Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include "iavf.h"
   5#include "iavf_prototype.h"
 
   6/* All iavf tracepoints are defined by the include below, which must
   7 * be included exactly once across the whole kernel with
   8 * CREATE_TRACE_POINTS defined
   9 */
  10#define CREATE_TRACE_POINTS
  11#include "iavf_trace.h"
  12
  13static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
  14static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
  15static int iavf_close(struct net_device *netdev);
  16static void iavf_init_get_resources(struct iavf_adapter *adapter);
  17static int iavf_check_reset_complete(struct iavf_hw *hw);
  18
  19char iavf_driver_name[] = "iavf";
  20static const char iavf_driver_string[] =
  21	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
  22
  23static const char iavf_copyright[] =
  24	"Copyright (c) 2013 - 2018 Intel Corporation.";
  25
  26/* iavf_pci_tbl - PCI Device ID Table
  27 *
  28 * Wildcard entries (PCI_ANY_ID) should come last
  29 * Last entry must be all 0s
  30 *
  31 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
  32 *   Class, Class Mask, private data (not used) }
  33 */
  34static const struct pci_device_id iavf_pci_tbl[] = {
  35	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
  36	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
  37	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
  38	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
  39	/* required last entry */
  40	{0, }
  41};
  42
  43MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
  44
  45MODULE_ALIAS("i40evf");
  46MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  47MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
  48MODULE_LICENSE("GPL v2");
  49
  50static const struct net_device_ops iavf_netdev_ops;
  51
  52int iavf_status_to_errno(enum iavf_status status)
  53{
  54	switch (status) {
  55	case IAVF_SUCCESS:
  56		return 0;
  57	case IAVF_ERR_PARAM:
  58	case IAVF_ERR_MAC_TYPE:
  59	case IAVF_ERR_INVALID_MAC_ADDR:
  60	case IAVF_ERR_INVALID_LINK_SETTINGS:
  61	case IAVF_ERR_INVALID_PD_ID:
  62	case IAVF_ERR_INVALID_QP_ID:
  63	case IAVF_ERR_INVALID_CQ_ID:
  64	case IAVF_ERR_INVALID_CEQ_ID:
  65	case IAVF_ERR_INVALID_AEQ_ID:
  66	case IAVF_ERR_INVALID_SIZE:
  67	case IAVF_ERR_INVALID_ARP_INDEX:
  68	case IAVF_ERR_INVALID_FPM_FUNC_ID:
  69	case IAVF_ERR_QP_INVALID_MSG_SIZE:
  70	case IAVF_ERR_INVALID_FRAG_COUNT:
  71	case IAVF_ERR_INVALID_ALIGNMENT:
  72	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
  73	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
  74	case IAVF_ERR_INVALID_VF_ID:
  75	case IAVF_ERR_INVALID_HMCFN_ID:
  76	case IAVF_ERR_INVALID_PBLE_INDEX:
  77	case IAVF_ERR_INVALID_SD_INDEX:
  78	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
  79	case IAVF_ERR_INVALID_SD_TYPE:
  80	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
  81	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
  82	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
  83		return -EINVAL;
  84	case IAVF_ERR_NVM:
  85	case IAVF_ERR_NVM_CHECKSUM:
  86	case IAVF_ERR_PHY:
  87	case IAVF_ERR_CONFIG:
  88	case IAVF_ERR_UNKNOWN_PHY:
  89	case IAVF_ERR_LINK_SETUP:
  90	case IAVF_ERR_ADAPTER_STOPPED:
  91	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
  92	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
  93	case IAVF_ERR_RESET_FAILED:
  94	case IAVF_ERR_BAD_PTR:
  95	case IAVF_ERR_SWFW_SYNC:
  96	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
  97	case IAVF_ERR_QUEUE_EMPTY:
  98	case IAVF_ERR_FLUSHED_QUEUE:
  99	case IAVF_ERR_OPCODE_MISMATCH:
 100	case IAVF_ERR_CQP_COMPL_ERROR:
 101	case IAVF_ERR_BACKING_PAGE_ERROR:
 102	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
 103	case IAVF_ERR_MEMCPY_FAILED:
 104	case IAVF_ERR_SRQ_ENABLED:
 105	case IAVF_ERR_ADMIN_QUEUE_ERROR:
 106	case IAVF_ERR_ADMIN_QUEUE_FULL:
 107	case IAVF_ERR_BAD_RDMA_CQE:
 108	case IAVF_ERR_NVM_BLANK_MODE:
 109	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
 110	case IAVF_ERR_DIAG_TEST_FAILED:
 111	case IAVF_ERR_FIRMWARE_API_VERSION:
 112	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
 113		return -EIO;
 114	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
 115		return -ENODEV;
 116	case IAVF_ERR_NO_AVAILABLE_VSI:
 117	case IAVF_ERR_RING_FULL:
 118		return -ENOSPC;
 119	case IAVF_ERR_NO_MEMORY:
 120		return -ENOMEM;
 121	case IAVF_ERR_TIMEOUT:
 122	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
 123		return -ETIMEDOUT;
 124	case IAVF_ERR_NOT_IMPLEMENTED:
 125	case IAVF_NOT_SUPPORTED:
 126		return -EOPNOTSUPP;
 127	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
 128		return -EALREADY;
 129	case IAVF_ERR_NOT_READY:
 130		return -EBUSY;
 131	case IAVF_ERR_BUF_TOO_SHORT:
 132		return -EMSGSIZE;
 133	}
 134
 135	return -EIO;
 136}
 137
 138int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
 139{
 140	switch (v_status) {
 141	case VIRTCHNL_STATUS_SUCCESS:
 142		return 0;
 143	case VIRTCHNL_STATUS_ERR_PARAM:
 144	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
 145		return -EINVAL;
 146	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
 147		return -ENOMEM;
 148	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
 149	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
 150	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
 151		return -EIO;
 152	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
 153		return -EOPNOTSUPP;
 154	}
 155
 156	return -EIO;
 157}
 158
 159/**
 160 * iavf_pdev_to_adapter - go from pci_dev to adapter
 161 * @pdev: pci_dev pointer
 162 */
 163static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
 164{
 165	return netdev_priv(pci_get_drvdata(pdev));
 166}
 167
 168/**
 169 * iavf_is_reset_in_progress - Check if a reset is in progress
 170 * @adapter: board private structure
 171 */
 172static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
 173{
 174	if (adapter->state == __IAVF_RESETTING ||
 175	    adapter->flags & (IAVF_FLAG_RESET_PENDING |
 176			      IAVF_FLAG_RESET_NEEDED))
 177		return true;
 178
 179	return false;
 180}
 181
 182/**
 183 * iavf_wait_for_reset - Wait for reset to finish.
 184 * @adapter: board private structure
 185 *
 186 * Returns 0 if reset finished successfully, negative on timeout or interrupt.
 187 */
 188int iavf_wait_for_reset(struct iavf_adapter *adapter)
 189{
 190	int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
 191					!iavf_is_reset_in_progress(adapter),
 192					msecs_to_jiffies(5000));
 193
 194	/* If ret < 0 then it means wait was interrupted.
 195	 * If ret == 0 then it means we got a timeout while waiting
 196	 * for reset to finish.
 197	 * If ret > 0 it means reset has finished.
 198	 */
 199	if (ret > 0)
 200		return 0;
 201	else if (ret < 0)
 202		return -EINTR;
 203	else
 204		return -EBUSY;
 205}
 206
 207/**
 208 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
 209 * @hw:   pointer to the HW structure
 210 * @mem:  ptr to mem struct to fill out
 211 * @size: size of memory requested
 212 * @alignment: what to align the allocation to
 213 **/
 214enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
 215					 struct iavf_dma_mem *mem,
 216					 u64 size, u32 alignment)
 217{
 218	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
 219
 220	if (!mem)
 221		return IAVF_ERR_PARAM;
 222
 223	mem->size = ALIGN(size, alignment);
 224	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
 225				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
 226	if (mem->va)
 227		return 0;
 228	else
 229		return IAVF_ERR_NO_MEMORY;
 230}
 231
 232/**
 233 * iavf_free_dma_mem - wrapper for DMA memory freeing
 234 * @hw:   pointer to the HW structure
 235 * @mem:  ptr to mem struct to free
 236 **/
 237enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
 
 238{
 239	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
 240
 241	if (!mem || !mem->va)
 242		return IAVF_ERR_PARAM;
 243	dma_free_coherent(&adapter->pdev->dev, mem->size,
 244			  mem->va, (dma_addr_t)mem->pa);
 245	return 0;
 246}
 247
 248/**
 249 * iavf_allocate_virt_mem - virt memory alloc wrapper
 250 * @hw:   pointer to the HW structure
 251 * @mem:  ptr to mem struct to fill out
 252 * @size: size of memory requested
 253 **/
 254enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
 255					struct iavf_virt_mem *mem, u32 size)
 256{
 257	if (!mem)
 258		return IAVF_ERR_PARAM;
 259
 260	mem->size = size;
 261	mem->va = kzalloc(size, GFP_KERNEL);
 262
 263	if (mem->va)
 264		return 0;
 265	else
 266		return IAVF_ERR_NO_MEMORY;
 267}
 268
 269/**
 270 * iavf_free_virt_mem - virt memory free wrapper
 271 * @hw:   pointer to the HW structure
 272 * @mem:  ptr to mem struct to free
 273 **/
 274void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
 
 275{
 
 
 
 
 276	kfree(mem->va);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277}
 278
 279/**
 280 * iavf_schedule_reset - Set the flags and schedule a reset event
 281 * @adapter: board private structure
 282 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
 283 **/
 284void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
 285{
 286	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
 287	    !(adapter->flags &
 288	    (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
 289		adapter->flags |= flags;
 290		queue_work(adapter->wq, &adapter->reset_task);
 291	}
 292}
 293
 294/**
 295 * iavf_schedule_aq_request - Set the flags and schedule aq request
 296 * @adapter: board private structure
 297 * @flags: requested aq flags
 
 
 298 **/
 299void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
 300{
 301	adapter->aq_required |= flags;
 302	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
 303}
 304
 305/**
 306 * iavf_tx_timeout - Respond to a Tx Hang
 307 * @netdev: network interface device structure
 308 * @txqueue: queue number that is timing out
 309 **/
 310static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
 311{
 312	struct iavf_adapter *adapter = netdev_priv(netdev);
 313
 314	adapter->tx_timeout_count++;
 315	iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
 316}
 317
 318/**
 319 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
 320 * @adapter: board private structure
 321 **/
 322static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
 323{
 324	struct iavf_hw *hw = &adapter->hw;
 325
 326	if (!adapter->msix_entries)
 327		return;
 328
 329	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
 330
 331	iavf_flush(hw);
 332
 333	synchronize_irq(adapter->msix_entries[0].vector);
 334}
 335
 336/**
 337 * iavf_misc_irq_enable - Enable default interrupt generation settings
 338 * @adapter: board private structure
 339 **/
 340static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
 341{
 342	struct iavf_hw *hw = &adapter->hw;
 343
 344	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
 345				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
 346	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
 347
 348	iavf_flush(hw);
 349}
 350
 351/**
 352 * iavf_irq_disable - Mask off interrupt generation on the NIC
 353 * @adapter: board private structure
 354 **/
 355static void iavf_irq_disable(struct iavf_adapter *adapter)
 356{
 357	int i;
 358	struct iavf_hw *hw = &adapter->hw;
 359
 360	if (!adapter->msix_entries)
 361		return;
 362
 363	for (i = 1; i < adapter->num_msix_vectors; i++) {
 364		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
 365		synchronize_irq(adapter->msix_entries[i].vector);
 366	}
 367	iavf_flush(hw);
 368}
 369
 370/**
 371 * iavf_irq_enable_queues - Enable interrupt for all queues
 372 * @adapter: board private structure
 
 373 **/
 374static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
 375{
 376	struct iavf_hw *hw = &adapter->hw;
 377	int i;
 378
 379	for (i = 1; i < adapter->num_msix_vectors; i++) {
 380		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
 381		     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
 382		     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
 
 
 383	}
 384}
 385
 386/**
 387 * iavf_irq_enable - Enable default interrupt generation settings
 388 * @adapter: board private structure
 389 * @flush: boolean value whether to run rd32()
 390 **/
 391void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
 392{
 393	struct iavf_hw *hw = &adapter->hw;
 394
 395	iavf_misc_irq_enable(adapter);
 396	iavf_irq_enable_queues(adapter);
 397
 398	if (flush)
 399		iavf_flush(hw);
 400}
 401
 402/**
 403 * iavf_msix_aq - Interrupt handler for vector 0
 404 * @irq: interrupt number
 405 * @data: pointer to netdev
 406 **/
 407static irqreturn_t iavf_msix_aq(int irq, void *data)
 408{
 409	struct net_device *netdev = data;
 410	struct iavf_adapter *adapter = netdev_priv(netdev);
 411	struct iavf_hw *hw = &adapter->hw;
 412
 413	/* handle non-queue interrupts, these reads clear the registers */
 414	rd32(hw, IAVF_VFINT_ICR01);
 415	rd32(hw, IAVF_VFINT_ICR0_ENA1);
 416
 417	if (adapter->state != __IAVF_REMOVE)
 418		/* schedule work on the private workqueue */
 419		queue_work(adapter->wq, &adapter->adminq_task);
 420
 421	return IRQ_HANDLED;
 422}
 423
 424/**
 425 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
 426 * @irq: interrupt number
 427 * @data: pointer to a q_vector
 428 **/
 429static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
 430{
 431	struct iavf_q_vector *q_vector = data;
 432
 433	if (!q_vector->tx.ring && !q_vector->rx.ring)
 434		return IRQ_HANDLED;
 435
 436	napi_schedule_irqoff(&q_vector->napi);
 437
 438	return IRQ_HANDLED;
 439}
 440
 441/**
 442 * iavf_map_vector_to_rxq - associate irqs with rx queues
 443 * @adapter: board private structure
 444 * @v_idx: interrupt number
 445 * @r_idx: queue number
 446 **/
 447static void
 448iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
 449{
 450	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 451	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
 452	struct iavf_hw *hw = &adapter->hw;
 453
 454	rx_ring->q_vector = q_vector;
 455	rx_ring->next = q_vector->rx.ring;
 456	rx_ring->vsi = &adapter->vsi;
 457	q_vector->rx.ring = rx_ring;
 458	q_vector->rx.count++;
 459	q_vector->rx.next_update = jiffies + 1;
 460	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
 461	q_vector->ring_mask |= BIT(r_idx);
 462	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
 463	     q_vector->rx.current_itr >> 1);
 464	q_vector->rx.current_itr = q_vector->rx.target_itr;
 465}
 466
 467/**
 468 * iavf_map_vector_to_txq - associate irqs with tx queues
 469 * @adapter: board private structure
 470 * @v_idx: interrupt number
 471 * @t_idx: queue number
 472 **/
 473static void
 474iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
 475{
 476	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 477	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
 478	struct iavf_hw *hw = &adapter->hw;
 479
 480	tx_ring->q_vector = q_vector;
 481	tx_ring->next = q_vector->tx.ring;
 482	tx_ring->vsi = &adapter->vsi;
 483	q_vector->tx.ring = tx_ring;
 484	q_vector->tx.count++;
 485	q_vector->tx.next_update = jiffies + 1;
 486	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
 487	q_vector->num_ringpairs++;
 488	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
 489	     q_vector->tx.target_itr >> 1);
 490	q_vector->tx.current_itr = q_vector->tx.target_itr;
 491}
 492
 493/**
 494 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
 495 * @adapter: board private structure to initialize
 496 *
 497 * This function maps descriptor rings to the queue-specific vectors
 498 * we were allotted through the MSI-X enabling code.  Ideally, we'd have
 499 * one vector per ring/queue, but on a constrained vector budget, we
 500 * group the rings as "efficiently" as possible.  You would add new
 501 * mapping configurations in here.
 502 **/
 503static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
 504{
 505	int rings_remaining = adapter->num_active_queues;
 506	int ridx = 0, vidx = 0;
 507	int q_vectors;
 508
 509	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 510
 511	for (; ridx < rings_remaining; ridx++) {
 512		iavf_map_vector_to_rxq(adapter, vidx, ridx);
 513		iavf_map_vector_to_txq(adapter, vidx, ridx);
 514
 515		/* In the case where we have more queues than vectors, continue
 516		 * round-robin on vectors until all queues are mapped.
 517		 */
 518		if (++vidx >= q_vectors)
 519			vidx = 0;
 520	}
 521
 522	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
 523}
 524
 525/**
 526 * iavf_irq_affinity_notify - Callback for affinity changes
 527 * @notify: context as to what irq was changed
 528 * @mask: the new affinity mask
 529 *
 530 * This is a callback function used by the irq_set_affinity_notifier function
 531 * so that we may register to receive changes to the irq affinity masks.
 532 **/
 533static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
 534				     const cpumask_t *mask)
 535{
 536	struct iavf_q_vector *q_vector =
 537		container_of(notify, struct iavf_q_vector, affinity_notify);
 538
 539	cpumask_copy(&q_vector->affinity_mask, mask);
 540}
 541
 542/**
 543 * iavf_irq_affinity_release - Callback for affinity notifier release
 544 * @ref: internal core kernel usage
 545 *
 546 * This is a callback function used by the irq_set_affinity_notifier function
 547 * to inform the current notification subscriber that they will no longer
 548 * receive notifications.
 549 **/
 550static void iavf_irq_affinity_release(struct kref *ref) {}
 551
 552/**
 553 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
 554 * @adapter: board private structure
 555 * @basename: device basename
 556 *
 557 * Allocates MSI-X vectors for tx and rx handling, and requests
 558 * interrupts from the kernel.
 559 **/
 560static int
 561iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
 562{
 563	unsigned int vector, q_vectors;
 564	unsigned int rx_int_idx = 0, tx_int_idx = 0;
 565	int irq_num, err;
 566	int cpu;
 567
 568	iavf_irq_disable(adapter);
 569	/* Decrement for Other and TCP Timer vectors */
 570	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 571
 572	for (vector = 0; vector < q_vectors; vector++) {
 573		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
 574
 575		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 576
 577		if (q_vector->tx.ring && q_vector->rx.ring) {
 578			snprintf(q_vector->name, sizeof(q_vector->name),
 579				 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
 580			tx_int_idx++;
 581		} else if (q_vector->rx.ring) {
 582			snprintf(q_vector->name, sizeof(q_vector->name),
 583				 "iavf-%s-rx-%u", basename, rx_int_idx++);
 584		} else if (q_vector->tx.ring) {
 585			snprintf(q_vector->name, sizeof(q_vector->name),
 586				 "iavf-%s-tx-%u", basename, tx_int_idx++);
 587		} else {
 588			/* skip this unused q_vector */
 589			continue;
 590		}
 591		err = request_irq(irq_num,
 592				  iavf_msix_clean_rings,
 593				  0,
 594				  q_vector->name,
 595				  q_vector);
 596		if (err) {
 597			dev_info(&adapter->pdev->dev,
 598				 "Request_irq failed, error: %d\n", err);
 599			goto free_queue_irqs;
 600		}
 601		/* register for affinity change notifications */
 602		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
 603		q_vector->affinity_notify.release =
 604						   iavf_irq_affinity_release;
 605		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
 606		/* Spread the IRQ affinity hints across online CPUs. Note that
 607		 * get_cpu_mask returns a mask with a permanent lifetime so
 608		 * it's safe to use as a hint for irq_update_affinity_hint.
 609		 */
 610		cpu = cpumask_local_spread(q_vector->v_idx, -1);
 611		irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
 612	}
 613
 614	return 0;
 615
 616free_queue_irqs:
 617	while (vector) {
 618		vector--;
 619		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 620		irq_set_affinity_notifier(irq_num, NULL);
 621		irq_update_affinity_hint(irq_num, NULL);
 622		free_irq(irq_num, &adapter->q_vectors[vector]);
 623	}
 624	return err;
 625}
 626
 627/**
 628 * iavf_request_misc_irq - Initialize MSI-X interrupts
 629 * @adapter: board private structure
 630 *
 631 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
 632 * vector is only for the admin queue, and stays active even when the netdev
 633 * is closed.
 634 **/
 635static int iavf_request_misc_irq(struct iavf_adapter *adapter)
 636{
 637	struct net_device *netdev = adapter->netdev;
 638	int err;
 639
 640	snprintf(adapter->misc_vector_name,
 641		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
 642		 dev_name(&adapter->pdev->dev));
 643	err = request_irq(adapter->msix_entries[0].vector,
 644			  &iavf_msix_aq, 0,
 645			  adapter->misc_vector_name, netdev);
 646	if (err) {
 647		dev_err(&adapter->pdev->dev,
 648			"request_irq for %s failed: %d\n",
 649			adapter->misc_vector_name, err);
 650		free_irq(adapter->msix_entries[0].vector, netdev);
 651	}
 652	return err;
 653}
 654
 655/**
 656 * iavf_free_traffic_irqs - Free MSI-X interrupts
 657 * @adapter: board private structure
 658 *
 659 * Frees all MSI-X vectors other than 0.
 660 **/
 661static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
 662{
 663	int vector, irq_num, q_vectors;
 664
 665	if (!adapter->msix_entries)
 666		return;
 667
 668	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 669
 670	for (vector = 0; vector < q_vectors; vector++) {
 671		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 672		irq_set_affinity_notifier(irq_num, NULL);
 673		irq_update_affinity_hint(irq_num, NULL);
 674		free_irq(irq_num, &adapter->q_vectors[vector]);
 675	}
 676}
 677
 678/**
 679 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
 680 * @adapter: board private structure
 681 *
 682 * Frees MSI-X vector 0.
 683 **/
 684static void iavf_free_misc_irq(struct iavf_adapter *adapter)
 685{
 686	struct net_device *netdev = adapter->netdev;
 687
 688	if (!adapter->msix_entries)
 689		return;
 690
 691	free_irq(adapter->msix_entries[0].vector, netdev);
 692}
 693
 694/**
 695 * iavf_configure_tx - Configure Transmit Unit after Reset
 696 * @adapter: board private structure
 697 *
 698 * Configure the Tx unit of the MAC after a reset.
 699 **/
 700static void iavf_configure_tx(struct iavf_adapter *adapter)
 701{
 702	struct iavf_hw *hw = &adapter->hw;
 703	int i;
 704
 705	for (i = 0; i < adapter->num_active_queues; i++)
 706		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
 707}
 708
 709/**
 710 * iavf_configure_rx - Configure Receive Unit after Reset
 711 * @adapter: board private structure
 712 *
 713 * Configure the Rx unit of the MAC after a reset.
 714 **/
 715static void iavf_configure_rx(struct iavf_adapter *adapter)
 716{
 717	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
 718	struct iavf_hw *hw = &adapter->hw;
 719	int i;
 720
 721	/* Legacy Rx will always default to a 2048 buffer size. */
 722#if (PAGE_SIZE < 8192)
 723	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
 724		struct net_device *netdev = adapter->netdev;
 725
 726		/* For jumbo frames on systems with 4K pages we have to use
 727		 * an order 1 page, so we might as well increase the size
 728		 * of our Rx buffer to make better use of the available space
 729		 */
 730		rx_buf_len = IAVF_RXBUFFER_3072;
 731
 732		/* We use a 1536 buffer size for configurations with
 733		 * standard Ethernet mtu.  On x86 this gives us enough room
 734		 * for shared info and 192 bytes of padding.
 735		 */
 736		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
 737		    (netdev->mtu <= ETH_DATA_LEN))
 738			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
 739	}
 740#endif
 741
 742	for (i = 0; i < adapter->num_active_queues; i++) {
 743		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
 744		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
 745
 746		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
 747			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
 748		else
 749			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
 750	}
 751}
 752
 753/**
 754 * iavf_find_vlan - Search filter list for specific vlan filter
 755 * @adapter: board private structure
 756 * @vlan: vlan tag
 757 *
 758 * Returns ptr to the filter object or NULL. Must be called while holding the
 759 * mac_vlan_list_lock.
 760 **/
 761static struct
 762iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
 763				 struct iavf_vlan vlan)
 764{
 765	struct iavf_vlan_filter *f;
 766
 767	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
 768		if (f->vlan.vid == vlan.vid &&
 769		    f->vlan.tpid == vlan.tpid)
 770			return f;
 771	}
 772
 773	return NULL;
 774}
 775
 776/**
 777 * iavf_add_vlan - Add a vlan filter to the list
 778 * @adapter: board private structure
 779 * @vlan: VLAN tag
 780 *
 781 * Returns ptr to the filter object or NULL when no memory available.
 782 **/
 783static struct
 784iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
 785				struct iavf_vlan vlan)
 786{
 787	struct iavf_vlan_filter *f = NULL;
 788
 789	spin_lock_bh(&adapter->mac_vlan_list_lock);
 790
 791	f = iavf_find_vlan(adapter, vlan);
 792	if (!f) {
 793		f = kzalloc(sizeof(*f), GFP_ATOMIC);
 794		if (!f)
 795			goto clearout;
 796
 797		f->vlan = vlan;
 798
 799		list_add_tail(&f->list, &adapter->vlan_filter_list);
 800		f->state = IAVF_VLAN_ADD;
 801		adapter->num_vlan_filters++;
 802		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
 803	}
 804
 805clearout:
 806	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 807	return f;
 808}
 809
 810/**
 811 * iavf_del_vlan - Remove a vlan filter from the list
 812 * @adapter: board private structure
 813 * @vlan: VLAN tag
 814 **/
 815static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
 816{
 817	struct iavf_vlan_filter *f;
 818
 819	spin_lock_bh(&adapter->mac_vlan_list_lock);
 820
 821	f = iavf_find_vlan(adapter, vlan);
 822	if (f) {
 823		f->state = IAVF_VLAN_REMOVE;
 824		iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER);
 825	}
 826
 827	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 828}
 829
 830/**
 831 * iavf_restore_filters
 832 * @adapter: board private structure
 833 *
 834 * Restore existing non MAC filters when VF netdev comes back up
 835 **/
 836static void iavf_restore_filters(struct iavf_adapter *adapter)
 837{
 838	struct iavf_vlan_filter *f;
 839
 840	/* re-add all VLAN filters */
 841	spin_lock_bh(&adapter->mac_vlan_list_lock);
 842
 843	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
 844		if (f->state == IAVF_VLAN_INACTIVE)
 845			f->state = IAVF_VLAN_ADD;
 846	}
 847
 848	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 849	adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
 850}
 851
 852/**
 853 * iavf_get_num_vlans_added - get number of VLANs added
 854 * @adapter: board private structure
 855 */
 856u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
 857{
 858	return adapter->num_vlan_filters;
 
 859}
 860
 861/**
 862 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
 863 * @adapter: board private structure
 864 *
 865 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
 866 * do not impose a limit as that maintains current behavior and for
 867 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
 868 **/
 869static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
 870{
 871	/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
 872	 * never been a limit on the VF driver side
 873	 */
 874	if (VLAN_ALLOWED(adapter))
 875		return VLAN_N_VID;
 876	else if (VLAN_V2_ALLOWED(adapter))
 877		return adapter->vlan_v2_caps.filtering.max_filters;
 878
 879	return 0;
 880}
 881
 882/**
 883 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
 884 * @adapter: board private structure
 885 **/
 886static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
 887{
 888	if (iavf_get_num_vlans_added(adapter) <
 889	    iavf_get_max_vlans_allowed(adapter))
 890		return false;
 891
 892	return true;
 893}
 894
 895/**
 896 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
 897 * @netdev: network device struct
 898 * @proto: unused protocol data
 899 * @vid: VLAN tag
 900 **/
 901static int iavf_vlan_rx_add_vid(struct net_device *netdev,
 902				__always_unused __be16 proto, u16 vid)
 903{
 904	struct iavf_adapter *adapter = netdev_priv(netdev);
 905
 906	/* Do not track VLAN 0 filter, always added by the PF on VF init */
 907	if (!vid)
 908		return 0;
 909
 910	if (!VLAN_FILTERING_ALLOWED(adapter))
 911		return -EIO;
 912
 913	if (iavf_max_vlans_added(adapter)) {
 914		netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
 915			   iavf_get_max_vlans_allowed(adapter));
 916		return -EIO;
 917	}
 918
 919	if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
 920		return -ENOMEM;
 921
 922	return 0;
 923}
 924
 925/**
 926 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
 927 * @netdev: network device struct
 928 * @proto: unused protocol data
 929 * @vid: VLAN tag
 930 **/
 931static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
 932				 __always_unused __be16 proto, u16 vid)
 933{
 934	struct iavf_adapter *adapter = netdev_priv(netdev);
 935
 936	/* We do not track VLAN 0 filter */
 937	if (!vid)
 938		return 0;
 939
 940	iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
 
 
 
 
 
 941	return 0;
 942}
 943
 944/**
 945 * iavf_find_filter - Search filter list for specific mac filter
 946 * @adapter: board private structure
 947 * @macaddr: the MAC address
 948 *
 949 * Returns ptr to the filter object or NULL. Must be called while holding the
 950 * mac_vlan_list_lock.
 951 **/
 952static struct
 953iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
 954				  const u8 *macaddr)
 955{
 956	struct iavf_mac_filter *f;
 957
 958	if (!macaddr)
 959		return NULL;
 960
 961	list_for_each_entry(f, &adapter->mac_filter_list, list) {
 962		if (ether_addr_equal(macaddr, f->macaddr))
 963			return f;
 964	}
 965	return NULL;
 966}
 967
 968/**
 969 * iavf_add_filter - Add a mac filter to the filter list
 970 * @adapter: board private structure
 971 * @macaddr: the MAC address
 972 *
 973 * Returns ptr to the filter object or NULL when no memory available.
 974 **/
 975struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
 976					const u8 *macaddr)
 977{
 978	struct iavf_mac_filter *f;
 979
 980	if (!macaddr)
 981		return NULL;
 982
 983	f = iavf_find_filter(adapter, macaddr);
 984	if (!f) {
 985		f = kzalloc(sizeof(*f), GFP_ATOMIC);
 986		if (!f)
 987			return f;
 988
 989		ether_addr_copy(f->macaddr, macaddr);
 990
 991		list_add_tail(&f->list, &adapter->mac_filter_list);
 992		f->add = true;
 993		f->add_handled = false;
 994		f->is_new_mac = true;
 995		f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
 996		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
 997	} else {
 998		f->remove = false;
 999	}
1000
1001	return f;
1002}
1003
1004/**
1005 * iavf_replace_primary_mac - Replace current primary address
1006 * @adapter: board private structure
1007 * @new_mac: new MAC address to be applied
1008 *
1009 * Replace current dev_addr and send request to PF for removal of previous
1010 * primary MAC address filter and addition of new primary MAC filter.
1011 * Return 0 for success, -ENOMEM for failure.
1012 *
1013 * Do not call this with mac_vlan_list_lock!
1014 **/
1015static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1016				    const u8 *new_mac)
1017{
1018	struct iavf_hw *hw = &adapter->hw;
1019	struct iavf_mac_filter *new_f;
1020	struct iavf_mac_filter *old_f;
1021
1022	spin_lock_bh(&adapter->mac_vlan_list_lock);
1023
1024	new_f = iavf_add_filter(adapter, new_mac);
1025	if (!new_f) {
1026		spin_unlock_bh(&adapter->mac_vlan_list_lock);
1027		return -ENOMEM;
1028	}
1029
1030	old_f = iavf_find_filter(adapter, hw->mac.addr);
1031	if (old_f) {
1032		old_f->is_primary = false;
1033		old_f->remove = true;
1034		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1035	}
1036	/* Always send the request to add if changing primary MAC,
1037	 * even if filter is already present on the list
1038	 */
1039	new_f->is_primary = true;
1040	new_f->add = true;
1041	ether_addr_copy(hw->mac.addr, new_mac);
 
 
 
 
 
 
1042
1043	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1044
1045	/* schedule the watchdog task to immediately process the request */
1046	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_MAC_FILTER);
1047	return 0;
 
 
 
1048}
1049
1050/**
1051 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1052 * @netdev: network interface device structure
1053 * @macaddr: MAC address to set
1054 *
1055 * Returns true on success, false on failure
1056 */
1057static bool iavf_is_mac_set_handled(struct net_device *netdev,
1058				    const u8 *macaddr)
1059{
1060	struct iavf_adapter *adapter = netdev_priv(netdev);
1061	struct iavf_mac_filter *f;
1062	bool ret = false;
1063
1064	spin_lock_bh(&adapter->mac_vlan_list_lock);
1065
1066	f = iavf_find_filter(adapter, macaddr);
1067
1068	if (!f || (!f->add && f->add_handled))
1069		ret = true;
1070
1071	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1072
1073	return ret;
1074}
1075
1076/**
1077 * iavf_set_mac - NDO callback to set port MAC address
1078 * @netdev: network interface device structure
1079 * @p: pointer to an address structure
1080 *
1081 * Returns 0 on success, negative on failure
1082 */
1083static int iavf_set_mac(struct net_device *netdev, void *p)
1084{
1085	struct iavf_adapter *adapter = netdev_priv(netdev);
1086	struct sockaddr *addr = p;
1087	int ret;
1088
1089	if (!is_valid_ether_addr(addr->sa_data))
1090		return -EADDRNOTAVAIL;
1091
1092	ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1093
1094	if (ret)
1095		return ret;
1096
1097	ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1098					       iavf_is_mac_set_handled(netdev, addr->sa_data),
1099					       msecs_to_jiffies(2500));
1100
1101	/* If ret < 0 then it means wait was interrupted.
1102	 * If ret == 0 then it means we got a timeout.
1103	 * else it means we got response for set MAC from PF,
1104	 * check if netdev MAC was updated to requested MAC,
1105	 * if yes then set MAC succeeded otherwise it failed return -EACCES
1106	 */
1107	if (ret < 0)
1108		return ret;
1109
1110	if (!ret)
1111		return -EAGAIN;
1112
1113	if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1114		return -EACCES;
1115
1116	return 0;
1117}
1118
1119/**
1120 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1121 * @netdev: the netdevice
1122 * @addr: address to add
1123 *
1124 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1125 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1126 */
1127static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1128{
1129	struct iavf_adapter *adapter = netdev_priv(netdev);
1130
1131	if (iavf_add_filter(adapter, addr))
1132		return 0;
1133	else
1134		return -ENOMEM;
1135}
1136
1137/**
1138 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1139 * @netdev: the netdevice
1140 * @addr: address to add
1141 *
1142 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1143 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1144 */
1145static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1146{
1147	struct iavf_adapter *adapter = netdev_priv(netdev);
1148	struct iavf_mac_filter *f;
1149
1150	/* Under some circumstances, we might receive a request to delete
1151	 * our own device address from our uc list. Because we store the
1152	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1153	 * such requests and not delete our device address from this list.
1154	 */
1155	if (ether_addr_equal(addr, netdev->dev_addr))
1156		return 0;
1157
1158	f = iavf_find_filter(adapter, addr);
1159	if (f) {
1160		f->remove = true;
1161		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1162	}
1163	return 0;
1164}
1165
1166/**
1167 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1168 * @adapter: device specific adapter
1169 */
1170bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1171{
1172	return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1173		(IFF_PROMISC | IFF_ALLMULTI);
1174}
1175
1176/**
1177 * iavf_set_rx_mode - NDO callback to set the netdev filters
1178 * @netdev: network interface device structure
1179 **/
1180static void iavf_set_rx_mode(struct net_device *netdev)
1181{
1182	struct iavf_adapter *adapter = netdev_priv(netdev);
1183
1184	spin_lock_bh(&adapter->mac_vlan_list_lock);
1185	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1186	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1187	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1188
1189	spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1190	if (iavf_promiscuous_mode_changed(adapter))
1191		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1192	spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
 
 
 
 
 
 
 
 
 
1193}
1194
1195/**
1196 * iavf_napi_enable_all - enable NAPI on all queue vectors
1197 * @adapter: board private structure
1198 **/
1199static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1200{
1201	int q_idx;
1202	struct iavf_q_vector *q_vector;
1203	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1204
1205	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1206		struct napi_struct *napi;
1207
1208		q_vector = &adapter->q_vectors[q_idx];
1209		napi = &q_vector->napi;
1210		napi_enable(napi);
1211	}
1212}
1213
1214/**
1215 * iavf_napi_disable_all - disable NAPI on all queue vectors
1216 * @adapter: board private structure
1217 **/
1218static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1219{
1220	int q_idx;
1221	struct iavf_q_vector *q_vector;
1222	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1223
1224	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1225		q_vector = &adapter->q_vectors[q_idx];
1226		napi_disable(&q_vector->napi);
1227	}
1228}
1229
1230/**
1231 * iavf_configure - set up transmit and receive data structures
1232 * @adapter: board private structure
1233 **/
1234static void iavf_configure(struct iavf_adapter *adapter)
1235{
1236	struct net_device *netdev = adapter->netdev;
1237	int i;
1238
1239	iavf_set_rx_mode(netdev);
1240
1241	iavf_configure_tx(adapter);
1242	iavf_configure_rx(adapter);
1243	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1244
1245	for (i = 0; i < adapter->num_active_queues; i++) {
1246		struct iavf_ring *ring = &adapter->rx_rings[i];
1247
1248		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1249	}
1250}
1251
1252/**
1253 * iavf_up_complete - Finish the last steps of bringing up a connection
1254 * @adapter: board private structure
1255 *
1256 * Expects to be called while holding crit_lock.
1257 **/
1258static void iavf_up_complete(struct iavf_adapter *adapter)
1259{
1260	iavf_change_state(adapter, __IAVF_RUNNING);
1261	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1262
1263	iavf_napi_enable_all(adapter);
1264
1265	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ENABLE_QUEUES);
 
 
 
1266}
1267
1268/**
1269 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1270 * yet and mark other to be removed.
1271 * @adapter: board private structure
1272 **/
1273static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1274{
1275	struct iavf_vlan_filter *vlf, *vlftmp;
1276	struct iavf_mac_filter *f, *ftmp;
1277
1278	spin_lock_bh(&adapter->mac_vlan_list_lock);
1279	/* clear the sync flag on all filters */
1280	__dev_uc_unsync(adapter->netdev, NULL);
1281	__dev_mc_unsync(adapter->netdev, NULL);
1282
1283	/* remove all MAC filters */
1284	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1285				 list) {
1286		if (f->add) {
1287			list_del(&f->list);
1288			kfree(f);
1289		} else {
1290			f->remove = true;
1291		}
1292	}
1293
1294	/* disable all VLAN filters */
1295	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1296				 list)
1297		vlf->state = IAVF_VLAN_DISABLE;
1298
 
 
 
 
 
