Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/* Copyright(c) 2013 - 2018 Intel Corporation. */
  3
  4#ifndef _IAVF_TXRX_H_
  5#define _IAVF_TXRX_H_
  6
  7/* Interrupt Throttling and Rate Limiting Goodies */
  8#define IAVF_DEFAULT_IRQ_WORK      256
  9
 10/* The datasheet for the X710 and XL710 indicate that the maximum value for
 11 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
 12 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
 13 * the register value which is divided by 2 lets use the actual values and
 14 * avoid an excessive amount of translation.
 15 */
 16#define IAVF_ITR_DYNAMIC	0x8000	/* use top bit as a flag */
 17#define IAVF_ITR_MASK		0x1FFE	/* mask for ITR register value */
 
 18#define IAVF_ITR_100K		    10	/* all values below must be even */
 19#define IAVF_ITR_50K		    20
 20#define IAVF_ITR_20K		    50
 21#define IAVF_ITR_18K		    60
 22#define IAVF_ITR_8K		   122
 23#define IAVF_MAX_ITR		  8160	/* maximum value as per datasheet */
 24#define ITR_TO_REG(setting) ((setting) & ~IAVF_ITR_DYNAMIC)
 25#define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~IAVF_ITR_MASK)
 26#define ITR_IS_DYNAMIC(setting) (!!((setting) & IAVF_ITR_DYNAMIC))
 27
 28#define IAVF_ITR_RX_DEF		(IAVF_ITR_20K | IAVF_ITR_DYNAMIC)
 29#define IAVF_ITR_TX_DEF		(IAVF_ITR_20K | IAVF_ITR_DYNAMIC)
 30
 31/* 0x40 is the enable bit for interrupt rate limiting, and must be set if
 32 * the value of the rate limit is non-zero
 33 */
 34#define INTRL_ENA                  BIT(6)
 35#define IAVF_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
 36#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
 37#define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0)
 38#define IAVF_INTRL_8K              125     /* 8000 ints/sec */
 39#define IAVF_INTRL_62K             16      /* 62500 ints/sec */
 40#define IAVF_INTRL_83K             12      /* 83333 ints/sec */
 41
 42#define IAVF_QUEUE_END_OF_LIST 0x7FF
 43
 44/* this enum matches hardware bits and is meant to be used by DYN_CTLN
 45 * registers and QINT registers or more generally anywhere in the manual
 46 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
 47 * register but instead is a special value meaning "don't update" ITR0/1/2.
 48 */
 49enum iavf_dyn_idx_t {
 50	IAVF_IDX_ITR0 = 0,
 51	IAVF_IDX_ITR1 = 1,
 52	IAVF_IDX_ITR2 = 2,
 53	IAVF_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
 54};
 55
 56/* these are indexes into ITRN registers */
 57#define IAVF_RX_ITR    IAVF_IDX_ITR0
 58#define IAVF_TX_ITR    IAVF_IDX_ITR1
 59#define IAVF_PE_ITR    IAVF_IDX_ITR2
 60
 61/* Supported RSS offloads */
 62#define IAVF_DEFAULT_RSS_HENA ( \
 63	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_UDP) | \
 64	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
 65	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP) | \
 66	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
 67	BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV4) | \
 68	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_UDP) | \
 69	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP) | \
 70	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
 71	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
 72	BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV6) | \
 73	BIT_ULL(IAVF_FILTER_PCTYPE_L2_PAYLOAD))
 74
 75#define IAVF_DEFAULT_RSS_HENA_EXPANDED (IAVF_DEFAULT_RSS_HENA | \
 76	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
 77	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
 78	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
 79	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
 80	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
 81	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
 82
 83/* Supported Rx Buffer Sizes (a multiple of 128) */
 84#define IAVF_RXBUFFER_256   256
 85#define IAVF_RXBUFFER_1536  1536  /* 128B aligned standard Ethernet frame */
 86#define IAVF_RXBUFFER_2048  2048
 87#define IAVF_RXBUFFER_3072  3072  /* Used for large frames w/ padding */
 88#define IAVF_MAX_RXBUFFER   9728  /* largest size for single descriptor */
 89
 90/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
 91 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
 92 * this adds up to 512 bytes of extra data meaning the smallest allocation
 93 * we could have is 1K.
 94 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
 95 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
 96 */
 97#define IAVF_RX_HDR_SIZE IAVF_RXBUFFER_256
 98#define IAVF_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
 99#define iavf_rx_desc iavf_32byte_rx_desc
100
101#define IAVF_RX_DMA_ATTR \
102	(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
103
104/* Attempt to maximize the headroom available for incoming frames.  We
105 * use a 2K buffer for receives and need 1536/1534 to store the data for
106 * the frame.  This leaves us with 512 bytes of room.  From that we need
107 * to deduct the space needed for the shared info and the padding needed
108 * to IP align the frame.
109 *
110 * Note: For cache line sizes 256 or larger this value is going to end
111 *	 up negative.  In these cases we should fall back to the legacy
112 *	 receive path.
