6213 */
6214static int
6215ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6216{
6217 bool enable_stripping = true, enable_insertion = true;
6218 struct ice_vsi_vlan_ops *vlan_ops;
6219 int strip_err = 0, insert_err = 0;
6220 u16 vlan_ethertype = 0;
6221
6222 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6223
6224 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6225 vlan_ethertype = ETH_P_8021AD;
6226 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6227 vlan_ethertype = ETH_P_8021Q;
6228
6229 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6230 enable_stripping = false;
6231 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6232 enable_insertion = false;
6233
6234 if (enable_stripping)
6235 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6236 else
6237 strip_err = vlan_ops->dis_stripping(vsi);
6238
6239 if (enable_insertion)
6240 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6241 else
6242 insert_err = vlan_ops->dis_insertion(vsi);
6243
6244 if (strip_err || insert_err)
6245 return -EIO;
6246
6247 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6248 htons(vlan_ethertype) : 0);
6249
6250 return 0;
6251}
6252
6253/**
6254 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6255 * @vsi: PF's VSI
6256 * @features: features used to determine VLAN filtering settings
6257 *
6258 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6259 * features.
6260 */
6261static int
6262ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6263{
6264 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6265 int err = 0;
6266
6267 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6268 * if either bit is set
6269 */
6270 if (features &
6271 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
6272 err = vlan_ops->ena_rx_filtering(vsi);
6273 else
6274 err = vlan_ops->dis_rx_filtering(vsi);
6275
6276 return err;
6277}
6278
6279/**
6280 * ice_set_vlan_features - set VLAN settings based on suggested feature set
6281 * @netdev: ptr to the netdev being adjusted
6282 * @features: the feature set that the stack is suggesting
6283 *
6284 * Only update VLAN settings if the requested_vlan_features are different than
6285 * the current_vlan_features.
6286 */
6287static int
6288ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6289{
6290 netdev_features_t current_vlan_features, requested_vlan_features;
6291 struct ice_netdev_priv *np = netdev_priv(netdev);
6292 struct ice_vsi *vsi = np->vsi;
6293 int err;
6294
6295 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6296 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6297 if (current_vlan_features ^ requested_vlan_features) {
6298 if ((features & NETIF_F_RXFCS) &&
6299 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6300 dev_err(ice_pf_to_dev(vsi->back),
6301 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6302 return -EIO;
6303 }
6304
6305 err = ice_set_vlan_offload_features(vsi, features);
6306 if (err)
6307 return err;
6308 }
6309
6310 current_vlan_features = netdev->features &
6311 NETIF_VLAN_FILTERING_FEATURES;
6312 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6313 if (current_vlan_features ^ requested_vlan_features) {
6314 err = ice_set_vlan_filtering_features(vsi, features);
6315 if (err)
6316 return err;
6317 }
6318
6319 return 0;
6320}
6321
6322/**
6323 * ice_set_loopback - turn on/off loopback mode on underlying PF
6324 * @vsi: ptr to VSI
6325 * @ena: flag to indicate the on/off setting
6326 */
6327static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6328{
6329 bool if_running = netif_running(vsi->netdev);
6330 int ret;
6331
6332 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6333 ret = ice_down(vsi);
6334 if (ret) {
6335 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6336 return ret;
6337 }
6338 }
6339 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6340 if (ret)
6341 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6342 if (if_running)
6343 ret = ice_up(vsi);
6344
6345 return ret;
6346}
6347
6348/**
6349 * ice_set_features - set the netdev feature flags
6350 * @netdev: ptr to the netdev being adjusted
6351 * @features: the feature set that the stack is suggesting
6352 */
6353static int
6354ice_set_features(struct net_device *netdev, netdev_features_t features)
6355{
6356 netdev_features_t changed = netdev->features ^ features;
6357 struct ice_netdev_priv *np = netdev_priv(netdev);
6358 struct ice_vsi *vsi = np->vsi;
6359 struct ice_pf *pf = vsi->back;
6360 int ret = 0;
6361
6362 /* Don't set any netdev advanced features with device in Safe Mode */
6363 if (ice_is_safe_mode(pf)) {
6364 dev_err(ice_pf_to_dev(pf),
6365 "Device is in Safe Mode - not enabling advanced netdev features\n");
6366 return ret;
6367 }
6368
6369 /* Do not change setting during reset */
6370 if (ice_is_reset_in_progress(pf->state)) {
6371 dev_err(ice_pf_to_dev(pf),
6372 "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6373 return -EBUSY;
6374 }
6375
6376 /* Multiple features can be changed in one call so keep features in
6377 * separate if/else statements to guarantee each feature is checked
6378 */
6379 if (changed & NETIF_F_RXHASH)
6380 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6381
6382 ret = ice_set_vlan_features(netdev, features);
6383 if (ret)
6384 return ret;
6385
6386 /* Turn on receive of FCS aka CRC, and after setting this
6387 * flag the packet data will have the 4 byte CRC appended
6388 */
6389 if (changed & NETIF_F_RXFCS) {
6390 if ((features & NETIF_F_RXFCS) &&
6391 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6392 dev_err(ice_pf_to_dev(vsi->back),
6393 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6394 return -EIO;
6395 }
6396
6397 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6398 ret = ice_down_up(vsi);
6399 if (ret)
6400 return ret;
6401 }
6402
6403 if (changed & NETIF_F_NTUPLE) {
6404 bool ena = !!(features & NETIF_F_NTUPLE);
6405
6406 ice_vsi_manage_fdir(vsi, ena);
6407 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6408 }
6409
6410 /* don't turn off hw_tc_offload when ADQ is already enabled */
6411 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6412 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6413 return -EACCES;
6414 }
6415
6416 if (changed & NETIF_F_HW_TC) {
6417 bool ena = !!(features & NETIF_F_HW_TC);
6418
6419 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6420 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6421 }
6422
6423 if (changed & NETIF_F_LOOPBACK)
6424 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6425
6426 return ret;
6427}
6428
6429/**
6430 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6431 * @vsi: VSI to setup VLAN properties for
6432 */
6433static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6434{
6435 int err;
6436
6437 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6438 if (err)
6439 return err;
6440
6441 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6442 if (err)
6443 return err;
6444
6445 return ice_vsi_add_vlan_zero(vsi);
6446}
6447
6448/**
6449 * ice_vsi_cfg_lan - Setup the VSI lan related config
6450 * @vsi: the VSI being configured
6451 *
6452 * Return 0 on success and negative value on error
6453 */
6454int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6455{
6456 int err;
6457
6458 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6459 ice_set_rx_mode(vsi->netdev);
6460
6461 err = ice_vsi_vlan_setup(vsi);
6462 if (err)
6463 return err;
6464 }
6465 ice_vsi_cfg_dcb_rings(vsi);
6466
6467 err = ice_vsi_cfg_lan_txqs(vsi);
6468 if (!err && ice_is_xdp_ena_vsi(vsi))
6469 err = ice_vsi_cfg_xdp_txqs(vsi);
6470 if (!err)
6471 err = ice_vsi_cfg_rxqs(vsi);
6472
6473 return err;
6474}
6475
6476/* THEORY OF MODERATION:
6477 * The ice driver hardware works differently than the hardware that DIMLIB was
6478 * originally made for. ice hardware doesn't have packet count limits that
6479 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6480 * which is hard-coded to a limit of 250,000 ints/second.
6481 * If not using dynamic moderation, the INTRL value can be modified
6482 * by ethtool rx-usecs-high.
6483 */
6484struct ice_dim {
6485 /* the throttle rate for interrupts, basically worst case delay before
6486 * an initial interrupt fires, value is stored in microseconds.
6487 */
6488 u16 itr;
6489};
6490
6491/* Make a different profile for Rx that doesn't allow quite so aggressive
6492 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6493 * second.
6494 */
6495static const struct ice_dim rx_profile[] = {
6496 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6497 {8}, /* 125,000 ints/s */
6498 {16}, /* 62,500 ints/s */
6499 {62}, /* 16,129 ints/s */
6500 {126} /* 7,936 ints/s */
6501};
6502
6503/* The transmit profile, which has the same sorts of values
6504 * as the previous struct
6505 */
6506static const struct ice_dim tx_profile[] = {
6507 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6508 {8}, /* 125,000 ints/s */
6509 {40}, /* 16,125 ints/s */
6510 {128}, /* 7,812 ints/s */
6511 {256} /* 3,906 ints/s */
6512};
6513
6514static void ice_tx_dim_work(struct work_struct *work)
6515{
6516 struct ice_ring_container *rc;
6517 struct dim *dim;
6518 u16 itr;
6519
6520 dim = container_of(work, struct dim, work);
6521 rc = dim->priv;
6522
6523 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6524
6525 /* look up the values in our local table */
6526 itr = tx_profile[dim->profile_ix].itr;
6527
6528 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6529 ice_write_itr(rc, itr);
6530
6531 dim->state = DIM_START_MEASURE;
6532}
6533
6534static void ice_rx_dim_work(struct work_struct *work)
6535{
6536 struct ice_ring_container *rc;
6537 struct dim *dim;
6538 u16 itr;
6539
6540 dim = container_of(work, struct dim, work);
6541 rc = dim->priv;
6542
6543 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6544
6545 /* look up the values in our local table */
6546 itr = rx_profile[dim->profile_ix].itr;
6547
6548 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6549 ice_write_itr(rc, itr);
6550
6551 dim->state = DIM_START_MEASURE;
6552}
6553
6554#define ICE_DIM_DEFAULT_PROFILE_IX 1
6555
6556/**
6557 * ice_init_moderation - set up interrupt moderation
6558 * @q_vector: the vector containing rings to be configured
6559 *
6560 * Set up interrupt moderation registers, with the intent to do the right thing
6561 * when called from reset or from probe, and whether or not dynamic moderation
6562 * is enabled or not. Take special care to write all the registers in both
6563 * dynamic moderation mode or not in order to make sure hardware is in a known
6564 * state.
6565 */
6566static void ice_init_moderation(struct ice_q_vector *q_vector)
6567{
6568 struct ice_ring_container *rc;
6569 bool tx_dynamic, rx_dynamic;
6570
6571 rc = &q_vector->tx;
6572 INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6573 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6574 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6575 rc->dim.priv = rc;
6576 tx_dynamic = ITR_IS_DYNAMIC(rc);
6577
6578 /* set the initial TX ITR to match the above */
6579 ice_write_itr(rc, tx_dynamic ?
6580 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6581
6582 rc = &q_vector->rx;
6583 INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6584 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6585 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6586 rc->dim.priv = rc;
6587 rx_dynamic = ITR_IS_DYNAMIC(rc);
6588
6589 /* set the initial RX ITR to match the above */
6590 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6591 rc->itr_setting);
6592
6593 ice_set_q_vector_intrl(q_vector);
6594}
6595
6596/**
6597 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6598 * @vsi: the VSI being configured
6599 */
6600static void ice_napi_enable_all(struct ice_vsi *vsi)
6601{
6602 int q_idx;
6603
6604 if (!vsi->netdev)
6605 return;
6606
6607 ice_for_each_q_vector(vsi, q_idx) {
6608 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6609
6610 ice_init_moderation(q_vector);
6611
6612 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6613 napi_enable(&q_vector->napi);
6614 }
6615}
6616
6617/**
6618 * ice_up_complete - Finish the last steps of bringing up a connection
6619 * @vsi: The VSI being configured
6620 *
6621 * Return 0 on success and negative value on error
6622 */
6623static int ice_up_complete(struct ice_vsi *vsi)
6624{
6625 struct ice_pf *pf = vsi->back;
6626 int err;
6627
6628 ice_vsi_cfg_msix(vsi);
6629
6630 /* Enable only Rx rings, Tx rings were enabled by the FW when the
6631 * Tx queue group list was configured and the context bits were
6632 * programmed using ice_vsi_cfg_txqs
6633 */
6634 err = ice_vsi_start_all_rx_rings(vsi);
6635 if (err)
6636 return err;
6637
6638 clear_bit(ICE_VSI_DOWN, vsi->state);
6639 ice_napi_enable_all(vsi);
6640 ice_vsi_ena_irq(vsi);
6641
6642 if (vsi->port_info &&
6643 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6644 vsi->netdev && vsi->type == ICE_VSI_PF) {
6645 ice_print_link_msg(vsi, true);
6646 netif_tx_start_all_queues(vsi->netdev);
6647 netif_carrier_on(vsi->netdev);
6648 ice_ptp_link_change(pf, pf->hw.pf_id, true);
6649 }
6650
6651 /* Perform an initial read of the statistics registers now to
6652 * set the baseline so counters are ready when interface is up
6653 */
6654 ice_update_eth_stats(vsi);
6655
6656 if (vsi->type == ICE_VSI_PF)
6657 ice_service_task_schedule(pf);
6658
6659 return 0;
6660}
6661
6662/**
6663 * ice_up - Bring the connection back up after being down
6664 * @vsi: VSI being configured
6665 */
6666int ice_up(struct ice_vsi *vsi)
6667{
6668 int err;
6669
6670 err = ice_vsi_cfg_lan(vsi);
6671 if (!err)
6672 err = ice_up_complete(vsi);
6673
6674 return err;
6675}
6676
6677/**
6678 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6679 * @syncp: pointer to u64_stats_sync
6680 * @stats: stats that pkts and bytes count will be taken from
6681 * @pkts: packets stats counter
6682 * @bytes: bytes stats counter
6683 *
6684 * This function fetches stats from the ring considering the atomic operations
6685 * that needs to be performed to read u64 values in 32 bit machine.
6686 */
6687void
6688ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6689 struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6690{
6691 unsigned int start;
6692
6693 do {
6694 start = u64_stats_fetch_begin(syncp);
6695 *pkts = stats.pkts;
6696 *bytes = stats.bytes;
6697 } while (u64_stats_fetch_retry(syncp, start));
6698}
6699
6700/**
6701 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6702 * @vsi: the VSI to be updated
6703 * @vsi_stats: the stats struct to be updated
6704 * @rings: rings to work on
6705 * @count: number of rings
6706 */
6707static void
6708ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6709 struct rtnl_link_stats64 *vsi_stats,
6710 struct ice_tx_ring **rings, u16 count)
6711{
6712 u16 i;
6713
6714 for (i = 0; i < count; i++) {
6715 struct ice_tx_ring *ring;
6716 u64 pkts = 0, bytes = 0;
6717
6718 ring = READ_ONCE(rings[i]);
6719 if (!ring || !ring->ring_stats)
6720 continue;
6721 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6722 ring->ring_stats->stats, &pkts,
6723 &bytes);
6724 vsi_stats->tx_packets += pkts;
6725 vsi_stats->tx_bytes += bytes;
6726 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6727 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6728 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6729 }
6730}
6731
6732/**
6733 * ice_update_vsi_ring_stats - Update VSI stats counters
6734 * @vsi: the VSI to be updated
6735 */
6736static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6737{
6738 struct rtnl_link_stats64 *net_stats, *stats_prev;
6739 struct rtnl_link_stats64 *vsi_stats;
6740 u64 pkts, bytes;
6741 int i;
6742
6743 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6744 if (!vsi_stats)
6745 return;
6746
6747 /* reset non-netdev (extended) stats */
6748 vsi->tx_restart = 0;
6749 vsi->tx_busy = 0;
6750 vsi->tx_linearize = 0;
6751 vsi->rx_buf_failed = 0;
6752 vsi->rx_page_failed = 0;
6753
6754 rcu_read_lock();
6755
6756 /* update Tx rings counters */
6757 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6758 vsi->num_txq);
6759
6760 /* update Rx rings counters */
6761 ice_for_each_rxq(vsi, i) {
6762 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6763 struct ice_ring_stats *ring_stats;
6764
6765 ring_stats = ring->ring_stats;
6766 ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6767 ring_stats->stats, &pkts,
6768 &bytes);
6769 vsi_stats->rx_packets += pkts;
6770 vsi_stats->rx_bytes += bytes;
6771 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6772 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6773 }
6774
6775 /* update XDP Tx rings counters */
6776 if (ice_is_xdp_ena_vsi(vsi))
6777 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6778 vsi->num_xdp_txq);
6779
6780 rcu_read_unlock();
6781
6782 net_stats = &vsi->net_stats;
6783 stats_prev = &vsi->net_stats_prev;
6784
6785 /* clear prev counters after reset */
6786 if (vsi_stats->tx_packets < stats_prev->tx_packets ||
6787 vsi_stats->rx_packets < stats_prev->rx_packets) {
6788 stats_prev->tx_packets = 0;
6789 stats_prev->tx_bytes = 0;
6790 stats_prev->rx_packets = 0;
6791 stats_prev->rx_bytes = 0;
6792 }
6793
6794 /* update netdev counters */
6795 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6796 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6797 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6798 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6799
6800 stats_prev->tx_packets = vsi_stats->tx_packets;
6801 stats_prev->tx_bytes = vsi_stats->tx_bytes;
6802 stats_prev->rx_packets = vsi_stats->rx_packets;
6803 stats_prev->rx_bytes = vsi_stats->rx_bytes;
6804
6805 kfree(vsi_stats);
6806}
6807
6808/**
6809 * ice_update_vsi_stats - Update VSI stats counters
6810 * @vsi: the VSI to be updated
6811 */
6812void ice_update_vsi_stats(struct ice_vsi *vsi)
6813{
6814 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6815 struct ice_eth_stats *cur_es = &vsi->eth_stats;
6816 struct ice_pf *pf = vsi->back;
6817
6818 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6819 test_bit(ICE_CFG_BUSY, pf->state))
6820 return;
6821
6822 /* get stats as recorded by Tx/Rx rings */
6823 ice_update_vsi_ring_stats(vsi);
6824
6825 /* get VSI stats as recorded by the hardware */
6826 ice_update_eth_stats(vsi);
6827
6828 cur_ns->tx_errors = cur_es->tx_errors;
6829 cur_ns->rx_dropped = cur_es->rx_discards;
6830 cur_ns->tx_dropped = cur_es->tx_discards;
6831 cur_ns->multicast = cur_es->rx_multicast;
6832
6833 /* update some more netdev stats if this is main VSI */
6834 if (vsi->type == ICE_VSI_PF) {
6835 cur_ns->rx_crc_errors = pf->stats.crc_errors;
6836 cur_ns->rx_errors = pf->stats.crc_errors +
6837 pf->stats.illegal_bytes +
6838 pf->stats.rx_undersize +
6839 pf->hw_csum_rx_error +
6840 pf->stats.rx_jabber +
6841 pf->stats.rx_fragments +
6842 pf->stats.rx_oversize;
6843 /* record drops from the port level */
6844 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6845 }
6846}
6847
6848/**
6849 * ice_update_pf_stats - Update PF port stats counters
6850 * @pf: PF whose stats needs to be updated
6851 */
6852void ice_update_pf_stats(struct ice_pf *pf)
6853{
6854 struct ice_hw_port_stats *prev_ps, *cur_ps;
6855 struct ice_hw *hw = &pf->hw;
6856 u16 fd_ctr_base;
6857 u8 port;
6858
6859 port = hw->port_info->lport;
6860 prev_ps = &pf->stats_prev;
6861 cur_ps = &pf->stats;
6862
6863 if (ice_is_reset_in_progress(pf->state))
6864 pf->stat_prev_loaded = false;
6865
6866 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6867 &prev_ps->eth.rx_bytes,
6868 &cur_ps->eth.rx_bytes);
6869
6870 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6871 &prev_ps->eth.rx_unicast,
6872 &cur_ps->eth.rx_unicast);
6873
6874 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6875 &prev_ps->eth.rx_multicast,
6876 &cur_ps->eth.rx_multicast);
6877
6878 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6879 &prev_ps->eth.rx_broadcast,
6880 &cur_ps->eth.rx_broadcast);
6881
6882 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6883 &prev_ps->eth.rx_discards,
6884 &cur_ps->eth.rx_discards);
6885
6886 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6887 &prev_ps->eth.tx_bytes,
6888 &cur_ps->eth.tx_bytes);
6889
6890 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6891 &prev_ps->eth.tx_unicast,
6892 &cur_ps->eth.tx_unicast);
6893
6894 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6895 &prev_ps->eth.tx_multicast,
6896 &cur_ps->eth.tx_multicast);
6897
6898 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6899 &prev_ps->eth.tx_broadcast,
6900 &cur_ps->eth.tx_broadcast);
6901
6902 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6903 &prev_ps->tx_dropped_link_down,
6904 &cur_ps->tx_dropped_link_down);
6905
6906 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6907 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6908
6909 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6910 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6911
6912 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6913 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6914
6915 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6916 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6917
6918 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6919 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6920
6921 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6922 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6923
6924 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6925 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6926
6927 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6928 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6929
6930 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6931 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6932
6933 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6934 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6935
6936 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6937 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6938
6939 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6940 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6941
6942 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6943 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6944
6945 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6946 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6947
6948 fd_ctr_base = hw->fd_ctr_base;
6949
6950 ice_stat_update40(hw,
6951 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6952 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6953 &cur_ps->fd_sb_match);
6954 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6955 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6956
6957 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6958 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6959
6960 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6961 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6962
6963 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6964 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6965
6966 ice_update_dcb_stats(pf);
6967
6968 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6969 &prev_ps->crc_errors, &cur_ps->crc_errors);
6970
6971 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6972 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6973
6974 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6975 &prev_ps->mac_local_faults,
6976 &cur_ps->mac_local_faults);
6977
6978 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6979 &prev_ps->mac_remote_faults,
6980 &cur_ps->mac_remote_faults);
6981
6982 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6983 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6984
6985 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6986 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6987
6988 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6989 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6990
6991 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6992 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6993
6994 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6995
6996 pf->stat_prev_loaded = true;
6997}
6998
6999/**
7000 * ice_get_stats64 - get statistics for network device structure
7001 * @netdev: network interface device structure
7002 * @stats: main device statistics structure
7003 */
7004static
7005void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
7006{
7007 struct ice_netdev_priv *np = netdev_priv(netdev);
7008 struct rtnl_link_stats64 *vsi_stats;
7009 struct ice_vsi *vsi = np->vsi;
7010
7011 vsi_stats = &vsi->net_stats;
7012
7013 if (!vsi->num_txq || !vsi->num_rxq)
7014 return;
7015
7016 /* netdev packet/byte stats come from ring counter. These are obtained
7017 * by summing up ring counters (done by ice_update_vsi_ring_stats).
7018 * But, only call the update routine and read the registers if VSI is
7019 * not down.
7020 */
7021 if (!test_bit(ICE_VSI_DOWN, vsi->state))
7022 ice_update_vsi_ring_stats(vsi);
7023 stats->tx_packets = vsi_stats->tx_packets;
7024 stats->tx_bytes = vsi_stats->tx_bytes;
7025 stats->rx_packets = vsi_stats->rx_packets;
7026 stats->rx_bytes = vsi_stats->rx_bytes;
7027
7028 /* The rest of the stats can be read from the hardware but instead we
7029 * just return values that the watchdog task has already obtained from
7030 * the hardware.
7031 */
7032 stats->multicast = vsi_stats->multicast;
7033 stats->tx_errors = vsi_stats->tx_errors;
7034 stats->tx_dropped = vsi_stats->tx_dropped;
7035 stats->rx_errors = vsi_stats->rx_errors;
7036 stats->rx_dropped = vsi_stats->rx_dropped;
7037 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
7038 stats->rx_length_errors = vsi_stats->rx_length_errors;
7039}
7040
7041/**
7042 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
7043 * @vsi: VSI having NAPI disabled
7044 */
7045static void ice_napi_disable_all(struct ice_vsi *vsi)
7046{
7047 int q_idx;
7048
7049 if (!vsi->netdev)
7050 return;
7051
7052 ice_for_each_q_vector(vsi, q_idx) {
7053 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
7054
7055 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
7056 napi_disable(&q_vector->napi);
7057
7058 cancel_work_sync(&q_vector->tx.dim.work);
7059 cancel_work_sync(&q_vector->rx.dim.work);
7060 }
7061}
7062
7063/**
7064 * ice_down - Shutdown the connection
7065 * @vsi: The VSI being stopped
7066 *
7067 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
7068 */
7069int ice_down(struct ice_vsi *vsi)
7070{
7071 int i, tx_err, rx_err, vlan_err = 0;
7072
7073 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
7074
7075 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
7076 vlan_err = ice_vsi_del_vlan_zero(vsi);
7077 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
7078 netif_carrier_off(vsi->netdev);
7079 netif_tx_disable(vsi->netdev);
7080 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
7081 ice_eswitch_stop_all_tx_queues(vsi->back);
7082 }
7083
7084 ice_vsi_dis_irq(vsi);
7085
7086 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
7087 if (tx_err)
7088 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
7089 vsi->vsi_num, tx_err);
7090 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
7091 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
7092 if (tx_err)
7093 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
7094 vsi->vsi_num, tx_err);
7095 }
7096
7097 rx_err = ice_vsi_stop_all_rx_rings(vsi);
7098 if (rx_err)
7099 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7100 vsi->vsi_num, rx_err);
7101
7102 ice_napi_disable_all(vsi);
7103
7104 ice_for_each_txq(vsi, i)
7105 ice_clean_tx_ring(vsi->tx_rings[i]);
7106
7107 if (ice_is_xdp_ena_vsi(vsi))
7108 ice_for_each_xdp_txq(vsi, i)
7109 ice_clean_tx_ring(vsi->xdp_rings[i]);
7110
7111 ice_for_each_rxq(vsi, i)
7112 ice_clean_rx_ring(vsi->rx_rings[i]);
7113
7114 if (tx_err || rx_err || vlan_err) {
7115 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7116 vsi->vsi_num, vsi->vsw->sw_id);
7117 return -EIO;
7118 }
7119
7120 return 0;
7121}
7122
7123/**
7124 * ice_down_up - shutdown the VSI connection and bring it up
7125 * @vsi: the VSI to be reconnected
7126 */
7127int ice_down_up(struct ice_vsi *vsi)
7128{
7129 int ret;
7130
7131 /* if DOWN already set, nothing to do */
7132 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7133 return 0;
7134
7135 ret = ice_down(vsi);
7136 if (ret)
7137 return ret;
7138
7139 ret = ice_up(vsi);
7140 if (ret) {
7141 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7142 return ret;
7143 }
7144
7145 return 0;
7146}
7147
7148/**
7149 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7150 * @vsi: VSI having resources allocated
7151 *
7152 * Return 0 on success, negative on failure
7153 */
7154int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7155{
7156 int i, err = 0;
7157
7158 if (!vsi->num_txq) {
7159 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7160 vsi->vsi_num);
7161 return -EINVAL;
7162 }
7163
7164 ice_for_each_txq(vsi, i) {
7165 struct ice_tx_ring *ring = vsi->tx_rings[i];
7166
7167 if (!ring)
7168 return -EINVAL;
7169
7170 if (vsi->netdev)
7171 ring->netdev = vsi->netdev;
7172 err = ice_setup_tx_ring(ring);
7173 if (err)
7174 break;
7175 }
7176
7177 return err;
7178}
7179
7180/**
7181 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7182 * @vsi: VSI having resources allocated
7183 *
7184 * Return 0 on success, negative on failure
7185 */
7186int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7187{
7188 int i, err = 0;
7189
7190 if (!vsi->num_rxq) {
7191 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7192 vsi->vsi_num);
7193 return -EINVAL;
7194 }
7195
7196 ice_for_each_rxq(vsi, i) {
7197 struct ice_rx_ring *ring = vsi->rx_rings[i];
7198
7199 if (!ring)
7200 return -EINVAL;
7201
7202 if (vsi->netdev)
7203 ring->netdev = vsi->netdev;
7204 err = ice_setup_rx_ring(ring);
7205 if (err)
7206 break;
7207 }
7208
7209 return err;
7210}
7211
7212/**
7213 * ice_vsi_open_ctrl - open control VSI for use
7214 * @vsi: the VSI to open
7215 *
7216 * Initialization of the Control VSI
7217 *
7218 * Returns 0 on success, negative value on error
7219 */
7220int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7221{
7222 char int_name[ICE_INT_NAME_STR_LEN];
7223 struct ice_pf *pf = vsi->back;
7224 struct device *dev;
7225 int err;
7226
7227 dev = ice_pf_to_dev(pf);
7228 /* allocate descriptors */
7229 err = ice_vsi_setup_tx_rings(vsi);
7230 if (err)
7231 goto err_setup_tx;
7232
7233 err = ice_vsi_setup_rx_rings(vsi);
7234 if (err)
7235 goto err_setup_rx;
7236
7237 err = ice_vsi_cfg_lan(vsi);
7238 if (err)
7239 goto err_setup_rx;
7240
7241 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7242 dev_driver_string(dev), dev_name(dev));
7243 err = ice_vsi_req_irq_msix(vsi, int_name);
7244 if (err)
7245 goto err_setup_rx;
7246
7247 ice_vsi_cfg_msix(vsi);
7248
7249 err = ice_vsi_start_all_rx_rings(vsi);
7250 if (err)
7251 goto err_up_complete;
7252
7253 clear_bit(ICE_VSI_DOWN, vsi->state);
7254 ice_vsi_ena_irq(vsi);
7255
7256 return 0;
7257
7258err_up_complete:
7259 ice_down(vsi);
7260err_setup_rx:
7261 ice_vsi_free_rx_rings(vsi);
7262err_setup_tx:
7263 ice_vsi_free_tx_rings(vsi);
7264
7265 return err;
7266}
7267
7268/**
7269 * ice_vsi_open - Called when a network interface is made active
7270 * @vsi: the VSI to open
7271 *
7272 * Initialization of the VSI
7273 *
7274 * Returns 0 on success, negative value on error
7275 */
7276int ice_vsi_open(struct ice_vsi *vsi)
7277{
7278 char int_name[ICE_INT_NAME_STR_LEN];
7279 struct ice_pf *pf = vsi->back;
7280 int err;
7281
7282 /* allocate descriptors */
7283 err = ice_vsi_setup_tx_rings(vsi);
7284 if (err)
7285 goto err_setup_tx;
7286
7287 err = ice_vsi_setup_rx_rings(vsi);
7288 if (err)
7289 goto err_setup_rx;
7290
7291 err = ice_vsi_cfg_lan(vsi);
7292 if (err)
7293 goto err_setup_rx;
7294
7295 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7296 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7297 err = ice_vsi_req_irq_msix(vsi, int_name);
7298 if (err)
7299 goto err_setup_rx;
7300
7301 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7302
7303 if (vsi->type == ICE_VSI_PF) {
7304 /* Notify the stack of the actual queue counts. */
7305 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7306 if (err)
7307 goto err_set_qs;
7308
7309 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7310 if (err)
7311 goto err_set_qs;
7312 }
7313
7314 err = ice_up_complete(vsi);
7315 if (err)
7316 goto err_up_complete;
7317
7318 return 0;
7319
7320err_up_complete:
7321 ice_down(vsi);
7322err_set_qs:
7323 ice_vsi_free_irq(vsi);
7324err_setup_rx:
7325 ice_vsi_free_rx_rings(vsi);
7326err_setup_tx:
7327 ice_vsi_free_tx_rings(vsi);
7328
7329 return err;
7330}
7331
7332/**
7333 * ice_vsi_release_all - Delete all VSIs
7334 * @pf: PF from which all VSIs are being removed
7335 */
7336static void ice_vsi_release_all(struct ice_pf *pf)
7337{
7338 int err, i;
7339
7340 if (!pf->vsi)
7341 return;
7342
7343 ice_for_each_vsi(pf, i) {
7344 if (!pf->vsi[i])
7345 continue;
7346
7347 if (pf->vsi[i]->type == ICE_VSI_CHNL)
7348 continue;
7349
7350 err = ice_vsi_release(pf->vsi[i]);
7351 if (err)
7352 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7353 i, err, pf->vsi[i]->vsi_num);
7354 }
7355}
7356
7357/**
7358 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7359 * @pf: pointer to the PF instance
7360 * @type: VSI type to rebuild
7361 *
7362 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7363 */
7364static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7365{
7366 struct device *dev = ice_pf_to_dev(pf);
7367 int i, err;
7368
7369 ice_for_each_vsi(pf, i) {
7370 struct ice_vsi *vsi = pf->vsi[i];
7371
7372 if (!vsi || vsi->type != type)
7373 continue;
7374
7375 /* rebuild the VSI */
7376 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7377 if (err) {
7378 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7379 err, vsi->idx, ice_vsi_type_str(type));
7380 return err;
7381 }
7382
7383 /* replay filters for the VSI */
7384 err = ice_replay_vsi(&pf->hw, vsi->idx);
7385 if (err) {
7386 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7387 err, vsi->idx, ice_vsi_type_str(type));
7388 return err;
7389 }
7390
7391 /* Re-map HW VSI number, using VSI handle that has been
7392 * previously validated in ice_replay_vsi() call above
7393 */
7394 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7395
7396 /* enable the VSI */
7397 err = ice_ena_vsi(vsi, false);
7398 if (err) {
7399 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7400 err, vsi->idx, ice_vsi_type_str(type));
7401 return err;
7402 }
7403
7404 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7405 ice_vsi_type_str(type));
7406 }
7407
7408 return 0;
7409}
7410
7411/**
7412 * ice_update_pf_netdev_link - Update PF netdev link status
7413 * @pf: pointer to the PF instance
7414 */
7415static void ice_update_pf_netdev_link(struct ice_pf *pf)
7416{
7417 bool link_up;
7418 int i;
7419
7420 ice_for_each_vsi(pf, i) {
7421 struct ice_vsi *vsi = pf->vsi[i];
7422
7423 if (!vsi || vsi->type != ICE_VSI_PF)
7424 return;
7425
7426 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7427 if (link_up) {
7428 netif_carrier_on(pf->vsi[i]->netdev);
7429 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7430 } else {
7431 netif_carrier_off(pf->vsi[i]->netdev);
7432 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7433 }
7434 }
7435}
7436
7437/**
7438 * ice_rebuild - rebuild after reset
7439 * @pf: PF to rebuild
7440 * @reset_type: type of reset
7441 *
7442 * Do not rebuild VF VSI in this flow because that is already handled via
7443 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7444 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7445 * to reset/rebuild all the VF VSI twice.
7446 */
7447static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7448{
7449 struct device *dev = ice_pf_to_dev(pf);
7450 struct ice_hw *hw = &pf->hw;
7451 bool dvm;
7452 int err;
7453
7454 if (test_bit(ICE_DOWN, pf->state))
7455 goto clear_recovery;
7456
7457 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7458
7459#define ICE_EMP_RESET_SLEEP_MS 5000
7460 if (reset_type == ICE_RESET_EMPR) {
7461 /* If an EMP reset has occurred, any previously pending flash
7462 * update will have completed. We no longer know whether or
7463 * not the NVM update EMP reset is restricted.
7464 */
7465 pf->fw_emp_reset_disabled = false;
7466
7467 msleep(ICE_EMP_RESET_SLEEP_MS);
7468 }
7469
7470 err = ice_init_all_ctrlq(hw);
7471 if (err) {
7472 dev_err(dev, "control queues init failed %d\n", err);
7473 goto err_init_ctrlq;
7474 }
7475
7476 /* if DDP was previously loaded successfully */
7477 if (!ice_is_safe_mode(pf)) {
7478 /* reload the SW DB of filter tables */
7479 if (reset_type == ICE_RESET_PFR)
7480 ice_fill_blk_tbls(hw);
7481 else
7482 /* Reload DDP Package after CORER/GLOBR reset */
7483 ice_load_pkg(NULL, pf);
7484 }
7485
7486 err = ice_clear_pf_cfg(hw);
7487 if (err) {
7488 dev_err(dev, "clear PF configuration failed %d\n", err);
7489 goto err_init_ctrlq;
7490 }
7491
7492 ice_clear_pxe_mode(hw);
7493
7494 err = ice_init_nvm(hw);
7495 if (err) {
7496 dev_err(dev, "ice_init_nvm failed %d\n", err);
7497 goto err_init_ctrlq;
7498 }
7499
7500 err = ice_get_caps(hw);
7501 if (err) {
7502 dev_err(dev, "ice_get_caps failed %d\n", err);
7503 goto err_init_ctrlq;
7504 }
7505
7506 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7507 if (err) {
7508 dev_err(dev, "set_mac_cfg failed %d\n", err);
7509 goto err_init_ctrlq;
7510 }
7511
7512 dvm = ice_is_dvm_ena(hw);
7513
7514 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7515 if (err)
7516 goto err_init_ctrlq;
7517
7518 err = ice_sched_init_port(hw->port_info);
7519 if (err)
7520 goto err_sched_init_port;
7521
7522 /* start misc vector */
7523 err = ice_req_irq_msix_misc(pf);
7524 if (err) {
7525 dev_err(dev, "misc vector setup failed: %d\n", err);
7526 goto err_sched_init_port;
7527 }
7528
7529 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7530 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7531 if (!rd32(hw, PFQF_FD_SIZE)) {
7532 u16 unused, guar, b_effort;
7533
7534 guar = hw->func_caps.fd_fltr_guar;
7535 b_effort = hw->func_caps.fd_fltr_best_effort;
7536
7537 /* force guaranteed filter pool for PF */
7538 ice_alloc_fd_guar_item(hw, &unused, guar);
7539 /* force shared filter pool for PF */
7540 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7541 }
7542 }
7543
7544 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7545 ice_dcb_rebuild(pf);
7546
7547 /* If the PF previously had enabled PTP, PTP init needs to happen before
7548 * the VSI rebuild. If not, this causes the PTP link status events to
7549 * fail.
7550 */
7551 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7552 ice_ptp_reset(pf);
7553
7554 if (ice_is_feature_supported(pf, ICE_F_GNSS))
7555 ice_gnss_init(pf);
7556
7557 /* rebuild PF VSI */
7558 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7559 if (err) {
7560 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7561 goto err_vsi_rebuild;
7562 }
7563
7564 err = ice_eswitch_rebuild(pf);
7565 if (err) {
7566 dev_err(dev, "Switchdev rebuild failed: %d\n", err);
7567 goto err_vsi_rebuild;
7568 }
7569
7570 if (reset_type == ICE_RESET_PFR) {
7571 err = ice_rebuild_channels(pf);
7572 if (err) {
7573 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7574 err);
7575 goto err_vsi_rebuild;
7576 }
7577 }
7578
7579 /* If Flow Director is active */
7580 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7581 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7582 if (err) {
7583 dev_err(dev, "control VSI rebuild failed: %d\n", err);
7584 goto err_vsi_rebuild;
7585 }
7586
7587 /* replay HW Flow Director recipes */
7588 if (hw->fdir_prof)
7589 ice_fdir_replay_flows(hw);
7590
7591 /* replay Flow Director filters */
7592 ice_fdir_replay_fltrs(pf);
7593
7594 ice_rebuild_arfs(pf);
7595 }
7596
7597 ice_update_pf_netdev_link(pf);
7598
7599 /* tell the firmware we are up */
7600 err = ice_send_version(pf);
7601 if (err) {
7602 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7603 err);
7604 goto err_vsi_rebuild;
7605 }
7606
7607 ice_replay_post(hw);
7608
7609 /* if we get here, reset flow is successful */
7610 clear_bit(ICE_RESET_FAILED, pf->state);
7611
7612 ice_plug_aux_dev(pf);
7613 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7614 ice_lag_rebuild(pf);
7615
7616 /* Restore timestamp mode settings after VSI rebuild */
7617 ice_ptp_restore_timestamp_mode(pf);
7618 return;
7619
7620err_vsi_rebuild:
7621err_sched_init_port:
7622 ice_sched_cleanup_all(hw);
7623err_init_ctrlq:
7624 ice_shutdown_all_ctrlq(hw);
7625 set_bit(ICE_RESET_FAILED, pf->state);
7626clear_recovery:
7627 /* set this bit in PF state to control service task scheduling */
7628 set_bit(ICE_NEEDS_RESTART, pf->state);
7629 dev_err(dev, "Rebuild failed, unload and reload driver\n");
7630}
7631
7632/**
7633 * ice_change_mtu - NDO callback to change the MTU
7634 * @netdev: network interface device structure
7635 * @new_mtu: new value for maximum frame size
7636 *
7637 * Returns 0 on success, negative on failure
7638 */
7639static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7640{
7641 struct ice_netdev_priv *np = netdev_priv(netdev);
7642 struct ice_vsi *vsi = np->vsi;
7643 struct ice_pf *pf = vsi->back;
7644 struct bpf_prog *prog;
7645 u8 count = 0;
7646 int err = 0;
7647
7648 if (new_mtu == (int)netdev->mtu) {
7649 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7650 return 0;
7651 }
7652
7653 prog = vsi->xdp_prog;
7654 if (prog && !prog->aux->xdp_has_frags) {
7655 int frame_size = ice_max_xdp_frame_size(vsi);
7656
7657 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7658 netdev_err(netdev, "max MTU for XDP usage is %d\n",
7659 frame_size - ICE_ETH_PKT_HDR_PAD);
7660 return -EINVAL;
7661 }
7662 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7663 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7664 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7665 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7666 return -EINVAL;
7667 }
7668 }
7669
7670 /* if a reset is in progress, wait for some time for it to complete */
7671 do {
7672 if (ice_is_reset_in_progress(pf->state)) {
7673 count++;
7674 usleep_range(1000, 2000);
7675 } else {
7676 break;
7677 }
7678
7679 } while (count < 100);
7680
7681 if (count == 100) {
7682 netdev_err(netdev, "can't change MTU. Device is busy\n");
7683 return -EBUSY;
7684 }
7685
7686 netdev->mtu = (unsigned int)new_mtu;
7687 err = ice_down_up(vsi);
7688 if (err)
7689 return err;
7690
7691 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7692 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7693
7694 return err;
7695}
7696
7697/**
7698 * ice_eth_ioctl - Access the hwtstamp interface
7699 * @netdev: network interface device structure
7700 * @ifr: interface request data
7701 * @cmd: ioctl command
7702 */
7703static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7704{
7705 struct ice_netdev_priv *np = netdev_priv(netdev);
7706 struct ice_pf *pf = np->vsi->back;
7707
7708 switch (cmd) {
7709 case SIOCGHWTSTAMP:
7710 return ice_ptp_get_ts_config(pf, ifr);
7711 case SIOCSHWTSTAMP:
7712 return ice_ptp_set_ts_config(pf, ifr);
7713 default:
7714 return -EOPNOTSUPP;
7715 }
7716}
7717
7718/**
7719 * ice_aq_str - convert AQ err code to a string
7720 * @aq_err: the AQ error code to convert
7721 */
7722const char *ice_aq_str(enum ice_aq_err aq_err)
7723{
7724 switch (aq_err) {
7725 case ICE_AQ_RC_OK:
7726 return "OK";
7727 case ICE_AQ_RC_EPERM:
7728 return "ICE_AQ_RC_EPERM";
7729 case ICE_AQ_RC_ENOENT:
7730 return "ICE_AQ_RC_ENOENT";
7731 case ICE_AQ_RC_ENOMEM:
7732 return "ICE_AQ_RC_ENOMEM";
7733 case ICE_AQ_RC_EBUSY:
7734 return "ICE_AQ_RC_EBUSY";
7735 case ICE_AQ_RC_EEXIST:
7736 return "ICE_AQ_RC_EEXIST";
7737 case ICE_AQ_RC_EINVAL:
7738 return "ICE_AQ_RC_EINVAL";
7739 case ICE_AQ_RC_ENOSPC:
7740 return "ICE_AQ_RC_ENOSPC";
7741 case ICE_AQ_RC_ENOSYS:
7742 return "ICE_AQ_RC_ENOSYS";
7743 case ICE_AQ_RC_EMODE:
7744 return "ICE_AQ_RC_EMODE";
7745 case ICE_AQ_RC_ENOSEC:
7746 return "ICE_AQ_RC_ENOSEC";
7747 case ICE_AQ_RC_EBADSIG:
7748 return "ICE_AQ_RC_EBADSIG";
7749 case ICE_AQ_RC_ESVN:
7750 return "ICE_AQ_RC_ESVN";
7751 case ICE_AQ_RC_EBADMAN:
7752 return "ICE_AQ_RC_EBADMAN";
7753 case ICE_AQ_RC_EBADBUF:
7754 return "ICE_AQ_RC_EBADBUF";
7755 }
7756
7757 return "ICE_AQ_RC_UNKNOWN";
7758}
7759
7760/**
7761 * ice_set_rss_lut - Set RSS LUT
7762 * @vsi: Pointer to VSI structure
7763 * @lut: Lookup table
7764 * @lut_size: Lookup table size
7765 *
7766 * Returns 0 on success, negative on failure
7767 */
7768int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7769{
7770 struct ice_aq_get_set_rss_lut_params params = {};
7771 struct ice_hw *hw = &vsi->back->hw;
7772 int status;
7773
7774 if (!lut)
7775 return -EINVAL;
7776
7777 params.vsi_handle = vsi->idx;
7778 params.lut_size = lut_size;
7779 params.lut_type = vsi->rss_lut_type;
7780 params.lut = lut;
7781
7782 status = ice_aq_set_rss_lut(hw, ¶ms);
7783 if (status)
7784 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7785 status, ice_aq_str(hw->adminq.sq_last_status));
7786
7787 return status;
7788}
7789
7790/**
7791 * ice_set_rss_key - Set RSS key
7792 * @vsi: Pointer to the VSI structure
7793 * @seed: RSS hash seed
7794 *
7795 * Returns 0 on success, negative on failure
7796 */
7797int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7798{
7799 struct ice_hw *hw = &vsi->back->hw;
7800 int status;
7801
7802 if (!seed)
7803 return -EINVAL;
7804
7805 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7806 if (status)
7807 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7808 status, ice_aq_str(hw->adminq.sq_last_status));
7809
7810 return status;
7811}
7812
7813/**
7814 * ice_get_rss_lut - Get RSS LUT
7815 * @vsi: Pointer to VSI structure
7816 * @lut: Buffer to store the lookup table entries
7817 * @lut_size: Size of buffer to store the lookup table entries
7818 *
7819 * Returns 0 on success, negative on failure
7820 */
7821int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7822{
7823 struct ice_aq_get_set_rss_lut_params params = {};
7824 struct ice_hw *hw = &vsi->back->hw;
7825 int status;
7826
7827 if (!lut)
7828 return -EINVAL;
7829
7830 params.vsi_handle = vsi->idx;
7831 params.lut_size = lut_size;
7832 params.lut_type = vsi->rss_lut_type;
7833 params.lut = lut;
7834
7835 status = ice_aq_get_rss_lut(hw, ¶ms);
7836 if (status)
7837 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7838 status, ice_aq_str(hw->adminq.sq_last_status));
7839
7840 return status;
7841}
7842
7843/**
7844 * ice_get_rss_key - Get RSS key
7845 * @vsi: Pointer to VSI structure
7846 * @seed: Buffer to store the key in
7847 *
7848 * Returns 0 on success, negative on failure
7849 */
7850int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7851{
7852 struct ice_hw *hw = &vsi->back->hw;
7853 int status;
7854
7855 if (!seed)
7856 return -EINVAL;
7857
7858 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7859 if (status)
7860 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7861 status, ice_aq_str(hw->adminq.sq_last_status));
7862
7863 return status;
7864}
7865
7866/**
7867 * ice_set_rss_hfunc - Set RSS HASH function
7868 * @vsi: Pointer to VSI structure
7869 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
7870 *
7871 * Returns 0 on success, negative on failure
7872 */
7873int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
7874{
7875 struct ice_hw *hw = &vsi->back->hw;
7876 struct ice_vsi_ctx *ctx;
7877 bool symm;
7878 int err;
7879
7880 if (hfunc == vsi->rss_hfunc)
7881 return 0;
7882
7883 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
7884 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
7885 return -EOPNOTSUPP;
7886
7887 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7888 if (!ctx)
7889 return -ENOMEM;
7890
7891 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
7892 ctx->info.q_opt_rss = vsi->info.q_opt_rss;
7893 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
7894 ctx->info.q_opt_rss |=
7895 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
7896 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
7897 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
7898
7899 err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
7900 if (err) {
7901 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
7902 vsi->vsi_num, err);
7903 } else {
7904 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
7905 vsi->rss_hfunc = hfunc;
7906 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
7907 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
7908 "Symmetric " : "");
7909 }
7910 kfree(ctx);
7911 if (err)
7912 return err;
7913
7914 /* Fix the symmetry setting for all existing RSS configurations */
7915 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
7916 return ice_set_rss_cfg_symm(hw, vsi, symm);
7917}
7918
7919/**
7920 * ice_bridge_getlink - Get the hardware bridge mode
7921 * @skb: skb buff
7922 * @pid: process ID
7923 * @seq: RTNL message seq
7924 * @dev: the netdev being configured
7925 * @filter_mask: filter mask passed in
7926 * @nlflags: netlink flags passed in
7927 *
7928 * Return the bridge mode (VEB/VEPA)
7929 */
7930static int
7931ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7932 struct net_device *dev, u32 filter_mask, int nlflags)
7933{
7934 struct ice_netdev_priv *np = netdev_priv(dev);
7935 struct ice_vsi *vsi = np->vsi;
7936 struct ice_pf *pf = vsi->back;
7937 u16 bmode;
7938
7939 bmode = pf->first_sw->bridge_mode;
7940
7941 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7942 filter_mask, NULL);
7943}
7944
7945/**
7946 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7947 * @vsi: Pointer to VSI structure
7948 * @bmode: Hardware bridge mode (VEB/VEPA)
7949 *
7950 * Returns 0 on success, negative on failure
7951 */
7952static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7953{
7954 struct ice_aqc_vsi_props *vsi_props;
7955 struct ice_hw *hw = &vsi->back->hw;
7956 struct ice_vsi_ctx *ctxt;
7957 int ret;
7958
7959 vsi_props = &vsi->info;
7960
7961 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7962 if (!ctxt)
7963 return -ENOMEM;
7964
7965 ctxt->info = vsi->info;
7966
7967 if (bmode == BRIDGE_MODE_VEB)
7968 /* change from VEPA to VEB mode */
7969 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7970 else
7971 /* change from VEB to VEPA mode */
7972 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7973 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7974
7975 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7976 if (ret) {
7977 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7978 bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7979 goto out;
7980 }
7981 /* Update sw flags for book keeping */
7982 vsi_props->sw_flags = ctxt->info.sw_flags;
7983
7984out:
7985 kfree(ctxt);
7986 return ret;
7987}
7988
7989/**
7990 * ice_bridge_setlink - Set the hardware bridge mode
7991 * @dev: the netdev being configured
7992 * @nlh: RTNL message
7993 * @flags: bridge setlink flags
7994 * @extack: netlink extended ack
7995 *
7996 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7997 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7998 * not already set for all VSIs connected to this switch. And also update the
7999 * unicast switch filter rules for the corresponding switch of the netdev.
