Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
   5 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
   6 */
   7
   8#include "e1000.h"
   9
  10/* A table for the GG82563 cable length where the range is defined
  11 * with a lower bound at "index" and the upper bound at
  12 * "index + 5".
  13 */
  14static const u16 e1000_gg82563_cable_length_table[] = {
  15	0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
  16};
  17
  18#define GG82563_CABLE_LENGTH_TABLE_SIZE \
  19		ARRAY_SIZE(e1000_gg82563_cable_length_table)
  20
  21static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
  22static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  23static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  24static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
  25static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
  26static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
  27static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
  28static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  29					   u16 *data);
  30static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  31					    u16 data);
  32static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
  33
  34/**
  35 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
  36 *  @hw: pointer to the HW structure
  37 **/
  38static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
  39{
  40	struct e1000_phy_info *phy = &hw->phy;
  41	s32 ret_val;
  42
  43	if (hw->phy.media_type != e1000_media_type_copper) {
  44		phy->type = e1000_phy_none;
  45		return 0;
  46	} else {
  47		phy->ops.power_up = e1000_power_up_phy_copper;
  48		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
  49	}
  50
  51	phy->addr = 1;
  52	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  53	phy->reset_delay_us = 100;
  54	phy->type = e1000_phy_gg82563;
  55
  56	/* This can only be done after all function pointers are setup. */
  57	ret_val = e1000e_get_phy_id(hw);
  58
  59	/* Verify phy id */
  60	if (phy->id != GG82563_E_PHY_ID)
  61		return -E1000_ERR_PHY;
  62
  63	return ret_val;
  64}
  65
  66/**
  67 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
  68 *  @hw: pointer to the HW structure
  69 **/
  70static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
  71{
  72	struct e1000_nvm_info *nvm = &hw->nvm;
  73	u32 eecd = er32(EECD);
  74	u16 size;
  75
  76	nvm->opcode_bits = 8;
  77	nvm->delay_usec = 1;
  78	switch (nvm->override) {
  79	case e1000_nvm_override_spi_large:
  80		nvm->page_size = 32;
  81		nvm->address_bits = 16;
  82		break;
  83	case e1000_nvm_override_spi_small:
  84		nvm->page_size = 8;
  85		nvm->address_bits = 8;
  86		break;
  87	default:
  88		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
  89		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
  90		break;
  91	}
  92
  93	nvm->type = e1000_nvm_eeprom_spi;
  94
  95	size = (u16)FIELD_GET(E1000_EECD_SIZE_EX_MASK, eecd);
 
  96
  97	/* Added to a constant, "size" becomes the left-shift value
  98	 * for setting word_size.
  99	 */
 100	size += NVM_WORD_SIZE_BASE_SHIFT;
 101
 102	/* EEPROM access above 16k is unsupported */
 103	if (size > 14)
 104		size = 14;
 105	nvm->word_size = BIT(size);
 106
 107	return 0;
 108}
 109
 110/**
 111 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
 112 *  @hw: pointer to the HW structure
 113 **/
 114static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
 115{
 116	struct e1000_mac_info *mac = &hw->mac;
 117
 118	/* Set media type and media-dependent function pointers */
 119	switch (hw->adapter->pdev->device) {
 120	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
 121		hw->phy.media_type = e1000_media_type_internal_serdes;
 122		mac->ops.check_for_link = e1000e_check_for_serdes_link;
 123		mac->ops.setup_physical_interface =
 124		    e1000e_setup_fiber_serdes_link;
 125		break;
 126	default:
 127		hw->phy.media_type = e1000_media_type_copper;
 128		mac->ops.check_for_link = e1000e_check_for_copper_link;
 129		mac->ops.setup_physical_interface =
 130		    e1000_setup_copper_link_80003es2lan;
 131		break;
 132	}
 133
 134	/* Set mta register count */
 135	mac->mta_reg_count = 128;
 136	/* Set rar entry count */
 137	mac->rar_entry_count = E1000_RAR_ENTRIES;
 138	/* FWSM register */
 139	mac->has_fwsm = true;
 140	/* ARC supported; valid only if manageability features are enabled. */
 141	mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
 142	/* Adaptive IFS not supported */
 143	mac->adaptive_ifs = false;
 144
 145	/* set lan id for port to determine which phy lock to use */
 146	hw->mac.ops.set_lan_id(hw);
 147
 148	return 0;
 149}
 150
 151static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
 152{
 153	struct e1000_hw *hw = &adapter->hw;
 154	s32 rc;
 155
 156	rc = e1000_init_mac_params_80003es2lan(hw);
 157	if (rc)
 158		return rc;
 159
 160	rc = e1000_init_nvm_params_80003es2lan(hw);
 161	if (rc)
 162		return rc;
 163
 164	rc = e1000_init_phy_params_80003es2lan(hw);
 165	if (rc)
 166		return rc;
 167
 168	return 0;
 169}
 170
 171/**
 172 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
 173 *  @hw: pointer to the HW structure
 174 *
 175 *  A wrapper to acquire access rights to the correct PHY.
 176 **/
 177static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
 178{
 179	u16 mask;
 180
 181	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 182	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 183}
 184
 185/**
 186 *  e1000_release_phy_80003es2lan - Release rights to access PHY
 187 *  @hw: pointer to the HW structure
 188 *
 189 *  A wrapper to release access rights to the correct PHY.
 190 **/
 191static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
 192{
 193	u16 mask;
 194
 195	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 196	e1000_release_swfw_sync_80003es2lan(hw, mask);
 197}
 198
 199/**
 200 *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
 201 *  @hw: pointer to the HW structure
 202 *
 203 *  Acquire the semaphore to access the Kumeran interface.
 204 *
 205 **/
 206static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
 207{
 208	u16 mask;
 209
 210	mask = E1000_SWFW_CSR_SM;
 211
 212	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 213}
 214
 215/**
 216 *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
 217 *  @hw: pointer to the HW structure
 218 *
 219 *  Release the semaphore used to access the Kumeran interface
 220 **/
 221static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
 222{
 223	u16 mask;
 224
 225	mask = E1000_SWFW_CSR_SM;
 226
 227	e1000_release_swfw_sync_80003es2lan(hw, mask);
 228}
 229
 230/**
 231 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
 232 *  @hw: pointer to the HW structure
 233 *
 234 *  Acquire the semaphore to access the EEPROM.
 235 **/
 236static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
 237{
 238	s32 ret_val;
 239
 240	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 241	if (ret_val)
 242		return ret_val;
 243
 244	ret_val = e1000e_acquire_nvm(hw);
 245
 246	if (ret_val)
 247		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 248
 249	return ret_val;
 250}
 251
 252/**
 253 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
 254 *  @hw: pointer to the HW structure
 255 *
 256 *  Release the semaphore used to access the EEPROM.
 257 **/
 258static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
 259{
 260	e1000e_release_nvm(hw);
 261	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 262}
 263
 264/**
 265 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
 266 *  @hw: pointer to the HW structure
 267 *  @mask: specifies which semaphore to acquire
 268 *
 269 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 270 *  will also specify which port we're acquiring the lock for.
 271 **/
 272static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 273{
 274	u32 swfw_sync;
 275	u32 swmask = mask;
 276	u32 fwmask = mask << 16;
 277	s32 i = 0;
 278	s32 timeout = 50;
 279
 280	while (i < timeout) {
 281		if (e1000e_get_hw_semaphore(hw))
 282			return -E1000_ERR_SWFW_SYNC;
 283
 284		swfw_sync = er32(SW_FW_SYNC);
 285		if (!(swfw_sync & (fwmask | swmask)))
 286			break;
 287
 288		/* Firmware currently using resource (fwmask)
 289		 * or other software thread using resource (swmask)
 290		 */
 291		e1000e_put_hw_semaphore(hw);
 292		mdelay(5);
 293		i++;
 294	}
 295
 296	if (i == timeout) {
 297		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
 298		return -E1000_ERR_SWFW_SYNC;
 299	}
 300
 301	swfw_sync |= swmask;
 302	ew32(SW_FW_SYNC, swfw_sync);
 303
 304	e1000e_put_hw_semaphore(hw);
 305
 306	return 0;
 307}
 308
 309/**
 310 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
 311 *  @hw: pointer to the HW structure
 312 *  @mask: specifies which semaphore to acquire
 313 *
 314 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 315 *  will also specify which port we're releasing the lock for.
 316 **/
 317static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 318{
 319	u32 swfw_sync;
 320
 321	while (e1000e_get_hw_semaphore(hw) != 0)
 322		; /* Empty */
 323
 324	swfw_sync = er32(SW_FW_SYNC);
 325	swfw_sync &= ~mask;
 326	ew32(SW_FW_SYNC, swfw_sync);
 327
 328	e1000e_put_hw_semaphore(hw);
 329}
 330
 331/**
 332 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
 333 *  @hw: pointer to the HW structure
 334 *  @offset: offset of the register to read
 335 *  @data: pointer to the data returned from the operation
 336 *
 337 *  Read the GG82563 PHY register.
 338 **/
 339static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 340						  u32 offset, u16 *data)
 341{
 342	s32 ret_val;
 343	u32 page_select;
 344	u16 temp;
 345
 346	ret_val = e1000_acquire_phy_80003es2lan(hw);
 347	if (ret_val)
 348		return ret_val;
 349
 350	/* Select Configuration Page */
 351	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 352		page_select = GG82563_PHY_PAGE_SELECT;
 353	} else {
 354		/* Use Alternative Page Select register to access
 355		 * registers 30 and 31
 356		 */
 357		page_select = GG82563_PHY_PAGE_SELECT_ALT;
 358	}
 359
 360	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 361	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 362	if (ret_val) {
 363		e1000_release_phy_80003es2lan(hw);
 364		return ret_val;
 365	}
 366
 367	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 368		/* The "ready" bit in the MDIC register may be incorrectly set
 369		 * before the device has completed the "Page Select" MDI
 370		 * transaction.  So we wait 200us after each MDI command...
