Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Broadcom GENET (Gigabit Ethernet) controller driver
4 *
5 * Copyright (c) 2014-2020 Broadcom
6 */
7
8#define pr_fmt(fmt) "bcmgenet: " fmt
9
10#include <linux/acpi.h>
11#include <linux/kernel.h>
12#include <linux/module.h>
13#include <linux/sched.h>
14#include <linux/types.h>
15#include <linux/fcntl.h>
16#include <linux/interrupt.h>
17#include <linux/string.h>
18#include <linux/if_ether.h>
19#include <linux/init.h>
20#include <linux/errno.h>
21#include <linux/delay.h>
22#include <linux/platform_device.h>
23#include <linux/dma-mapping.h>
24#include <linux/pm.h>
25#include <linux/clk.h>
26#include <net/arp.h>
27
28#include <linux/mii.h>
29#include <linux/ethtool.h>
30#include <linux/netdevice.h>
31#include <linux/inetdevice.h>
32#include <linux/etherdevice.h>
33#include <linux/skbuff.h>
34#include <linux/in.h>
35#include <linux/ip.h>
36#include <linux/ipv6.h>
37#include <linux/phy.h>
38#include <linux/platform_data/bcmgenet.h>
39
40#include <asm/unaligned.h>
41
42#include "bcmgenet.h"
43
44/* Maximum number of hardware queues, downsized if needed */
45#define GENET_MAX_MQ_CNT 4
46
47/* Default highest priority queue for multi queue support */
48#define GENET_Q0_PRIORITY 0
49
50#define GENET_Q16_RX_BD_CNT \
51 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52#define GENET_Q16_TX_BD_CNT \
53 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54
55#define RX_BUF_LENGTH 2048
56#define SKB_ALIGNMENT 32
57
58/* Tx/Rx DMA register offset, skip 256 descriptors */
59#define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
60#define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
61
62#define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
63 TOTAL_DESC * DMA_DESC_SIZE)
64
65#define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
66 TOTAL_DESC * DMA_DESC_SIZE)
67
68/* Forward declarations */
69static void bcmgenet_set_rx_mode(struct net_device *dev);
70
71static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72{
73 /* MIPS chips strapped for BE will automagically configure the
74 * peripheral registers for CPU-native byte order.
75 */
76 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77 __raw_writel(value, offset);
78 else
79 writel_relaxed(value, offset);
80}
81
82static inline u32 bcmgenet_readl(void __iomem *offset)
83{
84 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85 return __raw_readl(offset);
86 else
87 return readl_relaxed(offset);
88}
89
90static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91 void __iomem *d, u32 value)
92{
93 bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94}
95
96static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97 void __iomem *d,
98 dma_addr_t addr)
99{
100 bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101
102 /* Register writes to GISB bus can take couple hundred nanoseconds
103 * and are done for each packet, save these expensive writes unless
104 * the platform is explicitly configured for 64-bits/LPAE.
105 */
106#ifdef CONFIG_PHYS_ADDR_T_64BIT
107 if (priv->hw_params->flags & GENET_HAS_40BITS)
108 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109#endif
110}
111
112/* Combined address + length/status setter */
113static inline void dmadesc_set(struct bcmgenet_priv *priv,
114 void __iomem *d, dma_addr_t addr, u32 val)
115{
116 dmadesc_set_addr(priv, d, addr);
117 dmadesc_set_length_status(priv, d, val);
118}
119
120#define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
121
122#define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
123 NETIF_MSG_LINK)
124
125static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
126{
127 if (GENET_IS_V1(priv))
128 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
129 else
130 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
131}
132
133static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
134{
135 if (GENET_IS_V1(priv))
136 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
137 else
138 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
139}
140
141/* These macros are defined to deal with register map change
142 * between GENET1.1 and GENET2. Only those currently being used
143 * by driver are defined.
144 */
145static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
146{
147 if (GENET_IS_V1(priv))
148 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
149 else
150 return bcmgenet_readl(priv->base +
151 priv->hw_params->tbuf_offset + TBUF_CTRL);
152}
153
154static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
155{
156 if (GENET_IS_V1(priv))
157 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
158 else
159 bcmgenet_writel(val, priv->base +
160 priv->hw_params->tbuf_offset + TBUF_CTRL);
161}
162
163static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
164{
165 if (GENET_IS_V1(priv))
166 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
167 else
168 return bcmgenet_readl(priv->base +
169 priv->hw_params->tbuf_offset + TBUF_BP_MC);
170}
171
172static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
173{
174 if (GENET_IS_V1(priv))
175 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
176 else
177 bcmgenet_writel(val, priv->base +
178 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179}
180
181/* RX/TX DMA register accessors */
182enum dma_reg {
183 DMA_RING_CFG = 0,
184 DMA_CTRL,
185 DMA_STATUS,
186 DMA_SCB_BURST_SIZE,
187 DMA_ARB_CTRL,
188 DMA_PRIORITY_0,
189 DMA_PRIORITY_1,
190 DMA_PRIORITY_2,
191 DMA_INDEX2RING_0,
192 DMA_INDEX2RING_1,
193 DMA_INDEX2RING_2,
194 DMA_INDEX2RING_3,
195 DMA_INDEX2RING_4,
196 DMA_INDEX2RING_5,
197 DMA_INDEX2RING_6,
198 DMA_INDEX2RING_7,
199 DMA_RING0_TIMEOUT,
200 DMA_RING1_TIMEOUT,
201 DMA_RING2_TIMEOUT,
202 DMA_RING3_TIMEOUT,
203 DMA_RING4_TIMEOUT,
204 DMA_RING5_TIMEOUT,
205 DMA_RING6_TIMEOUT,
206 DMA_RING7_TIMEOUT,
207 DMA_RING8_TIMEOUT,
208 DMA_RING9_TIMEOUT,
209 DMA_RING10_TIMEOUT,
210 DMA_RING11_TIMEOUT,
211 DMA_RING12_TIMEOUT,
212 DMA_RING13_TIMEOUT,
213 DMA_RING14_TIMEOUT,
214 DMA_RING15_TIMEOUT,
215 DMA_RING16_TIMEOUT,
216};
217
218static const u8 bcmgenet_dma_regs_v3plus[] = {
219 [DMA_RING_CFG] = 0x00,
220 [DMA_CTRL] = 0x04,
221 [DMA_STATUS] = 0x08,
222 [DMA_SCB_BURST_SIZE] = 0x0C,
223 [DMA_ARB_CTRL] = 0x2C,
224 [DMA_PRIORITY_0] = 0x30,
225 [DMA_PRIORITY_1] = 0x34,
226 [DMA_PRIORITY_2] = 0x38,
227 [DMA_RING0_TIMEOUT] = 0x2C,
228 [DMA_RING1_TIMEOUT] = 0x30,
229 [DMA_RING2_TIMEOUT] = 0x34,
230 [DMA_RING3_TIMEOUT] = 0x38,
231 [DMA_RING4_TIMEOUT] = 0x3c,
232 [DMA_RING5_TIMEOUT] = 0x40,
233 [DMA_RING6_TIMEOUT] = 0x44,
234 [DMA_RING7_TIMEOUT] = 0x48,
235 [DMA_RING8_TIMEOUT] = 0x4c,
236 [DMA_RING9_TIMEOUT] = 0x50,
237 [DMA_RING10_TIMEOUT] = 0x54,
238 [DMA_RING11_TIMEOUT] = 0x58,
239 [DMA_RING12_TIMEOUT] = 0x5c,
240 [DMA_RING13_TIMEOUT] = 0x60,
241 [DMA_RING14_TIMEOUT] = 0x64,
242 [DMA_RING15_TIMEOUT] = 0x68,
243 [DMA_RING16_TIMEOUT] = 0x6C,
244 [DMA_INDEX2RING_0] = 0x70,
245 [DMA_INDEX2RING_1] = 0x74,
246 [DMA_INDEX2RING_2] = 0x78,
247 [DMA_INDEX2RING_3] = 0x7C,
248 [DMA_INDEX2RING_4] = 0x80,
249 [DMA_INDEX2RING_5] = 0x84,
250 [DMA_INDEX2RING_6] = 0x88,
251 [DMA_INDEX2RING_7] = 0x8C,
252};
253
254static const u8 bcmgenet_dma_regs_v2[] = {
255 [DMA_RING_CFG] = 0x00,
256 [DMA_CTRL] = 0x04,
257 [DMA_STATUS] = 0x08,
258 [DMA_SCB_BURST_SIZE] = 0x0C,
259 [DMA_ARB_CTRL] = 0x30,
260 [DMA_PRIORITY_0] = 0x34,
261 [DMA_PRIORITY_1] = 0x38,
262 [DMA_PRIORITY_2] = 0x3C,
263 [DMA_RING0_TIMEOUT] = 0x2C,
264 [DMA_RING1_TIMEOUT] = 0x30,
265 [DMA_RING2_TIMEOUT] = 0x34,
266 [DMA_RING3_TIMEOUT] = 0x38,
267 [DMA_RING4_TIMEOUT] = 0x3c,
268 [DMA_RING5_TIMEOUT] = 0x40,
269 [DMA_RING6_TIMEOUT] = 0x44,
270 [DMA_RING7_TIMEOUT] = 0x48,
271 [DMA_RING8_TIMEOUT] = 0x4c,
272 [DMA_RING9_TIMEOUT] = 0x50,
273 [DMA_RING10_TIMEOUT] = 0x54,
274 [DMA_RING11_TIMEOUT] = 0x58,
275 [DMA_RING12_TIMEOUT] = 0x5c,
276 [DMA_RING13_TIMEOUT] = 0x60,
277 [DMA_RING14_TIMEOUT] = 0x64,
278 [DMA_RING15_TIMEOUT] = 0x68,
279 [DMA_RING16_TIMEOUT] = 0x6C,
280};
281
282static const u8 bcmgenet_dma_regs_v1[] = {
283 [DMA_CTRL] = 0x00,
284 [DMA_STATUS] = 0x04,
285 [DMA_SCB_BURST_SIZE] = 0x0C,
286 [DMA_ARB_CTRL] = 0x30,
287 [DMA_PRIORITY_0] = 0x34,
288 [DMA_PRIORITY_1] = 0x38,
289 [DMA_PRIORITY_2] = 0x3C,
290 [DMA_RING0_TIMEOUT] = 0x2C,
291 [DMA_RING1_TIMEOUT] = 0x30,
292 [DMA_RING2_TIMEOUT] = 0x34,
293 [DMA_RING3_TIMEOUT] = 0x38,
294 [DMA_RING4_TIMEOUT] = 0x3c,
295 [DMA_RING5_TIMEOUT] = 0x40,
296 [DMA_RING6_TIMEOUT] = 0x44,
297 [DMA_RING7_TIMEOUT] = 0x48,
298 [DMA_RING8_TIMEOUT] = 0x4c,
299 [DMA_RING9_TIMEOUT] = 0x50,
300 [DMA_RING10_TIMEOUT] = 0x54,
301 [DMA_RING11_TIMEOUT] = 0x58,
302 [DMA_RING12_TIMEOUT] = 0x5c,