8000 */
8001static int
8002ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8003 u16 __always_unused flags,
8004 struct netlink_ext_ack __always_unused *extack)
8005{
8006 struct ice_netdev_priv *np = netdev_priv(dev);
8007 struct ice_pf *pf = np->vsi->back;
8008 struct nlattr *attr, *br_spec;
8009 struct ice_hw *hw = &pf->hw;
8010 struct ice_sw *pf_sw;
8011 int rem, v, err = 0;
8012
8013 pf_sw = pf->first_sw;
8014 /* find the attribute in the netlink message */
8015 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8016 if (!br_spec)
8017 return -EINVAL;
8018
8019 nla_for_each_nested(attr, br_spec, rem) {
8020 __u16 mode;
8021
8022 if (nla_type(attr) != IFLA_BRIDGE_MODE)
8023 continue;
8024 mode = nla_get_u16(attr);
8025 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
8026 return -EINVAL;
8027 /* Continue if bridge mode is not being flipped */
8028 if (mode == pf_sw->bridge_mode)
8029 continue;
8030 /* Iterates through the PF VSI list and update the loopback
8031 * mode of the VSI
8032 */
8033 ice_for_each_vsi(pf, v) {
8034 if (!pf->vsi[v])
8035 continue;
8036 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
8037 if (err)
8038 return err;
8039 }
8040
8041 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
8042 /* Update the unicast switch filter rules for the corresponding
8043 * switch of the netdev
8044 */
8045 err = ice_update_sw_rule_bridge_mode(hw);
8046 if (err) {
8047 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
8048 mode, err,
8049 ice_aq_str(hw->adminq.sq_last_status));
8050 /* revert hw->evb_veb */
8051 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
8052 return err;
8053 }
8054
8055 pf_sw->bridge_mode = mode;
8056 }
8057
8058 return 0;
8059}
8060
8061/**
8062 * ice_tx_timeout - Respond to a Tx Hang
8063 * @netdev: network interface device structure
8064 * @txqueue: Tx queue
8065 */
8066static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
8067{
8068 struct ice_netdev_priv *np = netdev_priv(netdev);
8069 struct ice_tx_ring *tx_ring = NULL;
8070 struct ice_vsi *vsi = np->vsi;
8071 struct ice_pf *pf = vsi->back;
8072 u32 i;
8073
8074 pf->tx_timeout_count++;
8075
8076 /* Check if PFC is enabled for the TC to which the queue belongs
8077 * to. If yes then Tx timeout is not caused by a hung queue, no
8078 * need to reset and rebuild
8079 */
8080 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
8081 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
8082 txqueue);
8083 return;
8084 }
8085
8086 /* now that we have an index, find the tx_ring struct */
8087 ice_for_each_txq(vsi, i)
8088 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
8089 if (txqueue == vsi->tx_rings[i]->q_index) {
8090 tx_ring = vsi->tx_rings[i];
8091 break;
8092 }
8093
8094 /* Reset recovery level if enough time has elapsed after last timeout.
8095 * Also ensure no new reset action happens before next timeout period.
8096 */
8097 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
8098 pf->tx_timeout_recovery_level = 1;
8099 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8100 netdev->watchdog_timeo)))
8101 return;
8102
8103 if (tx_ring) {
8104 struct ice_hw *hw = &pf->hw;
8105 u32 head, val = 0;
8106
8107 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
8108 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
8109 /* Read interrupt register */
8110 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8111
8112 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8113 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8114 head, tx_ring->next_to_use, val);
8115 }
8116
8117 pf->tx_timeout_last_recovery = jiffies;
8118 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8119 pf->tx_timeout_recovery_level, txqueue);
8120
8121 switch (pf->tx_timeout_recovery_level) {
8122 case 1:
8123 set_bit(ICE_PFR_REQ, pf->state);
8124 break;
8125 case 2:
8126 set_bit(ICE_CORER_REQ, pf->state);
8127 break;
8128 case 3:
8129 set_bit(ICE_GLOBR_REQ, pf->state);
8130 break;
8131 default:
8132 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8133 set_bit(ICE_DOWN, pf->state);
8134 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8135 set_bit(ICE_SERVICE_DIS, pf->state);
8136 break;
8137 }
8138
8139 ice_service_task_schedule(pf);
8140 pf->tx_timeout_recovery_level++;
8141}
8142
8143/**
8144 * ice_setup_tc_cls_flower - flower classifier offloads
8145 * @np: net device to configure
8146 * @filter_dev: device on which filter is added
8147 * @cls_flower: offload data
8148 */
8149static int
8150ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8151 struct net_device *filter_dev,
8152 struct flow_cls_offload *cls_flower)
8153{
8154 struct ice_vsi *vsi = np->vsi;
8155
8156 if (cls_flower->common.chain_index)
8157 return -EOPNOTSUPP;
8158
8159 switch (cls_flower->command) {
8160 case FLOW_CLS_REPLACE:
8161 return ice_add_cls_flower(filter_dev, vsi, cls_flower);
8162 case FLOW_CLS_DESTROY:
8163 return ice_del_cls_flower(vsi, cls_flower);
8164 default:
8165 return -EINVAL;
8166 }
8167}
8168
8169/**
8170 * ice_setup_tc_block_cb - callback handler registered for TC block
8171 * @type: TC SETUP type
8172 * @type_data: TC flower offload data that contains user input
8173 * @cb_priv: netdev private data
8174 */
8175static int
8176ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
8177{
8178 struct ice_netdev_priv *np = cb_priv;
8179
8180 switch (type) {
8181 case TC_SETUP_CLSFLOWER:
8182 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8183 type_data);
8184 default:
8185 return -EOPNOTSUPP;
8186 }
8187}
8188
8189/**
8190 * ice_validate_mqprio_qopt - Validate TCF input parameters
8191 * @vsi: Pointer to VSI
8192 * @mqprio_qopt: input parameters for mqprio queue configuration
8193 *
8194 * This function validates MQPRIO params, such as qcount (power of 2 wherever
8195 * needed), and make sure user doesn't specify qcount and BW rate limit
8196 * for TCs, which are more than "num_tc"
8197 */
8198static int
8199ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8200 struct tc_mqprio_qopt_offload *mqprio_qopt)
8201{
8202 int non_power_of_2_qcount = 0;
8203 struct ice_pf *pf = vsi->back;
8204 int max_rss_q_cnt = 0;
8205 u64 sum_min_rate = 0;
8206 struct device *dev;
8207 int i, speed;
8208 u8 num_tc;
8209
8210 if (vsi->type != ICE_VSI_PF)
8211 return -EINVAL;
8212
8213 if (mqprio_qopt->qopt.offset[0] != 0 ||
8214 mqprio_qopt->qopt.num_tc < 1 ||
8215 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8216 return -EINVAL;
8217
8218 dev = ice_pf_to_dev(pf);
8219 vsi->ch_rss_size = 0;
8220 num_tc = mqprio_qopt->qopt.num_tc;
8221 speed = ice_get_link_speed_kbps(vsi);
8222
8223 for (i = 0; num_tc; i++) {
8224 int qcount = mqprio_qopt->qopt.count[i];
8225 u64 max_rate, min_rate, rem;
8226
8227 if (!qcount)
8228 return -EINVAL;
8229
8230 if (is_power_of_2(qcount)) {
8231 if (non_power_of_2_qcount &&
8232 qcount > non_power_of_2_qcount) {
8233 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8234 qcount, non_power_of_2_qcount);
8235 return -EINVAL;
8236 }
8237 if (qcount > max_rss_q_cnt)
8238 max_rss_q_cnt = qcount;
8239 } else {
8240 if (non_power_of_2_qcount &&
8241 qcount != non_power_of_2_qcount) {
8242 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8243 qcount, non_power_of_2_qcount);
8244 return -EINVAL;
8245 }
8246 if (qcount < max_rss_q_cnt) {
8247 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8248 qcount, max_rss_q_cnt);
8249 return -EINVAL;
8250 }
8251 max_rss_q_cnt = qcount;
8252 non_power_of_2_qcount = qcount;
8253 }
8254
8255 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8256 * converts the bandwidth rate limit into Bytes/s when
8257 * passing it down to the driver. So convert input bandwidth
8258 * from Bytes/s to Kbps
8259 */
8260 max_rate = mqprio_qopt->max_rate[i];
8261 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8262
8263 /* min_rate is minimum guaranteed rate and it can't be zero */
8264 min_rate = mqprio_qopt->min_rate[i];
8265 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8266 sum_min_rate += min_rate;
8267
8268 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8269 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8270 min_rate, ICE_MIN_BW_LIMIT);
8271 return -EINVAL;
8272 }
8273
8274 if (max_rate && max_rate > speed) {
8275 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8276 i, max_rate, speed);
8277 return -EINVAL;
8278 }
8279
8280 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8281 if (rem) {
8282 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8283 i, ICE_MIN_BW_LIMIT);
8284 return -EINVAL;
8285 }
8286
8287 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8288 if (rem) {
8289 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8290 i, ICE_MIN_BW_LIMIT);
8291 return -EINVAL;
8292 }
8293
8294 /* min_rate can't be more than max_rate, except when max_rate
8295 * is zero (implies max_rate sought is max line rate). In such
8296 * a case min_rate can be more than max.
8297 */
8298 if (max_rate && min_rate > max_rate) {
8299 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8300 min_rate, max_rate);
8301 return -EINVAL;
8302 }
8303
8304 if (i >= mqprio_qopt->qopt.num_tc - 1)
8305 break;
8306 if (mqprio_qopt->qopt.offset[i + 1] !=
8307 (mqprio_qopt->qopt.offset[i] + qcount))
8308 return -EINVAL;
8309 }
8310 if (vsi->num_rxq <
8311 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8312 return -EINVAL;
8313 if (vsi->num_txq <
8314 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8315 return -EINVAL;
8316
8317 if (sum_min_rate && sum_min_rate > (u64)speed) {
8318 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8319 sum_min_rate, speed);
8320 return -EINVAL;
8321 }
8322
8323 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8324 vsi->ch_rss_size = max_rss_q_cnt;
8325
8326 return 0;
8327}
8328
8329/**
8330 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8331 * @pf: ptr to PF device
8332 * @vsi: ptr to VSI
8333 */
8334static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8335{
8336 struct device *dev = ice_pf_to_dev(pf);
8337 bool added = false;
8338 struct ice_hw *hw;
8339 int flow;
8340
8341 if (!(vsi->num_gfltr || vsi->num_bfltr))
8342 return -EINVAL;
8343
8344 hw = &pf->hw;
8345 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8346 struct ice_fd_hw_prof *prof;
8347 int tun, status;
8348 u64 entry_h;
8349
8350 if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8351 hw->fdir_prof[flow]->cnt))
8352 continue;
8353
8354 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8355 enum ice_flow_priority prio;
8356
8357 /* add this VSI to FDir profile for this flow */
8358 prio = ICE_FLOW_PRIO_NORMAL;
8359 prof = hw->fdir_prof[flow];
8360 status = ice_flow_add_entry(hw, ICE_BLK_FD,
8361 prof->prof_id[tun],
8362 prof->vsi_h[0], vsi->idx,
8363 prio, prof->fdir_seg[tun],
8364 &entry_h);
8365 if (status) {
8366 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8367 vsi->idx, flow);
8368 continue;
8369 }
8370
8371 prof->entry_h[prof->cnt][tun] = entry_h;
8372 }
8373
8374 /* store VSI for filter replay and delete */
8375 prof->vsi_h[prof->cnt] = vsi->idx;
8376 prof->cnt++;
8377
8378 added = true;
8379 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8380 flow);
8381 }
8382
8383 if (!added)
8384 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8385
8386 return 0;
8387}
8388
8389/**
8390 * ice_add_channel - add a channel by adding VSI
8391 * @pf: ptr to PF device
8392 * @sw_id: underlying HW switching element ID
8393 * @ch: ptr to channel structure
8394 *
8395 * Add a channel (VSI) using add_vsi and queue_map
8396 */
8397static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8398{
8399 struct device *dev = ice_pf_to_dev(pf);
8400 struct ice_vsi *vsi;
8401
8402 if (ch->type != ICE_VSI_CHNL) {
8403 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8404 return -EINVAL;
8405 }
8406
8407 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8408 if (!vsi || vsi->type != ICE_VSI_CHNL) {
8409 dev_err(dev, "create chnl VSI failure\n");
8410 return -EINVAL;
8411 }
8412
8413 ice_add_vsi_to_fdir(pf, vsi);
8414
8415 ch->sw_id = sw_id;
8416 ch->vsi_num = vsi->vsi_num;
8417 ch->info.mapping_flags = vsi->info.mapping_flags;
8418 ch->ch_vsi = vsi;
8419 /* set the back pointer of channel for newly created VSI */
8420 vsi->ch = ch;
8421
8422 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8423 sizeof(vsi->info.q_mapping));
8424 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8425 sizeof(vsi->info.tc_mapping));
8426
8427 return 0;
8428}
8429
8430/**
8431 * ice_chnl_cfg_res
8432 * @vsi: the VSI being setup
8433 * @ch: ptr to channel structure
8434 *
8435 * Configure channel specific resources such as rings, vector.
8436 */
8437static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8438{
8439 int i;
8440
8441 for (i = 0; i < ch->num_txq; i++) {
8442 struct ice_q_vector *tx_q_vector, *rx_q_vector;
8443 struct ice_ring_container *rc;
8444 struct ice_tx_ring *tx_ring;
8445 struct ice_rx_ring *rx_ring;
8446
8447 tx_ring = vsi->tx_rings[ch->base_q + i];
8448 rx_ring = vsi->rx_rings[ch->base_q + i];
8449 if (!tx_ring || !rx_ring)
8450 continue;
8451
8452 /* setup ring being channel enabled */
8453 tx_ring->ch = ch;
8454 rx_ring->ch = ch;
8455
8456 /* following code block sets up vector specific attributes */
8457 tx_q_vector = tx_ring->q_vector;
8458 rx_q_vector = rx_ring->q_vector;
8459 if (!tx_q_vector && !rx_q_vector)
8460 continue;
8461
8462 if (tx_q_vector) {
8463 tx_q_vector->ch = ch;
8464 /* setup Tx and Rx ITR setting if DIM is off */
8465 rc = &tx_q_vector->tx;
8466 if (!ITR_IS_DYNAMIC(rc))
8467 ice_write_itr(rc, rc->itr_setting);
8468 }
8469 if (rx_q_vector) {
8470 rx_q_vector->ch = ch;
8471 /* setup Tx and Rx ITR setting if DIM is off */
8472 rc = &rx_q_vector->rx;
8473 if (!ITR_IS_DYNAMIC(rc))
8474 ice_write_itr(rc, rc->itr_setting);
8475 }
8476 }
8477
8478 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8479 * GLINT_ITR register would have written to perform in-context
8480 * update, hence perform flush
8481 */
8482 if (ch->num_txq || ch->num_rxq)
8483 ice_flush(&vsi->back->hw);
8484}
8485
8486/**
8487 * ice_cfg_chnl_all_res - configure channel resources
8488 * @vsi: pte to main_vsi
8489 * @ch: ptr to channel structure
8490 *
8491 * This function configures channel specific resources such as flow-director
8492 * counter index, and other resources such as queues, vectors, ITR settings
8493 */
8494static void
8495ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8496{
8497 /* configure channel (aka ADQ) resources such as queues, vectors,
8498 * ITR settings for channel specific vectors and anything else
8499 */
8500 ice_chnl_cfg_res(vsi, ch);
8501}
8502
8503/**
8504 * ice_setup_hw_channel - setup new channel
8505 * @pf: ptr to PF device
8506 * @vsi: the VSI being setup
8507 * @ch: ptr to channel structure
8508 * @sw_id: underlying HW switching element ID
8509 * @type: type of channel to be created (VMDq2/VF)
8510 *
8511 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8512 * and configures Tx rings accordingly
8513 */
8514static int
8515ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8516 struct ice_channel *ch, u16 sw_id, u8 type)
8517{
8518 struct device *dev = ice_pf_to_dev(pf);
8519 int ret;
8520
8521 ch->base_q = vsi->next_base_q;
8522 ch->type = type;
8523
8524 ret = ice_add_channel(pf, sw_id, ch);
8525 if (ret) {
8526 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8527 return ret;
8528 }
8529
8530 /* configure/setup ADQ specific resources */
8531 ice_cfg_chnl_all_res(vsi, ch);
8532
8533 /* make sure to update the next_base_q so that subsequent channel's
8534 * (aka ADQ) VSI queue map is correct
8535 */
8536 vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8537 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8538 ch->num_rxq);
8539
8540 return 0;
8541}
8542
8543/**
8544 * ice_setup_channel - setup new channel using uplink element
8545 * @pf: ptr to PF device
8546 * @vsi: the VSI being setup
8547 * @ch: ptr to channel structure
8548 *
8549 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8550 * and uplink switching element
8551 */
8552static bool
8553ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8554 struct ice_channel *ch)
8555{
8556 struct device *dev = ice_pf_to_dev(pf);
8557 u16 sw_id;
8558 int ret;
8559
8560 if (vsi->type != ICE_VSI_PF) {
8561 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8562 return false;
8563 }
8564
8565 sw_id = pf->first_sw->sw_id;
8566
8567 /* create channel (VSI) */
8568 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8569 if (ret) {
8570 dev_err(dev, "failed to setup hw_channel\n");
8571 return false;
8572 }
8573 dev_dbg(dev, "successfully created channel()\n");
8574
8575 return ch->ch_vsi ? true : false;
8576}
8577
8578/**
8579 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8580 * @vsi: VSI to be configured
8581 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8582 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8583 */
8584static int
8585ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8586{
8587 int err;
8588
8589 err = ice_set_min_bw_limit(vsi, min_tx_rate);
8590 if (err)
8591 return err;
8592
8593 return ice_set_max_bw_limit(vsi, max_tx_rate);
8594}
8595
8596/**
8597 * ice_create_q_channel - function to create channel
8598 * @vsi: VSI to be configured
8599 * @ch: ptr to channel (it contains channel specific params)
8600 *
8601 * This function creates channel (VSI) using num_queues specified by user,
8602 * reconfigs RSS if needed.
8603 */
8604static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8605{
8606 struct ice_pf *pf = vsi->back;
8607 struct device *dev;
8608
8609 if (!ch)
8610 return -EINVAL;
8611
8612 dev = ice_pf_to_dev(pf);
8613 if (!ch->num_txq || !ch->num_rxq) {
8614 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8615 return -EINVAL;
8616 }
8617
8618 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8619 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8620 vsi->cnt_q_avail, ch->num_txq);
8621 return -EINVAL;
8622 }
8623
8624 if (!ice_setup_channel(pf, vsi, ch)) {
8625 dev_info(dev, "Failed to setup channel\n");
8626 return -EINVAL;
8627 }
8628 /* configure BW rate limit */
8629 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8630 int ret;
8631
8632 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8633 ch->min_tx_rate);
8634 if (ret)
8635 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8636 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8637 else
8638 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8639 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8640 }
8641
8642 vsi->cnt_q_avail -= ch->num_txq;
8643
8644 return 0;
8645}
8646
8647/**
8648 * ice_rem_all_chnl_fltrs - removes all channel filters
8649 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8650 *
8651 * Remove all advanced switch filters only if they are channel specific
8652 * tc-flower based filter
8653 */
8654static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8655{
8656 struct ice_tc_flower_fltr *fltr;
8657 struct hlist_node *node;
8658
8659 /* to remove all channel filters, iterate an ordered list of filters */
8660 hlist_for_each_entry_safe(fltr, node,
8661 &pf->tc_flower_fltr_list,
8662 tc_flower_node) {
8663 struct ice_rule_query_data rule;
8664 int status;
8665
8666 /* for now process only channel specific filters */
8667 if (!ice_is_chnl_fltr(fltr))
8668 continue;
8669
8670 rule.rid = fltr->rid;
8671 rule.rule_id = fltr->rule_id;
8672 rule.vsi_handle = fltr->dest_vsi_handle;
8673 status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8674 if (status) {
8675 if (status == -ENOENT)
8676 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8677 rule.rule_id);
8678 else
8679 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8680 status);
8681 } else if (fltr->dest_vsi) {
8682 /* update advanced switch filter count */
8683 if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8684 u32 flags = fltr->flags;
8685
8686 fltr->dest_vsi->num_chnl_fltr--;
8687 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8688 ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8689 pf->num_dmac_chnl_fltrs--;
8690 }
8691 }
8692
8693 hlist_del(&fltr->tc_flower_node);
8694 kfree(fltr);
8695 }
8696}
8697
8698/**
8699 * ice_remove_q_channels - Remove queue channels for the TCs
8700 * @vsi: VSI to be configured
8701 * @rem_fltr: delete advanced switch filter or not
8702 *
8703 * Remove queue channels for the TCs
8704 */
8705static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8706{
8707 struct ice_channel *ch, *ch_tmp;
8708 struct ice_pf *pf = vsi->back;
8709 int i;
8710
8711 /* remove all tc-flower based filter if they are channel filters only */
8712 if (rem_fltr)
8713 ice_rem_all_chnl_fltrs(pf);
8714
8715 /* remove ntuple filters since queue configuration is being changed */
8716 if (vsi->netdev->features & NETIF_F_NTUPLE) {
8717 struct ice_hw *hw = &pf->hw;
8718
8719 mutex_lock(&hw->fdir_fltr_lock);
8720 ice_fdir_del_all_fltrs(vsi);
8721 mutex_unlock(&hw->fdir_fltr_lock);
8722 }
8723
8724 /* perform cleanup for channels if they exist */
8725 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8726 struct ice_vsi *ch_vsi;
8727
8728 list_del(&ch->list);
8729 ch_vsi = ch->ch_vsi;
8730 if (!ch_vsi) {
8731 kfree(ch);
8732 continue;
8733 }
8734
8735 /* Reset queue contexts */
8736 for (i = 0; i < ch->num_rxq; i++) {
8737 struct ice_tx_ring *tx_ring;
8738 struct ice_rx_ring *rx_ring;
8739
8740 tx_ring = vsi->tx_rings[ch->base_q + i];
8741 rx_ring = vsi->rx_rings[ch->base_q + i];
8742 if (tx_ring) {
8743 tx_ring->ch = NULL;
8744 if (tx_ring->q_vector)
8745 tx_ring->q_vector->ch = NULL;
8746 }
8747 if (rx_ring) {
8748 rx_ring->ch = NULL;
8749 if (rx_ring->q_vector)
8750 rx_ring->q_vector->ch = NULL;
8751 }
8752 }
8753
8754 /* Release FD resources for the channel VSI */
8755 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8756
8757 /* clear the VSI from scheduler tree */
8758 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8759
8760 /* Delete VSI from FW, PF and HW VSI arrays */
8761 ice_vsi_delete(ch->ch_vsi);
8762
8763 /* free the channel */
8764 kfree(ch);
8765 }
8766
8767 /* clear the channel VSI map which is stored in main VSI */
8768 ice_for_each_chnl_tc(i)
8769 vsi->tc_map_vsi[i] = NULL;
8770
8771 /* reset main VSI's all TC information */
8772 vsi->all_enatc = 0;
8773 vsi->all_numtc = 0;
8774}
8775
8776/**
8777 * ice_rebuild_channels - rebuild channel
8778 * @pf: ptr to PF
8779 *
8780 * Recreate channel VSIs and replay filters
8781 */
8782static int ice_rebuild_channels(struct ice_pf *pf)
8783{
8784 struct device *dev = ice_pf_to_dev(pf);
8785 struct ice_vsi *main_vsi;
8786 bool rem_adv_fltr = true;
8787 struct ice_channel *ch;
8788 struct ice_vsi *vsi;
8789 int tc_idx = 1;
8790 int i, err;
8791
8792 main_vsi = ice_get_main_vsi(pf);
8793 if (!main_vsi)
8794 return 0;
8795
8796 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8797 main_vsi->old_numtc == 1)
8798 return 0; /* nothing to be done */
8799
8800 /* reconfigure main VSI based on old value of TC and cached values
8801 * for MQPRIO opts
8802 */
8803 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8804 if (err) {
8805 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8806 main_vsi->old_ena_tc, main_vsi->vsi_num);
8807 return err;
8808 }
8809
8810 /* rebuild ADQ VSIs */
8811 ice_for_each_vsi(pf, i) {
8812 enum ice_vsi_type type;
8813
8814 vsi = pf->vsi[i];
8815 if (!vsi || vsi->type != ICE_VSI_CHNL)
8816 continue;
8817
8818 type = vsi->type;
8819
8820 /* rebuild ADQ VSI */
8821 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
8822 if (err) {
8823 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8824 ice_vsi_type_str(type), vsi->idx, err);
8825 goto cleanup;
8826 }
8827
8828 /* Re-map HW VSI number, using VSI handle that has been
8829 * previously validated in ice_replay_vsi() call above
8830 */
8831 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8832
8833 /* replay filters for the VSI */
8834 err = ice_replay_vsi(&pf->hw, vsi->idx);
8835 if (err) {
8836 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8837 ice_vsi_type_str(type), err, vsi->idx);
8838 rem_adv_fltr = false;
8839 goto cleanup;
8840 }
8841 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8842 ice_vsi_type_str(type), vsi->idx);
8843
8844 /* store ADQ VSI at correct TC index in main VSI's
8845 * map of TC to VSI
8846 */
8847 main_vsi->tc_map_vsi[tc_idx++] = vsi;
8848 }
8849
8850 /* ADQ VSI(s) has been rebuilt successfully, so setup
8851 * channel for main VSI's Tx and Rx rings
8852 */
8853 list_for_each_entry(ch, &main_vsi->ch_list, list) {
8854 struct ice_vsi *ch_vsi;
8855
8856 ch_vsi = ch->ch_vsi;
8857 if (!ch_vsi)
8858 continue;
8859
8860 /* reconfig channel resources */
8861 ice_cfg_chnl_all_res(main_vsi, ch);
8862
8863 /* replay BW rate limit if it is non-zero */
8864 if (!ch->max_tx_rate && !ch->min_tx_rate)
8865 continue;
8866
8867 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8868 ch->min_tx_rate);
8869 if (err)
8870 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8871 err, ch->max_tx_rate, ch->min_tx_rate,
8872 ch_vsi->vsi_num);
8873 else
8874 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8875 ch->max_tx_rate, ch->min_tx_rate,
8876 ch_vsi->vsi_num);
8877 }
8878
8879 /* reconfig RSS for main VSI */
8880 if (main_vsi->ch_rss_size)
8881 ice_vsi_cfg_rss_lut_key(main_vsi);
8882
8883 return 0;
8884
8885cleanup:
8886 ice_remove_q_channels(main_vsi, rem_adv_fltr);
8887 return err;
8888}
8889
8890/**
8891 * ice_create_q_channels - Add queue channel for the given TCs
8892 * @vsi: VSI to be configured
8893 *
8894 * Configures queue channel mapping to the given TCs
8895 */
8896static int ice_create_q_channels(struct ice_vsi *vsi)
8897{
8898 struct ice_pf *pf = vsi->back;
8899 struct ice_channel *ch;
8900 int ret = 0, i;
8901
8902 ice_for_each_chnl_tc(i) {
8903 if (!(vsi->all_enatc & BIT(i)))
8904 continue;
8905
8906 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8907 if (!ch) {
8908 ret = -ENOMEM;
8909 goto err_free;
8910 }
8911 INIT_LIST_HEAD(&ch->list);
8912 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8913 ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8914 ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8915 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8916 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8917
8918 /* convert to Kbits/s */
8919 if (ch->max_tx_rate)
8920 ch->max_tx_rate = div_u64(ch->max_tx_rate,
8921 ICE_BW_KBPS_DIVISOR);
8922 if (ch->min_tx_rate)
8923 ch->min_tx_rate = div_u64(ch->min_tx_rate,
8924 ICE_BW_KBPS_DIVISOR);
8925
8926 ret = ice_create_q_channel(vsi, ch);
8927 if (ret) {
8928 dev_err(ice_pf_to_dev(pf),
8929 "failed creating channel TC:%d\n", i);
8930 kfree(ch);
8931 goto err_free;
8932 }
8933 list_add_tail(&ch->list, &vsi->ch_list);
8934 vsi->tc_map_vsi[i] = ch->ch_vsi;
8935 dev_dbg(ice_pf_to_dev(pf),
8936 "successfully created channel: VSI %pK\n", ch->ch_vsi);
8937 }
8938 return 0;
8939
8940err_free:
8941 ice_remove_q_channels(vsi, false);
8942
8943 return ret;
8944}
8945
8946/**
8947 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8948 * @netdev: net device to configure
8949 * @type_data: TC offload data
8950 */
8951static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8952{
8953 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8954 struct ice_netdev_priv *np = netdev_priv(netdev);
8955 struct ice_vsi *vsi = np->vsi;
8956 struct ice_pf *pf = vsi->back;
8957 u16 mode, ena_tc_qdisc = 0;
8958 int cur_txq, cur_rxq;
8959 u8 hw = 0, num_tcf;
8960 struct device *dev;
8961 int ret, i;
8962
8963 dev = ice_pf_to_dev(pf);
8964 num_tcf = mqprio_qopt->qopt.num_tc;
8965 hw = mqprio_qopt->qopt.hw;
8966 mode = mqprio_qopt->mode;
8967 if (!hw) {
8968 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8969 vsi->ch_rss_size = 0;
8970 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8971 goto config_tcf;
8972 }
8973
8974 /* Generate queue region map for number of TCF requested */
8975 for (i = 0; i < num_tcf; i++)
8976 ena_tc_qdisc |= BIT(i);
8977
8978 switch (mode) {
8979 case TC_MQPRIO_MODE_CHANNEL:
8980
8981 if (pf->hw.port_info->is_custom_tx_enabled) {
8982 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
8983 return -EBUSY;
8984 }
8985 ice_tear_down_devlink_rate_tree(pf);
8986
8987 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8988 if (ret) {
8989 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8990 ret);
8991 return ret;
8992 }
8993 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8994 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8995 /* don't assume state of hw_tc_offload during driver load
8996 * and set the flag for TC flower filter if hw_tc_offload
8997 * already ON
8998 */
8999 if (vsi->netdev->features & NETIF_F_HW_TC)
9000 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
9001 break;
9002 default:
9003 return -EINVAL;
9004 }
9005
9006config_tcf:
9007
9008 /* Requesting same TCF configuration as already enabled */
9009 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
9010 mode != TC_MQPRIO_MODE_CHANNEL)
9011 return 0;
9012
9013 /* Pause VSI queues */
9014 ice_dis_vsi(vsi, true);
9015
9016 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
9017 ice_remove_q_channels(vsi, true);
9018
9019 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9020 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
9021 num_online_cpus());
9022 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
9023 num_online_cpus());
9024 } else {
9025 /* logic to rebuild VSI, same like ethtool -L */
9026 u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
9027
9028 for (i = 0; i < num_tcf; i++) {
9029 if (!(ena_tc_qdisc & BIT(i)))
9030 continue;
9031
9032 offset = vsi->mqprio_qopt.qopt.offset[i];
9033 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
9034 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
9035 }
9036 vsi->req_txq = offset + qcount_tx;
9037 vsi->req_rxq = offset + qcount_rx;
9038
9039 /* store away original rss_size info, so that it gets reused
9040 * form ice_vsi_rebuild during tc-qdisc delete stage - to
9041 * determine, what should be the rss_sizefor main VSI
9042 */
9043 vsi->orig_rss_size = vsi->rss_size;
9044 }
9045
9046 /* save current values of Tx and Rx queues before calling VSI rebuild
9047 * for fallback option
9048 */
9049 cur_txq = vsi->num_txq;
9050 cur_rxq = vsi->num_rxq;
9051
9052 /* proceed with rebuild main VSI using correct number of queues */
9053 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
9054 if (ret) {
9055 /* fallback to current number of queues */
9056 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
9057 vsi->req_txq = cur_txq;
9058 vsi->req_rxq = cur_rxq;
9059 clear_bit(ICE_RESET_FAILED, pf->state);
9060 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
9061 dev_err(dev, "Rebuild of main VSI failed again\n");
9062 return ret;
9063 }
9064 }
9065
9066 vsi->all_numtc = num_tcf;
9067 vsi->all_enatc = ena_tc_qdisc;
9068 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
9069 if (ret) {
9070 netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
9071 vsi->vsi_num);
9072 goto exit;
9073 }
9074
9075 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9076 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9077 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
9078
9079 /* set TC0 rate limit if specified */
9080 if (max_tx_rate || min_tx_rate) {
9081 /* convert to Kbits/s */
9082 if (max_tx_rate)
9083 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
9084 if (min_tx_rate)
9085 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
9086
9087 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
9088 if (!ret) {
9089 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
9090 max_tx_rate, min_tx_rate, vsi->vsi_num);
9091 } else {
9092 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
9093 max_tx_rate, min_tx_rate, vsi->vsi_num);
9094 goto exit;
9095 }
9096 }
9097 ret = ice_create_q_channels(vsi);
9098 if (ret) {
9099 netdev_err(netdev, "failed configuring queue channels\n");
9100 goto exit;
9101 } else {
9102 netdev_dbg(netdev, "successfully configured channels\n");
9103 }
9104 }
9105
9106 if (vsi->ch_rss_size)
9107 ice_vsi_cfg_rss_lut_key(vsi);
9108
9109exit:
9110 /* if error, reset the all_numtc and all_enatc */
9111 if (ret) {
9112 vsi->all_numtc = 0;
9113 vsi->all_enatc = 0;
9114 }
9115 /* resume VSI */
9116 ice_ena_vsi(vsi, true);
9117
9118 return ret;
9119}
9120
9121static LIST_HEAD(ice_block_cb_list);
9122
9123static int
9124ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9125 void *type_data)
9126{
9127 struct ice_netdev_priv *np = netdev_priv(netdev);
9128 struct ice_pf *pf = np->vsi->back;
9129 bool locked = false;
9130 int err;
9131
9132 switch (type) {
9133 case TC_SETUP_BLOCK:
9134 return flow_block_cb_setup_simple(type_data,
9135 &ice_block_cb_list,
9136 ice_setup_tc_block_cb,
9137 np, np, true);
9138 case TC_SETUP_QDISC_MQPRIO:
9139 if (ice_is_eswitch_mode_switchdev(pf)) {
9140 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9141 return -EOPNOTSUPP;
9142 }
9143
9144 if (pf->adev) {
9145 mutex_lock(&pf->adev_mutex);
9146 device_lock(&pf->adev->dev);
9147 locked = true;
9148 if (pf->adev->dev.driver) {
9149 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9150 err = -EBUSY;
9151 goto adev_unlock;
9152 }
9153 }
9154
9155 /* setup traffic classifier for receive side */
9156 mutex_lock(&pf->tc_mutex);
9157 err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9158 mutex_unlock(&pf->tc_mutex);
9159
9160adev_unlock:
9161 if (locked) {
9162 device_unlock(&pf->adev->dev);
9163 mutex_unlock(&pf->adev_mutex);
9164 }
9165 return err;
9166 default:
9167 return -EOPNOTSUPP;
9168 }
9169 return -EOPNOTSUPP;
9170}
9171
9172static struct ice_indr_block_priv *
9173ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9174 struct net_device *netdev)
9175{
9176 struct ice_indr_block_priv *cb_priv;
9177
9178 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9179 if (!cb_priv->netdev)
9180 return NULL;
9181 if (cb_priv->netdev == netdev)
9182 return cb_priv;
9183 }
9184 return NULL;
9185}
9186
9187static int
9188ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9189 void *indr_priv)
9190{
9191 struct ice_indr_block_priv *priv = indr_priv;
9192 struct ice_netdev_priv *np = priv->np;
9193
9194 switch (type) {
9195 case TC_SETUP_CLSFLOWER:
9196 return ice_setup_tc_cls_flower(np, priv->netdev,
9197 (struct flow_cls_offload *)
9198 type_data);
9199 default:
9200 return -EOPNOTSUPP;
9201 }
9202}
9203
9204static int
9205ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9206 struct ice_netdev_priv *np,
9207 struct flow_block_offload *f, void *data,
9208 void (*cleanup)(struct flow_block_cb *block_cb))
9209{
9210 struct ice_indr_block_priv *indr_priv;
9211 struct flow_block_cb *block_cb;
9212
9213 if (!ice_is_tunnel_supported(netdev) &&
9214 !(is_vlan_dev(netdev) &&
9215 vlan_dev_real_dev(netdev) == np->vsi->netdev))
9216 return -EOPNOTSUPP;
9217
9218 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9219 return -EOPNOTSUPP;
9220
9221 switch (f->command) {
9222 case FLOW_BLOCK_BIND:
9223 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9224 if (indr_priv)
9225 return -EEXIST;
9226
9227 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9228 if (!indr_priv)
9229 return -ENOMEM;
9230
9231 indr_priv->netdev = netdev;
9232 indr_priv->np = np;
9233 list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9234
9235 block_cb =
9236 flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9237 indr_priv, indr_priv,
9238 ice_rep_indr_tc_block_unbind,
9239 f, netdev, sch, data, np,
9240 cleanup);
9241
9242 if (IS_ERR(block_cb)) {
9243 list_del(&indr_priv->list);
9244 kfree(indr_priv);
9245 return PTR_ERR(block_cb);
9246 }
9247 flow_block_cb_add(block_cb, f);
9248 list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9249 break;
9250 case FLOW_BLOCK_UNBIND:
9251 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9252 if (!indr_priv)
9253 return -ENOENT;
9254
9255 block_cb = flow_block_cb_lookup(f->block,
9256 ice_indr_setup_block_cb,
9257 indr_priv);
9258 if (!block_cb)
9259 return -ENOENT;
9260
9261 flow_indr_block_cb_remove(block_cb, f);
9262
9263 list_del(&block_cb->driver_list);
9264 break;
9265 default:
9266 return -EOPNOTSUPP;
9267 }
9268 return 0;
9269}
9270
9271static int
9272ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9273 void *cb_priv, enum tc_setup_type type, void *type_data,
9274 void *data,
9275 void (*cleanup)(struct flow_block_cb *block_cb))
9276{
9277 switch (type) {
9278 case TC_SETUP_BLOCK:
9279 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9280 data, cleanup);
9281
9282 default:
9283 return -EOPNOTSUPP;
9284 }
9285}
9286
9287/**
9288 * ice_open - Called when a network interface becomes active
9289 * @netdev: network interface device structure
9290 *
9291 * The open entry point is called when a network interface is made
9292 * active by the system (IFF_UP). At this point all resources needed
9293 * for transmit and receive operations are allocated, the interrupt
9294 * handler is registered with the OS, the netdev watchdog is enabled,
9295 * and the stack is notified that the interface is ready.
9296 *
9297 * Returns 0 on success, negative value on failure
9298 */
9299int ice_open(struct net_device *netdev)
9300{
9301 struct ice_netdev_priv *np = netdev_priv(netdev);
9302 struct ice_pf *pf = np->vsi->back;
9303
9304 if (ice_is_reset_in_progress(pf->state)) {
9305 netdev_err(netdev, "can't open net device while reset is in progress");
9306 return -EBUSY;
9307 }
9308
9309 return ice_open_internal(netdev);
9310}
9311
9312/**
9313 * ice_open_internal - Called when a network interface becomes active
9314 * @netdev: network interface device structure
9315 *
9316 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9317 * handling routine
9318 *
9319 * Returns 0 on success, negative value on failure
9320 */
9321int ice_open_internal(struct net_device *netdev)
9322{
9323 struct ice_netdev_priv *np = netdev_priv(netdev);
9324 struct ice_vsi *vsi = np->vsi;
9325 struct ice_pf *pf = vsi->back;
9326 struct ice_port_info *pi;
9327 int err;
9328
9329 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9330 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9331 return -EIO;
9332 }
9333
9334 netif_carrier_off(netdev);
9335
9336 pi = vsi->port_info;
9337 err = ice_update_link_info(pi);
9338 if (err) {
9339 netdev_err(netdev, "Failed to get link info, error %d\n", err);
9340 return err;
9341 }
9342
9343 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9344
9345 /* Set PHY if there is media, otherwise, turn off PHY */
9346 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9347 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9348 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9349 err = ice_init_phy_user_cfg(pi);
9350 if (err) {
9351 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9352 err);
9353 return err;
9354 }
9355 }
9356
9357 err = ice_configure_phy(vsi);
9358 if (err) {
9359 netdev_err(netdev, "Failed to set physical link up, error %d\n",
9360 err);
9361 return err;
9362 }
9363 } else {
9364 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9365 ice_set_link(vsi, false);
9366 }
9367
9368 err = ice_vsi_open(vsi);
9369 if (err)
9370 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9371 vsi->vsi_num, vsi->vsw->sw_id);
9372
9373 /* Update existing tunnels information */
9374 udp_tunnel_get_rx_info(netdev);
9375
9376 return err;
9377}
9378
9379/**
9380 * ice_stop - Disables a network interface
9381 * @netdev: network interface device structure
9382 *
9383 * The stop entry point is called when an interface is de-activated by the OS,
9384 * and the netdevice enters the DOWN state. The hardware is still under the
9385 * driver's control, but the netdev interface is disabled.