113 */
114#if (PAGE_SIZE < 8192)
115#define IAVF_2K_TOO_SMALL_WITH_PADDING \
116((NET_SKB_PAD + IAVF_RXBUFFER_1536) > SKB_WITH_OVERHEAD(IAVF_RXBUFFER_2048))
117
118static inline int iavf_compute_pad(int rx_buf_len)
119{
120	int page_size, pad_size;
121
122	page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
123	pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
124
125	return pad_size;
126}
127
128static inline int iavf_skb_pad(void)
129{
130	int rx_buf_len;
131
132	/* If a 2K buffer cannot handle a standard Ethernet frame then
133	 * optimize padding for a 3K buffer instead of a 1.5K buffer.
134	 *
135	 * For a 3K buffer we need to add enough padding to allow for
136	 * tailroom due to NET_IP_ALIGN possibly shifting us out of
137	 * cache-line alignment.
138	 */
139	if (IAVF_2K_TOO_SMALL_WITH_PADDING)
140		rx_buf_len = IAVF_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
141	else
142		rx_buf_len = IAVF_RXBUFFER_1536;
143
144	/* if needed make room for NET_IP_ALIGN */
145	rx_buf_len -= NET_IP_ALIGN;
146
147	return iavf_compute_pad(rx_buf_len);
148}
149
150#define IAVF_SKB_PAD iavf_skb_pad()
151#else
152#define IAVF_2K_TOO_SMALL_WITH_PADDING false
153#define IAVF_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
154#endif
155
156/**
157 * iavf_test_staterr - tests bits in Rx descriptor status and error fields
158 * @rx_desc: pointer to receive descriptor (in le64 format)
159 * @stat_err_bits: value to mask
160 *
161 * This function does some fast chicanery in order to return the
162 * value of the mask which is really only used for boolean tests.
163 * The status_error_len doesn't need to be shifted because it begins
164 * at offset zero.
165 */
166static inline bool iavf_test_staterr(union iavf_rx_desc *rx_desc,
167				     const u64 stat_err_bits)
168{
169	return !!(rx_desc->wb.qword1.status_error_len &
170		  cpu_to_le64(stat_err_bits));
171}
172
173/* How many Rx Buffers do we bundle into one write to the hardware ? */
174#define IAVF_RX_INCREMENT(r, i) \
175	do {					\
176		(i)++;				\
177		if ((i) == (r)->count)		\
178			i = 0;			\
179		r->next_to_clean = i;		\
180	} while (0)
181
182#define IAVF_RX_NEXT_DESC(r, i, n)		\
183	do {					\
184		(i)++;				\
185		if ((i) == (r)->count)		\
186			i = 0;			\
187		(n) = IAVF_RX_DESC((r), (i));	\
188	} while (0)
189
190#define IAVF_RX_NEXT_DESC_PREFETCH(r, i, n)		\
191	do {						\
192		IAVF_RX_NEXT_DESC((r), (i), (n));	\
193		prefetch((n));				\
194	} while (0)
195
196#define IAVF_MAX_BUFFER_TXD	8
197#define IAVF_MIN_TX_LEN		17
198
199/* The size limit for a transmit buffer in a descriptor is (16K - 1).
200 * In order to align with the read requests we will align the value to
201 * the nearest 4K which represents our maximum read request size.
202 */
203#define IAVF_MAX_READ_REQ_SIZE		4096
204#define IAVF_MAX_DATA_PER_TXD		(16 * 1024 - 1)
205#define IAVF_MAX_DATA_PER_TXD_ALIGNED \
206	(IAVF_MAX_DATA_PER_TXD & ~(IAVF_MAX_READ_REQ_SIZE - 1))
207
208/**
209 * iavf_txd_use_count  - estimate the number of descriptors needed for Tx
210 * @size: transmit request size in bytes
211 *
212 * Due to hardware alignment restrictions (4K alignment), we need to
213 * assume that we can have no more than 12K of data per descriptor, even
214 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
215 * Thus, we need to divide by 12K. But division is slow! Instead,
216 * we decompose the operation into shifts and one relatively cheap
217 * multiply operation.
218 *
219 * To divide by 12K, we first divide by 4K, then divide by 3:
220 *     To divide by 4K, shift right by 12 bits
221 *     To divide by 3, multiply by 85, then divide by 256
222 *     (Divide by 256 is done by shifting right by 8 bits)
223 * Finally, we add one to round up. Because 256 isn't an exact multiple of
224 * 3, we'll underestimate near each multiple of 12K. This is actually more
225 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
226 * segment.  For our purposes this is accurate out to 1M which is orders of
227 * magnitude greater than our largest possible GSO size.