1299	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1300}
1301
1302/**
1303 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1304 * mark other to be removed.
1305 * @adapter: board private structure
1306 **/
1307static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1308{
1309	struct iavf_cloud_filter *cf, *cftmp;
1310
1311	/* remove all cloud filters */
1312	spin_lock_bh(&adapter->cloud_filter_list_lock);
1313	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1314				 list) {
1315		if (cf->add) {
1316			list_del(&cf->list);
1317			kfree(cf);
1318			adapter->num_cloud_filters--;
1319		} else {
1320			cf->del = true;
1321		}
1322	}
1323	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1324}
1325
1326/**
1327 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1328 * other to be removed.
1329 * @adapter: board private structure
1330 **/
1331static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1332{
1333	struct iavf_fdir_fltr *fdir;
1334
1335	/* remove all Flow Director filters */
1336	spin_lock_bh(&adapter->fdir_fltr_lock);
1337	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
 
1338		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1339			/* Cancel a request, keep filter as inactive */
1340			fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1341		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1342			 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1343			/* Disable filters which are active or have a pending
1344			 * request to PF to be added
1345			 */
1346			fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1347		}
1348	}
1349	spin_unlock_bh(&adapter->fdir_fltr_lock);
1350}
1351
1352/**
1353 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1354 * other to be removed.
1355 * @adapter: board private structure
1356 **/
1357static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1358{
1359	struct iavf_adv_rss *rss, *rsstmp;
1360
1361	/* remove all advance RSS configuration */
1362	spin_lock_bh(&adapter->adv_rss_lock);
1363	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1364				 list) {
1365		if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1366			list_del(&rss->list);
1367			kfree(rss);
1368		} else {
1369			rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1370		}
1371	}
1372	spin_unlock_bh(&adapter->adv_rss_lock);
1373}
1374
1375/**
1376 * iavf_down - Shutdown the connection processing
1377 * @adapter: board private structure
1378 *
1379 * Expects to be called while holding crit_lock.
1380 **/
1381void iavf_down(struct iavf_adapter *adapter)
1382{
1383	struct net_device *netdev = adapter->netdev;
1384
1385	if (adapter->state <= __IAVF_DOWN_PENDING)
1386		return;
1387
1388	netif_carrier_off(netdev);
1389	netif_tx_disable(netdev);
1390	adapter->link_up = false;
1391	iavf_napi_disable_all(adapter);
1392	iavf_irq_disable(adapter);
1393
1394	iavf_clear_mac_vlan_filters(adapter);
1395	iavf_clear_cloud_filters(adapter);
1396	iavf_clear_fdir_filters(adapter);
1397	iavf_clear_adv_rss_conf(adapter);
1398
1399	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1400		return;
1401
1402	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
1403		/* cancel any current operation */
1404		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1405		/* Schedule operations to close down the HW. Don't wait
1406		 * here for this to complete. The watchdog is still running
1407		 * and it will take care of this.
1408		 */
1409		if (!list_empty(&adapter->mac_filter_list))
1410			adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1411		if (!list_empty(&adapter->vlan_filter_list))
1412			adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1413		if (!list_empty(&adapter->cloud_filter_list))
1414			adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1415		if (!list_empty(&adapter->fdir_list_head))
1416			adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1417		if (!list_empty(&adapter->adv_rss_list_head))
1418			adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
 
1419	}
1420
1421	iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DISABLE_QUEUES);
1422}
1423
1424/**
1425 * iavf_acquire_msix_vectors - Setup the MSIX capability
1426 * @adapter: board private structure
1427 * @vectors: number of vectors to request
1428 *
1429 * Work with the OS to set up the MSIX vectors needed.
1430 *
1431 * Returns 0 on success, negative on failure
1432 **/
1433static int
1434iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1435{
1436	int err, vector_threshold;
1437
1438	/* We'll want at least 3 (vector_threshold):
1439	 * 0) Other (Admin Queue and link, mostly)
1440	 * 1) TxQ[0] Cleanup
1441	 * 2) RxQ[0] Cleanup
1442	 */
1443	vector_threshold = MIN_MSIX_COUNT;
1444
1445	/* The more we get, the more we will assign to Tx/Rx Cleanup
1446	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1447	 * Right now, we simply care about how many we'll get; we'll
1448	 * set them up later while requesting irq's.
1449	 */
1450	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1451				    vector_threshold, vectors);
1452	if (err < 0) {
1453		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1454		kfree(adapter->msix_entries);
1455		adapter->msix_entries = NULL;
1456		return err;
1457	}
1458
1459	/* Adjust for only the vectors we'll use, which is minimum
1460	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1461	 * vectors we were allocated.
1462	 */
1463	adapter->num_msix_vectors = err;
1464	return 0;
1465}
1466
1467/**
1468 * iavf_free_queues - Free memory for all rings
1469 * @adapter: board private structure to initialize
1470 *
1471 * Free all of the memory associated with queue pairs.
1472 **/
1473static void iavf_free_queues(struct iavf_adapter *adapter)
1474{
1475	if (!adapter->vsi_res)
1476		return;
1477	adapter->num_active_queues = 0;
1478	kfree(adapter->tx_rings);
1479	adapter->tx_rings = NULL;
1480	kfree(adapter->rx_rings);
1481	adapter->rx_rings = NULL;
1482}
1483
1484/**
1485 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1486 * @adapter: board private structure
1487 *
1488 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1489 * stripped in certain descriptor fields. Instead of checking the offload
1490 * capability bits in the hot path, cache the location the ring specific
1491 * flags.
1492 */
1493void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1494{
1495	int i;
1496
1497	for (i = 0; i < adapter->num_active_queues; i++) {
1498		struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1499		struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1500
1501		/* prevent multiple L2TAG bits being set after VFR */
1502		tx_ring->flags &=
1503			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1504			  IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1505		rx_ring->flags &=
1506			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1507			  IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1508
1509		if (VLAN_ALLOWED(adapter)) {
1510			tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1511			rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1512		} else if (VLAN_V2_ALLOWED(adapter)) {
1513			struct virtchnl_vlan_supported_caps *stripping_support;
1514			struct virtchnl_vlan_supported_caps *insertion_support;
1515
1516			stripping_support =
1517				&adapter->vlan_v2_caps.offloads.stripping_support;
1518			insertion_support =
1519				&adapter->vlan_v2_caps.offloads.insertion_support;
1520
1521			if (stripping_support->outer) {
1522				if (stripping_support->outer &
1523				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1524					rx_ring->flags |=
1525						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1526				else if (stripping_support->outer &
1527					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1528					rx_ring->flags |=
1529						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1530			} else if (stripping_support->inner) {
1531				if (stripping_support->inner &
1532				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1533					rx_ring->flags |=
1534						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1535				else if (stripping_support->inner &
1536					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1537					rx_ring->flags |=
1538						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1539			}
1540
1541			if (insertion_support->outer) {
1542				if (insertion_support->outer &
1543				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1544					tx_ring->flags |=
1545						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1546				else if (insertion_support->outer &
1547					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1548					tx_ring->flags |=
1549						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1550			} else if (insertion_support->inner) {
1551				if (insertion_support->inner &
1552				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1553					tx_ring->flags |=
1554						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1555				else if (insertion_support->inner &
1556					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1557					tx_ring->flags |=
1558						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1559			}
1560		}
1561	}
1562}
1563
1564/**
1565 * iavf_alloc_queues - Allocate memory for all rings
1566 * @adapter: board private structure to initialize
1567 *
1568 * We allocate one ring per queue at run-time since we don't know the
1569 * number of queues at compile-time.  The polling_netdev array is
1570 * intended for Multiqueue, but should work fine with a single queue.
1571 **/
1572static int iavf_alloc_queues(struct iavf_adapter *adapter)
1573{
1574	int i, num_active_queues;
1575
1576	/* If we're in reset reallocating queues we don't actually know yet for
1577	 * certain the PF gave us the number of queues we asked for but we'll
1578	 * assume it did.  Once basic reset is finished we'll confirm once we
1579	 * start negotiating config with PF.
1580	 */
1581	if (adapter->num_req_queues)
1582		num_active_queues = adapter->num_req_queues;
1583	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1584		 adapter->num_tc)
1585		num_active_queues = adapter->ch_config.total_qps;
1586	else
1587		num_active_queues = min_t(int,
1588					  adapter->vsi_res->num_queue_pairs,
1589					  (int)(num_online_cpus()));
1590
1591
1592	adapter->tx_rings = kcalloc(num_active_queues,
1593				    sizeof(struct iavf_ring), GFP_KERNEL);
1594	if (!adapter->tx_rings)
1595		goto err_out;
1596	adapter->rx_rings = kcalloc(num_active_queues,
1597				    sizeof(struct iavf_ring), GFP_KERNEL);
1598	if (!adapter->rx_rings)
1599		goto err_out;
1600
1601	for (i = 0; i < num_active_queues; i++) {
1602		struct iavf_ring *tx_ring;
1603		struct iavf_ring *rx_ring;
1604
1605		tx_ring = &adapter->tx_rings[i];
1606
1607		tx_ring->queue_index = i;
1608		tx_ring->netdev = adapter->netdev;
1609		tx_ring->dev = &adapter->pdev->dev;
1610		tx_ring->count = adapter->tx_desc_count;
1611		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1612		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1613			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1614
1615		rx_ring = &adapter->rx_rings[i];
1616		rx_ring->queue_index = i;
1617		rx_ring->netdev = adapter->netdev;
1618		rx_ring->dev = &adapter->pdev->dev;
1619		rx_ring->count = adapter->rx_desc_count;
1620		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1621	}
1622
1623	adapter->num_active_queues = num_active_queues;
1624
1625	iavf_set_queue_vlan_tag_loc(adapter);
1626
1627	return 0;
1628
1629err_out:
1630	iavf_free_queues(adapter);
1631	return -ENOMEM;
1632}
1633
1634/**
1635 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1636 * @adapter: board private structure to initialize
1637 *
1638 * Attempt to configure the interrupts using the best available
1639 * capabilities of the hardware and the kernel.
1640 **/
1641static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1642{
1643	int vector, v_budget;
1644	int pairs = 0;
1645	int err = 0;
1646
1647	if (!adapter->vsi_res) {
1648		err = -EIO;
1649		goto out;
1650	}
1651	pairs = adapter->num_active_queues;
1652
1653	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1654	 * us much good if we have more vectors than CPUs. However, we already
1655	 * limit the total number of queues by the number of CPUs so we do not
1656	 * need any further limiting here.
1657	 */
1658	v_budget = min_t(int, pairs + NONQ_VECS,
1659			 (int)adapter->vf_res->max_vectors);
1660
1661	adapter->msix_entries = kcalloc(v_budget,
1662					sizeof(struct msix_entry), GFP_KERNEL);
1663	if (!adapter->msix_entries) {
1664		err = -ENOMEM;
1665		goto out;
1666	}
1667
1668	for (vector = 0; vector < v_budget; vector++)
1669		adapter->msix_entries[vector].entry = vector;
1670
1671	err = iavf_acquire_msix_vectors(adapter, v_budget);
1672	if (!err)
1673		iavf_schedule_finish_config(adapter);
1674
1675out:
 
 
1676	return err;
1677}
1678
1679/**
1680 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1681 * @adapter: board private structure
1682 *
1683 * Return 0 on success, negative on failure
1684 **/
1685static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1686{
1687	struct iavf_aqc_get_set_rss_key_data *rss_key =
1688		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1689	struct iavf_hw *hw = &adapter->hw;
1690	enum iavf_status status;
1691
1692	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1693		/* bail because we already have a command pending */
1694		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1695			adapter->current_op);
1696		return -EBUSY;
1697	}
1698
1699	status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1700	if (status) {
1701		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1702			iavf_stat_str(hw, status),
1703			iavf_aq_str(hw, hw->aq.asq_last_status));
1704		return iavf_status_to_errno(status);
1705
1706	}
1707
1708	status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1709				     adapter->rss_lut, adapter->rss_lut_size);
1710	if (status) {
1711		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1712			iavf_stat_str(hw, status),
1713			iavf_aq_str(hw, hw->aq.asq_last_status));
1714		return iavf_status_to_errno(status);
1715	}
1716
1717	return 0;
1718
1719}
1720
1721/**
1722 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1723 * @adapter: board private structure
1724 *
1725 * Returns 0 on success, negative on failure
1726 **/
1727static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1728{
1729	struct iavf_hw *hw = &adapter->hw;
1730	u32 *dw;
1731	u16 i;
1732
1733	dw = (u32 *)adapter->rss_key;
1734	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1735		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1736
1737	dw = (u32 *)adapter->rss_lut;
1738	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1739		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1740
1741	iavf_flush(hw);
1742
1743	return 0;
1744}
1745
1746/**
1747 * iavf_config_rss - Configure RSS keys and lut
1748 * @adapter: board private structure
1749 *
1750 * Returns 0 on success, negative on failure
1751 **/
1752int iavf_config_rss(struct iavf_adapter *adapter)
1753{
1754
1755	if (RSS_PF(adapter)) {
1756		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1757					IAVF_FLAG_AQ_SET_RSS_KEY;
1758		return 0;
1759	} else if (RSS_AQ(adapter)) {
1760		return iavf_config_rss_aq(adapter);
1761	} else {
1762		return iavf_config_rss_reg(adapter);
1763	}
1764}
1765
1766/**
1767 * iavf_fill_rss_lut - Fill the lut with default values
1768 * @adapter: board private structure
1769 **/
1770static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1771{
1772	u16 i;
1773
1774	for (i = 0; i < adapter->rss_lut_size; i++)
1775		adapter->rss_lut[i] = i % adapter->num_active_queues;
1776}
1777
1778/**
1779 * iavf_init_rss - Prepare for RSS
1780 * @adapter: board private structure
1781 *
1782 * Return 0 on success, negative on failure
1783 **/
1784static int iavf_init_rss(struct iavf_adapter *adapter)
1785{
1786	struct iavf_hw *hw = &adapter->hw;
1787
1788	if (!RSS_PF(adapter)) {
1789		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1790		if (adapter->vf_res->vf_cap_flags &
1791		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1792			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1793		else
1794			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1795
1796		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1797		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1798	}
1799
1800	iavf_fill_rss_lut(adapter);
1801	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1802
1803	return iavf_config_rss(adapter);
1804}
1805
1806/**
1807 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1808 * @adapter: board private structure to initialize
1809 *
1810 * We allocate one q_vector per queue interrupt.  If allocation fails we
1811 * return -ENOMEM.
1812 **/
1813static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1814{
1815	int q_idx = 0, num_q_vectors;
1816	struct iavf_q_vector *q_vector;
1817
1818	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1819	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1820				     GFP_KERNEL);
1821	if (!adapter->q_vectors)
1822		return -ENOMEM;
1823
1824	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1825		q_vector = &adapter->q_vectors[q_idx];
1826		q_vector->adapter = adapter;
1827		q_vector->vsi = &adapter->vsi;
1828		q_vector->v_idx = q_idx;
1829		q_vector->reg_idx = q_idx;
1830		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1831		netif_napi_add(adapter->netdev, &q_vector->napi,
1832			       iavf_napi_poll);
1833	}
1834
1835	return 0;
1836}
1837
1838/**
1839 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1840 * @adapter: board private structure to initialize
1841 *
1842 * This function frees the memory allocated to the q_vectors.  In addition if
1843 * NAPI is enabled it will delete any references to the NAPI struct prior
1844 * to freeing the q_vector.
1845 **/
1846static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1847{
1848	int q_idx, num_q_vectors;
 
1849
1850	if (!adapter->q_vectors)
1851		return;
1852
1853	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 
1854
1855	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1856		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1857
1858		netif_napi_del(&q_vector->napi);
 
1859	}
1860	kfree(adapter->q_vectors);
1861	adapter->q_vectors = NULL;
1862}
1863
1864/**
1865 * iavf_reset_interrupt_capability - Reset MSIX setup
1866 * @adapter: board private structure
1867 *
1868 **/
1869static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1870{
1871	if (!adapter->msix_entries)
1872		return;
1873
1874	pci_disable_msix(adapter->pdev);
1875	kfree(adapter->msix_entries);
1876	adapter->msix_entries = NULL;
1877}
1878
1879/**
1880 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1881 * @adapter: board private structure to initialize
1882 *
1883 **/
1884static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1885{
1886	int err;
1887
1888	err = iavf_alloc_queues(adapter);
1889	if (err) {
1890		dev_err(&adapter->pdev->dev,
1891			"Unable to allocate memory for queues\n");
1892		goto err_alloc_queues;
1893	}
1894
 
1895	err = iavf_set_interrupt_capability(adapter);
 
1896	if (err) {
1897		dev_err(&adapter->pdev->dev,
1898			"Unable to setup interrupt capabilities\n");
1899		goto err_set_interrupt;
1900	}
1901
1902	err = iavf_alloc_q_vectors(adapter);
1903	if (err) {
1904		dev_err(&adapter->pdev->dev,
1905			"Unable to allocate memory for queue vectors\n");
1906		goto err_alloc_q_vectors;
1907	}
1908
1909	/* If we've made it so far while ADq flag being ON, then we haven't
1910	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1911	 * resources have been allocated in the reset path.
1912	 * Now we can truly claim that ADq is enabled.
1913	 */
1914	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1915	    adapter->num_tc)
1916		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1917			 adapter->num_tc);
1918
1919	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1920		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1921		 adapter->num_active_queues);
1922
1923	return 0;
1924err_alloc_q_vectors:
1925	iavf_reset_interrupt_capability(adapter);
1926err_set_interrupt:
1927	iavf_free_queues(adapter);
1928err_alloc_queues:
1929	return err;
1930}
1931
1932/**
1933 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does
1934 * @adapter: board private structure
1935 **/
1936static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter)
1937{
1938	iavf_free_q_vectors(adapter);
1939	iavf_reset_interrupt_capability(adapter);
1940	iavf_free_queues(adapter);
1941}
1942
1943/**
1944 * iavf_free_rss - Free memory used by RSS structs
1945 * @adapter: board private structure
1946 **/
1947static void iavf_free_rss(struct iavf_adapter *adapter)
1948{
1949	kfree(adapter->rss_key);
1950	adapter->rss_key = NULL;
1951
1952	kfree(adapter->rss_lut);
1953	adapter->rss_lut = NULL;
1954}
1955
1956/**
1957 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1958 * @adapter: board private structure
1959 * @running: true if adapter->state == __IAVF_RUNNING
1960 *
1961 * Returns 0 on success, negative on failure
1962 **/
1963static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1964{
1965	struct net_device *netdev = adapter->netdev;
1966	int err;
1967
1968	if (running)
1969		iavf_free_traffic_irqs(adapter);
1970	iavf_free_misc_irq(adapter);
1971	iavf_free_interrupt_scheme(adapter);
 
 
1972
1973	err = iavf_init_interrupt_scheme(adapter);
1974	if (err)
1975		goto err;
1976
1977	netif_tx_stop_all_queues(netdev);
1978
1979	err = iavf_request_misc_irq(adapter);
1980	if (err)
1981		goto err;
1982
1983	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1984
1985	iavf_map_rings_to_vectors(adapter);
1986err:
1987	return err;
1988}
1989
1990/**
1991 * iavf_finish_config - do all netdev work that needs RTNL
1992 * @work: our work_struct
1993 *
1994 * Do work that needs both RTNL and crit_lock.
1995 **/
1996static void iavf_finish_config(struct work_struct *work)
1997{
1998	struct iavf_adapter *adapter;
1999	int pairs, err;
2000
2001	adapter = container_of(work, struct iavf_adapter, finish_config);
2002
2003	/* Always take RTNL first to prevent circular lock dependency */
2004	rtnl_lock();
2005	mutex_lock(&adapter->crit_lock);
2006
2007	if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
2008	    adapter->netdev->reg_state == NETREG_REGISTERED &&
2009	    !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2010		netdev_update_features(adapter->netdev);
2011		adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2012	}
2013
2014	switch (adapter->state) {
2015	case __IAVF_DOWN:
2016		if (adapter->netdev->reg_state != NETREG_REGISTERED) {
2017			err = register_netdevice(adapter->netdev);
2018			if (err) {
2019				dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2020					err);
2021
2022				/* go back and try again.*/
2023				iavf_free_rss(adapter);
2024				iavf_free_misc_irq(adapter);
2025				iavf_reset_interrupt_capability(adapter);
2026				iavf_change_state(adapter,
2027						  __IAVF_INIT_CONFIG_ADAPTER);
2028				goto out;
2029			}
2030		}
2031
2032		/* Set the real number of queues when reset occurs while
2033		 * state == __IAVF_DOWN
2034		 */
2035		fallthrough;
2036	case __IAVF_RUNNING:
2037		pairs = adapter->num_active_queues;
2038		netif_set_real_num_rx_queues(adapter->netdev, pairs);
2039		netif_set_real_num_tx_queues(adapter->netdev, pairs);
2040		break;
2041
2042	default:
2043		break;
2044	}
2045
2046out:
2047	mutex_unlock(&adapter->crit_lock);
2048	rtnl_unlock();
2049}
2050
2051/**
2052 * iavf_schedule_finish_config - Set the flags and schedule a reset event
2053 * @adapter: board private structure
2054 **/
2055void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2056{
2057	if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2058		queue_work(adapter->wq, &adapter->finish_config);
2059}
2060
2061/**
2062 * iavf_process_aq_command - process aq_required flags
2063 * and sends aq command
2064 * @adapter: pointer to iavf adapter structure
2065 *
2066 * Returns 0 on success
2067 * Returns error code if no command was sent
2068 * or error code if the command failed.
2069 **/
2070static int iavf_process_aq_command(struct iavf_adapter *adapter)
2071{
2072	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2073		return iavf_send_vf_config_msg(adapter);
2074	if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2075		return iavf_send_vf_offload_vlan_v2_msg(adapter);
2076	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2077		iavf_disable_queues(adapter);
2078		return 0;
2079	}
2080
2081	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2082		iavf_map_queues(adapter);
2083		return 0;
2084	}
2085
2086	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2087		iavf_add_ether_addrs(adapter);
2088		return 0;
2089	}
2090
2091	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2092		iavf_add_vlans(adapter);
2093		return 0;
2094	}
2095
2096	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2097		iavf_del_ether_addrs(adapter);
2098		return 0;
2099	}
2100
2101	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2102		iavf_del_vlans(adapter);
2103		return 0;
2104	}
2105
2106	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2107		iavf_enable_vlan_stripping(adapter);
2108		return 0;
2109	}
2110
2111	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2112		iavf_disable_vlan_stripping(adapter);
2113		return 0;
2114	}
2115
2116	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2117		iavf_configure_queues(adapter);
2118		return 0;
2119	}
2120
2121	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2122		iavf_enable_queues(adapter);
2123		return 0;
2124	}
2125
2126	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2127		/* This message goes straight to the firmware, not the
2128		 * PF, so we don't have to set current_op as we will
2129		 * not get a response through the ARQ.
2130		 */
2131		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2132		return 0;
2133	}
2134	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2135		iavf_get_hena(adapter);
2136		return 0;
2137	}
2138	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2139		iavf_set_hena(adapter);
2140		return 0;
2141	}
2142	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2143		iavf_set_rss_key(adapter);
2144		return 0;
2145	}
2146	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2147		iavf_set_rss_lut(adapter);
2148		return 0;
2149	}
2150	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_HFUNC) {
2151		iavf_set_rss_hfunc(adapter);
 
 
2152		return 0;
2153	}
2154
2155	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2156		iavf_set_promiscuous(adapter);
 
 
 
 
 
2157		return 0;
2158	}
2159
2160	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2161		iavf_enable_channels(adapter);
2162		return 0;
2163	}
2164
2165	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2166		iavf_disable_channels(adapter);
2167		return 0;
2168	}
2169	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2170		iavf_add_cloud_filter(adapter);
2171		return 0;
2172	}
2173
2174	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2175		iavf_del_cloud_filter(adapter);
2176		return 0;
2177	}
2178	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2179		iavf_del_cloud_filter(adapter);
2180		return 0;
2181	}
2182	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2183		iavf_add_cloud_filter(adapter);
2184		return 0;
2185	}
2186	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2187		iavf_add_fdir_filter(adapter);
2188		return IAVF_SUCCESS;
2189	}
2190	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2191		iavf_del_fdir_filter(adapter);
2192		return IAVF_SUCCESS;
2193	}
2194	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2195		iavf_add_adv_rss_cfg(adapter);
2196		return 0;
2197	}
2198	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2199		iavf_del_adv_rss_cfg(adapter);
2200		return 0;
2201	}
2202	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2203		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2204		return 0;
2205	}
2206	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2207		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2208		return 0;
2209	}
2210	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2211		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2212		return 0;
2213	}
2214	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2215		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2216		return 0;
2217	}
2218	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2219		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2220		return 0;
2221	}
2222	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2223		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2224		return 0;
2225	}
2226	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2227		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2228		return 0;
2229	}
2230	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2231		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2232		return 0;
2233	}
2234
2235	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2236		iavf_request_stats(adapter);
2237		return 0;
2238	}
2239
2240	return -EAGAIN;
2241}
2242
2243/**
2244 * iavf_set_vlan_offload_features - set VLAN offload configuration
2245 * @adapter: board private structure
2246 * @prev_features: previous features used for comparison
2247 * @features: updated features used for configuration
2248 *
2249 * Set the aq_required bit(s) based on the requested features passed in to
2250 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2251 * the watchdog if any changes are requested to expedite the request via
2252 * virtchnl.
2253 **/
2254static void
2255iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2256			       netdev_features_t prev_features,
2257			       netdev_features_t features)
2258{
2259	bool enable_stripping = true, enable_insertion = true;
2260	u16 vlan_ethertype = 0;
2261	u64 aq_required = 0;
2262
2263	/* keep cases separate because one ethertype for offloads can be
2264	 * disabled at the same time as another is disabled, so check for an
2265	 * enabled ethertype first, then check for disabled. Default to
2266	 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2267	 * stripping.
2268	 */
2269	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2270		vlan_ethertype = ETH_P_8021AD;
2271	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2272		vlan_ethertype = ETH_P_8021Q;
2273	else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2274		vlan_ethertype = ETH_P_8021AD;
2275	else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2276		vlan_ethertype = ETH_P_8021Q;
2277	else
2278		vlan_ethertype = ETH_P_8021Q;
2279
2280	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2281		enable_stripping = false;
2282	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2283		enable_insertion = false;
2284
2285	if (VLAN_ALLOWED(adapter)) {
2286		/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2287		 * stripping via virtchnl. VLAN insertion can be toggled on the
2288		 * netdev, but it doesn't require a virtchnl message
2289		 */
2290		if (enable_stripping)
2291			aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2292		else
2293			aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2294
2295	} else if (VLAN_V2_ALLOWED(adapter)) {
2296		switch (vlan_ethertype) {
2297		case ETH_P_8021Q:
2298			if (enable_stripping)
2299				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2300			else
2301				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2302
2303			if (enable_insertion)
2304				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2305			else
2306				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2307			break;
2308		case ETH_P_8021AD:
2309			if (enable_stripping)
2310				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2311			else
2312				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2313
2314			if (enable_insertion)
2315				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2316			else
2317				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2318			break;
2319		}
2320	}
2321
2322	if (aq_required)
2323		iavf_schedule_aq_request(adapter, aq_required);
 
 
2324}
2325
2326/**
2327 * iavf_startup - first step of driver startup
2328 * @adapter: board private structure
2329 *
2330 * Function process __IAVF_STARTUP driver state.
2331 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2332 * when fails the state is changed to __IAVF_INIT_FAILED
2333 **/
2334static void iavf_startup(struct iavf_adapter *adapter)
2335{
2336	struct pci_dev *pdev = adapter->pdev;
2337	struct iavf_hw *hw = &adapter->hw;
2338	enum iavf_status status;
2339	int ret;
2340
2341	WARN_ON(adapter->state != __IAVF_STARTUP);
2342
2343	/* driver loaded, probe complete */
2344	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2345	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
 
 
 
 
 
2346
2347	ret = iavf_check_reset_complete(hw);
2348	if (ret) {
2349		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2350			 ret);
2351		goto err;
2352	}
2353	hw->aq.num_arq_entries = IAVF_AQ_LEN;
2354	hw->aq.num_asq_entries = IAVF_AQ_LEN;
2355	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2356	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2357
2358	status = iavf_init_adminq(hw);
2359	if (status) {
2360		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2361			status);
2362		goto err;
2363	}
2364	ret = iavf_send_api_ver(adapter);
2365	if (ret) {
2366		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2367		iavf_shutdown_adminq(hw);
2368		goto err;
2369	}
2370	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2371	return;
2372err:
2373	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2374}
2375
2376/**
2377 * iavf_init_version_check - second step of driver startup
2378 * @adapter: board private structure
2379 *
2380 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2381 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2382 * when fails the state is changed to __IAVF_INIT_FAILED
2383 **/
2384static void iavf_init_version_check(struct iavf_adapter *adapter)
2385{
2386	struct pci_dev *pdev = adapter->pdev;
2387	struct iavf_hw *hw = &adapter->hw;
2388	int err = -EAGAIN;
2389
2390	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2391
2392	if (!iavf_asq_done(hw)) {
2393		dev_err(&pdev->dev, "Admin queue command never completed\n");
2394		iavf_shutdown_adminq(hw);
2395		iavf_change_state(adapter, __IAVF_STARTUP);
2396		goto err;
2397	}
2398
2399	/* aq msg sent, awaiting reply */
2400	err = iavf_verify_api_ver(adapter);
2401	if (err) {
2402		if (err == -EALREADY)
2403			err = iavf_send_api_ver(adapter);
2404		else
2405			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2406				adapter->pf_version.major,
2407				adapter->pf_version.minor,
2408				VIRTCHNL_VERSION_MAJOR,
2409				VIRTCHNL_VERSION_MINOR);
2410		goto err;
2411	}
2412	err = iavf_send_vf_config_msg(adapter);
2413	if (err) {
2414		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2415			err);
2416		goto err;
2417	}
2418	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2419	return;
2420err:
2421	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2422}
2423
2424/**
2425 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2426 * @adapter: board private structure
2427 */
2428int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2429{
2430	int i, num_req_queues = adapter->num_req_queues;
2431	struct iavf_vsi *vsi = &adapter->vsi;
2432
2433	for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2434		if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2435			adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2436	}
2437	if (!adapter->vsi_res) {
2438		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2439		return -ENODEV;
2440	}
2441
2442	if (num_req_queues &&
2443	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
2444		/* Problem.  The PF gave us fewer queues than what we had
2445		 * negotiated in our request.  Need a reset to see if we can't
2446		 * get back to a working state.
2447		 */
2448		dev_err(&adapter->pdev->dev,
2449			"Requested %d queues, but PF only gave us %d.\n",
2450			num_req_queues,
2451			adapter->vsi_res->num_queue_pairs);
2452		adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2453		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2454		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2455
2456		return -EAGAIN;
2457	}
2458	adapter->num_req_queues = 0;
2459	adapter->vsi.id = adapter->vsi_res->vsi_id;
2460
2461	adapter->vsi.back = adapter;
2462	adapter->vsi.base_vector = 1;
2463	vsi->netdev = adapter->netdev;
2464	vsi->qs_handle = adapter->vsi_res->qset_handle;
2465	if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2466		adapter->rss_key_size = adapter->vf_res->rss_key_size;
2467		adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2468	} else {
2469		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2470		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2471	}
2472
2473	return 0;
2474}
2475
2476/**
2477 * iavf_init_get_resources - third step of driver startup
2478 * @adapter: board private structure
2479 *
2480 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2481 * finishes driver initialization procedure.
2482 * When success the state is changed to __IAVF_DOWN
2483 * when fails the state is changed to __IAVF_INIT_FAILED
2484 **/
2485static void iavf_init_get_resources(struct iavf_adapter *adapter)
2486{
2487	struct pci_dev *pdev = adapter->pdev;
2488	struct iavf_hw *hw = &adapter->hw;
2489	int err;
2490
2491	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2492	/* aq msg sent, awaiting reply */
2493	if (!adapter->vf_res) {
2494		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2495					  GFP_KERNEL);
2496		if (!adapter->vf_res) {
2497			err = -ENOMEM;
2498			goto err;
2499		}
2500	}
2501	err = iavf_get_vf_config(adapter);
2502	if (err == -EALREADY) {
2503		err = iavf_send_vf_config_msg(adapter);
2504		goto err;
2505	} else if (err == -EINVAL) {
2506		/* We only get -EINVAL if the device is in a very bad
2507		 * state or if we've been disabled for previous bad
2508		 * behavior. Either way, we're done now.
2509		 */
2510		iavf_shutdown_adminq(hw);
2511		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2512		return;
2513	}
2514	if (err) {
2515		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2516		goto err_alloc;
2517	}
2518
2519	err = iavf_parse_vf_resource_msg(adapter);
2520	if (err) {
2521		dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2522			err);
2523		goto err_alloc;
2524	}
2525	/* Some features require additional messages to negotiate extended
2526	 * capabilities. These are processed in sequence by the
2527	 * __IAVF_INIT_EXTENDED_CAPS driver state.
2528	 */
2529	adapter->extended_caps = IAVF_EXTENDED_CAPS;
2530
2531	iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2532	return;
2533
2534err_alloc:
2535	kfree(adapter->vf_res);
2536	adapter->vf_res = NULL;
2537err:
2538	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2539}
2540
2541/**
2542 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2543 * @adapter: board private structure
2544 *
2545 * Function processes send of the extended VLAN V2 capability message to the
2546 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2547 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2548 */
2549static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2550{
2551	int ret;
2552
2553	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2554
2555	ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2556	if (ret && ret == -EOPNOTSUPP) {
2557		/* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2558		 * we did not send the capability exchange message and do not
2559		 * expect a response.
2560		 */
2561		adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2562	}
2563
2564	/* We sent the message, so move on to the next step */
2565	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2566}
2567
2568/**
2569 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2570 * @adapter: board private structure
2571 *
2572 * Function processes receipt of the extended VLAN V2 capability message from
2573 * the PF.
2574 **/
2575static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2576{
2577	int ret;
2578
2579	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2580
2581	memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2582
2583	ret = iavf_get_vf_vlan_v2_caps(adapter);
2584	if (ret)
2585		goto err;
2586
2587	/* We've processed receipt of the VLAN V2 caps message */
2588	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2589	return;
2590err:
2591	/* We didn't receive a reply. Make sure we try sending again when
2592	 * __IAVF_INIT_FAILED attempts to recover.
2593	 */
2594	adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2595	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2596}
2597
2598/**
2599 * iavf_init_process_extended_caps - Part of driver startup
2600 * @adapter: board private structure
2601 *
2602 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2603 * handles negotiating capabilities for features which require an additional
2604 * message.
2605 *
2606 * Once all extended capabilities exchanges are finished, the driver will
2607 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2608 */
2609static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2610{
2611	WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2612
2613	/* Process capability exchange for VLAN V2 */
2614	if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2615		iavf_init_send_offload_vlan_v2_caps(adapter);
2616		return;
2617	} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2618		iavf_init_recv_offload_vlan_v2_caps(adapter);
2619		return;
2620	}
2621
2622	/* When we reach here, no further extended capabilities exchanges are
2623	 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2624	 */
2625	iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2626}
2627
2628/**
2629 * iavf_init_config_adapter - last part of driver startup
2630 * @adapter: board private structure
2631 *
2632 * After all the supported capabilities are negotiated, then the
2633 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2634 */
2635static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2636{
2637	struct net_device *netdev = adapter->netdev;
2638	struct pci_dev *pdev = adapter->pdev;
2639	int err;
2640
2641	WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2642
2643	if (iavf_process_config(adapter))
2644		goto err;
2645
2646	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2647
2648	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2649
2650	netdev->netdev_ops = &iavf_netdev_ops;
2651	iavf_set_ethtool_ops(netdev);
2652	netdev->watchdog_timeo = 5 * HZ;
2653
2654	/* MTU range: 68 - 9710 */
2655	netdev->min_mtu = ETH_MIN_MTU;
2656	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2657
2658	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2659		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2660			 adapter->hw.mac.addr);
2661		eth_hw_addr_random(netdev);
2662		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2663	} else {
2664		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2665		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2666	}
2667
2668	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2669	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2670	err = iavf_init_interrupt_scheme(adapter);
2671	if (err)
2672		goto err_sw_init;
2673	iavf_map_rings_to_vectors(adapter);
2674	if (adapter->vf_res->vf_cap_flags &
2675		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2676		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2677
2678	err = iavf_request_misc_irq(adapter);
2679	if (err)
2680		goto err_sw_init;
2681
2682	netif_carrier_off(netdev);
2683	adapter->link_up = false;
2684	netif_tx_stop_all_queues(netdev);
2685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2686	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2687	if (netdev->features & NETIF_F_GRO)
2688		dev_info(&pdev->dev, "GRO is enabled\n");
2689
2690	iavf_change_state(adapter, __IAVF_DOWN);
2691	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
 
2692
2693	iavf_misc_irq_enable(adapter);
2694	wake_up(&adapter->down_waitqueue);
2695
2696	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2697	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2698	if (!adapter->rss_key || !adapter->rss_lut) {
2699		err = -ENOMEM;
2700		goto err_mem;
2701	}
2702	if (RSS_AQ(adapter))
2703		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2704	else
2705		iavf_init_rss(adapter);
2706
2707	if (VLAN_V2_ALLOWED(adapter))
2708		/* request initial VLAN offload settings */
2709		iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2710
2711	iavf_schedule_finish_config(adapter);
2712	return;
2713
2714err_mem:
2715	iavf_free_rss(adapter);
 
2716	iavf_free_misc_irq(adapter);
2717err_sw_init:
2718	iavf_reset_interrupt_capability(adapter);
2719err:
2720	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2721}
2722
2723/**
2724 * iavf_watchdog_task - Periodic call-back task
2725 * @work: pointer to work_struct
2726 **/
2727static void iavf_watchdog_task(struct work_struct *work)
2728{
2729	struct iavf_adapter *adapter = container_of(work,
2730						    struct iavf_adapter,
2731						    watchdog_task.work);
2732	struct iavf_hw *hw = &adapter->hw;
2733	u32 reg_val;
2734
2735	if (!mutex_trylock(&adapter->crit_lock)) {
2736		if (adapter->state == __IAVF_REMOVE)
2737			return;
2738
2739		goto restart_watchdog;
2740	}
2741
 
 
 
 
 
 
 
 
 
2742	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2743		iavf_change_state(adapter, __IAVF_COMM_FAILED);
2744
 
 
 
 
 
 
 