 371		 */
 372		usleep_range(200, 400);
 373
 374		/* ...and verify the command was successful. */
 375		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 376
 377		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 378			e1000_release_phy_80003es2lan(hw);
 379			return -E1000_ERR_PHY;
 380		}
 381
 382		usleep_range(200, 400);
 383
 384		ret_val = e1000e_read_phy_reg_mdic(hw,
 385						   MAX_PHY_REG_ADDRESS & offset,
 386						   data);
 387
 388		usleep_range(200, 400);
 389	} else {
 390		ret_val = e1000e_read_phy_reg_mdic(hw,
 391						   MAX_PHY_REG_ADDRESS & offset,
 392						   data);
 393	}
 394
 395	e1000_release_phy_80003es2lan(hw);
 396
 397	return ret_val;
 398}
 399
 400/**
 401 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
 402 *  @hw: pointer to the HW structure
 403 *  @offset: offset of the register to read
 404 *  @data: value to write to the register
 405 *
 406 *  Write to the GG82563 PHY register.
 407 **/
 408static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 409						   u32 offset, u16 data)
 410{
 411	s32 ret_val;
 412	u32 page_select;
 413	u16 temp;
 414
 415	ret_val = e1000_acquire_phy_80003es2lan(hw);
 416	if (ret_val)
 417		return ret_val;
 418
 419	/* Select Configuration Page */
 420	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 421		page_select = GG82563_PHY_PAGE_SELECT;
 422	} else {
 423		/* Use Alternative Page Select register to access
 424		 * registers 30 and 31
 425		 */
 426		page_select = GG82563_PHY_PAGE_SELECT_ALT;
 427	}
 428
 429	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 430	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 431	if (ret_val) {
 432		e1000_release_phy_80003es2lan(hw);
 433		return ret_val;
 434	}
 435
 436	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 437		/* The "ready" bit in the MDIC register may be incorrectly set
 438		 * before the device has completed the "Page Select" MDI
 439		 * transaction.  So we wait 200us after each MDI command...
 440		 */
 441		usleep_range(200, 400);
 442
 443		/* ...and verify the command was successful. */
 444		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 445
 446		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 447			e1000_release_phy_80003es2lan(hw);
 448			return -E1000_ERR_PHY;
 449		}
 450
 451		usleep_range(200, 400);
 452
 453		ret_val = e1000e_write_phy_reg_mdic(hw,
 454						    MAX_PHY_REG_ADDRESS &
 455						    offset, data);
 456
 457		usleep_range(200, 400);
 458	} else {
 459		ret_val = e1000e_write_phy_reg_mdic(hw,
 460						    MAX_PHY_REG_ADDRESS &
 461						    offset, data);
 462	}
 463
 464	e1000_release_phy_80003es2lan(hw);
 465
 466	return ret_val;
 467}
 468
 469/**
 470 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
 471 *  @hw: pointer to the HW structure
 472 *  @offset: offset of the register to read
 473 *  @words: number of words to write
 474 *  @data: buffer of data to write to the NVM
 475 *
 476 *  Write "words" of data to the ESB2 NVM.
 477 **/
 478static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
 479				       u16 words, u16 *data)
 480{
 481	return e1000e_write_nvm_spi(hw, offset, words, data);
 482}
 483
 484/**
 485 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
 486 *  @hw: pointer to the HW structure
 487 *
 488 *  Wait a specific amount of time for manageability processes to complete.
 489 *  This is a function pointer entry point called by the phy module.
 490 **/
 491static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
 492{
 493	s32 timeout = PHY_CFG_TIMEOUT;
 494	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
 495
 496	if (hw->bus.func == 1)
 497		mask = E1000_NVM_CFG_DONE_PORT_1;
 498
 499	while (timeout) {
 500		if (er32(EEMNGCTL) & mask)
 501			break;
 502		usleep_range(1000, 2000);
 503		timeout--;
 504	}
 505	if (!timeout) {
 506		e_dbg("MNG configuration cycle has not completed.\n");
 507		return -E1000_ERR_RESET;
 508	}
 509
 510	return 0;
 511}
 512
 513/**
 514 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
 515 *  @hw: pointer to the HW structure
 516 *
 517 *  Force the speed and duplex settings onto the PHY.  This is a
 518 *  function pointer entry point called by the phy module.
 519 **/
 520static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
 521{
 522	s32 ret_val;
 523	u16 phy_data;
 524	bool link;
 525
 526	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
 527	 * forced whenever speed and duplex are forced.
 528	 */
 529	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 530	if (ret_val)
 531		return ret_val;
 532
 533	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
 534	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
 535	if (ret_val)
 536		return ret_val;
 537
 538	e_dbg("GG82563 PSCR: %X\n", phy_data);
 539
 540	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
 541	if (ret_val)
 542		return ret_val;
 543
 544	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
 545
 546	/* Reset the phy to commit changes. */
 547	phy_data |= BMCR_RESET;
 548
 549	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
 550	if (ret_val)
 551		return ret_val;
 552
 553	udelay(1);
 554
 555	if (hw->phy.autoneg_wait_to_complete) {
 556		e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
 557
 558		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 559						      100000, &link);
 560		if (ret_val)
 561			return ret_val;
 562
 563		if (!link) {
 564			/* We didn't get link.
 565			 * Reset the DSP and cross our fingers.
 566			 */
 567			ret_val = e1000e_phy_reset_dsp(hw);
 568			if (ret_val)
 569				return ret_val;
 570		}
 571
 572		/* Try once more */
 573		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 574						      100000, &link);
 575		if (ret_val)
 576			return ret_val;
 577	}
 578
 579	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
 580	if (ret_val)
 581		return ret_val;
 582
 583	/* Resetting the phy means we need to verify the TX_CLK corresponds
 584	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
 585	 */
 586	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
 587	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
 588		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
 589	else
 590		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
 591
 592	/* In addition, we must re-enable CRS on Tx for both half and full
 593	 * duplex.
 594	 */
 595	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 596	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
 597
 598	return ret_val;
 599}
 600
 601/**
 602 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
 603 *  @hw: pointer to the HW structure
 604 *
 605 *  Find the approximate cable length as measured by the GG82563 PHY.
 606 *  This is a function pointer entry point called by the phy module.
 607 **/
 608static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
 609{
 610	struct e1000_phy_info *phy = &hw->phy;
 611	s32 ret_val;
 612	u16 phy_data, index;
 613
 614	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
 615	if (ret_val)
 616		return ret_val;
 617
 618	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
 619
 620	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
 621		return -E1000_ERR_PHY;
 622
 623	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
 624	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
 625
 626	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
 627
 628	return 0;
 629}
 630
 631/**
 632 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
 633 *  @hw: pointer to the HW structure
 634 *  @speed: pointer to speed buffer
 635 *  @duplex: pointer to duplex buffer
 636 *
 637 *  Retrieve the current speed and duplex configuration.
 638 **/
 639static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
 640					      u16 *duplex)
 641{
 642	s32 ret_val;
 643
 644	if (hw->phy.media_type == e1000_media_type_copper) {
 645		ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
 646		hw->phy.ops.cfg_on_link_up(hw);
 647	} else {
 648		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
 649								   speed,
 650								   duplex);
 651	}
 652
 653	return ret_val;
 654}
 655
 656/**
 657 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
 658 *  @hw: pointer to the HW structure
 659 *
 660 *  Perform a global reset to the ESB2 controller.
 661 **/
 662static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
 663{
 664	u32 ctrl;
 665	s32 ret_val;
 666	u16 kum_reg_data;
 667
 668	/* Prevent the PCI-E bus from sticking if there is no TLP connection
 669	 * on the last TLP read/write transaction when MAC is reset.