9386 *
9387 * Returns success only - not allowed to fail
9388 */
9389int ice_stop(struct net_device *netdev)
9390{
9391 struct ice_netdev_priv *np = netdev_priv(netdev);
9392 struct ice_vsi *vsi = np->vsi;
9393 struct ice_pf *pf = vsi->back;
9394
9395 if (ice_is_reset_in_progress(pf->state)) {
9396 netdev_err(netdev, "can't stop net device while reset is in progress");
9397 return -EBUSY;
9398 }
9399
9400 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9401 int link_err = ice_force_phys_link_state(vsi, false);
9402
9403 if (link_err) {
9404 if (link_err == -ENOMEDIUM)
9405 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9406 vsi->vsi_num);
9407 else
9408 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9409 vsi->vsi_num, link_err);
9410
9411 ice_vsi_close(vsi);
9412 return -EIO;
9413 }
9414 }
9415
9416 ice_vsi_close(vsi);
9417
9418 return 0;
9419}
9420
9421/**
9422 * ice_features_check - Validate encapsulated packet conforms to limits
9423 * @skb: skb buffer
9424 * @netdev: This port's netdev
9425 * @features: Offload features that the stack believes apply
9426 */
9427static netdev_features_t
9428ice_features_check(struct sk_buff *skb,
9429 struct net_device __always_unused *netdev,
9430 netdev_features_t features)
9431{
9432 bool gso = skb_is_gso(skb);
9433 size_t len;
9434
9435 /* No point in doing any of this if neither checksum nor GSO are
9436 * being requested for this frame. We can rule out both by just
9437 * checking for CHECKSUM_PARTIAL
9438 */
9439 if (skb->ip_summed != CHECKSUM_PARTIAL)
9440 return features;
9441
9442 /* We cannot support GSO if the MSS is going to be less than
9443 * 64 bytes. If it is then we need to drop support for GSO.
9444 */
9445 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9446 features &= ~NETIF_F_GSO_MASK;
9447
9448 len = skb_network_offset(skb);
9449 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9450 goto out_rm_features;
9451
9452 len = skb_network_header_len(skb);
9453 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9454 goto out_rm_features;
9455
9456 if (skb->encapsulation) {
9457 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
9458 * the case of IPIP frames, the transport header pointer is
9459 * after the inner header! So check to make sure that this
9460 * is a GRE or UDP_TUNNEL frame before doing that math.
9461 */
9462 if (gso && (skb_shinfo(skb)->gso_type &
9463 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9464 len = skb_inner_network_header(skb) -
9465 skb_transport_header(skb);
9466 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9467 goto out_rm_features;
9468 }
9469
9470 len = skb_inner_network_header_len(skb);
9471 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9472 goto out_rm_features;
9473 }
9474
9475 return features;
9476out_rm_features:
9477 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9478}
9479
9480static const struct net_device_ops ice_netdev_safe_mode_ops = {
9481 .ndo_open = ice_open,
9482 .ndo_stop = ice_stop,
9483 .ndo_start_xmit = ice_start_xmit,
9484 .ndo_set_mac_address = ice_set_mac_address,
9485 .ndo_validate_addr = eth_validate_addr,
9486 .ndo_change_mtu = ice_change_mtu,
9487 .ndo_get_stats64 = ice_get_stats64,
9488 .ndo_tx_timeout = ice_tx_timeout,
9489 .ndo_bpf = ice_xdp_safe_mode,
9490};
9491
9492static const struct net_device_ops ice_netdev_ops = {
9493 .ndo_open = ice_open,
9494 .ndo_stop = ice_stop,
9495 .ndo_start_xmit = ice_start_xmit,
9496 .ndo_select_queue = ice_select_queue,
9497 .ndo_features_check = ice_features_check,
9498 .ndo_fix_features = ice_fix_features,
9499 .ndo_set_rx_mode = ice_set_rx_mode,
9500 .ndo_set_mac_address = ice_set_mac_address,
9501 .ndo_validate_addr = eth_validate_addr,
9502 .ndo_change_mtu = ice_change_mtu,
9503 .ndo_get_stats64 = ice_get_stats64,
9504 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
9505 .ndo_eth_ioctl = ice_eth_ioctl,
9506 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9507 .ndo_set_vf_mac = ice_set_vf_mac,
9508 .ndo_get_vf_config = ice_get_vf_cfg,
9509 .ndo_set_vf_trust = ice_set_vf_trust,
9510 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
9511 .ndo_set_vf_link_state = ice_set_vf_link_state,
9512 .ndo_get_vf_stats = ice_get_vf_stats,
9513 .ndo_set_vf_rate = ice_set_vf_bw,
9514 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9515 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9516 .ndo_setup_tc = ice_setup_tc,
9517 .ndo_set_features = ice_set_features,
9518 .ndo_bridge_getlink = ice_bridge_getlink,
9519 .ndo_bridge_setlink = ice_bridge_setlink,
9520 .ndo_fdb_add = ice_fdb_add,
9521 .ndo_fdb_del = ice_fdb_del,
9522#ifdef CONFIG_RFS_ACCEL
9523 .ndo_rx_flow_steer = ice_rx_flow_steer,
9524#endif
9525 .ndo_tx_timeout = ice_tx_timeout,
9526 .ndo_bpf = ice_xdp,
9527 .ndo_xdp_xmit = ice_xdp_xmit,
9528 .ndo_xsk_wakeup = ice_xsk_wakeup,
9529};
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <generated/utsrelease.h>
9#include "ice.h"
10#include "ice_base.h"
11#include "ice_lib.h"
12#include "ice_fltr.h"
13#include "ice_dcb_lib.h"
14#include "ice_dcb_nl.h"
15#include "ice_devlink.h"
16/* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
17 * ice tracepoint functions. This must be done exactly once across the
18 * ice driver.
19 */
20#define CREATE_TRACE_POINTS
21#include "ice_trace.h"
22#include "ice_eswitch.h"
23#include "ice_tc_lib.h"
24#include "ice_vsi_vlan_ops.h"
25
26#define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
27static const char ice_driver_string[] = DRV_SUMMARY;
28static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
29
30/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
31#define ICE_DDP_PKG_PATH "intel/ice/ddp/"
32#define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
33
34MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35MODULE_DESCRIPTION(DRV_SUMMARY);
36MODULE_LICENSE("GPL v2");
37MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
38
39static int debug = -1;
40module_param(debug, int, 0644);
41#ifndef CONFIG_DYNAMIC_DEBUG
42MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
43#else
44MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
45#endif /* !CONFIG_DYNAMIC_DEBUG */
46
47static DEFINE_IDA(ice_aux_ida);
48DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
49EXPORT_SYMBOL(ice_xdp_locking_key);
50
51/**
52 * ice_hw_to_dev - Get device pointer from the hardware structure
53 * @hw: pointer to the device HW structure
54 *
55 * Used to access the device pointer from compilation units which can't easily
56 * include the definition of struct ice_pf without leading to circular header
57 * dependencies.
58 */
59struct device *ice_hw_to_dev(struct ice_hw *hw)
60{
61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
62
63 return &pf->pdev->dev;
64}
65
66static struct workqueue_struct *ice_wq;
67static const struct net_device_ops ice_netdev_safe_mode_ops;
68static const struct net_device_ops ice_netdev_ops;
69
70static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
71
72static void ice_vsi_release_all(struct ice_pf *pf);
73
74static int ice_rebuild_channels(struct ice_pf *pf);
75static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
76
77static int
78ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
79 void *cb_priv, enum tc_setup_type type, void *type_data,
80 void *data,
81 void (*cleanup)(struct flow_block_cb *block_cb));
82
83bool netif_is_ice(struct net_device *dev)
84{
85 return dev && (dev->netdev_ops == &ice_netdev_ops);
86}
87
88/**
89 * ice_get_tx_pending - returns number of Tx descriptors not processed
90 * @ring: the ring of descriptors
91 */
92static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
93{
94 u16 head, tail;
95
96 head = ring->next_to_clean;
97 tail = ring->next_to_use;
98
99 if (head != tail)
100 return (head < tail) ?
101 tail - head : (tail + ring->count - head);
102 return 0;
103}
104
105/**
106 * ice_check_for_hang_subtask - check for and recover hung queues
107 * @pf: pointer to PF struct
108 */
109static void ice_check_for_hang_subtask(struct ice_pf *pf)
110{
111 struct ice_vsi *vsi = NULL;
112 struct ice_hw *hw;
113 unsigned int i;
114 int packets;
115 u32 v;
116
117 ice_for_each_vsi(pf, v)
118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
119 vsi = pf->vsi[v];
120 break;
121 }
122
123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
124 return;
125
126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
127 return;
128
129 hw = &vsi->back->hw;
130
131 ice_for_each_txq(vsi, i) {
132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
133 struct ice_ring_stats *ring_stats;
134
135 if (!tx_ring)
136 continue;
137 if (ice_ring_ch_enabled(tx_ring))
138 continue;
139
140 ring_stats = tx_ring->ring_stats;
141 if (!ring_stats)
142 continue;
143
144 if (tx_ring->desc) {
145 /* If packet counter has not changed the queue is
146 * likely stalled, so force an interrupt for this
147 * queue.
148 *
149 * prev_pkt would be negative if there was no
150 * pending work.
151 */
152 packets = ring_stats->stats.pkts & INT_MAX;
153 if (ring_stats->tx_stats.prev_pkt == packets) {
154 /* Trigger sw interrupt to revive the queue */
155 ice_trigger_sw_intr(hw, tx_ring->q_vector);
156 continue;
157 }
158
159 /* Memory barrier between read of packet count and call
160 * to ice_get_tx_pending()
161 */
162 smp_rmb();
163 ring_stats->tx_stats.prev_pkt =
164 ice_get_tx_pending(tx_ring) ? packets : -1;
165 }
166 }
167}
168
169/**
170 * ice_init_mac_fltr - Set initial MAC filters
171 * @pf: board private structure
172 *
173 * Set initial set of MAC filters for PF VSI; configure filters for permanent
174 * address and broadcast address. If an error is encountered, netdevice will be
175 * unregistered.
176 */
177static int ice_init_mac_fltr(struct ice_pf *pf)
178{
179 struct ice_vsi *vsi;
180 u8 *perm_addr;
181
182 vsi = ice_get_main_vsi(pf);
183 if (!vsi)
184 return -EINVAL;
185
186 perm_addr = vsi->port_info->mac.perm_addr;
187 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
188}
189
190/**
191 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
192 * @netdev: the net device on which the sync is happening
193 * @addr: MAC address to sync
194 *
195 * This is a callback function which is called by the in kernel device sync
196 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
197 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
198 * MAC filters from the hardware.
199 */
200static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
201{
202 struct ice_netdev_priv *np = netdev_priv(netdev);
203 struct ice_vsi *vsi = np->vsi;
204
205 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
206 ICE_FWD_TO_VSI))
207 return -EINVAL;
208
209 return 0;
210}
211
212/**
213 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
214 * @netdev: the net device on which the unsync is happening
215 * @addr: MAC address to unsync
216 *
217 * This is a callback function which is called by the in kernel device unsync
218 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
219 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
220 * delete the MAC filters from the hardware.
221 */
222static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
223{
224 struct ice_netdev_priv *np = netdev_priv(netdev);
225 struct ice_vsi *vsi = np->vsi;
226
227 /* Under some circumstances, we might receive a request to delete our
228 * own device address from our uc list. Because we store the device
229 * address in the VSI's MAC filter list, we need to ignore such
230 * requests and not delete our device address from this list.
231 */
232 if (ether_addr_equal(addr, netdev->dev_addr))
233 return 0;
234
235 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
236 ICE_FWD_TO_VSI))
237 return -EINVAL;
238
239 return 0;
240}
241
242/**
243 * ice_vsi_fltr_changed - check if filter state changed
244 * @vsi: VSI to be checked
245 *
246 * returns true if filter state has changed, false otherwise.
247 */
248static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
249{
250 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
251 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
252}
253
254/**
255 * ice_set_promisc - Enable promiscuous mode for a given PF
256 * @vsi: the VSI being configured
257 * @promisc_m: mask of promiscuous config bits
258 *
259 */
260static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
261{
262 int status;
263
264 if (vsi->type != ICE_VSI_PF)
265 return 0;
266
267 if (ice_vsi_has_non_zero_vlans(vsi)) {
268 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
269 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
270 promisc_m);
271 } else {
272 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
273 promisc_m, 0);
274 }
275 if (status && status != -EEXIST)
276 return status;
277
278 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
279 vsi->vsi_num, promisc_m);
280 return 0;
281}
282
283/**
284 * ice_clear_promisc - Disable promiscuous mode for a given PF
285 * @vsi: the VSI being configured
286 * @promisc_m: mask of promiscuous config bits
287 *
288 */
289static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
290{
291 int status;
292
293 if (vsi->type != ICE_VSI_PF)
294 return 0;
295
296 if (ice_vsi_has_non_zero_vlans(vsi)) {
297 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
298 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
299 promisc_m);
300 } else {
301 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
302 promisc_m, 0);
303 }
304
305 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
306 vsi->vsi_num, promisc_m);
307 return status;
308}
309
310/**
311 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
312 * @vsi: ptr to the VSI
313 *
314 * Push any outstanding VSI filter changes through the AdminQ.
315 */
316static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
317{
318 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
319 struct device *dev = ice_pf_to_dev(vsi->back);
320 struct net_device *netdev = vsi->netdev;
321 bool promisc_forced_on = false;
322 struct ice_pf *pf = vsi->back;
323 struct ice_hw *hw = &pf->hw;
324 u32 changed_flags = 0;
325 int err;
326
327 if (!vsi->netdev)
328 return -EINVAL;
329
330 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
331 usleep_range(1000, 2000);
332
333 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
334 vsi->current_netdev_flags = vsi->netdev->flags;
335
336 INIT_LIST_HEAD(&vsi->tmp_sync_list);
337 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
338
339 if (ice_vsi_fltr_changed(vsi)) {
340 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
341 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
342
343 /* grab the netdev's addr_list_lock */
344 netif_addr_lock_bh(netdev);
345 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
346 ice_add_mac_to_unsync_list);
347 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
348 ice_add_mac_to_unsync_list);
349 /* our temp lists are populated. release lock */
350 netif_addr_unlock_bh(netdev);
351 }
352
353 /* Remove MAC addresses in the unsync list */
354 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
355 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
356 if (err) {
357 netdev_err(netdev, "Failed to delete MAC filters\n");
358 /* if we failed because of alloc failures, just bail */
359 if (err == -ENOMEM)
360 goto out;
361 }
362
363 /* Add MAC addresses in the sync list */
364 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
365 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
366 /* If filter is added successfully or already exists, do not go into
367 * 'if' condition and report it as error. Instead continue processing
368 * rest of the function.
369 */
370 if (err && err != -EEXIST) {
371 netdev_err(netdev, "Failed to add MAC filters\n");
372 /* If there is no more space for new umac filters, VSI
373 * should go into promiscuous mode. There should be some
374 * space reserved for promiscuous filters.
375 */
376 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
377 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
378 vsi->state)) {
379 promisc_forced_on = true;
380 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
381 vsi->vsi_num);
382 } else {
383 goto out;
384 }
385 }
386 err = 0;
387 /* check for changes in promiscuous modes */
388 if (changed_flags & IFF_ALLMULTI) {
389 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
390 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
391 if (err) {
392 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
393 goto out_promisc;
394 }
395 } else {
396 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
397 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
398 if (err) {
399 vsi->current_netdev_flags |= IFF_ALLMULTI;
400 goto out_promisc;
401 }
402 }
403 }
404
405 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
406 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
407 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
408 if (vsi->current_netdev_flags & IFF_PROMISC) {
409 /* Apply Rx filter rule to get traffic from wire */
410 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
411 err = ice_set_dflt_vsi(vsi);
412 if (err && err != -EEXIST) {
413 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
414 err, vsi->vsi_num);
415 vsi->current_netdev_flags &=
416 ~IFF_PROMISC;
417 goto out_promisc;
418 }
419 err = 0;
420 vlan_ops->dis_rx_filtering(vsi);
421
422 /* promiscuous mode implies allmulticast so
423 * that VSIs that are in promiscuous mode are
424 * subscribed to multicast packets coming to
425 * the port
426 */
427 err = ice_set_promisc(vsi,
428 ICE_MCAST_PROMISC_BITS);
429 if (err)
430 goto out_promisc;
431 }
432 } else {
433 /* Clear Rx filter to remove traffic from wire */
434 if (ice_is_vsi_dflt_vsi(vsi)) {
435 err = ice_clear_dflt_vsi(vsi);
436 if (err) {
437 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
438 err, vsi->vsi_num);
439 vsi->current_netdev_flags |=
440 IFF_PROMISC;
441 goto out_promisc;
442 }
443 if (vsi->netdev->features &
444 NETIF_F_HW_VLAN_CTAG_FILTER)
445 vlan_ops->ena_rx_filtering(vsi);
446 }
447
448 /* disable allmulti here, but only if allmulti is not
449 * still enabled for the netdev
450 */
451 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
452 err = ice_clear_promisc(vsi,
453 ICE_MCAST_PROMISC_BITS);
454 if (err) {
455 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
456 err, vsi->vsi_num);
457 }
458 }
459 }
460 }
461 goto exit;
462
463out_promisc:
464 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
465 goto exit;
466out:
467 /* if something went wrong then set the changed flag so we try again */
468 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
469 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
470exit:
471 clear_bit(ICE_CFG_BUSY, vsi->state);
472 return err;
473}
474
475/**
476 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
477 * @pf: board private structure
478 */
479static void ice_sync_fltr_subtask(struct ice_pf *pf)
480{
481 int v;
482
483 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
484 return;
485
486 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
487
488 ice_for_each_vsi(pf, v)
489 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
490 ice_vsi_sync_fltr(pf->vsi[v])) {
491 /* come back and try again later */
492 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
493 break;
494 }
495}
496
497/**
498 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
499 * @pf: the PF
500 * @locked: is the rtnl_lock already held
501 */
502static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
503{
504 int node;
505 int v;
506
507 ice_for_each_vsi(pf, v)
508 if (pf->vsi[v])
509 ice_dis_vsi(pf->vsi[v], locked);
510
511 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
512 pf->pf_agg_node[node].num_vsis = 0;
513
514 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
515 pf->vf_agg_node[node].num_vsis = 0;
516}
517
518/**
519 * ice_clear_sw_switch_recipes - clear switch recipes
520 * @pf: board private structure
521 *
522 * Mark switch recipes as not created in sw structures. There are cases where
523 * rules (especially advanced rules) need to be restored, either re-read from
524 * hardware or added again. For example after the reset. 'recp_created' flag
525 * prevents from doing that and need to be cleared upfront.
526 */
527static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
528{
529 struct ice_sw_recipe *recp;
530 u8 i;
531
532 recp = pf->hw.switch_info->recp_list;
533 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
534 recp[i].recp_created = false;
535}
536
537/**
538 * ice_prepare_for_reset - prep for reset
539 * @pf: board private structure
540 * @reset_type: reset type requested
541 *
542 * Inform or close all dependent features in prep for reset.
543 */
544static void
545ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
546{
547 struct ice_hw *hw = &pf->hw;
548 struct ice_vsi *vsi;
549 struct ice_vf *vf;
550 unsigned int bkt;
551
552 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
553
554 /* already prepared for reset */
555 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
556 return;
557
558 ice_unplug_aux_dev(pf);
559
560 /* Notify VFs of impending reset */
561 if (ice_check_sq_alive(hw, &hw->mailboxq))
562 ice_vc_notify_reset(pf);
563
564 /* Disable VFs until reset is completed */
565 mutex_lock(&pf->vfs.table_lock);
566 ice_for_each_vf(pf, bkt, vf)
567 ice_set_vf_state_qs_dis(vf);
568 mutex_unlock(&pf->vfs.table_lock);
569
570 if (ice_is_eswitch_mode_switchdev(pf)) {
571 if (reset_type != ICE_RESET_PFR)
572 ice_clear_sw_switch_recipes(pf);
573 }
574
575 /* release ADQ specific HW and SW resources */
576 vsi = ice_get_main_vsi(pf);
577 if (!vsi)
578 goto skip;
579
580 /* to be on safe side, reset orig_rss_size so that normal flow
581 * of deciding rss_size can take precedence
582 */
583 vsi->orig_rss_size = 0;
584
585 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
586 if (reset_type == ICE_RESET_PFR) {
587 vsi->old_ena_tc = vsi->all_enatc;
588 vsi->old_numtc = vsi->all_numtc;
589 } else {
590 ice_remove_q_channels(vsi, true);
591
592 /* for other reset type, do not support channel rebuild
593 * hence reset needed info
594 */
595 vsi->old_ena_tc = 0;
596 vsi->all_enatc = 0;
597 vsi->old_numtc = 0;
598 vsi->all_numtc = 0;
599 vsi->req_txq = 0;
600 vsi->req_rxq = 0;
601 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
602 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
603 }
604 }
605skip:
606
607 /* clear SW filtering DB */
608 ice_clear_hw_tbls(hw);
609 /* disable the VSIs and their queues that are not already DOWN */
610 ice_pf_dis_all_vsi(pf, false);
611
612 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
613 ice_ptp_prepare_for_reset(pf);
614
615 if (ice_is_feature_supported(pf, ICE_F_GNSS))
616 ice_gnss_exit(pf);
617
618 if (hw->port_info)
619 ice_sched_clear_port(hw->port_info);
620
621 ice_shutdown_all_ctrlq(hw);
622
623 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
624}
625
626/**
627 * ice_do_reset - Initiate one of many types of resets
628 * @pf: board private structure
629 * @reset_type: reset type requested before this function was called.
630 */
631static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
632{
633 struct device *dev = ice_pf_to_dev(pf);
634 struct ice_hw *hw = &pf->hw;
635
636 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
637
638 ice_prepare_for_reset(pf, reset_type);
639
640 /* trigger the reset */
641 if (ice_reset(hw, reset_type)) {
642 dev_err(dev, "reset %d failed\n", reset_type);
643 set_bit(ICE_RESET_FAILED, pf->state);
644 clear_bit(ICE_RESET_OICR_RECV, pf->state);
645 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
646 clear_bit(ICE_PFR_REQ, pf->state);
647 clear_bit(ICE_CORER_REQ, pf->state);
648 clear_bit(ICE_GLOBR_REQ, pf->state);
649 wake_up(&pf->reset_wait_queue);
650 return;
651 }
652
653 /* PFR is a bit of a special case because it doesn't result in an OICR
654 * interrupt. So for PFR, rebuild after the reset and clear the reset-
655 * associated state bits.
656 */
657 if (reset_type == ICE_RESET_PFR) {
658 pf->pfr_count++;
659 ice_rebuild(pf, reset_type);
660 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
661 clear_bit(ICE_PFR_REQ, pf->state);
662 wake_up(&pf->reset_wait_queue);
663 ice_reset_all_vfs(pf);
664 }
665}
666
667/**
668 * ice_reset_subtask - Set up for resetting the device and driver
669 * @pf: board private structure
670 */
671static void ice_reset_subtask(struct ice_pf *pf)
672{
673 enum ice_reset_req reset_type = ICE_RESET_INVAL;
674
675 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
676 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
677 * of reset is pending and sets bits in pf->state indicating the reset
678 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
679 * prepare for pending reset if not already (for PF software-initiated
680 * global resets the software should already be prepared for it as
681 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
682 * by firmware or software on other PFs, that bit is not set so prepare
683 * for the reset now), poll for reset done, rebuild and return.
684 */
685 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
686 /* Perform the largest reset requested */
687 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
688 reset_type = ICE_RESET_CORER;
689 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
690 reset_type = ICE_RESET_GLOBR;
691 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
692 reset_type = ICE_RESET_EMPR;
693 /* return if no valid reset type requested */
694 if (reset_type == ICE_RESET_INVAL)
695 return;
696 ice_prepare_for_reset(pf, reset_type);
697
698 /* make sure we are ready to rebuild */
699 if (ice_check_reset(&pf->hw)) {
700 set_bit(ICE_RESET_FAILED, pf->state);
701 } else {
702 /* done with reset. start rebuild */
703 pf->hw.reset_ongoing = false;
704 ice_rebuild(pf, reset_type);
705 /* clear bit to resume normal operations, but
706 * ICE_NEEDS_RESTART bit is set in case rebuild failed
707 */
708 clear_bit(ICE_RESET_OICR_RECV, pf->state);
709 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
710 clear_bit(ICE_PFR_REQ, pf->state);
711 clear_bit(ICE_CORER_REQ, pf->state);
712 clear_bit(ICE_GLOBR_REQ, pf->state);
713 wake_up(&pf->reset_wait_queue);
714 ice_reset_all_vfs(pf);
715 }
716
717 return;
718 }
719
720 /* No pending resets to finish processing. Check for new resets */
721 if (test_bit(ICE_PFR_REQ, pf->state))
722 reset_type = ICE_RESET_PFR;
723 if (test_bit(ICE_CORER_REQ, pf->state))
724 reset_type = ICE_RESET_CORER;
725 if (test_bit(ICE_GLOBR_REQ, pf->state))
726 reset_type = ICE_RESET_GLOBR;
727 /* If no valid reset type requested just return */
728 if (reset_type == ICE_RESET_INVAL)
729 return;
730
731 /* reset if not already down or busy */
732 if (!test_bit(ICE_DOWN, pf->state) &&
733 !test_bit(ICE_CFG_BUSY, pf->state)) {
734 ice_do_reset(pf, reset_type);
735 }
736}
737
738/**
739 * ice_print_topo_conflict - print topology conflict message
740 * @vsi: the VSI whose topology status is being checked
741 */
742static void ice_print_topo_conflict(struct ice_vsi *vsi)
743{
744 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
745 case ICE_AQ_LINK_TOPO_CONFLICT:
746 case ICE_AQ_LINK_MEDIA_CONFLICT:
747 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
748 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
749 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
750 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
751 break;
752 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
753 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
754 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
755 else
756 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
757 break;
758 default:
759 break;
760 }
761}
762
763/**
764 * ice_print_link_msg - print link up or down message
765 * @vsi: the VSI whose link status is being queried
766 * @isup: boolean for if the link is now up or down
767 */
768void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
769{
770 struct ice_aqc_get_phy_caps_data *caps;
771 const char *an_advertised;
772 const char *fec_req;
773 const char *speed;
774 const char *fec;
775 const char *fc;
776 const char *an;
777 int status;
778
779 if (!vsi)
780 return;
781
782 if (vsi->current_isup == isup)
783 return;
784
785 vsi->current_isup = isup;
786
787 if (!isup) {
788 netdev_info(vsi->netdev, "NIC Link is Down\n");
789 return;
790 }
791
792 switch (vsi->port_info->phy.link_info.link_speed) {
793 case ICE_AQ_LINK_SPEED_100GB:
794 speed = "100 G";
795 break;
796 case ICE_AQ_LINK_SPEED_50GB:
797 speed = "50 G";
798 break;
799 case ICE_AQ_LINK_SPEED_40GB:
800 speed = "40 G";
801 break;
802 case ICE_AQ_LINK_SPEED_25GB:
803 speed = "25 G";
804 break;
805 case ICE_AQ_LINK_SPEED_20GB:
806 speed = "20 G";
807 break;
808 case ICE_AQ_LINK_SPEED_10GB:
809 speed = "10 G";
810 break;
811 case ICE_AQ_LINK_SPEED_5GB:
812 speed = "5 G";
813 break;
814 case ICE_AQ_LINK_SPEED_2500MB:
815 speed = "2.5 G";
816 break;
817 case ICE_AQ_LINK_SPEED_1000MB:
818 speed = "1 G";
819 break;
820 case ICE_AQ_LINK_SPEED_100MB:
821 speed = "100 M";
822 break;
823 default:
824 speed = "Unknown ";
825 break;
826 }
827
828 switch (vsi->port_info->fc.current_mode) {
829 case ICE_FC_FULL:
830 fc = "Rx/Tx";
831 break;
832 case ICE_FC_TX_PAUSE:
833 fc = "Tx";
834 break;
835 case ICE_FC_RX_PAUSE:
836 fc = "Rx";
837 break;
838 case ICE_FC_NONE:
839 fc = "None";
840 break;
841 default:
842 fc = "Unknown";
843 break;
844 }
845
846 /* Get FEC mode based on negotiated link info */
847 switch (vsi->port_info->phy.link_info.fec_info) {
848 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
849 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
850 fec = "RS-FEC";
851 break;
852 case ICE_AQ_LINK_25G_KR_FEC_EN:
853 fec = "FC-FEC/BASE-R";
854 break;
855 default:
856 fec = "NONE";
857 break;
858 }
859
860 /* check if autoneg completed, might be false due to not supported */
861 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
862 an = "True";
863 else
864 an = "False";
865
866 /* Get FEC mode requested based on PHY caps last SW configuration */
867 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
868 if (!caps) {
869 fec_req = "Unknown";
870 an_advertised = "Unknown";
871 goto done;
872 }
873
874 status = ice_aq_get_phy_caps(vsi->port_info, false,
875 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
876 if (status)
877 netdev_info(vsi->netdev, "Get phy capability failed.\n");
878
879 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
880
881 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
882 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
883 fec_req = "RS-FEC";
884 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
885 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
886 fec_req = "FC-FEC/BASE-R";
887 else
888 fec_req = "NONE";
889
890 kfree(caps);
891
892done:
893 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
894 speed, fec_req, fec, an_advertised, an, fc);
895 ice_print_topo_conflict(vsi);
896}
897
898/**
899 * ice_vsi_link_event - update the VSI's netdev
900 * @vsi: the VSI on which the link event occurred
901 * @link_up: whether or not the VSI needs to be set up or down
902 */
903static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
904{
905 if (!vsi)
906 return;
907
908 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
909 return;
910
911 if (vsi->type == ICE_VSI_PF) {
912 if (link_up == netif_carrier_ok(vsi->netdev))
913 return;
914
915 if (link_up) {
916 netif_carrier_on(vsi->netdev);
917 netif_tx_wake_all_queues(vsi->netdev);
918 } else {
919 netif_carrier_off(vsi->netdev);
920 netif_tx_stop_all_queues(vsi->netdev);
921 }
922 }
923}
924
925/**
926 * ice_set_dflt_mib - send a default config MIB to the FW
927 * @pf: private PF struct
928 *
929 * This function sends a default configuration MIB to the FW.
930 *
931 * If this function errors out at any point, the driver is still able to
932 * function. The main impact is that LFC may not operate as expected.
933 * Therefore an error state in this function should be treated with a DBG
934 * message and continue on with driver rebuild/reenable.
935 */
936static void ice_set_dflt_mib(struct ice_pf *pf)
937{
938 struct device *dev = ice_pf_to_dev(pf);
939 u8 mib_type, *buf, *lldpmib = NULL;
940 u16 len, typelen, offset = 0;
941 struct ice_lldp_org_tlv *tlv;
942 struct ice_hw *hw = &pf->hw;
943 u32 ouisubtype;
944
945 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
946 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
947 if (!lldpmib) {
948 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
949 __func__);
950 return;
951 }
952
953 /* Add ETS CFG TLV */
954 tlv = (struct ice_lldp_org_tlv *)lldpmib;
955 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
956 ICE_IEEE_ETS_TLV_LEN);
957 tlv->typelen = htons(typelen);
958 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
959 ICE_IEEE_SUBTYPE_ETS_CFG);
960 tlv->ouisubtype = htonl(ouisubtype);
961
962 buf = tlv->tlvinfo;
963 buf[0] = 0;
964
965 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
966 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
967 * Octets 13 - 20 are TSA values - leave as zeros
968 */
969 buf[5] = 0x64;
970 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
971 offset += len + 2;
972 tlv = (struct ice_lldp_org_tlv *)
973 ((char *)tlv + sizeof(tlv->typelen) + len);
974
975 /* Add ETS REC TLV */
976 buf = tlv->tlvinfo;
977 tlv->typelen = htons(typelen);
978
979 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
980 ICE_IEEE_SUBTYPE_ETS_REC);
981 tlv->ouisubtype = htonl(ouisubtype);
982
983 /* First octet of buf is reserved
984 * Octets 1 - 4 map UP to TC - all UPs map to zero
985 * Octets 5 - 12 are BW values - set TC 0 to 100%.
986 * Octets 13 - 20 are TSA value - leave as zeros
987 */
988 buf[5] = 0x64;
989 offset += len + 2;
990 tlv = (struct ice_lldp_org_tlv *)
991 ((char *)tlv + sizeof(tlv->typelen) + len);
992
993 /* Add PFC CFG TLV */
994 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
995 ICE_IEEE_PFC_TLV_LEN);
996 tlv->typelen = htons(typelen);
997
998 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
999 ICE_IEEE_SUBTYPE_PFC_CFG);
1000 tlv->ouisubtype = htonl(ouisubtype);
1001
1002 /* Octet 1 left as all zeros - PFC disabled */
1003 buf[0] = 0x08;
1004 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
1005 offset += len + 2;
1006
1007 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1008 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1009
1010 kfree(lldpmib);
1011}
1012
1013/**
1014 * ice_check_phy_fw_load - check if PHY FW load failed
1015 * @pf: pointer to PF struct
1016 * @link_cfg_err: bitmap from the link info structure
1017 *
1018 * check if external PHY FW load failed and print an error message if it did
1019 */
1020static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1021{
1022 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1023 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1024 return;
1025 }
1026
1027 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1028 return;
1029
1030 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1031 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1032 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1033 }
1034}
1035
1036/**
1037 * ice_check_module_power
1038 * @pf: pointer to PF struct
1039 * @link_cfg_err: bitmap from the link info structure
1040 *
1041 * check module power level returned by a previous call to aq_get_link_info
1042 * and print error messages if module power level is not supported
1043 */
1044static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1045{
1046 /* if module power level is supported, clear the flag */
1047 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1048 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1049 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1050 return;
1051 }
1052
1053 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1054 * above block didn't clear this bit, there's nothing to do
1055 */
1056 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1057 return;
1058
1059 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1060 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1061 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1062 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1063 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1064 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1065 }
1066}
1067
1068/**
1069 * ice_check_link_cfg_err - check if link configuration failed
1070 * @pf: pointer to the PF struct
1071 * @link_cfg_err: bitmap from the link info structure
1072 *
1073 * print if any link configuration failure happens due to the value in the
1074 * link_cfg_err parameter in the link info structure
1075 */
1076static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1077{
1078 ice_check_module_power(pf, link_cfg_err);
1079 ice_check_phy_fw_load(pf, link_cfg_err);
1080}
1081
1082/**
1083 * ice_link_event - process the link event
1084 * @pf: PF that the link event is associated with
1085 * @pi: port_info for the port that the link event is associated with
1086 * @link_up: true if the physical link is up and false if it is down
1087 * @link_speed: current link speed received from the link event
1088 *
1089 * Returns 0 on success and negative on failure
1090 */
1091static int
1092ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1093 u16 link_speed)
1094{
1095 struct device *dev = ice_pf_to_dev(pf);
1096 struct ice_phy_info *phy_info;
1097 struct ice_vsi *vsi;
1098 u16 old_link_speed;
1099 bool old_link;
1100 int status;
1101
1102 phy_info = &pi->phy;
1103 phy_info->link_info_old = phy_info->link_info;
1104
1105 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1106 old_link_speed = phy_info->link_info_old.link_speed;
1107
1108 /* update the link info structures and re-enable link events,
1109 * don't bail on failure due to other book keeping needed
1110 */
1111 status = ice_update_link_info(pi);
1112 if (status)
1113 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1114 pi->lport, status,
1115 ice_aq_str(pi->hw->adminq.sq_last_status));
1116
1117 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1118
1119 /* Check if the link state is up after updating link info, and treat
1120 * this event as an UP event since the link is actually UP now.
1121 */
1122 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1123 link_up = true;
1124
1125 vsi = ice_get_main_vsi(pf);
1126 if (!vsi || !vsi->port_info)
1127 return -EINVAL;
1128
1129 /* turn off PHY if media was removed */
1130 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1131 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1132 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1133 ice_set_link(vsi, false);
1134 }
1135
1136 /* if the old link up/down and speed is the same as the new */
1137 if (link_up == old_link && link_speed == old_link_speed)
1138 return 0;
1139
1140 ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1141
1142 if (ice_is_dcb_active(pf)) {
1143 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1144 ice_dcb_rebuild(pf);
1145 } else {
1146 if (link_up)
1147 ice_set_dflt_mib(pf);
1148 }
1149 ice_vsi_link_event(vsi, link_up);
1150 ice_print_link_msg(vsi, link_up);
1151
1152 ice_vc_notify_link_state(pf);
1153
1154 return 0;
1155}
1156
1157/**
1158 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1159 * @pf: board private structure
1160 */
1161static void ice_watchdog_subtask(struct ice_pf *pf)
1162{
1163 int i;
1164
1165 /* if interface is down do nothing */
1166 if (test_bit(ICE_DOWN, pf->state) ||
1167 test_bit(ICE_CFG_BUSY, pf->state))
1168 return;
1169
1170 /* make sure we don't do these things too often */
1171 if (time_before(jiffies,
1172 pf->serv_tmr_prev + pf->serv_tmr_period))
1173 return;
1174
1175 pf->serv_tmr_prev = jiffies;
1176
1177 /* Update the stats for active netdevs so the network stack
1178 * can look at updated numbers whenever it cares to
1179 */
1180 ice_update_pf_stats(pf);
1181 ice_for_each_vsi(pf, i)
1182 if (pf->vsi[i] && pf->vsi[i]->netdev)
1183 ice_update_vsi_stats(pf->vsi[i]);
1184}
1185
1186/**
1187 * ice_init_link_events - enable/initialize link events
1188 * @pi: pointer to the port_info instance
1189 *
1190 * Returns -EIO on failure, 0 on success
1191 */
1192static int ice_init_link_events(struct ice_port_info *pi)
1193{
1194 u16 mask;
1195
1196 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1197 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1198 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1199
1200 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1201 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1202 pi->lport);
1203 return -EIO;
1204 }
1205
1206 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1207 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1208 pi->lport);
1209 return -EIO;
1210 }
1211
1212 return 0;
1213}
1214
1215/**
1216 * ice_handle_link_event - handle link event via ARQ
1217 * @pf: PF that the link event is associated with
1218 * @event: event structure containing link status info
1219 */
1220static int
1221ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1222{
1223 struct ice_aqc_get_link_status_data *link_data;
1224 struct ice_port_info *port_info;
1225 int status;
1226
1227 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1228 port_info = pf->hw.port_info;
1229 if (!port_info)
1230 return -EINVAL;
1231
1232 status = ice_link_event(pf, port_info,
1233 !!(link_data->link_info & ICE_AQ_LINK_UP),
1234 le16_to_cpu(link_data->link_speed));
1235 if (status)
1236 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1237 status);
1238
1239 return status;
1240}
1241
1242enum ice_aq_task_state {
1243 ICE_AQ_TASK_WAITING = 0,
1244 ICE_AQ_TASK_COMPLETE,
1245 ICE_AQ_TASK_CANCELED,
1246};
1247
1248struct ice_aq_task {
1249 struct hlist_node entry;
1250
1251 u16 opcode;
1252 struct ice_rq_event_info *event;
1253 enum ice_aq_task_state state;
1254};
1255
1256/**
1257 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1258 * @pf: pointer to the PF private structure
1259 * @opcode: the opcode to wait for
1260 * @timeout: how long to wait, in jiffies
1261 * @event: storage for the event info
1262 *
1263 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1264 * current thread will be put to sleep until the specified event occurs or
1265 * until the given timeout is reached.
1266 *
1267 * To obtain only the descriptor contents, pass an event without an allocated
1268 * msg_buf. If the complete data buffer is desired, allocate the
1269 * event->msg_buf with enough space ahead of time.
1270 *
1271 * Returns: zero on success, or a negative error code on failure.
1272 */
1273int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1274 struct ice_rq_event_info *event)
1275{
1276 struct device *dev = ice_pf_to_dev(pf);
1277 struct ice_aq_task *task;
1278 unsigned long start;
1279 long ret;
1280 int err;
1281
1282 task = kzalloc(sizeof(*task), GFP_KERNEL);
1283 if (!task)
1284 return -ENOMEM;
1285
1286 INIT_HLIST_NODE(&task->entry);
1287 task->opcode = opcode;
1288 task->event = event;
1289 task->state = ICE_AQ_TASK_WAITING;
1290
1291 spin_lock_bh(&pf->aq_wait_lock);
1292 hlist_add_head(&task->entry, &pf->aq_wait_list);
1293 spin_unlock_bh(&pf->aq_wait_lock);
1294
1295 start = jiffies;
1296
1297 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1298 timeout);
1299 switch (task->state) {
1300 case ICE_AQ_TASK_WAITING:
1301 err = ret < 0 ? ret : -ETIMEDOUT;
1302 break;
1303 case ICE_AQ_TASK_CANCELED:
1304 err = ret < 0 ? ret : -ECANCELED;
1305 break;
1306 case ICE_AQ_TASK_COMPLETE:
1307 err = ret < 0 ? ret : 0;
1308 break;
1309 default:
1310 WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1311 err = -EINVAL;
1312 break;
1313 }
1314
1315 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1316 jiffies_to_msecs(jiffies - start),
1317 jiffies_to_msecs(timeout),
1318 opcode);
1319
1320 spin_lock_bh(&pf->aq_wait_lock);
1321 hlist_del(&task->entry);
1322 spin_unlock_bh(&pf->aq_wait_lock);
1323 kfree(task);
1324
1325 return err;
1326}
1327
1328/**
1329 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1330 * @pf: pointer to the PF private structure
1331 * @opcode: the opcode of the event
1332 * @event: the event to check
1333 *
1334 * Loops over the current list of pending threads waiting for an AdminQ event.
1335 * For each matching task, copy the contents of the event into the task
1336 * structure and wake up the thread.
1337 *
1338 * If multiple threads wait for the same opcode, they will all be woken up.
1339 *
1340 * Note that event->msg_buf will only be duplicated if the event has a buffer
1341 * with enough space already allocated. Otherwise, only the descriptor and
1342 * message length will be copied.