228 *
229 * This would then be implemented as:
230 *     return (((size >> 12) * 85) >> 8) + 1;
231 *
232 * Since multiplication and division are commutative, we can reorder
233 * operations into:
234 *     return ((size * 85) >> 20) + 1;
235 */
236static inline unsigned int iavf_txd_use_count(unsigned int size)
237{
238	return ((size * 85) >> 20) + 1;
239}
240
241/* Tx Descriptors needed, worst case */
242#define DESC_NEEDED (MAX_SKB_FRAGS + 6)
243#define IAVF_MIN_DESC_PENDING	4
244
245#define IAVF_TX_FLAGS_HW_VLAN			BIT(1)
246#define IAVF_TX_FLAGS_SW_VLAN			BIT(2)
247#define IAVF_TX_FLAGS_TSO			BIT(3)
248#define IAVF_TX_FLAGS_IPV4			BIT(4)
249#define IAVF_TX_FLAGS_IPV6			BIT(5)
250#define IAVF_TX_FLAGS_FCCRC			BIT(6)
251#define IAVF_TX_FLAGS_FSO			BIT(7)
252#define IAVF_TX_FLAGS_FD_SB			BIT(9)
253#define IAVF_TX_FLAGS_VXLAN_TUNNEL		BIT(10)
254#define IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN	BIT(11)
255#define IAVF_TX_FLAGS_VLAN_MASK			0xffff0000
256#define IAVF_TX_FLAGS_VLAN_PRIO_MASK		0xe0000000
257#define IAVF_TX_FLAGS_VLAN_PRIO_SHIFT		29
258#define IAVF_TX_FLAGS_VLAN_SHIFT		16
259
260struct iavf_tx_buffer {
261	struct iavf_tx_desc *next_to_watch;
262	union {
263		struct sk_buff *skb;
264		void *raw_buf;
265	};
266	unsigned int bytecount;
267	unsigned short gso_segs;
268
269	DEFINE_DMA_UNMAP_ADDR(dma);
270	DEFINE_DMA_UNMAP_LEN(len);
271	u32 tx_flags;
272};
273
274struct iavf_rx_buffer {
275	dma_addr_t dma;
276	struct page *page;
277#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
278	__u32 page_offset;
279#else
280	__u16 page_offset;
281#endif
282	__u16 pagecnt_bias;
283};
284
285struct iavf_queue_stats {
286	u64 packets;
287	u64 bytes;
288};
289
290struct iavf_tx_queue_stats {
291	u64 restart_queue;
292	u64 tx_busy;
293	u64 tx_done_old;
294	u64 tx_linearize;
295	u64 tx_force_wb;
296	int prev_pkt_ctr;
297	u64 tx_lost_interrupt;
298};
299
300struct iavf_rx_queue_stats {
301	u64 non_eop_descs;
302	u64 alloc_page_failed;
303	u64 alloc_buff_failed;
304	u64 page_reuse_count;
305	u64 realloc_count;
306};
307
308enum iavf_ring_state_t {
309	__IAVF_TX_FDIR_INIT_DONE,
310	__IAVF_TX_XPS_INIT_DONE,
311	__IAVF_RING_STATE_NBITS /* must be last */
312};
313
314/* some useful defines for virtchannel interface, which
315 * is the only remaining user of header split
316 */
317#define IAVF_RX_DTYPE_NO_SPLIT      0
318#define IAVF_RX_DTYPE_HEADER_SPLIT  1
319#define IAVF_RX_DTYPE_SPLIT_ALWAYS  2
320#define IAVF_RX_SPLIT_L2      0x1
321#define IAVF_RX_SPLIT_IP      0x2
322#define IAVF_RX_SPLIT_TCP_UDP 0x4
323#define IAVF_RX_SPLIT_SCTP    0x8
324
325/* struct that defines a descriptor ring, associated with a VSI */
326struct iavf_ring {
327	struct iavf_ring *next;		/* pointer to next ring in q_vector */
328	void *desc;			/* Descriptor ring memory */
329	struct device *dev;		/* Used for DMA mapping */
330	struct net_device *netdev;	/* netdev ring maps to */
331	union {
332		struct iavf_tx_buffer *tx_bi;
333		struct iavf_rx_buffer *rx_bi;
334	};
335	DECLARE_BITMAP(state, __IAVF_RING_STATE_NBITS);
336	u16 queue_index;		/* Queue number of ring */
337	u8 dcb_tc;			/* Traffic class of ring */
338	u8 __iomem *tail;
339
340	/* high bit set means dynamic, use accessors routines to read/write.
341	 * hardware only supports 2us resolution for the ITR registers.
342	 * these values always store the USER setting, and must be converted
343	 * before programming to a register.
344	 */
345	u16 itr_setting;
346
347	u16 count;			/* Number of descriptors */
348	u16 reg_idx;			/* HW register index of the ring */
349	u16 rx_buf_len;
350
351	/* used in interrupt processing */
352	u16 next_to_use;
353	u16 next_to_clean;
354
355	u8 atr_sample_rate;
356	u8 atr_count;
357
358	bool ring_active;		/* is ring online or not */
359	bool arm_wb;		/* do something to arm write back */
360	u8 packet_stride;
361
362	u16 flags;
363#define IAVF_TXR_FLAGS_WB_ON_ITR		BIT(0)
364#define IAVF_RXR_FLAGS_BUILD_SKB_ENABLED	BIT(1)
365#define IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1	BIT(3)
366#define IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2	BIT(4)
367#define IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2	BIT(5)
368
369	/* stats structs */
370	struct iavf_queue_stats	stats;
371	struct u64_stats_sync syncp;
372	union {
373		struct iavf_tx_queue_stats tx_stats;
374		struct iavf_rx_queue_stats rx_stats;
375	};
376
377	unsigned int size;		/* length of descriptor ring in bytes */
378	dma_addr_t dma;			/* physical address of ring */
379
380	struct iavf_vsi *vsi;		/* Backreference to associated VSI */
381	struct iavf_q_vector *q_vector;	/* Backreference to associated vector */
382
383	struct rcu_head rcu;		/* to avoid race on free */
384	u16 next_to_alloc;
385	struct sk_buff *skb;		/* When iavf_clean_rx_ring_irq() must
386					 * return before it sees the EOP for
387					 * the current packet, we save that skb
388					 * here and resume receiving this
389					 * packet the next time
390					 * iavf_clean_rx_ring_irq() is called
391					 * for this ring.