 
2745	switch (adapter->state) {
2746	case __IAVF_STARTUP:
2747		iavf_startup(adapter);
2748		mutex_unlock(&adapter->crit_lock);
2749		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2750				   msecs_to_jiffies(30));
2751		return;
2752	case __IAVF_INIT_VERSION_CHECK:
2753		iavf_init_version_check(adapter);
2754		mutex_unlock(&adapter->crit_lock);
2755		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2756				   msecs_to_jiffies(30));
2757		return;
2758	case __IAVF_INIT_GET_RESOURCES:
2759		iavf_init_get_resources(adapter);
2760		mutex_unlock(&adapter->crit_lock);
2761		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2762				   msecs_to_jiffies(1));
2763		return;
2764	case __IAVF_INIT_EXTENDED_CAPS:
2765		iavf_init_process_extended_caps(adapter);
2766		mutex_unlock(&adapter->crit_lock);
2767		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2768				   msecs_to_jiffies(1));
2769		return;
2770	case __IAVF_INIT_CONFIG_ADAPTER:
2771		iavf_init_config_adapter(adapter);
2772		mutex_unlock(&adapter->crit_lock);
2773		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2774				   msecs_to_jiffies(1));
2775		return;
2776	case __IAVF_INIT_FAILED:
2777		if (test_bit(__IAVF_IN_REMOVE_TASK,
2778			     &adapter->crit_section)) {
2779			/* Do not update the state and do not reschedule
2780			 * watchdog task, iavf_remove should handle this state
2781			 * as it can loop forever
2782			 */
2783			mutex_unlock(&adapter->crit_lock);
2784			return;
2785		}
2786		if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2787			dev_err(&adapter->pdev->dev,
2788				"Failed to communicate with PF; waiting before retry\n");
2789			adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2790			iavf_shutdown_adminq(hw);
2791			mutex_unlock(&adapter->crit_lock);
2792			queue_delayed_work(adapter->wq,
2793					   &adapter->watchdog_task, (5 * HZ));
2794			return;
2795		}
2796		/* Try again from failed step*/
2797		iavf_change_state(adapter, adapter->last_state);
2798		mutex_unlock(&adapter->crit_lock);
2799		queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2800		return;
2801	case __IAVF_COMM_FAILED:
2802		if (test_bit(__IAVF_IN_REMOVE_TASK,
2803			     &adapter->crit_section)) {
2804			/* Set state to __IAVF_INIT_FAILED and perform remove
2805			 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2806			 * doesn't bring the state back to __IAVF_COMM_FAILED.
2807			 */
2808			iavf_change_state(adapter, __IAVF_INIT_FAILED);
2809			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2810			mutex_unlock(&adapter->crit_lock);
2811			return;
2812		}
2813		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2814			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2815		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2816		    reg_val == VIRTCHNL_VFR_COMPLETED) {
2817			/* A chance for redemption! */
2818			dev_err(&adapter->pdev->dev,
2819				"Hardware came out of reset. Attempting reinit.\n");
2820			/* When init task contacts the PF and
2821			 * gets everything set up again, it'll restart the
2822			 * watchdog for us. Down, boy. Sit. Stay. Woof.
2823			 */
2824			iavf_change_state(adapter, __IAVF_STARTUP);
2825			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2826		}
2827		adapter->aq_required = 0;
2828		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2829		mutex_unlock(&adapter->crit_lock);
2830		queue_delayed_work(adapter->wq,
2831				   &adapter->watchdog_task,
2832				   msecs_to_jiffies(10));
2833		return;
2834	case __IAVF_RESETTING:
2835		mutex_unlock(&adapter->crit_lock);
2836		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2837				   HZ * 2);
2838		return;
2839	case __IAVF_DOWN:
2840	case __IAVF_DOWN_PENDING:
2841	case __IAVF_TESTING:
2842	case __IAVF_RUNNING:
2843		if (adapter->current_op) {
2844			if (!iavf_asq_done(hw)) {
2845				dev_dbg(&adapter->pdev->dev,
2846					"Admin queue timeout\n");
2847				iavf_send_api_ver(adapter);
2848			}
2849		} else {
2850			int ret = iavf_process_aq_command(adapter);
2851
2852			/* An error will be returned if no commands were
2853			 * processed; use this opportunity to update stats
2854			 * if the error isn't -ENOTSUPP
2855			 */
2856			if (ret && ret != -EOPNOTSUPP &&
2857			    adapter->state == __IAVF_RUNNING)
2858				iavf_request_stats(adapter);
2859		}
2860		if (adapter->state == __IAVF_RUNNING)
2861			iavf_detect_recover_hung(&adapter->vsi);
2862		break;
2863	case __IAVF_REMOVE:
2864	default:
2865		mutex_unlock(&adapter->crit_lock);
2866		return;
2867	}
2868
2869	/* check for hw reset */
2870	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2871	if (!reg_val) {
 
2872		adapter->aq_required = 0;
2873		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2874		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2875		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2876		mutex_unlock(&adapter->crit_lock);
2877		queue_delayed_work(adapter->wq,
2878				   &adapter->watchdog_task, HZ * 2);
2879		return;
2880	}
2881
 
2882	mutex_unlock(&adapter->crit_lock);
2883restart_watchdog:
2884	if (adapter->state >= __IAVF_DOWN)
2885		queue_work(adapter->wq, &adapter->adminq_task);
2886	if (adapter->aq_required)
2887		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2888				   msecs_to_jiffies(20));
2889	else
2890		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2891				   HZ * 2);
2892}
2893
2894/**
2895 * iavf_disable_vf - disable VF
2896 * @adapter: board private structure
2897 *
2898 * Set communication failed flag and free all resources.
2899 * NOTE: This function is expected to be called with crit_lock being held.
2900 **/
2901static void iavf_disable_vf(struct iavf_adapter *adapter)
2902{
2903	struct iavf_mac_filter *f, *ftmp;
2904	struct iavf_vlan_filter *fv, *fvtmp;
2905	struct iavf_cloud_filter *cf, *cftmp;
2906
2907	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2908
2909	/* We don't use netif_running() because it may be true prior to
2910	 * ndo_open() returning, so we can't assume it means all our open
2911	 * tasks have finished, since we're not holding the rtnl_lock here.
2912	 */
2913	if (adapter->state == __IAVF_RUNNING) {
2914		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2915		netif_carrier_off(adapter->netdev);
2916		netif_tx_disable(adapter->netdev);
2917		adapter->link_up = false;
2918		iavf_napi_disable_all(adapter);
2919		iavf_irq_disable(adapter);
2920		iavf_free_traffic_irqs(adapter);
2921		iavf_free_all_tx_resources(adapter);
2922		iavf_free_all_rx_resources(adapter);
2923	}
2924
2925	spin_lock_bh(&adapter->mac_vlan_list_lock);
2926
2927	/* Delete all of the filters */
2928	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2929		list_del(&f->list);
2930		kfree(f);
2931	}
2932
2933	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2934		list_del(&fv->list);
2935		kfree(fv);
2936	}
2937	adapter->num_vlan_filters = 0;
2938
2939	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2940
2941	spin_lock_bh(&adapter->cloud_filter_list_lock);
2942	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2943		list_del(&cf->list);
2944		kfree(cf);
2945		adapter->num_cloud_filters--;
2946	}
2947	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2948
2949	iavf_free_misc_irq(adapter);
2950	iavf_free_interrupt_scheme(adapter);
 
 
2951	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2952	iavf_shutdown_adminq(&adapter->hw);
2953	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2954	iavf_change_state(adapter, __IAVF_DOWN);
2955	wake_up(&adapter->down_waitqueue);
2956	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2957}
2958
2959/**
2960 * iavf_reset_task - Call-back task to handle hardware reset
2961 * @work: pointer to work_struct
2962 *
2963 * During reset we need to shut down and reinitialize the admin queue
2964 * before we can use it to communicate with the PF again. We also clear
2965 * and reinit the rings because that context is lost as well.
2966 **/
2967static void iavf_reset_task(struct work_struct *work)
2968{
2969	struct iavf_adapter *adapter = container_of(work,
2970						      struct iavf_adapter,
2971						      reset_task);
2972	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2973	struct net_device *netdev = adapter->netdev;
2974	struct iavf_hw *hw = &adapter->hw;
2975	struct iavf_mac_filter *f, *ftmp;
2976	struct iavf_cloud_filter *cf;
2977	enum iavf_status status;
2978	u32 reg_val;
2979	int i = 0, err;
2980	bool running;
2981
 
 
 
 
 
2982	/* When device is being removed it doesn't make sense to run the reset
2983	 * task, just return in such a case.
2984	 */
2985	if (!mutex_trylock(&adapter->crit_lock)) {
2986		if (adapter->state != __IAVF_REMOVE)
2987			queue_work(adapter->wq, &adapter->reset_task);
2988
2989		return;
2990	}
2991
 
 
 
 
 
 
 
 
 
 
2992	iavf_misc_irq_disable(adapter);
2993	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2994		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2995		/* Restart the AQ here. If we have been reset but didn't
2996		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2997		 */
2998		iavf_shutdown_adminq(hw);
2999		iavf_init_adminq(hw);
3000		iavf_request_reset(adapter);
3001	}
3002	adapter->flags |= IAVF_FLAG_RESET_PENDING;
3003
3004	/* poll until we see the reset actually happen */
3005	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
3006		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
3007			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
3008		if (!reg_val)
3009			break;
3010		usleep_range(5000, 10000);
3011	}
3012	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3013		dev_info(&adapter->pdev->dev, "Never saw reset\n");
3014		goto continue_reset; /* act like the reset happened */
3015	}
3016
3017	/* wait until the reset is complete and the PF is responding to us */
3018	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3019		/* sleep first to make sure a minimum wait time is met */
3020		msleep(IAVF_RESET_WAIT_MS);
3021
3022		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3023			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3024		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3025			break;
3026	}
3027
3028	pci_set_master(adapter->pdev);
3029	pci_restore_msi_state(adapter->pdev);
3030
3031	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3032		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3033			reg_val);
3034		iavf_disable_vf(adapter);
 
3035		mutex_unlock(&adapter->crit_lock);
 
 
 
 
 
3036		return; /* Do not attempt to reinit. It's dead, Jim. */
3037	}
3038
3039continue_reset:
3040	/* We don't use netif_running() because it may be true prior to
3041	 * ndo_open() returning, so we can't assume it means all our open
3042	 * tasks have finished, since we're not holding the rtnl_lock here.
3043	 */
3044	running = adapter->state == __IAVF_RUNNING;
3045
3046	if (running) {
3047		netif_carrier_off(netdev);
3048		netif_tx_stop_all_queues(netdev);
3049		adapter->link_up = false;
3050		iavf_napi_disable_all(adapter);
3051	}
3052	iavf_irq_disable(adapter);
3053
3054	iavf_change_state(adapter, __IAVF_RESETTING);
3055	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3056
3057	/* free the Tx/Rx rings and descriptors, might be better to just
3058	 * re-use them sometime in the future
3059	 */
3060	iavf_free_all_rx_resources(adapter);
3061	iavf_free_all_tx_resources(adapter);
3062
3063	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3064	/* kill and reinit the admin queue */
3065	iavf_shutdown_adminq(hw);
3066	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3067	status = iavf_init_adminq(hw);
3068	if (status) {
3069		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3070			 status);
3071		goto reset_err;
3072	}
3073	adapter->aq_required = 0;
3074
3075	if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3076	    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3077		err = iavf_reinit_interrupt_scheme(adapter, running);
3078		if (err)
3079			goto reset_err;
3080	}
3081
3082	if (RSS_AQ(adapter)) {
3083		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3084	} else {
3085		err = iavf_init_rss(adapter);
3086		if (err)
3087			goto reset_err;
3088	}
3089
3090	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3091	/* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3092	 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3093	 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3094	 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3095	 * been successfully sent and negotiated
3096	 */
3097	adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3098	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3099
3100	spin_lock_bh(&adapter->mac_vlan_list_lock);
3101
3102	/* Delete filter for the current MAC address, it could have
3103	 * been changed by the PF via administratively set MAC.
3104	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3105	 */
3106	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3107		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3108			list_del(&f->list);
3109			kfree(f);
3110		}
3111	}
3112	/* re-add all MAC filters */
3113	list_for_each_entry(f, &adapter->mac_filter_list, list) {
3114		f->add = true;
3115	}
3116	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3117
3118	/* check if TCs are running and re-add all cloud filters */
3119	spin_lock_bh(&adapter->cloud_filter_list_lock);
3120	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3121	    adapter->num_tc) {
3122		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3123			cf->add = true;
3124		}
3125	}
3126	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3127
3128	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3129	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3130	iavf_misc_irq_enable(adapter);
3131
 
 
 
3132	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3133
3134	/* We were running when the reset started, so we need to restore some
3135	 * state here.
3136	 */
3137	if (running) {
3138		/* allocate transmit descriptors */
3139		err = iavf_setup_all_tx_resources(adapter);
3140		if (err)
3141			goto reset_err;
3142
3143		/* allocate receive descriptors */
3144		err = iavf_setup_all_rx_resources(adapter);
3145		if (err)
3146			goto reset_err;
3147
3148		if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3149		    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3150			err = iavf_request_traffic_irqs(adapter, netdev->name);
3151			if (err)
3152				goto reset_err;
3153
3154			adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3155		}
3156
3157		iavf_configure(adapter);
3158
3159		/* iavf_up_complete() will switch device back
3160		 * to __IAVF_RUNNING
3161		 */
3162		iavf_up_complete(adapter);
3163
3164		iavf_irq_enable(adapter, true);
3165	} else {
3166		iavf_change_state(adapter, __IAVF_DOWN);
3167		wake_up(&adapter->down_waitqueue);
3168	}
3169
3170	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3171
3172	wake_up(&adapter->reset_waitqueue);
3173	mutex_unlock(&adapter->crit_lock);
3174
3175	return;
3176reset_err:
3177	if (running) {
3178		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3179		iavf_free_traffic_irqs(adapter);
3180	}
3181	iavf_disable_vf(adapter);
3182
 
3183	mutex_unlock(&adapter->crit_lock);
 
 
 
 
 
 
 
 
 
 
3184	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
 
 
 
 
3185}
3186
3187/**
3188 * iavf_adminq_task - worker thread to clean the admin queue
3189 * @work: pointer to work_struct containing our data
3190 **/
3191static void iavf_adminq_task(struct work_struct *work)
3192{
3193	struct iavf_adapter *adapter =
3194		container_of(work, struct iavf_adapter, adminq_task);
3195	struct iavf_hw *hw = &adapter->hw;
3196	struct iavf_arq_event_info event;
3197	enum virtchnl_ops v_op;
3198	enum iavf_status ret, v_ret;
3199	u32 val, oldval;
3200	u16 pending;
3201
 
 
 
3202	if (!mutex_trylock(&adapter->crit_lock)) {
3203		if (adapter->state == __IAVF_REMOVE)
3204			return;
3205
3206		queue_work(adapter->wq, &adapter->adminq_task);
3207		goto out;
3208	}
3209
3210	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3211		goto unlock;
3212
3213	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3214	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3215	if (!event.msg_buf)
3216		goto unlock;
3217
3218	do {
3219		ret = iavf_clean_arq_element(hw, &event, &pending);
3220		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3221		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3222
3223		if (ret || !v_op)
3224			break; /* No event to process or error cleaning ARQ */
3225
3226		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3227					 event.msg_len);
3228		if (pending != 0)
3229			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3230	} while (pending);
 
3231
3232	if (iavf_is_reset_in_progress(adapter))
 
 
3233		goto freedom;
3234
3235	/* check for error indications */
3236	val = rd32(hw, IAVF_VF_ARQLEN1);
3237	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3238		goto freedom;
3239	oldval = val;
3240	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3241		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3242		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3243	}
3244	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3245		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3246		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3247	}
3248	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3249		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3250		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3251	}
3252	if (oldval != val)
3253		wr32(hw, IAVF_VF_ARQLEN1, val);
3254
3255	val = rd32(hw, IAVF_VF_ATQLEN1);
3256	oldval = val;
3257	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3258		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3259		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3260	}
3261	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3262		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3263		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3264	}
3265	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3266		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3267		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3268	}
3269	if (oldval != val)
3270		wr32(hw, IAVF_VF_ATQLEN1, val);
3271
3272freedom:
3273	kfree(event.msg_buf);
3274unlock:
3275	mutex_unlock(&adapter->crit_lock);
3276out:
3277	/* re-enable Admin queue interrupt cause */
3278	iavf_misc_irq_enable(adapter);
3279}
3280
3281/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3282 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3283 * @adapter: board private structure
3284 *
3285 * Free all transmit software resources
3286 **/
3287void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3288{
3289	int i;
3290
3291	if (!adapter->tx_rings)
3292		return;
3293
3294	for (i = 0; i < adapter->num_active_queues; i++)
3295		if (adapter->tx_rings[i].desc)
3296			iavf_free_tx_resources(&adapter->tx_rings[i]);
3297}
3298
3299/**
3300 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3301 * @adapter: board private structure
3302 *
3303 * If this function returns with an error, then it's possible one or
3304 * more of the rings is populated (while the rest are not).  It is the
3305 * callers duty to clean those orphaned rings.
3306 *
3307 * Return 0 on success, negative on failure
3308 **/
3309static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3310{
3311	int i, err = 0;
3312
3313	for (i = 0; i < adapter->num_active_queues; i++) {
3314		adapter->tx_rings[i].count = adapter->tx_desc_count;
3315		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3316		if (!err)
3317			continue;
3318		dev_err(&adapter->pdev->dev,
3319			"Allocation for Tx Queue %u failed\n", i);
3320		break;
3321	}
3322
3323	return err;
3324}
3325
3326/**
3327 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3328 * @adapter: board private structure
3329 *
3330 * If this function returns with an error, then it's possible one or
3331 * more of the rings is populated (while the rest are not).  It is the
3332 * callers duty to clean those orphaned rings.
3333 *
3334 * Return 0 on success, negative on failure
3335 **/
3336static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3337{
3338	int i, err = 0;
3339
3340	for (i = 0; i < adapter->num_active_queues; i++) {
3341		adapter->rx_rings[i].count = adapter->rx_desc_count;
3342		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3343		if (!err)
3344			continue;
3345		dev_err(&adapter->pdev->dev,
3346			"Allocation for Rx Queue %u failed\n", i);
3347		break;
3348	}
3349	return err;
3350}
3351
3352/**
3353 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3354 * @adapter: board private structure
3355 *
3356 * Free all receive software resources
3357 **/
3358void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3359{
3360	int i;
3361
3362	if (!adapter->rx_rings)
3363		return;
3364
3365	for (i = 0; i < adapter->num_active_queues; i++)
3366		if (adapter->rx_rings[i].desc)
3367			iavf_free_rx_resources(&adapter->rx_rings[i]);
3368}
3369
3370/**
3371 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3372 * @adapter: board private structure
3373 * @max_tx_rate: max Tx bw for a tc
3374 **/
3375static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3376				      u64 max_tx_rate)
3377{
3378	int speed = 0, ret = 0;
3379
3380	if (ADV_LINK_SUPPORT(adapter)) {
3381		if (adapter->link_speed_mbps < U32_MAX) {
3382			speed = adapter->link_speed_mbps;
3383			goto validate_bw;
3384		} else {
3385			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3386			return -EINVAL;
3387		}
3388	}
3389
3390	switch (adapter->link_speed) {
3391	case VIRTCHNL_LINK_SPEED_40GB:
3392		speed = SPEED_40000;
3393		break;
3394	case VIRTCHNL_LINK_SPEED_25GB:
3395		speed = SPEED_25000;
3396		break;
3397	case VIRTCHNL_LINK_SPEED_20GB:
3398		speed = SPEED_20000;
3399		break;
3400	case VIRTCHNL_LINK_SPEED_10GB:
3401		speed = SPEED_10000;
3402		break;
3403	case VIRTCHNL_LINK_SPEED_5GB:
3404		speed = SPEED_5000;
3405		break;
3406	case VIRTCHNL_LINK_SPEED_2_5GB:
3407		speed = SPEED_2500;
3408		break;
3409	case VIRTCHNL_LINK_SPEED_1GB:
3410		speed = SPEED_1000;
3411		break;
3412	case VIRTCHNL_LINK_SPEED_100MB:
3413		speed = SPEED_100;
3414		break;
3415	default:
3416		break;
3417	}
3418
3419validate_bw:
3420	if (max_tx_rate > speed) {
3421		dev_err(&adapter->pdev->dev,
3422			"Invalid tx rate specified\n");
3423		ret = -EINVAL;
3424	}
3425
3426	return ret;
3427}
3428
3429/**
3430 * iavf_validate_ch_config - validate queue mapping info
3431 * @adapter: board private structure
3432 * @mqprio_qopt: queue parameters
3433 *
3434 * This function validates if the config provided by the user to
3435 * configure queue channels is valid or not. Returns 0 on a valid
3436 * config.
3437 **/
3438static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3439				   struct tc_mqprio_qopt_offload *mqprio_qopt)
3440{
3441	u64 total_max_rate = 0;
3442	u32 tx_rate_rem = 0;
3443	int i, num_qps = 0;
3444	u64 tx_rate = 0;
3445	int ret = 0;
3446
3447	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3448	    mqprio_qopt->qopt.num_tc < 1)
3449		return -EINVAL;
3450
3451	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3452		if (!mqprio_qopt->qopt.count[i] ||
3453		    mqprio_qopt->qopt.offset[i] != num_qps)
3454			return -EINVAL;
3455		if (mqprio_qopt->min_rate[i]) {
3456			dev_err(&adapter->pdev->dev,
3457				"Invalid min tx rate (greater than 0) specified for TC%d\n",
3458				i);
3459			return -EINVAL;
3460		}
3461
3462		/* convert to Mbps */
3463		tx_rate = div_u64(mqprio_qopt->max_rate[i],
3464				  IAVF_MBPS_DIVISOR);
3465
3466		if (mqprio_qopt->max_rate[i] &&
3467		    tx_rate < IAVF_MBPS_QUANTA) {
3468			dev_err(&adapter->pdev->dev,
3469				"Invalid max tx rate for TC%d, minimum %dMbps\n",
3470				i, IAVF_MBPS_QUANTA);
3471			return -EINVAL;
3472		}
3473
3474		(void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3475
3476		if (tx_rate_rem != 0) {
3477			dev_err(&adapter->pdev->dev,
3478				"Invalid max tx rate for TC%d, not divisible by %d\n",
3479				i, IAVF_MBPS_QUANTA);
3480			return -EINVAL;
3481		}
3482
3483		total_max_rate += tx_rate;
3484		num_qps += mqprio_qopt->qopt.count[i];
3485	}
3486	if (num_qps > adapter->num_active_queues) {
3487		dev_err(&adapter->pdev->dev,
3488			"Cannot support requested number of queues\n");
3489		return -EINVAL;
3490	}
3491
3492	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3493	return ret;
3494}
3495
3496/**
3497 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3498 * @adapter: board private structure
3499 **/
3500static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3501{
3502	struct iavf_cloud_filter *cf, *cftmp;
3503
3504	spin_lock_bh(&adapter->cloud_filter_list_lock);
3505	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3506				 list) {
3507		list_del(&cf->list);
3508		kfree(cf);
3509		adapter->num_cloud_filters--;
3510	}
3511	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3512}
3513
3514/**
3515 * __iavf_setup_tc - configure multiple traffic classes
3516 * @netdev: network interface device structure
3517 * @type_data: tc offload data
3518 *
3519 * This function processes the config information provided by the
3520 * user to configure traffic classes/queue channels and packages the
3521 * information to request the PF to setup traffic classes.
3522 *
3523 * Returns 0 on success.
3524 **/
3525static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3526{
3527	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3528	struct iavf_adapter *adapter = netdev_priv(netdev);
3529	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3530	u8 num_tc = 0, total_qps = 0;
3531	int ret = 0, netdev_tc = 0;
3532	u64 max_tx_rate;
3533	u16 mode;
3534	int i;
3535
3536	num_tc = mqprio_qopt->qopt.num_tc;
3537	mode = mqprio_qopt->mode;
3538
3539	/* delete queue_channel */
3540	if (!mqprio_qopt->qopt.hw) {
3541		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3542			/* reset the tc configuration */
3543			netdev_reset_tc(netdev);
3544			adapter->num_tc = 0;
3545			netif_tx_stop_all_queues(netdev);
3546			netif_tx_disable(netdev);
3547			iavf_del_all_cloud_filters(adapter);
3548			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3549			total_qps = adapter->orig_num_active_queues;
3550			goto exit;
3551		} else {
3552			return -EINVAL;
3553		}
3554	}
3555
3556	/* add queue channel */
3557	if (mode == TC_MQPRIO_MODE_CHANNEL) {
3558		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3559			dev_err(&adapter->pdev->dev, "ADq not supported\n");
3560			return -EOPNOTSUPP;
3561		}
3562		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3563			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3564			return -EINVAL;
3565		}
3566
3567		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3568		if (ret)
3569			return ret;
3570		/* Return if same TC config is requested */
3571		if (adapter->num_tc == num_tc)
3572			return 0;
3573		adapter->num_tc = num_tc;
3574
3575		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3576			if (i < num_tc) {
3577				adapter->ch_config.ch_info[i].count =
3578					mqprio_qopt->qopt.count[i];
3579				adapter->ch_config.ch_info[i].offset =
3580					mqprio_qopt->qopt.offset[i];
3581				total_qps += mqprio_qopt->qopt.count[i];
3582				max_tx_rate = mqprio_qopt->max_rate[i];
3583				/* convert to Mbps */
3584				max_tx_rate = div_u64(max_tx_rate,
3585						      IAVF_MBPS_DIVISOR);
3586				adapter->ch_config.ch_info[i].max_tx_rate =
3587					max_tx_rate;
3588			} else {
3589				adapter->ch_config.ch_info[i].count = 1;
3590				adapter->ch_config.ch_info[i].offset = 0;
3591			}
3592		}
3593
3594		/* Take snapshot of original config such as "num_active_queues"
3595		 * It is used later when delete ADQ flow is exercised, so that
3596		 * once delete ADQ flow completes, VF shall go back to its
3597		 * original queue configuration
3598		 */
3599
3600		adapter->orig_num_active_queues = adapter->num_active_queues;
3601
3602		/* Store queue info based on TC so that VF gets configured
3603		 * with correct number of queues when VF completes ADQ config
3604		 * flow
3605		 */
3606		adapter->ch_config.total_qps = total_qps;
3607
3608		netif_tx_stop_all_queues(netdev);
3609		netif_tx_disable(netdev);
3610		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3611		netdev_reset_tc(netdev);
3612		/* Report the tc mapping up the stack */
3613		netdev_set_num_tc(adapter->netdev, num_tc);
3614		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3615			u16 qcount = mqprio_qopt->qopt.count[i];
3616			u16 qoffset = mqprio_qopt->qopt.offset[i];
3617
3618			if (i < num_tc)
3619				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3620						    qoffset);
3621		}
3622	}
3623exit:
3624	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3625		return 0;
3626
3627	netif_set_real_num_rx_queues(netdev, total_qps);
3628	netif_set_real_num_tx_queues(netdev, total_qps);
3629
3630	return ret;
3631}
3632
3633/**
3634 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3635 * @adapter: board private structure
3636 * @f: pointer to struct flow_cls_offload
3637 * @filter: pointer to cloud filter structure
3638 */
3639static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3640				 struct flow_cls_offload *f,
3641				 struct iavf_cloud_filter *filter)
3642{
3643	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3644	struct flow_dissector *dissector = rule->match.dissector;
3645	u16 n_proto_mask = 0;
3646	u16 n_proto_key = 0;
3647	u8 field_flags = 0;
3648	u16 addr_type = 0;
3649	u16 n_proto = 0;
3650	int i = 0;
3651	struct virtchnl_filter *vf = &filter->f;
3652
3653	if (dissector->used_keys &
3654	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3655	      BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3656	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3657	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3658	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3659	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3660	      BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3661	      BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3662		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3663			dissector->used_keys);
3664		return -EOPNOTSUPP;
3665	}
3666
3667	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3668		struct flow_match_enc_keyid match;
3669
3670		flow_rule_match_enc_keyid(rule, &match);
3671		if (match.mask->keyid != 0)
3672			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3673	}
3674
3675	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3676		struct flow_match_basic match;
3677
3678		flow_rule_match_basic(rule, &match);
3679		n_proto_key = ntohs(match.key->n_proto);
3680		n_proto_mask = ntohs(match.mask->n_proto);
3681
3682		if (n_proto_key == ETH_P_ALL) {
3683			n_proto_key = 0;
3684			n_proto_mask = 0;
3685		}
3686		n_proto = n_proto_key & n_proto_mask;
3687		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3688			return -EINVAL;
3689		if (n_proto == ETH_P_IPV6) {
3690			/* specify flow type as TCP IPv6 */
3691			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3692		}
3693
3694		if (match.key->ip_proto != IPPROTO_TCP) {
3695			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3696			return -EINVAL;
3697		}
3698	}
3699
3700	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3701		struct flow_match_eth_addrs match;
3702
3703		flow_rule_match_eth_addrs(rule, &match);
3704
3705		/* use is_broadcast and is_zero to check for all 0xf or 0 */
3706		if (!is_zero_ether_addr(match.mask->dst)) {
3707			if (is_broadcast_ether_addr(match.mask->dst)) {
3708				field_flags |= IAVF_CLOUD_FIELD_OMAC;
3709			} else {
3710				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3711					match.mask->dst);
3712				return -EINVAL;
3713			}
3714		}
3715
3716		if (!is_zero_ether_addr(match.mask->src)) {
3717			if (is_broadcast_ether_addr(match.mask->src)) {
3718				field_flags |= IAVF_CLOUD_FIELD_IMAC;
3719			} else {
3720				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3721					match.mask->src);
3722				return -EINVAL;
3723			}
3724		}
3725
3726		if (!is_zero_ether_addr(match.key->dst))
3727			if (is_valid_ether_addr(match.key->dst) ||
3728			    is_multicast_ether_addr(match.key->dst)) {
3729				/* set the mask if a valid dst_mac address */
3730				for (i = 0; i < ETH_ALEN; i++)
3731					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3732				ether_addr_copy(vf->data.tcp_spec.dst_mac,
3733						match.key->dst);
3734			}
3735
3736		if (!is_zero_ether_addr(match.key->src))
3737			if (is_valid_ether_addr(match.key->src) ||
3738			    is_multicast_ether_addr(match.key->src)) {
3739				/* set the mask if a valid dst_mac address */
3740				for (i = 0; i < ETH_ALEN; i++)
3741					vf->mask.tcp_spec.src_mac[i] |= 0xff;
3742				ether_addr_copy(vf->data.tcp_spec.src_mac,
3743						match.key->src);
3744		}
3745	}
3746
3747	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3748		struct flow_match_vlan match;
3749
3750		flow_rule_match_vlan(rule, &match);
3751		if (match.mask->vlan_id) {
3752			if (match.mask->vlan_id == VLAN_VID_MASK) {
3753				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3754			} else {
3755				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3756					match.mask->vlan_id);
3757				return -EINVAL;
3758			}
3759		}
3760		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3761		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3762	}
3763
3764	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3765		struct flow_match_control match;
3766
3767		flow_rule_match_control(rule, &match);
3768		addr_type = match.key->addr_type;
3769	}
3770
3771	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3772		struct flow_match_ipv4_addrs match;
3773
3774		flow_rule_match_ipv4_addrs(rule, &match);
3775		if (match.mask->dst) {
3776			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3777				field_flags |= IAVF_CLOUD_FIELD_IIP;
3778			} else {
3779				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3780					be32_to_cpu(match.mask->dst));
3781				return -EINVAL;
3782			}
3783		}
3784
3785		if (match.mask->src) {
3786			if (match.mask->src == cpu_to_be32(0xffffffff)) {
3787				field_flags |= IAVF_CLOUD_FIELD_IIP;
3788			} else {
3789				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3790					be32_to_cpu(match.mask->src));
3791				return -EINVAL;
3792			}
3793		}
3794
3795		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3796			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3797			return -EINVAL;
3798		}
3799		if (match.key->dst) {
3800			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3801			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3802		}
3803		if (match.key->src) {
3804			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3805			vf->data.tcp_spec.src_ip[0] = match.key->src;
3806		}
3807	}
3808
3809	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3810		struct flow_match_ipv6_addrs match;
3811
3812		flow_rule_match_ipv6_addrs(rule, &match);
3813
3814		/* validate mask, make sure it is not IPV6_ADDR_ANY */
3815		if (ipv6_addr_any(&match.mask->dst)) {
3816			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3817				IPV6_ADDR_ANY);
3818			return -EINVAL;
3819		}
3820
3821		/* src and dest IPv6 address should not be LOOPBACK
3822		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3823		 */
3824		if (ipv6_addr_loopback(&match.key->dst) ||
3825		    ipv6_addr_loopback(&match.key->src)) {
3826			dev_err(&adapter->pdev->dev,
3827				"ipv6 addr should not be loopback\n");
3828			return -EINVAL;
3829		}
3830		if (!ipv6_addr_any(&match.mask->dst) ||
3831		    !ipv6_addr_any(&match.mask->src))
3832			field_flags |= IAVF_CLOUD_FIELD_IIP;
3833
3834		for (i = 0; i < 4; i++)
3835			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3836		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3837		       sizeof(vf->data.tcp_spec.dst_ip));
3838		for (i = 0; i < 4; i++)
3839			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3840		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3841		       sizeof(vf->data.tcp_spec.src_ip));
3842	}
3843	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3844		struct flow_match_ports match;
3845
3846		flow_rule_match_ports(rule, &match);
3847		if (match.mask->src) {
3848			if (match.mask->src == cpu_to_be16(0xffff)) {
3849				field_flags |= IAVF_CLOUD_FIELD_IIP;
3850			} else {
3851				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3852					be16_to_cpu(match.mask->src));
3853				return -EINVAL;
3854			}
3855		}
3856
3857		if (match.mask->dst) {
3858			if (match.mask->dst == cpu_to_be16(0xffff)) {
3859				field_flags |= IAVF_CLOUD_FIELD_IIP;
3860			} else {
3861				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3862					be16_to_cpu(match.mask->dst));
3863				return -EINVAL;
3864			}
3865		}
3866		if (match.key->dst) {
3867			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3868			vf->data.tcp_spec.dst_port = match.key->dst;
3869		}
3870
3871		if (match.key->src) {
3872			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3873			vf->data.tcp_spec.src_port = match.key->src;
3874		}
3875	}
3876	vf->field_flags = field_flags;
3877
3878	return 0;
3879}
3880
3881/**
3882 * iavf_handle_tclass - Forward to a traffic class on the device
3883 * @adapter: board private structure
3884 * @tc: traffic class index on the device
3885 * @filter: pointer to cloud filter structure
3886 */
3887static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3888			      struct iavf_cloud_filter *filter)
3889{
3890	if (tc == 0)
3891		return 0;
3892	if (tc < adapter->num_tc) {
3893		if (!filter->f.data.tcp_spec.dst_port) {
3894			dev_err(&adapter->pdev->dev,
3895				"Specify destination port to redirect to traffic class other than TC0\n");
3896			return -EINVAL;
3897		}
3898	}
3899	/* redirect to a traffic class on the same device */
3900	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3901	filter->f.action_meta = tc;
3902	return 0;
3903}
3904
3905/**
3906 * iavf_find_cf - Find the cloud filter in the list
3907 * @adapter: Board private structure
3908 * @cookie: filter specific cookie
3909 *
3910 * Returns ptr to the filter object or NULL. Must be called while holding the
3911 * cloud_filter_list_lock.
3912 */
3913static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3914					      unsigned long *cookie)
3915{
3916	struct iavf_cloud_filter *filter = NULL;
3917
3918	if (!cookie)
3919		return NULL;
3920
3921	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3922		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3923			return filter;
3924	}
3925	return NULL;
3926}
3927
3928/**
3929 * iavf_configure_clsflower - Add tc flower filters
3930 * @adapter: board private structure
3931 * @cls_flower: Pointer to struct flow_cls_offload
3932 */
3933static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3934				    struct flow_cls_offload *cls_flower)
3935{
3936	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3937	struct iavf_cloud_filter *filter = NULL;
3938	int err = -EINVAL, count = 50;
3939
3940	if (tc < 0) {
3941		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3942		return -EINVAL;
3943	}
3944
3945	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3946	if (!filter)
3947		return -ENOMEM;
3948
3949	while (!mutex_trylock(&adapter->crit_lock)) {
3950		if (--count == 0) {
3951			kfree(filter);
3952			return err;
3953		}
3954		udelay(1);
3955	}
3956
3957	filter->cookie = cls_flower->cookie;
3958
3959	/* bail out here if filter already exists */
3960	spin_lock_bh(&adapter->cloud_filter_list_lock);
3961	if (iavf_find_cf(adapter, &cls_flower->cookie)) {
3962		dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
3963		err = -EEXIST;
3964		goto spin_unlock;
3965	}
3966	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3967
3968	/* set the mask to all zeroes to begin with */
3969	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3970	/* start out with flow type and eth type IPv4 to begin with */
3971	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3972	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3973	if (err)
3974		goto err;
3975
3976	err = iavf_handle_tclass(adapter, tc, filter);
3977	if (err)
3978		goto err;
3979
3980	/* add filter to the list */
3981	spin_lock_bh(&adapter->cloud_filter_list_lock);
3982	list_add_tail(&filter->list, &adapter->cloud_filter_list);
3983	adapter->num_cloud_filters++;
3984	filter->add = true;
3985	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3986spin_unlock:
3987	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3988err:
3989	if (err)
3990		kfree(filter);
3991
3992	mutex_unlock(&adapter->crit_lock);
3993	return err;
3994}
3995
3996/**
3997 * iavf_delete_clsflower - Remove tc flower filters
3998 * @adapter: board private structure
3999 * @cls_flower: Pointer to struct flow_cls_offload
4000 */
4001static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4002				 struct flow_cls_offload *cls_flower)
4003{
4004	struct iavf_cloud_filter *filter = NULL;
4005	int err = 0;
4006
4007	spin_lock_bh(&adapter->cloud_filter_list_lock);
4008	filter = iavf_find_cf(adapter, &cls_flower->cookie);
4009	if (filter) {
4010		filter->del = true;
4011		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4012	} else {
4013		err = -EINVAL;
4014	}
4015	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4016
4017	return err;
4018}
4019
4020/**
4021 * iavf_setup_tc_cls_flower - flower classifier offloads
4022 * @adapter: board private structure
4023 * @cls_flower: pointer to flow_cls_offload struct with flow info
4024 */
4025static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4026				    struct flow_cls_offload *cls_flower)
4027{
4028	switch (cls_flower->command) {
4029	case FLOW_CLS_REPLACE:
4030		return iavf_configure_clsflower(adapter, cls_flower);
4031	case FLOW_CLS_DESTROY:
4032		return iavf_delete_clsflower(adapter, cls_flower);
4033	case FLOW_CLS_STATS:
4034		return -EOPNOTSUPP;
4035	default:
4036		return -EOPNOTSUPP;
4037	}
4038}
4039
4040/**
4041 * iavf_setup_tc_block_cb - block callback for tc
4042 * @type: type of offload
4043 * @type_data: offload data
4044 * @cb_priv:
4045 *
4046 * This function is the block callback for traffic classes
4047 **/
4048static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4049				  void *cb_priv)
4050{
4051	struct iavf_adapter *adapter = cb_priv;
4052
4053	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4054		return -EOPNOTSUPP;
4055
4056	switch (type) {
4057	case TC_SETUP_CLSFLOWER:
4058		return iavf_setup_tc_cls_flower(cb_priv, type_data);
4059	default:
4060		return -EOPNOTSUPP;
4061	}
4062}
4063
4064static LIST_HEAD(iavf_block_cb_list);
4065
4066/**
4067 * iavf_setup_tc - configure multiple traffic classes
4068 * @netdev: network interface device structure
4069 * @type: type of offload
4070 * @type_data: tc offload data
4071 *
4072 * This function is the callback to ndo_setup_tc in the
4073 * netdev_ops.
4074 *
4075 * Returns 0 on success
4076 **/
4077static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4078			 void *type_data)
4079{
4080	struct iavf_adapter *adapter = netdev_priv(netdev);
4081
4082	switch (type) {
4083	case TC_SETUP_QDISC_MQPRIO:
4084		return __iavf_setup_tc(netdev, type_data);
4085	case TC_SETUP_BLOCK:
4086		return flow_block_cb_setup_simple(type_data,
4087						  &iavf_block_cb_list,
4088						  iavf_setup_tc_block_cb,
4089						  adapter, adapter, true);
4090	default:
4091		return -EOPNOTSUPP;
4092	}
4093}
4094
4095/**
4096 * iavf_restore_fdir_filters
4097 * @adapter: board private structure
4098 *
4099 * Restore existing FDIR filters when VF netdev comes back up.
4100 **/
4101static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4102{
4103	struct iavf_fdir_fltr *f;
4104
4105	spin_lock_bh(&adapter->fdir_fltr_lock);
4106	list_for_each_entry(f, &adapter->fdir_list_head, list) {
4107		if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4108			/* Cancel a request, keep filter as active */
4109			f->state = IAVF_FDIR_FLTR_ACTIVE;
4110		} else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4111			   f->state == IAVF_FDIR_FLTR_INACTIVE) {
4112			/* Add filters which are inactive or have a pending
4113			 * request to PF to be deleted
4114			 */
4115			f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4116			adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4117		}
4118	}
4119	spin_unlock_bh(&adapter->fdir_fltr_lock);
4120}
4121
4122/**
4123 * iavf_open - Called when a network interface is made active
4124 * @netdev: network interface device structure
4125 *
4126 * Returns 0 on success, negative value on failure
4127 *
4128 * The open entry point is called when a network interface is made
4129 * active by the system (IFF_UP).  At this point all resources needed
4130 * for transmit and receive operations are allocated, the interrupt
4131 * handler is registered with the OS, the watchdog is started,
4132 * and the stack is notified that the interface is ready.
4133 **/
4134static int iavf_open(struct net_device *netdev)
4135{
4136	struct iavf_adapter *adapter = netdev_priv(netdev);
4137	int err;
4138
4139	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4140		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4141		return -EIO;
4142	}
4143
4144	while (!mutex_trylock(&adapter->crit_lock)) {
4145		/* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4146		 * is already taken and iavf_open is called from an upper
4147		 * device's notifier reacting on NETDEV_REGISTER event.
4148		 * We have to leave here to avoid dead lock.
4149		 */
4150		if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4151			return -EBUSY;
4152
4153		usleep_range(500, 1000);
4154	}
4155
4156	if (adapter->state != __IAVF_DOWN) {
4157		err = -EBUSY;
4158		goto err_unlock;
4159	}
4160
4161	if (adapter->state == __IAVF_RUNNING &&
4162	    !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4163		dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4164		err = 0;
4165		goto err_unlock;
4166	}
4167
4168	/* allocate transmit descriptors */
4169	err = iavf_setup_all_tx_resources(adapter);
4170	if (err)
4171		goto err_setup_tx;
4172
4173	/* allocate receive descriptors */
4174	err = iavf_setup_all_rx_resources(adapter);
4175	if (err)
4176		goto err_setup_rx;
4177
4178	/* clear any pending interrupts, may auto mask */
4179	err = iavf_request_traffic_irqs(adapter, netdev->name);
4180	if (err)
4181		goto err_req_irq;
4182
4183	spin_lock_bh(&adapter->mac_vlan_list_lock);
4184
4185	iavf_add_filter(adapter, adapter->hw.mac.addr);
4186
4187	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4188
4189	/* Restore filters that were removed with IFF_DOWN */
4190	iavf_restore_filters(adapter);
4191	iavf_restore_fdir_filters(adapter);
4192
4193	iavf_configure(adapter);
4194
4195	iavf_up_complete(adapter);
4196
4197	iavf_irq_enable(adapter, true);
4198
4199	mutex_unlock(&adapter->crit_lock);
4200
4201	return 0;
4202
4203err_req_irq:
4204	iavf_down(adapter);
4205	iavf_free_traffic_irqs(adapter);
4206err_setup_rx:
4207	iavf_free_all_rx_resources(adapter);
4208err_setup_tx:
4209	iavf_free_all_tx_resources(adapter);
4210err_unlock:
4211	mutex_unlock(&adapter->crit_lock);
4212
4213	return err;
4214}
4215
4216/**
4217 * iavf_close - Disables a network interface
4218 * @netdev: network interface device structure
4219 *
4220 * Returns 0, this is not allowed to fail
4221 *
4222 * The close entry point is called when an interface is de-activated
4223 * by the OS.  The hardware is still under the drivers control, but
4224 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4225 * are freed, along with all transmit and receive resources.
4226 **/
4227static int iavf_close(struct net_device *netdev)
4228{
4229	struct iavf_adapter *adapter = netdev_priv(netdev);
4230	u64 aq_to_restore;
4231	int status;
4232
4233	mutex_lock(&adapter->crit_lock);
4234
4235	if (adapter->state <= __IAVF_DOWN_PENDING) {
4236		mutex_unlock(&adapter->crit_lock);
4237		return 0;
4238	}
4239
4240	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
 