303 [DMA_RING13_TIMEOUT] = 0x60,
304 [DMA_RING14_TIMEOUT] = 0x64,
305 [DMA_RING15_TIMEOUT] = 0x68,
306 [DMA_RING16_TIMEOUT] = 0x6C,
307};
308
309/* Set at runtime once bcmgenet version is known */
310static const u8 *bcmgenet_dma_regs;
311
312static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
313{
314 return netdev_priv(dev_get_drvdata(dev));
315}
316
317static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
318 enum dma_reg r)
319{
320 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
321 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
322}
323
324static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
325 u32 val, enum dma_reg r)
326{
327 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
328 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
329}
330
331static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
332 enum dma_reg r)
333{
334 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
335 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
336}
337
338static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
339 u32 val, enum dma_reg r)
340{
341 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
342 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
343}
344
345/* RDMA/TDMA ring registers and accessors
346 * we merge the common fields and just prefix with T/D the registers
347 * having different meaning depending on the direction
348 */
349enum dma_ring_reg {
350 TDMA_READ_PTR = 0,
351 RDMA_WRITE_PTR = TDMA_READ_PTR,
352 TDMA_READ_PTR_HI,
353 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
354 TDMA_CONS_INDEX,
355 RDMA_PROD_INDEX = TDMA_CONS_INDEX,
356 TDMA_PROD_INDEX,
357 RDMA_CONS_INDEX = TDMA_PROD_INDEX,
358 DMA_RING_BUF_SIZE,
359 DMA_START_ADDR,
360 DMA_START_ADDR_HI,
361 DMA_END_ADDR,
362 DMA_END_ADDR_HI,
363 DMA_MBUF_DONE_THRESH,
364 TDMA_FLOW_PERIOD,
365 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
366 TDMA_WRITE_PTR,
367 RDMA_READ_PTR = TDMA_WRITE_PTR,
368 TDMA_WRITE_PTR_HI,
369 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
370};
371
372/* GENET v4 supports 40-bits pointer addressing
373 * for obvious reasons the LO and HI word parts
374 * are contiguous, but this offsets the other
375 * registers.
376 */
377static const u8 genet_dma_ring_regs_v4[] = {
378 [TDMA_READ_PTR] = 0x00,
379 [TDMA_READ_PTR_HI] = 0x04,
380 [TDMA_CONS_INDEX] = 0x08,
381 [TDMA_PROD_INDEX] = 0x0C,
382 [DMA_RING_BUF_SIZE] = 0x10,
383 [DMA_START_ADDR] = 0x14,
384 [DMA_START_ADDR_HI] = 0x18,
385 [DMA_END_ADDR] = 0x1C,
386 [DMA_END_ADDR_HI] = 0x20,
387 [DMA_MBUF_DONE_THRESH] = 0x24,
388 [TDMA_FLOW_PERIOD] = 0x28,
389 [TDMA_WRITE_PTR] = 0x2C,
390 [TDMA_WRITE_PTR_HI] = 0x30,
391};
392
393static const u8 genet_dma_ring_regs_v123[] = {
394 [TDMA_READ_PTR] = 0x00,
395 [TDMA_CONS_INDEX] = 0x04,
396 [TDMA_PROD_INDEX] = 0x08,
397 [DMA_RING_BUF_SIZE] = 0x0C,
398 [DMA_START_ADDR] = 0x10,
399 [DMA_END_ADDR] = 0x14,
400 [DMA_MBUF_DONE_THRESH] = 0x18,
401 [TDMA_FLOW_PERIOD] = 0x1C,
402 [TDMA_WRITE_PTR] = 0x20,
403};
404
405/* Set at runtime once GENET version is known */
406static const u8 *genet_dma_ring_regs;
407
408static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
409 unsigned int ring,
410 enum dma_ring_reg r)
411{
412 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
413 (DMA_RING_SIZE * ring) +
414 genet_dma_ring_regs[r]);
415}
416
417static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
418 unsigned int ring, u32 val,
419 enum dma_ring_reg r)
420{
421 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
422 (DMA_RING_SIZE * ring) +
423 genet_dma_ring_regs[r]);
424}
425
426static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
427 unsigned int ring,
428 enum dma_ring_reg r)
429{
430 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
431 (DMA_RING_SIZE * ring) +
432 genet_dma_ring_regs[r]);
433}
434
435static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
436 unsigned int ring, u32 val,
437 enum dma_ring_reg r)
438{
439 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
440 (DMA_RING_SIZE * ring) +
441 genet_dma_ring_regs[r]);
442}
443
444static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
445{
446 u32 offset;
447 u32 reg;
448
449 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
450 reg = bcmgenet_hfb_reg_readl(priv, offset);
451 reg |= (1 << (f_index % 32));
452 bcmgenet_hfb_reg_writel(priv, reg, offset);
453 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
454 reg |= RBUF_HFB_EN;
455 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
456}
457
458static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
459{
460 u32 offset, reg, reg1;
461
462 offset = HFB_FLT_ENABLE_V3PLUS;
463 reg = bcmgenet_hfb_reg_readl(priv, offset);
464 reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
465 if (f_index < 32) {
466 reg1 &= ~(1 << (f_index % 32));
467 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
468 } else {
469 reg &= ~(1 << (f_index % 32));
470 bcmgenet_hfb_reg_writel(priv, reg, offset);
471 }
472 if (!reg && !reg1) {
473 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
474 reg &= ~RBUF_HFB_EN;
475 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
476 }
477}
478
479static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
480 u32 f_index, u32 rx_queue)
481{
482 u32 offset;
483 u32 reg;
484
485 offset = f_index / 8;
486 reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
487 reg &= ~(0xF << (4 * (f_index % 8)));
488 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
489 bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
490}
491
492static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
493 u32 f_index, u32 f_length)
494{
495 u32 offset;
496 u32 reg;
497
498 offset = HFB_FLT_LEN_V3PLUS +
499 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
500 sizeof(u32);
501 reg = bcmgenet_hfb_reg_readl(priv, offset);
502 reg &= ~(0xFF << (8 * (f_index % 4)));
503 reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
504 bcmgenet_hfb_reg_writel(priv, reg, offset);
505}
506
507static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
508{
509 while (size) {
510 switch (*(unsigned char *)mask++) {
511 case 0x00:
512 case 0x0f:
513 case 0xf0:
514 case 0xff:
515 size--;
516 continue;
517 default:
518 return -EINVAL;
519 }
520 }
521
522 return 0;
523}
524
525#define VALIDATE_MASK(x) \
526 bcmgenet_hfb_validate_mask(&(x), sizeof(x))
527
528static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
529 u32 offset, void *val, void *mask,
530 size_t size)
531{
532 u32 index, tmp;
533
534 index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
535 tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
536
537 while (size--) {
538 if (offset++ & 1) {
539 tmp &= ~0x300FF;
540 tmp |= (*(unsigned char *)val++);
541 switch ((*(unsigned char *)mask++)) {
542 case 0xFF:
543 tmp |= 0x30000;
544 break;
545 case 0xF0:
546 tmp |= 0x20000;
547 break;
548 case 0x0F:
549 tmp |= 0x10000;
550 break;
551 }
552 bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
553 if (size)
554 tmp = bcmgenet_hfb_readl(priv,
555 index * sizeof(u32));
556 } else {
557 tmp &= ~0xCFF00;
558 tmp |= (*(unsigned char *)val++) << 8;
559 switch ((*(unsigned char *)mask++)) {
560 case 0xFF:
561 tmp |= 0xC0000;
562 break;
563 case 0xF0:
564 tmp |= 0x80000;
565 break;
566 case 0x0F:
567 tmp |= 0x40000;
568 break;
569 }
570 if (!size)
571 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
572 }
573 }
574
575 return 0;
576}
577
578static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
579 struct bcmgenet_rxnfc_rule *rule)
580{
581 struct ethtool_rx_flow_spec *fs = &rule->fs;
582 u32 offset = 0, f_length = 0, f;
583 u8 val_8, mask_8;
584 __be16 val_16;
585 u16 mask_16;
586 size_t size;
587
588 f = fs->location;
589 if (fs->flow_type & FLOW_MAC_EXT) {
590 bcmgenet_hfb_insert_data(priv, f, 0,
591 &fs->h_ext.h_dest, &fs->m_ext.h_dest,
592 sizeof(fs->h_ext.h_dest));
593 }
594
595 if (fs->flow_type & FLOW_EXT) {
596 if (fs->m_ext.vlan_etype ||
597 fs->m_ext.vlan_tci) {
598 bcmgenet_hfb_insert_data(priv, f, 12,
599 &fs->h_ext.vlan_etype,
600 &fs->m_ext.vlan_etype,
601 sizeof(fs->h_ext.vlan_etype));
602 bcmgenet_hfb_insert_data(priv, f, 14,
603 &fs->h_ext.vlan_tci,
604 &fs->m_ext.vlan_tci,
605 sizeof(fs->h_ext.vlan_tci));
606 offset += VLAN_HLEN;
607 f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
608 }
609 }
610
611 switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
612 case ETHER_FLOW:
613 f_length += DIV_ROUND_UP(ETH_HLEN, 2);
614 bcmgenet_hfb_insert_data(priv, f, 0,
615 &fs->h_u.ether_spec.h_dest,
616 &fs->m_u.ether_spec.h_dest,
617 sizeof(fs->h_u.ether_spec.h_dest));