 670	 */
 671	ret_val = e1000e_disable_pcie_master(hw);
 672	if (ret_val)
 673		e_dbg("PCI-E Master disable polling has failed.\n");
 674
 675	e_dbg("Masking off all interrupts\n");
 676	ew32(IMC, 0xffffffff);
 677
 678	ew32(RCTL, 0);
 679	ew32(TCTL, E1000_TCTL_PSP);
 680	e1e_flush();
 681
 682	usleep_range(10000, 11000);
 683
 684	ctrl = er32(CTRL);
 685
 686	ret_val = e1000_acquire_phy_80003es2lan(hw);
 687	if (ret_val)
 688		return ret_val;
 689
 690	e_dbg("Issuing a global reset to MAC\n");
 691	ew32(CTRL, ctrl | E1000_CTRL_RST);
 692	e1000_release_phy_80003es2lan(hw);
 693
 694	/* Disable IBIST slave mode (far-end loopback) */
 695	ret_val =
 696	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 697					    &kum_reg_data);
 698	if (!ret_val) {
 699		kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 700		ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
 701						 E1000_KMRNCTRLSTA_INBAND_PARAM,
 702						 kum_reg_data);
 703		if (ret_val)
 704			e_dbg("Error disabling far-end loopback\n");
 705	} else {
 706		e_dbg("Error disabling far-end loopback\n");
 707	}
 708
 709	ret_val = e1000e_get_auto_rd_done(hw);
 710	if (ret_val)
 711		/* We don't want to continue accessing MAC registers. */
 712		return ret_val;
 713
 714	/* Clear any pending interrupt events. */
 715	ew32(IMC, 0xffffffff);
 716	er32(ICR);
 717
 718	return e1000_check_alt_mac_addr_generic(hw);
 719}
 720
 721/**
 722 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
 723 *  @hw: pointer to the HW structure
 724 *
 725 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
 726 **/
 727static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
 728{
 729	struct e1000_mac_info *mac = &hw->mac;
 730	u32 reg_data;
 731	s32 ret_val;
 732	u16 kum_reg_data;
 733	u16 i;
 734
 735	e1000_initialize_hw_bits_80003es2lan(hw);
 736
 737	/* Initialize identification LED */
 738	ret_val = mac->ops.id_led_init(hw);
 739	/* An error is not fatal and we should not stop init due to this */
 740	if (ret_val)
 741		e_dbg("Error initializing identification LED\n");
 742
 743	/* Disabling VLAN filtering */
 744	e_dbg("Initializing the IEEE VLAN\n");
 745	mac->ops.clear_vfta(hw);
 746
 747	/* Setup the receive address. */
 748	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
 749
 750	/* Zero out the Multicast HASH table */
 751	e_dbg("Zeroing the MTA\n");
 752	for (i = 0; i < mac->mta_reg_count; i++)
 753		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
 754
 755	/* Setup link and flow control */
 756	ret_val = mac->ops.setup_link(hw);
 757	if (ret_val)
 758		return ret_val;
 759
 760	/* Disable IBIST slave mode (far-end loopback) */
 761	ret_val =
 762	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 763					    &kum_reg_data);
 764	if (!ret_val) {
 765		kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 766		ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
 767						 E1000_KMRNCTRLSTA_INBAND_PARAM,
 768						 kum_reg_data);
 769		if (ret_val)
 770			e_dbg("Error disabling far-end loopback\n");
 771	} else {
 772		e_dbg("Error disabling far-end loopback\n");
 773	}
 774
 775	/* Set the transmit descriptor write-back policy */
 776	reg_data = er32(TXDCTL(0));
 777	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 778		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 779	ew32(TXDCTL(0), reg_data);
 780
 781	/* ...for both queues. */
 782	reg_data = er32(TXDCTL(1));
 783	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 784		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 785	ew32(TXDCTL(1), reg_data);
 786
 787	/* Enable retransmit on late collisions */
 788	reg_data = er32(TCTL);
 789	reg_data |= E1000_TCTL_RTLC;
 790	ew32(TCTL, reg_data);
 791
 792	/* Configure Gigabit Carry Extend Padding */
 793	reg_data = er32(TCTL_EXT);
 794	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
 795	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
 796	ew32(TCTL_EXT, reg_data);
 797
 798	/* Configure Transmit Inter-Packet Gap */
 799	reg_data = er32(TIPG);
 800	reg_data &= ~E1000_TIPG_IPGT_MASK;
 801	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
 802	ew32(TIPG, reg_data);
 803
 804	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
 805	reg_data &= ~0x00100000;
 806	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
 807
 808	/* default to true to enable the MDIC W/A */
 809	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
 810
 811	ret_val =
 812	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
 813					    E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
 814	if (!ret_val) {
 815		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
 816		    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
 817			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
 818	}
 819
 820	/* Clear all of the statistics registers (clear on read).  It is
 821	 * important that we do this after we have tried to establish link
 822	 * because the symbol error count will increment wildly if there
 823	 * is no link.
 824	 */
 825	e1000_clear_hw_cntrs_80003es2lan(hw);
 826
 827	return ret_val;
 828}
 829
 830/**
 831 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
 832 *  @hw: pointer to the HW structure
 833 *
 834 *  Initializes required hardware-dependent bits needed for normal operation.
 835 **/
 836static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
 837{
 838	u32 reg;
 839
 840	/* Transmit Descriptor Control 0 */
 841	reg = er32(TXDCTL(0));
 842	reg |= BIT(22);
 843	ew32(TXDCTL(0), reg);
 844
 845	/* Transmit Descriptor Control 1 */
 846	reg = er32(TXDCTL(1));
 847	reg |= BIT(22);
 848	ew32(TXDCTL(1), reg);
 849
 850	/* Transmit Arbitration Control 0 */
 851	reg = er32(TARC(0));
 852	reg &= ~(0xF << 27);	/* 30:27 */
 853	if (hw->phy.media_type != e1000_media_type_copper)
 854		reg &= ~BIT(20);
 855	ew32(TARC(0), reg);
 856
 857	/* Transmit Arbitration Control 1 */
 858	reg = er32(TARC(1));
 859	if (er32(TCTL) & E1000_TCTL_MULR)
 860		reg &= ~BIT(28);
 861	else
 862		reg |= BIT(28);
 863	ew32(TARC(1), reg);
 864
 865	/* Disable IPv6 extension header parsing because some malformed
 866	 * IPv6 headers can hang the Rx.
 867	 */
 868	reg = er32(RFCTL);
 869	reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
 870	ew32(RFCTL, reg);
 871}
 872
 873/**
 874 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
 875 *  @hw: pointer to the HW structure
 876 *
 877 *  Setup some GG82563 PHY registers for obtaining link
 878 **/
 879static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
 880{
 881	struct e1000_phy_info *phy = &hw->phy;
 882	s32 ret_val;
 883	u32 reg;
 884	u16 data;
 885
 886	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
 887	if (ret_val)
 888		return ret_val;
 889
 890	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 891	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
 892	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
 893
 894	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
 895	if (ret_val)
 896		return ret_val;
 897
 898	/* Options:
 899	 *   MDI/MDI-X = 0 (default)
 900	 *   0 - Auto for all speeds
 901	 *   1 - MDI mode
 902	 *   2 - MDI-X mode
 903	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 904	 */
 905	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
 906	if (ret_val)
 907		return ret_val;
 908
 909	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
 910
 911	switch (phy->mdix) {
 912	case 1:
 913		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
 914		break;
 915	case 2:
 916		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
 917		break;
 918	case 0:
 919	default:
 920		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
 921		break;
 922	}
 923
 924	/* Options:
 925	 *   disable_polarity_correction = 0 (default)
 926	 *       Automatic Correction for Reversed Cable Polarity
 927	 *   0 - Disabled
 928	 *   1 - Enabled
 929	 */
 930	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 931	if (phy->disable_polarity_correction)
 932		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 933
 934	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
 935	if (ret_val)
 936		return ret_val;
 937
 938	/* SW Reset the PHY so all changes take effect */
 939	ret_val = hw->phy.ops.commit(hw);
 940	if (ret_val) {
 941		e_dbg("Error Resetting the PHY\n");
 942		return ret_val;
 943	}
 944
 945	/* Bypass Rx and Tx FIFO's */
 946	reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
 947	data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
 948		E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
 949	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 950	if (ret_val)
 951		return ret_val;
 952
 953	reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
 954	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
 955	if (ret_val)
 956		return ret_val;
 957	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
 958	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 959	if (ret_val)
 960		return ret_val;
 961
 962	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
 963	if (ret_val)
 964		return ret_val;
 965
 966	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
 967	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
 968	if (ret_val)
 969		return ret_val;
 970
 971	reg = er32(CTRL_EXT);
 972	reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 973	ew32(CTRL_EXT, reg);
 974
 975	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
 976	if (ret_val)
 977		return ret_val;
 978
 979	/* Do not init these registers when the HW is in IAMT mode, since the
 980	 * firmware will have already initialized them.  We only initialize
 981	 * them if the HW is not in IAMT mode.
 982	 */
 983	if (!hw->mac.ops.check_mng_mode(hw)) {
 984		/* Enable Electrical Idle on the PHY */
 985		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
 986		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
 987		if (ret_val)
 988			return ret_val;
 989
 990		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
 991		if (ret_val)
 992			return ret_val;
 993
 994		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
 995		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
 996		if (ret_val)
 997			return ret_val;
 998	}
 999
1000	/* Workaround: Disable padding in Kumeran interface in the MAC
1001	 * and in the PHY to avoid CRC errors.
1002	 */
1003	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1004	if (ret_val)
1005		return ret_val;
1006
1007	data |= GG82563_ICR_DIS_PADDING;
1008	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1009	if (ret_val)
1010		return ret_val;
1011
1012	return 0;
1013}
1014
1015/**
1016 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1017 *  @hw: pointer to the HW structure
1018 *
1019 *  Essentially a wrapper for setting up all things "copper" related.
1020 *  This is a function pointer entry point called by the mac module.
1021 **/
1022static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1023{
1024	u32 ctrl;
1025	s32 ret_val;
1026	u16 reg_data;
1027
1028	ctrl = er32(CTRL);
1029	ctrl |= E1000_CTRL_SLU;
1030	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1031	ew32(CTRL, ctrl);
1032
1033	/* Set the mac to wait the maximum time between each
1034	 * iteration and increase the max iterations when
1035	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1036	 */
1037	/* these next three accesses were always meant to use page 0x34 using
1038	 * GG82563_REG(0x34, N) but never did, so we've just corrected the call
1039	 * to not drop bits
1040	 */
1041	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, 4, 0xFFFF);
1042	if (ret_val)
1043		return ret_val;
1044	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, 9, &reg_data);
 
1045	if (ret_val)
1046		return ret_val;
1047	reg_data |= 0x3F;
1048	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, 9, reg_data);
 
1049	if (ret_val)
1050		return ret_val;
1051	ret_val =
1052	    e1000_read_kmrn_reg_80003es2lan(hw,
1053					    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1054					    &reg_data);
1055	if (ret_val)
1056		return ret_val;
1057	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1058	ret_val =
1059	    e1000_write_kmrn_reg_80003es2lan(hw,
1060					     E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1061					     reg_data);
1062	if (ret_val)
1063		return ret_val;
1064
1065	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1066	if (ret_val)
1067		return ret_val;
1068
1069	return e1000e_setup_copper_link(hw);
1070}
1071
1072/**
1073 *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1074 *  @hw: pointer to the HW structure
1075 *
1076 *  Configure the KMRN interface by applying last minute quirks for
1077 *  10/100 operation.
1078 **/
1079static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1080{
1081	s32 ret_val = 0;
1082	u16 speed;
1083	u16 duplex;
1084
1085	if (hw->phy.media_type == e1000_media_type_copper) {
1086		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1087							     &duplex);
1088		if (ret_val)
1089			return ret_val;
1090
1091		if (speed == SPEED_1000)
1092			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1093		else
1094			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1095	}
1096
1097	return ret_val;
1098}
1099
1100/**
1101 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1102 *  @hw: pointer to the HW structure
1103 *  @duplex: current duplex setting
1104 *
1105 *  Configure the KMRN interface by applying last minute quirks for
1106 *  10/100 operation.