 
4241	/* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4242	 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4243	 * deadlock with adminq_task() until iavf_close timeouts. We must send
4244	 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4245	 * disable queues possible for vf. Give only necessary flags to
4246	 * iavf_down and save other to set them right before iavf_close()
4247	 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4248	 * iavf will be in DOWN state.
4249	 */
4250	aq_to_restore = adapter->aq_required;
4251	adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4252
4253	/* Remove flags which we do not want to send after close or we want to
4254	 * send before disable queues.
4255	 */
4256	aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG		|
4257			   IAVF_FLAG_AQ_ENABLE_QUEUES		|
4258			   IAVF_FLAG_AQ_CONFIGURE_QUEUES	|
4259			   IAVF_FLAG_AQ_ADD_VLAN_FILTER		|
4260			   IAVF_FLAG_AQ_ADD_MAC_FILTER		|
4261			   IAVF_FLAG_AQ_ADD_CLOUD_FILTER	|
4262			   IAVF_FLAG_AQ_ADD_FDIR_FILTER		|
4263			   IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4264
4265	iavf_down(adapter);
4266	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4267	iavf_free_traffic_irqs(adapter);
4268
4269	mutex_unlock(&adapter->crit_lock);
4270
4271	/* We explicitly don't free resources here because the hardware is
4272	 * still active and can DMA into memory. Resources are cleared in
4273	 * iavf_virtchnl_completion() after we get confirmation from the PF
4274	 * driver that the rings have been stopped.
4275	 *
4276	 * Also, we wait for state to transition to __IAVF_DOWN before
4277	 * returning. State change occurs in iavf_virtchnl_completion() after
4278	 * VF resources are released (which occurs after PF driver processes and
4279	 * responds to admin queue commands).
4280	 */
4281
4282	status = wait_event_timeout(adapter->down_waitqueue,
4283				    adapter->state == __IAVF_DOWN,
4284				    msecs_to_jiffies(500));
4285	if (!status)
4286		netdev_warn(netdev, "Device resources not yet released\n");
4287
4288	mutex_lock(&adapter->crit_lock);
4289	adapter->aq_required |= aq_to_restore;
4290	mutex_unlock(&adapter->crit_lock);
4291	return 0;
4292}
4293
4294/**
4295 * iavf_change_mtu - Change the Maximum Transfer Unit
4296 * @netdev: network interface device structure
4297 * @new_mtu: new value for maximum frame size
4298 *
4299 * Returns 0 on success, negative on failure
4300 **/
4301static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4302{
4303	struct iavf_adapter *adapter = netdev_priv(netdev);
4304	int ret = 0;
4305
4306	netdev_dbg(netdev, "changing MTU from %d to %d\n",
4307		   netdev->mtu, new_mtu);
4308	netdev->mtu = new_mtu;
4309
4310	if (netif_running(netdev)) {
4311		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4312		ret = iavf_wait_for_reset(adapter);
4313		if (ret < 0)
4314			netdev_warn(netdev, "MTU change interrupted waiting for reset");
4315		else if (ret)
4316			netdev_warn(netdev, "MTU change timed out waiting for reset");
4317	}
4318
4319	return ret;
4320}
4321
4322/**
4323 * iavf_disable_fdir - disable Flow Director and clear existing filters
4324 * @adapter: board private structure
4325 **/
4326static void iavf_disable_fdir(struct iavf_adapter *adapter)
4327{
4328	struct iavf_fdir_fltr *fdir, *fdirtmp;
4329	bool del_filters = false;
4330
4331	adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4332
4333	/* remove all Flow Director filters */
4334	spin_lock_bh(&adapter->fdir_fltr_lock);
4335	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4336				 list) {
4337		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4338		    fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4339			/* Delete filters not registered in PF */
4340			list_del(&fdir->list);
4341			kfree(fdir);
4342			adapter->fdir_active_fltr--;
4343		} else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4344			   fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4345			   fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4346			/* Filters registered in PF, schedule their deletion */
4347			fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4348			del_filters = true;
4349		} else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4350			/* Request to delete filter already sent to PF, change
4351			 * state to DEL_PENDING to delete filter after PF's
4352			 * response, not set as INACTIVE
4353			 */
4354			fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4355		}
4356	}
4357	spin_unlock_bh(&adapter->fdir_fltr_lock);
4358
4359	if (del_filters) {
4360		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4361		mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4362	}
4363}
4364
4365#define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
4366					 NETIF_F_HW_VLAN_CTAG_TX | \
4367					 NETIF_F_HW_VLAN_STAG_RX | \
4368					 NETIF_F_HW_VLAN_STAG_TX)
4369
4370/**
4371 * iavf_set_features - set the netdev feature flags
4372 * @netdev: ptr to the netdev being adjusted
4373 * @features: the feature set that the stack is suggesting
4374 * Note: expects to be called while under rtnl_lock()
4375 **/
4376static int iavf_set_features(struct net_device *netdev,
4377			     netdev_features_t features)
4378{
4379	struct iavf_adapter *adapter = netdev_priv(netdev);
4380
4381	/* trigger update on any VLAN feature change */
4382	if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4383	    (features & NETIF_VLAN_OFFLOAD_FEATURES))
4384		iavf_set_vlan_offload_features(adapter, netdev->features,
4385					       features);
4386	if (CRC_OFFLOAD_ALLOWED(adapter) &&
4387	    ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS)))
4388		iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4389
4390	if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4391		if (features & NETIF_F_NTUPLE)
4392			adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4393		else
4394			iavf_disable_fdir(adapter);
4395	}
4396
4397	return 0;
4398}
4399
4400/**
4401 * iavf_features_check - Validate encapsulated packet conforms to limits
4402 * @skb: skb buff
4403 * @dev: This physical port's netdev
4404 * @features: Offload features that the stack believes apply
4405 **/
4406static netdev_features_t iavf_features_check(struct sk_buff *skb,
4407					     struct net_device *dev,
4408					     netdev_features_t features)
4409{
4410	size_t len;
4411
4412	/* No point in doing any of this if neither checksum nor GSO are
4413	 * being requested for this frame.  We can rule out both by just
4414	 * checking for CHECKSUM_PARTIAL
4415	 */
4416	if (skb->ip_summed != CHECKSUM_PARTIAL)
4417		return features;
4418
4419	/* We cannot support GSO if the MSS is going to be less than
4420	 * 64 bytes.  If it is then we need to drop support for GSO.
4421	 */
4422	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4423		features &= ~NETIF_F_GSO_MASK;
4424
4425	/* MACLEN can support at most 63 words */
4426	len = skb_network_header(skb) - skb->data;
4427	if (len & ~(63 * 2))
4428		goto out_err;
4429
4430	/* IPLEN and EIPLEN can support at most 127 dwords */
4431	len = skb_transport_header(skb) - skb_network_header(skb);
4432	if (len & ~(127 * 4))
4433		goto out_err;
4434
4435	if (skb->encapsulation) {
4436		/* L4TUNLEN can support 127 words */
4437		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4438		if (len & ~(127 * 2))
4439			goto out_err;
4440
4441		/* IPLEN can support at most 127 dwords */
4442		len = skb_inner_transport_header(skb) -
4443		      skb_inner_network_header(skb);
4444		if (len & ~(127 * 4))
4445			goto out_err;
4446	}
4447
4448	/* No need to validate L4LEN as TCP is the only protocol with a
4449	 * flexible value and we support all possible values supported
4450	 * by TCP, which is at most 15 dwords
4451	 */
4452
4453	return features;
4454out_err:
4455	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4456}
4457
4458/**
4459 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4460 * @adapter: board private structure
4461 *
4462 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4463 * were negotiated determine the VLAN features that can be toggled on and off.
4464 **/
4465static netdev_features_t
4466iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4467{
4468	netdev_features_t hw_features = 0;
4469
4470	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4471		return hw_features;
4472
4473	/* Enable VLAN features if supported */
4474	if (VLAN_ALLOWED(adapter)) {
4475		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4476				NETIF_F_HW_VLAN_CTAG_RX);
4477	} else if (VLAN_V2_ALLOWED(adapter)) {
4478		struct virtchnl_vlan_caps *vlan_v2_caps =
4479			&adapter->vlan_v2_caps;
4480		struct virtchnl_vlan_supported_caps *stripping_support =
4481			&vlan_v2_caps->offloads.stripping_support;
4482		struct virtchnl_vlan_supported_caps *insertion_support =
4483			&vlan_v2_caps->offloads.insertion_support;
4484
4485		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4486		    stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4487			if (stripping_support->outer &
4488			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4489				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4490			if (stripping_support->outer &
4491			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4492				hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4493		} else if (stripping_support->inner !=
4494			   VIRTCHNL_VLAN_UNSUPPORTED &&
4495			   stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4496			if (stripping_support->inner &
4497			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4498				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4499		}
4500
4501		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4502		    insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4503			if (insertion_support->outer &
4504			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4505				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4506			if (insertion_support->outer &
4507			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4508				hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4509		} else if (insertion_support->inner &&
4510			   insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4511			if (insertion_support->inner &
4512			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4513				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4514		}
4515	}
4516
4517	if (CRC_OFFLOAD_ALLOWED(adapter))
4518		hw_features |= NETIF_F_RXFCS;
4519
4520	return hw_features;
4521}
4522
4523/**
4524 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4525 * @adapter: board private structure
4526 *
4527 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4528 * were negotiated determine the VLAN features that are enabled by default.
4529 **/
4530static netdev_features_t
4531iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4532{
4533	netdev_features_t features = 0;
4534
4535	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4536		return features;
4537
4538	if (VLAN_ALLOWED(adapter)) {
4539		features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4540			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4541	} else if (VLAN_V2_ALLOWED(adapter)) {
4542		struct virtchnl_vlan_caps *vlan_v2_caps =
4543			&adapter->vlan_v2_caps;
4544		struct virtchnl_vlan_supported_caps *filtering_support =
4545			&vlan_v2_caps->filtering.filtering_support;
4546		struct virtchnl_vlan_supported_caps *stripping_support =
4547			&vlan_v2_caps->offloads.stripping_support;
4548		struct virtchnl_vlan_supported_caps *insertion_support =
4549			&vlan_v2_caps->offloads.insertion_support;
4550		u32 ethertype_init;
4551
4552		/* give priority to outer stripping and don't support both outer
4553		 * and inner stripping
4554		 */
4555		ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4556		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4557			if (stripping_support->outer &
4558			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4559			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4560				features |= NETIF_F_HW_VLAN_CTAG_RX;
4561			else if (stripping_support->outer &
4562				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4563				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4564				features |= NETIF_F_HW_VLAN_STAG_RX;
4565		} else if (stripping_support->inner !=
4566			   VIRTCHNL_VLAN_UNSUPPORTED) {
4567			if (stripping_support->inner &
4568			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4569			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4570				features |= NETIF_F_HW_VLAN_CTAG_RX;
4571		}
4572
4573		/* give priority to outer insertion and don't support both outer
4574		 * and inner insertion
4575		 */
4576		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4577			if (insertion_support->outer &
4578			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4579			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4580				features |= NETIF_F_HW_VLAN_CTAG_TX;
4581			else if (insertion_support->outer &
4582				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4583				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4584				features |= NETIF_F_HW_VLAN_STAG_TX;
4585		} else if (insertion_support->inner !=
4586			   VIRTCHNL_VLAN_UNSUPPORTED) {
4587			if (insertion_support->inner &
4588			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4589			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4590				features |= NETIF_F_HW_VLAN_CTAG_TX;
4591		}
4592
4593		/* give priority to outer filtering and don't bother if both
4594		 * outer and inner filtering are enabled
4595		 */
4596		ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4597		if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4598			if (filtering_support->outer &
4599			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4600			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4601				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4602			if (filtering_support->outer &
4603			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4604			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4605				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4606		} else if (filtering_support->inner !=
4607			   VIRTCHNL_VLAN_UNSUPPORTED) {
4608			if (filtering_support->inner &
4609			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4610			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4611				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4612			if (filtering_support->inner &
4613			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4614			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4615				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4616		}
4617	}
4618
4619	return features;
4620}
4621
4622#define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4623	(!(((requested) & (feature_bit)) && \
4624	   !((allowed) & (feature_bit))))
4625
4626/**
4627 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4628 * @adapter: board private structure
4629 * @requested_features: stack requested NETDEV features
4630 **/
4631static netdev_features_t
4632iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4633			      netdev_features_t requested_features)
4634{
4635	netdev_features_t allowed_features;
4636
4637	allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4638		iavf_get_netdev_vlan_features(adapter);
4639
4640	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4641					      allowed_features,
4642					      NETIF_F_HW_VLAN_CTAG_TX))
4643		requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4644
4645	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4646					      allowed_features,
4647					      NETIF_F_HW_VLAN_CTAG_RX))
4648		requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4649
4650	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4651					      allowed_features,
4652					      NETIF_F_HW_VLAN_STAG_TX))
4653		requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4654	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4655					      allowed_features,
4656					      NETIF_F_HW_VLAN_STAG_RX))
4657		requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4658
4659	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4660					      allowed_features,
4661					      NETIF_F_HW_VLAN_CTAG_FILTER))
4662		requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4663
4664	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4665					      allowed_features,
4666					      NETIF_F_HW_VLAN_STAG_FILTER))
4667		requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4668
4669	if ((requested_features &
4670	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4671	    (requested_features &
4672	     (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4673	    adapter->vlan_v2_caps.offloads.ethertype_match ==
4674	    VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4675		netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4676		requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4677					NETIF_F_HW_VLAN_STAG_TX);
4678	}
4679
4680	return requested_features;
4681}
4682
4683/**
4684 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features
4685 * @adapter: board private structure
4686 * @requested_features: stack requested NETDEV features
4687 *
4688 * Returns fixed-up features bits
4689 **/
4690static netdev_features_t
4691iavf_fix_strip_features(struct iavf_adapter *adapter,
4692			netdev_features_t requested_features)
4693{
4694	struct net_device *netdev = adapter->netdev;
4695	bool crc_offload_req, is_vlan_strip;
4696	netdev_features_t vlan_strip;
4697	int num_non_zero_vlan;
4698
4699	crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) &&
4700			  (requested_features & NETIF_F_RXFCS);
4701	num_non_zero_vlan = iavf_get_num_vlans_added(adapter);
4702	vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX);
4703	is_vlan_strip = requested_features & vlan_strip;
4704
4705	if (!crc_offload_req)
4706		return requested_features;
4707
4708	if (!num_non_zero_vlan && (netdev->features & vlan_strip) &&
4709	    !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4710		requested_features &= ~vlan_strip;
4711		netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
4712		return requested_features;
4713	}
4714
4715	if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) {
4716		requested_features &= ~vlan_strip;
4717		if (!(netdev->features & vlan_strip))
4718			netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping");
4719
4720		return requested_features;
4721	}
4722
4723	if (num_non_zero_vlan && is_vlan_strip &&
4724	    !(netdev->features & NETIF_F_RXFCS)) {
4725		requested_features &= ~NETIF_F_RXFCS;
4726		netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping");
4727	}
4728
4729	return requested_features;
4730}
4731
4732/**
4733 * iavf_fix_features - fix up the netdev feature bits
4734 * @netdev: our net device
4735 * @features: desired feature bits
4736 *
4737 * Returns fixed-up features bits
4738 **/
4739static netdev_features_t iavf_fix_features(struct net_device *netdev,
4740					   netdev_features_t features)
4741{
4742	struct iavf_adapter *adapter = netdev_priv(netdev);
4743
4744	features = iavf_fix_netdev_vlan_features(adapter, features);
4745
4746	if (!FDIR_FLTR_SUPPORT(adapter))
4747		features &= ~NETIF_F_NTUPLE;
4748
4749	return iavf_fix_strip_features(adapter, features);
4750}
4751
4752static const struct net_device_ops iavf_netdev_ops = {
4753	.ndo_open		= iavf_open,
4754	.ndo_stop		= iavf_close,
4755	.ndo_start_xmit		= iavf_xmit_frame,
4756	.ndo_set_rx_mode	= iavf_set_rx_mode,
4757	.ndo_validate_addr	= eth_validate_addr,
4758	.ndo_set_mac_address	= iavf_set_mac,
4759	.ndo_change_mtu		= iavf_change_mtu,
4760	.ndo_tx_timeout		= iavf_tx_timeout,
4761	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
4762	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
4763	.ndo_features_check	= iavf_features_check,
4764	.ndo_fix_features	= iavf_fix_features,
4765	.ndo_set_features	= iavf_set_features,
4766	.ndo_setup_tc		= iavf_setup_tc,
4767};
4768
4769/**
4770 * iavf_check_reset_complete - check that VF reset is complete
4771 * @hw: pointer to hw struct
4772 *
4773 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4774 **/
4775static int iavf_check_reset_complete(struct iavf_hw *hw)
4776{
4777	u32 rstat;
4778	int i;
4779
4780	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4781		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4782			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4783		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4784		    (rstat == VIRTCHNL_VFR_COMPLETED))
4785			return 0;
4786		msleep(IAVF_RESET_WAIT_MS);
4787	}
4788	return -EBUSY;
4789}
4790
4791/**
4792 * iavf_process_config - Process the config information we got from the PF
4793 * @adapter: board private structure
4794 *
4795 * Verify that we have a valid config struct, and set up our netdev features
4796 * and our VSI struct.
4797 **/
4798int iavf_process_config(struct iavf_adapter *adapter)
4799{
4800	struct virtchnl_vf_resource *vfres = adapter->vf_res;
4801	netdev_features_t hw_vlan_features, vlan_features;
4802	struct net_device *netdev = adapter->netdev;
4803	netdev_features_t hw_enc_features;
4804	netdev_features_t hw_features;
4805
4806	hw_enc_features = NETIF_F_SG			|
4807			  NETIF_F_IP_CSUM		|
4808			  NETIF_F_IPV6_CSUM		|
4809			  NETIF_F_HIGHDMA		|
4810			  NETIF_F_SOFT_FEATURES	|
4811			  NETIF_F_TSO			|
4812			  NETIF_F_TSO_ECN		|
4813			  NETIF_F_TSO6			|
4814			  NETIF_F_SCTP_CRC		|
4815			  NETIF_F_RXHASH		|
4816			  NETIF_F_RXCSUM		|
4817			  0;
4818
4819	/* advertise to stack only if offloads for encapsulated packets is
4820	 * supported
4821	 */
4822	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4823		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
4824				   NETIF_F_GSO_GRE		|
4825				   NETIF_F_GSO_GRE_CSUM		|
4826				   NETIF_F_GSO_IPXIP4		|
4827				   NETIF_F_GSO_IPXIP6		|
4828				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
4829				   NETIF_F_GSO_PARTIAL		|
4830				   0;
4831
4832		if (!(vfres->vf_cap_flags &
4833		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4834			netdev->gso_partial_features |=
4835				NETIF_F_GSO_UDP_TUNNEL_CSUM;
4836
4837		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4838		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4839		netdev->hw_enc_features |= hw_enc_features;
4840	}
4841	/* record features VLANs can make use of */
4842	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4843
4844	/* Write features and hw_features separately to avoid polluting
4845	 * with, or dropping, features that are set when we registered.
4846	 */
4847	hw_features = hw_enc_features;
4848
4849	/* get HW VLAN features that can be toggled */
4850	hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4851
4852	/* Enable cloud filter if ADQ is supported */
4853	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4854		hw_features |= NETIF_F_HW_TC;
4855	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4856		hw_features |= NETIF_F_GSO_UDP_L4;
4857
4858	netdev->hw_features |= hw_features | hw_vlan_features;
4859	vlan_features = iavf_get_netdev_vlan_features(adapter);
4860
4861	netdev->features |= hw_features | vlan_features;
4862
4863	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4864		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4865
4866	if (FDIR_FLTR_SUPPORT(adapter)) {
4867		netdev->hw_features |= NETIF_F_NTUPLE;
4868		netdev->features |= NETIF_F_NTUPLE;
4869		adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4870	}
4871
4872	netdev->priv_flags |= IFF_UNICAST_FLT;
4873
4874	/* Do not turn on offloads when they are requested to be turned off.
4875	 * TSO needs minimum 576 bytes to work correctly.
4876	 */
4877	if (netdev->wanted_features) {
4878		if (!(netdev->wanted_features & NETIF_F_TSO) ||
4879		    netdev->mtu < 576)
4880			netdev->features &= ~NETIF_F_TSO;
4881		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4882		    netdev->mtu < 576)
4883			netdev->features &= ~NETIF_F_TSO6;
4884		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4885			netdev->features &= ~NETIF_F_TSO_ECN;
4886		if (!(netdev->wanted_features & NETIF_F_GRO))
4887			netdev->features &= ~NETIF_F_GRO;
4888		if (!(netdev->wanted_features & NETIF_F_GSO))
4889			netdev->features &= ~NETIF_F_GSO;
4890	}
4891
4892	return 0;
4893}
4894
4895/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4896 * iavf_probe - Device Initialization Routine
4897 * @pdev: PCI device information struct
4898 * @ent: entry in iavf_pci_tbl
4899 *
4900 * Returns 0 on success, negative on failure
4901 *
4902 * iavf_probe initializes an adapter identified by a pci_dev structure.
4903 * The OS initialization, configuring of the adapter private structure,
4904 * and a hardware reset occur.
4905 **/
4906static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4907{
4908	struct net_device *netdev;
4909	struct iavf_adapter *adapter = NULL;
4910	struct iavf_hw *hw = NULL;
4911	int err;
4912
4913	err = pci_enable_device(pdev);
4914	if (err)
4915		return err;
4916
4917	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4918	if (err) {
4919		dev_err(&pdev->dev,
4920			"DMA configuration failed: 0x%x\n", err);
4921		goto err_dma;
4922	}
4923
4924	err = pci_request_regions(pdev, iavf_driver_name);
4925	if (err) {
4926		dev_err(&pdev->dev,
4927			"pci_request_regions failed 0x%x\n", err);
4928		goto err_pci_reg;
4929	}
4930
 
 
4931	pci_set_master(pdev);
4932
4933	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4934				   IAVF_MAX_REQ_QUEUES);
4935	if (!netdev) {
4936		err = -ENOMEM;
4937		goto err_alloc_etherdev;
4938	}
4939
4940	SET_NETDEV_DEV(netdev, &pdev->dev);
4941
4942	pci_set_drvdata(pdev, netdev);
4943	adapter = netdev_priv(netdev);
4944
4945	adapter->netdev = netdev;
4946	adapter->pdev = pdev;
4947
4948	hw = &adapter->hw;
4949	hw->back = adapter;
4950
4951	adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
4952					      iavf_driver_name);
4953	if (!adapter->wq) {
4954		err = -ENOMEM;
4955		goto err_alloc_wq;
4956	}
4957
4958	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4959	iavf_change_state(adapter, __IAVF_STARTUP);
4960
4961	/* Call save state here because it relies on the adapter struct. */
4962	pci_save_state(pdev);
4963
4964	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4965			      pci_resource_len(pdev, 0));
4966	if (!hw->hw_addr) {
4967		err = -EIO;
4968		goto err_ioremap;
4969	}
4970	hw->vendor_id = pdev->vendor;
4971	hw->device_id = pdev->device;
4972	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4973	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4974	hw->subsystem_device_id = pdev->subsystem_device;
4975	hw->bus.device = PCI_SLOT(pdev->devfn);
4976	hw->bus.func = PCI_FUNC(pdev->devfn);
4977	hw->bus.bus_id = pdev->bus->number;
4978
4979	/* set up the locks for the AQ, do this only once in probe
4980	 * and destroy them only once in remove
4981	 */
4982	mutex_init(&adapter->crit_lock);
 
4983	mutex_init(&hw->aq.asq_mutex);
4984	mutex_init(&hw->aq.arq_mutex);
4985
4986	spin_lock_init(&adapter->mac_vlan_list_lock);
4987	spin_lock_init(&adapter->cloud_filter_list_lock);
4988	spin_lock_init(&adapter->fdir_fltr_lock);
4989	spin_lock_init(&adapter->adv_rss_lock);
4990	spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
4991
4992	INIT_LIST_HEAD(&adapter->mac_filter_list);
4993	INIT_LIST_HEAD(&adapter->vlan_filter_list);
4994	INIT_LIST_HEAD(&adapter->cloud_filter_list);
4995	INIT_LIST_HEAD(&adapter->fdir_list_head);
4996	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
4997
4998	INIT_WORK(&adapter->reset_task, iavf_reset_task);
4999	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5000	INIT_WORK(&adapter->finish_config, iavf_finish_config);
5001	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
 
 
 
5002
5003	/* Setup the wait queue for indicating transition to down status */
5004	init_waitqueue_head(&adapter->down_waitqueue);
5005
5006	/* Setup the wait queue for indicating transition to running state */
5007	init_waitqueue_head(&adapter->reset_waitqueue);
5008
5009	/* Setup the wait queue for indicating virtchannel events */
5010	init_waitqueue_head(&adapter->vc_waitqueue);
5011
5012	queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5013			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5014	/* Initialization goes on in the work. Do not add more of it below. */
5015	return 0;
5016
5017err_ioremap:
5018	destroy_workqueue(adapter->wq);
5019err_alloc_wq:
5020	free_netdev(netdev);
5021err_alloc_etherdev:
 
5022	pci_release_regions(pdev);
5023err_pci_reg:
5024err_dma:
5025	pci_disable_device(pdev);
5026	return err;
5027}
5028
5029/**
5030 * iavf_suspend - Power management suspend routine
5031 * @dev_d: device info pointer
5032 *
5033 * Called when the system (VM) is entering sleep/suspend.
5034 **/
5035static int __maybe_unused iavf_suspend(struct device *dev_d)
5036{
5037	struct net_device *netdev = dev_get_drvdata(dev_d);
5038	struct iavf_adapter *adapter = netdev_priv(netdev);
5039
5040	netif_device_detach(netdev);
5041
5042	mutex_lock(&adapter->crit_lock);
 
5043
5044	if (netif_running(netdev)) {
5045		rtnl_lock();
5046		iavf_down(adapter);
5047		rtnl_unlock();
5048	}
5049	iavf_free_misc_irq(adapter);
5050	iavf_reset_interrupt_capability(adapter);
5051
5052	mutex_unlock(&adapter->crit_lock);
5053
5054	return 0;
5055}
5056
5057/**
5058 * iavf_resume - Power management resume routine
5059 * @dev_d: device info pointer
5060 *
5061 * Called when the system (VM) is resumed from sleep/suspend.
5062 **/
5063static int __maybe_unused iavf_resume(struct device *dev_d)
5064{
5065	struct pci_dev *pdev = to_pci_dev(dev_d);
5066	struct iavf_adapter *adapter;
5067	u32 err;
5068
5069	adapter = iavf_pdev_to_adapter(pdev);
5070
5071	pci_set_master(pdev);
5072
5073	rtnl_lock();
5074	err = iavf_set_interrupt_capability(adapter);
5075	if (err) {
5076		rtnl_unlock();
5077		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5078		return err;
5079	}
5080	err = iavf_request_misc_irq(adapter);
5081	rtnl_unlock();
5082	if (err) {
5083		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5084		return err;
5085	}
5086
5087	queue_work(adapter->wq, &adapter->reset_task);
5088
5089	netif_device_attach(adapter->netdev);
5090
5091	return err;
5092}
5093
5094/**
5095 * iavf_remove - Device Removal Routine
5096 * @pdev: PCI device information struct
5097 *
5098 * iavf_remove is called by the PCI subsystem to alert the driver
5099 * that it should release a PCI device.  The could be caused by a
5100 * Hot-Plug event, or because the driver is going to be removed from
5101 * memory.
5102 **/
5103static void iavf_remove(struct pci_dev *pdev)
5104{
 
5105	struct iavf_fdir_fltr *fdir, *fdirtmp;
5106	struct iavf_vlan_filter *vlf, *vlftmp;
5107	struct iavf_cloud_filter *cf, *cftmp;
5108	struct iavf_adv_rss *rss, *rsstmp;
5109	struct iavf_mac_filter *f, *ftmp;
5110	struct iavf_adapter *adapter;
5111	struct net_device *netdev;
5112	struct iavf_hw *hw;
 
5113
5114	/* Don't proceed with remove if netdev is already freed */
5115	netdev = pci_get_drvdata(pdev);
5116	if (!netdev)
5117		return;
5118
5119	adapter = iavf_pdev_to_adapter(pdev);
5120	hw = &adapter->hw;
5121
5122	if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5123		return;
5124
5125	/* Wait until port initialization is complete.
5126	 * There are flows where register/unregister netdev may race.
5127	 */
5128	while (1) {
5129		mutex_lock(&adapter->crit_lock);
5130		if (adapter->state == __IAVF_RUNNING ||
5131		    adapter->state == __IAVF_DOWN ||
5132		    adapter->state == __IAVF_INIT_FAILED) {
5133			mutex_unlock(&adapter->crit_lock);
5134			break;
5135		}
5136		/* Simply return if we already went through iavf_shutdown */
5137		if (adapter->state == __IAVF_REMOVE) {
5138			mutex_unlock(&adapter->crit_lock);
5139			return;
5140		}
5141
5142		mutex_unlock(&adapter->crit_lock);
5143		usleep_range(500, 1000);
5144	}
5145	cancel_delayed_work_sync(&adapter->watchdog_task);
5146	cancel_work_sync(&adapter->finish_config);
5147
5148	if (netdev->reg_state == NETREG_REGISTERED)
5149		unregister_netdev(netdev);
 
 
 
 
 
 
 
 
 
 
5150
5151	mutex_lock(&adapter->crit_lock);
5152	dev_info(&adapter->pdev->dev, "Removing device\n");
5153	iavf_change_state(adapter, __IAVF_REMOVE);
5154
5155	iavf_request_reset(adapter);
5156	msleep(50);
5157	/* If the FW isn't responding, kick it once, but only once. */
5158	if (!iavf_asq_done(hw)) {
5159		iavf_request_reset(adapter);
5160		msleep(50);
5161	}
5162
5163	iavf_misc_irq_disable(adapter);
5164	/* Shut down all the garbage mashers on the detention level */
5165	cancel_work_sync(&adapter->reset_task);
5166	cancel_delayed_work_sync(&adapter->watchdog_task);
5167	cancel_work_sync(&adapter->adminq_task);
 
5168
5169	adapter->aq_required = 0;
5170	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5171
5172	iavf_free_all_tx_resources(adapter);
5173	iavf_free_all_rx_resources(adapter);
5174	iavf_free_misc_irq(adapter);
5175	iavf_free_interrupt_scheme(adapter);
 
 
5176
5177	iavf_free_rss(adapter);
5178
5179	if (hw->aq.asq.count)
5180		iavf_shutdown_adminq(hw);
5181
5182	/* destroy the locks only once, here */
5183	mutex_destroy(&hw->aq.arq_mutex);
5184	mutex_destroy(&hw->aq.asq_mutex);
 
5185	mutex_unlock(&adapter->crit_lock);
5186	mutex_destroy(&adapter->crit_lock);
5187
5188	iounmap(hw->hw_addr);
5189	pci_release_regions(pdev);
 