618 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
619 &fs->h_u.ether_spec.h_source,
620 &fs->m_u.ether_spec.h_source,
621 sizeof(fs->h_u.ether_spec.h_source));
622 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
623 &fs->h_u.ether_spec.h_proto,
624 &fs->m_u.ether_spec.h_proto,
625 sizeof(fs->h_u.ether_spec.h_proto));
626 break;
627 case IP_USER_FLOW:
628 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
629 /* Specify IP Ether Type */
630 val_16 = htons(ETH_P_IP);
631 mask_16 = 0xFFFF;
632 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
633 &val_16, &mask_16, sizeof(val_16));
634 bcmgenet_hfb_insert_data(priv, f, 15 + offset,
635 &fs->h_u.usr_ip4_spec.tos,
636 &fs->m_u.usr_ip4_spec.tos,
637 sizeof(fs->h_u.usr_ip4_spec.tos));
638 bcmgenet_hfb_insert_data(priv, f, 23 + offset,
639 &fs->h_u.usr_ip4_spec.proto,
640 &fs->m_u.usr_ip4_spec.proto,
641 sizeof(fs->h_u.usr_ip4_spec.proto));
642 bcmgenet_hfb_insert_data(priv, f, 26 + offset,
643 &fs->h_u.usr_ip4_spec.ip4src,
644 &fs->m_u.usr_ip4_spec.ip4src,
645 sizeof(fs->h_u.usr_ip4_spec.ip4src));
646 bcmgenet_hfb_insert_data(priv, f, 30 + offset,
647 &fs->h_u.usr_ip4_spec.ip4dst,
648 &fs->m_u.usr_ip4_spec.ip4dst,
649 sizeof(fs->h_u.usr_ip4_spec.ip4dst));
650 if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
651 break;
652
653 /* Only supports 20 byte IPv4 header */
654 val_8 = 0x45;
655 mask_8 = 0xFF;
656 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
657 &val_8, &mask_8,
658 sizeof(val_8));
659 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
660 bcmgenet_hfb_insert_data(priv, f,
661 ETH_HLEN + 20 + offset,
662 &fs->h_u.usr_ip4_spec.l4_4_bytes,
663 &fs->m_u.usr_ip4_spec.l4_4_bytes,
664 size);
665 f_length += DIV_ROUND_UP(size, 2);
666 break;
667 }
668
669 bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
670 if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
671 /* Ring 0 flows can be handled by the default Descriptor Ring
672 * We'll map them to ring 0, but don't enable the filter
673 */
674 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
675 rule->state = BCMGENET_RXNFC_STATE_DISABLED;
676 } else {
677 /* Other Rx rings are direct mapped here */
678 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
679 fs->ring_cookie);
680 bcmgenet_hfb_enable_filter(priv, f);
681 rule->state = BCMGENET_RXNFC_STATE_ENABLED;
682 }
683}
684
685/* bcmgenet_hfb_clear
686 *
687 * Clear Hardware Filter Block and disable all filtering.
688 */
689static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
690{
691 u32 base, i;
692
693 base = f_index * priv->hw_params->hfb_filter_size;
694 for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
695 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
696}
697
698static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
699{
700 u32 i;
701
702 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
703 return;
704
705 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
706 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
707 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
708
709 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
710 bcmgenet_rdma_writel(priv, 0x0, i);
711
712 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
713 bcmgenet_hfb_reg_writel(priv, 0x0,
714 HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
715
716 for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
717 bcmgenet_hfb_clear_filter(priv, i);
718}
719
720static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
721{
722 int i;
723
724 INIT_LIST_HEAD(&priv->rxnfc_list);
725 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
726 return;
727
728 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
729 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
730 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
731 }
732
733 bcmgenet_hfb_clear(priv);
734}
735
736static int bcmgenet_begin(struct net_device *dev)
737{
738 struct bcmgenet_priv *priv = netdev_priv(dev);
739
740 /* Turn on the clock */
741 return clk_prepare_enable(priv->clk);
742}
743
744static void bcmgenet_complete(struct net_device *dev)
745{
746 struct bcmgenet_priv *priv = netdev_priv(dev);
747
748 /* Turn off the clock */
749 clk_disable_unprepare(priv->clk);
750}
751
752static int bcmgenet_get_link_ksettings(struct net_device *dev,
753 struct ethtool_link_ksettings *cmd)
754{
755 if (!netif_running(dev))
756 return -EINVAL;
757
758 if (!dev->phydev)
759 return -ENODEV;
760
761 phy_ethtool_ksettings_get(dev->phydev, cmd);
762
763 return 0;
764}
765
766static int bcmgenet_set_link_ksettings(struct net_device *dev,
767 const struct ethtool_link_ksettings *cmd)
768{
769 if (!netif_running(dev))
770 return -EINVAL;
771
772 if (!dev->phydev)
773 return -ENODEV;
774
775 return phy_ethtool_ksettings_set(dev->phydev, cmd);
776}
777
778static int bcmgenet_set_features(struct net_device *dev,
779 netdev_features_t features)
780{
781 struct bcmgenet_priv *priv = netdev_priv(dev);
782 u32 reg;
783 int ret;
784
785 ret = clk_prepare_enable(priv->clk);
786 if (ret)
787 return ret;
788
789 /* Make sure we reflect the value of CRC_CMD_FWD */
790 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
791 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
792
793 clk_disable_unprepare(priv->clk);
794
795 return ret;
796}
797
798static u32 bcmgenet_get_msglevel(struct net_device *dev)
799{
800 struct bcmgenet_priv *priv = netdev_priv(dev);
801
802 return priv->msg_enable;
803}
804
805static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
806{
807 struct bcmgenet_priv *priv = netdev_priv(dev);
808
809 priv->msg_enable = level;
810}
811
812static int bcmgenet_get_coalesce(struct net_device *dev,
813 struct ethtool_coalesce *ec,
814 struct kernel_ethtool_coalesce *kernel_coal,
815 struct netlink_ext_ack *extack)
816{
817 struct bcmgenet_priv *priv = netdev_priv(dev);
818 struct bcmgenet_rx_ring *ring;
819 unsigned int i;
820
821 ec->tx_max_coalesced_frames =
822 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
823 DMA_MBUF_DONE_THRESH);
824 ec->rx_max_coalesced_frames =
825 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
826 DMA_MBUF_DONE_THRESH);
827 ec->rx_coalesce_usecs =
828 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
829
830 for (i = 0; i < priv->hw_params->rx_queues; i++) {
831 ring = &priv->rx_rings[i];
832 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
833 }
834 ring = &priv->rx_rings[DESC_INDEX];
835 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
836
837 return 0;
838}
839
840static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
841 u32 usecs, u32 pkts)
842{
843 struct bcmgenet_priv *priv = ring->priv;
844 unsigned int i = ring->index;
845 u32 reg;
846
847 bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
848
849 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
850 reg &= ~DMA_TIMEOUT_MASK;
851 reg |= DIV_ROUND_UP(usecs * 1000, 8192);
852 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
853}
854
855static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
856 struct ethtool_coalesce *ec)
857{
858 struct dim_cq_moder moder;
859 u32 usecs, pkts;
860
861 ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
862 ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
863 usecs = ring->rx_coalesce_usecs;
864 pkts = ring->rx_max_coalesced_frames;
865
866 if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
867 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
868 usecs = moder.usec;
869 pkts = moder.pkts;
870 }
871
872 ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
873 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
874}
875
876static int bcmgenet_set_coalesce(struct net_device *dev,
877 struct ethtool_coalesce *ec,
878 struct kernel_ethtool_coalesce *kernel_coal,
879 struct netlink_ext_ack *extack)
880{
881 struct bcmgenet_priv *priv = netdev_priv(dev);
882 unsigned int i;
883
884 /* Base system clock is 125Mhz, DMA timeout is this reference clock
885 * divided by 1024, which yields roughly 8.192us, our maximum value
886 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
887 */
888 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
889 ec->tx_max_coalesced_frames == 0 ||
890 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
891 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
892 return -EINVAL;
893
894 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
895 return -EINVAL;
896
897 /* GENET TDMA hardware does not support a configurable timeout, but will
898 * always generate an interrupt either after MBDONE packets have been
899 * transmitted, or when the ring is empty.