1107 **/
1108static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1109{
1110	s32 ret_val;
1111	u32 tipg;
1112	u32 i = 0;
1113	u16 reg_data, reg_data2;
1114
1115	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1116	ret_val =
1117	    e1000_write_kmrn_reg_80003es2lan(hw,
1118					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1119					     reg_data);
1120	if (ret_val)
1121		return ret_val;
1122
1123	/* Configure Transmit Inter-Packet Gap */
1124	tipg = er32(TIPG);
1125	tipg &= ~E1000_TIPG_IPGT_MASK;
1126	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1127	ew32(TIPG, tipg);
1128
1129	do {
1130		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1131		if (ret_val)
1132			return ret_val;
1133
1134		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1135		if (ret_val)
1136			return ret_val;
1137		i++;
1138	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1139
1140	if (duplex == HALF_DUPLEX)
1141		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1142	else
1143		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1144
1145	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1146}
1147
1148/**
1149 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1150 *  @hw: pointer to the HW structure
1151 *
1152 *  Configure the KMRN interface by applying last minute quirks for
1153 *  gigabit operation.
1154 **/
1155static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1156{
1157	s32 ret_val;
1158	u16 reg_data, reg_data2;
1159	u32 tipg;
1160	u32 i = 0;
1161
1162	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1163	ret_val =
1164	    e1000_write_kmrn_reg_80003es2lan(hw,
1165					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1166					     reg_data);
1167	if (ret_val)
1168		return ret_val;
1169
1170	/* Configure Transmit Inter-Packet Gap */
1171	tipg = er32(TIPG);
1172	tipg &= ~E1000_TIPG_IPGT_MASK;
1173	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1174	ew32(TIPG, tipg);
1175
1176	do {
1177		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1178		if (ret_val)
1179			return ret_val;
1180
1181		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1182		if (ret_val)
1183			return ret_val;
1184		i++;
1185	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1186
1187	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1188
1189	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1190}
1191
1192/**
1193 *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1194 *  @hw: pointer to the HW structure
1195 *  @offset: register offset to be read
1196 *  @data: pointer to the read data
1197 *
1198 *  Acquire semaphore, then read the PHY register at offset
1199 *  using the kumeran interface.  The information retrieved is stored in data.
1200 *  Release the semaphore before exiting.
1201 **/
1202static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1203					   u16 *data)
1204{
1205	u32 kmrnctrlsta;
1206	s32 ret_val;
1207
1208	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1209	if (ret_val)
1210		return ret_val;
1211
1212	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) |
1213		      E1000_KMRNCTRLSTA_REN;
1214	ew32(KMRNCTRLSTA, kmrnctrlsta);
1215	e1e_flush();
1216
1217	udelay(2);
1218
1219	kmrnctrlsta = er32(KMRNCTRLSTA);
1220	*data = (u16)kmrnctrlsta;
1221
1222	e1000_release_mac_csr_80003es2lan(hw);
1223
1224	return ret_val;
1225}
1226
1227/**
1228 *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1229 *  @hw: pointer to the HW structure
1230 *  @offset: register offset to write to
1231 *  @data: data to write at register offset
1232 *
1233 *  Acquire semaphore, then write the data to PHY register
1234 *  at the offset using the kumeran interface.  Release semaphore
1235 *  before exiting.
1236 **/
1237static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1238					    u16 data)
1239{
1240	u32 kmrnctrlsta;
1241	s32 ret_val;
1242
1243	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1244	if (ret_val)
1245		return ret_val;
1246
1247	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) | data;
 
1248	ew32(KMRNCTRLSTA, kmrnctrlsta);
1249	e1e_flush();
1250
1251	udelay(2);
1252
1253	e1000_release_mac_csr_80003es2lan(hw);
1254
1255	return ret_val;
1256}
1257
1258/**
1259 *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1260 *  @hw: pointer to the HW structure
1261 **/
1262static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1263{
1264	s32 ret_val;
1265
1266	/* If there's an alternate MAC address place it in RAR0
1267	 * so that it will override the Si installed default perm
1268	 * address.
1269	 */
1270	ret_val = e1000_check_alt_mac_addr_generic(hw);
1271	if (ret_val)
1272		return ret_val;
1273
1274	return e1000_read_mac_addr_generic(hw);
1275}
1276
1277/**
1278 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1279 * @hw: pointer to the HW structure
1280 *
1281 * In the case of a PHY power down to save power, or to turn off link during a
1282 * driver unload, or wake on lan is not enabled, remove the link.
1283 **/
1284static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1285{
1286	/* If the management interface is not enabled, then power down */
1287	if (!(hw->mac.ops.check_mng_mode(hw) ||
1288	      hw->phy.ops.check_reset_block(hw)))
1289		e1000_power_down_phy_copper(hw);
1290}
1291
1292/**
1293 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1294 *  @hw: pointer to the HW structure
1295 *
1296 *  Clears the hardware counters by reading the counter registers.
1297 **/
1298static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1299{
1300	e1000e_clear_hw_cntrs_base(hw);
1301
1302	er32(PRC64);
1303	er32(PRC127);
1304	er32(PRC255);
1305	er32(PRC511);
1306	er32(PRC1023);
1307	er32(PRC1522);
1308	er32(PTC64);
1309	er32(PTC127);
1310	er32(PTC255);
1311	er32(PTC511);
1312	er32(PTC1023);
1313	er32(PTC1522);
1314
1315	er32(ALGNERRC);
1316	er32(RXERRC);
1317	er32(TNCRS);
1318	er32(CEXTERR);
1319	er32(TSCTC);
1320	er32(TSCTFC);
1321
1322	er32(MGTPRC);
1323	er32(MGTPDC);
1324	er32(MGTPTC);
1325
1326	er32(IAC);
1327	er32(ICRXOC);
1328
1329	er32(ICRXPTC);
1330	er32(ICRXATC);
1331	er32(ICTXPTC);
1332	er32(ICTXATC);
1333	er32(ICTXQEC);
1334	er32(ICTXQMTC);
1335	er32(ICRXDMTC);
1336}
1337
1338static const struct e1000_mac_operations es2_mac_ops = {
1339	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
1340	.id_led_init		= e1000e_id_led_init_generic,
1341	.blink_led		= e1000e_blink_led_generic,
1342	.check_mng_mode		= e1000e_check_mng_mode_generic,
1343	/* check_for_link dependent on media type */
1344	.cleanup_led		= e1000e_cleanup_led_generic,
1345	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
1346	.get_bus_info		= e1000e_get_bus_info_pcie,
1347	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1348	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
1349	.led_on			= e1000e_led_on_generic,
1350	.led_off		= e1000e_led_off_generic,
1351	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1352	.write_vfta		= e1000_write_vfta_generic,
1353	.clear_vfta		= e1000_clear_vfta_generic,
1354	.reset_hw		= e1000_reset_hw_80003es2lan,
1355	.init_hw		= e1000_init_hw_80003es2lan,
1356	.setup_link		= e1000e_setup_link_generic,
1357	/* setup_physical_interface dependent on media type */
1358	.setup_led		= e1000e_setup_led_generic,
1359	.config_collision_dist	= e1000e_config_collision_dist_generic,
1360	.rar_set		= e1000e_rar_set_generic,
1361	.rar_get_count		= e1000e_rar_get_count_generic,
1362};
1363
1364static const struct e1000_phy_operations es2_phy_ops = {
1365	.acquire		= e1000_acquire_phy_80003es2lan,
1366	.check_polarity		= e1000_check_polarity_m88,
1367	.check_reset_block	= e1000e_check_reset_block_generic,
1368	.commit			= e1000e_phy_sw_reset,
1369	.force_speed_duplex	= e1000_phy_force_speed_duplex_80003es2lan,
1370	.get_cfg_done		= e1000_get_cfg_done_80003es2lan,
1371	.get_cable_length	= e1000_get_cable_length_80003es2lan,
1372	.get_info		= e1000e_get_phy_info_m88,
1373	.read_reg		= e1000_read_phy_reg_gg82563_80003es2lan,
1374	.release		= e1000_release_phy_80003es2lan,
1375	.reset			= e1000e_phy_hw_reset_generic,
1376	.set_d0_lplu_state	= NULL,
1377	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1378	.write_reg		= e1000_write_phy_reg_gg82563_80003es2lan,
1379	.cfg_on_link_up		= e1000_cfg_on_link_up_80003es2lan,
1380};
1381
1382static const struct e1000_nvm_operations es2_nvm_ops = {
1383	.acquire		= e1000_acquire_nvm_80003es2lan,
1384	.read			= e1000e_read_nvm_eerd,
1385	.release		= e1000_release_nvm_80003es2lan,
1386	.reload			= e1000e_reload_nvm_generic,
1387	.update			= e1000e_update_nvm_checksum_generic,
1388	.valid_led_default	= e1000e_valid_led_default,
1389	.validate		= e1000e_validate_nvm_checksum_generic,
1390	.write			= e1000_write_nvm_80003es2lan,
1391};
1392
1393const struct e1000_info e1000_es2_info = {
1394	.mac			= e1000_80003es2lan,
1395	.flags			= FLAG_HAS_HW_VLAN_FILTER
1396				  | FLAG_HAS_JUMBO_FRAMES
1397				  | FLAG_HAS_WOL
1398				  | FLAG_APME_IN_CTRL3
1399				  | FLAG_HAS_CTRLEXT_ON_LOAD
1400				  | FLAG_RX_NEEDS_RESTART /* errata */
1401				  | FLAG_TARC_SET_BIT_ZERO /* errata */
1402				  | FLAG_APME_CHECK_PORT_B
1403				  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1404	.flags2			= FLAG2_DMA_BURST,
1405	.pba			= 38,
1406	.max_hw_frame_size	= DEFAULT_JUMBO,
1407	.get_variants		= e1000_get_variants_80003es2lan,
1408	.mac_ops		= &es2_mac_ops,
1409	.phy_ops		= &es2_phy_ops,
1410	.nvm_ops		= &es2_nvm_ops,
1411};
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
   5 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
   6 */
   7
   8#include "e1000.h"
   9
  10/* A table for the GG82563 cable length where the range is defined
  11 * with a lower bound at "index" and the upper bound at
  12 * "index + 5".