392					 */
393} ____cacheline_internodealigned_in_smp;
394
395static inline bool ring_uses_build_skb(struct iavf_ring *ring)
396{
397	return !!(ring->flags & IAVF_RXR_FLAGS_BUILD_SKB_ENABLED);
398}
399
400static inline void set_ring_build_skb_enabled(struct iavf_ring *ring)
401{
402	ring->flags |= IAVF_RXR_FLAGS_BUILD_SKB_ENABLED;
403}
404
405static inline void clear_ring_build_skb_enabled(struct iavf_ring *ring)
406{
407	ring->flags &= ~IAVF_RXR_FLAGS_BUILD_SKB_ENABLED;
408}
409
410#define IAVF_ITR_ADAPTIVE_MIN_INC	0x0002
411#define IAVF_ITR_ADAPTIVE_MIN_USECS	0x0002
412#define IAVF_ITR_ADAPTIVE_MAX_USECS	0x007e
413#define IAVF_ITR_ADAPTIVE_LATENCY	0x8000
414#define IAVF_ITR_ADAPTIVE_BULK		0x0000
415#define ITR_IS_BULK(x) (!((x) & IAVF_ITR_ADAPTIVE_LATENCY))
416
417struct iavf_ring_container {
418	struct iavf_ring *ring;		/* pointer to linked list of ring(s) */
419	unsigned long next_update;	/* jiffies value of next update */
420	unsigned int total_bytes;	/* total bytes processed this int */
421	unsigned int total_packets;	/* total packets processed this int */
422	u16 count;
423	u16 target_itr;			/* target ITR setting for ring(s) */
424	u16 current_itr;		/* current ITR setting for ring(s) */
425};
426
427/* iterator for handling rings in ring container */
428#define iavf_for_each_ring(pos, head) \
429	for (pos = (head).ring; pos != NULL; pos = pos->next)
430
431static inline unsigned int iavf_rx_pg_order(struct iavf_ring *ring)
432{
433#if (PAGE_SIZE < 8192)
434	if (ring->rx_buf_len > (PAGE_SIZE / 2))
435		return 1;
436#endif
437	return 0;
438}
439
440#define iavf_rx_pg_size(_ring) (PAGE_SIZE << iavf_rx_pg_order(_ring))
441
442bool iavf_alloc_rx_buffers(struct iavf_ring *rxr, u16 cleaned_count);
443netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
 
 
444int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring);
445int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring);
446void iavf_free_tx_resources(struct iavf_ring *tx_ring);
447void iavf_free_rx_resources(struct iavf_ring *rx_ring);
448int iavf_napi_poll(struct napi_struct *napi, int budget);
 
 
449void iavf_detect_recover_hung(struct iavf_vsi *vsi);
450int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size);
451bool __iavf_chk_linearize(struct sk_buff *skb);
452
453/**
454 * iavf_xmit_descriptor_count - calculate number of Tx descriptors needed
455 * @skb:     send buffer
456 *
457 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
458 * there is not enough descriptors available in this ring since we need at least
459 * one descriptor.
460 **/
461static inline int iavf_xmit_descriptor_count(struct sk_buff *skb)
462{
463	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
464	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
465	int count = 0, size = skb_headlen(skb);
466
467	for (;;) {
468		count += iavf_txd_use_count(size);
469
470		if (!nr_frags--)
471			break;
472
473		size = skb_frag_size(frag++);
474	}
475
476	return count;
477}
478
479/**
480 * iavf_maybe_stop_tx - 1st level check for Tx stop conditions
481 * @tx_ring: the ring to be checked
482 * @size:    the size buffer we want to assure is available
483 *
484 * Returns 0 if stop is not needed
485 **/
486static inline int iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
487{
488	if (likely(IAVF_DESC_UNUSED(tx_ring) >= size))
489		return 0;
490	return __iavf_maybe_stop_tx(tx_ring, size);
491}
492
493/**
494 * iavf_chk_linearize - Check if there are more than 8 fragments per packet
495 * @skb:      send buffer
496 * @count:    number of buffers used
497 *
498 * Note: Our HW can't scatter-gather more than 8 fragments to build
499 * a packet on the wire and so we need to figure out the cases where we
500 * need to linearize the skb.
501 **/
502static inline bool iavf_chk_linearize(struct sk_buff *skb, int count)
503{
504	/* Both TSO and single send will work if count is less than 8 */
505	if (likely(count < IAVF_MAX_BUFFER_TXD))
506		return false;
507
508	if (skb_is_gso(skb))
509		return __iavf_chk_linearize(skb);
510
511	/* we can support up to 8 data buffers for a single send */
512	return count != IAVF_MAX_BUFFER_TXD;
513}
514/**
515 * txring_txq - helper to convert from a ring to a queue
516 * @ring: Tx ring to find the netdev equivalent of
517 **/
518static inline struct netdev_queue *txring_txq(const struct iavf_ring *ring)
519{
520	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
521}
522#endif /* _IAVF_TXRX_H_ */
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/* Copyright(c) 2013 - 2018 Intel Corporation. */
  3
  4#ifndef _IAVF_TXRX_H_
  5#define _IAVF_TXRX_H_
  6
  7/* Interrupt Throttling and Rate Limiting Goodies */
  8#define IAVF_DEFAULT_IRQ_WORK      256
  9
 10/* The datasheet for the X710 and XL710 indicate that the maximum value for
 11 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
 12 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
 13 * the register value which is divided by 2 lets use the actual values and
 14 * avoid an excessive amount of translation.