900 */
901
902 /* Program all TX queues with the same values, as there is no
903 * ethtool knob to do coalescing on a per-queue basis
904 */
905 for (i = 0; i < priv->hw_params->tx_queues; i++)
906 bcmgenet_tdma_ring_writel(priv, i,
907 ec->tx_max_coalesced_frames,
908 DMA_MBUF_DONE_THRESH);
909 bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
910 ec->tx_max_coalesced_frames,
911 DMA_MBUF_DONE_THRESH);
912
913 for (i = 0; i < priv->hw_params->rx_queues; i++)
914 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
915 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
916
917 return 0;
918}
919
920static void bcmgenet_get_pauseparam(struct net_device *dev,
921 struct ethtool_pauseparam *epause)
922{
923 struct bcmgenet_priv *priv;
924 u32 umac_cmd;
925
926 priv = netdev_priv(dev);
927
928 epause->autoneg = priv->autoneg_pause;
929
930 if (netif_carrier_ok(dev)) {
931 /* report active state when link is up */
932 umac_cmd = bcmgenet_umac_readl(priv, UMAC_CMD);
933 epause->tx_pause = !(umac_cmd & CMD_TX_PAUSE_IGNORE);
934 epause->rx_pause = !(umac_cmd & CMD_RX_PAUSE_IGNORE);
935 } else {
936 /* otherwise report stored settings */
937 epause->tx_pause = priv->tx_pause;
938 epause->rx_pause = priv->rx_pause;
939 }
940}
941
942static int bcmgenet_set_pauseparam(struct net_device *dev,
943 struct ethtool_pauseparam *epause)
944{
945 struct bcmgenet_priv *priv = netdev_priv(dev);
946
947 if (!dev->phydev)
948 return -ENODEV;
949
950 if (!phy_validate_pause(dev->phydev, epause))
951 return -EINVAL;
952
953 priv->autoneg_pause = !!epause->autoneg;
954 priv->tx_pause = !!epause->tx_pause;
955 priv->rx_pause = !!epause->rx_pause;
956
957 bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
958
959 return 0;
960}
961
962/* standard ethtool support functions. */
963enum bcmgenet_stat_type {
964 BCMGENET_STAT_NETDEV = -1,
965 BCMGENET_STAT_MIB_RX,
966 BCMGENET_STAT_MIB_TX,
967 BCMGENET_STAT_RUNT,
968 BCMGENET_STAT_MISC,
969 BCMGENET_STAT_SOFT,
970};
971
972struct bcmgenet_stats {
973 char stat_string[ETH_GSTRING_LEN];
974 int stat_sizeof;
975 int stat_offset;
976 enum bcmgenet_stat_type type;
977 /* reg offset from UMAC base for misc counters */
978 u16 reg_offset;
979};
980
981#define STAT_NETDEV(m) { \
982 .stat_string = __stringify(m), \
983 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
984 .stat_offset = offsetof(struct net_device_stats, m), \
985 .type = BCMGENET_STAT_NETDEV, \
986}
987
988#define STAT_GENET_MIB(str, m, _type) { \
989 .stat_string = str, \
990 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
991 .stat_offset = offsetof(struct bcmgenet_priv, m), \
992 .type = _type, \
993}
994
995#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
996#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
997#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
998#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
999
1000#define STAT_GENET_MISC(str, m, offset) { \
1001 .stat_string = str, \
1002 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1003 .stat_offset = offsetof(struct bcmgenet_priv, m), \
1004 .type = BCMGENET_STAT_MISC, \
1005 .reg_offset = offset, \
1006}
1007
1008#define STAT_GENET_Q(num) \
1009 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
1010 tx_rings[num].packets), \
1011 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
1012 tx_rings[num].bytes), \
1013 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
1014 rx_rings[num].bytes), \
1015 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
1016 rx_rings[num].packets), \
1017 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
1018 rx_rings[num].errors), \
1019 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
1020 rx_rings[num].dropped)
1021
1022/* There is a 0xC gap between the end of RX and beginning of TX stats and then
1023 * between the end of TX stats and the beginning of the RX RUNT
1024 */
1025#define BCMGENET_STAT_OFFSET 0xc
1026
1027/* Hardware counters must be kept in sync because the order/offset
1028 * is important here (order in structure declaration = order in hardware)
1029 */
1030static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1031 /* general stats */
1032 STAT_NETDEV(rx_packets),
1033 STAT_NETDEV(tx_packets),
1034 STAT_NETDEV(rx_bytes),
1035 STAT_NETDEV(tx_bytes),
1036 STAT_NETDEV(rx_errors),
1037 STAT_NETDEV(tx_errors),
1038 STAT_NETDEV(rx_dropped),
1039 STAT_NETDEV(tx_dropped),
1040 STAT_NETDEV(multicast),
1041 /* UniMAC RSV counters */
1042 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1043 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1044 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1045 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1046 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1047 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1048 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1049 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1050 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1051 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1052 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1053 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1054 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1055 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1056 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1057 STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1058 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1059 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1060 STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1061 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1062 STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1063 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1064 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1065 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1066 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1067 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1068 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1069 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1070 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1071 /* UniMAC TSV counters */
1072 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1073 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1074 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1075 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1076 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1077 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1078 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1079 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1080 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1081 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1082 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1083 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1084 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1085 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1086 STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1087 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1088 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1089 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1090 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1091 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1092 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1093 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1094 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1095 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1096 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1097 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1098 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1099 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1100 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1101 /* UniMAC RUNT counters */
1102 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1103 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1104 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1105 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1106 /* Misc UniMAC counters */
1107 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1108 UMAC_RBUF_OVFL_CNT_V1),
1109 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1110 UMAC_RBUF_ERR_CNT_V1),
1111 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1112 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1113 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1114 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1115 STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1116 STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1117 mib.tx_realloc_tsb_failed),
1118 /* Per TX queues */
1119 STAT_GENET_Q(0),
1120 STAT_GENET_Q(1),
1121 STAT_GENET_Q(2),
1122 STAT_GENET_Q(3),
1123 STAT_GENET_Q(16),
1124};
1125
1126#define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
1127
1128static void bcmgenet_get_drvinfo(struct net_device *dev,
1129 struct ethtool_drvinfo *info)
1130{
1131 strscpy(info->driver, "bcmgenet", sizeof(info->driver));
1132}
1133
1134static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1135{
1136 switch (string_set) {
1137 case ETH_SS_STATS:
1138 return BCMGENET_STATS_LEN;
1139 default:
1140 return -EOPNOTSUPP;
1141 }
1142}
1143
1144static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1145 u8 *data)
1146{
1147 int i;
1148
1149 switch (stringset) {