1343 *
1344 * Returns: true if an event was found, false otherwise
1345 */
1346static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1347 struct ice_rq_event_info *event)
1348{
1349 struct ice_aq_task *task;
1350 bool found = false;
1351
1352 spin_lock_bh(&pf->aq_wait_lock);
1353 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1354 if (task->state || task->opcode != opcode)
1355 continue;
1356
1357 memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1358 task->event->msg_len = event->msg_len;
1359
1360 /* Only copy the data buffer if a destination was set */
1361 if (task->event->msg_buf &&
1362 task->event->buf_len > event->buf_len) {
1363 memcpy(task->event->msg_buf, event->msg_buf,
1364 event->buf_len);
1365 task->event->buf_len = event->buf_len;
1366 }
1367
1368 task->state = ICE_AQ_TASK_COMPLETE;
1369 found = true;
1370 }
1371 spin_unlock_bh(&pf->aq_wait_lock);
1372
1373 if (found)
1374 wake_up(&pf->aq_wait_queue);
1375}
1376
1377/**
1378 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1379 * @pf: the PF private structure
1380 *
1381 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1382 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1383 */
1384static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1385{
1386 struct ice_aq_task *task;
1387
1388 spin_lock_bh(&pf->aq_wait_lock);
1389 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1390 task->state = ICE_AQ_TASK_CANCELED;
1391 spin_unlock_bh(&pf->aq_wait_lock);
1392
1393 wake_up(&pf->aq_wait_queue);
1394}
1395
1396/**
1397 * __ice_clean_ctrlq - helper function to clean controlq rings
1398 * @pf: ptr to struct ice_pf
1399 * @q_type: specific Control queue type
1400 */
1401static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1402{
1403 struct device *dev = ice_pf_to_dev(pf);
1404 struct ice_rq_event_info event;
1405 struct ice_hw *hw = &pf->hw;
1406 struct ice_ctl_q_info *cq;
1407 u16 pending, i = 0;
1408 const char *qtype;
1409 u32 oldval, val;
1410
1411 /* Do not clean control queue if/when PF reset fails */
1412 if (test_bit(ICE_RESET_FAILED, pf->state))
1413 return 0;
1414
1415 switch (q_type) {
1416 case ICE_CTL_Q_ADMIN:
1417 cq = &hw->adminq;
1418 qtype = "Admin";
1419 break;
1420 case ICE_CTL_Q_SB:
1421 cq = &hw->sbq;
1422 qtype = "Sideband";
1423 break;
1424 case ICE_CTL_Q_MAILBOX:
1425 cq = &hw->mailboxq;
1426 qtype = "Mailbox";
1427 /* we are going to try to detect a malicious VF, so set the
1428 * state to begin detection
1429 */
1430 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1431 break;
1432 default:
1433 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1434 return 0;
1435 }
1436
1437 /* check for error indications - PF_xx_AxQLEN register layout for
1438 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1439 */
1440 val = rd32(hw, cq->rq.len);
1441 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1442 PF_FW_ARQLEN_ARQCRIT_M)) {
1443 oldval = val;
1444 if (val & PF_FW_ARQLEN_ARQVFE_M)
1445 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1446 qtype);
1447 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1448 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1449 qtype);
1450 }
1451 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1452 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1453 qtype);
1454 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1455 PF_FW_ARQLEN_ARQCRIT_M);
1456 if (oldval != val)
1457 wr32(hw, cq->rq.len, val);
1458 }
1459
1460 val = rd32(hw, cq->sq.len);
1461 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1462 PF_FW_ATQLEN_ATQCRIT_M)) {
1463 oldval = val;
1464 if (val & PF_FW_ATQLEN_ATQVFE_M)
1465 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1466 qtype);
1467 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1468 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1469 qtype);
1470 }
1471 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1472 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1473 qtype);
1474 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1475 PF_FW_ATQLEN_ATQCRIT_M);
1476 if (oldval != val)
1477 wr32(hw, cq->sq.len, val);
1478 }
1479
1480 event.buf_len = cq->rq_buf_size;
1481 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1482 if (!event.msg_buf)
1483 return 0;
1484
1485 do {
1486 u16 opcode;
1487 int ret;
1488
1489 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1490 if (ret == -EALREADY)
1491 break;
1492 if (ret) {
1493 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1494 ret);
1495 break;
1496 }
1497
1498 opcode = le16_to_cpu(event.desc.opcode);
1499
1500 /* Notify any thread that might be waiting for this event */
1501 ice_aq_check_events(pf, opcode, &event);
1502
1503 switch (opcode) {
1504 case ice_aqc_opc_get_link_status:
1505 if (ice_handle_link_event(pf, &event))
1506 dev_err(dev, "Could not handle link event\n");
1507 break;
1508 case ice_aqc_opc_event_lan_overflow:
1509 ice_vf_lan_overflow_event(pf, &event);
1510 break;
1511 case ice_mbx_opc_send_msg_to_pf:
1512 if (!ice_is_malicious_vf(pf, &event, i, pending))
1513 ice_vc_process_vf_msg(pf, &event);
1514 break;
1515 case ice_aqc_opc_fw_logging:
1516 ice_output_fw_log(hw, &event.desc, event.msg_buf);
1517 break;
1518 case ice_aqc_opc_lldp_set_mib_change:
1519 ice_dcb_process_lldp_set_mib_change(pf, &event);
1520 break;
1521 default:
1522 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1523 qtype, opcode);
1524 break;
1525 }
1526 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1527
1528 kfree(event.msg_buf);
1529
1530 return pending && (i == ICE_DFLT_IRQ_WORK);
1531}
1532
1533/**
1534 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1535 * @hw: pointer to hardware info
1536 * @cq: control queue information
1537 *
1538 * returns true if there are pending messages in a queue, false if there aren't
1539 */
1540static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1541{
1542 u16 ntu;
1543
1544 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1545 return cq->rq.next_to_clean != ntu;
1546}
1547
1548/**
1549 * ice_clean_adminq_subtask - clean the AdminQ rings
1550 * @pf: board private structure
1551 */
1552static void ice_clean_adminq_subtask(struct ice_pf *pf)
1553{
1554 struct ice_hw *hw = &pf->hw;
1555
1556 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1557 return;
1558
1559 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1560 return;
1561
1562 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1563
1564 /* There might be a situation where new messages arrive to a control
1565 * queue between processing the last message and clearing the
1566 * EVENT_PENDING bit. So before exiting, check queue head again (using
1567 * ice_ctrlq_pending) and process new messages if any.
1568 */
1569 if (ice_ctrlq_pending(hw, &hw->adminq))
1570 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1571
1572 ice_flush(hw);
1573}
1574
1575/**
1576 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1577 * @pf: board private structure
1578 */
1579static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1580{
1581 struct ice_hw *hw = &pf->hw;
1582
1583 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1584 return;
1585
1586 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1587 return;
1588
1589 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1590
1591 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1592 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1593
1594 ice_flush(hw);
1595}
1596
1597/**
1598 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1599 * @pf: board private structure
1600 */
1601static void ice_clean_sbq_subtask(struct ice_pf *pf)
1602{
1603 struct ice_hw *hw = &pf->hw;
1604
1605 /* Nothing to do here if sideband queue is not supported */
1606 if (!ice_is_sbq_supported(hw)) {
1607 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1608 return;
1609 }
1610
1611 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1612 return;
1613
1614 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1615 return;
1616
1617 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1618
1619 if (ice_ctrlq_pending(hw, &hw->sbq))
1620 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1621
1622 ice_flush(hw);
1623}
1624
1625/**
1626 * ice_service_task_schedule - schedule the service task to wake up
1627 * @pf: board private structure
1628 *
1629 * If not already scheduled, this puts the task into the work queue.
1630 */
1631void ice_service_task_schedule(struct ice_pf *pf)
1632{
1633 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1634 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1635 !test_bit(ICE_NEEDS_RESTART, pf->state))
1636 queue_work(ice_wq, &pf->serv_task);
1637}
1638
1639/**
1640 * ice_service_task_complete - finish up the service task
1641 * @pf: board private structure
1642 */
1643static void ice_service_task_complete(struct ice_pf *pf)
1644{
1645 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1646
1647 /* force memory (pf->state) to sync before next service task */
1648 smp_mb__before_atomic();
1649 clear_bit(ICE_SERVICE_SCHED, pf->state);
1650}
1651
1652/**
1653 * ice_service_task_stop - stop service task and cancel works
1654 * @pf: board private structure
1655 *
1656 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1657 * 1 otherwise.
1658 */
1659static int ice_service_task_stop(struct ice_pf *pf)
1660{
1661 int ret;
1662
1663 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1664
1665 if (pf->serv_tmr.function)
1666 del_timer_sync(&pf->serv_tmr);
1667 if (pf->serv_task.func)
1668 cancel_work_sync(&pf->serv_task);
1669
1670 clear_bit(ICE_SERVICE_SCHED, pf->state);
1671 return ret;
1672}
1673
1674/**
1675 * ice_service_task_restart - restart service task and schedule works
1676 * @pf: board private structure
1677 *
1678 * This function is needed for suspend and resume works (e.g WoL scenario)
1679 */
1680static void ice_service_task_restart(struct ice_pf *pf)
1681{
1682 clear_bit(ICE_SERVICE_DIS, pf->state);
1683 ice_service_task_schedule(pf);
1684}
1685
1686/**
1687 * ice_service_timer - timer callback to schedule service task
1688 * @t: pointer to timer_list
1689 */
1690static void ice_service_timer(struct timer_list *t)
1691{
1692 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1693
1694 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1695 ice_service_task_schedule(pf);
1696}
1697
1698/**
1699 * ice_handle_mdd_event - handle malicious driver detect event
1700 * @pf: pointer to the PF structure
1701 *
1702 * Called from service task. OICR interrupt handler indicates MDD event.
1703 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1704 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1705 * disable the queue, the PF can be configured to reset the VF using ethtool
1706 * private flag mdd-auto-reset-vf.
1707 */
1708static void ice_handle_mdd_event(struct ice_pf *pf)
1709{
1710 struct device *dev = ice_pf_to_dev(pf);
1711 struct ice_hw *hw = &pf->hw;
1712 struct ice_vf *vf;
1713 unsigned int bkt;
1714 u32 reg;
1715
1716 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1717 /* Since the VF MDD event logging is rate limited, check if
1718 * there are pending MDD events.
1719 */
1720 ice_print_vfs_mdd_events(pf);
1721 return;
1722 }
1723
1724 /* find what triggered an MDD event */
1725 reg = rd32(hw, GL_MDET_TX_PQM);
1726 if (reg & GL_MDET_TX_PQM_VALID_M) {
1727 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1728 GL_MDET_TX_PQM_PF_NUM_S;
1729 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1730 GL_MDET_TX_PQM_VF_NUM_S;
1731 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1732 GL_MDET_TX_PQM_MAL_TYPE_S;
1733 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1734 GL_MDET_TX_PQM_QNUM_S);
1735
1736 if (netif_msg_tx_err(pf))
1737 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1738 event, queue, pf_num, vf_num);
1739 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1740 }
1741
1742 reg = rd32(hw, GL_MDET_TX_TCLAN);
1743 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1744 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1745 GL_MDET_TX_TCLAN_PF_NUM_S;
1746 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1747 GL_MDET_TX_TCLAN_VF_NUM_S;
1748 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1749 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1750 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1751 GL_MDET_TX_TCLAN_QNUM_S);
1752
1753 if (netif_msg_tx_err(pf))
1754 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1755 event, queue, pf_num, vf_num);
1756 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1757 }
1758
1759 reg = rd32(hw, GL_MDET_RX);
1760 if (reg & GL_MDET_RX_VALID_M) {
1761 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1762 GL_MDET_RX_PF_NUM_S;
1763 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1764 GL_MDET_RX_VF_NUM_S;
1765 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1766 GL_MDET_RX_MAL_TYPE_S;
1767 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1768 GL_MDET_RX_QNUM_S);
1769
1770 if (netif_msg_rx_err(pf))
1771 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1772 event, queue, pf_num, vf_num);
1773 wr32(hw, GL_MDET_RX, 0xffffffff);
1774 }
1775
1776 /* check to see if this PF caused an MDD event */
1777 reg = rd32(hw, PF_MDET_TX_PQM);
1778 if (reg & PF_MDET_TX_PQM_VALID_M) {
1779 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1780 if (netif_msg_tx_err(pf))
1781 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1782 }
1783
1784 reg = rd32(hw, PF_MDET_TX_TCLAN);
1785 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1786 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1787 if (netif_msg_tx_err(pf))
1788 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1789 }
1790
1791 reg = rd32(hw, PF_MDET_RX);
1792 if (reg & PF_MDET_RX_VALID_M) {
1793 wr32(hw, PF_MDET_RX, 0xFFFF);
1794 if (netif_msg_rx_err(pf))
1795 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1796 }
1797
1798 /* Check to see if one of the VFs caused an MDD event, and then
1799 * increment counters and set print pending
1800 */
1801 mutex_lock(&pf->vfs.table_lock);
1802 ice_for_each_vf(pf, bkt, vf) {
1803 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1804 if (reg & VP_MDET_TX_PQM_VALID_M) {
1805 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1806 vf->mdd_tx_events.count++;
1807 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1808 if (netif_msg_tx_err(pf))
1809 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1810 vf->vf_id);
1811 }
1812
1813 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1814 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1815 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1816 vf->mdd_tx_events.count++;
1817 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1818 if (netif_msg_tx_err(pf))
1819 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1820 vf->vf_id);
1821 }
1822
1823 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1824 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1825 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1826 vf->mdd_tx_events.count++;
1827 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1828 if (netif_msg_tx_err(pf))
1829 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1830 vf->vf_id);
1831 }
1832
1833 reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1834 if (reg & VP_MDET_RX_VALID_M) {
1835 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1836 vf->mdd_rx_events.count++;
1837 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1838 if (netif_msg_rx_err(pf))
1839 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1840 vf->vf_id);
1841
1842 /* Since the queue is disabled on VF Rx MDD events, the
1843 * PF can be configured to reset the VF through ethtool
1844 * private flag mdd-auto-reset-vf.
1845 */
1846 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1847 /* VF MDD event counters will be cleared by
1848 * reset, so print the event prior to reset.
1849 */
1850 ice_print_vf_rx_mdd_event(vf);
1851 ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1852 }
1853 }
1854 }
1855 mutex_unlock(&pf->vfs.table_lock);
1856
1857 ice_print_vfs_mdd_events(pf);
1858}
1859
1860/**
1861 * ice_force_phys_link_state - Force the physical link state
1862 * @vsi: VSI to force the physical link state to up/down
1863 * @link_up: true/false indicates to set the physical link to up/down
1864 *
1865 * Force the physical link state by getting the current PHY capabilities from
1866 * hardware and setting the PHY config based on the determined capabilities. If
1867 * link changes a link event will be triggered because both the Enable Automatic
1868 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1869 *
1870 * Returns 0 on success, negative on failure
1871 */
1872static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1873{
1874 struct ice_aqc_get_phy_caps_data *pcaps;
1875 struct ice_aqc_set_phy_cfg_data *cfg;
1876 struct ice_port_info *pi;
1877 struct device *dev;
1878 int retcode;
1879
1880 if (!vsi || !vsi->port_info || !vsi->back)
1881 return -EINVAL;
1882 if (vsi->type != ICE_VSI_PF)
1883 return 0;
1884
1885 dev = ice_pf_to_dev(vsi->back);
1886
1887 pi = vsi->port_info;
1888
1889 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1890 if (!pcaps)
1891 return -ENOMEM;
1892
1893 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1894 NULL);
1895 if (retcode) {
1896 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1897 vsi->vsi_num, retcode);
1898 retcode = -EIO;
1899 goto out;
1900 }
1901
1902 /* No change in link */
1903 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1904 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1905 goto out;
1906
1907 /* Use the current user PHY configuration. The current user PHY
1908 * configuration is initialized during probe from PHY capabilities
1909 * software mode, and updated on set PHY configuration.
1910 */
1911 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1912 if (!cfg) {
1913 retcode = -ENOMEM;
1914 goto out;
1915 }
1916
1917 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1918 if (link_up)
1919 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1920 else
1921 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1922
1923 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1924 if (retcode) {
1925 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1926 vsi->vsi_num, retcode);
1927 retcode = -EIO;
1928 }
1929
1930 kfree(cfg);
1931out:
1932 kfree(pcaps);
1933 return retcode;
1934}
1935
1936/**
1937 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1938 * @pi: port info structure
1939 *
1940 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1941 */
1942static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1943{
1944 struct ice_aqc_get_phy_caps_data *pcaps;
1945 struct ice_pf *pf = pi->hw->back;
1946 int err;
1947
1948 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1949 if (!pcaps)
1950 return -ENOMEM;
1951
1952 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1953 pcaps, NULL);
1954
1955 if (err) {
1956 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1957 goto out;
1958 }
1959
1960 pf->nvm_phy_type_hi = pcaps->phy_type_high;
1961 pf->nvm_phy_type_lo = pcaps->phy_type_low;
1962
1963out:
1964 kfree(pcaps);
1965 return err;
1966}
1967
1968/**
1969 * ice_init_link_dflt_override - Initialize link default override
1970 * @pi: port info structure
1971 *
1972 * Initialize link default override and PHY total port shutdown during probe
1973 */
1974static void ice_init_link_dflt_override(struct ice_port_info *pi)
1975{
1976 struct ice_link_default_override_tlv *ldo;
1977 struct ice_pf *pf = pi->hw->back;
1978
1979 ldo = &pf->link_dflt_override;
1980 if (ice_get_link_default_override(ldo, pi))
1981 return;
1982
1983 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1984 return;
1985
1986 /* Enable Total Port Shutdown (override/replace link-down-on-close
1987 * ethtool private flag) for ports with Port Disable bit set.
1988 */
1989 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1990 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1991}
1992
1993/**
1994 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1995 * @pi: port info structure
1996 *
1997 * If default override is enabled, initialize the user PHY cfg speed and FEC
1998 * settings using the default override mask from the NVM.
1999 *
2000 * The PHY should only be configured with the default override settings the
2001 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2002 * is used to indicate that the user PHY cfg default override is initialized
2003 * and the PHY has not been configured with the default override settings. The
2004 * state is set here, and cleared in ice_configure_phy the first time the PHY is
2005 * configured.
2006 *
2007 * This function should be called only if the FW doesn't support default
2008 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2009 */
2010static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2011{
2012 struct ice_link_default_override_tlv *ldo;
2013 struct ice_aqc_set_phy_cfg_data *cfg;
2014 struct ice_phy_info *phy = &pi->phy;
2015 struct ice_pf *pf = pi->hw->back;
2016
2017 ldo = &pf->link_dflt_override;
2018
2019 /* If link default override is enabled, use to mask NVM PHY capabilities
2020 * for speed and FEC default configuration.
2021 */
2022 cfg = &phy->curr_user_phy_cfg;
2023
2024 if (ldo->phy_type_low || ldo->phy_type_high) {
2025 cfg->phy_type_low = pf->nvm_phy_type_lo &
2026 cpu_to_le64(ldo->phy_type_low);
2027 cfg->phy_type_high = pf->nvm_phy_type_hi &
2028 cpu_to_le64(ldo->phy_type_high);
2029 }
2030 cfg->link_fec_opt = ldo->fec_options;
2031 phy->curr_user_fec_req = ICE_FEC_AUTO;
2032
2033 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2034}
2035
2036/**
2037 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2038 * @pi: port info structure
2039 *
2040 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2041 * mode to default. The PHY defaults are from get PHY capabilities topology
2042 * with media so call when media is first available. An error is returned if
2043 * called when media is not available. The PHY initialization completed state is
2044 * set here.
2045 *
2046 * These configurations are used when setting PHY
2047 * configuration. The user PHY configuration is updated on set PHY
2048 * configuration. Returns 0 on success, negative on failure
2049 */
2050static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2051{
2052 struct ice_aqc_get_phy_caps_data *pcaps;
2053 struct ice_phy_info *phy = &pi->phy;
2054 struct ice_pf *pf = pi->hw->back;
2055 int err;
2056
2057 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2058 return -EIO;
2059
2060 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2061 if (!pcaps)
2062 return -ENOMEM;
2063
2064 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2065 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2066 pcaps, NULL);
2067 else
2068 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2069 pcaps, NULL);
2070 if (err) {
2071 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2072 goto err_out;
2073 }
2074
2075 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2076
2077 /* check if lenient mode is supported and enabled */
2078 if (ice_fw_supports_link_override(pi->hw) &&
2079 !(pcaps->module_compliance_enforcement &
2080 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2081 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2082
2083 /* if the FW supports default PHY configuration mode, then the driver
2084 * does not have to apply link override settings. If not,
2085 * initialize user PHY configuration with link override values
2086 */
2087 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2088 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2089 ice_init_phy_cfg_dflt_override(pi);
2090 goto out;
2091 }
2092 }
2093
2094 /* if link default override is not enabled, set user flow control and
2095 * FEC settings based on what get_phy_caps returned
2096 */
2097 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2098 pcaps->link_fec_options);
2099 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2100
2101out:
2102 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2103 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2104err_out:
2105 kfree(pcaps);
2106 return err;
2107}
2108
2109/**
2110 * ice_configure_phy - configure PHY
2111 * @vsi: VSI of PHY
2112 *
2113 * Set the PHY configuration. If the current PHY configuration is the same as
2114 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2115 * configure the based get PHY capabilities for topology with media.
2116 */
2117static int ice_configure_phy(struct ice_vsi *vsi)
2118{
2119 struct device *dev = ice_pf_to_dev(vsi->back);
2120 struct ice_port_info *pi = vsi->port_info;
2121 struct ice_aqc_get_phy_caps_data *pcaps;
2122 struct ice_aqc_set_phy_cfg_data *cfg;
2123 struct ice_phy_info *phy = &pi->phy;
2124 struct ice_pf *pf = vsi->back;
2125 int err;
2126
2127 /* Ensure we have media as we cannot configure a medialess port */
2128 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2129 return -EPERM;
2130
2131 ice_print_topo_conflict(vsi);
2132
2133 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2134 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2135 return -EPERM;
2136
2137 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2138 return ice_force_phys_link_state(vsi, true);
2139
2140 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2141 if (!pcaps)
2142 return -ENOMEM;
2143
2144 /* Get current PHY config */
2145 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2146 NULL);
2147 if (err) {
2148 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2149 vsi->vsi_num, err);
2150 goto done;
2151 }
2152
2153 /* If PHY enable link is configured and configuration has not changed,
2154 * there's nothing to do
2155 */
2156 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2157 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2158 goto done;
2159
2160 /* Use PHY topology as baseline for configuration */
2161 memset(pcaps, 0, sizeof(*pcaps));
2162 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2163 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2164 pcaps, NULL);
2165 else
2166 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2167 pcaps, NULL);
2168 if (err) {
2169 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2170 vsi->vsi_num, err);
2171 goto done;
2172 }
2173
2174 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2175 if (!cfg) {
2176 err = -ENOMEM;
2177 goto done;
2178 }
2179
2180 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2181
2182 /* Speed - If default override pending, use curr_user_phy_cfg set in
2183 * ice_init_phy_user_cfg_ldo.
2184 */
2185 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2186 vsi->back->state)) {
2187 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2188 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2189 } else {
2190 u64 phy_low = 0, phy_high = 0;
2191
2192 ice_update_phy_type(&phy_low, &phy_high,
2193 pi->phy.curr_user_speed_req);
2194 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2195 cfg->phy_type_high = pcaps->phy_type_high &
2196 cpu_to_le64(phy_high);
2197 }
2198
2199 /* Can't provide what was requested; use PHY capabilities */
2200 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2201 cfg->phy_type_low = pcaps->phy_type_low;
2202 cfg->phy_type_high = pcaps->phy_type_high;
2203 }
2204
2205 /* FEC */
2206 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2207
2208 /* Can't provide what was requested; use PHY capabilities */
2209 if (cfg->link_fec_opt !=
2210 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2211 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2212 cfg->link_fec_opt = pcaps->link_fec_options;
2213 }
2214
2215 /* Flow Control - always supported; no need to check against
2216 * capabilities
2217 */
2218 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2219
2220 /* Enable link and link update */
2221 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2222
2223 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2224 if (err)
2225 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2226 vsi->vsi_num, err);
2227
2228 kfree(cfg);
2229done:
2230 kfree(pcaps);
2231 return err;
2232}
2233
2234/**
2235 * ice_check_media_subtask - Check for media
2236 * @pf: pointer to PF struct
2237 *
2238 * If media is available, then initialize PHY user configuration if it is not
2239 * been, and configure the PHY if the interface is up.
2240 */
2241static void ice_check_media_subtask(struct ice_pf *pf)
2242{
2243 struct ice_port_info *pi;
2244 struct ice_vsi *vsi;
2245 int err;
2246
2247 /* No need to check for media if it's already present */
2248 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2249 return;
2250
2251 vsi = ice_get_main_vsi(pf);
2252 if (!vsi)
2253 return;
2254
2255 /* Refresh link info and check if media is present */
2256 pi = vsi->port_info;
2257 err = ice_update_link_info(pi);
2258 if (err)
2259 return;
2260
2261 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2262
2263 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2264 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2265 ice_init_phy_user_cfg(pi);
2266
2267 /* PHY settings are reset on media insertion, reconfigure
2268 * PHY to preserve settings.
2269 */
2270 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2271 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2272 return;
2273
2274 err = ice_configure_phy(vsi);
2275 if (!err)
2276 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2277
2278 /* A Link Status Event will be generated; the event handler
2279 * will complete bringing the interface up
2280 */
2281 }
2282}
2283
2284/**
2285 * ice_service_task - manage and run subtasks
2286 * @work: pointer to work_struct contained by the PF struct
2287 */
2288static void ice_service_task(struct work_struct *work)
2289{
2290 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2291 unsigned long start_time = jiffies;
2292
2293 /* subtasks */
2294
2295 /* process reset requests first */
2296 ice_reset_subtask(pf);
2297
2298 /* bail if a reset/recovery cycle is pending or rebuild failed */
2299 if (ice_is_reset_in_progress(pf->state) ||
2300 test_bit(ICE_SUSPENDED, pf->state) ||
2301 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2302 ice_service_task_complete(pf);
2303 return;
2304 }
2305
2306 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2307 struct iidc_event *event;
2308
2309 event = kzalloc(sizeof(*event), GFP_KERNEL);
2310 if (event) {
2311 set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2312 /* report the entire OICR value to AUX driver */
2313 swap(event->reg, pf->oicr_err_reg);
2314 ice_send_event_to_aux(pf, event);
2315 kfree(event);
2316 }
2317 }
2318
2319 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) {
2320 /* Plug aux device per request */
2321 ice_plug_aux_dev(pf);
2322
2323 /* Mark plugging as done but check whether unplug was
2324 * requested during ice_plug_aux_dev() call
2325 * (e.g. from ice_clear_rdma_cap()) and if so then
2326 * plug aux device.
2327 */
2328 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2329 ice_unplug_aux_dev(pf);
2330 }
2331
2332 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2333 struct iidc_event *event;
2334
2335 event = kzalloc(sizeof(*event), GFP_KERNEL);
2336 if (event) {
2337 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2338 ice_send_event_to_aux(pf, event);
2339 kfree(event);
2340 }
2341 }
2342
2343 ice_clean_adminq_subtask(pf);
2344 ice_check_media_subtask(pf);
2345 ice_check_for_hang_subtask(pf);
2346 ice_sync_fltr_subtask(pf);
2347 ice_handle_mdd_event(pf);
2348 ice_watchdog_subtask(pf);
2349
2350 if (ice_is_safe_mode(pf)) {
2351 ice_service_task_complete(pf);
2352 return;
2353 }
2354
2355 ice_process_vflr_event(pf);
2356 ice_clean_mailboxq_subtask(pf);
2357 ice_clean_sbq_subtask(pf);
2358 ice_sync_arfs_fltrs(pf);
2359 ice_flush_fdir_ctx(pf);
2360
2361 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2362 ice_service_task_complete(pf);
2363
2364 /* If the tasks have taken longer than one service timer period
2365 * or there is more work to be done, reset the service timer to
2366 * schedule the service task now.
2367 */
2368 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2369 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2370 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2371 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2372 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2373 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2374 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2375 mod_timer(&pf->serv_tmr, jiffies);
2376}
2377
2378/**
2379 * ice_set_ctrlq_len - helper function to set controlq length
2380 * @hw: pointer to the HW instance
2381 */
2382static void ice_set_ctrlq_len(struct ice_hw *hw)
2383{
2384 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2385 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2386 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2387 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2388 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2389 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2390 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2391 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2392 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2393 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2394 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2395 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2396}
2397
2398/**
2399 * ice_schedule_reset - schedule a reset
2400 * @pf: board private structure
2401 * @reset: reset being requested
2402 */
2403int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2404{
2405 struct device *dev = ice_pf_to_dev(pf);
2406
2407 /* bail out if earlier reset has failed */
2408 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2409 dev_dbg(dev, "earlier reset has failed\n");
2410 return -EIO;
2411 }
2412 /* bail if reset/recovery already in progress */
2413 if (ice_is_reset_in_progress(pf->state)) {
2414 dev_dbg(dev, "Reset already in progress\n");
2415 return -EBUSY;
2416 }
2417
2418 switch (reset) {
2419 case ICE_RESET_PFR:
2420 set_bit(ICE_PFR_REQ, pf->state);
2421 break;
2422 case ICE_RESET_CORER:
2423 set_bit(ICE_CORER_REQ, pf->state);
2424 break;
2425 case ICE_RESET_GLOBR:
2426 set_bit(ICE_GLOBR_REQ, pf->state);
2427 break;
2428 default:
2429 return -EINVAL;
2430 }
2431
2432 ice_service_task_schedule(pf);
2433 return 0;
2434}
2435
2436/**
2437 * ice_irq_affinity_notify - Callback for affinity changes
2438 * @notify: context as to what irq was changed
2439 * @mask: the new affinity mask
2440 *
2441 * This is a callback function used by the irq_set_affinity_notifier function
2442 * so that we may register to receive changes to the irq affinity masks.
2443 */
2444static void
2445ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2446 const cpumask_t *mask)
2447{
2448 struct ice_q_vector *q_vector =
2449 container_of(notify, struct ice_q_vector, affinity_notify);
2450
2451 cpumask_copy(&q_vector->affinity_mask, mask);
2452}
2453
2454/**
2455 * ice_irq_affinity_release - Callback for affinity notifier release
2456 * @ref: internal core kernel usage
2457 *
2458 * This is a callback function used by the irq_set_affinity_notifier function
2459 * to inform the current notification subscriber that they will no longer
2460 * receive notifications.
2461 */
2462static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2463
2464/**
2465 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2466 * @vsi: the VSI being configured
2467 */
2468static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2469{
2470 struct ice_hw *hw = &vsi->back->hw;
2471 int i;
2472
2473 ice_for_each_q_vector(vsi, i)
2474 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2475
2476 ice_flush(hw);
2477 return 0;
2478}
2479
2480/**
2481 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2482 * @vsi: the VSI being configured
2483 * @basename: name for the vector
2484 */
2485static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2486{
2487 int q_vectors = vsi->num_q_vectors;
2488 struct ice_pf *pf = vsi->back;
2489 int base = vsi->base_vector;
2490 struct device *dev;
2491 int rx_int_idx = 0;
2492 int tx_int_idx = 0;
2493 int vector, err;
2494 int irq_num;
2495
2496 dev = ice_pf_to_dev(pf);
2497 for (vector = 0; vector < q_vectors; vector++) {
2498 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2499
2500 irq_num = pf->msix_entries[base + vector].vector;
2501
2502 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2503 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2504 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2505 tx_int_idx++;
2506 } else if (q_vector->rx.rx_ring) {
2507 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2508 "%s-%s-%d", basename, "rx", rx_int_idx++);
2509 } else if (q_vector->tx.tx_ring) {
2510 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2511 "%s-%s-%d", basename, "tx", tx_int_idx++);
2512 } else {
2513 /* skip this unused q_vector */
2514 continue;
2515 }
2516 if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2517 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2518 IRQF_SHARED, q_vector->name,
2519 q_vector);
2520 else
2521 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2522 0, q_vector->name, q_vector);
2523 if (err) {
2524 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2525 err);
2526 goto free_q_irqs;
2527 }
2528
2529 /* register for affinity change notifications */
2530 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2531 struct irq_affinity_notify *affinity_notify;
2532
2533 affinity_notify = &q_vector->affinity_notify;
2534 affinity_notify->notify = ice_irq_affinity_notify;
2535 affinity_notify->release = ice_irq_affinity_release;
2536 irq_set_affinity_notifier(irq_num, affinity_notify);
2537 }
2538
2539 /* assign the mask for this irq */
2540 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2541 }
2542
2543 err = ice_set_cpu_rx_rmap(vsi);
2544 if (err) {
2545 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2546 vsi->vsi_num, ERR_PTR(err));
2547 goto free_q_irqs;
2548 }
2549
2550 vsi->irqs_ready = true;
2551 return 0;
2552
2553free_q_irqs:
2554 while (vector) {
2555 vector--;
2556 irq_num = pf->msix_entries[base + vector].vector;
2557 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2558 irq_set_affinity_notifier(irq_num, NULL);
2559 irq_set_affinity_hint(irq_num, NULL);
2560 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2561 }
2562 return err;
2563}
2564
2565/**
2566 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2567 * @vsi: VSI to setup Tx rings used by XDP
2568 *
2569 * Return 0 on success and negative value on error
2570 */
2571static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2572{
2573 struct device *dev = ice_pf_to_dev(vsi->back);
2574 struct ice_tx_desc *tx_desc;
2575 int i, j;
2576
2577 ice_for_each_xdp_txq(vsi, i) {
2578 u16 xdp_q_idx = vsi->alloc_txq + i;
2579 struct ice_ring_stats *ring_stats;
2580 struct ice_tx_ring *xdp_ring;
2581
2582 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2583 if (!xdp_ring)
2584 goto free_xdp_rings;
2585
2586 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2587 if (!ring_stats) {
2588 ice_free_tx_ring(xdp_ring);
2589 goto free_xdp_rings;
2590 }
2591
2592 xdp_ring->ring_stats = ring_stats;
2593 xdp_ring->q_index = xdp_q_idx;
2594 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2595 xdp_ring->vsi = vsi;
2596 xdp_ring->netdev = NULL;
2597 xdp_ring->dev = dev;
2598 xdp_ring->count = vsi->num_tx_desc;
2599 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1;
2600 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1;
2601 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2602 if (ice_setup_tx_ring(xdp_ring))
2603 goto free_xdp_rings;
2604 ice_set_ring_xdp(xdp_ring);
2605 spin_lock_init(&xdp_ring->tx_lock);
2606 for (j = 0; j < xdp_ring->count; j++) {
2607 tx_desc = ICE_TX_DESC(xdp_ring, j);
2608 tx_desc->cmd_type_offset_bsz = 0;
2609 }
2610 }
2611
2612 return 0;
2613
2614free_xdp_rings:
2615 for (; i >= 0; i--) {
2616 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2617 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2618 vsi->xdp_rings[i]->ring_stats = NULL;
2619 ice_free_tx_ring(vsi->xdp_rings[i]);
2620 }
2621 }
2622 return -ENOMEM;
2623}
2624
2625/**
2626 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2627 * @vsi: VSI to set the bpf prog on
2628 * @prog: the bpf prog pointer
2629 */
2630static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2631{
2632 struct bpf_prog *old_prog;
2633 int i;
2634
2635 old_prog = xchg(&vsi->xdp_prog, prog);
2636 if (old_prog)
2637 bpf_prog_put(old_prog);
2638
2639 ice_for_each_rxq(vsi, i)
2640 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2641}
2642
2643/**
2644 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2645 * @vsi: VSI to bring up Tx rings used by XDP
2646 * @prog: bpf program that will be assigned to VSI
2647 *
2648 * Return 0 on success and negative value on error
2649 */
2650int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2651{
2652 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2653 int xdp_rings_rem = vsi->num_xdp_txq;
2654 struct ice_pf *pf = vsi->back;
2655 struct ice_qs_cfg xdp_qs_cfg = {
2656 .qs_mutex = &pf->avail_q_mutex,
2657 .pf_map = pf->avail_txqs,
2658 .pf_map_size = pf->max_pf_txqs,
2659 .q_count = vsi->num_xdp_txq,
2660 .scatter_count = ICE_MAX_SCATTER_TXQS,
2661 .vsi_map = vsi->txq_map,
2662 .vsi_map_offset = vsi->alloc_txq,
2663 .mapping_mode = ICE_VSI_MAP_CONTIG
2664 };
2665 struct device *dev;
2666 int i, v_idx;
2667 int status;
2668
2669 dev = ice_pf_to_dev(pf);
2670 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2671 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2672 if (!vsi->xdp_rings)
2673 return -ENOMEM;
2674
2675 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2676 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2677 goto err_map_xdp;
2678
2679 if (static_key_enabled(&ice_xdp_locking_key))
2680 netdev_warn(vsi->netdev,
2681 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2682
2683 if (ice_xdp_alloc_setup_rings(vsi))
2684 goto clear_xdp_rings;
2685
2686 /* follow the logic from ice_vsi_map_rings_to_vectors */
2687 ice_for_each_q_vector(vsi, v_idx) {
2688 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2689 int xdp_rings_per_v, q_id, q_base;
2690
2691 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2692 vsi->num_q_vectors - v_idx);
2693 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2694
2695 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2696 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2697
2698 xdp_ring->q_vector = q_vector;
2699 xdp_ring->next = q_vector->tx.tx_ring;
2700 q_vector->tx.tx_ring = xdp_ring;
2701 }
2702 xdp_rings_rem -= xdp_rings_per_v;
2703 }
2704
2705 ice_for_each_rxq(vsi, i) {
2706 if (static_key_enabled(&ice_xdp_locking_key)) {
2707 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2708 } else {
2709 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2710 struct ice_tx_ring *ring;
2711
2712 ice_for_each_tx_ring(ring, q_vector->tx) {
2713 if (ice_ring_is_xdp(ring)) {
2714 vsi->rx_rings[i]->xdp_ring = ring;
2715 break;
2716 }
2717 }
2718 }
2719 ice_tx_xsk_pool(vsi, i);
2720 }
2721
2722 /* omit the scheduler update if in reset path; XDP queues will be
2723 * taken into account at the end of ice_vsi_rebuild, where
2724 * ice_cfg_vsi_lan is being called
2725 */
2726 if (ice_is_reset_in_progress(pf->state))
2727 return 0;
2728
2729 /* tell the Tx scheduler that right now we have
2730 * additional queues
2731 */
2732 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2733 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2734
2735 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2736 max_txqs);
2737 if (status) {
2738 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2739 status);
2740 goto clear_xdp_rings;
2741 }
2742
2743 /* assign the prog only when it's not already present on VSI;
2744 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2745 * VSI rebuild that happens under ethtool -L can expose us to
2746 * the bpf_prog refcount issues as we would be swapping same
2747 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2748 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2749 * this is not harmful as dev_xdp_install bumps the refcount
2750 * before calling the op exposed by the driver;
2751 */
2752 if (!ice_is_xdp_ena_vsi(vsi))
2753 ice_vsi_assign_bpf_prog(vsi, prog);
2754
2755 return 0;
2756clear_xdp_rings:
2757 ice_for_each_xdp_txq(vsi, i)
2758 if (vsi->xdp_rings[i]) {
2759 kfree_rcu(vsi->xdp_rings[i], rcu);
2760 vsi->xdp_rings[i] = NULL;
2761 }
2762
2763err_map_xdp:
2764 mutex_lock(&pf->avail_q_mutex);
2765 ice_for_each_xdp_txq(vsi, i) {
2766 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2767 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2768 }
2769 mutex_unlock(&pf->avail_q_mutex);
2770
2771 devm_kfree(dev, vsi->xdp_rings);
2772 return -ENOMEM;
2773}
2774
2775/**
2776 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2777 * @vsi: VSI to remove XDP rings
2778 *
2779 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2780 * resources
2781 */
2782int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2783{
2784 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2785 struct ice_pf *pf = vsi->back;
2786 int i, v_idx;
2787
2788 /* q_vectors are freed in reset path so there's no point in detaching
2789 * rings; in case of rebuild being triggered not from reset bits
2790 * in pf->state won't be set, so additionally check first q_vector
2791 * against NULL
2792 */
2793 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2794 goto free_qmap;
2795
2796 ice_for_each_q_vector(vsi, v_idx) {
2797 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2798 struct ice_tx_ring *ring;
2799
2800 ice_for_each_tx_ring(ring, q_vector->tx)
2801 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2802 break;
2803
2804 /* restore the value of last node prior to XDP setup */
2805 q_vector->tx.tx_ring = ring;
2806 }
2807
2808free_qmap:
2809 mutex_lock(&pf->avail_q_mutex);
2810 ice_for_each_xdp_txq(vsi, i) {
2811 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2812 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2813 }
2814 mutex_unlock(&pf->avail_q_mutex);
2815
2816 ice_for_each_xdp_txq(vsi, i)
2817 if (vsi->xdp_rings[i]) {
2818 if (vsi->xdp_rings[i]->desc) {
2819 synchronize_rcu();
2820 ice_free_tx_ring(vsi->xdp_rings[i]);
2821 }
2822 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2823 vsi->xdp_rings[i]->ring_stats = NULL;
2824 kfree_rcu(vsi->xdp_rings[i], rcu);
2825 vsi->xdp_rings[i] = NULL;
2826 }
2827
2828 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2829 vsi->xdp_rings = NULL;
2830
2831 if (static_key_enabled(&ice_xdp_locking_key))
2832 static_branch_dec(&ice_xdp_locking_key);
2833
2834 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2835 return 0;
2836
2837 ice_vsi_assign_bpf_prog(vsi, NULL);
2838
2839 /* notify Tx scheduler that we destroyed XDP queues and bring
2840 * back the old number of child nodes
2841 */
2842 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2843 max_txqs[i] = vsi->num_txq;
2844
2845 /* change number of XDP Tx queues to 0 */
2846 vsi->num_xdp_txq = 0;
2847
2848 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2849 max_txqs);
2850}
2851
2852/**
2853 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2854 * @vsi: VSI to schedule napi on
2855 */
2856static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2857{
2858 int i;
2859
2860 ice_for_each_rxq(vsi, i) {
2861 struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2862
2863 if (rx_ring->xsk_pool)
2864 napi_schedule(&rx_ring->q_vector->napi);
2865 }
2866}
2867
2868/**
2869 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2870 * @vsi: VSI to determine the count of XDP Tx qs
2871 *
2872 * returns 0 if Tx qs count is higher than at least half of CPU count,
2873 * -ENOMEM otherwise
2874 */
2875int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2876{
2877 u16 avail = ice_get_avail_txq_count(vsi->back);
2878 u16 cpus = num_possible_cpus();
2879
2880 if (avail < cpus / 2)
2881 return -ENOMEM;
2882
2883 vsi->num_xdp_txq = min_t(u16, avail, cpus);
2884
2885 if (vsi->num_xdp_txq < cpus)
2886 static_branch_inc(&ice_xdp_locking_key);
2887
2888 return 0;
2889}
2890
2891/**
2892 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2893 * @vsi: VSI to setup XDP for
2894 * @prog: XDP program
2895 * @extack: netlink extended ack
2896 */
2897static int
2898ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2899 struct netlink_ext_ack *extack)
2900{
2901 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2902 bool if_running = netif_running(vsi->netdev);
2903 int ret = 0, xdp_ring_err = 0;
2904
2905 if (frame_size > vsi->rx_buf_len) {
2906 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2907 return -EOPNOTSUPP;
2908 }
2909
2910 /* need to stop netdev while setting up the program for Rx rings */
2911 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2912 ret = ice_down(vsi);
2913 if (ret) {
2914 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2915 return ret;
2916 }
2917 }
2918
2919 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2920 xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2921 if (xdp_ring_err) {
2922 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2923 } else {
2924 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2925 if (xdp_ring_err)
2926 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2927 }
2928 /* reallocate Rx queues that are used for zero-copy */
2929 xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2930 if (xdp_ring_err)
2931 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2932 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2933 xdp_ring_err = ice_destroy_xdp_rings(vsi);
2934 if (xdp_ring_err)
2935 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2936 /* reallocate Rx queues that were used for zero-copy */
2937 xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2938 if (xdp_ring_err)
2939 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2940 } else {
2941 /* safe to call even when prog == vsi->xdp_prog as
2942 * dev_xdp_install in net/core/dev.c incremented prog's
2943 * refcount so corresponding bpf_prog_put won't cause
2944 * underflow
2945 */
2946 ice_vsi_assign_bpf_prog(vsi, prog);
2947 }
2948
2949 if (if_running)
2950 ret = ice_up(vsi);
2951
2952 if (!ret && prog)
2953 ice_vsi_rx_napi_schedule(vsi);
2954
2955 return (ret || xdp_ring_err) ? -ENOMEM : 0;
2956}
2957
2958/**
2959 * ice_xdp_safe_mode - XDP handler for safe mode
2960 * @dev: netdevice
2961 * @xdp: XDP command
2962 */
2963static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2964 struct netdev_bpf *xdp)
2965{
2966 NL_SET_ERR_MSG_MOD(xdp->extack,
2967 "Please provide working DDP firmware package in order to use XDP\n"
2968 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2969 return -EOPNOTSUPP;
2970}
2971
2972/**
2973 * ice_xdp - implements XDP handler
2974 * @dev: netdevice
2975 * @xdp: XDP command
2976 */
2977static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2978{
2979 struct ice_netdev_priv *np = netdev_priv(dev);
2980 struct ice_vsi *vsi = np->vsi;
2981
2982 if (vsi->type != ICE_VSI_PF) {
2983 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2984 return -EINVAL;
2985 }
2986
2987 switch (xdp->command) {
2988 case XDP_SETUP_PROG:
2989 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2990 case XDP_SETUP_XSK_POOL:
2991 return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2992 xdp->xsk.queue_id);
2993 default:
2994 return -EINVAL;
2995 }
2996}
2997
2998/**
2999 * ice_ena_misc_vector - enable the non-queue interrupts
3000 * @pf: board private structure
3001 */
3002static void ice_ena_misc_vector(struct ice_pf *pf)
3003{
3004 struct ice_hw *hw = &pf->hw;
3005 u32 val;
3006
3007 /* Disable anti-spoof detection interrupt to prevent spurious event
3008 * interrupts during a function reset. Anti-spoof functionally is
3009 * still supported.
3010 */
3011 val = rd32(hw, GL_MDCK_TX_TDPU);
3012 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3013 wr32(hw, GL_MDCK_TX_TDPU, val);
3014
3015 /* clear things first */
3016 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
3017 rd32(hw, PFINT_OICR); /* read to clear */
3018
3019 val = (PFINT_OICR_ECC_ERR_M |
3020 PFINT_OICR_MAL_DETECT_M |
3021 PFINT_OICR_GRST_M |
3022 PFINT_OICR_PCI_EXCEPTION_M |
3023 PFINT_OICR_VFLR_M |
3024 PFINT_OICR_HMC_ERR_M |
3025 PFINT_OICR_PE_PUSH_M |
3026 PFINT_OICR_PE_CRITERR_M);
3027
3028 wr32(hw, PFINT_OICR_ENA, val);
3029
3030 /* SW_ITR_IDX = 0, but don't change INTENA */
3031 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
3032 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3033}
3034
3035/**
3036 * ice_misc_intr - misc interrupt handler
3037 * @irq: interrupt number
3038 * @data: pointer to a q_vector
3039 */
3040static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3041{
3042 struct ice_pf *pf = (struct ice_pf *)data;
3043 struct ice_hw *hw = &pf->hw;
3044 irqreturn_t ret = IRQ_NONE;
3045 struct device *dev;
3046 u32 oicr, ena_mask;
3047
3048 dev = ice_pf_to_dev(pf);
3049 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3050 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3051 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3052
3053 oicr = rd32(hw, PFINT_OICR);
3054 ena_mask = rd32(hw, PFINT_OICR_ENA);
3055
3056 if (oicr & PFINT_OICR_SWINT_M) {
3057 ena_mask &= ~PFINT_OICR_SWINT_M;
3058 pf->sw_int_count++;
3059 }
3060
3061 if (oicr & PFINT_OICR_MAL_DETECT_M) {
3062 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3063 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3064 }
3065 if (oicr & PFINT_OICR_VFLR_M) {
3066 /* disable any further VFLR event notifications */
3067 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3068 u32 reg = rd32(hw, PFINT_OICR_ENA);
3069
3070 reg &= ~PFINT_OICR_VFLR_M;
3071 wr32(hw, PFINT_OICR_ENA, reg);
3072 } else {
3073 ena_mask &= ~PFINT_OICR_VFLR_M;
3074 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3075 }
3076 }
3077
3078 if (oicr & PFINT_OICR_GRST_M) {
3079 u32 reset;
3080
3081 /* we have a reset warning */
3082 ena_mask &= ~PFINT_OICR_GRST_M;
3083 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3084 GLGEN_RSTAT_RESET_TYPE_S;
3085
3086 if (reset == ICE_RESET_CORER)
3087 pf->corer_count++;
3088 else if (reset == ICE_RESET_GLOBR)
3089 pf->globr_count++;
3090 else if (reset == ICE_RESET_EMPR)
3091 pf->empr_count++;
3092 else
3093 dev_dbg(dev, "Invalid reset type %d\n", reset);
3094
3095 /* If a reset cycle isn't already in progress, we set a bit in
3096 * pf->state so that the service task can start a reset/rebuild.