5190	kfree(adapter->vf_res);
5191	spin_lock_bh(&adapter->mac_vlan_list_lock);
5192	/* If we got removed before an up/down sequence, we've got a filter
5193	 * hanging out there that we need to get rid of.
5194	 */
5195	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5196		list_del(&f->list);
5197		kfree(f);
5198	}
5199	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5200				 list) {
5201		list_del(&vlf->list);
5202		kfree(vlf);
5203	}
5204
5205	spin_unlock_bh(&adapter->mac_vlan_list_lock);
5206
5207	spin_lock_bh(&adapter->cloud_filter_list_lock);
5208	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5209		list_del(&cf->list);
5210		kfree(cf);
5211	}
5212	spin_unlock_bh(&adapter->cloud_filter_list_lock);
5213
5214	spin_lock_bh(&adapter->fdir_fltr_lock);
5215	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5216		list_del(&fdir->list);
5217		kfree(fdir);
5218	}
5219	spin_unlock_bh(&adapter->fdir_fltr_lock);
5220
5221	spin_lock_bh(&adapter->adv_rss_lock);
5222	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5223				 list) {
5224		list_del(&rss->list);
5225		kfree(rss);
5226	}
5227	spin_unlock_bh(&adapter->adv_rss_lock);
5228
5229	destroy_workqueue(adapter->wq);
5230
5231	pci_set_drvdata(pdev, NULL);
5232
5233	free_netdev(netdev);
5234
5235	pci_disable_device(pdev);
5236}
5237
5238/**
5239 * iavf_shutdown - Shutdown the device in preparation for a reboot
5240 * @pdev: pci device structure
5241 **/
5242static void iavf_shutdown(struct pci_dev *pdev)
5243{
5244	iavf_remove(pdev);
5245
5246	if (system_state == SYSTEM_POWER_OFF)
5247		pci_set_power_state(pdev, PCI_D3hot);
5248}
5249
5250static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5251
5252static struct pci_driver iavf_driver = {
5253	.name      = iavf_driver_name,
5254	.id_table  = iavf_pci_tbl,
5255	.probe     = iavf_probe,
5256	.remove    = iavf_remove,
5257	.driver.pm = &iavf_pm_ops,
5258	.shutdown  = iavf_shutdown,
5259};
5260
5261/**
5262 * iavf_init_module - Driver Registration Routine
5263 *
5264 * iavf_init_module is the first routine called when the driver is
5265 * loaded. All it does is register with the PCI subsystem.
5266 **/
5267static int __init iavf_init_module(void)
5268{
5269	pr_info("iavf: %s\n", iavf_driver_string);
5270
5271	pr_info("%s\n", iavf_copyright);
5272
5273	return pci_register_driver(&iavf_driver);
5274}
5275
5276module_init(iavf_init_module);
5277
5278/**
5279 * iavf_exit_module - Driver Exit Cleanup Routine
5280 *
5281 * iavf_exit_module is called just before the driver is removed
5282 * from memory.
5283 **/
5284static void __exit iavf_exit_module(void)
5285{
5286	pci_unregister_driver(&iavf_driver);
5287}
5288
5289module_exit(iavf_exit_module);
5290
5291/* iavf_main.c */
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include "iavf.h"
   5#include "iavf_prototype.h"
   6#include "iavf_client.h"
   7/* All iavf tracepoints are defined by the include below, which must
   8 * be included exactly once across the whole kernel with
   9 * CREATE_TRACE_POINTS defined
  10 */
  11#define CREATE_TRACE_POINTS
  12#include "iavf_trace.h"
  13
  14static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
  15static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
  16static int iavf_close(struct net_device *netdev);
  17static void iavf_init_get_resources(struct iavf_adapter *adapter);
  18static int iavf_check_reset_complete(struct iavf_hw *hw);
  19
  20char iavf_driver_name[] = "iavf";
  21static const char iavf_driver_string[] =
  22	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
  23
  24static const char iavf_copyright[] =
  25	"Copyright (c) 2013 - 2018 Intel Corporation.";
  26
  27/* iavf_pci_tbl - PCI Device ID Table
  28 *
  29 * Wildcard entries (PCI_ANY_ID) should come last
  30 * Last entry must be all 0s
  31 *
  32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
  33 *   Class, Class Mask, private data (not used) }
  34 */
  35static const struct pci_device_id iavf_pci_tbl[] = {
  36	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
  37	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
  38	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
  39	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
  40	/* required last entry */
  41	{0, }
  42};
  43
  44MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
  45
  46MODULE_ALIAS("i40evf");
  47MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  48MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
  49MODULE_LICENSE("GPL v2");
  50
  51static const struct net_device_ops iavf_netdev_ops;
  52
  53int iavf_status_to_errno(enum iavf_status status)
  54{
  55	switch (status) {
  56	case IAVF_SUCCESS:
  57		return 0;
  58	case IAVF_ERR_PARAM:
  59	case IAVF_ERR_MAC_TYPE:
  60	case IAVF_ERR_INVALID_MAC_ADDR:
  61	case IAVF_ERR_INVALID_LINK_SETTINGS:
  62	case IAVF_ERR_INVALID_PD_ID:
  63	case IAVF_ERR_INVALID_QP_ID:
  64	case IAVF_ERR_INVALID_CQ_ID:
  65	case IAVF_ERR_INVALID_CEQ_ID:
  66	case IAVF_ERR_INVALID_AEQ_ID:
  67	case IAVF_ERR_INVALID_SIZE:
  68	case IAVF_ERR_INVALID_ARP_INDEX:
  69	case IAVF_ERR_INVALID_FPM_FUNC_ID:
  70	case IAVF_ERR_QP_INVALID_MSG_SIZE:
  71	case IAVF_ERR_INVALID_FRAG_COUNT:
  72	case IAVF_ERR_INVALID_ALIGNMENT:
  73	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
  74	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
  75	case IAVF_ERR_INVALID_VF_ID:
  76	case IAVF_ERR_INVALID_HMCFN_ID:
  77	case IAVF_ERR_INVALID_PBLE_INDEX:
  78	case IAVF_ERR_INVALID_SD_INDEX:
  79	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
  80	case IAVF_ERR_INVALID_SD_TYPE:
  81	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
  82	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
  83	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
  84		return -EINVAL;
  85	case IAVF_ERR_NVM:
  86	case IAVF_ERR_NVM_CHECKSUM:
  87	case IAVF_ERR_PHY:
  88	case IAVF_ERR_CONFIG:
  89	case IAVF_ERR_UNKNOWN_PHY:
  90	case IAVF_ERR_LINK_SETUP:
  91	case IAVF_ERR_ADAPTER_STOPPED:
  92	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
  93	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
  94	case IAVF_ERR_RESET_FAILED:
  95	case IAVF_ERR_BAD_PTR:
  96	case IAVF_ERR_SWFW_SYNC:
  97	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
  98	case IAVF_ERR_QUEUE_EMPTY:
  99	case IAVF_ERR_FLUSHED_QUEUE:
 100	case IAVF_ERR_OPCODE_MISMATCH:
 101	case IAVF_ERR_CQP_COMPL_ERROR:
 102	case IAVF_ERR_BACKING_PAGE_ERROR:
 103	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
 104	case IAVF_ERR_MEMCPY_FAILED:
 105	case IAVF_ERR_SRQ_ENABLED:
 106	case IAVF_ERR_ADMIN_QUEUE_ERROR:
 107	case IAVF_ERR_ADMIN_QUEUE_FULL:
 108	case IAVF_ERR_BAD_IWARP_CQE:
 109	case IAVF_ERR_NVM_BLANK_MODE:
 110	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
 111	case IAVF_ERR_DIAG_TEST_FAILED:
 112	case IAVF_ERR_FIRMWARE_API_VERSION:
 113	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
 114		return -EIO;
 115	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
 116		return -ENODEV;
 117	case IAVF_ERR_NO_AVAILABLE_VSI:
 118	case IAVF_ERR_RING_FULL:
 119		return -ENOSPC;
 120	case IAVF_ERR_NO_MEMORY:
 121		return -ENOMEM;
 122	case IAVF_ERR_TIMEOUT:
 123	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
 124		return -ETIMEDOUT;
 125	case IAVF_ERR_NOT_IMPLEMENTED:
 126	case IAVF_NOT_SUPPORTED:
 127		return -EOPNOTSUPP;
 128	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
 129		return -EALREADY;
 130	case IAVF_ERR_NOT_READY:
 131		return -EBUSY;
 132	case IAVF_ERR_BUF_TOO_SHORT:
 133		return -EMSGSIZE;
 134	}
 135
 136	return -EIO;
 137}
 138
 139int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
 140{
 141	switch (v_status) {
 142	case VIRTCHNL_STATUS_SUCCESS:
 143		return 0;
 144	case VIRTCHNL_STATUS_ERR_PARAM:
 145	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
 146		return -EINVAL;
 147	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
 148		return -ENOMEM;
 149	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
 150	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
 151	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
 152		return -EIO;
 153	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
 154		return -EOPNOTSUPP;
 155	}
 156
 157	return -EIO;
 158}
 159
 160/**
 161 * iavf_pdev_to_adapter - go from pci_dev to adapter
 162 * @pdev: pci_dev pointer
 163 */
 164static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
 165{
 166	return netdev_priv(pci_get_drvdata(pdev));
 167}
 168
 169/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
 171 * @hw:   pointer to the HW structure
 172 * @mem:  ptr to mem struct to fill out
 173 * @size: size of memory requested
 174 * @alignment: what to align the allocation to
 175 **/
 176enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
 177					 struct iavf_dma_mem *mem,
 178					 u64 size, u32 alignment)
 179{
 180	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
 181
 182	if (!mem)
 183		return IAVF_ERR_PARAM;
 184
 185	mem->size = ALIGN(size, alignment);
 186	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
 187				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
 188	if (mem->va)
 189		return 0;
 190	else
 191		return IAVF_ERR_NO_MEMORY;
 192}
 193
 194/**
 195 * iavf_free_dma_mem_d - OS specific memory free for shared code
 196 * @hw:   pointer to the HW structure
 197 * @mem:  ptr to mem struct to free
 198 **/
 199enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
 200				     struct iavf_dma_mem *mem)
 201{
 202	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
 203
 204	if (!mem || !mem->va)
 205		return IAVF_ERR_PARAM;
 206	dma_free_coherent(&adapter->pdev->dev, mem->size,
 207			  mem->va, (dma_addr_t)mem->pa);
 208	return 0;
 209}
 210
 211/**
 212 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
 213 * @hw:   pointer to the HW structure
 214 * @mem:  ptr to mem struct to fill out
 215 * @size: size of memory requested
 216 **/
 217enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
 218					  struct iavf_virt_mem *mem, u32 size)
 219{
 220	if (!mem)
 221		return IAVF_ERR_PARAM;
 222
 223	mem->size = size;
 224	mem->va = kzalloc(size, GFP_KERNEL);
 225
 226	if (mem->va)
 227		return 0;
 228	else
 229		return IAVF_ERR_NO_MEMORY;
 230}
 231
 232/**
 233 * iavf_free_virt_mem_d - OS specific memory free for shared code
 234 * @hw:   pointer to the HW structure
 235 * @mem:  ptr to mem struct to free
 236 **/
 237enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
 238				      struct iavf_virt_mem *mem)
 239{
 240	if (!mem)
 241		return IAVF_ERR_PARAM;
 242
 243	/* it's ok to kfree a NULL pointer */
 244	kfree(mem->va);
 245
 246	return 0;
 247}
 248
 249/**
 250 * iavf_lock_timeout - try to lock mutex but give up after timeout
 251 * @lock: mutex that should be locked
 252 * @msecs: timeout in msecs
 253 *
 254 * Returns 0 on success, negative on failure
 255 **/
 256int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
 257{
 258	unsigned int wait, delay = 10;
 259
 260	for (wait = 0; wait < msecs; wait += delay) {
 261		if (mutex_trylock(lock))
 262			return 0;
 263
 264		msleep(delay);
 265	}
 266
 267	return -1;
 268}
 269
 270/**
 271 * iavf_schedule_reset - Set the flags and schedule a reset event
 272 * @adapter: board private structure
 
 273 **/
 274void iavf_schedule_reset(struct iavf_adapter *adapter)
 275{
 276	if (!(adapter->flags &
 277	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
 278		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
 
 279		queue_work(adapter->wq, &adapter->reset_task);
 280	}
 281}
 282
 283/**
 284 * iavf_schedule_request_stats - Set the flags and schedule statistics request
 285 * @adapter: board private structure
 286 *
 287 * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly
 288 * request and refresh ethtool stats
 289 **/
 290void iavf_schedule_request_stats(struct iavf_adapter *adapter)
 291{
 292	adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS;
 293	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
 294}
 295
 296/**
 297 * iavf_tx_timeout - Respond to a Tx Hang
 298 * @netdev: network interface device structure
 299 * @txqueue: queue number that is timing out
 300 **/
 301static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
 302{
 303	struct iavf_adapter *adapter = netdev_priv(netdev);
 304
 305	adapter->tx_timeout_count++;
 306	iavf_schedule_reset(adapter);
 307}
 308
 309/**
 310 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
 311 * @adapter: board private structure
 312 **/
 313static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
 314{
 315	struct iavf_hw *hw = &adapter->hw;
 316
 317	if (!adapter->msix_entries)
 318		return;
 319
 320	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
 321
 322	iavf_flush(hw);
 323
 324	synchronize_irq(adapter->msix_entries[0].vector);
 325}
 326
 327/**
 328 * iavf_misc_irq_enable - Enable default interrupt generation settings
 329 * @adapter: board private structure
 330 **/
 331static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
 332{
 333	struct iavf_hw *hw = &adapter->hw;
 334
 335	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
 336				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
 337	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
 338
 339	iavf_flush(hw);
 340}
 341
 342/**
 343 * iavf_irq_disable - Mask off interrupt generation on the NIC
 344 * @adapter: board private structure
 345 **/
 346static void iavf_irq_disable(struct iavf_adapter *adapter)
 347{
 348	int i;
 349	struct iavf_hw *hw = &adapter->hw;
 350
 351	if (!adapter->msix_entries)
 352		return;
 353
 354	for (i = 1; i < adapter->num_msix_vectors; i++) {
 355		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
 356		synchronize_irq(adapter->msix_entries[i].vector);
 357	}
 358	iavf_flush(hw);
 359}
 360
 361/**
 362 * iavf_irq_enable_queues - Enable interrupt for specified queues
 363 * @adapter: board private structure
 364 * @mask: bitmap of queues to enable
 365 **/
 366void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
 367{
 368	struct iavf_hw *hw = &adapter->hw;
 369	int i;
 370
 371	for (i = 1; i < adapter->num_msix_vectors; i++) {
 372		if (mask & BIT(i - 1)) {
 373			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
 374			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
 375			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
 376		}
 377	}
 378}
 379
 380/**
 381 * iavf_irq_enable - Enable default interrupt generation settings
 382 * @adapter: board private structure
 383 * @flush: boolean value whether to run rd32()
 384 **/
 385void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
 386{
 387	struct iavf_hw *hw = &adapter->hw;
 388
 389	iavf_misc_irq_enable(adapter);
 390	iavf_irq_enable_queues(adapter, ~0);
 391
 392	if (flush)
 393		iavf_flush(hw);
 394}
 395
 396/**
 397 * iavf_msix_aq - Interrupt handler for vector 0
 398 * @irq: interrupt number
 399 * @data: pointer to netdev
 400 **/
 401static irqreturn_t iavf_msix_aq(int irq, void *data)
 402{
 403	struct net_device *netdev = data;
 404	struct iavf_adapter *adapter = netdev_priv(netdev);
 405	struct iavf_hw *hw = &adapter->hw;
 406
 407	/* handle non-queue interrupts, these reads clear the registers */
 408	rd32(hw, IAVF_VFINT_ICR01);
 409	rd32(hw, IAVF_VFINT_ICR0_ENA1);
 410
 411	if (adapter->state != __IAVF_REMOVE)
 412		/* schedule work on the private workqueue */
 413		queue_work(adapter->wq, &adapter->adminq_task);
 414
 415	return IRQ_HANDLED;
 416}
 417
 418/**
 419 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
 420 * @irq: interrupt number
 421 * @data: pointer to a q_vector
 422 **/
 423static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
 424{
 425	struct iavf_q_vector *q_vector = data;
 426
 427	if (!q_vector->tx.ring && !q_vector->rx.ring)
 428		return IRQ_HANDLED;
 429
 430	napi_schedule_irqoff(&q_vector->napi);
 431
 432	return IRQ_HANDLED;
 433}
 434
 435/**
 436 * iavf_map_vector_to_rxq - associate irqs with rx queues
 437 * @adapter: board private structure
 438 * @v_idx: interrupt number
 439 * @r_idx: queue number
 440 **/
 441static void
 442iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
 443{
 444	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 445	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
 446	struct iavf_hw *hw = &adapter->hw;
 447
 448	rx_ring->q_vector = q_vector;
 449	rx_ring->next = q_vector->rx.ring;
 450	rx_ring->vsi = &adapter->vsi;
 451	q_vector->rx.ring = rx_ring;
 452	q_vector->rx.count++;
 453	q_vector->rx.next_update = jiffies + 1;
 454	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
 455	q_vector->ring_mask |= BIT(r_idx);
 456	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
 457	     q_vector->rx.current_itr >> 1);
 458	q_vector->rx.current_itr = q_vector->rx.target_itr;
 459}
 460
 461/**
 462 * iavf_map_vector_to_txq - associate irqs with tx queues
 463 * @adapter: board private structure
 464 * @v_idx: interrupt number
 465 * @t_idx: queue number
 466 **/
 467static void
 468iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
 469{
 470	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 471	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
 472	struct iavf_hw *hw = &adapter->hw;
 473
 474	tx_ring->q_vector = q_vector;
 475	tx_ring->next = q_vector->tx.ring;
 476	tx_ring->vsi = &adapter->vsi;
 477	q_vector->tx.ring = tx_ring;
 478	q_vector->tx.count++;
 479	q_vector->tx.next_update = jiffies + 1;
 480	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
 481	q_vector->num_ringpairs++;
 482	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
 483	     q_vector->tx.target_itr >> 1);
 484	q_vector->tx.current_itr = q_vector->tx.target_itr;
 485}
 486
 487/**
 488 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
 489 * @adapter: board private structure to initialize
 490 *
 491 * This function maps descriptor rings to the queue-specific vectors
 492 * we were allotted through the MSI-X enabling code.  Ideally, we'd have
 493 * one vector per ring/queue, but on a constrained vector budget, we
 494 * group the rings as "efficiently" as possible.  You would add new
 495 * mapping configurations in here.
 496 **/
 497static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
 498{
 499	int rings_remaining = adapter->num_active_queues;
 500	int ridx = 0, vidx = 0;
 501	int q_vectors;
 502
 503	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 504
 505	for (; ridx < rings_remaining; ridx++) {
 506		iavf_map_vector_to_rxq(adapter, vidx, ridx);
 507		iavf_map_vector_to_txq(adapter, vidx, ridx);
 508
 509		/* In the case where we have more queues than vectors, continue
 510		 * round-robin on vectors until all queues are mapped.
 511		 */
 512		if (++vidx >= q_vectors)
 513			vidx = 0;
 514	}
 515
 516	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
 517}
 518
 519/**
 520 * iavf_irq_affinity_notify - Callback for affinity changes
 521 * @notify: context as to what irq was changed
 522 * @mask: the new affinity mask
 523 *
 524 * This is a callback function used by the irq_set_affinity_notifier function
 525 * so that we may register to receive changes to the irq affinity masks.
 526 **/
 527static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
 528				     const cpumask_t *mask)
 529{
 530	struct iavf_q_vector *q_vector =
 531		container_of(notify, struct iavf_q_vector, affinity_notify);
 532
 533	cpumask_copy(&q_vector->affinity_mask, mask);
 534}
 535
 536/**
 537 * iavf_irq_affinity_release - Callback for affinity notifier release
 538 * @ref: internal core kernel usage
 539 *
 540 * This is a callback function used by the irq_set_affinity_notifier function
 541 * to inform the current notification subscriber that they will no longer
 542 * receive notifications.
 543 **/
 544static void iavf_irq_affinity_release(struct kref *ref) {}
 545
 546/**
 547 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
 548 * @adapter: board private structure
 549 * @basename: device basename
 550 *
 551 * Allocates MSI-X vectors for tx and rx handling, and requests
 552 * interrupts from the kernel.
 553 **/
 554static int
 555iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
 556{
 557	unsigned int vector, q_vectors;
 558	unsigned int rx_int_idx = 0, tx_int_idx = 0;
 559	int irq_num, err;
 560	int cpu;
 561
 562	iavf_irq_disable(adapter);
 563	/* Decrement for Other and TCP Timer vectors */
 564	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 565
 566	for (vector = 0; vector < q_vectors; vector++) {
 567		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
 568
 569		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 570
 571		if (q_vector->tx.ring && q_vector->rx.ring) {
 572			snprintf(q_vector->name, sizeof(q_vector->name),
 573				 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
 574			tx_int_idx++;
 575		} else if (q_vector->rx.ring) {
 576			snprintf(q_vector->name, sizeof(q_vector->name),
 577				 "iavf-%s-rx-%u", basename, rx_int_idx++);
 578		} else if (q_vector->tx.ring) {
 579			snprintf(q_vector->name, sizeof(q_vector->name),
 580				 "iavf-%s-tx-%u", basename, tx_int_idx++);
 581		} else {
 582			/* skip this unused q_vector */
 583			continue;
 584		}
 585		err = request_irq(irq_num,
 586				  iavf_msix_clean_rings,
 587				  0,
 588				  q_vector->name,
 589				  q_vector);
 590		if (err) {
 591			dev_info(&adapter->pdev->dev,
 592				 "Request_irq failed, error: %d\n", err);
 593			goto free_queue_irqs;
 594		}
 595		/* register for affinity change notifications */
 596		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
 597		q_vector->affinity_notify.release =
 598						   iavf_irq_affinity_release;
 599		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
 600		/* Spread the IRQ affinity hints across online CPUs. Note that
 601		 * get_cpu_mask returns a mask with a permanent lifetime so
 602		 * it's safe to use as a hint for irq_update_affinity_hint.
 603		 */
 604		cpu = cpumask_local_spread(q_vector->v_idx, -1);
 605		irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
 606	}
 607
 608	return 0;
 609
 610free_queue_irqs:
 611	while (vector) {
 612		vector--;
 613		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 614		irq_set_affinity_notifier(irq_num, NULL);
 615		irq_update_affinity_hint(irq_num, NULL);
 616		free_irq(irq_num, &adapter->q_vectors[vector]);
 617	}
 618	return err;
 619}
 620
 621/**
 622 * iavf_request_misc_irq - Initialize MSI-X interrupts
 623 * @adapter: board private structure
 624 *
 625 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
 626 * vector is only for the admin queue, and stays active even when the netdev
 627 * is closed.
 628 **/
 629static int iavf_request_misc_irq(struct iavf_adapter *adapter)
 630{
 631	struct net_device *netdev = adapter->netdev;
 632	int err;
 633
 634	snprintf(adapter->misc_vector_name,
 635		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
 636		 dev_name(&adapter->pdev->dev));
 637	err = request_irq(adapter->msix_entries[0].vector,
 638			  &iavf_msix_aq, 0,
 639			  adapter->misc_vector_name, netdev);
 640	if (err) {
 641		dev_err(&adapter->pdev->dev,
 642			"request_irq for %s failed: %d\n",
 643			adapter->misc_vector_name, err);
 644		free_irq(adapter->msix_entries[0].vector, netdev);
 645	}
 646	return err;
 647}
 648
 649/**
 650 * iavf_free_traffic_irqs - Free MSI-X interrupts
 651 * @adapter: board private structure
 652 *
 653 * Frees all MSI-X vectors other than 0.
 654 **/
 655static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
 656{
 657	int vector, irq_num, q_vectors;
 658
 659	if (!adapter->msix_entries)
 660		return;
 661
 662	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 663
 664	for (vector = 0; vector < q_vectors; vector++) {
 665		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 666		irq_set_affinity_notifier(irq_num, NULL);
 667		irq_update_affinity_hint(irq_num, NULL);
 668		free_irq(irq_num, &adapter->q_vectors[vector]);
 669	}
 670}
 671
 672/**
 673 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
 674 * @adapter: board private structure
 675 *
 676 * Frees MSI-X vector 0.
 677 **/
 678static void iavf_free_misc_irq(struct iavf_adapter *adapter)
 679{
 680	struct net_device *netdev = adapter->netdev;
 681
 682	if (!adapter->msix_entries)
 683		return;
 684
 685	free_irq(adapter->msix_entries[0].vector, netdev);
 686}
 687
 688/**
 689 * iavf_configure_tx - Configure Transmit Unit after Reset
 690 * @adapter: board private structure
 691 *
 692 * Configure the Tx unit of the MAC after a reset.
 693 **/
 694static void iavf_configure_tx(struct iavf_adapter *adapter)
 695{
 696	struct iavf_hw *hw = &adapter->hw;
 697	int i;
 698
 699	for (i = 0; i < adapter->num_active_queues; i++)
 700		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
 701}
 702
 703/**
 704 * iavf_configure_rx - Configure Receive Unit after Reset
 705 * @adapter: board private structure
 706 *
 707 * Configure the Rx unit of the MAC after a reset.
 708 **/
 709static void iavf_configure_rx(struct iavf_adapter *adapter)
 710{
 711	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
 712	struct iavf_hw *hw = &adapter->hw;
 713	int i;
 714
 715	/* Legacy Rx will always default to a 2048 buffer size. */
 716#if (PAGE_SIZE < 8192)
 717	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
 718		struct net_device *netdev = adapter->netdev;
 719
 720		/* For jumbo frames on systems with 4K pages we have to use
 721		 * an order 1 page, so we might as well increase the size
 722		 * of our Rx buffer to make better use of the available space
 723		 */
 724		rx_buf_len = IAVF_RXBUFFER_3072;
 725
 726		/* We use a 1536 buffer size for configurations with
 727		 * standard Ethernet mtu.  On x86 this gives us enough room
 728		 * for shared info and 192 bytes of padding.
 729		 */
 730		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
 731		    (netdev->mtu <= ETH_DATA_LEN))
 732			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
 733	}
 734#endif
 735
 736	for (i = 0; i < adapter->num_active_queues; i++) {
 737		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
 738		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
 739
 740		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
 741			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
 742		else
 743			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
 744	}
 745}
 746
 747/**
 748 * iavf_find_vlan - Search filter list for specific vlan filter
 749 * @adapter: board private structure
 750 * @vlan: vlan tag
 751 *
 752 * Returns ptr to the filter object or NULL. Must be called while holding the
 753 * mac_vlan_list_lock.
 754 **/
 755static struct
 756iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
 757				 struct iavf_vlan vlan)
 758{
 759	struct iavf_vlan_filter *f;
 760
 761	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
 762		if (f->vlan.vid == vlan.vid &&
 763		    f->vlan.tpid == vlan.tpid)
 764			return f;
 765	}
 766
 767	return NULL;
 768}
 769
 770/**
 771 * iavf_add_vlan - Add a vlan filter to the list
 772 * @adapter: board private structure
 773 * @vlan: VLAN tag
 774 *
 775 * Returns ptr to the filter object or NULL when no memory available.
 776 **/
 777static struct
 778iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
 779				struct iavf_vlan vlan)
 780{
 781	struct iavf_vlan_filter *f = NULL;
 782
 783	spin_lock_bh(&adapter->mac_vlan_list_lock);
 784
 785	f = iavf_find_vlan(adapter, vlan);
 786	if (!f) {
 787		f = kzalloc(sizeof(*f), GFP_ATOMIC);
 788		if (!f)
 789			goto clearout;
 790
 791		f->vlan = vlan;
 792
 793		list_add_tail(&f->list, &adapter->vlan_filter_list);
 794		f->add = true;
 795		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
 
 796	}
 797
 798clearout:
 799	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 800	return f;
 801}
 802
 803/**
 804 * iavf_del_vlan - Remove a vlan filter from the list
 805 * @adapter: board private structure
 806 * @vlan: VLAN tag
 807 **/
 808static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
 809{
 810	struct iavf_vlan_filter *f;
 811
 812	spin_lock_bh(&adapter->mac_vlan_list_lock);
 813
 814	f = iavf_find_vlan(adapter, vlan);
 815	if (f) {
 816		f->remove = true;
 817		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
 818	}
 819
 820	spin_unlock_bh(&adapter->mac_vlan_list_lock);
 821}
 822
 823/**
 824 * iavf_restore_filters
 825 * @adapter: board private structure
 826 *
 827 * Restore existing non MAC filters when VF netdev comes back up
 828 **/
 829static void iavf_restore_filters(struct iavf_adapter *adapter)
 830{
 831	u16 vid;
 832
 833	/* re-add all VLAN filters */
 834	for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID)
 835		iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q));
 
 
 
 
 836
 837	for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID)
 838		iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD));
 839}
 840
 841/**
 842 * iavf_get_num_vlans_added - get number of VLANs added
 843 * @adapter: board private structure
 844 */
 845u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
 846{
 847	return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) +
 848		bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID);
 849}
 850
 851/**
 852 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
 853 * @adapter: board private structure
 854 *
 855 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
 856 * do not impose a limit as that maintains current behavior and for
 857 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
 858 **/
 859static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
 860{
 861	/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
 862	 * never been a limit on the VF driver side
 863	 */
 864	if (VLAN_ALLOWED(adapter))
 865		return VLAN_N_VID;
 866	else if (VLAN_V2_ALLOWED(adapter))
 867		return adapter->vlan_v2_caps.filtering.max_filters;
 868
 869	return 0;
 870}
 871
 872/**
 873 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
 874 * @adapter: board private structure
 875 **/
 876static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
 877{
 878	if (iavf_get_num_vlans_added(adapter) <
 879	    iavf_get_max_vlans_allowed(adapter))
 880		return false;
 881
 882	return true;
 883}
 884
 885/**
 886 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
 887 * @netdev: network device struct
 888 * @proto: unused protocol data
 889 * @vid: VLAN tag
 890 **/
 891static int iavf_vlan_rx_add_vid(struct net_device *netdev,
 892				__always_unused __be16 proto, u16 vid)
 893{
 894	struct iavf_adapter *adapter = netdev_priv(netdev);
 895
 
 
 
 
 896	if (!VLAN_FILTERING_ALLOWED(adapter))
 897		return -EIO;
 898
 899	if (iavf_max_vlans_added(adapter)) {
 900		netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
 901			   iavf_get_max_vlans_allowed(adapter));
 902		return -EIO;
 903	}
 904
 905	if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
 906		return -ENOMEM;
 907
 908	return 0;
 909}
 910
 911/**
 912 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
 913 * @netdev: network device struct
 914 * @proto: unused protocol data
 915 * @vid: VLAN tag
 916 **/
 917static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
 918				 __always_unused __be16 proto, u16 vid)
 919{
 920	struct iavf_adapter *adapter = netdev_priv(netdev);
 921
 
 
 
 
 922	iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
 923	if (proto == cpu_to_be16(ETH_P_8021Q))
 924		clear_bit(vid, adapter->vsi.active_cvlans);
 925	else
 926		clear_bit(vid, adapter->vsi.active_svlans);
 927
 928	return 0;
 929}
 930
 931/**
 932 * iavf_find_filter - Search filter list for specific mac filter
 933 * @adapter: board private structure
 934 * @macaddr: the MAC address
 935 *
 936 * Returns ptr to the filter object or NULL. Must be called while holding the
 937 * mac_vlan_list_lock.
 938 **/
 939static struct
 940iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
 941				  const u8 *macaddr)
 942{
 943	struct iavf_mac_filter *f;
 944
 945	if (!macaddr)
 946		return NULL;
 947
 948	list_for_each_entry(f, &adapter->mac_filter_list, list) {
 949		if (ether_addr_equal(macaddr, f->macaddr))
 950			return f;
 951	}
 952	return NULL;
 953}
 954
 955/**
 956 * iavf_add_filter - Add a mac filter to the filter list
 957 * @adapter: board private structure
 958 * @macaddr: the MAC address
 959 *
 960 * Returns ptr to the filter object or NULL when no memory available.
 961 **/
 962struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
 963					const u8 *macaddr)
 964{
 965	struct iavf_mac_filter *f;
 966
 967	if (!macaddr)
 968		return NULL;
 969
 970	f = iavf_find_filter(adapter, macaddr);
 971	if (!f) {
 972		f = kzalloc(sizeof(*f), GFP_ATOMIC);
 973		if (!f)
 974			return f;
 975
 976		ether_addr_copy(f->macaddr, macaddr);
 977
 978		list_add_tail(&f->list, &adapter->mac_filter_list);
 979		f->add = true;
 980		f->add_handled = false;
 981		f->is_new_mac = true;
 982		f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
 983		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
 984	} else {
 985		f->remove = false;
 986	}
 987
 988	return f;
 989}
 990
 991/**
 992 * iavf_replace_primary_mac - Replace current primary address
 993 * @adapter: board private structure
 994 * @new_mac: new MAC address to be applied
 995 *
 996 * Replace current dev_addr and send request to PF for removal of previous
 997 * primary MAC address filter and addition of new primary MAC filter.
 998 * Return 0 for success, -ENOMEM for failure.
 999 *
1000 * Do not call this with mac_vlan_list_lock!
1001 **/
1002int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1003			     const u8 *new_mac)
1004{
1005	struct iavf_hw *hw = &adapter->hw;
1006	struct iavf_mac_filter *f;
 
1007
1008	spin_lock_bh(&adapter->mac_vlan_list_lock);
1009
1010	list_for_each_entry(f, &adapter->mac_filter_list, list) {
1011		f->is_primary = false;
 
 
1012	}
1013
1014	f = iavf_find_filter(adapter, hw->mac.addr);
1015	if (f) {
1016		f->remove = true;
 
1017		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1018	}
1019
1020	f = iavf_add_filter(adapter, new_mac);
1021
1022	if (f) {
1023		/* Always send the request to add if changing primary MAC
1024		 * even if filter is already present on the list
1025		 */
1026		f->is_primary = true;
1027		f->add = true;
1028		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
1029		ether_addr_copy(hw->mac.addr, new_mac);
1030	}
1031
1032	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1033
1034	/* schedule the watchdog task to immediately process the request */
1035	if (f) {
1036		mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1037		return 0;
1038	}
1039	return -ENOMEM;
1040}
1041
1042/**
1043 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1044 * @netdev: network interface device structure
1045 * @macaddr: MAC address to set
1046 *
1047 * Returns true on success, false on failure
1048 */
1049static bool iavf_is_mac_set_handled(struct net_device *netdev,
1050				    const u8 *macaddr)
1051{
1052	struct iavf_adapter *adapter = netdev_priv(netdev);
1053	struct iavf_mac_filter *f;
1054	bool ret = false;
1055
1056	spin_lock_bh(&adapter->mac_vlan_list_lock);
1057
1058	f = iavf_find_filter(adapter, macaddr);
1059
1060	if (!f || (!f->add && f->add_handled))
1061		ret = true;
1062
1063	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1064
1065	return ret;
1066}
1067
1068/**
1069 * iavf_set_mac - NDO callback to set port MAC address
1070 * @netdev: network interface device structure
1071 * @p: pointer to an address structure
1072 *
1073 * Returns 0 on success, negative on failure
1074 */
1075static int iavf_set_mac(struct net_device *netdev, void *p)
1076{
1077	struct iavf_adapter *adapter = netdev_priv(netdev);
1078	struct sockaddr *addr = p;
1079	int ret;
1080
1081	if (!is_valid_ether_addr(addr->sa_data))
1082		return -EADDRNOTAVAIL;
1083
1084	ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1085
1086	if (ret)
1087		return ret;
1088
1089	ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1090					       iavf_is_mac_set_handled(netdev, addr->sa_data),
1091					       msecs_to_jiffies(2500));
1092
1093	/* If ret < 0 then it means wait was interrupted.
1094	 * If ret == 0 then it means we got a timeout.
1095	 * else it means we got response for set MAC from PF,
1096	 * check if netdev MAC was updated to requested MAC,
1097	 * if yes then set MAC succeeded otherwise it failed return -EACCES
1098	 */
1099	if (ret < 0)
1100		return ret;
1101
1102	if (!ret)
1103		return -EAGAIN;
1104
1105	if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1106		return -EACCES;
1107
1108	return 0;
1109}
1110
1111/**
1112 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1113 * @netdev: the netdevice
1114 * @addr: address to add
1115 *
1116 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1117 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1118 */
1119static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1120{
1121	struct iavf_adapter *adapter = netdev_priv(netdev);
1122
1123	if (iavf_add_filter(adapter, addr))
1124		return 0;
1125	else
1126		return -ENOMEM;
1127}
1128
1129/**
1130 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1131 * @netdev: the netdevice
1132 * @addr: address to add
1133 *
1134 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1135 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1136 */
1137static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1138{
1139	struct iavf_adapter *adapter = netdev_priv(netdev);
1140	struct iavf_mac_filter *f;
1141
1142	/* Under some circumstances, we might receive a request to delete
1143	 * our own device address from our uc list. Because we store the
1144	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1145	 * such requests and not delete our device address from this list.
1146	 */
1147	if (ether_addr_equal(addr, netdev->dev_addr))
1148		return 0;
1149
1150	f = iavf_find_filter(adapter, addr);
1151	if (f) {
1152		f->remove = true;
1153		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1154	}
1155	return 0;
1156}
1157
1158/**
 
 
 
 
 
 
 
 
 
 
1159 * iavf_set_rx_mode - NDO callback to set the netdev filters
1160 * @netdev: network interface device structure
1161 **/
1162static void iavf_set_rx_mode(struct net_device *netdev)
1163{
1164	struct iavf_adapter *adapter = netdev_priv(netdev);
1165
1166	spin_lock_bh(&adapter->mac_vlan_list_lock);
1167	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1168	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1169	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1170
1171	if (netdev->flags & IFF_PROMISC &&
1172	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
1173		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
1174	else if (!(netdev->flags & IFF_PROMISC) &&
1175		 adapter->flags & IAVF_FLAG_PROMISC_ON)
1176		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
1177
1178	if (netdev->flags & IFF_ALLMULTI &&
1179	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
1180		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
1181	else if (!(netdev->flags & IFF_ALLMULTI) &&
1182		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
1183		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
1184}
1185
1186/**
1187 * iavf_napi_enable_all - enable NAPI on all queue vectors
1188 * @adapter: board private structure
1189 **/
1190static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1191{
1192	int q_idx;
1193	struct iavf_q_vector *q_vector;
1194	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1195
1196	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1197		struct napi_struct *napi;
1198
1199		q_vector = &adapter->q_vectors[q_idx];
1200		napi = &q_vector->napi;
1201		napi_enable(napi);
1202	}
1203}
1204
1205/**
1206 * iavf_napi_disable_all - disable NAPI on all queue vectors
1207 * @adapter: board private structure
1208 **/
1209static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1210{
1211	int q_idx;
1212	struct iavf_q_vector *q_vector;
1213	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1214
1215	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1216		q_vector = &adapter->q_vectors[q_idx];
1217		napi_disable(&q_vector->napi);
1218	}
1219}
1220
1221/**
1222 * iavf_configure - set up transmit and receive data structures
1223 * @adapter: board private structure
1224 **/
1225static void iavf_configure(struct iavf_adapter *adapter)
1226{
1227	struct net_device *netdev = adapter->netdev;
1228	int i;
1229
1230	iavf_set_rx_mode(netdev);
1231
1232	iavf_configure_tx(adapter);
1233	iavf_configure_rx(adapter);
1234	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1235
1236	for (i = 0; i < adapter->num_active_queues; i++) {
1237		struct iavf_ring *ring = &adapter->rx_rings[i];
1238
1239		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1240	}
1241}
1242
1243/**
1244 * iavf_up_complete - Finish the last steps of bringing up a connection
1245 * @adapter: board private structure
1246 *
1247 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1248 **/
1249static void iavf_up_complete(struct iavf_adapter *adapter)
1250{
1251	iavf_change_state(adapter, __IAVF_RUNNING);
1252	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1253
1254	iavf_napi_enable_all(adapter);
1255
1256	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
1257	if (CLIENT_ENABLED(adapter))
1258		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
1259	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1260}
1261
1262/**
1263 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1264 * yet and mark other to be removed.
1265 * @adapter: board private structure
1266 **/
1267static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1268{
1269	struct iavf_vlan_filter *vlf, *vlftmp;
1270	struct iavf_mac_filter *f, *ftmp;
1271
1272	spin_lock_bh(&adapter->mac_vlan_list_lock);
1273	/* clear the sync flag on all filters */
1274	__dev_uc_unsync(adapter->netdev, NULL);
1275	__dev_mc_unsync(adapter->netdev, NULL);
1276
1277	/* remove all MAC filters */
1278	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1279				 list) {
1280		if (f->add) {
1281			list_del(&f->list);
1282			kfree(f);
1283		} else {
1284			f->remove = true;
1285		}
1286	}
1287
1288	/* remove all VLAN filters */
1289	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1290				 list) {
1291		if (vlf->add) {
1292			list_del(&vlf->list);
1293			kfree(vlf);
1294		} else {
1295			vlf->remove = true;
1296		}
1297	}
1298	spin_unlock_bh(&adapter->mac_vlan_list_lock);
1299}
1300
1301/**
1302 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1303 * mark other to be removed.
1304 * @adapter: board private structure
1305 **/
1306static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1307{
1308	struct iavf_cloud_filter *cf, *cftmp;
1309
1310	/* remove all cloud filters */
1311	spin_lock_bh(&adapter->cloud_filter_list_lock);
1312	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1313				 list) {
1314		if (cf->add) {
1315			list_del(&cf->list);
1316			kfree(cf);
1317			adapter->num_cloud_filters--;
1318		} else {
1319			cf->del = true;
1320		}
1321	}
1322	spin_unlock_bh(&adapter->cloud_filter_list_lock);
1323}
1324
1325/**
1326 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1327 * other to be removed.
1328 * @adapter: board private structure
1329 **/
1330static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1331{
1332	struct iavf_fdir_fltr *fdir, *fdirtmp;
1333
1334	/* remove all Flow Director filters */
1335	spin_lock_bh(&adapter->fdir_fltr_lock);
1336	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
1337				 list) {
1338		if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1339			list_del(&fdir->list);
1340			kfree(fdir);
1341			adapter->fdir_active_fltr--;
1342		} else {
1343			fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
 