1150 case ETH_SS_STATS:
1151 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1152 memcpy(data + i * ETH_GSTRING_LEN,
1153 bcmgenet_gstrings_stats[i].stat_string,
1154 ETH_GSTRING_LEN);
1155 }
1156 break;
1157 }
1158}
1159
1160static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1161{
1162 u16 new_offset;
1163 u32 val;
1164
1165 switch (offset) {
1166 case UMAC_RBUF_OVFL_CNT_V1:
1167 if (GENET_IS_V2(priv))
1168 new_offset = RBUF_OVFL_CNT_V2;
1169 else
1170 new_offset = RBUF_OVFL_CNT_V3PLUS;
1171
1172 val = bcmgenet_rbuf_readl(priv, new_offset);
1173 /* clear if overflowed */
1174 if (val == ~0)
1175 bcmgenet_rbuf_writel(priv, 0, new_offset);
1176 break;
1177 case UMAC_RBUF_ERR_CNT_V1:
1178 if (GENET_IS_V2(priv))
1179 new_offset = RBUF_ERR_CNT_V2;
1180 else
1181 new_offset = RBUF_ERR_CNT_V3PLUS;
1182
1183 val = bcmgenet_rbuf_readl(priv, new_offset);
1184 /* clear if overflowed */
1185 if (val == ~0)
1186 bcmgenet_rbuf_writel(priv, 0, new_offset);
1187 break;
1188 default:
1189 val = bcmgenet_umac_readl(priv, offset);
1190 /* clear if overflowed */
1191 if (val == ~0)
1192 bcmgenet_umac_writel(priv, 0, offset);
1193 break;
1194 }
1195
1196 return val;
1197}
1198
1199static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1200{
1201 int i, j = 0;
1202
1203 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1204 const struct bcmgenet_stats *s;
1205 u8 offset = 0;
1206 u32 val = 0;
1207 char *p;
1208
1209 s = &bcmgenet_gstrings_stats[i];
1210 switch (s->type) {
1211 case BCMGENET_STAT_NETDEV:
1212 case BCMGENET_STAT_SOFT:
1213 continue;
1214 case BCMGENET_STAT_RUNT:
1215 offset += BCMGENET_STAT_OFFSET;
1216 fallthrough;
1217 case BCMGENET_STAT_MIB_TX:
1218 offset += BCMGENET_STAT_OFFSET;
1219 fallthrough;
1220 case BCMGENET_STAT_MIB_RX:
1221 val = bcmgenet_umac_readl(priv,
1222 UMAC_MIB_START + j + offset);
1223 offset = 0; /* Reset Offset */
1224 break;
1225 case BCMGENET_STAT_MISC:
1226 if (GENET_IS_V1(priv)) {
1227 val = bcmgenet_umac_readl(priv, s->reg_offset);
1228 /* clear if overflowed */
1229 if (val == ~0)
1230 bcmgenet_umac_writel(priv, 0,
1231 s->reg_offset);
1232 } else {
1233 val = bcmgenet_update_stat_misc(priv,
1234 s->reg_offset);
1235 }
1236 break;
1237 }
1238
1239 j += s->stat_sizeof;
1240 p = (char *)priv + s->stat_offset;
1241 *(u32 *)p = val;
1242 }
1243}
1244
1245static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1246 struct ethtool_stats *stats,
1247 u64 *data)
1248{
1249 struct bcmgenet_priv *priv = netdev_priv(dev);
1250 int i;
1251
1252 if (netif_running(dev))
1253 bcmgenet_update_mib_counters(priv);
1254
1255 dev->netdev_ops->ndo_get_stats(dev);
1256
1257 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1258 const struct bcmgenet_stats *s;
1259 char *p;
1260
1261 s = &bcmgenet_gstrings_stats[i];
1262 if (s->type == BCMGENET_STAT_NETDEV)
1263 p = (char *)&dev->stats;
1264 else
1265 p = (char *)priv;
1266 p += s->stat_offset;
1267 if (sizeof(unsigned long) != sizeof(u32) &&
1268 s->stat_sizeof == sizeof(unsigned long))
1269 data[i] = *(unsigned long *)p;
1270 else
1271 data[i] = *(u32 *)p;
1272 }
1273}
1274
1275void bcmgenet_eee_enable_set(struct net_device *dev, bool enable,
1276 bool tx_lpi_enabled)
1277{
1278 struct bcmgenet_priv *priv = netdev_priv(dev);
1279 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1280 u32 reg;
1281
1282 if (enable && !priv->clk_eee_enabled) {
1283 clk_prepare_enable(priv->clk_eee);
1284 priv->clk_eee_enabled = true;
1285 }
1286
1287 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1288 if (enable)
1289 reg |= EEE_EN;
1290 else
1291 reg &= ~EEE_EN;
1292 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1293
1294 /* Enable EEE and switch to a 27Mhz clock automatically */
1295 reg = bcmgenet_readl(priv->base + off);
1296 if (tx_lpi_enabled)
1297 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1298 else
1299 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1300 bcmgenet_writel(reg, priv->base + off);
1301
1302 /* Do the same for thing for RBUF */
1303 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1304 if (enable)
1305 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1306 else
1307 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1308 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1309
1310 if (!enable && priv->clk_eee_enabled) {
1311 clk_disable_unprepare(priv->clk_eee);
1312 priv->clk_eee_enabled = false;
1313 }
1314
1315 priv->eee.eee_enabled = enable;
1316 priv->eee.eee_active = enable;
1317 priv->eee.tx_lpi_enabled = tx_lpi_enabled;
1318}
1319
1320static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1321{
1322 struct bcmgenet_priv *priv = netdev_priv(dev);
1323 struct ethtool_eee *p = &priv->eee;
1324
1325 if (GENET_IS_V1(priv))
1326 return -EOPNOTSUPP;
1327
1328 if (!dev->phydev)
1329 return -ENODEV;
1330
1331 e->eee_enabled = p->eee_enabled;
1332 e->eee_active = p->eee_active;
1333 e->tx_lpi_enabled = p->tx_lpi_enabled;
1334 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1335
1336 return phy_ethtool_get_eee(dev->phydev, e);
1337}
1338
1339static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1340{
1341 struct bcmgenet_priv *priv = netdev_priv(dev);
1342 struct ethtool_eee *p = &priv->eee;
1343
1344 if (GENET_IS_V1(priv))
1345 return -EOPNOTSUPP;
1346
1347 if (!dev->phydev)
1348 return -ENODEV;
1349
1350 p->eee_enabled = e->eee_enabled;
1351
1352 if (!p->eee_enabled) {
1353 bcmgenet_eee_enable_set(dev, false, false);
1354 } else {
1355 p->eee_active = phy_init_eee(dev->phydev, false) >= 0;
1356 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1357 bcmgenet_eee_enable_set(dev, p->eee_active, e->tx_lpi_enabled);
1358 }
1359
1360 return phy_ethtool_set_eee(dev->phydev, e);
1361}
1362
1363static int bcmgenet_validate_flow(struct net_device *dev,
1364 struct ethtool_rxnfc *cmd)
1365{
1366 struct ethtool_usrip4_spec *l4_mask;
1367 struct ethhdr *eth_mask;
1368
1369 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES &&
1370 cmd->fs.location != RX_CLS_LOC_ANY) {
1371 netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1372 cmd->fs.location);
1373 return -EINVAL;
1374 }
1375
1376 switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1377 case IP_USER_FLOW:
1378 l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1379 /* don't allow mask which isn't valid */
1380 if (VALIDATE_MASK(l4_mask->ip4src) ||
1381 VALIDATE_MASK(l4_mask->ip4dst) ||
1382 VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1383 VALIDATE_MASK(l4_mask->proto) ||
1384 VALIDATE_MASK(l4_mask->ip_ver) ||
1385 VALIDATE_MASK(l4_mask->tos)) {
1386 netdev_err(dev, "rxnfc: Unsupported mask\n");
1387 return -EINVAL;
1388 }
1389 break;
1390 case ETHER_FLOW:
1391 eth_mask = &cmd->fs.m_u.ether_spec;
1392 /* don't allow mask which isn't valid */
1393 if (VALIDATE_MASK(eth_mask->h_dest) ||
1394 VALIDATE_MASK(eth_mask->h_source) ||
1395 VALIDATE_MASK(eth_mask->h_proto)) {
1396 netdev_err(dev, "rxnfc: Unsupported mask\n");
1397 return -EINVAL;
1398 }
1399 break;
1400 default:
1401 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1402 cmd->fs.flow_type);
1403 return -EINVAL;
1404 }
1405
1406 if ((cmd->fs.flow_type & FLOW_EXT)) {
1407 /* don't allow mask which isn't valid */
1408 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1409 VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1410 netdev_err(dev, "rxnfc: Unsupported mask\n");
1411 return -EINVAL;
1412 }
1413 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1414 netdev_err(dev, "rxnfc: user-def not supported\n");
1415 return -EINVAL;
1416 }
1417 }
1418
1419 if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1420 /* don't allow mask which isn't valid */
1421 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1422 netdev_err(dev, "rxnfc: Unsupported mask\n");
1423 return -EINVAL;
1424 }
1425 }
1426
1427 return 0;
1428}
1429
1430static int bcmgenet_insert_flow(struct net_device *dev,
1431 struct ethtool_rxnfc *cmd)
1432{
1433 struct bcmgenet_priv *priv = netdev_priv(dev);
1434 struct bcmgenet_rxnfc_rule *loc_rule;
1435 int err, i;
1436
1437 if (priv->hw_params->hfb_filter_size < 128) {
1438 netdev_err(dev, "rxnfc: Not supported by this device\n");
1439 return -EINVAL;
1440 }
1441
1442 if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1443 cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1444 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1445 cmd->fs.ring_cookie);
1446 return -EINVAL;
1447 }
1448
1449 err = bcmgenet_validate_flow(dev, cmd);
1450 if (err)
1451 return err;
1452
1453 if (cmd->fs.location == RX_CLS_LOC_ANY) {
1454 list_for_each_entry(loc_rule, &priv->rxnfc_list, list) {
1455 cmd->fs.location = loc_rule->fs.location;
1456 err = memcmp(&loc_rule->fs, &cmd->fs,
1457 sizeof(struct ethtool_rx_flow_spec));
1458 if (!err)
1459 /* rule exists so return current location */
1460 return 0;
1461 }
1462 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
1463 loc_rule = &priv->rxnfc_rules[i];
1464 if (loc_rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1465 cmd->fs.location = i;
1466 break;
1467 }
1468 }
1469 if (i == MAX_NUM_OF_FS_RULES) {
1470 cmd->fs.location = RX_CLS_LOC_ANY;
1471 return -ENOSPC;
1472 }
1473 } else {
1474 loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1475 }
1476 if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1477 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1478 if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1479 list_del(&loc_rule->list);