  13 */
  14static const u16 e1000_gg82563_cable_length_table[] = {
  15	0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
  16};
  17
  18#define GG82563_CABLE_LENGTH_TABLE_SIZE \
  19		ARRAY_SIZE(e1000_gg82563_cable_length_table)
  20
  21static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
  22static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  23static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  24static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
  25static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
  26static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
  27static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
  28static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  29					   u16 *data);
  30static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  31					    u16 data);
  32static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
  33
  34/**
  35 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
  36 *  @hw: pointer to the HW structure
  37 **/
  38static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
  39{
  40	struct e1000_phy_info *phy = &hw->phy;
  41	s32 ret_val;
  42
  43	if (hw->phy.media_type != e1000_media_type_copper) {
  44		phy->type = e1000_phy_none;
  45		return 0;
  46	} else {
  47		phy->ops.power_up = e1000_power_up_phy_copper;
  48		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
  49	}
  50
  51	phy->addr = 1;
  52	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  53	phy->reset_delay_us = 100;
  54	phy->type = e1000_phy_gg82563;
  55
  56	/* This can only be done after all function pointers are setup. */
  57	ret_val = e1000e_get_phy_id(hw);
  58
  59	/* Verify phy id */
  60	if (phy->id != GG82563_E_PHY_ID)
  61		return -E1000_ERR_PHY;
  62
  63	return ret_val;
  64}
  65
  66/**
  67 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
  68 *  @hw: pointer to the HW structure
  69 **/
  70static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
  71{
  72	struct e1000_nvm_info *nvm = &hw->nvm;
  73	u32 eecd = er32(EECD);
  74	u16 size;
  75
  76	nvm->opcode_bits = 8;
  77	nvm->delay_usec = 1;
  78	switch (nvm->override) {
  79	case e1000_nvm_override_spi_large:
  80		nvm->page_size = 32;
  81		nvm->address_bits = 16;
  82		break;
  83	case e1000_nvm_override_spi_small:
  84		nvm->page_size = 8;
  85		nvm->address_bits = 8;
  86		break;
  87	default:
  88		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
  89		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
  90		break;
  91	}
  92
  93	nvm->type = e1000_nvm_eeprom_spi;
  94
  95	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
  96		     E1000_EECD_SIZE_EX_SHIFT);
  97
  98	/* Added to a constant, "size" becomes the left-shift value
  99	 * for setting word_size.
 100	 */
 101	size += NVM_WORD_SIZE_BASE_SHIFT;
 102
 103	/* EEPROM access above 16k is unsupported */
 104	if (size > 14)
 105		size = 14;
 106	nvm->word_size = BIT(size);
 107
 108	return 0;
 109}
 110
 111/**
 112 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
 113 *  @hw: pointer to the HW structure
 114 **/
 115static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
 116{
 117	struct e1000_mac_info *mac = &hw->mac;
 118
 119	/* Set media type and media-dependent function pointers */
 120	switch (hw->adapter->pdev->device) {
 121	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
 122		hw->phy.media_type = e1000_media_type_internal_serdes;
 123		mac->ops.check_for_link = e1000e_check_for_serdes_link;
 124		mac->ops.setup_physical_interface =
 125		    e1000e_setup_fiber_serdes_link;
 126		break;
 127	default:
 128		hw->phy.media_type = e1000_media_type_copper;
 129		mac->ops.check_for_link = e1000e_check_for_copper_link;
 130		mac->ops.setup_physical_interface =
 131		    e1000_setup_copper_link_80003es2lan;
 132		break;
 133	}
 134
 135	/* Set mta register count */
 136	mac->mta_reg_count = 128;
 137	/* Set rar entry count */
 138	mac->rar_entry_count = E1000_RAR_ENTRIES;
 139	/* FWSM register */
 140	mac->has_fwsm = true;
 141	/* ARC supported; valid only if manageability features are enabled. */
 142	mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
 143	/* Adaptive IFS not supported */
 144	mac->adaptive_ifs = false;
 145
 146	/* set lan id for port to determine which phy lock to use */
 147	hw->mac.ops.set_lan_id(hw);
 148
 149	return 0;
 150}
 151
 152static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
 153{
 154	struct e1000_hw *hw = &adapter->hw;
 155	s32 rc;
 156
 157	rc = e1000_init_mac_params_80003es2lan(hw);
 158	if (rc)
 159		return rc;
 160
 161	rc = e1000_init_nvm_params_80003es2lan(hw);
 162	if (rc)
 163		return rc;
 164
 165	rc = e1000_init_phy_params_80003es2lan(hw);
 166	if (rc)
 167		return rc;
 168
 169	return 0;
 170}
 171
 172/**
 173 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
 174 *  @hw: pointer to the HW structure
 175 *
 176 *  A wrapper to acquire access rights to the correct PHY.
 177 **/
 178static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
 179{
 180	u16 mask;
 181
 182	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 183	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 184}
 185
 186/**
 187 *  e1000_release_phy_80003es2lan - Release rights to access PHY
 188 *  @hw: pointer to the HW structure
 189 *
 190 *  A wrapper to release access rights to the correct PHY.
 191 **/
 192static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
 193{
 194	u16 mask;
 195
 196	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 197	e1000_release_swfw_sync_80003es2lan(hw, mask);
 198}
 199
 200/**
 201 *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
 202 *  @hw: pointer to the HW structure
 203 *
 204 *  Acquire the semaphore to access the Kumeran interface.
 205 *
 206 **/
 207static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
 208{
 209	u16 mask;
 210
 211	mask = E1000_SWFW_CSR_SM;
 212
 213	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 214}
 215
 216/**
 217 *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
 218 *  @hw: pointer to the HW structure
 219 *
 220 *  Release the semaphore used to access the Kumeran interface
 221 **/
 222static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
 223{
 224	u16 mask;
 225
 226	mask = E1000_SWFW_CSR_SM;
 227
 228	e1000_release_swfw_sync_80003es2lan(hw, mask);
 229}
 230
 231/**
 232 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
 233 *  @hw: pointer to the HW structure
 234 *
 235 *  Acquire the semaphore to access the EEPROM.
 236 **/
 237static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
 238{
 239	s32 ret_val;
 240
 241	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 242	if (ret_val)
 243		return ret_val;
 244
 245	ret_val = e1000e_acquire_nvm(hw);
 246
 247	if (ret_val)
 248		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 249
 250	return ret_val;
 251}
 252
 253/**
 254 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
 255 *  @hw: pointer to the HW structure
 256 *
 257 *  Release the semaphore used to access the EEPROM.
 258 **/
 259static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
 260{
 261	e1000e_release_nvm(hw);
 262	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 263}
 264
 265/**
 266 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
 267 *  @hw: pointer to the HW structure
 268 *  @mask: specifies which semaphore to acquire
 269 *
 270 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 271 *  will also specify which port we're acquiring the lock for.
 272 **/
 273static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 274{
 275	u32 swfw_sync;
 276	u32 swmask = mask;
 277	u32 fwmask = mask << 16;
 278	s32 i = 0;
 279	s32 timeout = 50;
 280
 281	while (i < timeout) {
 282		if (e1000e_get_hw_semaphore(hw))
 283			return -E1000_ERR_SWFW_SYNC;
 284
 285		swfw_sync = er32(SW_FW_SYNC);
 286		if (!(swfw_sync & (fwmask | swmask)))
 287			break;
 288
 289		/* Firmware currently using resource (fwmask)
 290		 * or other software thread using resource (swmask)
 291		 */
 292		e1000e_put_hw_semaphore(hw);
 293		mdelay(5);
 294		i++;
 295	}
 296
 297	if (i == timeout) {
 298		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
 299		return -E1000_ERR_SWFW_SYNC;
 300	}
 301
 302	swfw_sync |= swmask;
 303	ew32(SW_FW_SYNC, swfw_sync);
 304
 305	e1000e_put_hw_semaphore(hw);
 306
 307	return 0;
 308}
 309
 310/**
 311 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
 312 *  @hw: pointer to the HW structure
 313 *  @mask: specifies which semaphore to acquire
 314 *
 315 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 316 *  will also specify which port we're releasing the lock for.
 317 **/
 318static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 319{
 320	u32 swfw_sync;
 321
 322	while (e1000e_get_hw_semaphore(hw) != 0)
 323		; /* Empty */
 324
 325	swfw_sync = er32(SW_FW_SYNC);
 326	swfw_sync &= ~mask;
 327	ew32(SW_FW_SYNC, swfw_sync);
 328
 329	e1000e_put_hw_semaphore(hw);
 330}
 331
 332/**
 333 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
 334 *  @hw: pointer to the HW structure
 335 *  @offset: offset of the register to read
 336 *  @data: pointer to the data returned from the operation
 337 *
 338 *  Read the GG82563 PHY register.
 339 **/
 340static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 341						  u32 offset, u16 *data)
 342{
 343	s32 ret_val;
 344	u32 page_select;
 345	u16 temp;
 346
 347	ret_val = e1000_acquire_phy_80003es2lan(hw);
 348	if (ret_val)
 349		return ret_val;
 350
 351	/* Select Configuration Page */
 352	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 353		page_select = GG82563_PHY_PAGE_SELECT;
 354	} else {
 355		/* Use Alternative Page Select register to access
 356		 * registers 30 and 31
 357		 */
 358		page_select = GG82563_PHY_PAGE_SELECT_ALT;
 359	}
 360
 361	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 362	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 363	if (ret_val) {
 364		e1000_release_phy_80003es2lan(hw);
 365		return ret_val;
 366	}
 367
 368	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 369		/* The "ready" bit in the MDIC register may be incorrectly set
 370		 * before the device has completed the "Page Select" MDI
 371		 * transaction.  So we wait 200us after each MDI command...