 
 
1344		}
1345	}
1346	spin_unlock_bh(&adapter->fdir_fltr_lock);
1347}
1348
1349/**
1350 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1351 * other to be removed.
1352 * @adapter: board private structure
1353 **/
1354static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1355{
1356	struct iavf_adv_rss *rss, *rsstmp;
1357
1358	/* remove all advance RSS configuration */
1359	spin_lock_bh(&adapter->adv_rss_lock);
1360	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1361				 list) {
1362		if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1363			list_del(&rss->list);
1364			kfree(rss);
1365		} else {
1366			rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1367		}
1368	}
1369	spin_unlock_bh(&adapter->adv_rss_lock);
1370}
1371
1372/**
1373 * iavf_down - Shutdown the connection processing
1374 * @adapter: board private structure
1375 *
1376 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1377 **/
1378void iavf_down(struct iavf_adapter *adapter)
1379{
1380	struct net_device *netdev = adapter->netdev;
1381
1382	if (adapter->state <= __IAVF_DOWN_PENDING)
1383		return;
1384
1385	netif_carrier_off(netdev);
1386	netif_tx_disable(netdev);
1387	adapter->link_up = false;
1388	iavf_napi_disable_all(adapter);
1389	iavf_irq_disable(adapter);
1390
1391	iavf_clear_mac_vlan_filters(adapter);
1392	iavf_clear_cloud_filters(adapter);
1393	iavf_clear_fdir_filters(adapter);
1394	iavf_clear_adv_rss_conf(adapter);
1395
1396	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) {
 
 
 
1397		/* cancel any current operation */
1398		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1399		/* Schedule operations to close down the HW. Don't wait
1400		 * here for this to complete. The watchdog is still running
1401		 * and it will take care of this.
1402		 */
1403		if (!list_empty(&adapter->mac_filter_list))
1404			adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1405		if (!list_empty(&adapter->vlan_filter_list))
1406			adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1407		if (!list_empty(&adapter->cloud_filter_list))
1408			adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1409		if (!list_empty(&adapter->fdir_list_head))
1410			adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1411		if (!list_empty(&adapter->adv_rss_list_head))
1412			adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1413		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1414	}
1415
1416	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1417}
1418
1419/**
1420 * iavf_acquire_msix_vectors - Setup the MSIX capability
1421 * @adapter: board private structure
1422 * @vectors: number of vectors to request
1423 *
1424 * Work with the OS to set up the MSIX vectors needed.
1425 *
1426 * Returns 0 on success, negative on failure
1427 **/
1428static int
1429iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1430{
1431	int err, vector_threshold;
1432
1433	/* We'll want at least 3 (vector_threshold):
1434	 * 0) Other (Admin Queue and link, mostly)
1435	 * 1) TxQ[0] Cleanup
1436	 * 2) RxQ[0] Cleanup
1437	 */
1438	vector_threshold = MIN_MSIX_COUNT;
1439
1440	/* The more we get, the more we will assign to Tx/Rx Cleanup
1441	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1442	 * Right now, we simply care about how many we'll get; we'll
1443	 * set them up later while requesting irq's.
1444	 */
1445	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1446				    vector_threshold, vectors);
1447	if (err < 0) {
1448		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1449		kfree(adapter->msix_entries);
1450		adapter->msix_entries = NULL;
1451		return err;
1452	}
1453
1454	/* Adjust for only the vectors we'll use, which is minimum
1455	 * of max_msix_q_vectors + NONQ_VECS, or the number of
1456	 * vectors we were allocated.
1457	 */
1458	adapter->num_msix_vectors = err;
1459	return 0;
1460}
1461
1462/**
1463 * iavf_free_queues - Free memory for all rings
1464 * @adapter: board private structure to initialize
1465 *
1466 * Free all of the memory associated with queue pairs.
1467 **/
1468static void iavf_free_queues(struct iavf_adapter *adapter)
1469{
1470	if (!adapter->vsi_res)
1471		return;
1472	adapter->num_active_queues = 0;
1473	kfree(adapter->tx_rings);
1474	adapter->tx_rings = NULL;
1475	kfree(adapter->rx_rings);
1476	adapter->rx_rings = NULL;
1477}
1478
1479/**
1480 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1481 * @adapter: board private structure
1482 *
1483 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1484 * stripped in certain descriptor fields. Instead of checking the offload
1485 * capability bits in the hot path, cache the location the ring specific
1486 * flags.
1487 */
1488void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1489{
1490	int i;
1491
1492	for (i = 0; i < adapter->num_active_queues; i++) {
1493		struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1494		struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1495
1496		/* prevent multiple L2TAG bits being set after VFR */
1497		tx_ring->flags &=
1498			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1499			  IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1500		rx_ring->flags &=
1501			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1502			  IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1503
1504		if (VLAN_ALLOWED(adapter)) {
1505			tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1506			rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1507		} else if (VLAN_V2_ALLOWED(adapter)) {
1508			struct virtchnl_vlan_supported_caps *stripping_support;
1509			struct virtchnl_vlan_supported_caps *insertion_support;
1510
1511			stripping_support =
1512				&adapter->vlan_v2_caps.offloads.stripping_support;
1513			insertion_support =
1514				&adapter->vlan_v2_caps.offloads.insertion_support;
1515
1516			if (stripping_support->outer) {
1517				if (stripping_support->outer &
1518				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1519					rx_ring->flags |=
1520						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1521				else if (stripping_support->outer &
1522					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1523					rx_ring->flags |=
1524						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1525			} else if (stripping_support->inner) {
1526				if (stripping_support->inner &
1527				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1528					rx_ring->flags |=
1529						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1530				else if (stripping_support->inner &
1531					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1532					rx_ring->flags |=
1533						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1534			}
1535
1536			if (insertion_support->outer) {
1537				if (insertion_support->outer &
1538				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1539					tx_ring->flags |=
1540						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1541				else if (insertion_support->outer &
1542					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1543					tx_ring->flags |=
1544						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1545			} else if (insertion_support->inner) {
1546				if (insertion_support->inner &
1547				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1548					tx_ring->flags |=
1549						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1550				else if (insertion_support->inner &
1551					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1552					tx_ring->flags |=
1553						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1554			}
1555		}
1556	}
1557}
1558
1559/**
1560 * iavf_alloc_queues - Allocate memory for all rings
1561 * @adapter: board private structure to initialize
1562 *
1563 * We allocate one ring per queue at run-time since we don't know the
1564 * number of queues at compile-time.  The polling_netdev array is
1565 * intended for Multiqueue, but should work fine with a single queue.
1566 **/
1567static int iavf_alloc_queues(struct iavf_adapter *adapter)
1568{
1569	int i, num_active_queues;
1570
1571	/* If we're in reset reallocating queues we don't actually know yet for
1572	 * certain the PF gave us the number of queues we asked for but we'll
1573	 * assume it did.  Once basic reset is finished we'll confirm once we
1574	 * start negotiating config with PF.
1575	 */
1576	if (adapter->num_req_queues)
1577		num_active_queues = adapter->num_req_queues;
1578	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1579		 adapter->num_tc)
1580		num_active_queues = adapter->ch_config.total_qps;
1581	else
1582		num_active_queues = min_t(int,
1583					  adapter->vsi_res->num_queue_pairs,
1584					  (int)(num_online_cpus()));
1585
1586
1587	adapter->tx_rings = kcalloc(num_active_queues,
1588				    sizeof(struct iavf_ring), GFP_KERNEL);
1589	if (!adapter->tx_rings)
1590		goto err_out;
1591	adapter->rx_rings = kcalloc(num_active_queues,
1592				    sizeof(struct iavf_ring), GFP_KERNEL);
1593	if (!adapter->rx_rings)
1594		goto err_out;
1595
1596	for (i = 0; i < num_active_queues; i++) {
1597		struct iavf_ring *tx_ring;
1598		struct iavf_ring *rx_ring;
1599
1600		tx_ring = &adapter->tx_rings[i];
1601
1602		tx_ring->queue_index = i;
1603		tx_ring->netdev = adapter->netdev;
1604		tx_ring->dev = &adapter->pdev->dev;
1605		tx_ring->count = adapter->tx_desc_count;
1606		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1607		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1608			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1609
1610		rx_ring = &adapter->rx_rings[i];
1611		rx_ring->queue_index = i;
1612		rx_ring->netdev = adapter->netdev;
1613		rx_ring->dev = &adapter->pdev->dev;
1614		rx_ring->count = adapter->rx_desc_count;
1615		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1616	}
1617
1618	adapter->num_active_queues = num_active_queues;
1619
1620	iavf_set_queue_vlan_tag_loc(adapter);
1621
1622	return 0;
1623
1624err_out:
1625	iavf_free_queues(adapter);
1626	return -ENOMEM;
1627}
1628
1629/**
1630 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1631 * @adapter: board private structure to initialize
1632 *
1633 * Attempt to configure the interrupts using the best available
1634 * capabilities of the hardware and the kernel.
1635 **/
1636static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1637{
1638	int vector, v_budget;
1639	int pairs = 0;
1640	int err = 0;
1641
1642	if (!adapter->vsi_res) {
1643		err = -EIO;
1644		goto out;
1645	}
1646	pairs = adapter->num_active_queues;
1647
1648	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1649	 * us much good if we have more vectors than CPUs. However, we already
1650	 * limit the total number of queues by the number of CPUs so we do not
1651	 * need any further limiting here.
1652	 */
1653	v_budget = min_t(int, pairs + NONQ_VECS,
1654			 (int)adapter->vf_res->max_vectors);
1655
1656	adapter->msix_entries = kcalloc(v_budget,
1657					sizeof(struct msix_entry), GFP_KERNEL);
1658	if (!adapter->msix_entries) {
1659		err = -ENOMEM;
1660		goto out;
1661	}
1662
1663	for (vector = 0; vector < v_budget; vector++)
1664		adapter->msix_entries[vector].entry = vector;
1665
1666	err = iavf_acquire_msix_vectors(adapter, v_budget);
 
 
1667
1668out:
1669	netif_set_real_num_rx_queues(adapter->netdev, pairs);
1670	netif_set_real_num_tx_queues(adapter->netdev, pairs);
1671	return err;
1672}
1673
1674/**
1675 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1676 * @adapter: board private structure
1677 *
1678 * Return 0 on success, negative on failure
1679 **/
1680static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1681{
1682	struct iavf_aqc_get_set_rss_key_data *rss_key =
1683		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1684	struct iavf_hw *hw = &adapter->hw;
1685	enum iavf_status status;
1686
1687	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1688		/* bail because we already have a command pending */
1689		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1690			adapter->current_op);
1691		return -EBUSY;
1692	}
1693
1694	status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1695	if (status) {
1696		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1697			iavf_stat_str(hw, status),
1698			iavf_aq_str(hw, hw->aq.asq_last_status));
1699		return iavf_status_to_errno(status);
1700
1701	}
1702
1703	status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1704				     adapter->rss_lut, adapter->rss_lut_size);
1705	if (status) {
1706		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1707			iavf_stat_str(hw, status),
1708			iavf_aq_str(hw, hw->aq.asq_last_status));
1709		return iavf_status_to_errno(status);
1710	}
1711
1712	return 0;
1713
1714}
1715
1716/**
1717 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1718 * @adapter: board private structure
1719 *
1720 * Returns 0 on success, negative on failure
1721 **/
1722static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1723{
1724	struct iavf_hw *hw = &adapter->hw;
1725	u32 *dw;
1726	u16 i;
1727
1728	dw = (u32 *)adapter->rss_key;
1729	for (i = 0; i <= adapter->rss_key_size / 4; i++)
1730		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1731
1732	dw = (u32 *)adapter->rss_lut;
1733	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1734		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1735
1736	iavf_flush(hw);
1737
1738	return 0;
1739}
1740
1741/**
1742 * iavf_config_rss - Configure RSS keys and lut
1743 * @adapter: board private structure
1744 *
1745 * Returns 0 on success, negative on failure
1746 **/
1747int iavf_config_rss(struct iavf_adapter *adapter)
1748{
1749
1750	if (RSS_PF(adapter)) {
1751		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1752					IAVF_FLAG_AQ_SET_RSS_KEY;
1753		return 0;
1754	} else if (RSS_AQ(adapter)) {
1755		return iavf_config_rss_aq(adapter);
1756	} else {
1757		return iavf_config_rss_reg(adapter);
1758	}
1759}
1760
1761/**
1762 * iavf_fill_rss_lut - Fill the lut with default values
1763 * @adapter: board private structure
1764 **/
1765static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1766{
1767	u16 i;
1768
1769	for (i = 0; i < adapter->rss_lut_size; i++)
1770		adapter->rss_lut[i] = i % adapter->num_active_queues;
1771}
1772
1773/**
1774 * iavf_init_rss - Prepare for RSS
1775 * @adapter: board private structure
1776 *
1777 * Return 0 on success, negative on failure
1778 **/
1779static int iavf_init_rss(struct iavf_adapter *adapter)
1780{
1781	struct iavf_hw *hw = &adapter->hw;
1782
1783	if (!RSS_PF(adapter)) {
1784		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1785		if (adapter->vf_res->vf_cap_flags &
1786		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1787			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1788		else
1789			adapter->hena = IAVF_DEFAULT_RSS_HENA;
1790
1791		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1792		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1793	}
1794
1795	iavf_fill_rss_lut(adapter);
1796	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1797
1798	return iavf_config_rss(adapter);
1799}
1800
1801/**
1802 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1803 * @adapter: board private structure to initialize
1804 *
1805 * We allocate one q_vector per queue interrupt.  If allocation fails we
1806 * return -ENOMEM.
1807 **/
1808static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1809{
1810	int q_idx = 0, num_q_vectors;
1811	struct iavf_q_vector *q_vector;
1812
1813	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1814	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1815				     GFP_KERNEL);
1816	if (!adapter->q_vectors)
1817		return -ENOMEM;
1818
1819	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1820		q_vector = &adapter->q_vectors[q_idx];
1821		q_vector->adapter = adapter;
1822		q_vector->vsi = &adapter->vsi;
1823		q_vector->v_idx = q_idx;
1824		q_vector->reg_idx = q_idx;
1825		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1826		netif_napi_add(adapter->netdev, &q_vector->napi,
1827			       iavf_napi_poll);
1828	}
1829
1830	return 0;
1831}
1832
1833/**
1834 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1835 * @adapter: board private structure to initialize
1836 *
1837 * This function frees the memory allocated to the q_vectors.  In addition if
1838 * NAPI is enabled it will delete any references to the NAPI struct prior
1839 * to freeing the q_vector.
1840 **/
1841static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1842{
1843	int q_idx, num_q_vectors;
1844	int napi_vectors;
1845
1846	if (!adapter->q_vectors)
1847		return;
1848
1849	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1850	napi_vectors = adapter->num_active_queues;
1851
1852	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1853		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1854
1855		if (q_idx < napi_vectors)
1856			netif_napi_del(&q_vector->napi);
1857	}
1858	kfree(adapter->q_vectors);
1859	adapter->q_vectors = NULL;
1860}
1861
1862/**
1863 * iavf_reset_interrupt_capability - Reset MSIX setup
1864 * @adapter: board private structure
1865 *
1866 **/
1867void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1868{
1869	if (!adapter->msix_entries)
1870		return;
1871
1872	pci_disable_msix(adapter->pdev);
1873	kfree(adapter->msix_entries);
1874	adapter->msix_entries = NULL;
1875}
1876
1877/**
1878 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1879 * @adapter: board private structure to initialize
1880 *
1881 **/
1882int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1883{
1884	int err;
1885
1886	err = iavf_alloc_queues(adapter);
1887	if (err) {
1888		dev_err(&adapter->pdev->dev,
1889			"Unable to allocate memory for queues\n");
1890		goto err_alloc_queues;
1891	}
1892
1893	rtnl_lock();
1894	err = iavf_set_interrupt_capability(adapter);
1895	rtnl_unlock();
1896	if (err) {
1897		dev_err(&adapter->pdev->dev,
1898			"Unable to setup interrupt capabilities\n");
1899		goto err_set_interrupt;
1900	}
1901
1902	err = iavf_alloc_q_vectors(adapter);
1903	if (err) {
1904		dev_err(&adapter->pdev->dev,
1905			"Unable to allocate memory for queue vectors\n");
1906		goto err_alloc_q_vectors;
1907	}
1908
1909	/* If we've made it so far while ADq flag being ON, then we haven't
1910	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1911	 * resources have been allocated in the reset path.
1912	 * Now we can truly claim that ADq is enabled.
1913	 */
1914	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1915	    adapter->num_tc)
1916		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1917			 adapter->num_tc);
1918
1919	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1920		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1921		 adapter->num_active_queues);
1922
1923	return 0;
1924err_alloc_q_vectors:
1925	iavf_reset_interrupt_capability(adapter);
1926err_set_interrupt:
1927	iavf_free_queues(adapter);
1928err_alloc_queues:
1929	return err;
1930}
1931
1932/**
 
 
 
 
 
 
 
 
 
 
 
1933 * iavf_free_rss - Free memory used by RSS structs
1934 * @adapter: board private structure
1935 **/
1936static void iavf_free_rss(struct iavf_adapter *adapter)
1937{
1938	kfree(adapter->rss_key);
1939	adapter->rss_key = NULL;
1940
1941	kfree(adapter->rss_lut);
1942	adapter->rss_lut = NULL;
1943}
1944
1945/**
1946 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1947 * @adapter: board private structure
 
1948 *
1949 * Returns 0 on success, negative on failure
1950 **/
1951static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1952{
1953	struct net_device *netdev = adapter->netdev;
1954	int err;
1955
1956	if (netif_running(netdev))
1957		iavf_free_traffic_irqs(adapter);
1958	iavf_free_misc_irq(adapter);
1959	iavf_reset_interrupt_capability(adapter);
1960	iavf_free_q_vectors(adapter);
1961	iavf_free_queues(adapter);
1962
1963	err =  iavf_init_interrupt_scheme(adapter);
1964	if (err)
1965		goto err;
1966
1967	netif_tx_stop_all_queues(netdev);
1968
1969	err = iavf_request_misc_irq(adapter);
1970	if (err)
1971		goto err;
1972
1973	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1974
1975	iavf_map_rings_to_vectors(adapter);
1976err:
1977	return err;
1978}
1979
1980/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1981 * iavf_process_aq_command - process aq_required flags
1982 * and sends aq command
1983 * @adapter: pointer to iavf adapter structure
1984 *
1985 * Returns 0 on success
1986 * Returns error code if no command was sent
1987 * or error code if the command failed.
1988 **/
1989static int iavf_process_aq_command(struct iavf_adapter *adapter)
1990{
1991	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1992		return iavf_send_vf_config_msg(adapter);
1993	if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
1994		return iavf_send_vf_offload_vlan_v2_msg(adapter);
1995	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1996		iavf_disable_queues(adapter);
1997		return 0;
1998	}
1999
2000	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2001		iavf_map_queues(adapter);
2002		return 0;
2003	}
2004
2005	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2006		iavf_add_ether_addrs(adapter);
2007		return 0;
2008	}
2009
2010	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2011		iavf_add_vlans(adapter);
2012		return 0;
2013	}
2014
2015	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2016		iavf_del_ether_addrs(adapter);
2017		return 0;
2018	}
2019
2020	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2021		iavf_del_vlans(adapter);
2022		return 0;
2023	}
2024
2025	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2026		iavf_enable_vlan_stripping(adapter);
2027		return 0;
2028	}
2029
2030	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2031		iavf_disable_vlan_stripping(adapter);
2032		return 0;
2033	}
2034
2035	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2036		iavf_configure_queues(adapter);
2037		return 0;
2038	}
2039
2040	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2041		iavf_enable_queues(adapter);
2042		return 0;
2043	}
2044
2045	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2046		/* This message goes straight to the firmware, not the
2047		 * PF, so we don't have to set current_op as we will
2048		 * not get a response through the ARQ.
2049		 */
2050		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2051		return 0;
2052	}
2053	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2054		iavf_get_hena(adapter);
2055		return 0;
2056	}
2057	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2058		iavf_set_hena(adapter);
2059		return 0;
2060	}
2061	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2062		iavf_set_rss_key(adapter);
2063		return 0;
2064	}
2065	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2066		iavf_set_rss_lut(adapter);
2067		return 0;
2068	}
2069
2070	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
2071		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
2072				       FLAG_VF_MULTICAST_PROMISC);
2073		return 0;
2074	}
2075
2076	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
2077		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
2078		return 0;
2079	}
2080	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) ||
2081	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
2082		iavf_set_promiscuous(adapter, 0);
2083		return 0;
2084	}
2085
2086	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2087		iavf_enable_channels(adapter);
2088		return 0;
2089	}
2090
2091	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2092		iavf_disable_channels(adapter);
2093		return 0;
2094	}
2095	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2096		iavf_add_cloud_filter(adapter);
2097		return 0;
2098	}
2099
2100	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2101		iavf_del_cloud_filter(adapter);
2102		return 0;
2103	}
2104	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2105		iavf_del_cloud_filter(adapter);
2106		return 0;
2107	}
2108	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2109		iavf_add_cloud_filter(adapter);
2110		return 0;
2111	}
2112	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2113		iavf_add_fdir_filter(adapter);
2114		return IAVF_SUCCESS;
2115	}
2116	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2117		iavf_del_fdir_filter(adapter);
2118		return IAVF_SUCCESS;
2119	}
2120	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2121		iavf_add_adv_rss_cfg(adapter);
2122		return 0;
2123	}
2124	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2125		iavf_del_adv_rss_cfg(adapter);
2126		return 0;
2127	}
2128	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2129		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2130		return 0;
2131	}
2132	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2133		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2134		return 0;
2135	}
2136	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2137		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2138		return 0;
2139	}
2140	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2141		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2142		return 0;
2143	}
2144	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2145		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2146		return 0;
2147	}
2148	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2149		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2150		return 0;
2151	}
2152	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2153		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2154		return 0;
2155	}
2156	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2157		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2158		return 0;
2159	}
2160
2161	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2162		iavf_request_stats(adapter);
2163		return 0;
2164	}
2165
2166	return -EAGAIN;
2167}
2168
2169/**
2170 * iavf_set_vlan_offload_features - set VLAN offload configuration
2171 * @adapter: board private structure
2172 * @prev_features: previous features used for comparison
2173 * @features: updated features used for configuration
2174 *
2175 * Set the aq_required bit(s) based on the requested features passed in to
2176 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2177 * the watchdog if any changes are requested to expedite the request via
2178 * virtchnl.
2179 **/
2180void
2181iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2182			       netdev_features_t prev_features,
2183			       netdev_features_t features)
2184{
2185	bool enable_stripping = true, enable_insertion = true;
2186	u16 vlan_ethertype = 0;
2187	u64 aq_required = 0;
2188
2189	/* keep cases separate because one ethertype for offloads can be
2190	 * disabled at the same time as another is disabled, so check for an
2191	 * enabled ethertype first, then check for disabled. Default to
2192	 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2193	 * stripping.
2194	 */
2195	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2196		vlan_ethertype = ETH_P_8021AD;
2197	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2198		vlan_ethertype = ETH_P_8021Q;
2199	else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2200		vlan_ethertype = ETH_P_8021AD;
2201	else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2202		vlan_ethertype = ETH_P_8021Q;
2203	else
2204		vlan_ethertype = ETH_P_8021Q;
2205
2206	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2207		enable_stripping = false;
2208	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2209		enable_insertion = false;
2210
2211	if (VLAN_ALLOWED(adapter)) {
2212		/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2213		 * stripping via virtchnl. VLAN insertion can be toggled on the
2214		 * netdev, but it doesn't require a virtchnl message
2215		 */
2216		if (enable_stripping)
2217			aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2218		else
2219			aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2220
2221	} else if (VLAN_V2_ALLOWED(adapter)) {
2222		switch (vlan_ethertype) {
2223		case ETH_P_8021Q:
2224			if (enable_stripping)
2225				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2226			else
2227				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2228
2229			if (enable_insertion)
2230				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2231			else
2232				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2233			break;
2234		case ETH_P_8021AD:
2235			if (enable_stripping)
2236				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2237			else
2238				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2239
2240			if (enable_insertion)
2241				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2242			else
2243				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2244			break;
2245		}
2246	}
2247
2248	if (aq_required) {
2249		adapter->aq_required |= aq_required;
2250		mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
2251	}
2252}
2253
2254/**
2255 * iavf_startup - first step of driver startup
2256 * @adapter: board private structure
2257 *
2258 * Function process __IAVF_STARTUP driver state.
2259 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2260 * when fails the state is changed to __IAVF_INIT_FAILED
2261 **/
2262static void iavf_startup(struct iavf_adapter *adapter)
2263{
2264	struct pci_dev *pdev = adapter->pdev;
2265	struct iavf_hw *hw = &adapter->hw;
2266	enum iavf_status status;
2267	int ret;
2268
2269	WARN_ON(adapter->state != __IAVF_STARTUP);
2270
2271	/* driver loaded, probe complete */
2272	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2273	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2274	status = iavf_set_mac_type(hw);
2275	if (status) {
2276		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status);
2277		goto err;
2278	}
2279
2280	ret = iavf_check_reset_complete(hw);
2281	if (ret) {
2282		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2283			 ret);
2284		goto err;
2285	}
2286	hw->aq.num_arq_entries = IAVF_AQ_LEN;
2287	hw->aq.num_asq_entries = IAVF_AQ_LEN;
2288	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2289	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2290
2291	status = iavf_init_adminq(hw);
2292	if (status) {
2293		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2294			status);
2295		goto err;
2296	}
2297	ret = iavf_send_api_ver(adapter);
2298	if (ret) {
2299		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2300		iavf_shutdown_adminq(hw);
2301		goto err;
2302	}
2303	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2304	return;
2305err:
2306	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2307}
2308
2309/**
2310 * iavf_init_version_check - second step of driver startup
2311 * @adapter: board private structure
2312 *
2313 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2314 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2315 * when fails the state is changed to __IAVF_INIT_FAILED
2316 **/
2317static void iavf_init_version_check(struct iavf_adapter *adapter)
2318{
2319	struct pci_dev *pdev = adapter->pdev;
2320	struct iavf_hw *hw = &adapter->hw;
2321	int err = -EAGAIN;
2322
2323	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2324
2325	if (!iavf_asq_done(hw)) {
2326		dev_err(&pdev->dev, "Admin queue command never completed\n");
2327		iavf_shutdown_adminq(hw);
2328		iavf_change_state(adapter, __IAVF_STARTUP);
2329		goto err;
2330	}
2331
2332	/* aq msg sent, awaiting reply */
2333	err = iavf_verify_api_ver(adapter);
2334	if (err) {
2335		if (err == -EALREADY)
2336			err = iavf_send_api_ver(adapter);
2337		else
2338			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2339				adapter->pf_version.major,
2340				adapter->pf_version.minor,
2341				VIRTCHNL_VERSION_MAJOR,
2342				VIRTCHNL_VERSION_MINOR);
2343		goto err;
2344	}
2345	err = iavf_send_vf_config_msg(adapter);
2346	if (err) {
2347		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2348			err);
2349		goto err;
2350	}
2351	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2352	return;
2353err:
2354	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2355}
2356
2357/**
2358 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2359 * @adapter: board private structure
2360 */
2361int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2362{
2363	int i, num_req_queues = adapter->num_req_queues;
2364	struct iavf_vsi *vsi = &adapter->vsi;
2365
2366	for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2367		if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2368			adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2369	}
2370	if (!adapter->vsi_res) {
2371		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2372		return -ENODEV;
2373	}
2374
2375	if (num_req_queues &&
2376	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
2377		/* Problem.  The PF gave us fewer queues than what we had
2378		 * negotiated in our request.  Need a reset to see if we can't
2379		 * get back to a working state.
2380		 */
2381		dev_err(&adapter->pdev->dev,
2382			"Requested %d queues, but PF only gave us %d.\n",
2383			num_req_queues,
2384			adapter->vsi_res->num_queue_pairs);
2385		adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2386		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2387		iavf_schedule_reset(adapter);
2388
2389		return -EAGAIN;
2390	}
2391	adapter->num_req_queues = 0;
2392	adapter->vsi.id = adapter->vsi_res->vsi_id;
2393
2394	adapter->vsi.back = adapter;
2395	adapter->vsi.base_vector = 1;
2396	vsi->netdev = adapter->netdev;
2397	vsi->qs_handle = adapter->vsi_res->qset_handle;
2398	if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2399		adapter->rss_key_size = adapter->vf_res->rss_key_size;
2400		adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2401	} else {
2402		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2403		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2404	}
2405
2406	return 0;
2407}
2408
2409/**
2410 * iavf_init_get_resources - third step of driver startup
2411 * @adapter: board private structure
2412 *
2413 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2414 * finishes driver initialization procedure.
2415 * When success the state is changed to __IAVF_DOWN
2416 * when fails the state is changed to __IAVF_INIT_FAILED
2417 **/
2418static void iavf_init_get_resources(struct iavf_adapter *adapter)
2419{
2420	struct pci_dev *pdev = adapter->pdev;
2421	struct iavf_hw *hw = &adapter->hw;
2422	int err;
2423
2424	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2425	/* aq msg sent, awaiting reply */
2426	if (!adapter->vf_res) {
2427		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2428					  GFP_KERNEL);
2429		if (!adapter->vf_res) {
2430			err = -ENOMEM;
2431			goto err;
2432		}
2433	}
2434	err = iavf_get_vf_config(adapter);
2435	if (err == -EALREADY) {
2436		err = iavf_send_vf_config_msg(adapter);
2437		goto err;
2438	} else if (err == -EINVAL) {
2439		/* We only get -EINVAL if the device is in a very bad
2440		 * state or if we've been disabled for previous bad
2441		 * behavior. Either way, we're done now.
2442		 */
2443		iavf_shutdown_adminq(hw);
2444		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2445		return;
2446	}
2447	if (err) {
2448		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2449		goto err_alloc;
2450	}
2451
2452	err = iavf_parse_vf_resource_msg(adapter);
2453	if (err) {
2454		dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2455			err);
2456		goto err_alloc;
2457	}
2458	/* Some features require additional messages to negotiate extended
2459	 * capabilities. These are processed in sequence by the
2460	 * __IAVF_INIT_EXTENDED_CAPS driver state.
2461	 */
2462	adapter->extended_caps = IAVF_EXTENDED_CAPS;
2463
2464	iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2465	return;
2466
2467err_alloc:
2468	kfree(adapter->vf_res);
2469	adapter->vf_res = NULL;
2470err:
2471	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2472}
2473
2474/**
2475 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2476 * @adapter: board private structure
2477 *
2478 * Function processes send of the extended VLAN V2 capability message to the
2479 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2480 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2481 */
2482static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2483{
2484	int ret;
2485
2486	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2487
2488	ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2489	if (ret && ret == -EOPNOTSUPP) {
2490		/* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2491		 * we did not send the capability exchange message and do not
2492		 * expect a response.
2493		 */
2494		adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2495	}
2496
2497	/* We sent the message, so move on to the next step */
2498	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2499}
2500
2501/**
2502 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2503 * @adapter: board private structure
2504 *
2505 * Function processes receipt of the extended VLAN V2 capability message from
2506 * the PF.
2507 **/
2508static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2509{
2510	int ret;
2511
2512	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2513
2514	memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2515
2516	ret = iavf_get_vf_vlan_v2_caps(adapter);
2517	if (ret)
2518		goto err;
2519
2520	/* We've processed receipt of the VLAN V2 caps message */
2521	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2522	return;
2523err:
2524	/* We didn't receive a reply. Make sure we try sending again when
2525	 * __IAVF_INIT_FAILED attempts to recover.
2526	 */
2527	adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2528	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2529}
2530
2531/**
2532 * iavf_init_process_extended_caps - Part of driver startup
2533 * @adapter: board private structure
2534 *
2535 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2536 * handles negotiating capabilities for features which require an additional
2537 * message.
2538 *
2539 * Once all extended capabilities exchanges are finished, the driver will
2540 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2541 */
2542static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2543{
2544	WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2545
2546	/* Process capability exchange for VLAN V2 */
2547	if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2548		iavf_init_send_offload_vlan_v2_caps(adapter);
2549		return;
2550	} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2551		iavf_init_recv_offload_vlan_v2_caps(adapter);
2552		return;
2553	}
2554
2555	/* When we reach here, no further extended capabilities exchanges are
2556	 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2557	 */
2558	iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2559}
2560
2561/**
2562 * iavf_init_config_adapter - last part of driver startup
2563 * @adapter: board private structure
2564 *
2565 * After all the supported capabilities are negotiated, then the
2566 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2567 */
2568static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2569{
2570	struct net_device *netdev = adapter->netdev;
2571	struct pci_dev *pdev = adapter->pdev;
2572	int err;
2573
2574	WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2575
2576	if (iavf_process_config(adapter))
2577		goto err;
2578
2579	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2580
2581	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2582
2583	netdev->netdev_ops = &iavf_netdev_ops;
2584	iavf_set_ethtool_ops(netdev);
2585	netdev->watchdog_timeo = 5 * HZ;
2586
2587	/* MTU range: 68 - 9710 */
2588	netdev->min_mtu = ETH_MIN_MTU;
2589	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2590
2591	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2592		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2593			 adapter->hw.mac.addr);
2594		eth_hw_addr_random(netdev);
2595		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2596	} else {
2597		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2598		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2599	}
2600
2601	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2602	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2603	err = iavf_init_interrupt_scheme(adapter);
2604	if (err)
2605		goto err_sw_init;
2606	iavf_map_rings_to_vectors(adapter);
2607	if (adapter->vf_res->vf_cap_flags &
2608		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2609		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2610
2611	err = iavf_request_misc_irq(adapter);
2612	if (err)
2613		goto err_sw_init;
2614
2615	netif_carrier_off(netdev);
2616	adapter->link_up = false;
 
2617
2618	/* set the semaphore to prevent any callbacks after device registration
2619	 * up to time when state of driver will be set to __IAVF_DOWN
2620	 */
2621	rtnl_lock();
2622	if (!adapter->netdev_registered) {
2623		err = register_netdevice(netdev);
2624		if (err) {
2625			rtnl_unlock();
2626			goto err_register;
2627		}
2628	}
2629
2630	adapter->netdev_registered = true;
2631
2632	netif_tx_stop_all_queues(netdev);
2633	if (CLIENT_ALLOWED(adapter)) {
2634		err = iavf_lan_add_device(adapter);
2635		if (err)
2636			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
2637				 err);
2638	}
2639	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2640	if (netdev->features & NETIF_F_GRO)
2641		dev_info(&pdev->dev, "GRO is enabled\n");
2642
2643	iavf_change_state(adapter, __IAVF_DOWN);
2644	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2645	rtnl_unlock();
2646
2647	iavf_misc_irq_enable(adapter);
2648	wake_up(&adapter->down_waitqueue);
2649
2650	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2651	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2652	if (!adapter->rss_key || !adapter->rss_lut) {
2653		err = -ENOMEM;
2654		goto err_mem;
2655	}
2656	if (RSS_AQ(adapter))
2657		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2658	else
2659		iavf_init_rss(adapter);
2660
2661	if (VLAN_V2_ALLOWED(adapter))
2662		/* request initial VLAN offload settings */
2663		iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2664
 
2665	return;
 