1480 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1481 }
1482 loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1483 memcpy(&loc_rule->fs, &cmd->fs,
1484 sizeof(struct ethtool_rx_flow_spec));
1485
1486 bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1487
1488 list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1489
1490 return 0;
1491}
1492
1493static int bcmgenet_delete_flow(struct net_device *dev,
1494 struct ethtool_rxnfc *cmd)
1495{
1496 struct bcmgenet_priv *priv = netdev_priv(dev);
1497 struct bcmgenet_rxnfc_rule *rule;
1498 int err = 0;
1499
1500 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1501 return -EINVAL;
1502
1503 rule = &priv->rxnfc_rules[cmd->fs.location];
1504 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1505 err = -ENOENT;
1506 goto out;
1507 }
1508
1509 if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1510 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1511 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1512 list_del(&rule->list);
1513 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1514 }
1515 rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1516 memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1517
1518out:
1519 return err;
1520}
1521
1522static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1523{
1524 struct bcmgenet_priv *priv = netdev_priv(dev);
1525 int err = 0;
1526
1527 switch (cmd->cmd) {
1528 case ETHTOOL_SRXCLSRLINS:
1529 err = bcmgenet_insert_flow(dev, cmd);
1530 break;
1531 case ETHTOOL_SRXCLSRLDEL:
1532 err = bcmgenet_delete_flow(dev, cmd);
1533 break;
1534 default:
1535 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1536 cmd->cmd);
1537 return -EINVAL;
1538 }
1539
1540 return err;
1541}
1542
1543static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1544 int loc)
1545{
1546 struct bcmgenet_priv *priv = netdev_priv(dev);
1547 struct bcmgenet_rxnfc_rule *rule;
1548 int err = 0;
1549
1550 if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1551 return -EINVAL;
1552
1553 rule = &priv->rxnfc_rules[loc];
1554 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1555 err = -ENOENT;
1556 else
1557 memcpy(&cmd->fs, &rule->fs,
1558 sizeof(struct ethtool_rx_flow_spec));
1559
1560 return err;
1561}
1562
1563static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1564{
1565 struct list_head *pos;
1566 int res = 0;
1567
1568 list_for_each(pos, &priv->rxnfc_list)
1569 res++;
1570
1571 return res;
1572}
1573
1574static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1575 u32 *rule_locs)
1576{
1577 struct bcmgenet_priv *priv = netdev_priv(dev);
1578 struct bcmgenet_rxnfc_rule *rule;
1579 int err = 0;
1580 int i = 0;
1581
1582 switch (cmd->cmd) {
1583 case ETHTOOL_GRXRINGS:
1584 cmd->data = priv->hw_params->rx_queues ?: 1;
1585 break;
1586 case ETHTOOL_GRXCLSRLCNT:
1587 cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1588 cmd->data = MAX_NUM_OF_FS_RULES | RX_CLS_LOC_SPECIAL;
1589 break;
1590 case ETHTOOL_GRXCLSRULE:
1591 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1592 break;
1593 case ETHTOOL_GRXCLSRLALL:
1594 list_for_each_entry(rule, &priv->rxnfc_list, list)
1595 if (i < cmd->rule_cnt)
1596 rule_locs[i++] = rule->fs.location;
1597 cmd->rule_cnt = i;
1598 cmd->data = MAX_NUM_OF_FS_RULES;
1599 break;
1600 default:
1601 err = -EOPNOTSUPP;
1602 break;
1603 }
1604
1605 return err;
1606}
1607
1608/* standard ethtool support functions. */
1609static const struct ethtool_ops bcmgenet_ethtool_ops = {
1610 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1611 ETHTOOL_COALESCE_MAX_FRAMES |
1612 ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1613 .begin = bcmgenet_begin,
1614 .complete = bcmgenet_complete,
1615 .get_strings = bcmgenet_get_strings,
1616 .get_sset_count = bcmgenet_get_sset_count,
1617 .get_ethtool_stats = bcmgenet_get_ethtool_stats,
1618 .get_drvinfo = bcmgenet_get_drvinfo,
1619 .get_link = ethtool_op_get_link,
1620 .get_msglevel = bcmgenet_get_msglevel,
1621 .set_msglevel = bcmgenet_set_msglevel,
1622 .get_wol = bcmgenet_get_wol,
1623 .set_wol = bcmgenet_set_wol,
1624 .get_eee = bcmgenet_get_eee,
1625 .set_eee = bcmgenet_set_eee,
1626 .nway_reset = phy_ethtool_nway_reset,
1627 .get_coalesce = bcmgenet_get_coalesce,
1628 .set_coalesce = bcmgenet_set_coalesce,
1629 .get_link_ksettings = bcmgenet_get_link_ksettings,
1630 .set_link_ksettings = bcmgenet_set_link_ksettings,
1631 .get_ts_info = ethtool_op_get_ts_info,
1632 .get_rxnfc = bcmgenet_get_rxnfc,
1633 .set_rxnfc = bcmgenet_set_rxnfc,
1634 .get_pauseparam = bcmgenet_get_pauseparam,
1635 .set_pauseparam = bcmgenet_set_pauseparam,
1636};
1637
1638/* Power down the unimac, based on mode. */
1639static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1640 enum bcmgenet_power_mode mode)
1641{
1642 int ret = 0;
1643 u32 reg;
1644
1645 switch (mode) {
1646 case GENET_POWER_CABLE_SENSE:
1647 phy_detach(priv->dev->phydev);
1648 break;
1649
1650 case GENET_POWER_WOL_MAGIC:
1651 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1652 break;
1653
1654 case GENET_POWER_PASSIVE:
1655 /* Power down LED */
1656 if (priv->hw_params->flags & GENET_HAS_EXT) {
1657 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1658 if (GENET_IS_V5(priv) && !priv->ephy_16nm)
1659 reg |= EXT_PWR_DOWN_PHY_EN |
1660 EXT_PWR_DOWN_PHY_RD |
1661 EXT_PWR_DOWN_PHY_SD |
1662 EXT_PWR_DOWN_PHY_RX |
1663 EXT_PWR_DOWN_PHY_TX |
1664 EXT_IDDQ_GLBL_PWR;
1665 else
1666 reg |= EXT_PWR_DOWN_PHY;
1667
1668 reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1669 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1670
1671 bcmgenet_phy_power_set(priv->dev, false);
1672 }
1673 break;
1674 default:
1675 break;
1676 }
1677
1678 return ret;
1679}
1680
1681static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1682 enum bcmgenet_power_mode mode)
1683{
1684 u32 reg;
1685
1686 if (!(priv->hw_params->flags & GENET_HAS_EXT))
1687 return;
1688
1689 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1690
1691 switch (mode) {
1692 case GENET_POWER_PASSIVE:
1693 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1694 EXT_ENERGY_DET_MASK);
1695 if (GENET_IS_V5(priv) && !priv->ephy_16nm) {
1696 reg &= ~(EXT_PWR_DOWN_PHY_EN |
1697 EXT_PWR_DOWN_PHY_RD |
1698 EXT_PWR_DOWN_PHY_SD |
1699 EXT_PWR_DOWN_PHY_RX |
1700 EXT_PWR_DOWN_PHY_TX |
1701 EXT_IDDQ_GLBL_PWR);
1702 reg |= EXT_PHY_RESET;
1703 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1704 mdelay(1);
1705
1706 reg &= ~EXT_PHY_RESET;
1707 } else {
1708 reg &= ~EXT_PWR_DOWN_PHY;
1709 reg |= EXT_PWR_DN_EN_LD;
1710 }
1711 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1712 bcmgenet_phy_power_set(priv->dev, true);
1713 break;
1714
1715 case GENET_POWER_CABLE_SENSE:
1716 /* enable APD */
1717 if (!GENET_IS_V5(priv)) {
1718 reg |= EXT_PWR_DN_EN_LD;
1719 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1720 }
1721 break;
1722 case GENET_POWER_WOL_MAGIC:
1723 bcmgenet_wol_power_up_cfg(priv, mode);
1724 return;
1725 default:
1726 break;
1727 }
1728}
1729
1730static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1731 struct bcmgenet_tx_ring *ring)
1732{
1733 struct enet_cb *tx_cb_ptr;
1734
1735 tx_cb_ptr = ring->cbs;
1736 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1737
1738 /* Advancing local write pointer */
1739 if (ring->write_ptr == ring->end_ptr)
1740 ring->write_ptr = ring->cb_ptr;
1741 else
1742 ring->write_ptr++;
1743
1744 return tx_cb_ptr;
1745}
1746
1747static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1748 struct bcmgenet_tx_ring *ring)
1749{
1750 struct enet_cb *tx_cb_ptr;
1751
1752 tx_cb_ptr = ring->cbs;
1753 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1754
1755 /* Rewinding local write pointer */
1756 if (ring->write_ptr == ring->cb_ptr)
1757 ring->write_ptr = ring->end_ptr;
1758 else
1759 ring->write_ptr--;
1760
1761 return tx_cb_ptr;
1762}
1763
1764static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1765{
1766 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1767 INTRL2_CPU_MASK_SET);
1768}
1769
1770static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1771{
1772 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1773 INTRL2_CPU_MASK_CLEAR);
1774}
1775
1776static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1777{
1778 bcmgenet_intrl2_1_writel(ring->priv,
1779 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1780 INTRL2_CPU_MASK_SET);
1781}
1782
1783static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1784{
1785 bcmgenet_intrl2_1_writel(ring->priv,
1786 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1787 INTRL2_CPU_MASK_CLEAR);
1788}
1789
1790static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1791{
1792 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1793 INTRL2_CPU_MASK_SET);
1794}
1795
1796static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1797{
1798 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1799 INTRL2_CPU_MASK_CLEAR);
1800}
1801
1802static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1803{
1804 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1805 INTRL2_CPU_MASK_CLEAR);
1806}
1807
1808static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1809{
1810 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1811 INTRL2_CPU_MASK_SET);
1812}
1813
1814/* Simple helper to free a transmit control block's resources
1815 * Returns an skb when the last transmit control block associated with the
1816 * skb is freed. The skb should be freed by the caller if necessary.