3097 */
3098 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3099 if (reset == ICE_RESET_CORER)
3100 set_bit(ICE_CORER_RECV, pf->state);
3101 else if (reset == ICE_RESET_GLOBR)
3102 set_bit(ICE_GLOBR_RECV, pf->state);
3103 else
3104 set_bit(ICE_EMPR_RECV, pf->state);
3105
3106 /* There are couple of different bits at play here.
3107 * hw->reset_ongoing indicates whether the hardware is
3108 * in reset. This is set to true when a reset interrupt
3109 * is received and set back to false after the driver
3110 * has determined that the hardware is out of reset.
3111 *
3112 * ICE_RESET_OICR_RECV in pf->state indicates
3113 * that a post reset rebuild is required before the
3114 * driver is operational again. This is set above.
3115 *
3116 * As this is the start of the reset/rebuild cycle, set
3117 * both to indicate that.
3118 */
3119 hw->reset_ongoing = true;
3120 }
3121 }
3122
3123 if (oicr & PFINT_OICR_TSYN_TX_M) {
3124 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3125 if (!hw->reset_ongoing)
3126 ret = IRQ_WAKE_THREAD;
3127 }
3128
3129 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3130 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3131 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3132
3133 /* Save EVENTs from GTSYN register */
3134 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
3135 GLTSYN_STAT_EVENT1_M |
3136 GLTSYN_STAT_EVENT2_M);
3137 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3138 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
3139 }
3140
3141#define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3142 if (oicr & ICE_AUX_CRIT_ERR) {
3143 pf->oicr_err_reg |= oicr;
3144 set_bit(ICE_AUX_ERR_PENDING, pf->state);
3145 ena_mask &= ~ICE_AUX_CRIT_ERR;
3146 }
3147
3148 /* Report any remaining unexpected interrupts */
3149 oicr &= ena_mask;
3150 if (oicr) {
3151 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3152 /* If a critical error is pending there is no choice but to
3153 * reset the device.
3154 */
3155 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3156 PFINT_OICR_ECC_ERR_M)) {
3157 set_bit(ICE_PFR_REQ, pf->state);
3158 ice_service_task_schedule(pf);
3159 }
3160 }
3161 if (!ret)
3162 ret = IRQ_HANDLED;
3163
3164 ice_service_task_schedule(pf);
3165 ice_irq_dynamic_ena(hw, NULL, NULL);
3166
3167 return ret;
3168}
3169
3170/**
3171 * ice_misc_intr_thread_fn - misc interrupt thread function
3172 * @irq: interrupt number
3173 * @data: pointer to a q_vector
3174 */
3175static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3176{
3177 struct ice_pf *pf = data;
3178
3179 if (ice_is_reset_in_progress(pf->state))
3180 return IRQ_HANDLED;
3181
3182 while (!ice_ptp_process_ts(pf))
3183 usleep_range(50, 100);
3184
3185 return IRQ_HANDLED;
3186}
3187
3188/**
3189 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3190 * @hw: pointer to HW structure
3191 */
3192static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3193{
3194 /* disable Admin queue Interrupt causes */
3195 wr32(hw, PFINT_FW_CTL,
3196 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3197
3198 /* disable Mailbox queue Interrupt causes */
3199 wr32(hw, PFINT_MBX_CTL,
3200 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3201
3202 wr32(hw, PFINT_SB_CTL,
3203 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3204
3205 /* disable Control queue Interrupt causes */
3206 wr32(hw, PFINT_OICR_CTL,
3207 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3208
3209 ice_flush(hw);
3210}
3211
3212/**
3213 * ice_free_irq_msix_misc - Unroll misc vector setup
3214 * @pf: board private structure
3215 */
3216static void ice_free_irq_msix_misc(struct ice_pf *pf)
3217{
3218 struct ice_hw *hw = &pf->hw;
3219
3220 ice_dis_ctrlq_interrupts(hw);
3221
3222 /* disable OICR interrupt */
3223 wr32(hw, PFINT_OICR_ENA, 0);
3224 ice_flush(hw);
3225
3226 if (pf->msix_entries) {
3227 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
3228 devm_free_irq(ice_pf_to_dev(pf),
3229 pf->msix_entries[pf->oicr_idx].vector, pf);
3230 }
3231
3232 pf->num_avail_sw_msix += 1;
3233 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
3234}
3235
3236/**
3237 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3238 * @hw: pointer to HW structure
3239 * @reg_idx: HW vector index to associate the control queue interrupts with
3240 */
3241static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3242{
3243 u32 val;
3244
3245 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3246 PFINT_OICR_CTL_CAUSE_ENA_M);
3247 wr32(hw, PFINT_OICR_CTL, val);
3248
3249 /* enable Admin queue Interrupt causes */
3250 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3251 PFINT_FW_CTL_CAUSE_ENA_M);
3252 wr32(hw, PFINT_FW_CTL, val);
3253
3254 /* enable Mailbox queue Interrupt causes */
3255 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3256 PFINT_MBX_CTL_CAUSE_ENA_M);
3257 wr32(hw, PFINT_MBX_CTL, val);
3258
3259 /* This enables Sideband queue Interrupt causes */
3260 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3261 PFINT_SB_CTL_CAUSE_ENA_M);
3262 wr32(hw, PFINT_SB_CTL, val);
3263
3264 ice_flush(hw);
3265}
3266
3267/**
3268 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3269 * @pf: board private structure
3270 *
3271 * This sets up the handler for MSIX 0, which is used to manage the
3272 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3273 * when in MSI or Legacy interrupt mode.
3274 */
3275static int ice_req_irq_msix_misc(struct ice_pf *pf)
3276{
3277 struct device *dev = ice_pf_to_dev(pf);
3278 struct ice_hw *hw = &pf->hw;
3279 int oicr_idx, err = 0;
3280
3281 if (!pf->int_name[0])
3282 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3283 dev_driver_string(dev), dev_name(dev));
3284
3285 /* Do not request IRQ but do enable OICR interrupt since settings are
3286 * lost during reset. Note that this function is called only during
3287 * rebuild path and not while reset is in progress.
3288 */
3289 if (ice_is_reset_in_progress(pf->state))
3290 goto skip_req_irq;
3291
3292 /* reserve one vector in irq_tracker for misc interrupts */
3293 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3294 if (oicr_idx < 0)
3295 return oicr_idx;
3296
3297 pf->num_avail_sw_msix -= 1;
3298 pf->oicr_idx = (u16)oicr_idx;
3299
3300 err = devm_request_threaded_irq(dev,
3301 pf->msix_entries[pf->oicr_idx].vector,
3302 ice_misc_intr, ice_misc_intr_thread_fn,
3303 0, pf->int_name, pf);
3304 if (err) {
3305 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3306 pf->int_name, err);
3307 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3308 pf->num_avail_sw_msix += 1;
3309 return err;
3310 }
3311
3312skip_req_irq:
3313 ice_ena_misc_vector(pf);
3314
3315 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3316 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3317 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3318
3319 ice_flush(hw);
3320 ice_irq_dynamic_ena(hw, NULL, NULL);
3321
3322 return 0;
3323}
3324
3325/**
3326 * ice_napi_add - register NAPI handler for the VSI
3327 * @vsi: VSI for which NAPI handler is to be registered
3328 *
3329 * This function is only called in the driver's load path. Registering the NAPI
3330 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3331 * reset/rebuild, etc.)
3332 */
3333static void ice_napi_add(struct ice_vsi *vsi)
3334{
3335 int v_idx;
3336
3337 if (!vsi->netdev)
3338 return;
3339
3340 ice_for_each_q_vector(vsi, v_idx)
3341 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3342 ice_napi_poll);
3343}
3344
3345/**
3346 * ice_set_ops - set netdev and ethtools ops for the given netdev
3347 * @netdev: netdev instance
3348 */
3349static void ice_set_ops(struct net_device *netdev)
3350{
3351 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3352
3353 if (ice_is_safe_mode(pf)) {
3354 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3355 ice_set_ethtool_safe_mode_ops(netdev);
3356 return;
3357 }
3358
3359 netdev->netdev_ops = &ice_netdev_ops;
3360 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3361 ice_set_ethtool_ops(netdev);
3362}
3363
3364/**
3365 * ice_set_netdev_features - set features for the given netdev
3366 * @netdev: netdev instance
3367 */
3368static void ice_set_netdev_features(struct net_device *netdev)
3369{
3370 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3371 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3372 netdev_features_t csumo_features;
3373 netdev_features_t vlano_features;
3374 netdev_features_t dflt_features;
3375 netdev_features_t tso_features;
3376
3377 if (ice_is_safe_mode(pf)) {
3378 /* safe mode */
3379 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3380 netdev->hw_features = netdev->features;
3381 return;
3382 }
3383
3384 dflt_features = NETIF_F_SG |
3385 NETIF_F_HIGHDMA |
3386 NETIF_F_NTUPLE |
3387 NETIF_F_RXHASH;
3388
3389 csumo_features = NETIF_F_RXCSUM |
3390 NETIF_F_IP_CSUM |
3391 NETIF_F_SCTP_CRC |
3392 NETIF_F_IPV6_CSUM;
3393
3394 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3395 NETIF_F_HW_VLAN_CTAG_TX |
3396 NETIF_F_HW_VLAN_CTAG_RX;
3397
3398 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3399 if (is_dvm_ena)
3400 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3401
3402 tso_features = NETIF_F_TSO |
3403 NETIF_F_TSO_ECN |
3404 NETIF_F_TSO6 |
3405 NETIF_F_GSO_GRE |
3406 NETIF_F_GSO_UDP_TUNNEL |
3407 NETIF_F_GSO_GRE_CSUM |
3408 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3409 NETIF_F_GSO_PARTIAL |
3410 NETIF_F_GSO_IPXIP4 |
3411 NETIF_F_GSO_IPXIP6 |
3412 NETIF_F_GSO_UDP_L4;
3413
3414 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3415 NETIF_F_GSO_GRE_CSUM;
3416 /* set features that user can change */
3417 netdev->hw_features = dflt_features | csumo_features |
3418 vlano_features | tso_features;
3419
3420 /* add support for HW_CSUM on packets with MPLS header */
3421 netdev->mpls_features = NETIF_F_HW_CSUM |
3422 NETIF_F_TSO |
3423 NETIF_F_TSO6;
3424
3425 /* enable features */
3426 netdev->features |= netdev->hw_features;
3427
3428 netdev->hw_features |= NETIF_F_HW_TC;
3429 netdev->hw_features |= NETIF_F_LOOPBACK;
3430
3431 /* encap and VLAN devices inherit default, csumo and tso features */
3432 netdev->hw_enc_features |= dflt_features | csumo_features |
3433 tso_features;
3434 netdev->vlan_features |= dflt_features | csumo_features |
3435 tso_features;
3436
3437 /* advertise support but don't enable by default since only one type of
3438 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3439 * type turns on the other has to be turned off. This is enforced by the
3440 * ice_fix_features() ndo callback.
3441 */
3442 if (is_dvm_ena)
3443 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3444 NETIF_F_HW_VLAN_STAG_TX;
3445
3446 /* Leave CRC / FCS stripping enabled by default, but allow the value to
3447 * be changed at runtime
3448 */
3449 netdev->hw_features |= NETIF_F_RXFCS;
3450}
3451
3452/**
3453 * ice_cfg_netdev - Allocate, configure and register a netdev
3454 * @vsi: the VSI associated with the new netdev
3455 *
3456 * Returns 0 on success, negative value on failure
3457 */
3458static int ice_cfg_netdev(struct ice_vsi *vsi)
3459{
3460 struct ice_netdev_priv *np;
3461 struct net_device *netdev;
3462 u8 mac_addr[ETH_ALEN];
3463
3464 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3465 vsi->alloc_rxq);
3466 if (!netdev)
3467 return -ENOMEM;
3468
3469 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3470 vsi->netdev = netdev;
3471 np = netdev_priv(netdev);
3472 np->vsi = vsi;
3473
3474 ice_set_netdev_features(netdev);
3475
3476 ice_set_ops(netdev);
3477
3478 if (vsi->type == ICE_VSI_PF) {
3479 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3480 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3481 eth_hw_addr_set(netdev, mac_addr);
3482 ether_addr_copy(netdev->perm_addr, mac_addr);
3483 }
3484
3485 netdev->priv_flags |= IFF_UNICAST_FLT;
3486
3487 /* Setup netdev TC information */
3488 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3489
3490 /* setup watchdog timeout value to be 5 second */
3491 netdev->watchdog_timeo = 5 * HZ;
3492
3493 netdev->min_mtu = ETH_MIN_MTU;
3494 netdev->max_mtu = ICE_MAX_MTU;
3495
3496 return 0;
3497}
3498
3499/**
3500 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3501 * @lut: Lookup table
3502 * @rss_table_size: Lookup table size
3503 * @rss_size: Range of queue number for hashing
3504 */
3505void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3506{
3507 u16 i;
3508
3509 for (i = 0; i < rss_table_size; i++)
3510 lut[i] = i % rss_size;
3511}
3512
3513/**
3514 * ice_pf_vsi_setup - Set up a PF VSI
3515 * @pf: board private structure
3516 * @pi: pointer to the port_info instance
3517 *
3518 * Returns pointer to the successfully allocated VSI software struct
3519 * on success, otherwise returns NULL on failure.
3520 */
3521static struct ice_vsi *
3522ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3523{
3524 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL);
3525}
3526
3527static struct ice_vsi *
3528ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3529 struct ice_channel *ch)
3530{
3531 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch);
3532}
3533
3534/**
3535 * ice_ctrl_vsi_setup - Set up a control VSI
3536 * @pf: board private structure
3537 * @pi: pointer to the port_info instance
3538 *
3539 * Returns pointer to the successfully allocated VSI software struct
3540 * on success, otherwise returns NULL on failure.
3541 */
3542static struct ice_vsi *
3543ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3544{
3545 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL);
3546}
3547
3548/**
3549 * ice_lb_vsi_setup - Set up a loopback VSI
3550 * @pf: board private structure
3551 * @pi: pointer to the port_info instance
3552 *
3553 * Returns pointer to the successfully allocated VSI software struct
3554 * on success, otherwise returns NULL on failure.
3555 */
3556struct ice_vsi *
3557ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3558{
3559 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL);
3560}
3561
3562/**
3563 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3564 * @netdev: network interface to be adjusted
3565 * @proto: VLAN TPID
3566 * @vid: VLAN ID to be added
3567 *
3568 * net_device_ops implementation for adding VLAN IDs
3569 */
3570static int
3571ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3572{
3573 struct ice_netdev_priv *np = netdev_priv(netdev);
3574 struct ice_vsi_vlan_ops *vlan_ops;
3575 struct ice_vsi *vsi = np->vsi;
3576 struct ice_vlan vlan;
3577 int ret;
3578
3579 /* VLAN 0 is added by default during load/reset */
3580 if (!vid)
3581 return 0;
3582
3583 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3584 usleep_range(1000, 2000);
3585
3586 /* Add multicast promisc rule for the VLAN ID to be added if
3587 * all-multicast is currently enabled.
3588 */
3589 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3590 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3591 ICE_MCAST_VLAN_PROMISC_BITS,
3592 vid);
3593 if (ret)
3594 goto finish;
3595 }
3596
3597 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3598
3599 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3600 * packets aren't pruned by the device's internal switch on Rx
3601 */
3602 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3603 ret = vlan_ops->add_vlan(vsi, &vlan);
3604 if (ret)
3605 goto finish;
3606
3607 /* If all-multicast is currently enabled and this VLAN ID is only one
3608 * besides VLAN-0 we have to update look-up type of multicast promisc
3609 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3610 */
3611 if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3612 ice_vsi_num_non_zero_vlans(vsi) == 1) {
3613 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3614 ICE_MCAST_PROMISC_BITS, 0);
3615 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3616 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3617 }
3618
3619finish:
3620 clear_bit(ICE_CFG_BUSY, vsi->state);
3621
3622 return ret;
3623}
3624
3625/**
3626 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3627 * @netdev: network interface to be adjusted
3628 * @proto: VLAN TPID
3629 * @vid: VLAN ID to be removed
3630 *
3631 * net_device_ops implementation for removing VLAN IDs
3632 */
3633static int
3634ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3635{
3636 struct ice_netdev_priv *np = netdev_priv(netdev);
3637 struct ice_vsi_vlan_ops *vlan_ops;
3638 struct ice_vsi *vsi = np->vsi;
3639 struct ice_vlan vlan;
3640 int ret;
3641
3642 /* don't allow removal of VLAN 0 */
3643 if (!vid)
3644 return 0;
3645
3646 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3647 usleep_range(1000, 2000);
3648
3649 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3650 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3651 if (ret) {
3652 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3653 vsi->vsi_num);
3654 vsi->current_netdev_flags |= IFF_ALLMULTI;
3655 }
3656
3657 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3658
3659 /* Make sure VLAN delete is successful before updating VLAN
3660 * information
3661 */
3662 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3663 ret = vlan_ops->del_vlan(vsi, &vlan);
3664 if (ret)
3665 goto finish;
3666
3667 /* Remove multicast promisc rule for the removed VLAN ID if
3668 * all-multicast is enabled.
3669 */
3670 if (vsi->current_netdev_flags & IFF_ALLMULTI)
3671 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3672 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3673
3674 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3675 /* Update look-up type of multicast promisc rule for VLAN 0
3676 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3677 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3678 */
3679 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3680 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3681 ICE_MCAST_VLAN_PROMISC_BITS,
3682 0);
3683 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3684 ICE_MCAST_PROMISC_BITS, 0);
3685 }
3686 }
3687
3688finish:
3689 clear_bit(ICE_CFG_BUSY, vsi->state);
3690
3691 return ret;
3692}
3693
3694/**
3695 * ice_rep_indr_tc_block_unbind
3696 * @cb_priv: indirection block private data
3697 */
3698static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3699{
3700 struct ice_indr_block_priv *indr_priv = cb_priv;
3701
3702 list_del(&indr_priv->list);
3703 kfree(indr_priv);
3704}
3705
3706/**
3707 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3708 * @vsi: VSI struct which has the netdev
3709 */
3710static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3711{
3712 struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3713
3714 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3715 ice_rep_indr_tc_block_unbind);
3716}
3717
3718/**
3719 * ice_tc_indir_block_remove - clean indirect TC block notifications
3720 * @pf: PF structure
3721 */
3722static void ice_tc_indir_block_remove(struct ice_pf *pf)
3723{
3724 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3725
3726 if (!pf_vsi)
3727 return;
3728
3729 ice_tc_indir_block_unregister(pf_vsi);
3730}
3731
3732/**
3733 * ice_tc_indir_block_register - Register TC indirect block notifications
3734 * @vsi: VSI struct which has the netdev
3735 *
3736 * Returns 0 on success, negative value on failure
3737 */
3738static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3739{
3740 struct ice_netdev_priv *np;
3741
3742 if (!vsi || !vsi->netdev)
3743 return -EINVAL;
3744
3745 np = netdev_priv(vsi->netdev);
3746
3747 INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3748 return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3749}
3750
3751/**
3752 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3753 * @pf: board private structure
3754 *
3755 * Returns 0 on success, negative value on failure
3756 */
3757static int ice_setup_pf_sw(struct ice_pf *pf)
3758{
3759 struct device *dev = ice_pf_to_dev(pf);
3760 bool dvm = ice_is_dvm_ena(&pf->hw);
3761 struct ice_vsi *vsi;
3762 int status;
3763
3764 if (ice_is_reset_in_progress(pf->state))
3765 return -EBUSY;
3766
3767 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
3768 if (status)
3769 return -EIO;
3770
3771 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3772 if (!vsi)
3773 return -ENOMEM;
3774
3775 /* init channel list */
3776 INIT_LIST_HEAD(&vsi->ch_list);
3777
3778 status = ice_cfg_netdev(vsi);
3779 if (status)
3780 goto unroll_vsi_setup;
3781 /* netdev has to be configured before setting frame size */
3782 ice_vsi_cfg_frame_size(vsi);
3783
3784 /* init indirect block notifications */
3785 status = ice_tc_indir_block_register(vsi);
3786 if (status) {
3787 dev_err(dev, "Failed to register netdev notifier\n");
3788 goto unroll_cfg_netdev;
3789 }
3790
3791 /* Setup DCB netlink interface */
3792 ice_dcbnl_setup(vsi);
3793
3794 /* registering the NAPI handler requires both the queues and
3795 * netdev to be created, which are done in ice_pf_vsi_setup()
3796 * and ice_cfg_netdev() respectively
3797 */
3798 ice_napi_add(vsi);
3799
3800 status = ice_init_mac_fltr(pf);
3801 if (status)
3802 goto unroll_napi_add;
3803
3804 return 0;
3805
3806unroll_napi_add:
3807 ice_tc_indir_block_unregister(vsi);
3808unroll_cfg_netdev:
3809 if (vsi) {
3810 ice_napi_del(vsi);
3811 if (vsi->netdev) {
3812 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3813 free_netdev(vsi->netdev);
3814 vsi->netdev = NULL;
3815 }
3816 }
3817
3818unroll_vsi_setup:
3819 ice_vsi_release(vsi);
3820 return status;
3821}
3822
3823/**
3824 * ice_get_avail_q_count - Get count of queues in use
3825 * @pf_qmap: bitmap to get queue use count from
3826 * @lock: pointer to a mutex that protects access to pf_qmap
3827 * @size: size of the bitmap
3828 */
3829static u16
3830ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3831{
3832 unsigned long bit;
3833 u16 count = 0;
3834
3835 mutex_lock(lock);
3836 for_each_clear_bit(bit, pf_qmap, size)
3837 count++;
3838 mutex_unlock(lock);
3839
3840 return count;
3841}
3842
3843/**
3844 * ice_get_avail_txq_count - Get count of Tx queues in use
3845 * @pf: pointer to an ice_pf instance
3846 */
3847u16 ice_get_avail_txq_count(struct ice_pf *pf)
3848{
3849 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3850 pf->max_pf_txqs);
3851}
3852
3853/**
3854 * ice_get_avail_rxq_count - Get count of Rx queues in use
3855 * @pf: pointer to an ice_pf instance
3856 */
3857u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3858{
3859 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3860 pf->max_pf_rxqs);
3861}
3862
3863/**
3864 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3865 * @pf: board private structure to initialize
3866 */
3867static void ice_deinit_pf(struct ice_pf *pf)
3868{
3869 ice_service_task_stop(pf);
3870 mutex_destroy(&pf->adev_mutex);
3871 mutex_destroy(&pf->sw_mutex);
3872 mutex_destroy(&pf->tc_mutex);
3873 mutex_destroy(&pf->avail_q_mutex);
3874 mutex_destroy(&pf->vfs.table_lock);
3875
3876 if (pf->avail_txqs) {
3877 bitmap_free(pf->avail_txqs);
3878 pf->avail_txqs = NULL;
3879 }
3880
3881 if (pf->avail_rxqs) {
3882 bitmap_free(pf->avail_rxqs);
3883 pf->avail_rxqs = NULL;
3884 }
3885
3886 if (pf->ptp.clock)
3887 ptp_clock_unregister(pf->ptp.clock);
3888}
3889
3890/**
3891 * ice_set_pf_caps - set PFs capability flags
3892 * @pf: pointer to the PF instance
3893 */
3894static void ice_set_pf_caps(struct ice_pf *pf)
3895{
3896 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3897
3898 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3899 if (func_caps->common_cap.rdma)
3900 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3901 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3902 if (func_caps->common_cap.dcb)
3903 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3904 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3905 if (func_caps->common_cap.sr_iov_1_1) {
3906 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3907 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3908 ICE_MAX_SRIOV_VFS);
3909 }
3910 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3911 if (func_caps->common_cap.rss_table_size)
3912 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3913
3914 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3915 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3916 u16 unused;
3917
3918 /* ctrl_vsi_idx will be set to a valid value when flow director
3919 * is setup by ice_init_fdir
3920 */
3921 pf->ctrl_vsi_idx = ICE_NO_VSI;
3922 set_bit(ICE_FLAG_FD_ENA, pf->flags);
3923 /* force guaranteed filter pool for PF */
3924 ice_alloc_fd_guar_item(&pf->hw, &unused,
3925 func_caps->fd_fltr_guar);
3926 /* force shared filter pool for PF */
3927 ice_alloc_fd_shrd_item(&pf->hw, &unused,
3928 func_caps->fd_fltr_best_effort);
3929 }
3930
3931 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3932 if (func_caps->common_cap.ieee_1588)
3933 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3934
3935 pf->max_pf_txqs = func_caps->common_cap.num_txq;
3936 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3937}
3938
3939/**
3940 * ice_init_pf - Initialize general software structures (struct ice_pf)
3941 * @pf: board private structure to initialize
3942 */
3943static int ice_init_pf(struct ice_pf *pf)
3944{
3945 ice_set_pf_caps(pf);
3946
3947 mutex_init(&pf->sw_mutex);
3948 mutex_init(&pf->tc_mutex);
3949 mutex_init(&pf->adev_mutex);
3950
3951 INIT_HLIST_HEAD(&pf->aq_wait_list);
3952 spin_lock_init(&pf->aq_wait_lock);
3953 init_waitqueue_head(&pf->aq_wait_queue);
3954
3955 init_waitqueue_head(&pf->reset_wait_queue);
3956
3957 /* setup service timer and periodic service task */
3958 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3959 pf->serv_tmr_period = HZ;
3960 INIT_WORK(&pf->serv_task, ice_service_task);
3961 clear_bit(ICE_SERVICE_SCHED, pf->state);
3962
3963 mutex_init(&pf->avail_q_mutex);
3964 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3965 if (!pf->avail_txqs)
3966 return -ENOMEM;
3967
3968 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3969 if (!pf->avail_rxqs) {
3970 bitmap_free(pf->avail_txqs);
3971 pf->avail_txqs = NULL;
3972 return -ENOMEM;
3973 }
3974
3975 mutex_init(&pf->vfs.table_lock);
3976 hash_init(pf->vfs.table);
3977
3978 return 0;
3979}
3980
3981/**
3982 * ice_reduce_msix_usage - Reduce usage of MSI-X vectors
3983 * @pf: board private structure
3984 * @v_remain: number of remaining MSI-X vectors to be distributed
3985 *
3986 * Reduce the usage of MSI-X vectors when entire request cannot be fulfilled.
3987 * pf->num_lan_msix and pf->num_rdma_msix values are set based on number of
3988 * remaining vectors.
3989 */
3990static void ice_reduce_msix_usage(struct ice_pf *pf, int v_remain)
3991{
3992 int v_rdma;
3993
3994 if (!ice_is_rdma_ena(pf)) {
3995 pf->num_lan_msix = v_remain;
3996 return;
3997 }
3998
3999 /* RDMA needs at least 1 interrupt in addition to AEQ MSIX */
4000 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
4001
4002 if (v_remain < ICE_MIN_LAN_TXRX_MSIX + ICE_MIN_RDMA_MSIX) {
4003 dev_warn(ice_pf_to_dev(pf), "Not enough MSI-X vectors to support RDMA.\n");
4004 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4005
4006 pf->num_rdma_msix = 0;
4007 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
4008 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
4009 (v_remain - v_rdma < v_rdma)) {
4010 /* Support minimum RDMA and give remaining vectors to LAN MSIX */
4011 pf->num_rdma_msix = ICE_MIN_RDMA_MSIX;
4012 pf->num_lan_msix = v_remain - ICE_MIN_RDMA_MSIX;
4013 } else {
4014 /* Split remaining MSIX with RDMA after accounting for AEQ MSIX
4015 */
4016 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
4017 ICE_RDMA_NUM_AEQ_MSIX;
4018 pf->num_lan_msix = v_remain - pf->num_rdma_msix;
4019 }
4020}
4021
4022/**
4023 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
4024 * @pf: board private structure
4025 *
4026 * Compute the number of MSIX vectors wanted and request from the OS. Adjust
4027 * device usage if there are not enough vectors. Return the number of vectors
4028 * reserved or negative on failure.
4029 */
4030static int ice_ena_msix_range(struct ice_pf *pf)
4031{
4032 int num_cpus, hw_num_msix, v_other, v_wanted, v_actual;
4033 struct device *dev = ice_pf_to_dev(pf);
4034 int err, i;
4035
4036 hw_num_msix = pf->hw.func_caps.common_cap.num_msix_vectors;
4037 num_cpus = num_online_cpus();
4038
4039 /* LAN miscellaneous handler */
4040 v_other = ICE_MIN_LAN_OICR_MSIX;
4041
4042 /* Flow Director */
4043 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
4044 v_other += ICE_FDIR_MSIX;
4045
4046 /* switchdev */
4047 v_other += ICE_ESWITCH_MSIX;
4048
4049 v_wanted = v_other;
4050
4051 /* LAN traffic */
4052 pf->num_lan_msix = num_cpus;
4053 v_wanted += pf->num_lan_msix;
4054
4055 /* RDMA auxiliary driver */
4056 if (ice_is_rdma_ena(pf)) {
4057 pf->num_rdma_msix = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
4058 v_wanted += pf->num_rdma_msix;
4059 }
4060
4061 if (v_wanted > hw_num_msix) {
4062 int v_remain;
4063
4064 dev_warn(dev, "not enough device MSI-X vectors. wanted = %d, available = %d\n",
4065 v_wanted, hw_num_msix);
4066
4067 if (hw_num_msix < ICE_MIN_MSIX) {
4068 err = -ERANGE;
4069 goto exit_err;
4070 }
4071
4072 v_remain = hw_num_msix - v_other;
4073 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) {
4074 v_other = ICE_MIN_MSIX - ICE_MIN_LAN_TXRX_MSIX;
4075 v_remain = ICE_MIN_LAN_TXRX_MSIX;
4076 }
4077
4078 ice_reduce_msix_usage(pf, v_remain);
4079 v_wanted = pf->num_lan_msix + pf->num_rdma_msix + v_other;
4080
4081 dev_notice(dev, "Reducing request to %d MSI-X vectors for LAN traffic.\n",
4082 pf->num_lan_msix);
4083 if (ice_is_rdma_ena(pf))
4084 dev_notice(dev, "Reducing request to %d MSI-X vectors for RDMA.\n",
4085 pf->num_rdma_msix);
4086 }
4087
4088 pf->msix_entries = devm_kcalloc(dev, v_wanted,
4089 sizeof(*pf->msix_entries), GFP_KERNEL);
4090 if (!pf->msix_entries) {
4091 err = -ENOMEM;
4092 goto exit_err;
4093 }
4094
4095 for (i = 0; i < v_wanted; i++)
4096 pf->msix_entries[i].entry = i;
4097
4098 /* actually reserve the vectors */
4099 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
4100 ICE_MIN_MSIX, v_wanted);
4101 if (v_actual < 0) {
4102 dev_err(dev, "unable to reserve MSI-X vectors\n");
4103 err = v_actual;
4104 goto msix_err;
4105 }
4106
4107 if (v_actual < v_wanted) {
4108 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
4109 v_wanted, v_actual);
4110
4111 if (v_actual < ICE_MIN_MSIX) {
4112 /* error if we can't get minimum vectors */
4113 pci_disable_msix(pf->pdev);
4114 err = -ERANGE;
4115 goto msix_err;
4116 } else {
4117 int v_remain = v_actual - v_other;
4118
4119 if (v_remain < ICE_MIN_LAN_TXRX_MSIX)
4120 v_remain = ICE_MIN_LAN_TXRX_MSIX;
4121
4122 ice_reduce_msix_usage(pf, v_remain);
4123
4124 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
4125 pf->num_lan_msix);
4126
4127 if (ice_is_rdma_ena(pf))
4128 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
4129 pf->num_rdma_msix);
4130 }
4131 }
4132
4133 return v_actual;
4134
4135msix_err:
4136 devm_kfree(dev, pf->msix_entries);
4137
4138exit_err:
4139 pf->num_rdma_msix = 0;
4140 pf->num_lan_msix = 0;
4141 return err;
4142}
4143
4144/**
4145 * ice_dis_msix - Disable MSI-X interrupt setup in OS
4146 * @pf: board private structure
4147 */
4148static void ice_dis_msix(struct ice_pf *pf)
4149{
4150 pci_disable_msix(pf->pdev);
4151 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
4152 pf->msix_entries = NULL;
4153}
4154
4155/**
4156 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
4157 * @pf: board private structure
4158 */
4159static void ice_clear_interrupt_scheme(struct ice_pf *pf)
4160{
4161 ice_dis_msix(pf);
4162
4163 if (pf->irq_tracker) {
4164 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
4165 pf->irq_tracker = NULL;
4166 }
4167}
4168
4169/**
4170 * ice_init_interrupt_scheme - Determine proper interrupt scheme
4171 * @pf: board private structure to initialize
4172 */
4173static int ice_init_interrupt_scheme(struct ice_pf *pf)
4174{
4175 int vectors;
4176
4177 vectors = ice_ena_msix_range(pf);
4178
4179 if (vectors < 0)
4180 return vectors;
4181
4182 /* set up vector assignment tracking */
4183 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
4184 struct_size(pf->irq_tracker, list, vectors),
4185 GFP_KERNEL);
4186 if (!pf->irq_tracker) {
4187 ice_dis_msix(pf);
4188 return -ENOMEM;
4189 }
4190
4191 /* populate SW interrupts pool with number of OS granted IRQs. */
4192 pf->num_avail_sw_msix = (u16)vectors;
4193 pf->irq_tracker->num_entries = (u16)vectors;
4194 pf->irq_tracker->end = pf->irq_tracker->num_entries;
4195
4196 return 0;
4197}
4198
4199/**
4200 * ice_is_wol_supported - check if WoL is supported
4201 * @hw: pointer to hardware info
4202 *
4203 * Check if WoL is supported based on the HW configuration.
4204 * Returns true if NVM supports and enables WoL for this port, false otherwise
4205 */
4206bool ice_is_wol_supported(struct ice_hw *hw)
4207{
4208 u16 wol_ctrl;
4209
4210 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4211 * word) indicates WoL is not supported on the corresponding PF ID.
4212 */
4213 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4214 return false;
4215
4216 return !(BIT(hw->port_info->lport) & wol_ctrl);
4217}
4218
4219/**
4220 * ice_vsi_recfg_qs - Change the number of queues on a VSI
4221 * @vsi: VSI being changed
4222 * @new_rx: new number of Rx queues
4223 * @new_tx: new number of Tx queues
4224 * @locked: is adev device_lock held
4225 *
4226 * Only change the number of queues if new_tx, or new_rx is non-0.
4227 *
4228 * Returns 0 on success.
4229 */
4230int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4231{
4232 struct ice_pf *pf = vsi->back;
4233 int err = 0, timeout = 50;
4234
4235 if (!new_rx && !new_tx)
4236 return -EINVAL;
4237
4238 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4239 timeout--;
4240 if (!timeout)
4241 return -EBUSY;
4242 usleep_range(1000, 2000);
4243 }
4244
4245 if (new_tx)
4246 vsi->req_txq = (u16)new_tx;
4247 if (new_rx)
4248 vsi->req_rxq = (u16)new_rx;
4249
4250 /* set for the next time the netdev is started */
4251 if (!netif_running(vsi->netdev)) {
4252 ice_vsi_rebuild(vsi, false);
4253 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4254 goto done;
4255 }
4256
4257 ice_vsi_close(vsi);
4258 ice_vsi_rebuild(vsi, false);
4259 ice_pf_dcb_recfg(pf, locked);
4260 ice_vsi_open(vsi);
4261done:
4262 clear_bit(ICE_CFG_BUSY, pf->state);
4263 return err;
4264}
4265
4266/**
4267 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4268 * @pf: PF to configure
4269 *
4270 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4271 * VSI can still Tx/Rx VLAN tagged packets.
4272 */
4273static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4274{
4275 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4276 struct ice_vsi_ctx *ctxt;
4277 struct ice_hw *hw;
4278 int status;
4279
4280 if (!vsi)
4281 return;
4282
4283 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4284 if (!ctxt)
4285 return;
4286
4287 hw = &pf->hw;
4288 ctxt->info = vsi->info;
4289
4290 ctxt->info.valid_sections =
4291 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4292 ICE_AQ_VSI_PROP_SECURITY_VALID |
4293 ICE_AQ_VSI_PROP_SW_VALID);
4294
4295 /* disable VLAN anti-spoof */
4296 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4297 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4298
4299 /* disable VLAN pruning and keep all other settings */
4300 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4301
4302 /* allow all VLANs on Tx and don't strip on Rx */
4303 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4304 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4305
4306 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4307 if (status) {
4308 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4309 status, ice_aq_str(hw->adminq.sq_last_status));
4310 } else {
4311 vsi->info.sec_flags = ctxt->info.sec_flags;
4312 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4313 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4314 }
4315
4316 kfree(ctxt);
4317}
4318
4319/**
4320 * ice_log_pkg_init - log result of DDP package load
4321 * @hw: pointer to hardware info
4322 * @state: state of package load
4323 */
4324static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4325{
4326 struct ice_pf *pf = hw->back;
4327 struct device *dev;
4328
4329 dev = ice_pf_to_dev(pf);
4330
4331 switch (state) {
4332 case ICE_DDP_PKG_SUCCESS:
4333 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4334 hw->active_pkg_name,
4335 hw->active_pkg_ver.major,
4336 hw->active_pkg_ver.minor,
4337 hw->active_pkg_ver.update,
4338 hw->active_pkg_ver.draft);
4339 break;
4340 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4341 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4342 hw->active_pkg_name,
4343 hw->active_pkg_ver.major,
4344 hw->active_pkg_ver.minor,
4345 hw->active_pkg_ver.update,
4346 hw->active_pkg_ver.draft);
4347 break;
4348 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4349 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
4350 hw->active_pkg_name,
4351 hw->active_pkg_ver.major,
4352 hw->active_pkg_ver.minor,
4353 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4354 break;
4355 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4356 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4357 hw->active_pkg_name,
4358 hw->active_pkg_ver.major,
4359 hw->active_pkg_ver.minor,
4360 hw->active_pkg_ver.update,
4361 hw->active_pkg_ver.draft,
4362 hw->pkg_name,
4363 hw->pkg_ver.major,
4364 hw->pkg_ver.minor,
4365 hw->pkg_ver.update,
4366 hw->pkg_ver.draft);
4367 break;
4368 case ICE_DDP_PKG_FW_MISMATCH:
4369 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
4370 break;
4371 case ICE_DDP_PKG_INVALID_FILE:
4372 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4373 break;
4374 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4375 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
4376 break;
4377 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4378 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
4379 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4380 break;
4381 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4382 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
4383 break;
4384 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4385 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
4386 break;
4387 case ICE_DDP_PKG_LOAD_ERROR:
4388 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
4389 /* poll for reset to complete */
4390 if (ice_check_reset(hw))
4391 dev_err(dev, "Error resetting device. Please reload the driver\n");
4392 break;
4393 case ICE_DDP_PKG_ERR:
4394 default:
4395 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
4396 break;
4397 }
4398}
4399
4400/**
4401 * ice_load_pkg - load/reload the DDP Package file
4402 * @firmware: firmware structure when firmware requested or NULL for reload
4403 * @pf: pointer to the PF instance
4404 *
4405 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4406 * initialize HW tables.
4407 */
4408static void
4409ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4410{
4411 enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4412 struct device *dev = ice_pf_to_dev(pf);
4413 struct ice_hw *hw = &pf->hw;
4414
4415 /* Load DDP Package */
4416 if (firmware && !hw->pkg_copy) {
4417 state = ice_copy_and_init_pkg(hw, firmware->data,
4418 firmware->size);
4419 ice_log_pkg_init(hw, state);
4420 } else if (!firmware && hw->pkg_copy) {
4421 /* Reload package during rebuild after CORER/GLOBR reset */
4422 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4423 ice_log_pkg_init(hw, state);
4424 } else {
4425 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4426 }
4427
4428 if (!ice_is_init_pkg_successful(state)) {
4429 /* Safe Mode */
4430 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4431 return;
4432 }
4433
4434 /* Successful download package is the precondition for advanced
4435 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4436 */
4437 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4438}
4439
4440/**
4441 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4442 * @pf: pointer to the PF structure
4443 *
4444 * There is no error returned here because the driver should be able to handle
4445 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4446 * specifically with Tx.
4447 */
4448static void ice_verify_cacheline_size(struct ice_pf *pf)
4449{
4450 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4451 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4452 ICE_CACHE_LINE_BYTES);
4453}
4454
4455/**
4456 * ice_send_version - update firmware with driver version
4457 * @pf: PF struct
4458 *
4459 * Returns 0 on success, else error code
4460 */
4461static int ice_send_version(struct ice_pf *pf)
4462{
4463 struct ice_driver_ver dv;
4464
4465 dv.major_ver = 0xff;
4466 dv.minor_ver = 0xff;
4467 dv.build_ver = 0xff;
4468 dv.subbuild_ver = 0;
4469 strscpy((char *)dv.driver_string, UTS_RELEASE,
4470 sizeof(dv.driver_string));
4471 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4472}
4473
4474/**
4475 * ice_init_fdir - Initialize flow director VSI and configuration
4476 * @pf: pointer to the PF instance
4477 *
4478 * returns 0 on success, negative on error
4479 */
4480static int ice_init_fdir(struct ice_pf *pf)
4481{
4482 struct device *dev = ice_pf_to_dev(pf);
4483 struct ice_vsi *ctrl_vsi;
4484 int err;
4485
4486 /* Side Band Flow Director needs to have a control VSI.
4487 * Allocate it and store it in the PF.
4488 */
4489 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4490 if (!ctrl_vsi) {
4491 dev_dbg(dev, "could not create control VSI\n");
4492 return -ENOMEM;
4493 }
4494
4495 err = ice_vsi_open_ctrl(ctrl_vsi);
4496 if (err) {
4497 dev_dbg(dev, "could not open control VSI\n");
4498 goto err_vsi_open;
4499 }
4500
4501 mutex_init(&pf->hw.fdir_fltr_lock);
4502
4503 err = ice_fdir_create_dflt_rules(pf);
4504 if (err)
4505 goto err_fdir_rule;
4506
4507 return 0;
4508
4509err_fdir_rule:
4510 ice_fdir_release_flows(&pf->hw);
4511 ice_vsi_close(ctrl_vsi);
4512err_vsi_open:
4513 ice_vsi_release(ctrl_vsi);
4514 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4515 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4516 pf->ctrl_vsi_idx = ICE_NO_VSI;
4517 }
4518 return err;
4519}
4520
4521/**
4522 * ice_get_opt_fw_name - return optional firmware file name or NULL
4523 * @pf: pointer to the PF instance
4524 */
4525static char *ice_get_opt_fw_name(struct ice_pf *pf)
4526{
4527 /* Optional firmware name same as default with additional dash
4528 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4529 */
4530 struct pci_dev *pdev = pf->pdev;
4531 char *opt_fw_filename;
4532 u64 dsn;
4533
4534 /* Determine the name of the optional file using the DSN (two
4535 * dwords following the start of the DSN Capability).
4536 */
4537 dsn = pci_get_dsn(pdev);
4538 if (!dsn)
4539 return NULL;
4540
4541 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4542 if (!opt_fw_filename)
4543 return NULL;
4544
4545 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4546 ICE_DDP_PKG_PATH, dsn);
4547
4548 return opt_fw_filename;
4549}
4550
4551/**
4552 * ice_request_fw - Device initialization routine
4553 * @pf: pointer to the PF instance
4554 */
4555static void ice_request_fw(struct ice_pf *pf)
4556{
4557 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4558 const struct firmware *firmware = NULL;
4559 struct device *dev = ice_pf_to_dev(pf);
4560 int err = 0;
4561
4562 /* optional device-specific DDP (if present) overrides the default DDP
4563 * package file. kernel logs a debug message if the file doesn't exist,
4564 * and warning messages for other errors.