 372		 */
 373		usleep_range(200, 400);
 374
 375		/* ...and verify the command was successful. */
 376		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 377
 378		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 379			e1000_release_phy_80003es2lan(hw);
 380			return -E1000_ERR_PHY;
 381		}
 382
 383		usleep_range(200, 400);
 384
 385		ret_val = e1000e_read_phy_reg_mdic(hw,
 386						   MAX_PHY_REG_ADDRESS & offset,
 387						   data);
 388
 389		usleep_range(200, 400);
 390	} else {
 391		ret_val = e1000e_read_phy_reg_mdic(hw,
 392						   MAX_PHY_REG_ADDRESS & offset,
 393						   data);
 394	}
 395
 396	e1000_release_phy_80003es2lan(hw);
 397
 398	return ret_val;
 399}
 400
 401/**
 402 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
 403 *  @hw: pointer to the HW structure
 404 *  @offset: offset of the register to read
 405 *  @data: value to write to the register
 406 *
 407 *  Write to the GG82563 PHY register.
 408 **/
 409static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 410						   u32 offset, u16 data)
 411{
 412	s32 ret_val;
 413	u32 page_select;
 414	u16 temp;
 415
 416	ret_val = e1000_acquire_phy_80003es2lan(hw);
 417	if (ret_val)
 418		return ret_val;
 419
 420	/* Select Configuration Page */
 421	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 422		page_select = GG82563_PHY_PAGE_SELECT;
 423	} else {
 424		/* Use Alternative Page Select register to access
 425		 * registers 30 and 31
 426		 */
 427		page_select = GG82563_PHY_PAGE_SELECT_ALT;
 428	}
 429
 430	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 431	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 432	if (ret_val) {
 433		e1000_release_phy_80003es2lan(hw);
 434		return ret_val;
 435	}
 436
 437	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 438		/* The "ready" bit in the MDIC register may be incorrectly set
 439		 * before the device has completed the "Page Select" MDI
 440		 * transaction.  So we wait 200us after each MDI command...
 441		 */
 442		usleep_range(200, 400);
 443
 444		/* ...and verify the command was successful. */
 445		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 446
 447		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 448			e1000_release_phy_80003es2lan(hw);
 449			return -E1000_ERR_PHY;
 450		}
 451
 452		usleep_range(200, 400);
 453
 454		ret_val = e1000e_write_phy_reg_mdic(hw,
 455						    MAX_PHY_REG_ADDRESS &
 456						    offset, data);
 457
 458		usleep_range(200, 400);
 459	} else {
 460		ret_val = e1000e_write_phy_reg_mdic(hw,
 461						    MAX_PHY_REG_ADDRESS &
 462						    offset, data);
 463	}
 464
 465	e1000_release_phy_80003es2lan(hw);
 466
 467	return ret_val;
 468}
 469
 470/**
 471 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
 472 *  @hw: pointer to the HW structure
 473 *  @offset: offset of the register to read
 474 *  @words: number of words to write
 475 *  @data: buffer of data to write to the NVM
 476 *
 477 *  Write "words" of data to the ESB2 NVM.
 478 **/
 479static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
 480				       u16 words, u16 *data)
 481{
 482	return e1000e_write_nvm_spi(hw, offset, words, data);
 483}
 484
 485/**
 486 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
 487 *  @hw: pointer to the HW structure
 488 *
 489 *  Wait a specific amount of time for manageability processes to complete.
 490 *  This is a function pointer entry point called by the phy module.
 491 **/
 492static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
 493{
 494	s32 timeout = PHY_CFG_TIMEOUT;
 495	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
 496
 497	if (hw->bus.func == 1)
 498		mask = E1000_NVM_CFG_DONE_PORT_1;
 499
 500	while (timeout) {
 501		if (er32(EEMNGCTL) & mask)
 502			break;
 503		usleep_range(1000, 2000);
 504		timeout--;
 505	}
 506	if (!timeout) {
 507		e_dbg("MNG configuration cycle has not completed.\n");
 508		return -E1000_ERR_RESET;
 509	}
 510
 511	return 0;
 512}
 513
 514/**
 515 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
 516 *  @hw: pointer to the HW structure
 517 *
 518 *  Force the speed and duplex settings onto the PHY.  This is a
 519 *  function pointer entry point called by the phy module.
 520 **/
 521static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
 522{
 523	s32 ret_val;
 524	u16 phy_data;
 525	bool link;
 526
 527	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
 528	 * forced whenever speed and duplex are forced.
 529	 */
 530	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 531	if (ret_val)
 532		return ret_val;
 533
 534	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
 535	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
 536	if (ret_val)
 537		return ret_val;
 538
 539	e_dbg("GG82563 PSCR: %X\n", phy_data);
 540
 541	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
 542	if (ret_val)
 543		return ret_val;
 544
 545	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
 546
 547	/* Reset the phy to commit changes. */
 548	phy_data |= BMCR_RESET;
 549
 550	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
 551	if (ret_val)
 552		return ret_val;
 553
 554	udelay(1);
 555
 556	if (hw->phy.autoneg_wait_to_complete) {
 557		e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
 558
 559		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 560						      100000, &link);
 561		if (ret_val)
 562			return ret_val;
 563
 564		if (!link) {
 565			/* We didn't get link.
 566			 * Reset the DSP and cross our fingers.
 567			 */
 568			ret_val = e1000e_phy_reset_dsp(hw);
 569			if (ret_val)
 570				return ret_val;
 571		}
 572
 573		/* Try once more */
 574		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 575						      100000, &link);
 576		if (ret_val)
 577			return ret_val;
 578	}
 579
 580	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
 581	if (ret_val)
 582		return ret_val;
 583
 584	/* Resetting the phy means we need to verify the TX_CLK corresponds
 585	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
 586	 */
 587	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
 588	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
 589		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
 590	else
 591		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
 592
 593	/* In addition, we must re-enable CRS on Tx for both half and full
 594	 * duplex.
 595	 */
 596	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 597	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
 598
 599	return ret_val;
 600}
 601
 602/**
 603 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
 604 *  @hw: pointer to the HW structure
 605 *
 606 *  Find the approximate cable length as measured by the GG82563 PHY.
 607 *  This is a function pointer entry point called by the phy module.
 608 **/
 609static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
 610{
 611	struct e1000_phy_info *phy = &hw->phy;
 612	s32 ret_val;
 613	u16 phy_data, index;
 614
 615	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
 616	if (ret_val)
 617		return ret_val;
 618
 619	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
 620
 621	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
 622		return -E1000_ERR_PHY;
 623
 624	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
 625	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
 626
 627	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
 628
 629	return 0;
 630}
 631
 632/**
 633 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
 634 *  @hw: pointer to the HW structure
 635 *  @speed: pointer to speed buffer
 636 *  @duplex: pointer to duplex buffer
 637 *
 638 *  Retrieve the current speed and duplex configuration.
 639 **/
 640static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
 641					      u16 *duplex)
 642{
 643	s32 ret_val;
 644
 645	if (hw->phy.media_type == e1000_media_type_copper) {
 646		ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
 647		hw->phy.ops.cfg_on_link_up(hw);
 648	} else {
 649		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
 650								   speed,
 651								   duplex);
 652	}
 653
 654	return ret_val;
 655}
 656
 657/**
 658 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
 659 *  @hw: pointer to the HW structure
 660 *
 661 *  Perform a global reset to the ESB2 controller.
 662 **/
 663static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
 664{
 665	u32 ctrl;
 666	s32 ret_val;
 667	u16 kum_reg_data;
 668
 669	/* Prevent the PCI-E bus from sticking if there is no TLP connection
 670	 * on the last TLP read/write transaction when MAC is reset.