 15 */
 16#define IAVF_ITR_DYNAMIC	0x8000	/* use top bit as a flag */
 17#define IAVF_ITR_MASK		0x1FFE	/* mask for ITR register value */
 18#define IAVF_MIN_ITR		     2	/* reg uses 2 usec resolution */
 19#define IAVF_ITR_100K		    10	/* all values below must be even */
 20#define IAVF_ITR_50K		    20
 21#define IAVF_ITR_20K		    50
 22#define IAVF_ITR_18K		    60
 23#define IAVF_ITR_8K		   122
 24#define IAVF_MAX_ITR		  8160	/* maximum value as per datasheet */
 25#define ITR_TO_REG(setting) ((setting) & ~IAVF_ITR_DYNAMIC)
 26#define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~IAVF_ITR_MASK)
 27#define ITR_IS_DYNAMIC(setting) (!!((setting) & IAVF_ITR_DYNAMIC))
 28
 29#define IAVF_ITR_RX_DEF		(IAVF_ITR_20K | IAVF_ITR_DYNAMIC)
 30#define IAVF_ITR_TX_DEF		(IAVF_ITR_20K | IAVF_ITR_DYNAMIC)
 31
 32/* 0x40 is the enable bit for interrupt rate limiting, and must be set if
 33 * the value of the rate limit is non-zero
 34 */
 35#define INTRL_ENA                  BIT(6)
 36#define IAVF_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
 37#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
 38#define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0)
 39#define IAVF_INTRL_8K              125     /* 8000 ints/sec */
 40#define IAVF_INTRL_62K             16      /* 62500 ints/sec */
 41#define IAVF_INTRL_83K             12      /* 83333 ints/sec */
 42
 43#define IAVF_QUEUE_END_OF_LIST 0x7FF
 44
 45/* this enum matches hardware bits and is meant to be used by DYN_CTLN
 46 * registers and QINT registers or more generally anywhere in the manual
 47 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
 48 * register but instead is a special value meaning "don't update" ITR0/1/2.
 49 */
 50enum iavf_dyn_idx_t {
 51	IAVF_IDX_ITR0 = 0,
 52	IAVF_IDX_ITR1 = 1,
 53	IAVF_IDX_ITR2 = 2,
 54	IAVF_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
 55};
 56
 57/* these are indexes into ITRN registers */
 58#define IAVF_RX_ITR    IAVF_IDX_ITR0
 59#define IAVF_TX_ITR    IAVF_IDX_ITR1
 60#define IAVF_PE_ITR    IAVF_IDX_ITR2
 61
 62/* Supported RSS offloads */
 63#define IAVF_DEFAULT_RSS_HENA ( \
 64	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_UDP) | \
 65	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
 66	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP) | \
 67	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
 68	BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV4) | \
 69	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_UDP) | \
 70	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP) | \
 71	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
 72	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
 73	BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV6) | \
 74	BIT_ULL(IAVF_FILTER_PCTYPE_L2_PAYLOAD))
 75
 76#define IAVF_DEFAULT_RSS_HENA_EXPANDED (IAVF_DEFAULT_RSS_HENA | \
 77	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
 78	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
 79	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
 80	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
 81	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
 82	BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
 83
 84/* Supported Rx Buffer Sizes (a multiple of 128) */
 85#define IAVF_RXBUFFER_256   256
 86#define IAVF_RXBUFFER_1536  1536  /* 128B aligned standard Ethernet frame */
 87#define IAVF_RXBUFFER_2048  2048
 88#define IAVF_RXBUFFER_3072  3072  /* Used for large frames w/ padding */
 89#define IAVF_MAX_RXBUFFER   9728  /* largest size for single descriptor */
 90
 91/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
 92 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
 93 * this adds up to 512 bytes of extra data meaning the smallest allocation
 94 * we could have is 1K.
 95 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
 96 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
 97 */
 98#define IAVF_RX_HDR_SIZE IAVF_RXBUFFER_256
 99#define IAVF_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
100#define iavf_rx_desc iavf_32byte_rx_desc
101
102#define IAVF_RX_DMA_ATTR \
103	(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
104
105/* Attempt to maximize the headroom available for incoming frames.  We
106 * use a 2K buffer for receives and need 1536/1534 to store the data for
107 * the frame.  This leaves us with 512 bytes of room.  From that we need
108 * to deduct the space needed for the shared info and the padding needed
109 * to IP align the frame.
110 *
111 * Note: For cache line sizes 256 or larger this value is going to end
112 *	 up negative.  In these cases we should fall back to the legacy
113 *	 receive path.