4565 */
4566 if (opt_fw_filename) {
4567 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4568 if (err) {
4569 kfree(opt_fw_filename);
4570 goto dflt_pkg_load;
4571 }
4572
4573 /* request for firmware was successful. Download to device */
4574 ice_load_pkg(firmware, pf);
4575 kfree(opt_fw_filename);
4576 release_firmware(firmware);
4577 return;
4578 }
4579
4580dflt_pkg_load:
4581 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4582 if (err) {
4583 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4584 return;
4585 }
4586
4587 /* request for firmware was successful. Download to device */
4588 ice_load_pkg(firmware, pf);
4589 release_firmware(firmware);
4590}
4591
4592/**
4593 * ice_print_wake_reason - show the wake up cause in the log
4594 * @pf: pointer to the PF struct
4595 */
4596static void ice_print_wake_reason(struct ice_pf *pf)
4597{
4598 u32 wus = pf->wakeup_reason;
4599 const char *wake_str;
4600
4601 /* if no wake event, nothing to print */
4602 if (!wus)
4603 return;
4604
4605 if (wus & PFPM_WUS_LNKC_M)
4606 wake_str = "Link\n";
4607 else if (wus & PFPM_WUS_MAG_M)
4608 wake_str = "Magic Packet\n";
4609 else if (wus & PFPM_WUS_MNG_M)
4610 wake_str = "Management\n";
4611 else if (wus & PFPM_WUS_FW_RST_WK_M)
4612 wake_str = "Firmware Reset\n";
4613 else
4614 wake_str = "Unknown\n";
4615
4616 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4617}
4618
4619/**
4620 * ice_register_netdev - register netdev
4621 * @pf: pointer to the PF struct
4622 */
4623static int ice_register_netdev(struct ice_pf *pf)
4624{
4625 struct ice_vsi *vsi;
4626 int err = 0;
4627
4628 vsi = ice_get_main_vsi(pf);
4629 if (!vsi || !vsi->netdev)
4630 return -EIO;
4631
4632 err = register_netdev(vsi->netdev);
4633 if (err)
4634 goto err_register_netdev;
4635
4636 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4637 netif_carrier_off(vsi->netdev);
4638 netif_tx_stop_all_queues(vsi->netdev);
4639
4640 return 0;
4641err_register_netdev:
4642 free_netdev(vsi->netdev);
4643 vsi->netdev = NULL;
4644 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4645 return err;
4646}
4647
4648/**
4649 * ice_probe - Device initialization routine
4650 * @pdev: PCI device information struct
4651 * @ent: entry in ice_pci_tbl
4652 *
4653 * Returns 0 on success, negative on failure
4654 */
4655static int
4656ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4657{
4658 struct device *dev = &pdev->dev;
4659 struct ice_vsi *vsi;
4660 struct ice_pf *pf;
4661 struct ice_hw *hw;
4662 int i, err;
4663
4664 if (pdev->is_virtfn) {
4665 dev_err(dev, "can't probe a virtual function\n");
4666 return -EINVAL;
4667 }
4668
4669 /* this driver uses devres, see
4670 * Documentation/driver-api/driver-model/devres.rst
4671 */
4672 err = pcim_enable_device(pdev);
4673 if (err)
4674 return err;
4675
4676 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4677 if (err) {
4678 dev_err(dev, "BAR0 I/O map error %d\n", err);
4679 return err;
4680 }
4681
4682 pf = ice_allocate_pf(dev);
4683 if (!pf)
4684 return -ENOMEM;
4685
4686 /* initialize Auxiliary index to invalid value */
4687 pf->aux_idx = -1;
4688
4689 /* set up for high or low DMA */
4690 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4691 if (err) {
4692 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4693 return err;
4694 }
4695
4696 pci_enable_pcie_error_reporting(pdev);
4697 pci_set_master(pdev);
4698
4699 pf->pdev = pdev;
4700 pci_set_drvdata(pdev, pf);
4701 set_bit(ICE_DOWN, pf->state);
4702 /* Disable service task until DOWN bit is cleared */
4703 set_bit(ICE_SERVICE_DIS, pf->state);
4704
4705 hw = &pf->hw;
4706 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4707 pci_save_state(pdev);
4708
4709 hw->back = pf;
4710 hw->vendor_id = pdev->vendor;
4711 hw->device_id = pdev->device;
4712 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4713 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4714 hw->subsystem_device_id = pdev->subsystem_device;
4715 hw->bus.device = PCI_SLOT(pdev->devfn);
4716 hw->bus.func = PCI_FUNC(pdev->devfn);
4717 ice_set_ctrlq_len(hw);
4718
4719 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4720
4721#ifndef CONFIG_DYNAMIC_DEBUG
4722 if (debug < -1)
4723 hw->debug_mask = debug;
4724#endif
4725
4726 err = ice_init_hw(hw);
4727 if (err) {
4728 dev_err(dev, "ice_init_hw failed: %d\n", err);
4729 err = -EIO;
4730 goto err_exit_unroll;
4731 }
4732
4733 ice_init_feature_support(pf);
4734
4735 ice_request_fw(pf);
4736
4737 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4738 * set in pf->state, which will cause ice_is_safe_mode to return
4739 * true
4740 */
4741 if (ice_is_safe_mode(pf)) {
4742 /* we already got function/device capabilities but these don't
4743 * reflect what the driver needs to do in safe mode. Instead of
4744 * adding conditional logic everywhere to ignore these
4745 * device/function capabilities, override them.
4746 */
4747 ice_set_safe_mode_caps(hw);
4748 }
4749
4750 err = ice_init_pf(pf);
4751 if (err) {
4752 dev_err(dev, "ice_init_pf failed: %d\n", err);
4753 goto err_init_pf_unroll;
4754 }
4755
4756 ice_devlink_init_regions(pf);
4757
4758 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4759 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4760 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4761 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4762 i = 0;
4763 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4764 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4765 pf->hw.tnl.valid_count[TNL_VXLAN];
4766 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4767 UDP_TUNNEL_TYPE_VXLAN;
4768 i++;
4769 }
4770 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4771 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4772 pf->hw.tnl.valid_count[TNL_GENEVE];
4773 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4774 UDP_TUNNEL_TYPE_GENEVE;
4775 i++;
4776 }
4777
4778 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4779 if (!pf->num_alloc_vsi) {
4780 err = -EIO;
4781 goto err_init_pf_unroll;
4782 }
4783 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4784 dev_warn(&pf->pdev->dev,
4785 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4786 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4787 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4788 }
4789
4790 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4791 GFP_KERNEL);
4792 if (!pf->vsi) {
4793 err = -ENOMEM;
4794 goto err_init_pf_unroll;
4795 }
4796
4797 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4798 sizeof(*pf->vsi_stats), GFP_KERNEL);
4799 if (!pf->vsi_stats) {
4800 err = -ENOMEM;
4801 goto err_init_vsi_unroll;
4802 }
4803
4804 err = ice_init_interrupt_scheme(pf);
4805 if (err) {
4806 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4807 err = -EIO;
4808 goto err_init_vsi_stats_unroll;
4809 }
4810
4811 /* In case of MSIX we are going to setup the misc vector right here
4812 * to handle admin queue events etc. In case of legacy and MSI
4813 * the misc functionality and queue processing is combined in
4814 * the same vector and that gets setup at open.
4815 */
4816 err = ice_req_irq_msix_misc(pf);
4817 if (err) {
4818 dev_err(dev, "setup of misc vector failed: %d\n", err);
4819 goto err_init_interrupt_unroll;
4820 }
4821
4822 /* create switch struct for the switch element created by FW on boot */
4823 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4824 if (!pf->first_sw) {
4825 err = -ENOMEM;
4826 goto err_msix_misc_unroll;
4827 }
4828
4829 if (hw->evb_veb)
4830 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4831 else
4832 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4833
4834 pf->first_sw->pf = pf;
4835
4836 /* record the sw_id available for later use */
4837 pf->first_sw->sw_id = hw->port_info->sw_id;
4838
4839 err = ice_setup_pf_sw(pf);
4840 if (err) {
4841 dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4842 goto err_alloc_sw_unroll;
4843 }
4844
4845 clear_bit(ICE_SERVICE_DIS, pf->state);
4846
4847 /* tell the firmware we are up */
4848 err = ice_send_version(pf);
4849 if (err) {
4850 dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4851 UTS_RELEASE, err);
4852 goto err_send_version_unroll;
4853 }
4854
4855 /* since everything is good, start the service timer */
4856 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4857
4858 err = ice_init_link_events(pf->hw.port_info);
4859 if (err) {
4860 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4861 goto err_send_version_unroll;
4862 }
4863
4864 /* not a fatal error if this fails */
4865 err = ice_init_nvm_phy_type(pf->hw.port_info);
4866 if (err)
4867 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4868
4869 /* not a fatal error if this fails */
4870 err = ice_update_link_info(pf->hw.port_info);
4871 if (err)
4872 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4873
4874 ice_init_link_dflt_override(pf->hw.port_info);
4875
4876 ice_check_link_cfg_err(pf,
4877 pf->hw.port_info->phy.link_info.link_cfg_err);
4878
4879 /* if media available, initialize PHY settings */
4880 if (pf->hw.port_info->phy.link_info.link_info &
4881 ICE_AQ_MEDIA_AVAILABLE) {
4882 /* not a fatal error if this fails */
4883 err = ice_init_phy_user_cfg(pf->hw.port_info);
4884 if (err)
4885 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4886
4887 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4888 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4889
4890 if (vsi)
4891 ice_configure_phy(vsi);
4892 }
4893 } else {
4894 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4895 }
4896
4897 ice_verify_cacheline_size(pf);
4898
4899 /* Save wakeup reason register for later use */
4900 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4901
4902 /* check for a power management event */
4903 ice_print_wake_reason(pf);
4904
4905 /* clear wake status, all bits */
4906 wr32(hw, PFPM_WUS, U32_MAX);
4907
4908 /* Disable WoL at init, wait for user to enable */
4909 device_set_wakeup_enable(dev, false);
4910
4911 if (ice_is_safe_mode(pf)) {
4912 ice_set_safe_mode_vlan_cfg(pf);
4913 goto probe_done;
4914 }
4915
4916 /* initialize DDP driven features */
4917 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4918 ice_ptp_init(pf);
4919
4920 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4921 ice_gnss_init(pf);
4922
4923 /* Note: Flow director init failure is non-fatal to load */
4924 if (ice_init_fdir(pf))
4925 dev_err(dev, "could not initialize flow director\n");
4926
4927 /* Note: DCB init failure is non-fatal to load */
4928 if (ice_init_pf_dcb(pf, false)) {
4929 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4930 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4931 } else {
4932 ice_cfg_lldp_mib_change(&pf->hw, true);
4933 }
4934
4935 if (ice_init_lag(pf))
4936 dev_warn(dev, "Failed to init link aggregation support\n");
4937
4938 /* print PCI link speed and width */
4939 pcie_print_link_status(pf->pdev);
4940
4941probe_done:
4942 err = ice_devlink_create_pf_port(pf);
4943 if (err)
4944 goto err_create_pf_port;
4945
4946 vsi = ice_get_main_vsi(pf);
4947 if (!vsi || !vsi->netdev) {
4948 err = -EINVAL;
4949 goto err_netdev_reg;
4950 }
4951
4952 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
4953
4954 err = ice_register_netdev(pf);
4955 if (err)
4956 goto err_netdev_reg;
4957
4958 err = ice_devlink_register_params(pf);
4959 if (err)
4960 goto err_netdev_reg;
4961
4962 /* ready to go, so clear down state bit */
4963 clear_bit(ICE_DOWN, pf->state);
4964 if (ice_is_rdma_ena(pf)) {
4965 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4966 if (pf->aux_idx < 0) {
4967 dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4968 err = -ENOMEM;
4969 goto err_devlink_reg_param;
4970 }
4971
4972 err = ice_init_rdma(pf);
4973 if (err) {
4974 dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4975 err = -EIO;
4976 goto err_init_aux_unroll;
4977 }
4978 } else {
4979 dev_warn(dev, "RDMA is not supported on this device\n");
4980 }
4981
4982 ice_devlink_register(pf);
4983 return 0;
4984
4985err_init_aux_unroll:
4986 pf->adev = NULL;
4987 ida_free(&ice_aux_ida, pf->aux_idx);
4988err_devlink_reg_param:
4989 ice_devlink_unregister_params(pf);
4990err_netdev_reg:
4991 ice_devlink_destroy_pf_port(pf);
4992err_create_pf_port:
4993err_send_version_unroll:
4994 ice_vsi_release_all(pf);
4995err_alloc_sw_unroll:
4996 set_bit(ICE_SERVICE_DIS, pf->state);
4997 set_bit(ICE_DOWN, pf->state);
4998 devm_kfree(dev, pf->first_sw);
4999err_msix_misc_unroll:
5000 ice_free_irq_msix_misc(pf);
5001err_init_interrupt_unroll:
5002 ice_clear_interrupt_scheme(pf);
5003err_init_vsi_stats_unroll:
5004 devm_kfree(dev, pf->vsi_stats);
5005 pf->vsi_stats = NULL;
5006err_init_vsi_unroll:
5007 devm_kfree(dev, pf->vsi);
5008err_init_pf_unroll:
5009 ice_deinit_pf(pf);
5010 ice_devlink_destroy_regions(pf);
5011 ice_deinit_hw(hw);
5012err_exit_unroll:
5013 pci_disable_pcie_error_reporting(pdev);
5014 pci_disable_device(pdev);
5015 return err;
5016}
5017
5018/**
5019 * ice_set_wake - enable or disable Wake on LAN
5020 * @pf: pointer to the PF struct
5021 *
5022 * Simple helper for WoL control
5023 */
5024static void ice_set_wake(struct ice_pf *pf)
5025{
5026 struct ice_hw *hw = &pf->hw;
5027 bool wol = pf->wol_ena;
5028
5029 /* clear wake state, otherwise new wake events won't fire */
5030 wr32(hw, PFPM_WUS, U32_MAX);
5031
5032 /* enable / disable APM wake up, no RMW needed */
5033 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5034
5035 /* set magic packet filter enabled */
5036 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5037}
5038
5039/**
5040 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5041 * @pf: pointer to the PF struct
5042 *
5043 * Issue firmware command to enable multicast magic wake, making
5044 * sure that any locally administered address (LAA) is used for
5045 * wake, and that PF reset doesn't undo the LAA.
5046 */
5047static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5048{
5049 struct device *dev = ice_pf_to_dev(pf);
5050 struct ice_hw *hw = &pf->hw;
5051 u8 mac_addr[ETH_ALEN];
5052 struct ice_vsi *vsi;
5053 int status;
5054 u8 flags;
5055
5056 if (!pf->wol_ena)
5057 return;
5058
5059 vsi = ice_get_main_vsi(pf);
5060 if (!vsi)
5061 return;
5062
5063 /* Get current MAC address in case it's an LAA */
5064 if (vsi->netdev)
5065 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5066 else
5067 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5068
5069 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5070 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5071 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5072
5073 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5074 if (status)
5075 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5076 status, ice_aq_str(hw->adminq.sq_last_status));
5077}
5078
5079/**
5080 * ice_remove - Device removal routine
5081 * @pdev: PCI device information struct
5082 */
5083static void ice_remove(struct pci_dev *pdev)
5084{
5085 struct ice_pf *pf = pci_get_drvdata(pdev);
5086 int i;
5087
5088 ice_devlink_unregister(pf);
5089 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5090 if (!ice_is_reset_in_progress(pf->state))
5091 break;
5092 msleep(100);
5093 }
5094
5095 ice_tc_indir_block_remove(pf);
5096
5097 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5098 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5099 ice_free_vfs(pf);
5100 }
5101
5102 ice_service_task_stop(pf);
5103
5104 ice_aq_cancel_waiting_tasks(pf);
5105 ice_unplug_aux_dev(pf);
5106 if (pf->aux_idx >= 0)
5107 ida_free(&ice_aux_ida, pf->aux_idx);
5108 ice_devlink_unregister_params(pf);
5109 set_bit(ICE_DOWN, pf->state);
5110
5111 ice_deinit_lag(pf);
5112 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
5113 ice_ptp_release(pf);
5114 if (ice_is_feature_supported(pf, ICE_F_GNSS))
5115 ice_gnss_exit(pf);
5116 if (!ice_is_safe_mode(pf))
5117 ice_remove_arfs(pf);
5118 ice_setup_mc_magic_wake(pf);
5119 ice_vsi_release_all(pf);
5120 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
5121 ice_devlink_destroy_pf_port(pf);
5122 ice_set_wake(pf);
5123 ice_free_irq_msix_misc(pf);
5124 ice_for_each_vsi(pf, i) {
5125 if (!pf->vsi[i])
5126 continue;
5127 ice_vsi_free_q_vectors(pf->vsi[i]);
5128 }
5129 devm_kfree(&pdev->dev, pf->vsi_stats);
5130 pf->vsi_stats = NULL;
5131 ice_deinit_pf(pf);
5132 ice_devlink_destroy_regions(pf);
5133 ice_deinit_hw(&pf->hw);
5134
5135 /* Issue a PFR as part of the prescribed driver unload flow. Do not
5136 * do it via ice_schedule_reset() since there is no need to rebuild
5137 * and the service task is already stopped.
5138 */
5139 ice_reset(&pf->hw, ICE_RESET_PFR);
5140 pci_wait_for_pending_transaction(pdev);
5141 ice_clear_interrupt_scheme(pf);
5142 pci_disable_pcie_error_reporting(pdev);
5143 pci_disable_device(pdev);
5144}
5145
5146/**
5147 * ice_shutdown - PCI callback for shutting down device
5148 * @pdev: PCI device information struct
5149 */
5150static void ice_shutdown(struct pci_dev *pdev)
5151{
5152 struct ice_pf *pf = pci_get_drvdata(pdev);
5153
5154 ice_remove(pdev);
5155
5156 if (system_state == SYSTEM_POWER_OFF) {
5157 pci_wake_from_d3(pdev, pf->wol_ena);
5158 pci_set_power_state(pdev, PCI_D3hot);
5159 }
5160}
5161
5162#ifdef CONFIG_PM
5163/**
5164 * ice_prepare_for_shutdown - prep for PCI shutdown
5165 * @pf: board private structure
5166 *
5167 * Inform or close all dependent features in prep for PCI device shutdown
5168 */
5169static void ice_prepare_for_shutdown(struct ice_pf *pf)
5170{
5171 struct ice_hw *hw = &pf->hw;
5172 u32 v;
5173
5174 /* Notify VFs of impending reset */
5175 if (ice_check_sq_alive(hw, &hw->mailboxq))
5176 ice_vc_notify_reset(pf);
5177
5178 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5179
5180 /* disable the VSIs and their queues that are not already DOWN */
5181 ice_pf_dis_all_vsi(pf, false);
5182
5183 ice_for_each_vsi(pf, v)
5184 if (pf->vsi[v])
5185 pf->vsi[v]->vsi_num = 0;
5186
5187 ice_shutdown_all_ctrlq(hw);
5188}
5189
5190/**
5191 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5192 * @pf: board private structure to reinitialize
5193 *
5194 * This routine reinitialize interrupt scheme that was cleared during
5195 * power management suspend callback.
5196 *
5197 * This should be called during resume routine to re-allocate the q_vectors
5198 * and reacquire interrupts.
5199 */
5200static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5201{
5202 struct device *dev = ice_pf_to_dev(pf);
5203 int ret, v;
5204
5205 /* Since we clear MSIX flag during suspend, we need to
5206 * set it back during resume...
5207 */
5208
5209 ret = ice_init_interrupt_scheme(pf);
5210 if (ret) {
5211 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5212 return ret;
5213 }
5214
5215 /* Remap vectors and rings, after successful re-init interrupts */
5216 ice_for_each_vsi(pf, v) {
5217 if (!pf->vsi[v])
5218 continue;
5219
5220 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5221 if (ret)
5222 goto err_reinit;
5223 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5224 }
5225
5226 ret = ice_req_irq_msix_misc(pf);
5227 if (ret) {
5228 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5229 ret);
5230 goto err_reinit;
5231 }
5232
5233 return 0;
5234
5235err_reinit:
5236 while (v--)
5237 if (pf->vsi[v])
5238 ice_vsi_free_q_vectors(pf->vsi[v]);
5239
5240 return ret;
5241}
5242
5243/**
5244 * ice_suspend
5245 * @dev: generic device information structure
5246 *
5247 * Power Management callback to quiesce the device and prepare
5248 * for D3 transition.
5249 */
5250static int __maybe_unused ice_suspend(struct device *dev)
5251{
5252 struct pci_dev *pdev = to_pci_dev(dev);
5253 struct ice_pf *pf;
5254 int disabled, v;
5255
5256 pf = pci_get_drvdata(pdev);
5257
5258 if (!ice_pf_state_is_nominal(pf)) {
5259 dev_err(dev, "Device is not ready, no need to suspend it\n");
5260 return -EBUSY;
5261 }
5262
5263 /* Stop watchdog tasks until resume completion.
5264 * Even though it is most likely that the service task is
5265 * disabled if the device is suspended or down, the service task's
5266 * state is controlled by a different state bit, and we should
5267 * store and honor whatever state that bit is in at this point.
5268 */
5269 disabled = ice_service_task_stop(pf);
5270
5271 ice_unplug_aux_dev(pf);
5272
5273 /* Already suspended?, then there is nothing to do */
5274 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5275 if (!disabled)
5276 ice_service_task_restart(pf);
5277 return 0;
5278 }
5279
5280 if (test_bit(ICE_DOWN, pf->state) ||
5281 ice_is_reset_in_progress(pf->state)) {
5282 dev_err(dev, "can't suspend device in reset or already down\n");
5283 if (!disabled)
5284 ice_service_task_restart(pf);
5285 return 0;
5286 }
5287
5288 ice_setup_mc_magic_wake(pf);
5289
5290 ice_prepare_for_shutdown(pf);
5291
5292 ice_set_wake(pf);
5293
5294 /* Free vectors, clear the interrupt scheme and release IRQs
5295 * for proper hibernation, especially with large number of CPUs.
5296 * Otherwise hibernation might fail when mapping all the vectors back
5297 * to CPU0.
5298 */
5299 ice_free_irq_msix_misc(pf);
5300 ice_for_each_vsi(pf, v) {
5301 if (!pf->vsi[v])
5302 continue;
5303 ice_vsi_free_q_vectors(pf->vsi[v]);
5304 }
5305 ice_clear_interrupt_scheme(pf);
5306
5307 pci_save_state(pdev);
5308 pci_wake_from_d3(pdev, pf->wol_ena);
5309 pci_set_power_state(pdev, PCI_D3hot);
5310 return 0;
5311}
5312
5313/**
5314 * ice_resume - PM callback for waking up from D3
5315 * @dev: generic device information structure
5316 */
5317static int __maybe_unused ice_resume(struct device *dev)
5318{
5319 struct pci_dev *pdev = to_pci_dev(dev);
5320 enum ice_reset_req reset_type;
5321 struct ice_pf *pf;
5322 struct ice_hw *hw;
5323 int ret;
5324
5325 pci_set_power_state(pdev, PCI_D0);
5326 pci_restore_state(pdev);
5327 pci_save_state(pdev);
5328
5329 if (!pci_device_is_present(pdev))
5330 return -ENODEV;
5331
5332 ret = pci_enable_device_mem(pdev);
5333 if (ret) {
5334 dev_err(dev, "Cannot enable device after suspend\n");
5335 return ret;
5336 }
5337
5338 pf = pci_get_drvdata(pdev);
5339 hw = &pf->hw;
5340
5341 pf->wakeup_reason = rd32(hw, PFPM_WUS);
5342 ice_print_wake_reason(pf);
5343
5344 /* We cleared the interrupt scheme when we suspended, so we need to
5345 * restore it now to resume device functionality.
5346 */
5347 ret = ice_reinit_interrupt_scheme(pf);
5348 if (ret)
5349 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5350
5351 clear_bit(ICE_DOWN, pf->state);
5352 /* Now perform PF reset and rebuild */
5353 reset_type = ICE_RESET_PFR;
5354 /* re-enable service task for reset, but allow reset to schedule it */
5355 clear_bit(ICE_SERVICE_DIS, pf->state);
5356
5357 if (ice_schedule_reset(pf, reset_type))
5358 dev_err(dev, "Reset during resume failed.\n");
5359
5360 clear_bit(ICE_SUSPENDED, pf->state);
5361 ice_service_task_restart(pf);
5362
5363 /* Restart the service task */
5364 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5365
5366 return 0;
5367}
5368#endif /* CONFIG_PM */
5369
5370/**
5371 * ice_pci_err_detected - warning that PCI error has been detected
5372 * @pdev: PCI device information struct
5373 * @err: the type of PCI error
5374 *
5375 * Called to warn that something happened on the PCI bus and the error handling
5376 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
5377 */
5378static pci_ers_result_t
5379ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5380{
5381 struct ice_pf *pf = pci_get_drvdata(pdev);
5382
5383 if (!pf) {
5384 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5385 __func__, err);
5386 return PCI_ERS_RESULT_DISCONNECT;
5387 }
5388
5389 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5390 ice_service_task_stop(pf);
5391
5392 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5393 set_bit(ICE_PFR_REQ, pf->state);
5394 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5395 }
5396 }
5397
5398 return PCI_ERS_RESULT_NEED_RESET;
5399}
5400
5401/**
5402 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5403 * @pdev: PCI device information struct
5404 *
5405 * Called to determine if the driver can recover from the PCI slot reset by
5406 * using a register read to determine if the device is recoverable.
5407 */
5408static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5409{
5410 struct ice_pf *pf = pci_get_drvdata(pdev);
5411 pci_ers_result_t result;
5412 int err;
5413 u32 reg;
5414
5415 err = pci_enable_device_mem(pdev);
5416 if (err) {
5417 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5418 err);
5419 result = PCI_ERS_RESULT_DISCONNECT;
5420 } else {
5421 pci_set_master(pdev);
5422 pci_restore_state(pdev);
5423 pci_save_state(pdev);
5424 pci_wake_from_d3(pdev, false);
5425
5426 /* Check for life */
5427 reg = rd32(&pf->hw, GLGEN_RTRIG);
5428 if (!reg)
5429 result = PCI_ERS_RESULT_RECOVERED;
5430 else
5431 result = PCI_ERS_RESULT_DISCONNECT;
5432 }
5433
5434 return result;
5435}
5436
5437/**
5438 * ice_pci_err_resume - restart operations after PCI error recovery
5439 * @pdev: PCI device information struct
5440 *
5441 * Called to allow the driver to bring things back up after PCI error and/or
5442 * reset recovery have finished
5443 */
5444static void ice_pci_err_resume(struct pci_dev *pdev)
5445{
5446 struct ice_pf *pf = pci_get_drvdata(pdev);
5447
5448 if (!pf) {
5449 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5450 __func__);
5451 return;
5452 }
5453
5454 if (test_bit(ICE_SUSPENDED, pf->state)) {
5455 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5456 __func__);
5457 return;
5458 }
5459
5460 ice_restore_all_vfs_msi_state(pdev);
5461
5462 ice_do_reset(pf, ICE_RESET_PFR);
5463 ice_service_task_restart(pf);
5464 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5465}
5466
5467/**
5468 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5469 * @pdev: PCI device information struct
5470 */
5471static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5472{
5473 struct ice_pf *pf = pci_get_drvdata(pdev);
5474
5475 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5476 ice_service_task_stop(pf);
5477
5478 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5479 set_bit(ICE_PFR_REQ, pf->state);
5480 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5481 }
5482 }
5483}
5484
5485/**
5486 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5487 * @pdev: PCI device information struct
5488 */
5489static void ice_pci_err_reset_done(struct pci_dev *pdev)
5490{
5491 ice_pci_err_resume(pdev);
5492}
5493
5494/* ice_pci_tbl - PCI Device ID Table
5495 *
5496 * Wildcard entries (PCI_ANY_ID) should come last
5497 * Last entry must be all 0s
5498 *
5499 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5500 * Class, Class Mask, private data (not used) }
5501 */
5502static const struct pci_device_id ice_pci_tbl[] = {
5503 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5504 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5505 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5506 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5507 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5508 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5509 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5510 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5511 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5512 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5513 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5514 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5515 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5516 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5517 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5518 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5519 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5520 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5521 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5522 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5523 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5524 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5525 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5526 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5527 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5528 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 },
5529 /* required last entry */
5530 { 0, }
5531};
5532MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5533
5534static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5535
5536static const struct pci_error_handlers ice_pci_err_handler = {
5537 .error_detected = ice_pci_err_detected,
5538 .slot_reset = ice_pci_err_slot_reset,
5539 .reset_prepare = ice_pci_err_reset_prepare,
5540 .reset_done = ice_pci_err_reset_done,
5541 .resume = ice_pci_err_resume
5542};
5543
5544static struct pci_driver ice_driver = {
5545 .name = KBUILD_MODNAME,
5546 .id_table = ice_pci_tbl,
5547 .probe = ice_probe,
5548 .remove = ice_remove,
5549#ifdef CONFIG_PM
5550 .driver.pm = &ice_pm_ops,
5551#endif /* CONFIG_PM */
5552 .shutdown = ice_shutdown,
5553 .sriov_configure = ice_sriov_configure,
5554 .err_handler = &ice_pci_err_handler
5555};
5556
5557/**
5558 * ice_module_init - Driver registration routine
5559 *
5560 * ice_module_init is the first routine called when the driver is
5561 * loaded. All it does is register with the PCI subsystem.
5562 */
5563static int __init ice_module_init(void)
5564{
5565 int status;
5566
5567 pr_info("%s\n", ice_driver_string);
5568 pr_info("%s\n", ice_copyright);
5569
5570 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5571 if (!ice_wq) {
5572 pr_err("Failed to create workqueue\n");
5573 return -ENOMEM;
5574 }
5575
5576 status = pci_register_driver(&ice_driver);
5577 if (status) {
5578 pr_err("failed to register PCI driver, err %d\n", status);
5579 destroy_workqueue(ice_wq);
5580 }
5581
5582 return status;
5583}
5584module_init(ice_module_init);
5585
5586/**
5587 * ice_module_exit - Driver exit cleanup routine
5588 *
5589 * ice_module_exit is called just before the driver is removed
5590 * from memory.
5591 */
5592static void __exit ice_module_exit(void)
5593{
5594 pci_unregister_driver(&ice_driver);
5595 destroy_workqueue(ice_wq);
5596 pr_info("module unloaded\n");
5597}
5598module_exit(ice_module_exit);
5599
5600/**
5601 * ice_set_mac_address - NDO callback to set MAC address
5602 * @netdev: network interface device structure
5603 * @pi: pointer to an address structure
5604 *
5605 * Returns 0 on success, negative on failure
5606 */
5607static int ice_set_mac_address(struct net_device *netdev, void *pi)
5608{
5609 struct ice_netdev_priv *np = netdev_priv(netdev);
5610 struct ice_vsi *vsi = np->vsi;
5611 struct ice_pf *pf = vsi->back;
5612 struct ice_hw *hw = &pf->hw;
5613 struct sockaddr *addr = pi;
5614 u8 old_mac[ETH_ALEN];
5615 u8 flags = 0;
5616 u8 *mac;
5617 int err;
5618
5619 mac = (u8 *)addr->sa_data;
5620
5621 if (!is_valid_ether_addr(mac))
5622 return -EADDRNOTAVAIL;
5623
5624 if (ether_addr_equal(netdev->dev_addr, mac)) {
5625 netdev_dbg(netdev, "already using mac %pM\n", mac);
5626 return 0;
5627 }
5628
5629 if (test_bit(ICE_DOWN, pf->state) ||
5630 ice_is_reset_in_progress(pf->state)) {
5631 netdev_err(netdev, "can't set mac %pM. device not ready\n",
5632 mac);
5633 return -EBUSY;
5634 }
5635
5636 if (ice_chnl_dmac_fltr_cnt(pf)) {
5637 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5638 mac);
5639 return -EAGAIN;
5640 }
5641
5642 netif_addr_lock_bh(netdev);
5643 ether_addr_copy(old_mac, netdev->dev_addr);
5644 /* change the netdev's MAC address */
5645 eth_hw_addr_set(netdev, mac);
5646 netif_addr_unlock_bh(netdev);
5647
5648 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
5649 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5650 if (err && err != -ENOENT) {
5651 err = -EADDRNOTAVAIL;
5652 goto err_update_filters;
5653 }
5654
5655 /* Add filter for new MAC. If filter exists, return success */
5656 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5657 if (err == -EEXIST) {
5658 /* Although this MAC filter is already present in hardware it's
5659 * possible in some cases (e.g. bonding) that dev_addr was
5660 * modified outside of the driver and needs to be restored back
5661 * to this value.
5662 */
5663 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5664
5665 return 0;
5666 } else if (err) {
5667 /* error if the new filter addition failed */
5668 err = -EADDRNOTAVAIL;
5669 }
5670
5671err_update_filters:
5672 if (err) {
5673 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5674 mac);
5675 netif_addr_lock_bh(netdev);
5676 eth_hw_addr_set(netdev, old_mac);
5677 netif_addr_unlock_bh(netdev);
5678 return err;
5679 }
5680
5681 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5682 netdev->dev_addr);
5683
5684 /* write new MAC address to the firmware */
5685 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5686 err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5687 if (err) {
5688 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5689 mac, err);
5690 }
5691 return 0;
5692}
5693
5694/**
5695 * ice_set_rx_mode - NDO callback to set the netdev filters
5696 * @netdev: network interface device structure
5697 */
5698static void ice_set_rx_mode(struct net_device *netdev)
5699{
5700 struct ice_netdev_priv *np = netdev_priv(netdev);
5701 struct ice_vsi *vsi = np->vsi;
5702
5703 if (!vsi)
5704 return;
5705
5706 /* Set the flags to synchronize filters
5707 * ndo_set_rx_mode may be triggered even without a change in netdev
5708 * flags
5709 */
5710 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5711 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5712 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5713
5714 /* schedule our worker thread which will take care of
5715 * applying the new filter changes
5716 */
5717 ice_service_task_schedule(vsi->back);
5718}
5719
5720/**
5721 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5722 * @netdev: network interface device structure
5723 * @queue_index: Queue ID
5724 * @maxrate: maximum bandwidth in Mbps
5725 */
5726static int
5727ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5728{
5729 struct ice_netdev_priv *np = netdev_priv(netdev);
5730 struct ice_vsi *vsi = np->vsi;
5731 u16 q_handle;
5732 int status;
5733 u8 tc;
5734
5735 /* Validate maxrate requested is within permitted range */
5736 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5737 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5738 maxrate, queue_index);
5739 return -EINVAL;
5740 }
5741
5742 q_handle = vsi->tx_rings[queue_index]->q_handle;
5743 tc = ice_dcb_get_tc(vsi, queue_index);
5744
5745 /* Set BW back to default, when user set maxrate to 0 */
5746 if (!maxrate)
5747 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5748 q_handle, ICE_MAX_BW);
5749 else
5750 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5751 q_handle, ICE_MAX_BW, maxrate * 1000);
5752 if (status)
5753 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5754 status);
5755
5756 return status;
5757}
5758
5759/**
5760 * ice_fdb_add - add an entry to the hardware database
5761 * @ndm: the input from the stack
5762 * @tb: pointer to array of nladdr (unused)
5763 * @dev: the net device pointer
5764 * @addr: the MAC address entry being added
5765 * @vid: VLAN ID
5766 * @flags: instructions from stack about fdb operation
5767 * @extack: netlink extended ack
5768 */
5769static int
5770ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5771 struct net_device *dev, const unsigned char *addr, u16 vid,
5772 u16 flags, struct netlink_ext_ack __always_unused *extack)
5773{
5774 int err;
5775
5776 if (vid) {
5777 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5778 return -EINVAL;
5779 }
5780 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5781 netdev_err(dev, "FDB only supports static addresses\n");
5782 return -EINVAL;
5783 }
5784
5785 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5786 err = dev_uc_add_excl(dev, addr);
5787 else if (is_multicast_ether_addr(addr))
5788 err = dev_mc_add_excl(dev, addr);
5789 else
5790 err = -EINVAL;
5791
5792 /* Only return duplicate errors if NLM_F_EXCL is set */
5793 if (err == -EEXIST && !(flags & NLM_F_EXCL))
5794 err = 0;
5795
5796 return err;
5797}
5798
5799/**
5800 * ice_fdb_del - delete an entry from the hardware database
5801 * @ndm: the input from the stack
5802 * @tb: pointer to array of nladdr (unused)
5803 * @dev: the net device pointer
5804 * @addr: the MAC address entry being added
5805 * @vid: VLAN ID
5806 * @extack: netlink extended ack
5807 */
5808static int
5809ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5810 struct net_device *dev, const unsigned char *addr,
5811 __always_unused u16 vid, struct netlink_ext_ack *extack)
5812{
5813 int err;
5814
5815 if (ndm->ndm_state & NUD_PERMANENT) {
5816 netdev_err(dev, "FDB only supports static addresses\n");
5817 return -EINVAL;
5818 }
5819
5820 if (is_unicast_ether_addr(addr))
5821 err = dev_uc_del(dev, addr);
5822 else if (is_multicast_ether_addr(addr))
5823 err = dev_mc_del(dev, addr);
5824 else
5825 err = -EINVAL;
5826
5827 return err;
5828}
5829
5830#define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
5831 NETIF_F_HW_VLAN_CTAG_TX | \
5832 NETIF_F_HW_VLAN_STAG_RX | \
5833 NETIF_F_HW_VLAN_STAG_TX)
5834
5835#define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
5836 NETIF_F_HW_VLAN_STAG_RX)
5837
5838#define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
5839 NETIF_F_HW_VLAN_STAG_FILTER)
5840
5841/**
5842 * ice_fix_features - fix the netdev features flags based on device limitations
5843 * @netdev: ptr to the netdev that flags are being fixed on
5844 * @features: features that need to be checked and possibly fixed
5845 *
5846 * Make sure any fixups are made to features in this callback. This enables the
5847 * driver to not have to check unsupported configurations throughout the driver
5848 * because that's the responsiblity of this callback.
5849 *
5850 * Single VLAN Mode (SVM) Supported Features:
5851 * NETIF_F_HW_VLAN_CTAG_FILTER
5852 * NETIF_F_HW_VLAN_CTAG_RX
5853 * NETIF_F_HW_VLAN_CTAG_TX
5854 *
5855 * Double VLAN Mode (DVM) Supported Features:
5856 * NETIF_F_HW_VLAN_CTAG_FILTER
5857 * NETIF_F_HW_VLAN_CTAG_RX
5858 * NETIF_F_HW_VLAN_CTAG_TX
5859 *
5860 * NETIF_F_HW_VLAN_STAG_FILTER
5861 * NETIF_HW_VLAN_STAG_RX
5862 * NETIF_HW_VLAN_STAG_TX
5863 *
5864 * Features that need fixing:
5865 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
5866 * These are mutually exlusive as the VSI context cannot support multiple
5867 * VLAN ethertypes simultaneously for stripping and/or insertion. If this
5868 * is not done, then default to clearing the requested STAG offload
5869 * settings.
5870 *
5871 * All supported filtering has to be enabled or disabled together. For
5872 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled
5873 * together. If this is not done, then default to VLAN filtering disabled.
5874 * These are mutually exclusive as there is currently no way to
5875 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN
5876 * prune rules.
5877 */
5878static netdev_features_t
5879ice_fix_features(struct net_device *netdev, netdev_features_t features)
5880{
5881 struct ice_netdev_priv *np = netdev_priv(netdev);
5882 netdev_features_t req_vlan_fltr, cur_vlan_fltr;
5883 bool cur_ctag, cur_stag, req_ctag, req_stag;
5884
5885 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
5886 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5887 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5888
5889 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
5890 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5891 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5892
5893 if (req_vlan_fltr != cur_vlan_fltr) {
5894 if (ice_is_dvm_ena(&np->vsi->back->hw)) {
5895 if (req_ctag && req_stag) {
5896 features |= NETIF_VLAN_FILTERING_FEATURES;
5897 } else if (!req_ctag && !req_stag) {
5898 features &= ~NETIF_VLAN_FILTERING_FEATURES;
5899 } else if ((!cur_ctag && req_ctag && !cur_stag) ||
5900 (!cur_stag && req_stag && !cur_ctag)) {
5901 features |= NETIF_VLAN_FILTERING_FEATURES;
5902 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
5903 } else if ((cur_ctag && !req_ctag && cur_stag) ||
5904 (cur_stag && !req_stag && cur_ctag)) {
5905 features &= ~NETIF_VLAN_FILTERING_FEATURES;
5906 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
5907 }
5908 } else {
5909 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
5910 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
5911
5912 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
5913 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5914 }
5915 }
5916
5917 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
5918 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
5919 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
5920 features &= ~(NETIF_F_HW_VLAN_STAG_RX |
5921 NETIF_F_HW_VLAN_STAG_TX);
5922 }
5923
5924 if (!(netdev->features & NETIF_F_RXFCS) &&
5925 (features & NETIF_F_RXFCS) &&
5926 (features & NETIF_VLAN_STRIPPING_FEATURES) &&
5927 !ice_vsi_has_non_zero_vlans(np->vsi)) {
5928 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
5929 features &= ~NETIF_VLAN_STRIPPING_FEATURES;
5930 }
5931
5932 return features;
5933}
5934
5935/**
5936 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
5937 * @vsi: PF's VSI
5938 * @features: features used to determine VLAN offload settings
5939 *
5940 * First, determine the vlan_ethertype based on the VLAN offload bits in
5941 * features. Then determine if stripping and insertion should be enabled or
5942 * disabled. Finally enable or disable VLAN stripping and insertion.
5943 */
5944static int
5945ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
5946{
5947 bool enable_stripping = true, enable_insertion = true;
5948 struct ice_vsi_vlan_ops *vlan_ops;
5949 int strip_err = 0, insert_err = 0;
5950 u16 vlan_ethertype = 0;
5951
5952 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5953
5954 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
5955 vlan_ethertype = ETH_P_8021AD;
5956 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
5957 vlan_ethertype = ETH_P_8021Q;
5958
5959 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
5960 enable_stripping = false;
5961 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
5962 enable_insertion = false;
5963
5964 if (enable_stripping)
5965 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
5966 else
5967 strip_err = vlan_ops->dis_stripping(vsi);
5968
5969 if (enable_insertion)
5970 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
5971 else
5972 insert_err = vlan_ops->dis_insertion(vsi);
5973
5974 if (strip_err || insert_err)
5975 return -EIO;
5976
5977 return 0;
5978}
5979
5980/**
5981 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
5982 * @vsi: PF's VSI
5983 * @features: features used to determine VLAN filtering settings
5984 *
5985 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
5986 * features.
5987 */
5988static int
5989ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
5990{
5991 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5992 int err = 0;
5993
5994 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
5995 * if either bit is set
5996 */
5997 if (features &
5998 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
5999 err = vlan_ops->ena_rx_filtering(vsi);
6000 else
6001 err = vlan_ops->dis_rx_filtering(vsi);
6002
6003 return err;
6004}
6005
6006/**
6007 * ice_set_vlan_features - set VLAN settings based on suggested feature set
6008 * @netdev: ptr to the netdev being adjusted
6009 * @features: the feature set that the stack is suggesting
6010 *
6011 * Only update VLAN settings if the requested_vlan_features are different than
6012 * the current_vlan_features.