2666err_mem:
2667	iavf_free_rss(adapter);
2668err_register:
2669	iavf_free_misc_irq(adapter);
2670err_sw_init:
2671	iavf_reset_interrupt_capability(adapter);
2672err:
2673	iavf_change_state(adapter, __IAVF_INIT_FAILED);
2674}
2675
2676/**
2677 * iavf_watchdog_task - Periodic call-back task
2678 * @work: pointer to work_struct
2679 **/
2680static void iavf_watchdog_task(struct work_struct *work)
2681{
2682	struct iavf_adapter *adapter = container_of(work,
2683						    struct iavf_adapter,
2684						    watchdog_task.work);
2685	struct iavf_hw *hw = &adapter->hw;
2686	u32 reg_val;
2687
2688	if (!mutex_trylock(&adapter->crit_lock)) {
2689		if (adapter->state == __IAVF_REMOVE)
2690			return;
2691
2692		goto restart_watchdog;
2693	}
2694
2695	if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
2696	    adapter->netdev_registered &&
2697	    !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
2698	    rtnl_trylock()) {
2699		netdev_update_features(adapter->netdev);
2700		rtnl_unlock();
2701		adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2702	}
2703
2704	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2705		iavf_change_state(adapter, __IAVF_COMM_FAILED);
2706
2707	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2708		adapter->aq_required = 0;
2709		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2710		mutex_unlock(&adapter->crit_lock);
2711		queue_work(adapter->wq, &adapter->reset_task);
2712		return;
2713	}
2714
2715	switch (adapter->state) {
2716	case __IAVF_STARTUP:
2717		iavf_startup(adapter);
2718		mutex_unlock(&adapter->crit_lock);
2719		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2720				   msecs_to_jiffies(30));
2721		return;
2722	case __IAVF_INIT_VERSION_CHECK:
2723		iavf_init_version_check(adapter);
2724		mutex_unlock(&adapter->crit_lock);
2725		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2726				   msecs_to_jiffies(30));
2727		return;
2728	case __IAVF_INIT_GET_RESOURCES:
2729		iavf_init_get_resources(adapter);
2730		mutex_unlock(&adapter->crit_lock);
2731		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2732				   msecs_to_jiffies(1));
2733		return;
2734	case __IAVF_INIT_EXTENDED_CAPS:
2735		iavf_init_process_extended_caps(adapter);
2736		mutex_unlock(&adapter->crit_lock);
2737		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2738				   msecs_to_jiffies(1));
2739		return;
2740	case __IAVF_INIT_CONFIG_ADAPTER:
2741		iavf_init_config_adapter(adapter);
2742		mutex_unlock(&adapter->crit_lock);
2743		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2744				   msecs_to_jiffies(1));
2745		return;
2746	case __IAVF_INIT_FAILED:
2747		if (test_bit(__IAVF_IN_REMOVE_TASK,
2748			     &adapter->crit_section)) {
2749			/* Do not update the state and do not reschedule
2750			 * watchdog task, iavf_remove should handle this state
2751			 * as it can loop forever
2752			 */
2753			mutex_unlock(&adapter->crit_lock);
2754			return;
2755		}
2756		if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2757			dev_err(&adapter->pdev->dev,
2758				"Failed to communicate with PF; waiting before retry\n");
2759			adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2760			iavf_shutdown_adminq(hw);
2761			mutex_unlock(&adapter->crit_lock);
2762			queue_delayed_work(adapter->wq,
2763					   &adapter->watchdog_task, (5 * HZ));
2764			return;
2765		}
2766		/* Try again from failed step*/
2767		iavf_change_state(adapter, adapter->last_state);
2768		mutex_unlock(&adapter->crit_lock);
2769		queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2770		return;
2771	case __IAVF_COMM_FAILED:
2772		if (test_bit(__IAVF_IN_REMOVE_TASK,
2773			     &adapter->crit_section)) {
2774			/* Set state to __IAVF_INIT_FAILED and perform remove
2775			 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2776			 * doesn't bring the state back to __IAVF_COMM_FAILED.
2777			 */
2778			iavf_change_state(adapter, __IAVF_INIT_FAILED);
2779			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2780			mutex_unlock(&adapter->crit_lock);
2781			return;
2782		}
2783		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2784			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2785		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2786		    reg_val == VIRTCHNL_VFR_COMPLETED) {
2787			/* A chance for redemption! */
2788			dev_err(&adapter->pdev->dev,
2789				"Hardware came out of reset. Attempting reinit.\n");
2790			/* When init task contacts the PF and
2791			 * gets everything set up again, it'll restart the
2792			 * watchdog for us. Down, boy. Sit. Stay. Woof.
2793			 */
2794			iavf_change_state(adapter, __IAVF_STARTUP);
2795			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2796		}
2797		adapter->aq_required = 0;
2798		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2799		mutex_unlock(&adapter->crit_lock);
2800		queue_delayed_work(adapter->wq,
2801				   &adapter->watchdog_task,
2802				   msecs_to_jiffies(10));
2803		return;
2804	case __IAVF_RESETTING:
2805		mutex_unlock(&adapter->crit_lock);
2806		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2807				   HZ * 2);
2808		return;
2809	case __IAVF_DOWN:
2810	case __IAVF_DOWN_PENDING:
2811	case __IAVF_TESTING:
2812	case __IAVF_RUNNING:
2813		if (adapter->current_op) {
2814			if (!iavf_asq_done(hw)) {
2815				dev_dbg(&adapter->pdev->dev,
2816					"Admin queue timeout\n");
2817				iavf_send_api_ver(adapter);
2818			}
2819		} else {
2820			int ret = iavf_process_aq_command(adapter);
2821
2822			/* An error will be returned if no commands were
2823			 * processed; use this opportunity to update stats
2824			 * if the error isn't -ENOTSUPP
2825			 */
2826			if (ret && ret != -EOPNOTSUPP &&
2827			    adapter->state == __IAVF_RUNNING)
2828				iavf_request_stats(adapter);
2829		}
2830		if (adapter->state == __IAVF_RUNNING)
2831			iavf_detect_recover_hung(&adapter->vsi);
2832		break;
2833	case __IAVF_REMOVE:
2834	default:
2835		mutex_unlock(&adapter->crit_lock);
2836		return;
2837	}
2838
2839	/* check for hw reset */
2840	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2841	if (!reg_val) {
2842		adapter->flags |= IAVF_FLAG_RESET_PENDING;
2843		adapter->aq_required = 0;
2844		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2845		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2846		queue_work(adapter->wq, &adapter->reset_task);
2847		mutex_unlock(&adapter->crit_lock);
2848		queue_delayed_work(adapter->wq,
2849				   &adapter->watchdog_task, HZ * 2);
2850		return;
2851	}
2852
2853	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2854	mutex_unlock(&adapter->crit_lock);
2855restart_watchdog:
2856	if (adapter->state >= __IAVF_DOWN)
2857		queue_work(adapter->wq, &adapter->adminq_task);
2858	if (adapter->aq_required)
2859		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2860				   msecs_to_jiffies(20));
2861	else
2862		queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2863				   HZ * 2);
2864}
2865
2866/**
2867 * iavf_disable_vf - disable VF
2868 * @adapter: board private structure
2869 *
2870 * Set communication failed flag and free all resources.
2871 * NOTE: This function is expected to be called with crit_lock being held.
2872 **/
2873static void iavf_disable_vf(struct iavf_adapter *adapter)
2874{
2875	struct iavf_mac_filter *f, *ftmp;
2876	struct iavf_vlan_filter *fv, *fvtmp;
2877	struct iavf_cloud_filter *cf, *cftmp;
2878
2879	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2880
2881	/* We don't use netif_running() because it may be true prior to
2882	 * ndo_open() returning, so we can't assume it means all our open
2883	 * tasks have finished, since we're not holding the rtnl_lock here.
2884	 */
2885	if (adapter->state == __IAVF_RUNNING) {
2886		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2887		netif_carrier_off(adapter->netdev);
2888		netif_tx_disable(adapter->netdev);
2889		adapter->link_up = false;
2890		iavf_napi_disable_all(adapter);
2891		iavf_irq_disable(adapter);
2892		iavf_free_traffic_irqs(adapter);
2893		iavf_free_all_tx_resources(adapter);
2894		iavf_free_all_rx_resources(adapter);
2895	}
2896
2897	spin_lock_bh(&adapter->mac_vlan_list_lock);
2898
2899	/* Delete all of the filters */
2900	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2901		list_del(&f->list);
2902		kfree(f);
2903	}
2904
2905	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2906		list_del(&fv->list);
2907		kfree(fv);
2908	}
 
2909
2910	spin_unlock_bh(&adapter->mac_vlan_list_lock);
2911
2912	spin_lock_bh(&adapter->cloud_filter_list_lock);
2913	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2914		list_del(&cf->list);
2915		kfree(cf);
2916		adapter->num_cloud_filters--;
2917	}
2918	spin_unlock_bh(&adapter->cloud_filter_list_lock);
2919
2920	iavf_free_misc_irq(adapter);
2921	iavf_reset_interrupt_capability(adapter);
2922	iavf_free_q_vectors(adapter);
2923	iavf_free_queues(adapter);
2924	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2925	iavf_shutdown_adminq(&adapter->hw);
2926	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2927	iavf_change_state(adapter, __IAVF_DOWN);
2928	wake_up(&adapter->down_waitqueue);
2929	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2930}
2931
2932/**
2933 * iavf_reset_task - Call-back task to handle hardware reset
2934 * @work: pointer to work_struct
2935 *
2936 * During reset we need to shut down and reinitialize the admin queue
2937 * before we can use it to communicate with the PF again. We also clear
2938 * and reinit the rings because that context is lost as well.
2939 **/
2940static void iavf_reset_task(struct work_struct *work)
2941{
2942	struct iavf_adapter *adapter = container_of(work,
2943						      struct iavf_adapter,
2944						      reset_task);
2945	struct virtchnl_vf_resource *vfres = adapter->vf_res;
2946	struct net_device *netdev = adapter->netdev;
2947	struct iavf_hw *hw = &adapter->hw;
2948	struct iavf_mac_filter *f, *ftmp;
2949	struct iavf_cloud_filter *cf;
2950	enum iavf_status status;
2951	u32 reg_val;
2952	int i = 0, err;
2953	bool running;
2954
2955	/* Detach interface to avoid subsequent NDO callbacks */
2956	rtnl_lock();
2957	netif_device_detach(netdev);
2958	rtnl_unlock();
2959
2960	/* When device is being removed it doesn't make sense to run the reset
2961	 * task, just return in such a case.
2962	 */
2963	if (!mutex_trylock(&adapter->crit_lock)) {
2964		if (adapter->state != __IAVF_REMOVE)
2965			queue_work(adapter->wq, &adapter->reset_task);
2966
2967		goto reset_finish;
2968	}
2969
2970	while (!mutex_trylock(&adapter->client_lock))
2971		usleep_range(500, 1000);
2972	if (CLIENT_ENABLED(adapter)) {
2973		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2974				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2975				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2976				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2977		cancel_delayed_work_sync(&adapter->client_task);
2978		iavf_notify_client_close(&adapter->vsi, true);
2979	}
2980	iavf_misc_irq_disable(adapter);
2981	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2982		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2983		/* Restart the AQ here. If we have been reset but didn't
2984		 * detect it, or if the PF had to reinit, our AQ will be hosed.
2985		 */
2986		iavf_shutdown_adminq(hw);
2987		iavf_init_adminq(hw);
2988		iavf_request_reset(adapter);
2989	}
2990	adapter->flags |= IAVF_FLAG_RESET_PENDING;
2991
2992	/* poll until we see the reset actually happen */
2993	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2994		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2995			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2996		if (!reg_val)
2997			break;
2998		usleep_range(5000, 10000);
2999	}
3000	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3001		dev_info(&adapter->pdev->dev, "Never saw reset\n");
3002		goto continue_reset; /* act like the reset happened */
3003	}
3004
3005	/* wait until the reset is complete and the PF is responding to us */
3006	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3007		/* sleep first to make sure a minimum wait time is met */
3008		msleep(IAVF_RESET_WAIT_MS);
3009
3010		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3011			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3012		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3013			break;
3014	}
3015
3016	pci_set_master(adapter->pdev);
3017	pci_restore_msi_state(adapter->pdev);
3018
3019	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3020		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3021			reg_val);
3022		iavf_disable_vf(adapter);
3023		mutex_unlock(&adapter->client_lock);
3024		mutex_unlock(&adapter->crit_lock);
3025		if (netif_running(netdev)) {
3026			rtnl_lock();
3027			dev_close(netdev);
3028			rtnl_unlock();
3029		}
3030		return; /* Do not attempt to reinit. It's dead, Jim. */
3031	}
3032
3033continue_reset:
3034	/* We don't use netif_running() because it may be true prior to
3035	 * ndo_open() returning, so we can't assume it means all our open
3036	 * tasks have finished, since we're not holding the rtnl_lock here.
3037	 */
3038	running = adapter->state == __IAVF_RUNNING;
3039
3040	if (running) {
3041		netif_carrier_off(netdev);
3042		netif_tx_stop_all_queues(netdev);
3043		adapter->link_up = false;
3044		iavf_napi_disable_all(adapter);
3045	}
3046	iavf_irq_disable(adapter);
3047
3048	iavf_change_state(adapter, __IAVF_RESETTING);
3049	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3050
3051	/* free the Tx/Rx rings and descriptors, might be better to just
3052	 * re-use them sometime in the future
3053	 */
3054	iavf_free_all_rx_resources(adapter);
3055	iavf_free_all_tx_resources(adapter);
3056
3057	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3058	/* kill and reinit the admin queue */
3059	iavf_shutdown_adminq(hw);
3060	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3061	status = iavf_init_adminq(hw);
3062	if (status) {
3063		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3064			 status);
3065		goto reset_err;
3066	}
3067	adapter->aq_required = 0;
3068
3069	if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3070	    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3071		err = iavf_reinit_interrupt_scheme(adapter);
3072		if (err)
3073			goto reset_err;
3074	}
3075
3076	if (RSS_AQ(adapter)) {
3077		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3078	} else {
3079		err = iavf_init_rss(adapter);
3080		if (err)
3081			goto reset_err;
3082	}
3083
3084	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3085	/* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3086	 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3087	 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3088	 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3089	 * been successfully sent and negotiated
3090	 */
3091	adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3092	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3093
3094	spin_lock_bh(&adapter->mac_vlan_list_lock);
3095
3096	/* Delete filter for the current MAC address, it could have
3097	 * been changed by the PF via administratively set MAC.
3098	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3099	 */
3100	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3101		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3102			list_del(&f->list);
3103			kfree(f);
3104		}
3105	}
3106	/* re-add all MAC filters */
3107	list_for_each_entry(f, &adapter->mac_filter_list, list) {
3108		f->add = true;
3109	}
3110	spin_unlock_bh(&adapter->mac_vlan_list_lock);
3111
3112	/* check if TCs are running and re-add all cloud filters */
3113	spin_lock_bh(&adapter->cloud_filter_list_lock);
3114	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3115	    adapter->num_tc) {
3116		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3117			cf->add = true;
3118		}
3119	}
3120	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3121
3122	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3123	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3124	iavf_misc_irq_enable(adapter);
3125
3126	bitmap_clear(adapter->vsi.active_cvlans, 0, VLAN_N_VID);
3127	bitmap_clear(adapter->vsi.active_svlans, 0, VLAN_N_VID);
3128
3129	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3130
3131	/* We were running when the reset started, so we need to restore some
3132	 * state here.
3133	 */
3134	if (running) {
3135		/* allocate transmit descriptors */
3136		err = iavf_setup_all_tx_resources(adapter);
3137		if (err)
3138			goto reset_err;
3139
3140		/* allocate receive descriptors */
3141		err = iavf_setup_all_rx_resources(adapter);
3142		if (err)
3143			goto reset_err;
3144
3145		if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3146		    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3147			err = iavf_request_traffic_irqs(adapter, netdev->name);
3148			if (err)
3149				goto reset_err;
3150
3151			adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3152		}
3153
3154		iavf_configure(adapter);
3155
3156		/* iavf_up_complete() will switch device back
3157		 * to __IAVF_RUNNING
3158		 */
3159		iavf_up_complete(adapter);
3160
3161		iavf_irq_enable(adapter, true);
3162	} else {
3163		iavf_change_state(adapter, __IAVF_DOWN);
3164		wake_up(&adapter->down_waitqueue);
3165	}
3166
3167	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3168
3169	mutex_unlock(&adapter->client_lock);
3170	mutex_unlock(&adapter->crit_lock);
3171
3172	goto reset_finish;
3173reset_err:
3174	if (running) {
3175		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3176		iavf_free_traffic_irqs(adapter);
3177	}
3178	iavf_disable_vf(adapter);
3179
3180	mutex_unlock(&adapter->client_lock);
3181	mutex_unlock(&adapter->crit_lock);
3182
3183	if (netif_running(netdev)) {
3184		/* Close device to ensure that Tx queues will not be started
3185		 * during netif_device_attach() at the end of the reset task.
3186		 */
3187		rtnl_lock();
3188		dev_close(netdev);
3189		rtnl_unlock();
3190	}
3191
3192	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3193reset_finish:
3194	rtnl_lock();
3195	netif_device_attach(netdev);
3196	rtnl_unlock();
3197}
3198
3199/**
3200 * iavf_adminq_task - worker thread to clean the admin queue
3201 * @work: pointer to work_struct containing our data
3202 **/
3203static void iavf_adminq_task(struct work_struct *work)
3204{
3205	struct iavf_adapter *adapter =
3206		container_of(work, struct iavf_adapter, adminq_task);
3207	struct iavf_hw *hw = &adapter->hw;
3208	struct iavf_arq_event_info event;
3209	enum virtchnl_ops v_op;
3210	enum iavf_status ret, v_ret;
3211	u32 val, oldval;
3212	u16 pending;
3213
3214	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3215		goto out;
3216
3217	if (!mutex_trylock(&adapter->crit_lock)) {
3218		if (adapter->state == __IAVF_REMOVE)
3219			return;
3220
3221		queue_work(adapter->wq, &adapter->adminq_task);
3222		goto out;
3223	}
3224
 
 
 
3225	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3226	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3227	if (!event.msg_buf)
3228		goto out;
3229
3230	do {
3231		ret = iavf_clean_arq_element(hw, &event, &pending);
3232		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3233		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3234
3235		if (ret || !v_op)
3236			break; /* No event to process or error cleaning ARQ */
3237
3238		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3239					 event.msg_len);
3240		if (pending != 0)
3241			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3242	} while (pending);
3243	mutex_unlock(&adapter->crit_lock);
3244
3245	if ((adapter->flags &
3246	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
3247	    adapter->state == __IAVF_RESETTING)
3248		goto freedom;
3249
3250	/* check for error indications */
3251	val = rd32(hw, hw->aq.arq.len);
3252	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3253		goto freedom;
3254	oldval = val;
3255	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3256		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3257		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3258	}
3259	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3260		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3261		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3262	}
3263	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3264		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3265		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3266	}
3267	if (oldval != val)
3268		wr32(hw, hw->aq.arq.len, val);
3269
3270	val = rd32(hw, hw->aq.asq.len);
3271	oldval = val;
3272	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3273		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3274		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3275	}
3276	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3277		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3278		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3279	}
3280	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3281		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3282		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3283	}
3284	if (oldval != val)
3285		wr32(hw, hw->aq.asq.len, val);
3286
3287freedom:
3288	kfree(event.msg_buf);
 
 
3289out:
3290	/* re-enable Admin queue interrupt cause */
3291	iavf_misc_irq_enable(adapter);
3292}
3293
3294/**
3295 * iavf_client_task - worker thread to perform client work
3296 * @work: pointer to work_struct containing our data
3297 *
3298 * This task handles client interactions. Because client calls can be
3299 * reentrant, we can't handle them in the watchdog.
3300 **/
3301static void iavf_client_task(struct work_struct *work)
3302{
3303	struct iavf_adapter *adapter =
3304		container_of(work, struct iavf_adapter, client_task.work);
3305
3306	/* If we can't get the client bit, just give up. We'll be rescheduled
3307	 * later.
3308	 */
3309
3310	if (!mutex_trylock(&adapter->client_lock))
3311		return;
3312
3313	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
3314		iavf_client_subtask(adapter);
3315		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3316		goto out;
3317	}
3318	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
3319		iavf_notify_client_l2_params(&adapter->vsi);
3320		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
3321		goto out;
3322	}
3323	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
3324		iavf_notify_client_close(&adapter->vsi, false);
3325		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3326		goto out;
3327	}
3328	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
3329		iavf_notify_client_open(&adapter->vsi);
3330		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
3331	}
3332out:
3333	mutex_unlock(&adapter->client_lock);
3334}
3335
3336/**
3337 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3338 * @adapter: board private structure
3339 *
3340 * Free all transmit software resources
3341 **/
3342void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3343{
3344	int i;
3345
3346	if (!adapter->tx_rings)
3347		return;
3348
3349	for (i = 0; i < adapter->num_active_queues; i++)
3350		if (adapter->tx_rings[i].desc)
3351			iavf_free_tx_resources(&adapter->tx_rings[i]);
3352}
3353
3354/**
3355 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3356 * @adapter: board private structure
3357 *
3358 * If this function returns with an error, then it's possible one or
3359 * more of the rings is populated (while the rest are not).  It is the
3360 * callers duty to clean those orphaned rings.
3361 *
3362 * Return 0 on success, negative on failure
3363 **/
3364static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3365{
3366	int i, err = 0;
3367
3368	for (i = 0; i < adapter->num_active_queues; i++) {
3369		adapter->tx_rings[i].count = adapter->tx_desc_count;
3370		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3371		if (!err)
3372			continue;
3373		dev_err(&adapter->pdev->dev,
3374			"Allocation for Tx Queue %u failed\n", i);
3375		break;
3376	}
3377
3378	return err;
3379}
3380
3381/**
3382 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3383 * @adapter: board private structure
3384 *
3385 * If this function returns with an error, then it's possible one or
3386 * more of the rings is populated (while the rest are not).  It is the
3387 * callers duty to clean those orphaned rings.
3388 *
3389 * Return 0 on success, negative on failure
3390 **/
3391static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3392{
3393	int i, err = 0;
3394
3395	for (i = 0; i < adapter->num_active_queues; i++) {
3396		adapter->rx_rings[i].count = adapter->rx_desc_count;
3397		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3398		if (!err)
3399			continue;
3400		dev_err(&adapter->pdev->dev,
3401			"Allocation for Rx Queue %u failed\n", i);
3402		break;
3403	}
3404	return err;
3405}
3406
3407/**
3408 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3409 * @adapter: board private structure
3410 *
3411 * Free all receive software resources
3412 **/
3413void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3414{
3415	int i;
3416
3417	if (!adapter->rx_rings)
3418		return;
3419
3420	for (i = 0; i < adapter->num_active_queues; i++)
3421		if (adapter->rx_rings[i].desc)
3422			iavf_free_rx_resources(&adapter->rx_rings[i]);
3423}
3424
3425/**
3426 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3427 * @adapter: board private structure
3428 * @max_tx_rate: max Tx bw for a tc
3429 **/
3430static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3431				      u64 max_tx_rate)
3432{
3433	int speed = 0, ret = 0;
3434
3435	if (ADV_LINK_SUPPORT(adapter)) {
3436		if (adapter->link_speed_mbps < U32_MAX) {
3437			speed = adapter->link_speed_mbps;
3438			goto validate_bw;
3439		} else {
3440			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3441			return -EINVAL;
3442		}
3443	}
3444
3445	switch (adapter->link_speed) {
3446	case VIRTCHNL_LINK_SPEED_40GB:
3447		speed = SPEED_40000;
3448		break;
3449	case VIRTCHNL_LINK_SPEED_25GB:
3450		speed = SPEED_25000;
3451		break;
3452	case VIRTCHNL_LINK_SPEED_20GB:
3453		speed = SPEED_20000;
3454		break;
3455	case VIRTCHNL_LINK_SPEED_10GB:
3456		speed = SPEED_10000;
3457		break;
3458	case VIRTCHNL_LINK_SPEED_5GB:
3459		speed = SPEED_5000;
3460		break;
3461	case VIRTCHNL_LINK_SPEED_2_5GB:
3462		speed = SPEED_2500;
3463		break;
3464	case VIRTCHNL_LINK_SPEED_1GB:
3465		speed = SPEED_1000;
3466		break;
3467	case VIRTCHNL_LINK_SPEED_100MB:
3468		speed = SPEED_100;
3469		break;
3470	default:
3471		break;
3472	}
3473
3474validate_bw:
3475	if (max_tx_rate > speed) {
3476		dev_err(&adapter->pdev->dev,
3477			"Invalid tx rate specified\n");
3478		ret = -EINVAL;
3479	}
3480
3481	return ret;
3482}
3483
3484/**
3485 * iavf_validate_ch_config - validate queue mapping info
3486 * @adapter: board private structure
3487 * @mqprio_qopt: queue parameters
3488 *
3489 * This function validates if the config provided by the user to
3490 * configure queue channels is valid or not. Returns 0 on a valid
3491 * config.
3492 **/
3493static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3494				   struct tc_mqprio_qopt_offload *mqprio_qopt)
3495{
3496	u64 total_max_rate = 0;
3497	u32 tx_rate_rem = 0;
3498	int i, num_qps = 0;
3499	u64 tx_rate = 0;
3500	int ret = 0;
3501
3502	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3503	    mqprio_qopt->qopt.num_tc < 1)
3504		return -EINVAL;
3505
3506	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3507		if (!mqprio_qopt->qopt.count[i] ||
3508		    mqprio_qopt->qopt.offset[i] != num_qps)
3509			return -EINVAL;
3510		if (mqprio_qopt->min_rate[i]) {
3511			dev_err(&adapter->pdev->dev,
3512				"Invalid min tx rate (greater than 0) specified for TC%d\n",
3513				i);
3514			return -EINVAL;
3515		}
3516
3517		/* convert to Mbps */
3518		tx_rate = div_u64(mqprio_qopt->max_rate[i],
3519				  IAVF_MBPS_DIVISOR);
3520
3521		if (mqprio_qopt->max_rate[i] &&
3522		    tx_rate < IAVF_MBPS_QUANTA) {
3523			dev_err(&adapter->pdev->dev,
3524				"Invalid max tx rate for TC%d, minimum %dMbps\n",
3525				i, IAVF_MBPS_QUANTA);
3526			return -EINVAL;
3527		}
3528
3529		(void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3530
3531		if (tx_rate_rem != 0) {
3532			dev_err(&adapter->pdev->dev,
3533				"Invalid max tx rate for TC%d, not divisible by %d\n",
3534				i, IAVF_MBPS_QUANTA);
3535			return -EINVAL;
3536		}
3537
3538		total_max_rate += tx_rate;
3539		num_qps += mqprio_qopt->qopt.count[i];
3540	}
3541	if (num_qps > adapter->num_active_queues) {
3542		dev_err(&adapter->pdev->dev,
3543			"Cannot support requested number of queues\n");
3544		return -EINVAL;
3545	}
3546
3547	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3548	return ret;
3549}
3550
3551/**
3552 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3553 * @adapter: board private structure
3554 **/
3555static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3556{
3557	struct iavf_cloud_filter *cf, *cftmp;
3558
3559	spin_lock_bh(&adapter->cloud_filter_list_lock);
3560	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3561				 list) {
3562		list_del(&cf->list);
3563		kfree(cf);
3564		adapter->num_cloud_filters--;
3565	}
3566	spin_unlock_bh(&adapter->cloud_filter_list_lock);
3567}
3568
3569/**
3570 * __iavf_setup_tc - configure multiple traffic classes
3571 * @netdev: network interface device structure
3572 * @type_data: tc offload data
3573 *
3574 * This function processes the config information provided by the
3575 * user to configure traffic classes/queue channels and packages the
3576 * information to request the PF to setup traffic classes.
3577 *
3578 * Returns 0 on success.
3579 **/
3580static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3581{
3582	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3583	struct iavf_adapter *adapter = netdev_priv(netdev);
3584	struct virtchnl_vf_resource *vfres = adapter->vf_res;
3585	u8 num_tc = 0, total_qps = 0;
3586	int ret = 0, netdev_tc = 0;
3587	u64 max_tx_rate;
3588	u16 mode;
3589	int i;
3590
3591	num_tc = mqprio_qopt->qopt.num_tc;
3592	mode = mqprio_qopt->mode;
3593
3594	/* delete queue_channel */
3595	if (!mqprio_qopt->qopt.hw) {
3596		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3597			/* reset the tc configuration */
3598			netdev_reset_tc(netdev);
3599			adapter->num_tc = 0;
3600			netif_tx_stop_all_queues(netdev);
3601			netif_tx_disable(netdev);
3602			iavf_del_all_cloud_filters(adapter);
3603			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3604			total_qps = adapter->orig_num_active_queues;
3605			goto exit;
3606		} else {
3607			return -EINVAL;
3608		}
3609	}
3610
3611	/* add queue channel */
3612	if (mode == TC_MQPRIO_MODE_CHANNEL) {
3613		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3614			dev_err(&adapter->pdev->dev, "ADq not supported\n");
3615			return -EOPNOTSUPP;
3616		}
3617		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3618			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3619			return -EINVAL;
3620		}
3621
3622		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3623		if (ret)
3624			return ret;
3625		/* Return if same TC config is requested */
3626		if (adapter->num_tc == num_tc)
3627			return 0;
3628		adapter->num_tc = num_tc;
3629
3630		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3631			if (i < num_tc) {
3632				adapter->ch_config.ch_info[i].count =
3633					mqprio_qopt->qopt.count[i];
3634				adapter->ch_config.ch_info[i].offset =
3635					mqprio_qopt->qopt.offset[i];
3636				total_qps += mqprio_qopt->qopt.count[i];
3637				max_tx_rate = mqprio_qopt->max_rate[i];
3638				/* convert to Mbps */
3639				max_tx_rate = div_u64(max_tx_rate,
3640						      IAVF_MBPS_DIVISOR);
3641				adapter->ch_config.ch_info[i].max_tx_rate =
3642					max_tx_rate;
3643			} else {
3644				adapter->ch_config.ch_info[i].count = 1;
3645				adapter->ch_config.ch_info[i].offset = 0;
3646			}
3647		}
3648
3649		/* Take snapshot of original config such as "num_active_queues"
3650		 * It is used later when delete ADQ flow is exercised, so that
3651		 * once delete ADQ flow completes, VF shall go back to its
3652		 * original queue configuration
3653		 */
3654
3655		adapter->orig_num_active_queues = adapter->num_active_queues;
3656
3657		/* Store queue info based on TC so that VF gets configured
3658		 * with correct number of queues when VF completes ADQ config
3659		 * flow
3660		 */
3661		adapter->ch_config.total_qps = total_qps;
3662
3663		netif_tx_stop_all_queues(netdev);
3664		netif_tx_disable(netdev);
3665		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3666		netdev_reset_tc(netdev);
3667		/* Report the tc mapping up the stack */
3668		netdev_set_num_tc(adapter->netdev, num_tc);
3669		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3670			u16 qcount = mqprio_qopt->qopt.count[i];
3671			u16 qoffset = mqprio_qopt->qopt.offset[i];
3672
3673			if (i < num_tc)
3674				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3675						    qoffset);
3676		}
3677	}
3678exit:
3679	if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3680		return 0;
3681
3682	netif_set_real_num_rx_queues(netdev, total_qps);
3683	netif_set_real_num_tx_queues(netdev, total_qps);
3684
3685	return ret;
3686}
3687
3688/**
3689 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3690 * @adapter: board private structure
3691 * @f: pointer to struct flow_cls_offload
3692 * @filter: pointer to cloud filter structure
3693 */
3694static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3695				 struct flow_cls_offload *f,
3696				 struct iavf_cloud_filter *filter)
3697{
3698	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3699	struct flow_dissector *dissector = rule->match.dissector;
3700	u16 n_proto_mask = 0;
3701	u16 n_proto_key = 0;
3702	u8 field_flags = 0;
3703	u16 addr_type = 0;
3704	u16 n_proto = 0;
3705	int i = 0;
3706	struct virtchnl_filter *vf = &filter->f;
3707
3708	if (dissector->used_keys &
3709	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
3710	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
3711	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3712	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
3713	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3714	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3715	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
3716	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3717		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
3718			dissector->used_keys);
3719		return -EOPNOTSUPP;
3720	}
3721
3722	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3723		struct flow_match_enc_keyid match;
3724
3725		flow_rule_match_enc_keyid(rule, &match);
3726		if (match.mask->keyid != 0)
3727			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3728	}
3729
3730	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3731		struct flow_match_basic match;
3732
3733		flow_rule_match_basic(rule, &match);
3734		n_proto_key = ntohs(match.key->n_proto);
3735		n_proto_mask = ntohs(match.mask->n_proto);
3736
3737		if (n_proto_key == ETH_P_ALL) {
3738			n_proto_key = 0;
3739			n_proto_mask = 0;
3740		}
3741		n_proto = n_proto_key & n_proto_mask;
3742		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3743			return -EINVAL;
3744		if (n_proto == ETH_P_IPV6) {
3745			/* specify flow type as TCP IPv6 */
3746			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3747		}
3748
3749		if (match.key->ip_proto != IPPROTO_TCP) {
3750			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3751			return -EINVAL;
3752		}
3753	}
3754
3755	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3756		struct flow_match_eth_addrs match;
3757
3758		flow_rule_match_eth_addrs(rule, &match);
3759
3760		/* use is_broadcast and is_zero to check for all 0xf or 0 */
3761		if (!is_zero_ether_addr(match.mask->dst)) {
3762			if (is_broadcast_ether_addr(match.mask->dst)) {
3763				field_flags |= IAVF_CLOUD_FIELD_OMAC;
3764			} else {
3765				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3766					match.mask->dst);
3767				return -EINVAL;
3768			}
3769		}
3770
3771		if (!is_zero_ether_addr(match.mask->src)) {
3772			if (is_broadcast_ether_addr(match.mask->src)) {
3773				field_flags |= IAVF_CLOUD_FIELD_IMAC;
3774			} else {
3775				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3776					match.mask->src);
3777				return -EINVAL;
3778			}
3779		}
3780
3781		if (!is_zero_ether_addr(match.key->dst))
3782			if (is_valid_ether_addr(match.key->dst) ||
3783			    is_multicast_ether_addr(match.key->dst)) {
3784				/* set the mask if a valid dst_mac address */
3785				for (i = 0; i < ETH_ALEN; i++)
3786					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3787				ether_addr_copy(vf->data.tcp_spec.dst_mac,
3788						match.key->dst);
3789			}
3790
3791		if (!is_zero_ether_addr(match.key->src))
3792			if (is_valid_ether_addr(match.key->src) ||
3793			    is_multicast_ether_addr(match.key->src)) {
3794				/* set the mask if a valid dst_mac address */
3795				for (i = 0; i < ETH_ALEN; i++)
3796					vf->mask.tcp_spec.src_mac[i] |= 0xff;
3797				ether_addr_copy(vf->data.tcp_spec.src_mac,
3798						match.key->src);
3799		}
3800	}
3801
3802	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3803		struct flow_match_vlan match;
3804
3805		flow_rule_match_vlan(rule, &match);
3806		if (match.mask->vlan_id) {
3807			if (match.mask->vlan_id == VLAN_VID_MASK) {
3808				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3809			} else {
3810				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3811					match.mask->vlan_id);
3812				return -EINVAL;
3813			}
3814		}
3815		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3816		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3817	}
3818
3819	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3820		struct flow_match_control match;
3821
3822		flow_rule_match_control(rule, &match);
3823		addr_type = match.key->addr_type;
3824	}
3825
3826	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3827		struct flow_match_ipv4_addrs match;
3828
3829		flow_rule_match_ipv4_addrs(rule, &match);
3830		if (match.mask->dst) {
3831			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3832				field_flags |= IAVF_CLOUD_FIELD_IIP;
3833			} else {
3834				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3835					be32_to_cpu(match.mask->dst));
3836				return -EINVAL;
3837			}
3838		}
3839
3840		if (match.mask->src) {
3841			if (match.mask->src == cpu_to_be32(0xffffffff)) {
3842				field_flags |= IAVF_CLOUD_FIELD_IIP;
3843			} else {
3844				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3845					be32_to_cpu(match.mask->src));
3846				return -EINVAL;
3847			}
3848		}
3849
3850		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3851			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3852			return -EINVAL;
3853		}
3854		if (match.key->dst) {
3855			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3856			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3857		}
3858		if (match.key->src) {
3859			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3860			vf->data.tcp_spec.src_ip[0] = match.key->src;
3861		}
3862	}
3863
3864	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3865		struct flow_match_ipv6_addrs match;
3866
3867		flow_rule_match_ipv6_addrs(rule, &match);
3868
3869		/* validate mask, make sure it is not IPV6_ADDR_ANY */
3870		if (ipv6_addr_any(&match.mask->dst)) {
3871			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3872				IPV6_ADDR_ANY);
3873			return -EINVAL;
3874		}
3875
3876		/* src and dest IPv6 address should not be LOOPBACK
3877		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3878		 */
3879		if (ipv6_addr_loopback(&match.key->dst) ||
3880		    ipv6_addr_loopback(&match.key->src)) {
3881			dev_err(&adapter->pdev->dev,
3882				"ipv6 addr should not be loopback\n");
3883			return -EINVAL;
3884		}
3885		if (!ipv6_addr_any(&match.mask->dst) ||
3886		    !ipv6_addr_any(&match.mask->src))
3887			field_flags |= IAVF_CLOUD_FIELD_IIP;
3888
3889		for (i = 0; i < 4; i++)
3890			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3891		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3892		       sizeof(vf->data.tcp_spec.dst_ip));
3893		for (i = 0; i < 4; i++)
3894			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3895		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3896		       sizeof(vf->data.tcp_spec.src_ip));
3897	}
3898	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3899		struct flow_match_ports match;
3900
3901		flow_rule_match_ports(rule, &match);
3902		if (match.mask->src) {
3903			if (match.mask->src == cpu_to_be16(0xffff)) {
3904				field_flags |= IAVF_CLOUD_FIELD_IIP;
3905			} else {
3906				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3907					be16_to_cpu(match.mask->src));
3908				return -EINVAL;
3909			}
3910		}
3911
3912		if (match.mask->dst) {
3913			if (match.mask->dst == cpu_to_be16(0xffff)) {
3914				field_flags |= IAVF_CLOUD_FIELD_IIP;
3915			} else {
3916				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3917					be16_to_cpu(match.mask->dst));
3918				return -EINVAL;
3919			}
3920		}
3921		if (match.key->dst) {
3922			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3923			vf->data.tcp_spec.dst_port = match.key->dst;
3924		}
3925
3926		if (match.key->src) {
3927			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3928			vf->data.tcp_spec.src_port = match.key->src;
3929		}
3930	}
3931	vf->field_flags = field_flags;
3932
3933	return 0;
3934}
3935
3936/**
3937 * iavf_handle_tclass - Forward to a traffic class on the device
3938 * @adapter: board private structure
3939 * @tc: traffic class index on the device
3940 * @filter: pointer to cloud filter structure
3941 */
3942static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3943			      struct iavf_cloud_filter *filter)
3944{
3945	if (tc == 0)
3946		return 0;
3947	if (tc < adapter->num_tc) {
3948		if (!filter->f.data.tcp_spec.dst_port) {
3949			dev_err(&adapter->pdev->dev,
3950				"Specify destination port to redirect to traffic class other than TC0\n");
3951			return -EINVAL;
3952		}
3953	}
3954	/* redirect to a traffic class on the same device */
3955	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3956	filter->f.action_meta = tc;
3957	return 0;
3958}
3959
3960/**
3961 * iavf_find_cf - Find the cloud filter in the list
3962 * @adapter: Board private structure
3963 * @cookie: filter specific cookie
3964 *
3965 * Returns ptr to the filter object or NULL. Must be called while holding the
3966 * cloud_filter_list_lock.
3967 */
3968static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3969					      unsigned long *cookie)
3970{
3971	struct iavf_cloud_filter *filter = NULL;
3972
3973	if (!cookie)
3974		return NULL;
3975
3976	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3977		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3978			return filter;
3979	}
3980	return NULL;
3981}
3982
3983/**
3984 * iavf_configure_clsflower - Add tc flower filters
3985 * @adapter: board private structure
3986 * @cls_flower: Pointer to struct flow_cls_offload
3987 */
3988static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3989				    struct flow_cls_offload *cls_flower)
3990{
3991	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3992	struct iavf_cloud_filter *filter = NULL;
3993	int err = -EINVAL, count = 50;
3994
3995	if (tc < 0) {
3996		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3997		return -EINVAL;
3998	}
3999
4000	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
4001	if (!filter)
4002		return -ENOMEM;
4003
4004	while (!mutex_trylock(&adapter->crit_lock)) {
4005		if (--count == 0) {
4006			kfree(filter);
4007			return err;
4008		}
4009		udelay(1);
4010	}
4011
4012	filter->cookie = cls_flower->cookie;
4013
4014	/* bail out here if filter already exists */
4015	spin_lock_bh(&adapter->cloud_filter_list_lock);
4016	if (iavf_find_cf(adapter, &cls_flower->cookie)) {
4017		dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
4018		err = -EEXIST;
4019		goto spin_unlock;
4020	}
4021	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4022
4023	/* set the mask to all zeroes to begin with */
4024	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
4025	/* start out with flow type and eth type IPv4 to begin with */
4026	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
4027	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
4028	if (err)
4029		goto err;
4030
4031	err = iavf_handle_tclass(adapter, tc, filter);
4032	if (err)
4033		goto err;
4034
4035	/* add filter to the list */
4036	spin_lock_bh(&adapter->cloud_filter_list_lock);
4037	list_add_tail(&filter->list, &adapter->cloud_filter_list);
4038	adapter->num_cloud_filters++;
4039	filter->add = true;
4040	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4041spin_unlock:
4042	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4043err:
4044	if (err)
4045		kfree(filter);
4046
4047	mutex_unlock(&adapter->crit_lock);
4048	return err;
4049}
4050
4051/**
4052 * iavf_delete_clsflower - Remove tc flower filters
4053 * @adapter: board private structure
4054 * @cls_flower: Pointer to struct flow_cls_offload
4055 */
4056static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4057				 struct flow_cls_offload *cls_flower)
4058{
4059	struct iavf_cloud_filter *filter = NULL;
4060	int err = 0;
4061
4062	spin_lock_bh(&adapter->cloud_filter_list_lock);
4063	filter = iavf_find_cf(adapter, &cls_flower->cookie);
4064	if (filter) {
4065		filter->del = true;
4066		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4067	} else {
4068		err = -EINVAL;
4069	}
4070	spin_unlock_bh(&adapter->cloud_filter_list_lock);
4071
4072	return err;
4073}
4074
4075/**
4076 * iavf_setup_tc_cls_flower - flower classifier offloads
4077 * @adapter: board private structure
4078 * @cls_flower: pointer to flow_cls_offload struct with flow info
4079 */
4080static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4081				    struct flow_cls_offload *cls_flower)
4082{
4083	switch (cls_flower->command) {
4084	case FLOW_CLS_REPLACE:
4085		return iavf_configure_clsflower(adapter, cls_flower);
4086	case FLOW_CLS_DESTROY:
4087		return iavf_delete_clsflower(adapter, cls_flower);
4088	case FLOW_CLS_STATS:
4089		return -EOPNOTSUPP;
4090	default:
4091		return -EOPNOTSUPP;
4092	}
4093}
4094
4095/**
4096 * iavf_setup_tc_block_cb - block callback for tc
4097 * @type: type of offload
4098 * @type_data: offload data
4099 * @cb_priv:
4100 *
4101 * This function is the block callback for traffic classes
4102 **/
4103static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4104				  void *cb_priv)
4105{
4106	struct iavf_adapter *adapter = cb_priv;
4107
4108	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4109		return -EOPNOTSUPP;
4110
4111	switch (type) {
4112	case TC_SETUP_CLSFLOWER:
4113		return iavf_setup_tc_cls_flower(cb_priv, type_data);
4114	default:
4115		return -EOPNOTSUPP;
4116	}
4117}
4118
4119static LIST_HEAD(iavf_block_cb_list);
4120
4121/**
4122 * iavf_setup_tc - configure multiple traffic classes
4123 * @netdev: network interface device structure
4124 * @type: type of offload
4125 * @type_data: tc offload data
4126 *
4127 * This function is the callback to ndo_setup_tc in the
4128 * netdev_ops.
4129 *
4130 * Returns 0 on success
4131 **/
4132static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4133			 void *type_data)
4134{
4135	struct iavf_adapter *adapter = netdev_priv(netdev);
4136
4137	switch (type) {
4138	case TC_SETUP_QDISC_MQPRIO:
4139		return __iavf_setup_tc(netdev, type_data);
4140	case TC_SETUP_BLOCK:
4141		return flow_block_cb_setup_simple(type_data,
4142						  &iavf_block_cb_list,
4143						  iavf_setup_tc_block_cb,
4144						  adapter, adapter, true);
4145	default:
4146		return -EOPNOTSUPP;
4147	}
4148}
4149
4150/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4151 * iavf_open - Called when a network interface is made active
4152 * @netdev: network interface device structure
4153 *
4154 * Returns 0 on success, negative value on failure
4155 *
4156 * The open entry point is called when a network interface is made
4157 * active by the system (IFF_UP).  At this point all resources needed
4158 * for transmit and receive operations are allocated, the interrupt
4159 * handler is registered with the OS, the watchdog is started,
4160 * and the stack is notified that the interface is ready.
4161 **/
4162static int iavf_open(struct net_device *netdev)
4163{
4164	struct iavf_adapter *adapter = netdev_priv(netdev);
4165	int err;
4166
4167	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4168		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4169		return -EIO;
4170	}
4171
4172	while (!mutex_trylock(&adapter->crit_lock)) {
4173		/* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4174		 * is already taken and iavf_open is called from an upper
4175		 * device's notifier reacting on NETDEV_REGISTER event.
4176		 * We have to leave here to avoid dead lock.
4177		 */
4178		if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4179			return -EBUSY;
4180
4181		usleep_range(500, 1000);
4182	}
4183
4184	if (adapter->state != __IAVF_DOWN) {
4185		err = -EBUSY;
4186		goto err_unlock;
4187	}
4188
4189	if (adapter->state == __IAVF_RUNNING &&
4190	    !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4191		dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4192		err = 0;
4193		goto err_unlock;
4194	}
4195
4196	/* allocate transmit descriptors */
4197	err = iavf_setup_all_tx_resources(adapter);
4198	if (err)
4199		goto err_setup_tx;
4200
4201	/* allocate receive descriptors */
4202	err = iavf_setup_all_rx_resources(adapter);
4203	if (err)
4204		goto err_setup_rx;
4205
4206	/* clear any pending interrupts, may auto mask */
4207	err = iavf_request_traffic_irqs(adapter, netdev->name);
4208	if (err)
4209		goto err_req_irq;
4210
4211	spin_lock_bh(&adapter->mac_vlan_list_lock);
4212
4213	iavf_add_filter(adapter, adapter->hw.mac.addr);
4214
4215	spin_unlock_bh(&adapter->mac_vlan_list_lock);
4216
4217	/* Restore VLAN filters that were removed with IFF_DOWN */
4218	iavf_restore_filters(adapter);
 