1817 */
1818static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1819 struct enet_cb *cb)
1820{
1821 struct sk_buff *skb;
1822
1823 skb = cb->skb;
1824
1825 if (skb) {
1826 cb->skb = NULL;
1827 if (cb == GENET_CB(skb)->first_cb)
1828 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1829 dma_unmap_len(cb, dma_len),
1830 DMA_TO_DEVICE);
1831 else
1832 dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1833 dma_unmap_len(cb, dma_len),
1834 DMA_TO_DEVICE);
1835 dma_unmap_addr_set(cb, dma_addr, 0);
1836
1837 if (cb == GENET_CB(skb)->last_cb)
1838 return skb;
1839
1840 } else if (dma_unmap_addr(cb, dma_addr)) {
1841 dma_unmap_page(dev,
1842 dma_unmap_addr(cb, dma_addr),
1843 dma_unmap_len(cb, dma_len),
1844 DMA_TO_DEVICE);
1845 dma_unmap_addr_set(cb, dma_addr, 0);
1846 }
1847
1848 return NULL;
1849}
1850
1851/* Simple helper to free a receive control block's resources */
1852static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1853 struct enet_cb *cb)
1854{
1855 struct sk_buff *skb;
1856
1857 skb = cb->skb;
1858 cb->skb = NULL;
1859
1860 if (dma_unmap_addr(cb, dma_addr)) {
1861 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1862 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1863 dma_unmap_addr_set(cb, dma_addr, 0);
1864 }
1865
1866 return skb;
1867}
1868
1869/* Unlocked version of the reclaim routine */
1870static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1871 struct bcmgenet_tx_ring *ring)
1872{
1873 struct bcmgenet_priv *priv = netdev_priv(dev);
1874 unsigned int txbds_processed = 0;
1875 unsigned int bytes_compl = 0;
1876 unsigned int pkts_compl = 0;
1877 unsigned int txbds_ready;
1878 unsigned int c_index;
1879 struct sk_buff *skb;
1880
1881 /* Clear status before servicing to reduce spurious interrupts */
1882 if (ring->index == DESC_INDEX)
1883 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1884 INTRL2_CPU_CLEAR);
1885 else
1886 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1887 INTRL2_CPU_CLEAR);
1888
1889 /* Compute how many buffers are transmitted since last xmit call */
1890 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1891 & DMA_C_INDEX_MASK;
1892 txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1893
1894 netif_dbg(priv, tx_done, dev,
1895 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1896 __func__, ring->index, ring->c_index, c_index, txbds_ready);
1897
1898 /* Reclaim transmitted buffers */
1899 while (txbds_processed < txbds_ready) {
1900 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1901 &priv->tx_cbs[ring->clean_ptr]);
1902 if (skb) {
1903 pkts_compl++;
1904 bytes_compl += GENET_CB(skb)->bytes_sent;
1905 dev_consume_skb_any(skb);
1906 }
1907
1908 txbds_processed++;
1909 if (likely(ring->clean_ptr < ring->end_ptr))
1910 ring->clean_ptr++;
1911 else
1912 ring->clean_ptr = ring->cb_ptr;
1913 }
1914
1915 ring->free_bds += txbds_processed;
1916 ring->c_index = c_index;
1917
1918 ring->packets += pkts_compl;
1919 ring->bytes += bytes_compl;
1920
1921 netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1922 pkts_compl, bytes_compl);
1923
1924 return txbds_processed;
1925}
1926
1927static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1928 struct bcmgenet_tx_ring *ring)
1929{
1930 unsigned int released;
1931
1932 spin_lock_bh(&ring->lock);
1933 released = __bcmgenet_tx_reclaim(dev, ring);
1934 spin_unlock_bh(&ring->lock);
1935
1936 return released;
1937}
1938
1939static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1940{
1941 struct bcmgenet_tx_ring *ring =
1942 container_of(napi, struct bcmgenet_tx_ring, napi);
1943 unsigned int work_done = 0;
1944 struct netdev_queue *txq;
1945
1946 spin_lock(&ring->lock);
1947 work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1948 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1949 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1950 netif_tx_wake_queue(txq);
1951 }
1952 spin_unlock(&ring->lock);
1953
1954 if (work_done == 0) {
1955 napi_complete(napi);
1956 ring->int_enable(ring);
1957
1958 return 0;
1959 }
1960
1961 return budget;
1962}
1963
1964static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1965{
1966 struct bcmgenet_priv *priv = netdev_priv(dev);
1967 int i;
1968
1969 if (netif_is_multiqueue(dev)) {
1970 for (i = 0; i < priv->hw_params->tx_queues; i++)
1971 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1972 }
1973
1974 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1975}
1976
1977/* Reallocate the SKB to put enough headroom in front of it and insert
1978 * the transmit checksum offsets in the descriptors
1979 */
1980static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1981 struct sk_buff *skb)
1982{
1983 struct bcmgenet_priv *priv = netdev_priv(dev);
1984 struct status_64 *status = NULL;
1985 struct sk_buff *new_skb;
1986 u16 offset;
1987 u8 ip_proto;
1988 __be16 ip_ver;
1989 u32 tx_csum_info;
1990
1991 if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1992 /* If 64 byte status block enabled, must make sure skb has
1993 * enough headroom for us to insert 64B status block.
1994 */
1995 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1996 if (!new_skb) {
1997 dev_kfree_skb_any(skb);
1998 priv->mib.tx_realloc_tsb_failed++;
1999 dev->stats.tx_dropped++;
2000 return NULL;
2001 }
2002 dev_consume_skb_any(skb);
2003 skb = new_skb;
2004 priv->mib.tx_realloc_tsb++;
2005 }
2006
2007 skb_push(skb, sizeof(*status));
2008 status = (struct status_64 *)skb->data;
2009
2010 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2011 ip_ver = skb->protocol;
2012 switch (ip_ver) {
2013 case htons(ETH_P_IP):
2014 ip_proto = ip_hdr(skb)->protocol;
2015 break;
2016 case htons(ETH_P_IPV6):
2017 ip_proto = ipv6_hdr(skb)->nexthdr;
2018 break;
2019 default:
2020 /* don't use UDP flag */
2021 ip_proto = 0;
2022 break;
2023 }
2024
2025 offset = skb_checksum_start_offset(skb) - sizeof(*status);
2026 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
2027 (offset + skb->csum_offset) |
2028 STATUS_TX_CSUM_LV;
2029
2030 /* Set the special UDP flag for UDP */
2031 if (ip_proto == IPPROTO_UDP)
2032 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
2033
2034 status->tx_csum_info = tx_csum_info;
2035 }
2036
2037 return skb;
2038}
2039
2040static void bcmgenet_hide_tsb(struct sk_buff *skb)
2041{
2042 __skb_pull(skb, sizeof(struct status_64));
2043}
2044
2045static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
2046{
2047 struct bcmgenet_priv *priv = netdev_priv(dev);
2048 struct device *kdev = &priv->pdev->dev;
2049 struct bcmgenet_tx_ring *ring = NULL;
2050 struct enet_cb *tx_cb_ptr;
2051 struct netdev_queue *txq;
2052 int nr_frags, index;
2053 dma_addr_t mapping;
2054 unsigned int size;
2055 skb_frag_t *frag;
2056 u32 len_stat;
2057 int ret;
2058 int i;
2059
2060 index = skb_get_queue_mapping(skb);
2061 /* Mapping strategy:
2062 * queue_mapping = 0, unclassified, packet xmited through ring16
2063 * queue_mapping = 1, goes to ring 0. (highest priority queue
2064 * queue_mapping = 2, goes to ring 1.
2065 * queue_mapping = 3, goes to ring 2.
2066 * queue_mapping = 4, goes to ring 3.