6013 */
6014static int
6015ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6016{
6017 netdev_features_t current_vlan_features, requested_vlan_features;
6018 struct ice_netdev_priv *np = netdev_priv(netdev);
6019 struct ice_vsi *vsi = np->vsi;
6020 int err;
6021
6022 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6023 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6024 if (current_vlan_features ^ requested_vlan_features) {
6025 if ((features & NETIF_F_RXFCS) &&
6026 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6027 dev_err(ice_pf_to_dev(vsi->back),
6028 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6029 return -EIO;
6030 }
6031
6032 err = ice_set_vlan_offload_features(vsi, features);
6033 if (err)
6034 return err;
6035 }
6036
6037 current_vlan_features = netdev->features &
6038 NETIF_VLAN_FILTERING_FEATURES;
6039 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6040 if (current_vlan_features ^ requested_vlan_features) {
6041 err = ice_set_vlan_filtering_features(vsi, features);
6042 if (err)
6043 return err;
6044 }
6045
6046 return 0;
6047}
6048
6049/**
6050 * ice_set_loopback - turn on/off loopback mode on underlying PF
6051 * @vsi: ptr to VSI
6052 * @ena: flag to indicate the on/off setting
6053 */
6054static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6055{
6056 bool if_running = netif_running(vsi->netdev);
6057 int ret;
6058
6059 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6060 ret = ice_down(vsi);
6061 if (ret) {
6062 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6063 return ret;
6064 }
6065 }
6066 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6067 if (ret)
6068 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6069 if (if_running)
6070 ret = ice_up(vsi);
6071
6072 return ret;
6073}
6074
6075/**
6076 * ice_set_features - set the netdev feature flags
6077 * @netdev: ptr to the netdev being adjusted
6078 * @features: the feature set that the stack is suggesting
6079 */
6080static int
6081ice_set_features(struct net_device *netdev, netdev_features_t features)
6082{
6083 netdev_features_t changed = netdev->features ^ features;
6084 struct ice_netdev_priv *np = netdev_priv(netdev);
6085 struct ice_vsi *vsi = np->vsi;
6086 struct ice_pf *pf = vsi->back;
6087 int ret = 0;
6088
6089 /* Don't set any netdev advanced features with device in Safe Mode */
6090 if (ice_is_safe_mode(pf)) {
6091 dev_err(ice_pf_to_dev(pf),
6092 "Device is in Safe Mode - not enabling advanced netdev features\n");
6093 return ret;
6094 }
6095
6096 /* Do not change setting during reset */
6097 if (ice_is_reset_in_progress(pf->state)) {
6098 dev_err(ice_pf_to_dev(pf),
6099 "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6100 return -EBUSY;
6101 }
6102
6103 /* Multiple features can be changed in one call so keep features in
6104 * separate if/else statements to guarantee each feature is checked
6105 */
6106 if (changed & NETIF_F_RXHASH)
6107 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6108
6109 ret = ice_set_vlan_features(netdev, features);
6110 if (ret)
6111 return ret;
6112
6113 /* Turn on receive of FCS aka CRC, and after setting this
6114 * flag the packet data will have the 4 byte CRC appended
6115 */
6116 if (changed & NETIF_F_RXFCS) {
6117 if ((features & NETIF_F_RXFCS) &&
6118 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6119 dev_err(ice_pf_to_dev(vsi->back),
6120 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6121 return -EIO;
6122 }
6123
6124 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6125 ret = ice_down_up(vsi);
6126 if (ret)
6127 return ret;
6128 }
6129
6130 if (changed & NETIF_F_NTUPLE) {
6131 bool ena = !!(features & NETIF_F_NTUPLE);
6132
6133 ice_vsi_manage_fdir(vsi, ena);
6134 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6135 }
6136
6137 /* don't turn off hw_tc_offload when ADQ is already enabled */
6138 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6139 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6140 return -EACCES;
6141 }
6142
6143 if (changed & NETIF_F_HW_TC) {
6144 bool ena = !!(features & NETIF_F_HW_TC);
6145
6146 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6147 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6148 }
6149
6150 if (changed & NETIF_F_LOOPBACK)
6151 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6152
6153 return ret;
6154}
6155
6156/**
6157 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6158 * @vsi: VSI to setup VLAN properties for
6159 */
6160static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6161{
6162 int err;
6163
6164 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6165 if (err)
6166 return err;
6167
6168 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6169 if (err)
6170 return err;
6171
6172 return ice_vsi_add_vlan_zero(vsi);
6173}
6174
6175/**
6176 * ice_vsi_cfg - Setup the VSI
6177 * @vsi: the VSI being configured
6178 *
6179 * Return 0 on success and negative value on error
6180 */
6181int ice_vsi_cfg(struct ice_vsi *vsi)
6182{
6183 int err;
6184
6185 if (vsi->netdev) {
6186 ice_set_rx_mode(vsi->netdev);
6187
6188 if (vsi->type != ICE_VSI_LB) {
6189 err = ice_vsi_vlan_setup(vsi);
6190
6191 if (err)
6192 return err;
6193 }
6194 }
6195 ice_vsi_cfg_dcb_rings(vsi);
6196
6197 err = ice_vsi_cfg_lan_txqs(vsi);
6198 if (!err && ice_is_xdp_ena_vsi(vsi))
6199 err = ice_vsi_cfg_xdp_txqs(vsi);
6200 if (!err)
6201 err = ice_vsi_cfg_rxqs(vsi);
6202
6203 return err;
6204}
6205
6206/* THEORY OF MODERATION:
6207 * The ice driver hardware works differently than the hardware that DIMLIB was
6208 * originally made for. ice hardware doesn't have packet count limits that
6209 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6210 * which is hard-coded to a limit of 250,000 ints/second.
6211 * If not using dynamic moderation, the INTRL value can be modified
6212 * by ethtool rx-usecs-high.
6213 */
6214struct ice_dim {
6215 /* the throttle rate for interrupts, basically worst case delay before
6216 * an initial interrupt fires, value is stored in microseconds.
6217 */
6218 u16 itr;
6219};
6220
6221/* Make a different profile for Rx that doesn't allow quite so aggressive
6222 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6223 * second.
6224 */
6225static const struct ice_dim rx_profile[] = {
6226 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6227 {8}, /* 125,000 ints/s */
6228 {16}, /* 62,500 ints/s */
6229 {62}, /* 16,129 ints/s */
6230 {126} /* 7,936 ints/s */
6231};
6232
6233/* The transmit profile, which has the same sorts of values
6234 * as the previous struct
6235 */
6236static const struct ice_dim tx_profile[] = {
6237 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6238 {8}, /* 125,000 ints/s */
6239 {40}, /* 16,125 ints/s */
6240 {128}, /* 7,812 ints/s */
6241 {256} /* 3,906 ints/s */
6242};
6243
6244static void ice_tx_dim_work(struct work_struct *work)
6245{
6246 struct ice_ring_container *rc;
6247 struct dim *dim;
6248 u16 itr;
6249
6250 dim = container_of(work, struct dim, work);
6251 rc = (struct ice_ring_container *)dim->priv;
6252
6253 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6254
6255 /* look up the values in our local table */
6256 itr = tx_profile[dim->profile_ix].itr;
6257
6258 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6259 ice_write_itr(rc, itr);
6260
6261 dim->state = DIM_START_MEASURE;
6262}
6263
6264static void ice_rx_dim_work(struct work_struct *work)
6265{
6266 struct ice_ring_container *rc;
6267 struct dim *dim;
6268 u16 itr;
6269
6270 dim = container_of(work, struct dim, work);
6271 rc = (struct ice_ring_container *)dim->priv;
6272
6273 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6274
6275 /* look up the values in our local table */
6276 itr = rx_profile[dim->profile_ix].itr;
6277
6278 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6279 ice_write_itr(rc, itr);
6280
6281 dim->state = DIM_START_MEASURE;
6282}
6283
6284#define ICE_DIM_DEFAULT_PROFILE_IX 1
6285
6286/**
6287 * ice_init_moderation - set up interrupt moderation
6288 * @q_vector: the vector containing rings to be configured
6289 *
6290 * Set up interrupt moderation registers, with the intent to do the right thing
6291 * when called from reset or from probe, and whether or not dynamic moderation
6292 * is enabled or not. Take special care to write all the registers in both
6293 * dynamic moderation mode or not in order to make sure hardware is in a known
6294 * state.
6295 */
6296static void ice_init_moderation(struct ice_q_vector *q_vector)
6297{
6298 struct ice_ring_container *rc;
6299 bool tx_dynamic, rx_dynamic;
6300
6301 rc = &q_vector->tx;
6302 INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6303 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6304 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6305 rc->dim.priv = rc;
6306 tx_dynamic = ITR_IS_DYNAMIC(rc);
6307
6308 /* set the initial TX ITR to match the above */
6309 ice_write_itr(rc, tx_dynamic ?
6310 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6311
6312 rc = &q_vector->rx;
6313 INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6314 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6315 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6316 rc->dim.priv = rc;
6317 rx_dynamic = ITR_IS_DYNAMIC(rc);
6318
6319 /* set the initial RX ITR to match the above */
6320 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6321 rc->itr_setting);
6322
6323 ice_set_q_vector_intrl(q_vector);
6324}
6325
6326/**
6327 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6328 * @vsi: the VSI being configured
6329 */
6330static void ice_napi_enable_all(struct ice_vsi *vsi)
6331{
6332 int q_idx;
6333
6334 if (!vsi->netdev)
6335 return;
6336
6337 ice_for_each_q_vector(vsi, q_idx) {
6338 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6339
6340 ice_init_moderation(q_vector);
6341
6342 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6343 napi_enable(&q_vector->napi);
6344 }
6345}
6346
6347/**
6348 * ice_up_complete - Finish the last steps of bringing up a connection
6349 * @vsi: The VSI being configured
6350 *
6351 * Return 0 on success and negative value on error
6352 */
6353static int ice_up_complete(struct ice_vsi *vsi)
6354{
6355 struct ice_pf *pf = vsi->back;
6356 int err;
6357
6358 ice_vsi_cfg_msix(vsi);
6359
6360 /* Enable only Rx rings, Tx rings were enabled by the FW when the
6361 * Tx queue group list was configured and the context bits were
6362 * programmed using ice_vsi_cfg_txqs
6363 */
6364 err = ice_vsi_start_all_rx_rings(vsi);
6365 if (err)
6366 return err;
6367
6368 clear_bit(ICE_VSI_DOWN, vsi->state);
6369 ice_napi_enable_all(vsi);
6370 ice_vsi_ena_irq(vsi);
6371
6372 if (vsi->port_info &&
6373 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6374 vsi->netdev) {
6375 ice_print_link_msg(vsi, true);
6376 netif_tx_start_all_queues(vsi->netdev);
6377 netif_carrier_on(vsi->netdev);
6378 ice_ptp_link_change(pf, pf->hw.pf_id, true);
6379 }
6380
6381 /* Perform an initial read of the statistics registers now to
6382 * set the baseline so counters are ready when interface is up
6383 */
6384 ice_update_eth_stats(vsi);
6385 ice_service_task_schedule(pf);
6386
6387 return 0;
6388}
6389
6390/**
6391 * ice_up - Bring the connection back up after being down
6392 * @vsi: VSI being configured
6393 */
6394int ice_up(struct ice_vsi *vsi)
6395{
6396 int err;
6397
6398 err = ice_vsi_cfg(vsi);
6399 if (!err)
6400 err = ice_up_complete(vsi);
6401
6402 return err;
6403}
6404
6405/**
6406 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6407 * @syncp: pointer to u64_stats_sync
6408 * @stats: stats that pkts and bytes count will be taken from
6409 * @pkts: packets stats counter
6410 * @bytes: bytes stats counter
6411 *
6412 * This function fetches stats from the ring considering the atomic operations
6413 * that needs to be performed to read u64 values in 32 bit machine.
6414 */
6415void
6416ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6417 struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6418{
6419 unsigned int start;
6420
6421 do {
6422 start = u64_stats_fetch_begin(syncp);
6423 *pkts = stats.pkts;
6424 *bytes = stats.bytes;
6425 } while (u64_stats_fetch_retry(syncp, start));
6426}
6427
6428/**
6429 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6430 * @vsi: the VSI to be updated
6431 * @vsi_stats: the stats struct to be updated
6432 * @rings: rings to work on
6433 * @count: number of rings
6434 */
6435static void
6436ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6437 struct rtnl_link_stats64 *vsi_stats,
6438 struct ice_tx_ring **rings, u16 count)
6439{
6440 u16 i;
6441
6442 for (i = 0; i < count; i++) {
6443 struct ice_tx_ring *ring;
6444 u64 pkts = 0, bytes = 0;
6445
6446 ring = READ_ONCE(rings[i]);
6447 if (!ring || !ring->ring_stats)
6448 continue;
6449 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6450 ring->ring_stats->stats, &pkts,
6451 &bytes);
6452 vsi_stats->tx_packets += pkts;
6453 vsi_stats->tx_bytes += bytes;
6454 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6455 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6456 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6457 }
6458}
6459
6460/**
6461 * ice_update_vsi_ring_stats - Update VSI stats counters
6462 * @vsi: the VSI to be updated
6463 */
6464static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6465{
6466 struct rtnl_link_stats64 *net_stats, *stats_prev;
6467 struct rtnl_link_stats64 *vsi_stats;
6468 u64 pkts, bytes;
6469 int i;
6470
6471 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6472 if (!vsi_stats)
6473 return;
6474
6475 /* reset non-netdev (extended) stats */
6476 vsi->tx_restart = 0;
6477 vsi->tx_busy = 0;
6478 vsi->tx_linearize = 0;
6479 vsi->rx_buf_failed = 0;
6480 vsi->rx_page_failed = 0;
6481
6482 rcu_read_lock();
6483
6484 /* update Tx rings counters */
6485 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6486 vsi->num_txq);
6487
6488 /* update Rx rings counters */
6489 ice_for_each_rxq(vsi, i) {
6490 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6491 struct ice_ring_stats *ring_stats;
6492
6493 ring_stats = ring->ring_stats;
6494 ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6495 ring_stats->stats, &pkts,
6496 &bytes);
6497 vsi_stats->rx_packets += pkts;
6498 vsi_stats->rx_bytes += bytes;
6499 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6500 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6501 }
6502
6503 /* update XDP Tx rings counters */
6504 if (ice_is_xdp_ena_vsi(vsi))
6505 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6506 vsi->num_xdp_txq);
6507
6508 rcu_read_unlock();
6509
6510 net_stats = &vsi->net_stats;
6511 stats_prev = &vsi->net_stats_prev;
6512
6513 /* clear prev counters after reset */
6514 if (vsi_stats->tx_packets < stats_prev->tx_packets ||
6515 vsi_stats->rx_packets < stats_prev->rx_packets) {
6516 stats_prev->tx_packets = 0;
6517 stats_prev->tx_bytes = 0;
6518 stats_prev->rx_packets = 0;
6519 stats_prev->rx_bytes = 0;
6520 }
6521
6522 /* update netdev counters */
6523 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6524 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6525 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6526 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6527
6528 stats_prev->tx_packets = vsi_stats->tx_packets;
6529 stats_prev->tx_bytes = vsi_stats->tx_bytes;
6530 stats_prev->rx_packets = vsi_stats->rx_packets;
6531 stats_prev->rx_bytes = vsi_stats->rx_bytes;
6532
6533 kfree(vsi_stats);
6534}
6535
6536/**
6537 * ice_update_vsi_stats - Update VSI stats counters
6538 * @vsi: the VSI to be updated
6539 */
6540void ice_update_vsi_stats(struct ice_vsi *vsi)
6541{
6542 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6543 struct ice_eth_stats *cur_es = &vsi->eth_stats;
6544 struct ice_pf *pf = vsi->back;
6545
6546 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6547 test_bit(ICE_CFG_BUSY, pf->state))
6548 return;
6549
6550 /* get stats as recorded by Tx/Rx rings */
6551 ice_update_vsi_ring_stats(vsi);
6552
6553 /* get VSI stats as recorded by the hardware */
6554 ice_update_eth_stats(vsi);
6555
6556 cur_ns->tx_errors = cur_es->tx_errors;
6557 cur_ns->rx_dropped = cur_es->rx_discards;
6558 cur_ns->tx_dropped = cur_es->tx_discards;
6559 cur_ns->multicast = cur_es->rx_multicast;
6560
6561 /* update some more netdev stats if this is main VSI */
6562 if (vsi->type == ICE_VSI_PF) {
6563 cur_ns->rx_crc_errors = pf->stats.crc_errors;
6564 cur_ns->rx_errors = pf->stats.crc_errors +
6565 pf->stats.illegal_bytes +
6566 pf->stats.rx_len_errors +
6567 pf->stats.rx_undersize +
6568 pf->hw_csum_rx_error +
6569 pf->stats.rx_jabber +
6570 pf->stats.rx_fragments +
6571 pf->stats.rx_oversize;
6572 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6573 /* record drops from the port level */
6574 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6575 }
6576}
6577
6578/**
6579 * ice_update_pf_stats - Update PF port stats counters
6580 * @pf: PF whose stats needs to be updated
6581 */
6582void ice_update_pf_stats(struct ice_pf *pf)
6583{
6584 struct ice_hw_port_stats *prev_ps, *cur_ps;
6585 struct ice_hw *hw = &pf->hw;
6586 u16 fd_ctr_base;
6587 u8 port;
6588
6589 port = hw->port_info->lport;
6590 prev_ps = &pf->stats_prev;
6591 cur_ps = &pf->stats;
6592
6593 if (ice_is_reset_in_progress(pf->state))
6594 pf->stat_prev_loaded = false;
6595
6596 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6597 &prev_ps->eth.rx_bytes,
6598 &cur_ps->eth.rx_bytes);
6599
6600 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6601 &prev_ps->eth.rx_unicast,
6602 &cur_ps->eth.rx_unicast);
6603
6604 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6605 &prev_ps->eth.rx_multicast,
6606 &cur_ps->eth.rx_multicast);
6607
6608 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6609 &prev_ps->eth.rx_broadcast,
6610 &cur_ps->eth.rx_broadcast);
6611
6612 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6613 &prev_ps->eth.rx_discards,
6614 &cur_ps->eth.rx_discards);
6615
6616 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6617 &prev_ps->eth.tx_bytes,
6618 &cur_ps->eth.tx_bytes);
6619
6620 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6621 &prev_ps->eth.tx_unicast,
6622 &cur_ps->eth.tx_unicast);
6623
6624 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6625 &prev_ps->eth.tx_multicast,
6626 &cur_ps->eth.tx_multicast);
6627
6628 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6629 &prev_ps->eth.tx_broadcast,
6630 &cur_ps->eth.tx_broadcast);
6631
6632 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6633 &prev_ps->tx_dropped_link_down,
6634 &cur_ps->tx_dropped_link_down);
6635
6636 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6637 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6638
6639 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6640 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6641
6642 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6643 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6644
6645 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6646 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6647
6648 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6649 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6650
6651 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6652 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6653
6654 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6655 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6656
6657 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6658 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6659
6660 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6661 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6662
6663 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6664 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6665
6666 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6667 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6668
6669 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6670 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6671
6672 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6673 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6674
6675 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6676 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6677
6678 fd_ctr_base = hw->fd_ctr_base;
6679
6680 ice_stat_update40(hw,
6681 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6682 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6683 &cur_ps->fd_sb_match);
6684 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6685 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6686
6687 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6688 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6689
6690 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6691 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6692
6693 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6694 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6695
6696 ice_update_dcb_stats(pf);
6697
6698 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6699 &prev_ps->crc_errors, &cur_ps->crc_errors);
6700
6701 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6702 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6703
6704 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6705 &prev_ps->mac_local_faults,
6706 &cur_ps->mac_local_faults);
6707
6708 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6709 &prev_ps->mac_remote_faults,
6710 &cur_ps->mac_remote_faults);
6711
6712 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6713 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6714
6715 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6716 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6717
6718 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6719 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6720
6721 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6722 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6723
6724 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6725 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6726
6727 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6728
6729 pf->stat_prev_loaded = true;
6730}
6731
6732/**
6733 * ice_get_stats64 - get statistics for network device structure
6734 * @netdev: network interface device structure
6735 * @stats: main device statistics structure
6736 */
6737static
6738void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6739{
6740 struct ice_netdev_priv *np = netdev_priv(netdev);
6741 struct rtnl_link_stats64 *vsi_stats;
6742 struct ice_vsi *vsi = np->vsi;
6743
6744 vsi_stats = &vsi->net_stats;
6745
6746 if (!vsi->num_txq || !vsi->num_rxq)
6747 return;
6748
6749 /* netdev packet/byte stats come from ring counter. These are obtained
6750 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6751 * But, only call the update routine and read the registers if VSI is
6752 * not down.
6753 */
6754 if (!test_bit(ICE_VSI_DOWN, vsi->state))
6755 ice_update_vsi_ring_stats(vsi);
6756 stats->tx_packets = vsi_stats->tx_packets;
6757 stats->tx_bytes = vsi_stats->tx_bytes;
6758 stats->rx_packets = vsi_stats->rx_packets;
6759 stats->rx_bytes = vsi_stats->rx_bytes;
6760
6761 /* The rest of the stats can be read from the hardware but instead we
6762 * just return values that the watchdog task has already obtained from
6763 * the hardware.
6764 */
6765 stats->multicast = vsi_stats->multicast;
6766 stats->tx_errors = vsi_stats->tx_errors;
6767 stats->tx_dropped = vsi_stats->tx_dropped;
6768 stats->rx_errors = vsi_stats->rx_errors;
6769 stats->rx_dropped = vsi_stats->rx_dropped;
6770 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6771 stats->rx_length_errors = vsi_stats->rx_length_errors;
6772}
6773
6774/**
6775 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6776 * @vsi: VSI having NAPI disabled
6777 */
6778static void ice_napi_disable_all(struct ice_vsi *vsi)
6779{
6780 int q_idx;
6781
6782 if (!vsi->netdev)
6783 return;
6784
6785 ice_for_each_q_vector(vsi, q_idx) {
6786 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6787
6788 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6789 napi_disable(&q_vector->napi);
6790
6791 cancel_work_sync(&q_vector->tx.dim.work);
6792 cancel_work_sync(&q_vector->rx.dim.work);
6793 }
6794}
6795
6796/**
6797 * ice_down - Shutdown the connection
6798 * @vsi: The VSI being stopped
6799 *
6800 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6801 */
6802int ice_down(struct ice_vsi *vsi)
6803{
6804 int i, tx_err, rx_err, vlan_err = 0;
6805
6806 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6807
6808 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6809 vlan_err = ice_vsi_del_vlan_zero(vsi);
6810 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6811 netif_carrier_off(vsi->netdev);
6812 netif_tx_disable(vsi->netdev);
6813 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6814 ice_eswitch_stop_all_tx_queues(vsi->back);
6815 }
6816
6817 ice_vsi_dis_irq(vsi);
6818
6819 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6820 if (tx_err)
6821 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6822 vsi->vsi_num, tx_err);
6823 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6824 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6825 if (tx_err)
6826 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6827 vsi->vsi_num, tx_err);
6828 }
6829
6830 rx_err = ice_vsi_stop_all_rx_rings(vsi);
6831 if (rx_err)
6832 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6833 vsi->vsi_num, rx_err);
6834
6835 ice_napi_disable_all(vsi);
6836
6837 ice_for_each_txq(vsi, i)
6838 ice_clean_tx_ring(vsi->tx_rings[i]);
6839
6840 ice_for_each_rxq(vsi, i)
6841 ice_clean_rx_ring(vsi->rx_rings[i]);
6842
6843 if (tx_err || rx_err || vlan_err) {
6844 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6845 vsi->vsi_num, vsi->vsw->sw_id);
6846 return -EIO;
6847 }
6848
6849 return 0;
6850}
6851
6852/**
6853 * ice_down_up - shutdown the VSI connection and bring it up
6854 * @vsi: the VSI to be reconnected
6855 */
6856int ice_down_up(struct ice_vsi *vsi)
6857{
6858 int ret;
6859
6860 /* if DOWN already set, nothing to do */
6861 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
6862 return 0;
6863
6864 ret = ice_down(vsi);
6865 if (ret)
6866 return ret;
6867
6868 ret = ice_up(vsi);
6869 if (ret) {
6870 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
6871 return ret;
6872 }
6873
6874 return 0;
6875}
6876
6877/**
6878 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6879 * @vsi: VSI having resources allocated
6880 *
6881 * Return 0 on success, negative on failure
6882 */
6883int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6884{
6885 int i, err = 0;
6886
6887 if (!vsi->num_txq) {
6888 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6889 vsi->vsi_num);
6890 return -EINVAL;
6891 }
6892
6893 ice_for_each_txq(vsi, i) {
6894 struct ice_tx_ring *ring = vsi->tx_rings[i];
6895
6896 if (!ring)
6897 return -EINVAL;
6898
6899 if (vsi->netdev)
6900 ring->netdev = vsi->netdev;
6901 err = ice_setup_tx_ring(ring);
6902 if (err)
6903 break;
6904 }
6905
6906 return err;
6907}
6908
6909/**
6910 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6911 * @vsi: VSI having resources allocated
6912 *
6913 * Return 0 on success, negative on failure
6914 */
6915int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6916{
6917 int i, err = 0;
6918
6919 if (!vsi->num_rxq) {
6920 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6921 vsi->vsi_num);
6922 return -EINVAL;
6923 }
6924
6925 ice_for_each_rxq(vsi, i) {
6926 struct ice_rx_ring *ring = vsi->rx_rings[i];
6927
6928 if (!ring)
6929 return -EINVAL;
6930
6931 if (vsi->netdev)
6932 ring->netdev = vsi->netdev;
6933 err = ice_setup_rx_ring(ring);
6934 if (err)
6935 break;
6936 }
6937
6938 return err;
6939}
6940
6941/**
6942 * ice_vsi_open_ctrl - open control VSI for use
6943 * @vsi: the VSI to open
6944 *
6945 * Initialization of the Control VSI
6946 *
6947 * Returns 0 on success, negative value on error
6948 */
6949int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6950{
6951 char int_name[ICE_INT_NAME_STR_LEN];
6952 struct ice_pf *pf = vsi->back;
6953 struct device *dev;
6954 int err;
6955
6956 dev = ice_pf_to_dev(pf);
6957 /* allocate descriptors */
6958 err = ice_vsi_setup_tx_rings(vsi);
6959 if (err)
6960 goto err_setup_tx;
6961
6962 err = ice_vsi_setup_rx_rings(vsi);
6963 if (err)
6964 goto err_setup_rx;
6965
6966 err = ice_vsi_cfg(vsi);
6967 if (err)
6968 goto err_setup_rx;
6969
6970 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6971 dev_driver_string(dev), dev_name(dev));
6972 err = ice_vsi_req_irq_msix(vsi, int_name);
6973 if (err)
6974 goto err_setup_rx;
6975
6976 ice_vsi_cfg_msix(vsi);
6977
6978 err = ice_vsi_start_all_rx_rings(vsi);
6979 if (err)
6980 goto err_up_complete;
6981
6982 clear_bit(ICE_VSI_DOWN, vsi->state);
6983 ice_vsi_ena_irq(vsi);
6984
6985 return 0;
6986
6987err_up_complete:
6988 ice_down(vsi);
6989err_setup_rx:
6990 ice_vsi_free_rx_rings(vsi);
6991err_setup_tx:
6992 ice_vsi_free_tx_rings(vsi);
6993
6994 return err;
6995}
6996
6997/**
6998 * ice_vsi_open - Called when a network interface is made active
6999 * @vsi: the VSI to open
7000 *
7001 * Initialization of the VSI
7002 *
7003 * Returns 0 on success, negative value on error
7004 */
7005int ice_vsi_open(struct ice_vsi *vsi)
7006{
7007 char int_name[ICE_INT_NAME_STR_LEN];
7008 struct ice_pf *pf = vsi->back;
7009 int err;
7010
7011 /* allocate descriptors */
7012 err = ice_vsi_setup_tx_rings(vsi);
7013 if (err)
7014 goto err_setup_tx;
7015
7016 err = ice_vsi_setup_rx_rings(vsi);
7017 if (err)
7018 goto err_setup_rx;
7019
7020 err = ice_vsi_cfg(vsi);
7021 if (err)
7022 goto err_setup_rx;
7023
7024 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7025 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7026 err = ice_vsi_req_irq_msix(vsi, int_name);
7027 if (err)
7028 goto err_setup_rx;
7029
7030 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7031
7032 if (vsi->type == ICE_VSI_PF) {
7033 /* Notify the stack of the actual queue counts. */
7034 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7035 if (err)
7036 goto err_set_qs;
7037
7038 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7039 if (err)
7040 goto err_set_qs;
7041 }
7042
7043 err = ice_up_complete(vsi);
7044 if (err)
7045 goto err_up_complete;
7046
7047 return 0;
7048
7049err_up_complete:
7050 ice_down(vsi);
7051err_set_qs:
7052 ice_vsi_free_irq(vsi);
7053err_setup_rx:
7054 ice_vsi_free_rx_rings(vsi);
7055err_setup_tx:
7056 ice_vsi_free_tx_rings(vsi);
7057
7058 return err;
7059}
7060
7061/**
7062 * ice_vsi_release_all - Delete all VSIs
7063 * @pf: PF from which all VSIs are being removed
7064 */
7065static void ice_vsi_release_all(struct ice_pf *pf)
7066{
7067 int err, i;
7068
7069 if (!pf->vsi)
7070 return;
7071
7072 ice_for_each_vsi(pf, i) {
7073 if (!pf->vsi[i])
7074 continue;
7075
7076 if (pf->vsi[i]->type == ICE_VSI_CHNL)
7077 continue;
7078
7079 err = ice_vsi_release(pf->vsi[i]);
7080 if (err)
7081 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7082 i, err, pf->vsi[i]->vsi_num);
7083 }
7084}
7085
7086/**
7087 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7088 * @pf: pointer to the PF instance
7089 * @type: VSI type to rebuild
7090 *
7091 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7092 */
7093static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7094{
7095 struct device *dev = ice_pf_to_dev(pf);
7096 int i, err;
7097
7098 ice_for_each_vsi(pf, i) {
7099 struct ice_vsi *vsi = pf->vsi[i];
7100
7101 if (!vsi || vsi->type != type)
7102 continue;
7103
7104 /* rebuild the VSI */
7105 err = ice_vsi_rebuild(vsi, true);
7106 if (err) {
7107 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7108 err, vsi->idx, ice_vsi_type_str(type));
7109 return err;
7110 }
7111
7112 /* replay filters for the VSI */
7113 err = ice_replay_vsi(&pf->hw, vsi->idx);
7114 if (err) {
7115 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7116 err, vsi->idx, ice_vsi_type_str(type));
7117 return err;
7118 }
7119
7120 /* Re-map HW VSI number, using VSI handle that has been
7121 * previously validated in ice_replay_vsi() call above
7122 */
7123 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7124
7125 /* enable the VSI */
7126 err = ice_ena_vsi(vsi, false);
7127 if (err) {
7128 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7129 err, vsi->idx, ice_vsi_type_str(type));
7130 return err;
7131 }
7132
7133 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7134 ice_vsi_type_str(type));
7135 }
7136
7137 return 0;
7138}
7139
7140/**
7141 * ice_update_pf_netdev_link - Update PF netdev link status
7142 * @pf: pointer to the PF instance
7143 */
7144static void ice_update_pf_netdev_link(struct ice_pf *pf)
7145{
7146 bool link_up;
7147 int i;
7148
7149 ice_for_each_vsi(pf, i) {
7150 struct ice_vsi *vsi = pf->vsi[i];
7151
7152 if (!vsi || vsi->type != ICE_VSI_PF)
7153 return;
7154
7155 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7156 if (link_up) {
7157 netif_carrier_on(pf->vsi[i]->netdev);
7158 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7159 } else {
7160 netif_carrier_off(pf->vsi[i]->netdev);
7161 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7162 }
7163 }
7164}
7165
7166/**
7167 * ice_rebuild - rebuild after reset
7168 * @pf: PF to rebuild
7169 * @reset_type: type of reset
7170 *
7171 * Do not rebuild VF VSI in this flow because that is already handled via
7172 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7173 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7174 * to reset/rebuild all the VF VSI twice.
7175 */
7176static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7177{
7178 struct device *dev = ice_pf_to_dev(pf);
7179 struct ice_hw *hw = &pf->hw;
7180 bool dvm;
7181 int err;
7182
7183 if (test_bit(ICE_DOWN, pf->state))
7184 goto clear_recovery;
7185
7186 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7187
7188#define ICE_EMP_RESET_SLEEP_MS 5000
7189 if (reset_type == ICE_RESET_EMPR) {
7190 /* If an EMP reset has occurred, any previously pending flash
7191 * update will have completed. We no longer know whether or
7192 * not the NVM update EMP reset is restricted.
7193 */
7194 pf->fw_emp_reset_disabled = false;
7195
7196 msleep(ICE_EMP_RESET_SLEEP_MS);
7197 }
7198
7199 err = ice_init_all_ctrlq(hw);
7200 if (err) {
7201 dev_err(dev, "control queues init failed %d\n", err);
7202 goto err_init_ctrlq;
7203 }
7204
7205 /* if DDP was previously loaded successfully */
7206 if (!ice_is_safe_mode(pf)) {
7207 /* reload the SW DB of filter tables */
7208 if (reset_type == ICE_RESET_PFR)
7209 ice_fill_blk_tbls(hw);
7210 else
7211 /* Reload DDP Package after CORER/GLOBR reset */
7212 ice_load_pkg(NULL, pf);
7213 }
7214
7215 err = ice_clear_pf_cfg(hw);
7216 if (err) {
7217 dev_err(dev, "clear PF configuration failed %d\n", err);
7218 goto err_init_ctrlq;
7219 }
7220
7221 ice_clear_pxe_mode(hw);
7222
7223 err = ice_init_nvm(hw);
7224 if (err) {
7225 dev_err(dev, "ice_init_nvm failed %d\n", err);
7226 goto err_init_ctrlq;
7227 }
7228
7229 err = ice_get_caps(hw);
7230 if (err) {
7231 dev_err(dev, "ice_get_caps failed %d\n", err);
7232 goto err_init_ctrlq;
7233 }
7234
7235 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7236 if (err) {
7237 dev_err(dev, "set_mac_cfg failed %d\n", err);
7238 goto err_init_ctrlq;
7239 }
7240
7241 dvm = ice_is_dvm_ena(hw);
7242
7243 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7244 if (err)
7245 goto err_init_ctrlq;
7246
7247 err = ice_sched_init_port(hw->port_info);
7248 if (err)
7249 goto err_sched_init_port;
7250
7251 /* start misc vector */
7252 err = ice_req_irq_msix_misc(pf);
7253 if (err) {
7254 dev_err(dev, "misc vector setup failed: %d\n", err);
7255 goto err_sched_init_port;
7256 }
7257
7258 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7259 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7260 if (!rd32(hw, PFQF_FD_SIZE)) {
7261 u16 unused, guar, b_effort;
7262
7263 guar = hw->func_caps.fd_fltr_guar;
7264 b_effort = hw->func_caps.fd_fltr_best_effort;
7265
7266 /* force guaranteed filter pool for PF */
7267 ice_alloc_fd_guar_item(hw, &unused, guar);
7268 /* force shared filter pool for PF */
7269 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7270 }
7271 }
7272
7273 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7274 ice_dcb_rebuild(pf);
7275
7276 /* If the PF previously had enabled PTP, PTP init needs to happen before
7277 * the VSI rebuild. If not, this causes the PTP link status events to
7278 * fail.
7279 */
7280 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7281 ice_ptp_reset(pf);
7282
7283 if (ice_is_feature_supported(pf, ICE_F_GNSS))
7284 ice_gnss_init(pf);
7285
7286 /* rebuild PF VSI */
7287 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7288 if (err) {
7289 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7290 goto err_vsi_rebuild;
7291 }
7292
7293 /* configure PTP timestamping after VSI rebuild */
7294 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7295 ice_ptp_cfg_timestamp(pf, false);
7296
7297 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
7298 if (err) {
7299 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
7300 goto err_vsi_rebuild;
7301 }
7302
7303 if (reset_type == ICE_RESET_PFR) {
7304 err = ice_rebuild_channels(pf);
7305 if (err) {
7306 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7307 err);
7308 goto err_vsi_rebuild;
7309 }
7310 }
7311
7312 /* If Flow Director is active */
7313 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7314 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7315 if (err) {
7316 dev_err(dev, "control VSI rebuild failed: %d\n", err);
7317 goto err_vsi_rebuild;
7318 }
7319
7320 /* replay HW Flow Director recipes */
7321 if (hw->fdir_prof)
7322 ice_fdir_replay_flows(hw);
7323
7324 /* replay Flow Director filters */
7325 ice_fdir_replay_fltrs(pf);
7326
7327 ice_rebuild_arfs(pf);
7328 }
7329
7330 ice_update_pf_netdev_link(pf);
7331
7332 /* tell the firmware we are up */
7333 err = ice_send_version(pf);
7334 if (err) {
7335 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7336 err);
7337 goto err_vsi_rebuild;
7338 }
7339
7340 ice_replay_post(hw);
7341
7342 /* if we get here, reset flow is successful */
7343 clear_bit(ICE_RESET_FAILED, pf->state);
7344
7345 ice_plug_aux_dev(pf);
7346 return;
7347
7348err_vsi_rebuild:
7349err_sched_init_port:
7350 ice_sched_cleanup_all(hw);
7351err_init_ctrlq:
7352 ice_shutdown_all_ctrlq(hw);
7353 set_bit(ICE_RESET_FAILED, pf->state);
7354clear_recovery:
7355 /* set this bit in PF state to control service task scheduling */
7356 set_bit(ICE_NEEDS_RESTART, pf->state);
7357 dev_err(dev, "Rebuild failed, unload and reload driver\n");
7358}
7359
7360/**
7361 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
7362 * @vsi: Pointer to VSI structure
7363 */
7364static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
7365{
7366 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
7367 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
7368 else
7369 return ICE_RXBUF_3072;
7370}
7371
7372/**
7373 * ice_change_mtu - NDO callback to change the MTU
7374 * @netdev: network interface device structure
7375 * @new_mtu: new value for maximum frame size
7376 *
7377 * Returns 0 on success, negative on failure
7378 */
7379static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7380{
7381 struct ice_netdev_priv *np = netdev_priv(netdev);
7382 struct ice_vsi *vsi = np->vsi;
7383 struct ice_pf *pf = vsi->back;
7384 u8 count = 0;
7385 int err = 0;
7386
7387 if (new_mtu == (int)netdev->mtu) {
7388 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7389 return 0;
7390 }
7391
7392 if (ice_is_xdp_ena_vsi(vsi)) {
7393 int frame_size = ice_max_xdp_frame_size(vsi);
7394
7395 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7396 netdev_err(netdev, "max MTU for XDP usage is %d\n",
7397 frame_size - ICE_ETH_PKT_HDR_PAD);
7398 return -EINVAL;
7399 }
7400 }
7401
7402 /* if a reset is in progress, wait for some time for it to complete */
7403 do {
7404 if (ice_is_reset_in_progress(pf->state)) {
7405 count++;
7406 usleep_range(1000, 2000);
7407 } else {
7408 break;
7409 }
7410
7411 } while (count < 100);
7412
7413 if (count == 100) {
7414 netdev_err(netdev, "can't change MTU. Device is busy\n");
7415 return -EBUSY;
7416 }
7417
7418 netdev->mtu = (unsigned int)new_mtu;
7419
7420 /* if VSI is up, bring it down and then back up */
7421 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
7422 err = ice_down(vsi);
7423 if (err) {
7424 netdev_err(netdev, "change MTU if_down err %d\n", err);
7425 return err;
7426 }
7427
7428 err = ice_up(vsi);
7429 if (err) {
7430 netdev_err(netdev, "change MTU if_up err %d\n", err);
7431 return err;
7432 }
7433 }
7434
7435 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7436 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7437
7438 return err;
7439}
7440
7441/**
7442 * ice_eth_ioctl - Access the hwtstamp interface
7443 * @netdev: network interface device structure
7444 * @ifr: interface request data
7445 * @cmd: ioctl command
7446 */
7447static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7448{
7449 struct ice_netdev_priv *np = netdev_priv(netdev);
7450 struct ice_pf *pf = np->vsi->back;
7451
7452 switch (cmd) {
7453 case SIOCGHWTSTAMP:
7454 return ice_ptp_get_ts_config(pf, ifr);
7455 case SIOCSHWTSTAMP:
7456 return ice_ptp_set_ts_config(pf, ifr);
7457 default:
7458 return -EOPNOTSUPP;
7459 }
7460}
7461
7462/**
7463 * ice_aq_str - convert AQ err code to a string
7464 * @aq_err: the AQ error code to convert
7465 */
7466const char *ice_aq_str(enum ice_aq_err aq_err)
7467{
7468 switch (aq_err) {
7469 case ICE_AQ_RC_OK:
7470 return "OK";
7471 case ICE_AQ_RC_EPERM:
7472 return "ICE_AQ_RC_EPERM";
7473 case ICE_AQ_RC_ENOENT:
7474 return "ICE_AQ_RC_ENOENT";
7475 case ICE_AQ_RC_ENOMEM:
7476 return "ICE_AQ_RC_ENOMEM";
7477 case ICE_AQ_RC_EBUSY:
7478 return "ICE_AQ_RC_EBUSY";
7479 case ICE_AQ_RC_EEXIST:
7480 return "ICE_AQ_RC_EEXIST";
7481 case ICE_AQ_RC_EINVAL:
7482 return "ICE_AQ_RC_EINVAL";
7483 case ICE_AQ_RC_ENOSPC:
7484 return "ICE_AQ_RC_ENOSPC";
7485 case ICE_AQ_RC_ENOSYS:
7486 return "ICE_AQ_RC_ENOSYS";
7487 case ICE_AQ_RC_EMODE:
7488 return "ICE_AQ_RC_EMODE";
7489 case ICE_AQ_RC_ENOSEC:
7490 return "ICE_AQ_RC_ENOSEC";
7491 case ICE_AQ_RC_EBADSIG:
7492 return "ICE_AQ_RC_EBADSIG";
7493 case ICE_AQ_RC_ESVN:
7494 return "ICE_AQ_RC_ESVN";
7495 case ICE_AQ_RC_EBADMAN:
7496 return "ICE_AQ_RC_EBADMAN";
7497 case ICE_AQ_RC_EBADBUF:
7498 return "ICE_AQ_RC_EBADBUF";
7499 }
7500
7501 return "ICE_AQ_RC_UNKNOWN";
7502}
7503
7504/**
7505 * ice_set_rss_lut - Set RSS LUT
7506 * @vsi: Pointer to VSI structure
7507 * @lut: Lookup table
7508 * @lut_size: Lookup table size
7509 *
7510 * Returns 0 on success, negative on failure
7511 */
7512int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7513{
7514 struct ice_aq_get_set_rss_lut_params params = {};
7515 struct ice_hw *hw = &vsi->back->hw;
7516 int status;
7517
7518 if (!lut)
7519 return -EINVAL;
7520
7521 params.vsi_handle = vsi->idx;
7522 params.lut_size = lut_size;
7523 params.lut_type = vsi->rss_lut_type;
7524 params.lut = lut;
7525
7526 status = ice_aq_set_rss_lut(hw, ¶ms);
7527 if (status)
7528 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7529 status, ice_aq_str(hw->adminq.sq_last_status));
7530
7531 return status;
7532}
7533
7534/**
7535 * ice_set_rss_key - Set RSS key
7536 * @vsi: Pointer to the VSI structure
7537 * @seed: RSS hash seed
7538 *
7539 * Returns 0 on success, negative on failure
7540 */
7541int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7542{
7543 struct ice_hw *hw = &vsi->back->hw;
7544 int status;
7545
7546 if (!seed)
7547 return -EINVAL;
7548
7549 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7550 if (status)
7551 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7552 status, ice_aq_str(hw->adminq.sq_last_status));
7553
7554 return status;
7555}
7556
7557/**
7558 * ice_get_rss_lut - Get RSS LUT
7559 * @vsi: Pointer to VSI structure
7560 * @lut: Buffer to store the lookup table entries
7561 * @lut_size: Size of buffer to store the lookup table entries
7562 *
7563 * Returns 0 on success, negative on failure
7564 */
7565int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7566{
7567 struct ice_aq_get_set_rss_lut_params params = {};
7568 struct ice_hw *hw = &vsi->back->hw;
7569 int status;
7570
7571 if (!lut)
7572 return -EINVAL;
7573
7574 params.vsi_handle = vsi->idx;
7575 params.lut_size = lut_size;
7576 params.lut_type = vsi->rss_lut_type;
7577 params.lut = lut;
7578
7579 status = ice_aq_get_rss_lut(hw, ¶ms);
7580 if (status)
7581 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7582 status, ice_aq_str(hw->adminq.sq_last_status));
7583
7584 return status;
7585}
7586
7587/**
7588 * ice_get_rss_key - Get RSS key
7589 * @vsi: Pointer to VSI structure
7590 * @seed: Buffer to store the key in
7591 *
7592 * Returns 0 on success, negative on failure
7593 */
7594int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7595{
7596 struct ice_hw *hw = &vsi->back->hw;
7597 int status;
7598
7599 if (!seed)
7600 return -EINVAL;
7601
7602 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7603 if (status)
7604 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7605 status, ice_aq_str(hw->adminq.sq_last_status));
7606
7607 return status;
7608}
7609
7610/**
7611 * ice_bridge_getlink - Get the hardware bridge mode
7612 * @skb: skb buff
7613 * @pid: process ID
7614 * @seq: RTNL message seq
7615 * @dev: the netdev being configured
7616 * @filter_mask: filter mask passed in
7617 * @nlflags: netlink flags passed in
7618 *
7619 * Return the bridge mode (VEB/VEPA)
7620 */
7621static int
7622ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7623 struct net_device *dev, u32 filter_mask, int nlflags)
7624{
7625 struct ice_netdev_priv *np = netdev_priv(dev);
7626 struct ice_vsi *vsi = np->vsi;
7627 struct ice_pf *pf = vsi->back;
7628 u16 bmode;
7629
7630 bmode = pf->first_sw->bridge_mode;
7631
7632 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7633 filter_mask, NULL);
7634}
7635
7636/**
7637 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7638 * @vsi: Pointer to VSI structure
7639 * @bmode: Hardware bridge mode (VEB/VEPA)
7640 *
7641 * Returns 0 on success, negative on failure
7642 */
7643static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7644{
7645 struct ice_aqc_vsi_props *vsi_props;
7646 struct ice_hw *hw = &vsi->back->hw;
7647 struct ice_vsi_ctx *ctxt;
7648 int ret;
7649
7650 vsi_props = &vsi->info;
7651
7652 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7653 if (!ctxt)
7654 return -ENOMEM;
7655
7656 ctxt->info = vsi->info;
7657
7658 if (bmode == BRIDGE_MODE_VEB)
7659 /* change from VEPA to VEB mode */
7660 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7661 else
7662 /* change from VEB to VEPA mode */
7663 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7664 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7665
7666 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7667 if (ret) {
7668 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7669 bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7670 goto out;
7671 }
7672 /* Update sw flags for book keeping */
7673 vsi_props->sw_flags = ctxt->info.sw_flags;
7674
7675out:
7676 kfree(ctxt);
7677 return ret;
7678}
7679
7680/**
7681 * ice_bridge_setlink - Set the hardware bridge mode
7682 * @dev: the netdev being configured
7683 * @nlh: RTNL message
7684 * @flags: bridge setlink flags
7685 * @extack: netlink extended ack
7686 *
7687 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7688 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7689 * not already set for all VSIs connected to this switch. And also update the
7690 * unicast switch filter rules for the corresponding switch of the netdev.