114 */
115#if (PAGE_SIZE < 8192)
116#define IAVF_2K_TOO_SMALL_WITH_PADDING \
117((NET_SKB_PAD + IAVF_RXBUFFER_1536) > SKB_WITH_OVERHEAD(IAVF_RXBUFFER_2048))
118
119static inline int iavf_compute_pad(int rx_buf_len)
120{
121	int page_size, pad_size;
122
123	page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
124	pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
125
126	return pad_size;
127}
128
129static inline int iavf_skb_pad(void)
130{
131	int rx_buf_len;
132
133	/* If a 2K buffer cannot handle a standard Ethernet frame then
134	 * optimize padding for a 3K buffer instead of a 1.5K buffer.
135	 *
136	 * For a 3K buffer we need to add enough padding to allow for
137	 * tailroom due to NET_IP_ALIGN possibly shifting us out of
138	 * cache-line alignment.
139	 */
140	if (IAVF_2K_TOO_SMALL_WITH_PADDING)
141		rx_buf_len = IAVF_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
142	else
143		rx_buf_len = IAVF_RXBUFFER_1536;
144
145	/* if needed make room for NET_IP_ALIGN */
146	rx_buf_len -= NET_IP_ALIGN;
147
148	return iavf_compute_pad(rx_buf_len);
149}
150
151#define IAVF_SKB_PAD iavf_skb_pad()
152#else
153#define IAVF_2K_TOO_SMALL_WITH_PADDING false
154#define IAVF_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
155#endif
156
157/**
158 * iavf_test_staterr - tests bits in Rx descriptor status and error fields
159 * @rx_desc: pointer to receive descriptor (in le64 format)
160 * @stat_err_bits: value to mask
161 *
162 * This function does some fast chicanery in order to return the
163 * value of the mask which is really only used for boolean tests.
164 * The status_error_len doesn't need to be shifted because it begins
165 * at offset zero.
166 */
167static inline bool iavf_test_staterr(union iavf_rx_desc *rx_desc,
168				     const u64 stat_err_bits)
169{
170	return !!(rx_desc->wb.qword1.status_error_len &
171		  cpu_to_le64(stat_err_bits));
172}
173
174/* How many Rx Buffers do we bundle into one write to the hardware ? */
175#define IAVF_RX_INCREMENT(r, i) \
176	do {					\
177		(i)++;				\
178		if ((i) == (r)->count)		\
179			i = 0;			\
180		r->next_to_clean = i;		\
181	} while (0)
182
183#define IAVF_RX_NEXT_DESC(r, i, n)		\
184	do {					\
185		(i)++;				\
186		if ((i) == (r)->count)		\
187			i = 0;			\
188		(n) = IAVF_RX_DESC((r), (i));	\
189	} while (0)
190
191#define IAVF_RX_NEXT_DESC_PREFETCH(r, i, n)		\
192	do {						\
193		IAVF_RX_NEXT_DESC((r), (i), (n));	\
194		prefetch((n));				\
195	} while (0)
196
197#define IAVF_MAX_BUFFER_TXD	8
198#define IAVF_MIN_TX_LEN		17
199
200/* The size limit for a transmit buffer in a descriptor is (16K - 1).
201 * In order to align with the read requests we will align the value to
202 * the nearest 4K which represents our maximum read request size.
203 */
204#define IAVF_MAX_READ_REQ_SIZE		4096
205#define IAVF_MAX_DATA_PER_TXD		(16 * 1024 - 1)
206#define IAVF_MAX_DATA_PER_TXD_ALIGNED \
207	(IAVF_MAX_DATA_PER_TXD & ~(IAVF_MAX_READ_REQ_SIZE - 1))
208
209/**
210 * iavf_txd_use_count  - estimate the number of descriptors needed for Tx
211 * @size: transmit request size in bytes
212 *
213 * Due to hardware alignment restrictions (4K alignment), we need to
214 * assume that we can have no more than 12K of data per descriptor, even
215 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
216 * Thus, we need to divide by 12K. But division is slow! Instead,
217 * we decompose the operation into shifts and one relatively cheap
218 * multiply operation.
219 *
220 * To divide by 12K, we first divide by 4K, then divide by 3:
221 *     To divide by 4K, shift right by 12 bits
222 *     To divide by 3, multiply by 85, then divide by 256
223 *     (Divide by 256 is done by shifting right by 8 bits)
224 * Finally, we add one to round up. Because 256 isn't an exact multiple of
225 * 3, we'll underestimate near each multiple of 12K. This is actually more
226 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
227 * segment.  For our purposes this is accurate out to 1M which is orders of
228 * magnitude greater than our largest possible GSO size.