 671	 */
 672	ret_val = e1000e_disable_pcie_master(hw);
 673	if (ret_val)
 674		e_dbg("PCI-E Master disable polling has failed.\n");
 675
 676	e_dbg("Masking off all interrupts\n");
 677	ew32(IMC, 0xffffffff);
 678
 679	ew32(RCTL, 0);
 680	ew32(TCTL, E1000_TCTL_PSP);
 681	e1e_flush();
 682
 683	usleep_range(10000, 11000);
 684
 685	ctrl = er32(CTRL);
 686
 687	ret_val = e1000_acquire_phy_80003es2lan(hw);
 688	if (ret_val)
 689		return ret_val;
 690
 691	e_dbg("Issuing a global reset to MAC\n");
 692	ew32(CTRL, ctrl | E1000_CTRL_RST);
 693	e1000_release_phy_80003es2lan(hw);
 694
 695	/* Disable IBIST slave mode (far-end loopback) */
 696	ret_val =
 697	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 698					    &kum_reg_data);
 699	if (!ret_val) {
 700		kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 701		ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
 702						 E1000_KMRNCTRLSTA_INBAND_PARAM,
 703						 kum_reg_data);
 704		if (ret_val)
 705			e_dbg("Error disabling far-end loopback\n");
 706	} else {
 707		e_dbg("Error disabling far-end loopback\n");
 708	}
 709
 710	ret_val = e1000e_get_auto_rd_done(hw);
 711	if (ret_val)
 712		/* We don't want to continue accessing MAC registers. */
 713		return ret_val;
 714
 715	/* Clear any pending interrupt events. */
 716	ew32(IMC, 0xffffffff);
 717	er32(ICR);
 718
 719	return e1000_check_alt_mac_addr_generic(hw);
 720}
 721
 722/**
 723 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
 724 *  @hw: pointer to the HW structure
 725 *
 726 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
 727 **/
 728static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
 729{
 730	struct e1000_mac_info *mac = &hw->mac;
 731	u32 reg_data;
 732	s32 ret_val;
 733	u16 kum_reg_data;
 734	u16 i;
 735
 736	e1000_initialize_hw_bits_80003es2lan(hw);
 737
 738	/* Initialize identification LED */
 739	ret_val = mac->ops.id_led_init(hw);
 740	/* An error is not fatal and we should not stop init due to this */
 741	if (ret_val)
 742		e_dbg("Error initializing identification LED\n");
 743
 744	/* Disabling VLAN filtering */
 745	e_dbg("Initializing the IEEE VLAN\n");
 746	mac->ops.clear_vfta(hw);
 747
 748	/* Setup the receive address. */
 749	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
 750
 751	/* Zero out the Multicast HASH table */
 752	e_dbg("Zeroing the MTA\n");
 753	for (i = 0; i < mac->mta_reg_count; i++)
 754		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
 755
 756	/* Setup link and flow control */
 757	ret_val = mac->ops.setup_link(hw);
 758	if (ret_val)
 759		return ret_val;
 760
 761	/* Disable IBIST slave mode (far-end loopback) */
 762	ret_val =
 763	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 764					    &kum_reg_data);
 765	if (!ret_val) {
 766		kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 767		ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
 768						 E1000_KMRNCTRLSTA_INBAND_PARAM,
 769						 kum_reg_data);
 770		if (ret_val)
 771			e_dbg("Error disabling far-end loopback\n");
 772	} else {
 773		e_dbg("Error disabling far-end loopback\n");
 774	}
 775
 776	/* Set the transmit descriptor write-back policy */
 777	reg_data = er32(TXDCTL(0));
 778	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 779		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 780	ew32(TXDCTL(0), reg_data);
 781
 782	/* ...for both queues. */
 783	reg_data = er32(TXDCTL(1));
 784	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 785		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 786	ew32(TXDCTL(1), reg_data);
 787
 788	/* Enable retransmit on late collisions */
 789	reg_data = er32(TCTL);
 790	reg_data |= E1000_TCTL_RTLC;
 791	ew32(TCTL, reg_data);
 792
 793	/* Configure Gigabit Carry Extend Padding */
 794	reg_data = er32(TCTL_EXT);
 795	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
 796	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
 797	ew32(TCTL_EXT, reg_data);
 798
 799	/* Configure Transmit Inter-Packet Gap */
 800	reg_data = er32(TIPG);
 801	reg_data &= ~E1000_TIPG_IPGT_MASK;
 802	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
 803	ew32(TIPG, reg_data);
 804
 805	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
 806	reg_data &= ~0x00100000;
 807	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
 808
 809	/* default to true to enable the MDIC W/A */
 810	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
 811
 812	ret_val =
 813	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
 814					    E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
 815	if (!ret_val) {
 816		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
 817		    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
 818			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
 819	}
 820
 821	/* Clear all of the statistics registers (clear on read).  It is
 822	 * important that we do this after we have tried to establish link
 823	 * because the symbol error count will increment wildly if there
 824	 * is no link.
 825	 */
 826	e1000_clear_hw_cntrs_80003es2lan(hw);
 827
 828	return ret_val;
 829}
 830
 831/**
 832 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
 833 *  @hw: pointer to the HW structure
 834 *
 835 *  Initializes required hardware-dependent bits needed for normal operation.
 836 **/
 837static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
 838{
 839	u32 reg;
 840
 841	/* Transmit Descriptor Control 0 */
 842	reg = er32(TXDCTL(0));
 843	reg |= BIT(22);
 844	ew32(TXDCTL(0), reg);
 845
 846	/* Transmit Descriptor Control 1 */
 847	reg = er32(TXDCTL(1));
 848	reg |= BIT(22);
 849	ew32(TXDCTL(1), reg);
 850
 851	/* Transmit Arbitration Control 0 */
 852	reg = er32(TARC(0));
 853	reg &= ~(0xF << 27);	/* 30:27 */
 854	if (hw->phy.media_type != e1000_media_type_copper)
 855		reg &= ~BIT(20);
 856	ew32(TARC(0), reg);
 857
 858	/* Transmit Arbitration Control 1 */
 859	reg = er32(TARC(1));
 860	if (er32(TCTL) & E1000_TCTL_MULR)
 861		reg &= ~BIT(28);
 862	else
 863		reg |= BIT(28);
 864	ew32(TARC(1), reg);
 865
 866	/* Disable IPv6 extension header parsing because some malformed
 867	 * IPv6 headers can hang the Rx.
 868	 */
 869	reg = er32(RFCTL);
 870	reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
 871	ew32(RFCTL, reg);
 872}
 873
 874/**
 875 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
 876 *  @hw: pointer to the HW structure
 877 *
 878 *  Setup some GG82563 PHY registers for obtaining link
 879 **/
 880static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
 881{
 882	struct e1000_phy_info *phy = &hw->phy;
 883	s32 ret_val;
 884	u32 reg;
 885	u16 data;
 886
 887	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
 888	if (ret_val)
 889		return ret_val;
 890
 891	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 892	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
 893	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
 894
 895	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
 896	if (ret_val)
 897		return ret_val;
 898
 899	/* Options:
 900	 *   MDI/MDI-X = 0 (default)
 901	 *   0 - Auto for all speeds
 902	 *   1 - MDI mode
 903	 *   2 - MDI-X mode
 904	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 905	 */
 906	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
 907	if (ret_val)
 908		return ret_val;
 909
 910	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
 911
 912	switch (phy->mdix) {
 913	case 1:
 914		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
 915		break;
 916	case 2:
 917		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
 918		break;
 919	case 0:
 920	default:
 921		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
 922		break;
 923	}
 924
 925	/* Options:
 926	 *   disable_polarity_correction = 0 (default)
 927	 *       Automatic Correction for Reversed Cable Polarity
 928	 *   0 - Disabled
 929	 *   1 - Enabled
 930	 */
 931	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 932	if (phy->disable_polarity_correction)
 933		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 934
 935	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
 936	if (ret_val)
 937		return ret_val;
 938
 939	/* SW Reset the PHY so all changes take effect */
 940	ret_val = hw->phy.ops.commit(hw);
 941	if (ret_val) {
 942		e_dbg("Error Resetting the PHY\n");
 943		return ret_val;
 944	}
 945
 946	/* Bypass Rx and Tx FIFO's */
 947	reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
 948	data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
 949		E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
 950	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 951	if (ret_val)
 952		return ret_val;
 953
 954	reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
 955	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
 956	if (ret_val)
 957		return ret_val;
 958	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
 959	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 960	if (ret_val)
 961		return ret_val;
 962
 963	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
 964	if (ret_val)
 965		return ret_val;
 966
 967	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
 968	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
 969	if (ret_val)
 970		return ret_val;
 971
 972	reg = er32(CTRL_EXT);
 973	reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 974	ew32(CTRL_EXT, reg);
 975
 976	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
 977	if (ret_val)
 978		return ret_val;
 979
 980	/* Do not init these registers when the HW is in IAMT mode, since the
 981	 * firmware will have already initialized them.  We only initialize
 982	 * them if the HW is not in IAMT mode.
 983	 */
 984	if (!hw->mac.ops.check_mng_mode(hw)) {
 985		/* Enable Electrical Idle on the PHY */
 986		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
 987		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
 988		if (ret_val)
 989			return ret_val;
 990
 991		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
 992		if (ret_val)
 993			return ret_val;
 994
 995		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
 996		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
 997		if (ret_val)
 998			return ret_val;
 999	}
1000
1001	/* Workaround: Disable padding in Kumeran interface in the MAC
1002	 * and in the PHY to avoid CRC errors.
1003	 */
1004	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1005	if (ret_val)
1006		return ret_val;
1007
1008	data |= GG82563_ICR_DIS_PADDING;
1009	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1010	if (ret_val)
1011		return ret_val;
1012
1013	return 0;
1014}
1015
1016/**
1017 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1018 *  @hw: pointer to the HW structure
1019 *
1020 *  Essentially a wrapper for setting up all things "copper" related.
1021 *  This is a function pointer entry point called by the mac module.
1022 **/
1023static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1024{
1025	u32 ctrl;
1026	s32 ret_val;
1027	u16 reg_data;
1028
1029	ctrl = er32(CTRL);
1030	ctrl |= E1000_CTRL_SLU;
1031	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1032	ew32(CTRL, ctrl);
1033
1034	/* Set the mac to wait the maximum time between each
1035	 * iteration and increase the max iterations when
1036	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1037	 */
1038	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1039						   0xFFFF);
 
 
 
1040	if (ret_val)
1041		return ret_val;
1042	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1043						  &reg_data);
1044	if (ret_val)
1045		return ret_val;
1046	reg_data |= 0x3F;
1047	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1048						   reg_data);
1049	if (ret_val)
1050		return ret_val;
1051	ret_val =
1052	    e1000_read_kmrn_reg_80003es2lan(hw,
1053					    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1054					    &reg_data);
1055	if (ret_val)
1056		return ret_val;
1057	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1058	ret_val =
1059	    e1000_write_kmrn_reg_80003es2lan(hw,
1060					     E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1061					     reg_data);
1062	if (ret_val)
1063		return ret_val;
1064
1065	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1066	if (ret_val)
1067		return ret_val;
1068
1069	return e1000e_setup_copper_link(hw);
1070}
1071
1072/**
1073 *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1074 *  @hw: pointer to the HW structure
1075 *
1076 *  Configure the KMRN interface by applying last minute quirks for
1077 *  10/100 operation.
1078 **/
1079static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1080{
1081	s32 ret_val = 0;
1082	u16 speed;
1083	u16 duplex;
1084
1085	if (hw->phy.media_type == e1000_media_type_copper) {
1086		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1087							     &duplex);
1088		if (ret_val)
1089			return ret_val;
1090
1091		if (speed == SPEED_1000)
1092			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1093		else
1094			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1095	}
1096
1097	return ret_val;
1098}
1099
1100/**
1101 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1102 *  @hw: pointer to the HW structure
1103 *  @duplex: current duplex setting
1104 *
1105 *  Configure the KMRN interface by applying last minute quirks for
1106 *  10/100 operation.