7691 */
7692static int
7693ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7694 u16 __always_unused flags,
7695 struct netlink_ext_ack __always_unused *extack)
7696{
7697 struct ice_netdev_priv *np = netdev_priv(dev);
7698 struct ice_pf *pf = np->vsi->back;
7699 struct nlattr *attr, *br_spec;
7700 struct ice_hw *hw = &pf->hw;
7701 struct ice_sw *pf_sw;
7702 int rem, v, err = 0;
7703
7704 pf_sw = pf->first_sw;
7705 /* find the attribute in the netlink message */
7706 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7707
7708 nla_for_each_nested(attr, br_spec, rem) {
7709 __u16 mode;
7710
7711 if (nla_type(attr) != IFLA_BRIDGE_MODE)
7712 continue;
7713 mode = nla_get_u16(attr);
7714 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7715 return -EINVAL;
7716 /* Continue if bridge mode is not being flipped */
7717 if (mode == pf_sw->bridge_mode)
7718 continue;
7719 /* Iterates through the PF VSI list and update the loopback
7720 * mode of the VSI
7721 */
7722 ice_for_each_vsi(pf, v) {
7723 if (!pf->vsi[v])
7724 continue;
7725 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7726 if (err)
7727 return err;
7728 }
7729
7730 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7731 /* Update the unicast switch filter rules for the corresponding
7732 * switch of the netdev
7733 */
7734 err = ice_update_sw_rule_bridge_mode(hw);
7735 if (err) {
7736 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7737 mode, err,
7738 ice_aq_str(hw->adminq.sq_last_status));
7739 /* revert hw->evb_veb */
7740 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7741 return err;
7742 }
7743
7744 pf_sw->bridge_mode = mode;
7745 }
7746
7747 return 0;
7748}
7749
7750/**
7751 * ice_tx_timeout - Respond to a Tx Hang
7752 * @netdev: network interface device structure
7753 * @txqueue: Tx queue
7754 */
7755static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7756{
7757 struct ice_netdev_priv *np = netdev_priv(netdev);
7758 struct ice_tx_ring *tx_ring = NULL;
7759 struct ice_vsi *vsi = np->vsi;
7760 struct ice_pf *pf = vsi->back;
7761 u32 i;
7762
7763 pf->tx_timeout_count++;
7764
7765 /* Check if PFC is enabled for the TC to which the queue belongs
7766 * to. If yes then Tx timeout is not caused by a hung queue, no
7767 * need to reset and rebuild
7768 */
7769 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7770 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7771 txqueue);
7772 return;
7773 }
7774
7775 /* now that we have an index, find the tx_ring struct */
7776 ice_for_each_txq(vsi, i)
7777 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7778 if (txqueue == vsi->tx_rings[i]->q_index) {
7779 tx_ring = vsi->tx_rings[i];
7780 break;
7781 }
7782
7783 /* Reset recovery level if enough time has elapsed after last timeout.
7784 * Also ensure no new reset action happens before next timeout period.
7785 */
7786 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7787 pf->tx_timeout_recovery_level = 1;
7788 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7789 netdev->watchdog_timeo)))
7790 return;
7791
7792 if (tx_ring) {
7793 struct ice_hw *hw = &pf->hw;
7794 u32 head, val = 0;
7795
7796 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7797 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7798 /* Read interrupt register */
7799 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7800
7801 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7802 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7803 head, tx_ring->next_to_use, val);
7804 }
7805
7806 pf->tx_timeout_last_recovery = jiffies;
7807 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7808 pf->tx_timeout_recovery_level, txqueue);
7809
7810 switch (pf->tx_timeout_recovery_level) {
7811 case 1:
7812 set_bit(ICE_PFR_REQ, pf->state);
7813 break;
7814 case 2:
7815 set_bit(ICE_CORER_REQ, pf->state);
7816 break;
7817 case 3:
7818 set_bit(ICE_GLOBR_REQ, pf->state);
7819 break;
7820 default:
7821 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7822 set_bit(ICE_DOWN, pf->state);
7823 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7824 set_bit(ICE_SERVICE_DIS, pf->state);
7825 break;
7826 }
7827
7828 ice_service_task_schedule(pf);
7829 pf->tx_timeout_recovery_level++;
7830}
7831
7832/**
7833 * ice_setup_tc_cls_flower - flower classifier offloads
7834 * @np: net device to configure
7835 * @filter_dev: device on which filter is added
7836 * @cls_flower: offload data
7837 */
7838static int
7839ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7840 struct net_device *filter_dev,
7841 struct flow_cls_offload *cls_flower)
7842{
7843 struct ice_vsi *vsi = np->vsi;
7844
7845 if (cls_flower->common.chain_index)
7846 return -EOPNOTSUPP;
7847
7848 switch (cls_flower->command) {
7849 case FLOW_CLS_REPLACE:
7850 return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7851 case FLOW_CLS_DESTROY:
7852 return ice_del_cls_flower(vsi, cls_flower);
7853 default:
7854 return -EINVAL;
7855 }
7856}
7857
7858/**
7859 * ice_setup_tc_block_cb - callback handler registered for TC block
7860 * @type: TC SETUP type
7861 * @type_data: TC flower offload data that contains user input
7862 * @cb_priv: netdev private data
7863 */
7864static int
7865ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7866{
7867 struct ice_netdev_priv *np = cb_priv;
7868
7869 switch (type) {
7870 case TC_SETUP_CLSFLOWER:
7871 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7872 type_data);
7873 default:
7874 return -EOPNOTSUPP;
7875 }
7876}
7877
7878/**
7879 * ice_validate_mqprio_qopt - Validate TCF input parameters
7880 * @vsi: Pointer to VSI
7881 * @mqprio_qopt: input parameters for mqprio queue configuration
7882 *
7883 * This function validates MQPRIO params, such as qcount (power of 2 wherever
7884 * needed), and make sure user doesn't specify qcount and BW rate limit
7885 * for TCs, which are more than "num_tc"
7886 */
7887static int
7888ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7889 struct tc_mqprio_qopt_offload *mqprio_qopt)
7890{
7891 u64 sum_max_rate = 0, sum_min_rate = 0;
7892 int non_power_of_2_qcount = 0;
7893 struct ice_pf *pf = vsi->back;
7894 int max_rss_q_cnt = 0;
7895 struct device *dev;
7896 int i, speed;
7897 u8 num_tc;
7898
7899 if (vsi->type != ICE_VSI_PF)
7900 return -EINVAL;
7901
7902 if (mqprio_qopt->qopt.offset[0] != 0 ||
7903 mqprio_qopt->qopt.num_tc < 1 ||
7904 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
7905 return -EINVAL;
7906
7907 dev = ice_pf_to_dev(pf);
7908 vsi->ch_rss_size = 0;
7909 num_tc = mqprio_qopt->qopt.num_tc;
7910
7911 for (i = 0; num_tc; i++) {
7912 int qcount = mqprio_qopt->qopt.count[i];
7913 u64 max_rate, min_rate, rem;
7914
7915 if (!qcount)
7916 return -EINVAL;
7917
7918 if (is_power_of_2(qcount)) {
7919 if (non_power_of_2_qcount &&
7920 qcount > non_power_of_2_qcount) {
7921 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
7922 qcount, non_power_of_2_qcount);
7923 return -EINVAL;
7924 }
7925 if (qcount > max_rss_q_cnt)
7926 max_rss_q_cnt = qcount;
7927 } else {
7928 if (non_power_of_2_qcount &&
7929 qcount != non_power_of_2_qcount) {
7930 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
7931 qcount, non_power_of_2_qcount);
7932 return -EINVAL;
7933 }
7934 if (qcount < max_rss_q_cnt) {
7935 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
7936 qcount, max_rss_q_cnt);
7937 return -EINVAL;
7938 }
7939 max_rss_q_cnt = qcount;
7940 non_power_of_2_qcount = qcount;
7941 }
7942
7943 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but
7944 * converts the bandwidth rate limit into Bytes/s when
7945 * passing it down to the driver. So convert input bandwidth
7946 * from Bytes/s to Kbps
7947 */
7948 max_rate = mqprio_qopt->max_rate[i];
7949 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
7950 sum_max_rate += max_rate;
7951
7952 /* min_rate is minimum guaranteed rate and it can't be zero */
7953 min_rate = mqprio_qopt->min_rate[i];
7954 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
7955 sum_min_rate += min_rate;
7956
7957 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
7958 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
7959 min_rate, ICE_MIN_BW_LIMIT);
7960 return -EINVAL;
7961 }
7962
7963 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
7964 if (rem) {
7965 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
7966 i, ICE_MIN_BW_LIMIT);
7967 return -EINVAL;
7968 }
7969
7970 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
7971 if (rem) {
7972 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
7973 i, ICE_MIN_BW_LIMIT);
7974 return -EINVAL;
7975 }
7976
7977 /* min_rate can't be more than max_rate, except when max_rate
7978 * is zero (implies max_rate sought is max line rate). In such
7979 * a case min_rate can be more than max.
7980 */
7981 if (max_rate && min_rate > max_rate) {
7982 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
7983 min_rate, max_rate);
7984 return -EINVAL;
7985 }
7986
7987 if (i >= mqprio_qopt->qopt.num_tc - 1)
7988 break;
7989 if (mqprio_qopt->qopt.offset[i + 1] !=
7990 (mqprio_qopt->qopt.offset[i] + qcount))
7991 return -EINVAL;
7992 }
7993 if (vsi->num_rxq <
7994 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7995 return -EINVAL;
7996 if (vsi->num_txq <
7997 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7998 return -EINVAL;
7999
8000 speed = ice_get_link_speed_kbps(vsi);
8001 if (sum_max_rate && sum_max_rate > (u64)speed) {
8002 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n",
8003 sum_max_rate, speed);
8004 return -EINVAL;
8005 }
8006 if (sum_min_rate && sum_min_rate > (u64)speed) {
8007 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8008 sum_min_rate, speed);
8009 return -EINVAL;
8010 }
8011
8012 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8013 vsi->ch_rss_size = max_rss_q_cnt;
8014
8015 return 0;
8016}
8017
8018/**
8019 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8020 * @pf: ptr to PF device
8021 * @vsi: ptr to VSI
8022 */
8023static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8024{
8025 struct device *dev = ice_pf_to_dev(pf);
8026 bool added = false;
8027 struct ice_hw *hw;
8028 int flow;
8029
8030 if (!(vsi->num_gfltr || vsi->num_bfltr))
8031 return -EINVAL;
8032
8033 hw = &pf->hw;
8034 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8035 struct ice_fd_hw_prof *prof;
8036 int tun, status;
8037 u64 entry_h;
8038
8039 if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8040 hw->fdir_prof[flow]->cnt))
8041 continue;
8042
8043 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8044 enum ice_flow_priority prio;
8045 u64 prof_id;
8046
8047 /* add this VSI to FDir profile for this flow */
8048 prio = ICE_FLOW_PRIO_NORMAL;
8049 prof = hw->fdir_prof[flow];
8050 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
8051 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
8052 prof->vsi_h[0], vsi->idx,
8053 prio, prof->fdir_seg[tun],
8054 &entry_h);
8055 if (status) {
8056 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8057 vsi->idx, flow);
8058 continue;
8059 }
8060
8061 prof->entry_h[prof->cnt][tun] = entry_h;
8062 }
8063
8064 /* store VSI for filter replay and delete */
8065 prof->vsi_h[prof->cnt] = vsi->idx;
8066 prof->cnt++;
8067
8068 added = true;
8069 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8070 flow);
8071 }
8072
8073 if (!added)
8074 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8075
8076 return 0;
8077}
8078
8079/**
8080 * ice_add_channel - add a channel by adding VSI
8081 * @pf: ptr to PF device
8082 * @sw_id: underlying HW switching element ID
8083 * @ch: ptr to channel structure
8084 *
8085 * Add a channel (VSI) using add_vsi and queue_map
8086 */
8087static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8088{
8089 struct device *dev = ice_pf_to_dev(pf);
8090 struct ice_vsi *vsi;
8091
8092 if (ch->type != ICE_VSI_CHNL) {
8093 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8094 return -EINVAL;
8095 }
8096
8097 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8098 if (!vsi || vsi->type != ICE_VSI_CHNL) {
8099 dev_err(dev, "create chnl VSI failure\n");
8100 return -EINVAL;
8101 }
8102
8103 ice_add_vsi_to_fdir(pf, vsi);
8104
8105 ch->sw_id = sw_id;
8106 ch->vsi_num = vsi->vsi_num;
8107 ch->info.mapping_flags = vsi->info.mapping_flags;
8108 ch->ch_vsi = vsi;
8109 /* set the back pointer of channel for newly created VSI */
8110 vsi->ch = ch;
8111
8112 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8113 sizeof(vsi->info.q_mapping));
8114 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8115 sizeof(vsi->info.tc_mapping));
8116
8117 return 0;
8118}
8119
8120/**
8121 * ice_chnl_cfg_res
8122 * @vsi: the VSI being setup
8123 * @ch: ptr to channel structure
8124 *
8125 * Configure channel specific resources such as rings, vector.
8126 */
8127static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8128{
8129 int i;
8130
8131 for (i = 0; i < ch->num_txq; i++) {
8132 struct ice_q_vector *tx_q_vector, *rx_q_vector;
8133 struct ice_ring_container *rc;
8134 struct ice_tx_ring *tx_ring;
8135 struct ice_rx_ring *rx_ring;
8136
8137 tx_ring = vsi->tx_rings[ch->base_q + i];
8138 rx_ring = vsi->rx_rings[ch->base_q + i];
8139 if (!tx_ring || !rx_ring)
8140 continue;
8141
8142 /* setup ring being channel enabled */
8143 tx_ring->ch = ch;
8144 rx_ring->ch = ch;
8145
8146 /* following code block sets up vector specific attributes */
8147 tx_q_vector = tx_ring->q_vector;
8148 rx_q_vector = rx_ring->q_vector;
8149 if (!tx_q_vector && !rx_q_vector)
8150 continue;
8151
8152 if (tx_q_vector) {
8153 tx_q_vector->ch = ch;
8154 /* setup Tx and Rx ITR setting if DIM is off */
8155 rc = &tx_q_vector->tx;
8156 if (!ITR_IS_DYNAMIC(rc))
8157 ice_write_itr(rc, rc->itr_setting);
8158 }
8159 if (rx_q_vector) {
8160 rx_q_vector->ch = ch;
8161 /* setup Tx and Rx ITR setting if DIM is off */
8162 rc = &rx_q_vector->rx;
8163 if (!ITR_IS_DYNAMIC(rc))
8164 ice_write_itr(rc, rc->itr_setting);
8165 }
8166 }
8167
8168 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8169 * GLINT_ITR register would have written to perform in-context
8170 * update, hence perform flush
8171 */
8172 if (ch->num_txq || ch->num_rxq)
8173 ice_flush(&vsi->back->hw);
8174}
8175
8176/**
8177 * ice_cfg_chnl_all_res - configure channel resources
8178 * @vsi: pte to main_vsi
8179 * @ch: ptr to channel structure
8180 *
8181 * This function configures channel specific resources such as flow-director
8182 * counter index, and other resources such as queues, vectors, ITR settings
8183 */
8184static void
8185ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8186{
8187 /* configure channel (aka ADQ) resources such as queues, vectors,
8188 * ITR settings for channel specific vectors and anything else
8189 */
8190 ice_chnl_cfg_res(vsi, ch);
8191}
8192
8193/**
8194 * ice_setup_hw_channel - setup new channel
8195 * @pf: ptr to PF device
8196 * @vsi: the VSI being setup
8197 * @ch: ptr to channel structure
8198 * @sw_id: underlying HW switching element ID
8199 * @type: type of channel to be created (VMDq2/VF)
8200 *
8201 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8202 * and configures Tx rings accordingly
8203 */
8204static int
8205ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8206 struct ice_channel *ch, u16 sw_id, u8 type)
8207{
8208 struct device *dev = ice_pf_to_dev(pf);
8209 int ret;
8210
8211 ch->base_q = vsi->next_base_q;
8212 ch->type = type;
8213
8214 ret = ice_add_channel(pf, sw_id, ch);
8215 if (ret) {
8216 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8217 return ret;
8218 }
8219
8220 /* configure/setup ADQ specific resources */
8221 ice_cfg_chnl_all_res(vsi, ch);
8222
8223 /* make sure to update the next_base_q so that subsequent channel's
8224 * (aka ADQ) VSI queue map is correct
8225 */
8226 vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8227 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8228 ch->num_rxq);
8229
8230 return 0;
8231}
8232
8233/**
8234 * ice_setup_channel - setup new channel using uplink element
8235 * @pf: ptr to PF device
8236 * @vsi: the VSI being setup
8237 * @ch: ptr to channel structure
8238 *
8239 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8240 * and uplink switching element
8241 */
8242static bool
8243ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8244 struct ice_channel *ch)
8245{
8246 struct device *dev = ice_pf_to_dev(pf);
8247 u16 sw_id;
8248 int ret;
8249
8250 if (vsi->type != ICE_VSI_PF) {
8251 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8252 return false;
8253 }
8254
8255 sw_id = pf->first_sw->sw_id;
8256
8257 /* create channel (VSI) */
8258 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8259 if (ret) {
8260 dev_err(dev, "failed to setup hw_channel\n");
8261 return false;
8262 }
8263 dev_dbg(dev, "successfully created channel()\n");
8264
8265 return ch->ch_vsi ? true : false;
8266}
8267
8268/**
8269 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8270 * @vsi: VSI to be configured
8271 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8272 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8273 */
8274static int
8275ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8276{
8277 int err;
8278
8279 err = ice_set_min_bw_limit(vsi, min_tx_rate);
8280 if (err)
8281 return err;
8282
8283 return ice_set_max_bw_limit(vsi, max_tx_rate);
8284}
8285
8286/**
8287 * ice_create_q_channel - function to create channel
8288 * @vsi: VSI to be configured
8289 * @ch: ptr to channel (it contains channel specific params)
8290 *
8291 * This function creates channel (VSI) using num_queues specified by user,
8292 * reconfigs RSS if needed.
8293 */
8294static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8295{
8296 struct ice_pf *pf = vsi->back;
8297 struct device *dev;
8298
8299 if (!ch)
8300 return -EINVAL;
8301
8302 dev = ice_pf_to_dev(pf);
8303 if (!ch->num_txq || !ch->num_rxq) {
8304 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8305 return -EINVAL;
8306 }
8307
8308 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8309 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8310 vsi->cnt_q_avail, ch->num_txq);
8311 return -EINVAL;
8312 }
8313
8314 if (!ice_setup_channel(pf, vsi, ch)) {
8315 dev_info(dev, "Failed to setup channel\n");
8316 return -EINVAL;
8317 }
8318 /* configure BW rate limit */
8319 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8320 int ret;
8321
8322 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8323 ch->min_tx_rate);
8324 if (ret)
8325 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8326 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8327 else
8328 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8329 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8330 }
8331
8332 vsi->cnt_q_avail -= ch->num_txq;
8333
8334 return 0;
8335}
8336
8337/**
8338 * ice_rem_all_chnl_fltrs - removes all channel filters
8339 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8340 *
8341 * Remove all advanced switch filters only if they are channel specific
8342 * tc-flower based filter
8343 */
8344static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8345{
8346 struct ice_tc_flower_fltr *fltr;
8347 struct hlist_node *node;
8348
8349 /* to remove all channel filters, iterate an ordered list of filters */
8350 hlist_for_each_entry_safe(fltr, node,
8351 &pf->tc_flower_fltr_list,
8352 tc_flower_node) {
8353 struct ice_rule_query_data rule;
8354 int status;
8355
8356 /* for now process only channel specific filters */
8357 if (!ice_is_chnl_fltr(fltr))
8358 continue;
8359
8360 rule.rid = fltr->rid;
8361 rule.rule_id = fltr->rule_id;
8362 rule.vsi_handle = fltr->dest_vsi_handle;
8363 status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8364 if (status) {
8365 if (status == -ENOENT)
8366 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8367 rule.rule_id);
8368 else
8369 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8370 status);
8371 } else if (fltr->dest_vsi) {
8372 /* update advanced switch filter count */
8373 if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8374 u32 flags = fltr->flags;
8375
8376 fltr->dest_vsi->num_chnl_fltr--;
8377 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8378 ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8379 pf->num_dmac_chnl_fltrs--;
8380 }
8381 }
8382
8383 hlist_del(&fltr->tc_flower_node);
8384 kfree(fltr);
8385 }
8386}
8387
8388/**
8389 * ice_remove_q_channels - Remove queue channels for the TCs
8390 * @vsi: VSI to be configured
8391 * @rem_fltr: delete advanced switch filter or not
8392 *
8393 * Remove queue channels for the TCs
8394 */
8395static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8396{
8397 struct ice_channel *ch, *ch_tmp;
8398 struct ice_pf *pf = vsi->back;
8399 int i;
8400
8401 /* remove all tc-flower based filter if they are channel filters only */
8402 if (rem_fltr)
8403 ice_rem_all_chnl_fltrs(pf);
8404
8405 /* remove ntuple filters since queue configuration is being changed */
8406 if (vsi->netdev->features & NETIF_F_NTUPLE) {
8407 struct ice_hw *hw = &pf->hw;
8408
8409 mutex_lock(&hw->fdir_fltr_lock);
8410 ice_fdir_del_all_fltrs(vsi);
8411 mutex_unlock(&hw->fdir_fltr_lock);
8412 }
8413
8414 /* perform cleanup for channels if they exist */
8415 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8416 struct ice_vsi *ch_vsi;
8417
8418 list_del(&ch->list);
8419 ch_vsi = ch->ch_vsi;
8420 if (!ch_vsi) {
8421 kfree(ch);
8422 continue;
8423 }
8424
8425 /* Reset queue contexts */
8426 for (i = 0; i < ch->num_rxq; i++) {
8427 struct ice_tx_ring *tx_ring;
8428 struct ice_rx_ring *rx_ring;
8429
8430 tx_ring = vsi->tx_rings[ch->base_q + i];
8431 rx_ring = vsi->rx_rings[ch->base_q + i];
8432 if (tx_ring) {
8433 tx_ring->ch = NULL;
8434 if (tx_ring->q_vector)
8435 tx_ring->q_vector->ch = NULL;
8436 }
8437 if (rx_ring) {
8438 rx_ring->ch = NULL;
8439 if (rx_ring->q_vector)
8440 rx_ring->q_vector->ch = NULL;
8441 }
8442 }
8443
8444 /* Release FD resources for the channel VSI */
8445 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8446
8447 /* clear the VSI from scheduler tree */
8448 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8449
8450 /* Delete VSI from FW */
8451 ice_vsi_delete(ch->ch_vsi);
8452
8453 /* Delete VSI from PF and HW VSI arrays */
8454 ice_vsi_clear(ch->ch_vsi);
8455
8456 /* free the channel */
8457 kfree(ch);
8458 }
8459
8460 /* clear the channel VSI map which is stored in main VSI */
8461 ice_for_each_chnl_tc(i)
8462 vsi->tc_map_vsi[i] = NULL;
8463
8464 /* reset main VSI's all TC information */
8465 vsi->all_enatc = 0;
8466 vsi->all_numtc = 0;
8467}
8468
8469/**
8470 * ice_rebuild_channels - rebuild channel
8471 * @pf: ptr to PF
8472 *
8473 * Recreate channel VSIs and replay filters
8474 */
8475static int ice_rebuild_channels(struct ice_pf *pf)
8476{
8477 struct device *dev = ice_pf_to_dev(pf);
8478 struct ice_vsi *main_vsi;
8479 bool rem_adv_fltr = true;
8480 struct ice_channel *ch;
8481 struct ice_vsi *vsi;
8482 int tc_idx = 1;
8483 int i, err;
8484
8485 main_vsi = ice_get_main_vsi(pf);
8486 if (!main_vsi)
8487 return 0;
8488
8489 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8490 main_vsi->old_numtc == 1)
8491 return 0; /* nothing to be done */
8492
8493 /* reconfigure main VSI based on old value of TC and cached values
8494 * for MQPRIO opts
8495 */
8496 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8497 if (err) {
8498 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8499 main_vsi->old_ena_tc, main_vsi->vsi_num);
8500 return err;
8501 }
8502
8503 /* rebuild ADQ VSIs */
8504 ice_for_each_vsi(pf, i) {
8505 enum ice_vsi_type type;
8506
8507 vsi = pf->vsi[i];
8508 if (!vsi || vsi->type != ICE_VSI_CHNL)
8509 continue;
8510
8511 type = vsi->type;
8512
8513 /* rebuild ADQ VSI */
8514 err = ice_vsi_rebuild(vsi, true);
8515 if (err) {
8516 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8517 ice_vsi_type_str(type), vsi->idx, err);
8518 goto cleanup;
8519 }
8520
8521 /* Re-map HW VSI number, using VSI handle that has been
8522 * previously validated in ice_replay_vsi() call above
8523 */
8524 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8525
8526 /* replay filters for the VSI */
8527 err = ice_replay_vsi(&pf->hw, vsi->idx);
8528 if (err) {
8529 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8530 ice_vsi_type_str(type), err, vsi->idx);
8531 rem_adv_fltr = false;
8532 goto cleanup;
8533 }
8534 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8535 ice_vsi_type_str(type), vsi->idx);
8536
8537 /* store ADQ VSI at correct TC index in main VSI's
8538 * map of TC to VSI
8539 */
8540 main_vsi->tc_map_vsi[tc_idx++] = vsi;
8541 }
8542
8543 /* ADQ VSI(s) has been rebuilt successfully, so setup
8544 * channel for main VSI's Tx and Rx rings
8545 */
8546 list_for_each_entry(ch, &main_vsi->ch_list, list) {
8547 struct ice_vsi *ch_vsi;
8548
8549 ch_vsi = ch->ch_vsi;
8550 if (!ch_vsi)
8551 continue;
8552
8553 /* reconfig channel resources */
8554 ice_cfg_chnl_all_res(main_vsi, ch);
8555
8556 /* replay BW rate limit if it is non-zero */
8557 if (!ch->max_tx_rate && !ch->min_tx_rate)
8558 continue;
8559
8560 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8561 ch->min_tx_rate);
8562 if (err)
8563 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8564 err, ch->max_tx_rate, ch->min_tx_rate,
8565 ch_vsi->vsi_num);
8566 else
8567 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8568 ch->max_tx_rate, ch->min_tx_rate,
8569 ch_vsi->vsi_num);
8570 }
8571
8572 /* reconfig RSS for main VSI */
8573 if (main_vsi->ch_rss_size)
8574 ice_vsi_cfg_rss_lut_key(main_vsi);
8575
8576 return 0;
8577
8578cleanup:
8579 ice_remove_q_channels(main_vsi, rem_adv_fltr);
8580 return err;
8581}
8582
8583/**
8584 * ice_create_q_channels - Add queue channel for the given TCs
8585 * @vsi: VSI to be configured
8586 *
8587 * Configures queue channel mapping to the given TCs
8588 */
8589static int ice_create_q_channels(struct ice_vsi *vsi)
8590{
8591 struct ice_pf *pf = vsi->back;
8592 struct ice_channel *ch;
8593 int ret = 0, i;
8594
8595 ice_for_each_chnl_tc(i) {
8596 if (!(vsi->all_enatc & BIT(i)))
8597 continue;
8598
8599 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8600 if (!ch) {
8601 ret = -ENOMEM;
8602 goto err_free;
8603 }
8604 INIT_LIST_HEAD(&ch->list);
8605 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8606 ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8607 ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8608 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8609 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8610
8611 /* convert to Kbits/s */
8612 if (ch->max_tx_rate)
8613 ch->max_tx_rate = div_u64(ch->max_tx_rate,
8614 ICE_BW_KBPS_DIVISOR);
8615 if (ch->min_tx_rate)
8616 ch->min_tx_rate = div_u64(ch->min_tx_rate,
8617 ICE_BW_KBPS_DIVISOR);
8618
8619 ret = ice_create_q_channel(vsi, ch);
8620 if (ret) {
8621 dev_err(ice_pf_to_dev(pf),
8622 "failed creating channel TC:%d\n", i);
8623 kfree(ch);
8624 goto err_free;
8625 }
8626 list_add_tail(&ch->list, &vsi->ch_list);
8627 vsi->tc_map_vsi[i] = ch->ch_vsi;
8628 dev_dbg(ice_pf_to_dev(pf),
8629 "successfully created channel: VSI %pK\n", ch->ch_vsi);
8630 }
8631 return 0;
8632
8633err_free:
8634 ice_remove_q_channels(vsi, false);
8635
8636 return ret;
8637}
8638
8639/**
8640 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8641 * @netdev: net device to configure
8642 * @type_data: TC offload data
8643 */
8644static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8645{
8646 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8647 struct ice_netdev_priv *np = netdev_priv(netdev);
8648 struct ice_vsi *vsi = np->vsi;
8649 struct ice_pf *pf = vsi->back;
8650 u16 mode, ena_tc_qdisc = 0;
8651 int cur_txq, cur_rxq;
8652 u8 hw = 0, num_tcf;
8653 struct device *dev;
8654 int ret, i;
8655
8656 dev = ice_pf_to_dev(pf);
8657 num_tcf = mqprio_qopt->qopt.num_tc;
8658 hw = mqprio_qopt->qopt.hw;
8659 mode = mqprio_qopt->mode;
8660 if (!hw) {
8661 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8662 vsi->ch_rss_size = 0;
8663 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8664 goto config_tcf;
8665 }
8666
8667 /* Generate queue region map for number of TCF requested */
8668 for (i = 0; i < num_tcf; i++)
8669 ena_tc_qdisc |= BIT(i);
8670
8671 switch (mode) {
8672 case TC_MQPRIO_MODE_CHANNEL:
8673
8674 if (pf->hw.port_info->is_custom_tx_enabled) {
8675 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
8676 return -EBUSY;
8677 }
8678 ice_tear_down_devlink_rate_tree(pf);
8679
8680 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8681 if (ret) {
8682 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8683 ret);
8684 return ret;
8685 }
8686 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8687 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8688 /* don't assume state of hw_tc_offload during driver load
8689 * and set the flag for TC flower filter if hw_tc_offload
8690 * already ON
8691 */
8692 if (vsi->netdev->features & NETIF_F_HW_TC)
8693 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8694 break;
8695 default:
8696 return -EINVAL;
8697 }
8698
8699config_tcf:
8700
8701 /* Requesting same TCF configuration as already enabled */
8702 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8703 mode != TC_MQPRIO_MODE_CHANNEL)
8704 return 0;
8705
8706 /* Pause VSI queues */
8707 ice_dis_vsi(vsi, true);
8708
8709 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8710 ice_remove_q_channels(vsi, true);
8711
8712 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8713 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8714 num_online_cpus());
8715 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8716 num_online_cpus());
8717 } else {
8718 /* logic to rebuild VSI, same like ethtool -L */
8719 u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8720
8721 for (i = 0; i < num_tcf; i++) {
8722 if (!(ena_tc_qdisc & BIT(i)))
8723 continue;
8724
8725 offset = vsi->mqprio_qopt.qopt.offset[i];
8726 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8727 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8728 }
8729 vsi->req_txq = offset + qcount_tx;
8730 vsi->req_rxq = offset + qcount_rx;
8731
8732 /* store away original rss_size info, so that it gets reused
8733 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8734 * determine, what should be the rss_sizefor main VSI
8735 */
8736 vsi->orig_rss_size = vsi->rss_size;
8737 }
8738
8739 /* save current values of Tx and Rx queues before calling VSI rebuild
8740 * for fallback option
8741 */
8742 cur_txq = vsi->num_txq;
8743 cur_rxq = vsi->num_rxq;
8744
8745 /* proceed with rebuild main VSI using correct number of queues */
8746 ret = ice_vsi_rebuild(vsi, false);
8747 if (ret) {
8748 /* fallback to current number of queues */
8749 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8750 vsi->req_txq = cur_txq;
8751 vsi->req_rxq = cur_rxq;
8752 clear_bit(ICE_RESET_FAILED, pf->state);
8753 if (ice_vsi_rebuild(vsi, false)) {
8754 dev_err(dev, "Rebuild of main VSI failed again\n");
8755 return ret;
8756 }
8757 }
8758
8759 vsi->all_numtc = num_tcf;
8760 vsi->all_enatc = ena_tc_qdisc;
8761 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8762 if (ret) {
8763 netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8764 vsi->vsi_num);
8765 goto exit;
8766 }
8767
8768 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8769 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8770 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8771
8772 /* set TC0 rate limit if specified */
8773 if (max_tx_rate || min_tx_rate) {
8774 /* convert to Kbits/s */
8775 if (max_tx_rate)
8776 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8777 if (min_tx_rate)
8778 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8779
8780 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8781 if (!ret) {
8782 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8783 max_tx_rate, min_tx_rate, vsi->vsi_num);
8784 } else {
8785 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8786 max_tx_rate, min_tx_rate, vsi->vsi_num);
8787 goto exit;
8788 }
8789 }
8790 ret = ice_create_q_channels(vsi);
8791 if (ret) {
8792 netdev_err(netdev, "failed configuring queue channels\n");
8793 goto exit;
8794 } else {
8795 netdev_dbg(netdev, "successfully configured channels\n");
8796 }
8797 }
8798
8799 if (vsi->ch_rss_size)
8800 ice_vsi_cfg_rss_lut_key(vsi);
8801
8802exit:
8803 /* if error, reset the all_numtc and all_enatc */
8804 if (ret) {
8805 vsi->all_numtc = 0;
8806 vsi->all_enatc = 0;
8807 }
8808 /* resume VSI */
8809 ice_ena_vsi(vsi, true);
8810
8811 return ret;
8812}
8813
8814static LIST_HEAD(ice_block_cb_list);
8815
8816static int
8817ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8818 void *type_data)
8819{
8820 struct ice_netdev_priv *np = netdev_priv(netdev);
8821 struct ice_pf *pf = np->vsi->back;
8822 int err;
8823
8824 switch (type) {
8825 case TC_SETUP_BLOCK:
8826 return flow_block_cb_setup_simple(type_data,
8827 &ice_block_cb_list,
8828 ice_setup_tc_block_cb,
8829 np, np, true);
8830 case TC_SETUP_QDISC_MQPRIO:
8831 /* setup traffic classifier for receive side */
8832 mutex_lock(&pf->tc_mutex);
8833 err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8834 mutex_unlock(&pf->tc_mutex);
8835 return err;
8836 default:
8837 return -EOPNOTSUPP;
8838 }
8839 return -EOPNOTSUPP;
8840}
8841
8842static struct ice_indr_block_priv *
8843ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8844 struct net_device *netdev)
8845{
8846 struct ice_indr_block_priv *cb_priv;
8847
8848 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8849 if (!cb_priv->netdev)
8850 return NULL;
8851 if (cb_priv->netdev == netdev)
8852 return cb_priv;
8853 }
8854 return NULL;
8855}
8856
8857static int
8858ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8859 void *indr_priv)
8860{
8861 struct ice_indr_block_priv *priv = indr_priv;
8862 struct ice_netdev_priv *np = priv->np;
8863
8864 switch (type) {
8865 case TC_SETUP_CLSFLOWER:
8866 return ice_setup_tc_cls_flower(np, priv->netdev,
8867 (struct flow_cls_offload *)
8868 type_data);
8869 default:
8870 return -EOPNOTSUPP;
8871 }
8872}
8873
8874static int
8875ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8876 struct ice_netdev_priv *np,
8877 struct flow_block_offload *f, void *data,
8878 void (*cleanup)(struct flow_block_cb *block_cb))
8879{
8880 struct ice_indr_block_priv *indr_priv;
8881 struct flow_block_cb *block_cb;
8882
8883 if (!ice_is_tunnel_supported(netdev) &&
8884 !(is_vlan_dev(netdev) &&
8885 vlan_dev_real_dev(netdev) == np->vsi->netdev))
8886 return -EOPNOTSUPP;
8887
8888 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
8889 return -EOPNOTSUPP;
8890
8891 switch (f->command) {
8892 case FLOW_BLOCK_BIND:
8893 indr_priv = ice_indr_block_priv_lookup(np, netdev);
8894 if (indr_priv)
8895 return -EEXIST;
8896
8897 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
8898 if (!indr_priv)
8899 return -ENOMEM;
8900
8901 indr_priv->netdev = netdev;
8902 indr_priv->np = np;
8903 list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
8904
8905 block_cb =
8906 flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
8907 indr_priv, indr_priv,
8908 ice_rep_indr_tc_block_unbind,
8909 f, netdev, sch, data, np,
8910 cleanup);
8911
8912 if (IS_ERR(block_cb)) {
8913 list_del(&indr_priv->list);
8914 kfree(indr_priv);
8915 return PTR_ERR(block_cb);
8916 }
8917 flow_block_cb_add(block_cb, f);
8918 list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
8919 break;
8920 case FLOW_BLOCK_UNBIND:
8921 indr_priv = ice_indr_block_priv_lookup(np, netdev);
8922 if (!indr_priv)
8923 return -ENOENT;
8924
8925 block_cb = flow_block_cb_lookup(f->block,
8926 ice_indr_setup_block_cb,
8927 indr_priv);
8928 if (!block_cb)
8929 return -ENOENT;
8930
8931 flow_indr_block_cb_remove(block_cb, f);
8932
8933 list_del(&block_cb->driver_list);
8934 break;
8935 default:
8936 return -EOPNOTSUPP;
8937 }
8938 return 0;
8939}
8940
8941static int
8942ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
8943 void *cb_priv, enum tc_setup_type type, void *type_data,
8944 void *data,
8945 void (*cleanup)(struct flow_block_cb *block_cb))
8946{
8947 switch (type) {
8948 case TC_SETUP_BLOCK:
8949 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
8950 data, cleanup);
8951
8952 default:
8953 return -EOPNOTSUPP;
8954 }
8955}
8956
8957/**
8958 * ice_open - Called when a network interface becomes active
8959 * @netdev: network interface device structure
8960 *
8961 * The open entry point is called when a network interface is made
8962 * active by the system (IFF_UP). At this point all resources needed
8963 * for transmit and receive operations are allocated, the interrupt
8964 * handler is registered with the OS, the netdev watchdog is enabled,
8965 * and the stack is notified that the interface is ready.
8966 *
8967 * Returns 0 on success, negative value on failure
8968 */
8969int ice_open(struct net_device *netdev)
8970{
8971 struct ice_netdev_priv *np = netdev_priv(netdev);
8972 struct ice_pf *pf = np->vsi->back;
8973
8974 if (ice_is_reset_in_progress(pf->state)) {
8975 netdev_err(netdev, "can't open net device while reset is in progress");
8976 return -EBUSY;
8977 }
8978
8979 return ice_open_internal(netdev);
8980}
8981
8982/**
8983 * ice_open_internal - Called when a network interface becomes active
8984 * @netdev: network interface device structure
8985 *
8986 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
8987 * handling routine
8988 *
8989 * Returns 0 on success, negative value on failure
8990 */
8991int ice_open_internal(struct net_device *netdev)
8992{
8993 struct ice_netdev_priv *np = netdev_priv(netdev);
8994 struct ice_vsi *vsi = np->vsi;
8995 struct ice_pf *pf = vsi->back;
8996 struct ice_port_info *pi;
8997 int err;
8998
8999 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9000 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9001 return -EIO;
9002 }
9003
9004 netif_carrier_off(netdev);
9005
9006 pi = vsi->port_info;
9007 err = ice_update_link_info(pi);
9008 if (err) {
9009 netdev_err(netdev, "Failed to get link info, error %d\n", err);
9010 return err;
9011 }
9012
9013 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9014
9015 /* Set PHY if there is media, otherwise, turn off PHY */
9016 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9017 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9018 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9019 err = ice_init_phy_user_cfg(pi);
9020 if (err) {
9021 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9022 err);
9023 return err;
9024 }
9025 }
9026
9027 err = ice_configure_phy(vsi);
9028 if (err) {
9029 netdev_err(netdev, "Failed to set physical link up, error %d\n",
9030 err);
9031 return err;
9032 }
9033 } else {
9034 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9035 ice_set_link(vsi, false);
9036 }
9037
9038 err = ice_vsi_open(vsi);
9039 if (err)
9040 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9041 vsi->vsi_num, vsi->vsw->sw_id);
9042
9043 /* Update existing tunnels information */
9044 udp_tunnel_get_rx_info(netdev);
9045
9046 return err;
9047}
9048
9049/**
9050 * ice_stop - Disables a network interface
9051 * @netdev: network interface device structure
9052 *
9053 * The stop entry point is called when an interface is de-activated by the OS,
9054 * and the netdevice enters the DOWN state. The hardware is still under the
9055 * driver's control, but the netdev interface is disabled.
9056 *
9057 * Returns success only - not allowed to fail
9058 */
9059int ice_stop(struct net_device *netdev)
9060{
9061 struct ice_netdev_priv *np = netdev_priv(netdev);
9062 struct ice_vsi *vsi = np->vsi;
9063 struct ice_pf *pf = vsi->back;
9064
9065 if (ice_is_reset_in_progress(pf->state)) {
9066 netdev_err(netdev, "can't stop net device while reset is in progress");
9067 return -EBUSY;
9068 }
9069
9070 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9071 int link_err = ice_force_phys_link_state(vsi, false);
9072
9073 if (link_err) {
9074 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9075 vsi->vsi_num, link_err);
9076 return -EIO;
9077 }
9078 }
9079
9080 ice_vsi_close(vsi);
9081
9082 return 0;
9083}
9084
9085/**
9086 * ice_features_check - Validate encapsulated packet conforms to limits
9087 * @skb: skb buffer
9088 * @netdev: This port's netdev
9089 * @features: Offload features that the stack believes apply
9090 */
9091static netdev_features_t
9092ice_features_check(struct sk_buff *skb,
9093 struct net_device __always_unused *netdev,
9094 netdev_features_t features)
9095{
9096 bool gso = skb_is_gso(skb);
9097 size_t len;
9098
9099 /* No point in doing any of this if neither checksum nor GSO are
9100 * being requested for this frame. We can rule out both by just
9101 * checking for CHECKSUM_PARTIAL
9102 */
9103 if (skb->ip_summed != CHECKSUM_PARTIAL)
9104 return features;
9105
9106 /* We cannot support GSO if the MSS is going to be less than
9107 * 64 bytes. If it is then we need to drop support for GSO.
9108 */
9109 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9110 features &= ~NETIF_F_GSO_MASK;
9111
9112 len = skb_network_offset(skb);
9113 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9114 goto out_rm_features;
9115
9116 len = skb_network_header_len(skb);
9117 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9118 goto out_rm_features;
9119
9120 if (skb->encapsulation) {
9121 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
9122 * the case of IPIP frames, the transport header pointer is
9123 * after the inner header! So check to make sure that this
9124 * is a GRE or UDP_TUNNEL frame before doing that math.
9125 */
9126 if (gso && (skb_shinfo(skb)->gso_type &
9127 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9128 len = skb_inner_network_header(skb) -
9129 skb_transport_header(skb);
9130 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9131 goto out_rm_features;
9132 }
9133
9134 len = skb_inner_network_header_len(skb);
9135 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9136 goto out_rm_features;
9137 }
9138
9139 return features;
9140out_rm_features:
9141 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9142}
9143
9144static const struct net_device_ops ice_netdev_safe_mode_ops = {
9145 .ndo_open = ice_open,
9146 .ndo_stop = ice_stop,
9147 .ndo_start_xmit = ice_start_xmit,
9148 .ndo_set_mac_address = ice_set_mac_address,
9149 .ndo_validate_addr = eth_validate_addr,
9150 .ndo_change_mtu = ice_change_mtu,
9151 .ndo_get_stats64 = ice_get_stats64,
9152 .ndo_tx_timeout = ice_tx_timeout,
9153 .ndo_bpf = ice_xdp_safe_mode,
9154};
9155
9156static const struct net_device_ops ice_netdev_ops = {
9157 .ndo_open = ice_open,
9158 .ndo_stop = ice_stop,
9159 .ndo_start_xmit = ice_start_xmit,
9160 .ndo_select_queue = ice_select_queue,
9161 .ndo_features_check = ice_features_check,
9162 .ndo_fix_features = ice_fix_features,
9163 .ndo_set_rx_mode = ice_set_rx_mode,
9164 .ndo_set_mac_address = ice_set_mac_address,
9165 .ndo_validate_addr = eth_validate_addr,
9166 .ndo_change_mtu = ice_change_mtu,
9167 .ndo_get_stats64 = ice_get_stats64,
9168 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
9169 .ndo_eth_ioctl = ice_eth_ioctl,
9170 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9171 .ndo_set_vf_mac = ice_set_vf_mac,
9172 .ndo_get_vf_config = ice_get_vf_cfg,
9173 .ndo_set_vf_trust = ice_set_vf_trust,
9174 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
9175 .ndo_set_vf_link_state = ice_set_vf_link_state,
9176 .ndo_get_vf_stats = ice_get_vf_stats,
9177 .ndo_set_vf_rate = ice_set_vf_bw,
9178 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9179 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9180 .ndo_setup_tc = ice_setup_tc,
9181 .ndo_set_features = ice_set_features,
9182 .ndo_bridge_getlink = ice_bridge_getlink,
9183 .ndo_bridge_setlink = ice_bridge_setlink,
9184 .ndo_fdb_add = ice_fdb_add,
9185 .ndo_fdb_del = ice_fdb_del,
9186#ifdef CONFIG_RFS_ACCEL
9187 .ndo_rx_flow_steer = ice_rx_flow_steer,
9188#endif
9189 .ndo_tx_timeout = ice_tx_timeout,
9190 .ndo_bpf = ice_xdp,
9191 .ndo_xdp_xmit = ice_xdp_xmit,
9192 .ndo_xsk_wakeup = ice_xsk_wakeup,
9193};