229 *
230 * This would then be implemented as:
231 *     return (((size >> 12) * 85) >> 8) + 1;
232 *
233 * Since multiplication and division are commutative, we can reorder
234 * operations into:
235 *     return ((size * 85) >> 20) + 1;
236 */
237static inline unsigned int iavf_txd_use_count(unsigned int size)
238{
239	return ((size * 85) >> 20) + 1;
240}
241
242/* Tx Descriptors needed, worst case */
243#define DESC_NEEDED (MAX_SKB_FRAGS + 6)
244#define IAVF_MIN_DESC_PENDING	4
245
246#define IAVF_TX_FLAGS_HW_VLAN			BIT(1)
247#define IAVF_TX_FLAGS_SW_VLAN			BIT(2)
248#define IAVF_TX_FLAGS_TSO			BIT(3)
249#define IAVF_TX_FLAGS_IPV4			BIT(4)
250#define IAVF_TX_FLAGS_IPV6			BIT(5)
251#define IAVF_TX_FLAGS_FCCRC			BIT(6)
252#define IAVF_TX_FLAGS_FSO			BIT(7)
253#define IAVF_TX_FLAGS_FD_SB			BIT(9)
254#define IAVF_TX_FLAGS_VXLAN_TUNNEL		BIT(10)
255#define IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN	BIT(11)
256#define IAVF_TX_FLAGS_VLAN_MASK			0xffff0000
257#define IAVF_TX_FLAGS_VLAN_PRIO_MASK		0xe0000000
258#define IAVF_TX_FLAGS_VLAN_PRIO_SHIFT		29
259#define IAVF_TX_FLAGS_VLAN_SHIFT		16
260
261struct iavf_tx_buffer {
262	struct iavf_tx_desc *next_to_watch;
263	union {
264		struct sk_buff *skb;
265		void *raw_buf;
266	};
267	unsigned int bytecount;
268	unsigned short gso_segs;
269
270	DEFINE_DMA_UNMAP_ADDR(dma);
271	DEFINE_DMA_UNMAP_LEN(len);
272	u32 tx_flags;
273};
274
275struct iavf_rx_buffer {
276	dma_addr_t dma;
277	struct page *page;
278#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
279	__u32 page_offset;
280#else
281	__u16 page_offset;
282#endif
283	__u16 pagecnt_bias;
284};
285
286struct iavf_queue_stats {
287	u64 packets;
288	u64 bytes;
289};
290
291struct iavf_tx_queue_stats {
292	u64 restart_queue;
293	u64 tx_busy;
294	u64 tx_done_old;
295	u64 tx_linearize;
296	u64 tx_force_wb;
297	int prev_pkt_ctr;
298	u64 tx_lost_interrupt;
299};
300
301struct iavf_rx_queue_stats {
302	u64 non_eop_descs;
303	u64 alloc_page_failed;
304	u64 alloc_buff_failed;
305	u64 page_reuse_count;
306	u64 realloc_count;
307};
308
309enum iavf_ring_state_t {
310	__IAVF_TX_FDIR_INIT_DONE,
311	__IAVF_TX_XPS_INIT_DONE,
312	__IAVF_RING_STATE_NBITS /* must be last */
313};
314
315/* some useful defines for virtchannel interface, which
316 * is the only remaining user of header split
317 */
318#define IAVF_RX_DTYPE_NO_SPLIT      0
319#define IAVF_RX_DTYPE_HEADER_SPLIT  1
320#define IAVF_RX_DTYPE_SPLIT_ALWAYS  2
321#define IAVF_RX_SPLIT_L2      0x1
322#define IAVF_RX_SPLIT_IP      0x2
323#define IAVF_RX_SPLIT_TCP_UDP 0x4
324#define IAVF_RX_SPLIT_SCTP    0x8
325
326/* struct that defines a descriptor ring, associated with a VSI */
327struct iavf_ring {
328	struct iavf_ring *next;		/* pointer to next ring in q_vector */
329	void *desc;			/* Descriptor ring memory */
330	struct device *dev;		/* Used for DMA mapping */
331	struct net_device *netdev;	/* netdev ring maps to */
332	union {
333		struct iavf_tx_buffer *tx_bi;
334		struct iavf_rx_buffer *rx_bi;
335	};
336	DECLARE_BITMAP(state, __IAVF_RING_STATE_NBITS);
337	u16 queue_index;		/* Queue number of ring */
338	u8 dcb_tc;			/* Traffic class of ring */
339	u8 __iomem *tail;
340
341	/* high bit set means dynamic, use accessors routines to read/write.
342	 * hardware only supports 2us resolution for the ITR registers.
343	 * these values always store the USER setting, and must be converted
344	 * before programming to a register.
345	 */
346	u16 itr_setting;
347
348	u16 count;			/* Number of descriptors */
349	u16 reg_idx;			/* HW register index of the ring */
350	u16 rx_buf_len;
351
352	/* used in interrupt processing */
353	u16 next_to_use;
354	u16 next_to_clean;
355
356	u8 atr_sample_rate;
357	u8 atr_count;
358
359	bool ring_active;		/* is ring online or not */
360	bool arm_wb;		/* do something to arm write back */
361	u8 packet_stride;
362
363	u16 flags;
364#define IAVF_TXR_FLAGS_WB_ON_ITR		BIT(0)
365#define IAVF_RXR_FLAGS_BUILD_SKB_ENABLED	BIT(1)
366#define IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1	BIT(3)
367#define IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2	BIT(4)
368#define IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2	BIT(5)
369
370	/* stats structs */
371	struct iavf_queue_stats	stats;
372	struct u64_stats_sync syncp;
373	union {
374		struct iavf_tx_queue_stats tx_stats;
375		struct iavf_rx_queue_stats rx_stats;
376	};
377
378	unsigned int size;		/* length of descriptor ring in bytes */
379	dma_addr_t dma;			/* physical address of ring */
380
381	struct iavf_vsi *vsi;		/* Backreference to associated VSI */
382	struct iavf_q_vector *q_vector;	/* Backreference to associated vector */
383
384	struct rcu_head rcu;		/* to avoid race on free */
385	u16 next_to_alloc;
386	struct sk_buff *skb;		/* When iavf_clean_rx_ring_irq() must
387					 * return before it sees the EOP for
388					 * the current packet, we save that skb
389					 * here and resume receiving this
390					 * packet the next time
391					 * iavf_clean_rx_ring_irq() is called
392					 * for this ring.