1107 **/
1108static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1109{
1110	s32 ret_val;
1111	u32 tipg;
1112	u32 i = 0;
1113	u16 reg_data, reg_data2;
1114
1115	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1116	ret_val =
1117	    e1000_write_kmrn_reg_80003es2lan(hw,
1118					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1119					     reg_data);
1120	if (ret_val)
1121		return ret_val;
1122
1123	/* Configure Transmit Inter-Packet Gap */
1124	tipg = er32(TIPG);
1125	tipg &= ~E1000_TIPG_IPGT_MASK;
1126	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1127	ew32(TIPG, tipg);
1128
1129	do {
1130		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1131		if (ret_val)
1132			return ret_val;
1133
1134		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1135		if (ret_val)
1136			return ret_val;
1137		i++;
1138	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1139
1140	if (duplex == HALF_DUPLEX)
1141		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1142	else
1143		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1144
1145	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1146}
1147
1148/**
1149 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1150 *  @hw: pointer to the HW structure
1151 *
1152 *  Configure the KMRN interface by applying last minute quirks for
1153 *  gigabit operation.
1154 **/
1155static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1156{
1157	s32 ret_val;
1158	u16 reg_data, reg_data2;
1159	u32 tipg;
1160	u32 i = 0;
1161
1162	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1163	ret_val =
1164	    e1000_write_kmrn_reg_80003es2lan(hw,
1165					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1166					     reg_data);
1167	if (ret_val)
1168		return ret_val;
1169
1170	/* Configure Transmit Inter-Packet Gap */
1171	tipg = er32(TIPG);
1172	tipg &= ~E1000_TIPG_IPGT_MASK;
1173	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1174	ew32(TIPG, tipg);
1175
1176	do {
1177		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1178		if (ret_val)
1179			return ret_val;
1180
1181		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1182		if (ret_val)
1183			return ret_val;
1184		i++;
1185	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1186
1187	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1188
1189	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1190}
1191
1192/**
1193 *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1194 *  @hw: pointer to the HW structure
1195 *  @offset: register offset to be read
1196 *  @data: pointer to the read data
1197 *
1198 *  Acquire semaphore, then read the PHY register at offset
1199 *  using the kumeran interface.  The information retrieved is stored in data.
1200 *  Release the semaphore before exiting.
1201 **/
1202static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1203					   u16 *data)
1204{
1205	u32 kmrnctrlsta;
1206	s32 ret_val;
1207
1208	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1209	if (ret_val)
1210		return ret_val;
1211
1212	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1213		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1214	ew32(KMRNCTRLSTA, kmrnctrlsta);
1215	e1e_flush();
1216
1217	udelay(2);
1218
1219	kmrnctrlsta = er32(KMRNCTRLSTA);
1220	*data = (u16)kmrnctrlsta;
1221
1222	e1000_release_mac_csr_80003es2lan(hw);
1223
1224	return ret_val;
1225}
1226
1227/**
1228 *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1229 *  @hw: pointer to the HW structure
1230 *  @offset: register offset to write to
1231 *  @data: data to write at register offset
1232 *
1233 *  Acquire semaphore, then write the data to PHY register
1234 *  at the offset using the kumeran interface.  Release semaphore
1235 *  before exiting.
1236 **/
1237static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1238					    u16 data)
1239{
1240	u32 kmrnctrlsta;
1241	s32 ret_val;
1242
1243	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1244	if (ret_val)
1245		return ret_val;
1246
1247	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1248		       E1000_KMRNCTRLSTA_OFFSET) | data;
1249	ew32(KMRNCTRLSTA, kmrnctrlsta);
1250	e1e_flush();
1251
1252	udelay(2);
1253
1254	e1000_release_mac_csr_80003es2lan(hw);
1255
1256	return ret_val;
1257}
1258
1259/**
1260 *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1261 *  @hw: pointer to the HW structure
1262 **/
1263static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1264{
1265	s32 ret_val;
1266
1267	/* If there's an alternate MAC address place it in RAR0
1268	 * so that it will override the Si installed default perm
1269	 * address.
1270	 */
1271	ret_val = e1000_check_alt_mac_addr_generic(hw);
1272	if (ret_val)
1273		return ret_val;
1274
1275	return e1000_read_mac_addr_generic(hw);
1276}
1277
1278/**
1279 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1280 * @hw: pointer to the HW structure
1281 *
1282 * In the case of a PHY power down to save power, or to turn off link during a
1283 * driver unload, or wake on lan is not enabled, remove the link.
1284 **/
1285static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1286{
1287	/* If the management interface is not enabled, then power down */
1288	if (!(hw->mac.ops.check_mng_mode(hw) ||
1289	      hw->phy.ops.check_reset_block(hw)))
1290		e1000_power_down_phy_copper(hw);
1291}
1292
1293/**
1294 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1295 *  @hw: pointer to the HW structure
1296 *
1297 *  Clears the hardware counters by reading the counter registers.
1298 **/
1299static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1300{
1301	e1000e_clear_hw_cntrs_base(hw);
1302
1303	er32(PRC64);
1304	er32(PRC127);
1305	er32(PRC255);
1306	er32(PRC511);
1307	er32(PRC1023);
1308	er32(PRC1522);
1309	er32(PTC64);
1310	er32(PTC127);
1311	er32(PTC255);
1312	er32(PTC511);
1313	er32(PTC1023);
1314	er32(PTC1522);
1315
1316	er32(ALGNERRC);
1317	er32(RXERRC);
1318	er32(TNCRS);
1319	er32(CEXTERR);
1320	er32(TSCTC);
1321	er32(TSCTFC);
1322
1323	er32(MGTPRC);
1324	er32(MGTPDC);
1325	er32(MGTPTC);
1326
1327	er32(IAC);
1328	er32(ICRXOC);
1329
1330	er32(ICRXPTC);
1331	er32(ICRXATC);
1332	er32(ICTXPTC);
1333	er32(ICTXATC);
1334	er32(ICTXQEC);
1335	er32(ICTXQMTC);
1336	er32(ICRXDMTC);
1337}
1338
1339static const struct e1000_mac_operations es2_mac_ops = {
1340	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
1341	.id_led_init		= e1000e_id_led_init_generic,
1342	.blink_led		= e1000e_blink_led_generic,
1343	.check_mng_mode		= e1000e_check_mng_mode_generic,
1344	/* check_for_link dependent on media type */
1345	.cleanup_led		= e1000e_cleanup_led_generic,
1346	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
1347	.get_bus_info		= e1000e_get_bus_info_pcie,
1348	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1349	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
1350	.led_on			= e1000e_led_on_generic,
1351	.led_off		= e1000e_led_off_generic,
1352	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1353	.write_vfta		= e1000_write_vfta_generic,
1354	.clear_vfta		= e1000_clear_vfta_generic,
1355	.reset_hw		= e1000_reset_hw_80003es2lan,
1356	.init_hw		= e1000_init_hw_80003es2lan,
1357	.setup_link		= e1000e_setup_link_generic,
1358	/* setup_physical_interface dependent on media type */
1359	.setup_led		= e1000e_setup_led_generic,
1360	.config_collision_dist	= e1000e_config_collision_dist_generic,
1361	.rar_set		= e1000e_rar_set_generic,
1362	.rar_get_count		= e1000e_rar_get_count_generic,
1363};
1364
1365static const struct e1000_phy_operations es2_phy_ops = {
1366	.acquire		= e1000_acquire_phy_80003es2lan,
1367	.check_polarity		= e1000_check_polarity_m88,
1368	.check_reset_block	= e1000e_check_reset_block_generic,
1369	.commit			= e1000e_phy_sw_reset,
1370	.force_speed_duplex	= e1000_phy_force_speed_duplex_80003es2lan,
1371	.get_cfg_done		= e1000_get_cfg_done_80003es2lan,
1372	.get_cable_length	= e1000_get_cable_length_80003es2lan,
1373	.get_info		= e1000e_get_phy_info_m88,
1374	.read_reg		= e1000_read_phy_reg_gg82563_80003es2lan,
1375	.release		= e1000_release_phy_80003es2lan,
1376	.reset			= e1000e_phy_hw_reset_generic,
1377	.set_d0_lplu_state	= NULL,
1378	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1379	.write_reg		= e1000_write_phy_reg_gg82563_80003es2lan,
1380	.cfg_on_link_up		= e1000_cfg_on_link_up_80003es2lan,
1381};
1382
1383static const struct e1000_nvm_operations es2_nvm_ops = {
1384	.acquire		= e1000_acquire_nvm_80003es2lan,
1385	.read			= e1000e_read_nvm_eerd,
1386	.release		= e1000_release_nvm_80003es2lan,
1387	.reload			= e1000e_reload_nvm_generic,
1388	.update			= e1000e_update_nvm_checksum_generic,
1389	.valid_led_default	= e1000e_valid_led_default,
1390	.validate		= e1000e_validate_nvm_checksum_generic,
1391	.write			= e1000_write_nvm_80003es2lan,
1392};
1393
1394const struct e1000_info e1000_es2_info = {
1395	.mac			= e1000_80003es2lan,
1396	.flags			= FLAG_HAS_HW_VLAN_FILTER
1397				  | FLAG_HAS_JUMBO_FRAMES
1398				  | FLAG_HAS_WOL
1399				  | FLAG_APME_IN_CTRL3
1400				  | FLAG_HAS_CTRLEXT_ON_LOAD
1401				  | FLAG_RX_NEEDS_RESTART /* errata */
1402				  | FLAG_TARC_SET_BIT_ZERO /* errata */
1403				  | FLAG_APME_CHECK_PORT_B
1404				  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1405	.flags2			= FLAG2_DMA_BURST,
1406	.pba			= 38,
1407	.max_hw_frame_size	= DEFAULT_JUMBO,
1408	.get_variants		= e1000_get_variants_80003es2lan,
1409	.mac_ops		= &es2_mac_ops,
1410	.phy_ops		= &es2_phy_ops,
1411	.nvm_ops		= &es2_nvm_ops,
1412};