4219
4220	iavf_configure(adapter);
4221
4222	iavf_up_complete(adapter);
4223
4224	iavf_irq_enable(adapter, true);
4225
4226	mutex_unlock(&adapter->crit_lock);
4227
4228	return 0;
4229
4230err_req_irq:
4231	iavf_down(adapter);
4232	iavf_free_traffic_irqs(adapter);
4233err_setup_rx:
4234	iavf_free_all_rx_resources(adapter);
4235err_setup_tx:
4236	iavf_free_all_tx_resources(adapter);
4237err_unlock:
4238	mutex_unlock(&adapter->crit_lock);
4239
4240	return err;
4241}
4242
4243/**
4244 * iavf_close - Disables a network interface
4245 * @netdev: network interface device structure
4246 *
4247 * Returns 0, this is not allowed to fail
4248 *
4249 * The close entry point is called when an interface is de-activated
4250 * by the OS.  The hardware is still under the drivers control, but
4251 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4252 * are freed, along with all transmit and receive resources.
4253 **/
4254static int iavf_close(struct net_device *netdev)
4255{
4256	struct iavf_adapter *adapter = netdev_priv(netdev);
4257	u64 aq_to_restore;
4258	int status;
4259
4260	mutex_lock(&adapter->crit_lock);
4261
4262	if (adapter->state <= __IAVF_DOWN_PENDING) {
4263		mutex_unlock(&adapter->crit_lock);
4264		return 0;
4265	}
4266
4267	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4268	if (CLIENT_ENABLED(adapter))
4269		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
4270	/* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4271	 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4272	 * deadlock with adminq_task() until iavf_close timeouts. We must send
4273	 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4274	 * disable queues possible for vf. Give only necessary flags to
4275	 * iavf_down and save other to set them right before iavf_close()
4276	 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4277	 * iavf will be in DOWN state.
4278	 */
4279	aq_to_restore = adapter->aq_required;
4280	adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4281
4282	/* Remove flags which we do not want to send after close or we want to
4283	 * send before disable queues.
4284	 */
4285	aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG		|
4286			   IAVF_FLAG_AQ_ENABLE_QUEUES		|
4287			   IAVF_FLAG_AQ_CONFIGURE_QUEUES	|
4288			   IAVF_FLAG_AQ_ADD_VLAN_FILTER		|
4289			   IAVF_FLAG_AQ_ADD_MAC_FILTER		|
4290			   IAVF_FLAG_AQ_ADD_CLOUD_FILTER	|
4291			   IAVF_FLAG_AQ_ADD_FDIR_FILTER		|
4292			   IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4293
4294	iavf_down(adapter);
4295	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4296	iavf_free_traffic_irqs(adapter);
4297
4298	mutex_unlock(&adapter->crit_lock);
4299
4300	/* We explicitly don't free resources here because the hardware is
4301	 * still active and can DMA into memory. Resources are cleared in
4302	 * iavf_virtchnl_completion() after we get confirmation from the PF
4303	 * driver that the rings have been stopped.
4304	 *
4305	 * Also, we wait for state to transition to __IAVF_DOWN before
4306	 * returning. State change occurs in iavf_virtchnl_completion() after
4307	 * VF resources are released (which occurs after PF driver processes and
4308	 * responds to admin queue commands).
4309	 */
4310
4311	status = wait_event_timeout(adapter->down_waitqueue,
4312				    adapter->state == __IAVF_DOWN,
4313				    msecs_to_jiffies(500));
4314	if (!status)
4315		netdev_warn(netdev, "Device resources not yet released\n");
4316
4317	mutex_lock(&adapter->crit_lock);
4318	adapter->aq_required |= aq_to_restore;
4319	mutex_unlock(&adapter->crit_lock);
4320	return 0;
4321}
4322
4323/**
4324 * iavf_change_mtu - Change the Maximum Transfer Unit
4325 * @netdev: network interface device structure
4326 * @new_mtu: new value for maximum frame size
4327 *
4328 * Returns 0 on success, negative on failure
4329 **/
4330static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4331{
4332	struct iavf_adapter *adapter = netdev_priv(netdev);
 
4333
4334	netdev_dbg(netdev, "changing MTU from %d to %d\n",
4335		   netdev->mtu, new_mtu);
4336	netdev->mtu = new_mtu;
4337	if (CLIENT_ENABLED(adapter)) {
4338		iavf_notify_client_l2_params(&adapter->vsi);
4339		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
 
 
 
 
 
4340	}
4341
4342	if (netif_running(netdev)) {
4343		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
4344		queue_work(adapter->wq, &adapter->reset_task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4345	}
 
4346
4347	return 0;
 
 
 
4348}
4349
4350#define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
4351					 NETIF_F_HW_VLAN_CTAG_TX | \
4352					 NETIF_F_HW_VLAN_STAG_RX | \
4353					 NETIF_F_HW_VLAN_STAG_TX)
4354
4355/**
4356 * iavf_set_features - set the netdev feature flags
4357 * @netdev: ptr to the netdev being adjusted
4358 * @features: the feature set that the stack is suggesting
4359 * Note: expects to be called while under rtnl_lock()
4360 **/
4361static int iavf_set_features(struct net_device *netdev,
4362			     netdev_features_t features)
4363{
4364	struct iavf_adapter *adapter = netdev_priv(netdev);
4365
4366	/* trigger update on any VLAN feature change */
4367	if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4368	    (features & NETIF_VLAN_OFFLOAD_FEATURES))
4369		iavf_set_vlan_offload_features(adapter, netdev->features,
4370					       features);
 
 
 
 
 
 
 
 
 
 
4371
4372	return 0;
4373}
4374
4375/**
4376 * iavf_features_check - Validate encapsulated packet conforms to limits
4377 * @skb: skb buff
4378 * @dev: This physical port's netdev
4379 * @features: Offload features that the stack believes apply
4380 **/
4381static netdev_features_t iavf_features_check(struct sk_buff *skb,
4382					     struct net_device *dev,
4383					     netdev_features_t features)
4384{
4385	size_t len;
4386
4387	/* No point in doing any of this if neither checksum nor GSO are
4388	 * being requested for this frame.  We can rule out both by just
4389	 * checking for CHECKSUM_PARTIAL
4390	 */
4391	if (skb->ip_summed != CHECKSUM_PARTIAL)
4392		return features;
4393
4394	/* We cannot support GSO if the MSS is going to be less than
4395	 * 64 bytes.  If it is then we need to drop support for GSO.
4396	 */
4397	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4398		features &= ~NETIF_F_GSO_MASK;
4399
4400	/* MACLEN can support at most 63 words */
4401	len = skb_network_header(skb) - skb->data;
4402	if (len & ~(63 * 2))
4403		goto out_err;
4404
4405	/* IPLEN and EIPLEN can support at most 127 dwords */
4406	len = skb_transport_header(skb) - skb_network_header(skb);
4407	if (len & ~(127 * 4))
4408		goto out_err;
4409
4410	if (skb->encapsulation) {
4411		/* L4TUNLEN can support 127 words */
4412		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4413		if (len & ~(127 * 2))
4414			goto out_err;
4415
4416		/* IPLEN can support at most 127 dwords */
4417		len = skb_inner_transport_header(skb) -
4418		      skb_inner_network_header(skb);
4419		if (len & ~(127 * 4))
4420			goto out_err;
4421	}
4422
4423	/* No need to validate L4LEN as TCP is the only protocol with a
4424	 * flexible value and we support all possible values supported
4425	 * by TCP, which is at most 15 dwords
4426	 */
4427
4428	return features;
4429out_err:
4430	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4431}
4432
4433/**
4434 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4435 * @adapter: board private structure
4436 *
4437 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4438 * were negotiated determine the VLAN features that can be toggled on and off.
4439 **/
4440static netdev_features_t
4441iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4442{
4443	netdev_features_t hw_features = 0;
4444
4445	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4446		return hw_features;
4447
4448	/* Enable VLAN features if supported */
4449	if (VLAN_ALLOWED(adapter)) {
4450		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4451				NETIF_F_HW_VLAN_CTAG_RX);
4452	} else if (VLAN_V2_ALLOWED(adapter)) {
4453		struct virtchnl_vlan_caps *vlan_v2_caps =
4454			&adapter->vlan_v2_caps;
4455		struct virtchnl_vlan_supported_caps *stripping_support =
4456			&vlan_v2_caps->offloads.stripping_support;
4457		struct virtchnl_vlan_supported_caps *insertion_support =
4458			&vlan_v2_caps->offloads.insertion_support;
4459
4460		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4461		    stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4462			if (stripping_support->outer &
4463			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4464				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4465			if (stripping_support->outer &
4466			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4467				hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4468		} else if (stripping_support->inner !=
4469			   VIRTCHNL_VLAN_UNSUPPORTED &&
4470			   stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4471			if (stripping_support->inner &
4472			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4473				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4474		}
4475
4476		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4477		    insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4478			if (insertion_support->outer &
4479			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4480				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4481			if (insertion_support->outer &
4482			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
4483				hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4484		} else if (insertion_support->inner &&
4485			   insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4486			if (insertion_support->inner &
4487			    VIRTCHNL_VLAN_ETHERTYPE_8100)
4488				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4489		}
4490	}
4491
 
 
 
4492	return hw_features;
4493}
4494
4495/**
4496 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4497 * @adapter: board private structure
4498 *
4499 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4500 * were negotiated determine the VLAN features that are enabled by default.
4501 **/
4502static netdev_features_t
4503iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4504{
4505	netdev_features_t features = 0;
4506
4507	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4508		return features;
4509
4510	if (VLAN_ALLOWED(adapter)) {
4511		features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4512			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4513	} else if (VLAN_V2_ALLOWED(adapter)) {
4514		struct virtchnl_vlan_caps *vlan_v2_caps =
4515			&adapter->vlan_v2_caps;
4516		struct virtchnl_vlan_supported_caps *filtering_support =
4517			&vlan_v2_caps->filtering.filtering_support;
4518		struct virtchnl_vlan_supported_caps *stripping_support =
4519			&vlan_v2_caps->offloads.stripping_support;
4520		struct virtchnl_vlan_supported_caps *insertion_support =
4521			&vlan_v2_caps->offloads.insertion_support;
4522		u32 ethertype_init;
4523
4524		/* give priority to outer stripping and don't support both outer
4525		 * and inner stripping
4526		 */
4527		ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4528		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4529			if (stripping_support->outer &
4530			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4531			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4532				features |= NETIF_F_HW_VLAN_CTAG_RX;
4533			else if (stripping_support->outer &
4534				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4535				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4536				features |= NETIF_F_HW_VLAN_STAG_RX;
4537		} else if (stripping_support->inner !=
4538			   VIRTCHNL_VLAN_UNSUPPORTED) {
4539			if (stripping_support->inner &
4540			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4541			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4542				features |= NETIF_F_HW_VLAN_CTAG_RX;
4543		}
4544
4545		/* give priority to outer insertion and don't support both outer
4546		 * and inner insertion
4547		 */
4548		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4549			if (insertion_support->outer &
4550			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4551			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4552				features |= NETIF_F_HW_VLAN_CTAG_TX;
4553			else if (insertion_support->outer &
4554				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4555				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4556				features |= NETIF_F_HW_VLAN_STAG_TX;
4557		} else if (insertion_support->inner !=
4558			   VIRTCHNL_VLAN_UNSUPPORTED) {
4559			if (insertion_support->inner &
4560			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4561			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4562				features |= NETIF_F_HW_VLAN_CTAG_TX;
4563		}
4564
4565		/* give priority to outer filtering and don't bother if both
4566		 * outer and inner filtering are enabled
4567		 */
4568		ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4569		if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4570			if (filtering_support->outer &
4571			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4572			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4573				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4574			if (filtering_support->outer &
4575			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4576			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4577				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4578		} else if (filtering_support->inner !=
4579			   VIRTCHNL_VLAN_UNSUPPORTED) {
4580			if (filtering_support->inner &
4581			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4582			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4583				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4584			if (filtering_support->inner &
4585			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4586			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4587				features |= NETIF_F_HW_VLAN_STAG_FILTER;
4588		}
4589	}
4590
4591	return features;
4592}
4593
4594#define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4595	(!(((requested) & (feature_bit)) && \
4596	   !((allowed) & (feature_bit))))
4597
4598/**
4599 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4600 * @adapter: board private structure
4601 * @requested_features: stack requested NETDEV features
4602 **/
4603static netdev_features_t
4604iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4605			      netdev_features_t requested_features)
4606{
4607	netdev_features_t allowed_features;
4608
4609	allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4610		iavf_get_netdev_vlan_features(adapter);
4611
4612	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4613					      allowed_features,
4614					      NETIF_F_HW_VLAN_CTAG_TX))
4615		requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4616
4617	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4618					      allowed_features,
4619					      NETIF_F_HW_VLAN_CTAG_RX))
4620		requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4621
4622	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4623					      allowed_features,
4624					      NETIF_F_HW_VLAN_STAG_TX))
4625		requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4626	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4627					      allowed_features,
4628					      NETIF_F_HW_VLAN_STAG_RX))
4629		requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4630
4631	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4632					      allowed_features,
4633					      NETIF_F_HW_VLAN_CTAG_FILTER))
4634		requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4635
4636	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4637					      allowed_features,
4638					      NETIF_F_HW_VLAN_STAG_FILTER))
4639		requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4640
4641	if ((requested_features &
4642	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4643	    (requested_features &
4644	     (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4645	    adapter->vlan_v2_caps.offloads.ethertype_match ==
4646	    VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4647		netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4648		requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4649					NETIF_F_HW_VLAN_STAG_TX);
4650	}
4651
4652	return requested_features;
4653}
4654
4655/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4656 * iavf_fix_features - fix up the netdev feature bits
4657 * @netdev: our net device
4658 * @features: desired feature bits
4659 *
4660 * Returns fixed-up features bits
4661 **/
4662static netdev_features_t iavf_fix_features(struct net_device *netdev,
4663					   netdev_features_t features)
4664{
4665	struct iavf_adapter *adapter = netdev_priv(netdev);
4666
4667	return iavf_fix_netdev_vlan_features(adapter, features);
 
 
 
 
 
4668}
4669
4670static const struct net_device_ops iavf_netdev_ops = {
4671	.ndo_open		= iavf_open,
4672	.ndo_stop		= iavf_close,
4673	.ndo_start_xmit		= iavf_xmit_frame,
4674	.ndo_set_rx_mode	= iavf_set_rx_mode,
4675	.ndo_validate_addr	= eth_validate_addr,
4676	.ndo_set_mac_address	= iavf_set_mac,
4677	.ndo_change_mtu		= iavf_change_mtu,
4678	.ndo_tx_timeout		= iavf_tx_timeout,
4679	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
4680	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
4681	.ndo_features_check	= iavf_features_check,
4682	.ndo_fix_features	= iavf_fix_features,
4683	.ndo_set_features	= iavf_set_features,
4684	.ndo_setup_tc		= iavf_setup_tc,
4685};
4686
4687/**
4688 * iavf_check_reset_complete - check that VF reset is complete
4689 * @hw: pointer to hw struct
4690 *
4691 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4692 **/
4693static int iavf_check_reset_complete(struct iavf_hw *hw)
4694{
4695	u32 rstat;
4696	int i;
4697
4698	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4699		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4700			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4701		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4702		    (rstat == VIRTCHNL_VFR_COMPLETED))
4703			return 0;
4704		usleep_range(10, 20);
4705	}
4706	return -EBUSY;
4707}
4708
4709/**
4710 * iavf_process_config - Process the config information we got from the PF
4711 * @adapter: board private structure
4712 *
4713 * Verify that we have a valid config struct, and set up our netdev features
4714 * and our VSI struct.
4715 **/
4716int iavf_process_config(struct iavf_adapter *adapter)
4717{
4718	struct virtchnl_vf_resource *vfres = adapter->vf_res;
4719	netdev_features_t hw_vlan_features, vlan_features;
4720	struct net_device *netdev = adapter->netdev;
4721	netdev_features_t hw_enc_features;
4722	netdev_features_t hw_features;
4723
4724	hw_enc_features = NETIF_F_SG			|
4725			  NETIF_F_IP_CSUM		|
4726			  NETIF_F_IPV6_CSUM		|
4727			  NETIF_F_HIGHDMA		|
4728			  NETIF_F_SOFT_FEATURES	|
4729			  NETIF_F_TSO			|
4730			  NETIF_F_TSO_ECN		|
4731			  NETIF_F_TSO6			|
4732			  NETIF_F_SCTP_CRC		|
4733			  NETIF_F_RXHASH		|
4734			  NETIF_F_RXCSUM		|
4735			  0;
4736
4737	/* advertise to stack only if offloads for encapsulated packets is
4738	 * supported
4739	 */
4740	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4741		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
4742				   NETIF_F_GSO_GRE		|
4743				   NETIF_F_GSO_GRE_CSUM		|
4744				   NETIF_F_GSO_IPXIP4		|
4745				   NETIF_F_GSO_IPXIP6		|
4746				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
4747				   NETIF_F_GSO_PARTIAL		|
4748				   0;
4749
4750		if (!(vfres->vf_cap_flags &
4751		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4752			netdev->gso_partial_features |=
4753				NETIF_F_GSO_UDP_TUNNEL_CSUM;
4754
4755		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4756		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4757		netdev->hw_enc_features |= hw_enc_features;
4758	}
4759	/* record features VLANs can make use of */
4760	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4761
4762	/* Write features and hw_features separately to avoid polluting
4763	 * with, or dropping, features that are set when we registered.
4764	 */
4765	hw_features = hw_enc_features;
4766
4767	/* get HW VLAN features that can be toggled */
4768	hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4769
4770	/* Enable cloud filter if ADQ is supported */
4771	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4772		hw_features |= NETIF_F_HW_TC;
4773	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4774		hw_features |= NETIF_F_GSO_UDP_L4;
4775
4776	netdev->hw_features |= hw_features | hw_vlan_features;
4777	vlan_features = iavf_get_netdev_vlan_features(adapter);
4778
4779	netdev->features |= hw_features | vlan_features;
4780
4781	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4782		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4783
 
 
 
 
 
 
4784	netdev->priv_flags |= IFF_UNICAST_FLT;
4785
4786	/* Do not turn on offloads when they are requested to be turned off.
4787	 * TSO needs minimum 576 bytes to work correctly.
4788	 */
4789	if (netdev->wanted_features) {
4790		if (!(netdev->wanted_features & NETIF_F_TSO) ||
4791		    netdev->mtu < 576)
4792			netdev->features &= ~NETIF_F_TSO;
4793		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4794		    netdev->mtu < 576)
4795			netdev->features &= ~NETIF_F_TSO6;
4796		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4797			netdev->features &= ~NETIF_F_TSO_ECN;
4798		if (!(netdev->wanted_features & NETIF_F_GRO))
4799			netdev->features &= ~NETIF_F_GRO;
4800		if (!(netdev->wanted_features & NETIF_F_GSO))
4801			netdev->features &= ~NETIF_F_GSO;
4802	}
4803
4804	return 0;
4805}
4806
4807/**
4808 * iavf_shutdown - Shutdown the device in preparation for a reboot
4809 * @pdev: pci device structure
4810 **/
4811static void iavf_shutdown(struct pci_dev *pdev)
4812{
4813	struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
4814	struct net_device *netdev = adapter->netdev;
4815
4816	netif_device_detach(netdev);
4817
4818	if (netif_running(netdev))
4819		iavf_close(netdev);
4820
4821	if (iavf_lock_timeout(&adapter->crit_lock, 5000))
4822		dev_warn(&adapter->pdev->dev, "%s: failed to acquire crit_lock\n", __func__);
4823	/* Prevent the watchdog from running. */
4824	iavf_change_state(adapter, __IAVF_REMOVE);
4825	adapter->aq_required = 0;
4826	mutex_unlock(&adapter->crit_lock);
4827
4828#ifdef CONFIG_PM
4829	pci_save_state(pdev);
4830
4831#endif
4832	pci_disable_device(pdev);
4833}
4834
4835/**
4836 * iavf_probe - Device Initialization Routine
4837 * @pdev: PCI device information struct
4838 * @ent: entry in iavf_pci_tbl
4839 *
4840 * Returns 0 on success, negative on failure
4841 *
4842 * iavf_probe initializes an adapter identified by a pci_dev structure.
4843 * The OS initialization, configuring of the adapter private structure,
4844 * and a hardware reset occur.
4845 **/
4846static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4847{
4848	struct net_device *netdev;
4849	struct iavf_adapter *adapter = NULL;
4850	struct iavf_hw *hw = NULL;
4851	int err;
4852
4853	err = pci_enable_device(pdev);
4854	if (err)
4855		return err;
4856
4857	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4858	if (err) {
4859		dev_err(&pdev->dev,
4860			"DMA configuration failed: 0x%x\n", err);
4861		goto err_dma;
4862	}
4863
4864	err = pci_request_regions(pdev, iavf_driver_name);
4865	if (err) {
4866		dev_err(&pdev->dev,
4867			"pci_request_regions failed 0x%x\n", err);
4868		goto err_pci_reg;
4869	}
4870
4871	pci_enable_pcie_error_reporting(pdev);
4872
4873	pci_set_master(pdev);
4874
4875	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4876				   IAVF_MAX_REQ_QUEUES);
4877	if (!netdev) {
4878		err = -ENOMEM;
4879		goto err_alloc_etherdev;
4880	}
4881
4882	SET_NETDEV_DEV(netdev, &pdev->dev);
4883
4884	pci_set_drvdata(pdev, netdev);
4885	adapter = netdev_priv(netdev);
4886
4887	adapter->netdev = netdev;
4888	adapter->pdev = pdev;
4889
4890	hw = &adapter->hw;
4891	hw->back = adapter;
4892
4893	adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
4894					      iavf_driver_name);
4895	if (!adapter->wq) {
4896		err = -ENOMEM;
4897		goto err_alloc_wq;
4898	}
4899
4900	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4901	iavf_change_state(adapter, __IAVF_STARTUP);
4902
4903	/* Call save state here because it relies on the adapter struct. */
4904	pci_save_state(pdev);
4905
4906	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4907			      pci_resource_len(pdev, 0));
4908	if (!hw->hw_addr) {
4909		err = -EIO;
4910		goto err_ioremap;
4911	}
4912	hw->vendor_id = pdev->vendor;
4913	hw->device_id = pdev->device;
4914	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4915	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4916	hw->subsystem_device_id = pdev->subsystem_device;
4917	hw->bus.device = PCI_SLOT(pdev->devfn);
4918	hw->bus.func = PCI_FUNC(pdev->devfn);
4919	hw->bus.bus_id = pdev->bus->number;
4920
4921	/* set up the locks for the AQ, do this only once in probe
4922	 * and destroy them only once in remove
4923	 */
4924	mutex_init(&adapter->crit_lock);
4925	mutex_init(&adapter->client_lock);
4926	mutex_init(&hw->aq.asq_mutex);
4927	mutex_init(&hw->aq.arq_mutex);
4928
4929	spin_lock_init(&adapter->mac_vlan_list_lock);
4930	spin_lock_init(&adapter->cloud_filter_list_lock);
4931	spin_lock_init(&adapter->fdir_fltr_lock);
4932	spin_lock_init(&adapter->adv_rss_lock);
 
4933
4934	INIT_LIST_HEAD(&adapter->mac_filter_list);
4935	INIT_LIST_HEAD(&adapter->vlan_filter_list);
4936	INIT_LIST_HEAD(&adapter->cloud_filter_list);
4937	INIT_LIST_HEAD(&adapter->fdir_list_head);
4938	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
4939
4940	INIT_WORK(&adapter->reset_task, iavf_reset_task);
4941	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
 
4942	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
4943	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
4944	queue_delayed_work(adapter->wq, &adapter->watchdog_task,
4945			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
4946
4947	/* Setup the wait queue for indicating transition to down status */
4948	init_waitqueue_head(&adapter->down_waitqueue);
4949
 
 
 
4950	/* Setup the wait queue for indicating virtchannel events */
4951	init_waitqueue_head(&adapter->vc_waitqueue);
4952
 
 
 
4953	return 0;
4954
4955err_ioremap:
4956	destroy_workqueue(adapter->wq);
4957err_alloc_wq:
4958	free_netdev(netdev);
4959err_alloc_etherdev:
4960	pci_disable_pcie_error_reporting(pdev);
4961	pci_release_regions(pdev);
4962err_pci_reg:
4963err_dma:
4964	pci_disable_device(pdev);
4965	return err;
4966}
4967
4968/**
4969 * iavf_suspend - Power management suspend routine
4970 * @dev_d: device info pointer
4971 *
4972 * Called when the system (VM) is entering sleep/suspend.
4973 **/
4974static int __maybe_unused iavf_suspend(struct device *dev_d)
4975{
4976	struct net_device *netdev = dev_get_drvdata(dev_d);
4977	struct iavf_adapter *adapter = netdev_priv(netdev);
4978
4979	netif_device_detach(netdev);
4980
4981	while (!mutex_trylock(&adapter->crit_lock))
4982		usleep_range(500, 1000);
4983
4984	if (netif_running(netdev)) {
4985		rtnl_lock();
4986		iavf_down(adapter);
4987		rtnl_unlock();
4988	}
4989	iavf_free_misc_irq(adapter);
4990	iavf_reset_interrupt_capability(adapter);
4991
4992	mutex_unlock(&adapter->crit_lock);
4993
4994	return 0;
4995}
4996
4997/**
4998 * iavf_resume - Power management resume routine
4999 * @dev_d: device info pointer
5000 *
5001 * Called when the system (VM) is resumed from sleep/suspend.
5002 **/
5003static int __maybe_unused iavf_resume(struct device *dev_d)
5004{
5005	struct pci_dev *pdev = to_pci_dev(dev_d);
5006	struct iavf_adapter *adapter;
5007	u32 err;
5008
5009	adapter = iavf_pdev_to_adapter(pdev);
5010
5011	pci_set_master(pdev);
5012
5013	rtnl_lock();
5014	err = iavf_set_interrupt_capability(adapter);
5015	if (err) {
5016		rtnl_unlock();
5017		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5018		return err;
5019	}
5020	err = iavf_request_misc_irq(adapter);
5021	rtnl_unlock();
5022	if (err) {
5023		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5024		return err;
5025	}
5026
5027	queue_work(adapter->wq, &adapter->reset_task);
5028
5029	netif_device_attach(adapter->netdev);
5030
5031	return err;
5032}
5033
5034/**
5035 * iavf_remove - Device Removal Routine
5036 * @pdev: PCI device information struct
5037 *
5038 * iavf_remove is called by the PCI subsystem to alert the driver
5039 * that it should release a PCI device.  The could be caused by a
5040 * Hot-Plug event, or because the driver is going to be removed from
5041 * memory.
5042 **/
5043static void iavf_remove(struct pci_dev *pdev)
5044{
5045	struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
5046	struct iavf_fdir_fltr *fdir, *fdirtmp;
5047	struct iavf_vlan_filter *vlf, *vlftmp;
5048	struct iavf_cloud_filter *cf, *cftmp;
5049	struct iavf_adv_rss *rss, *rsstmp;
5050	struct iavf_mac_filter *f, *ftmp;
 
5051	struct net_device *netdev;
5052	struct iavf_hw *hw;
5053	int err;
5054
5055	netdev = adapter->netdev;
 
 
 
 
 
5056	hw = &adapter->hw;
5057
5058	if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5059		return;
5060
5061	/* Wait until port initialization is complete.
5062	 * There are flows where register/unregister netdev may race.
5063	 */
5064	while (1) {
5065		mutex_lock(&adapter->crit_lock);
5066		if (adapter->state == __IAVF_RUNNING ||
5067		    adapter->state == __IAVF_DOWN ||
5068		    adapter->state == __IAVF_INIT_FAILED) {
5069			mutex_unlock(&adapter->crit_lock);
5070			break;
5071		}
 
 
 
 
 
5072
5073		mutex_unlock(&adapter->crit_lock);
5074		usleep_range(500, 1000);
5075	}
5076	cancel_delayed_work_sync(&adapter->watchdog_task);
 
5077
5078	if (adapter->netdev_registered) {
5079		rtnl_lock();
5080		unregister_netdevice(netdev);
5081		adapter->netdev_registered = false;
5082		rtnl_unlock();
5083	}
5084	if (CLIENT_ALLOWED(adapter)) {
5085		err = iavf_lan_del_device(adapter);
5086		if (err)
5087			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
5088				 err);
5089	}
5090
5091	mutex_lock(&adapter->crit_lock);
5092	dev_info(&adapter->pdev->dev, "Removing device\n");
5093	iavf_change_state(adapter, __IAVF_REMOVE);
5094
5095	iavf_request_reset(adapter);
5096	msleep(50);
5097	/* If the FW isn't responding, kick it once, but only once. */
5098	if (!iavf_asq_done(hw)) {
5099		iavf_request_reset(adapter);
5100		msleep(50);
5101	}
5102
5103	iavf_misc_irq_disable(adapter);
5104	/* Shut down all the garbage mashers on the detention level */
5105	cancel_work_sync(&adapter->reset_task);
5106	cancel_delayed_work_sync(&adapter->watchdog_task);
5107	cancel_work_sync(&adapter->adminq_task);
5108	cancel_delayed_work_sync(&adapter->client_task);
5109
5110	adapter->aq_required = 0;
5111	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5112
5113	iavf_free_all_tx_resources(adapter);
5114	iavf_free_all_rx_resources(adapter);
5115	iavf_free_misc_irq(adapter);
5116
5117	iavf_reset_interrupt_capability(adapter);
5118	iavf_free_q_vectors(adapter);
5119
5120	iavf_free_rss(adapter);
5121
5122	if (hw->aq.asq.count)
5123		iavf_shutdown_adminq(hw);
5124
5125	/* destroy the locks only once, here */
5126	mutex_destroy(&hw->aq.arq_mutex);
5127	mutex_destroy(&hw->aq.asq_mutex);
5128	mutex_destroy(&adapter->client_lock);
5129	mutex_unlock(&adapter->crit_lock);
5130	mutex_destroy(&adapter->crit_lock);
5131
5132	iounmap(hw->hw_addr);
5133	pci_release_regions(pdev);
5134	iavf_free_queues(adapter);
5135	kfree(adapter->vf_res);
5136	spin_lock_bh(&adapter->mac_vlan_list_lock);
5137	/* If we got removed before an up/down sequence, we've got a filter
5138	 * hanging out there that we need to get rid of.
5139	 */
5140	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5141		list_del(&f->list);
5142		kfree(f);
5143	}
5144	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5145				 list) {
5146		list_del(&vlf->list);
5147		kfree(vlf);
5148	}
5149
5150	spin_unlock_bh(&adapter->mac_vlan_list_lock);
5151
5152	spin_lock_bh(&adapter->cloud_filter_list_lock);
5153	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5154		list_del(&cf->list);
5155		kfree(cf);
5156	}
5157	spin_unlock_bh(&adapter->cloud_filter_list_lock);
5158
5159	spin_lock_bh(&adapter->fdir_fltr_lock);
5160	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5161		list_del(&fdir->list);
5162		kfree(fdir);
5163	}
5164	spin_unlock_bh(&adapter->fdir_fltr_lock);
5165
5166	spin_lock_bh(&adapter->adv_rss_lock);
5167	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5168				 list) {
5169		list_del(&rss->list);
5170		kfree(rss);
5171	}
5172	spin_unlock_bh(&adapter->adv_rss_lock);
5173
5174	destroy_workqueue(adapter->wq);
5175
 
 
5176	free_netdev(netdev);
5177
5178	pci_disable_pcie_error_reporting(pdev);
 
5179
5180	pci_disable_device(pdev);
 
 
 
 
 
 
 
 
 
5181}
5182
5183static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5184
5185static struct pci_driver iavf_driver = {
5186	.name      = iavf_driver_name,
5187	.id_table  = iavf_pci_tbl,
5188	.probe     = iavf_probe,
5189	.remove    = iavf_remove,
5190	.driver.pm = &iavf_pm_ops,
5191	.shutdown  = iavf_shutdown,
5192};
5193
5194/**
5195 * iavf_init_module - Driver Registration Routine
5196 *
5197 * iavf_init_module is the first routine called when the driver is
5198 * loaded. All it does is register with the PCI subsystem.
5199 **/
5200static int __init iavf_init_module(void)
5201{
5202	pr_info("iavf: %s\n", iavf_driver_string);
5203
5204	pr_info("%s\n", iavf_copyright);
5205
5206	return pci_register_driver(&iavf_driver);
5207}
5208
5209module_init(iavf_init_module);
5210
5211/**
5212 * iavf_exit_module - Driver Exit Cleanup Routine
5213 *
5214 * iavf_exit_module is called just before the driver is removed
5215 * from memory.
5216 **/
5217static void __exit iavf_exit_module(void)
5218{
5219	pci_unregister_driver(&iavf_driver);
5220}
5221
5222module_exit(iavf_exit_module);
5223
5224/* iavf_main.c */