393					 */
394} ____cacheline_internodealigned_in_smp;
395
396static inline bool ring_uses_build_skb(struct iavf_ring *ring)
397{
398	return !!(ring->flags & IAVF_RXR_FLAGS_BUILD_SKB_ENABLED);
399}
400
401static inline void set_ring_build_skb_enabled(struct iavf_ring *ring)
402{
403	ring->flags |= IAVF_RXR_FLAGS_BUILD_SKB_ENABLED;
404}
405
406static inline void clear_ring_build_skb_enabled(struct iavf_ring *ring)
407{
408	ring->flags &= ~IAVF_RXR_FLAGS_BUILD_SKB_ENABLED;
409}
410
411#define IAVF_ITR_ADAPTIVE_MIN_INC	0x0002
412#define IAVF_ITR_ADAPTIVE_MIN_USECS	0x0002
413#define IAVF_ITR_ADAPTIVE_MAX_USECS	0x007e
414#define IAVF_ITR_ADAPTIVE_LATENCY	0x8000
415#define IAVF_ITR_ADAPTIVE_BULK		0x0000
416#define ITR_IS_BULK(x) (!((x) & IAVF_ITR_ADAPTIVE_LATENCY))
417
418struct iavf_ring_container {
419	struct iavf_ring *ring;		/* pointer to linked list of ring(s) */
420	unsigned long next_update;	/* jiffies value of next update */
421	unsigned int total_bytes;	/* total bytes processed this int */
422	unsigned int total_packets;	/* total packets processed this int */
423	u16 count;
424	u16 target_itr;			/* target ITR setting for ring(s) */
425	u16 current_itr;		/* current ITR setting for ring(s) */
426};
427
428/* iterator for handling rings in ring container */
429#define iavf_for_each_ring(pos, head) \
430	for (pos = (head).ring; pos != NULL; pos = pos->next)
431
432static inline unsigned int iavf_rx_pg_order(struct iavf_ring *ring)
433{
434#if (PAGE_SIZE < 8192)
435	if (ring->rx_buf_len > (PAGE_SIZE / 2))
436		return 1;
437#endif
438	return 0;
439}
440
441#define iavf_rx_pg_size(_ring) (PAGE_SIZE << iavf_rx_pg_order(_ring))
442
443bool iavf_alloc_rx_buffers(struct iavf_ring *rxr, u16 cleaned_count);
444netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
445void iavf_clean_tx_ring(struct iavf_ring *tx_ring);
446void iavf_clean_rx_ring(struct iavf_ring *rx_ring);
447int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring);
448int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring);
449void iavf_free_tx_resources(struct iavf_ring *tx_ring);
450void iavf_free_rx_resources(struct iavf_ring *rx_ring);
451int iavf_napi_poll(struct napi_struct *napi, int budget);
452void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector);
453u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw);
454void iavf_detect_recover_hung(struct iavf_vsi *vsi);
455int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size);
456bool __iavf_chk_linearize(struct sk_buff *skb);
457
458/**
459 * iavf_xmit_descriptor_count - calculate number of Tx descriptors needed
460 * @skb:     send buffer
461 *
462 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
463 * there is not enough descriptors available in this ring since we need at least
464 * one descriptor.
465 **/
466static inline int iavf_xmit_descriptor_count(struct sk_buff *skb)
467{
468	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
469	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
470	int count = 0, size = skb_headlen(skb);
471
472	for (;;) {
473		count += iavf_txd_use_count(size);
474
475		if (!nr_frags--)
476			break;
477
478		size = skb_frag_size(frag++);
479	}
480
481	return count;
482}
483
484/**
485 * iavf_maybe_stop_tx - 1st level check for Tx stop conditions
486 * @tx_ring: the ring to be checked
487 * @size:    the size buffer we want to assure is available
488 *
489 * Returns 0 if stop is not needed
490 **/
491static inline int iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
492{
493	if (likely(IAVF_DESC_UNUSED(tx_ring) >= size))
494		return 0;
495	return __iavf_maybe_stop_tx(tx_ring, size);
496}
497
498/**
499 * iavf_chk_linearize - Check if there are more than 8 fragments per packet
500 * @skb:      send buffer
501 * @count:    number of buffers used
502 *
503 * Note: Our HW can't scatter-gather more than 8 fragments to build
504 * a packet on the wire and so we need to figure out the cases where we
505 * need to linearize the skb.
506 **/
507static inline bool iavf_chk_linearize(struct sk_buff *skb, int count)
508{
509	/* Both TSO and single send will work if count is less than 8 */
510	if (likely(count < IAVF_MAX_BUFFER_TXD))
511		return false;
512
513	if (skb_is_gso(skb))
514		return __iavf_chk_linearize(skb);
515
516	/* we can support up to 8 data buffers for a single send */
517	return count != IAVF_MAX_BUFFER_TXD;
518}
519/**
520 * txring_txq - helper to convert from a ring to a queue
521 * @ring: Tx ring to find the netdev equivalent of
522 **/
523static inline struct netdev_queue *txring_txq(const struct iavf_ring *ring)
524{
525	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
526}
527#endif /* _IAVF_TXRX_H_ */