2067 */
2068 if (index == 0)
2069 index = DESC_INDEX;
2070 else
2071 index -= 1;
2072
2073 ring = &priv->tx_rings[index];
2074 txq = netdev_get_tx_queue(dev, ring->queue);
2075
2076 nr_frags = skb_shinfo(skb)->nr_frags;
2077
2078 spin_lock(&ring->lock);
2079 if (ring->free_bds <= (nr_frags + 1)) {
2080 if (!netif_tx_queue_stopped(txq))
2081 netif_tx_stop_queue(txq);
2082 ret = NETDEV_TX_BUSY;
2083 goto out;
2084 }
2085
2086 /* Retain how many bytes will be sent on the wire, without TSB inserted
2087 * by transmit checksum offload
2088 */
2089 GENET_CB(skb)->bytes_sent = skb->len;
2090
2091 /* add the Transmit Status Block */
2092 skb = bcmgenet_add_tsb(dev, skb);
2093 if (!skb) {
2094 ret = NETDEV_TX_OK;
2095 goto out;
2096 }
2097
2098 for (i = 0; i <= nr_frags; i++) {
2099 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2100
2101 BUG_ON(!tx_cb_ptr);
2102
2103 if (!i) {
2104 /* Transmit single SKB or head of fragment list */
2105 GENET_CB(skb)->first_cb = tx_cb_ptr;
2106 size = skb_headlen(skb);
2107 mapping = dma_map_single(kdev, skb->data, size,
2108 DMA_TO_DEVICE);
2109 } else {
2110 /* xmit fragment */
2111 frag = &skb_shinfo(skb)->frags[i - 1];
2112 size = skb_frag_size(frag);
2113 mapping = skb_frag_dma_map(kdev, frag, 0, size,
2114 DMA_TO_DEVICE);
2115 }
2116
2117 ret = dma_mapping_error(kdev, mapping);
2118 if (ret) {
2119 priv->mib.tx_dma_failed++;
2120 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2121 ret = NETDEV_TX_OK;
2122 goto out_unmap_frags;
2123 }
2124 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2125 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2126
2127 tx_cb_ptr->skb = skb;
2128
2129 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2130 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2131
2132 /* Note: if we ever change from DMA_TX_APPEND_CRC below we
2133 * will need to restore software padding of "runt" packets
2134 */
2135 len_stat |= DMA_TX_APPEND_CRC;
2136
2137 if (!i) {
2138 len_stat |= DMA_SOP;
2139 if (skb->ip_summed == CHECKSUM_PARTIAL)
2140 len_stat |= DMA_TX_DO_CSUM;
2141 }
2142 if (i == nr_frags)
2143 len_stat |= DMA_EOP;
2144
2145 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2146 }
2147
2148 GENET_CB(skb)->last_cb = tx_cb_ptr;
2149
2150 bcmgenet_hide_tsb(skb);
2151 skb_tx_timestamp(skb);
2152
2153 /* Decrement total BD count and advance our write pointer */
2154 ring->free_bds -= nr_frags + 1;
2155 ring->prod_index += nr_frags + 1;
2156 ring->prod_index &= DMA_P_INDEX_MASK;
2157
2158 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2159
2160 if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2161 netif_tx_stop_queue(txq);
2162
2163 if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2164 /* Packets are ready, update producer index */
2165 bcmgenet_tdma_ring_writel(priv, ring->index,
2166 ring->prod_index, TDMA_PROD_INDEX);
2167out:
2168 spin_unlock(&ring->lock);
2169
2170 return ret;
2171
2172out_unmap_frags:
2173 /* Back up for failed control block mapping */
2174 bcmgenet_put_txcb(priv, ring);
2175
2176 /* Unmap successfully mapped control blocks */
2177 while (i-- > 0) {
2178 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2179 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2180 }
2181
2182 dev_kfree_skb(skb);
2183 goto out;
2184}
2185
2186static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2187 struct enet_cb *cb)
2188{
2189 struct device *kdev = &priv->pdev->dev;
2190 struct sk_buff *skb;
2191 struct sk_buff *rx_skb;
2192 dma_addr_t mapping;
2193
2194 /* Allocate a new Rx skb */
2195 skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2196 GFP_ATOMIC | __GFP_NOWARN);
2197 if (!skb) {
2198 priv->mib.alloc_rx_buff_failed++;
2199 netif_err(priv, rx_err, priv->dev,
2200 "%s: Rx skb allocation failed\n", __func__);
2201 return NULL;
2202 }
2203
2204 /* DMA-map the new Rx skb */
2205 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2206 DMA_FROM_DEVICE);
2207 if (dma_mapping_error(kdev, mapping)) {
2208 priv->mib.rx_dma_failed++;
2209 dev_kfree_skb_any(skb);
2210 netif_err(priv, rx_err, priv->dev,
2211 "%s: Rx skb DMA mapping failed\n", __func__);
2212 return NULL;
2213 }
2214
2215 /* Grab the current Rx skb from the ring and DMA-unmap it */
2216 rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2217
2218 /* Put the new Rx skb on the ring */
2219 cb->skb = skb;
2220 dma_unmap_addr_set(cb, dma_addr, mapping);
2221 dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2222 dmadesc_set_addr(priv, cb->bd_addr, mapping);
2223
2224 /* Return the current Rx skb to caller */
2225 return rx_skb;
2226}
2227
2228/* bcmgenet_desc_rx - descriptor based rx process.
2229 * this could be called from bottom half, or from NAPI polling method.
2230 */
2231static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2232 unsigned int budget)
2233{
2234 struct bcmgenet_priv *priv = ring->priv;
2235 struct net_device *dev = priv->dev;
2236 struct enet_cb *cb;
2237 struct sk_buff *skb;
2238 u32 dma_length_status;
2239 unsigned long dma_flag;
2240 int len;
2241 unsigned int rxpktprocessed = 0, rxpkttoprocess;
2242 unsigned int bytes_processed = 0;
2243 unsigned int p_index, mask;
2244 unsigned int discards;
2245
2246 /* Clear status before servicing to reduce spurious interrupts */
2247 if (ring->index == DESC_INDEX) {
2248 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2249 INTRL2_CPU_CLEAR);
2250 } else {
2251 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2252 bcmgenet_intrl2_1_writel(priv,
2253 mask,
2254 INTRL2_CPU_CLEAR);
2255 }
2256
2257 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2258
2259 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2260 DMA_P_INDEX_DISCARD_CNT_MASK;
2261 if (discards > ring->old_discards) {
2262 discards = discards - ring->old_discards;
2263 ring->errors += discards;
2264 ring->old_discards += discards;
2265
2266 /* Clear HW register when we reach 75% of maximum 0xFFFF */
2267 if (ring->old_discards >= 0xC000) {
2268 ring->old_discards = 0;
2269 bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2270 RDMA_PROD_INDEX);
2271 }
2272 }
2273
2274 p_index &= DMA_P_INDEX_MASK;
2275 rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2276
2277 netif_dbg(priv, rx_status, dev,
2278 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2279
2280 while ((rxpktprocessed < rxpkttoprocess) &&
2281 (rxpktprocessed < budget)) {
2282 struct status_64 *status;
2283 __be16 rx_csum;
2284
2285 cb = &priv->rx_cbs[ring->read_ptr];
2286 skb = bcmgenet_rx_refill(priv, cb);
2287
2288 if (unlikely(!skb)) {
2289 ring->dropped++;
2290 goto next;
2291 }
2292
2293 status = (struct status_64 *)skb->data;
2294 dma_length_status = status->length_status;
2295 if (dev->features & NETIF_F_RXCSUM) {
2296 rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2297 if (rx_csum) {
2298 skb->csum = (__force __wsum)ntohs(rx_csum);
2299 skb->ip_summed = CHECKSUM_COMPLETE;
2300 }
2301 }
2302
2303 /* DMA flags and length are still valid no matter how
2304 * we got the Receive Status Vector (64B RSB or register)
2305 */
2306 dma_flag = dma_length_status & 0xffff;
2307 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2308
2309 netif_dbg(priv, rx_status, dev,
2310 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2311 __func__, p_index, ring->c_index,
2312 ring->read_ptr, dma_length_status);
2313
2314 if (unlikely(len > RX_BUF_LENGTH)) {
2315 netif_err(priv, rx_status, dev, "oversized packet\n");
2316 dev->stats.rx_length_errors++;
2317 dev->stats.rx_errors++;
2318 dev_kfree_skb_any(skb);
2319 goto next;
2320 }
2321
2322 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2323 netif_err(priv, rx_status, dev,
2324 "dropping fragmented packet!\n");
2325 ring->errors++;
2326 dev_kfree_skb_any(skb);
2327 goto next;
2328 }
2329
2330 /* report errors */
2331 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2332 DMA_RX_OV |
2333 DMA_RX_NO |
2334 DMA_RX_LG |
2335 DMA_RX_RXER))) {
2336 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2337 (unsigned int)dma_flag);
2338 if (dma_flag & DMA_RX_CRC_ERROR)
2339 dev->stats.rx_crc_errors++;
2340 if (dma_flag & DMA_RX_OV)
2341 dev->stats.rx_over_errors++;
2342 if (dma_flag & DMA_RX_NO)
2343 dev->stats.rx_frame_errors++;
2344 if (dma_flag & DMA_RX_LG)
2345 dev->stats.rx_length_errors++;
2346 dev->stats.rx_errors++;
2347 dev_kfree_skb_any(skb);
2348 goto next;
2349 } /* error packet */
2350
2351 skb_put(skb, len);
2352
2353 /* remove RSB and hardware 2bytes added for IP alignment */
2354 skb_pull(skb, 66);
2355 len -= 66;
2356
2357 if (priv->crc_fwd_en) {
2358 skb_trim(skb, len - ETH_FCS_LEN);
2359 len -= ETH_FCS_LEN;
2360 }
2361
2362 bytes_processed += len;
2363
2364 /*Finish setting up the received SKB and send it to the kernel*/
2365 skb->protocol = eth_type_trans(skb, priv->dev);
2366 ring->packets++;
2367 ring->bytes += len;
2368 if (dma_flag & DMA_RX_MULT)
2369 dev->stats.multicast++;
2370
2371 /* Notify kernel */
2372 napi_gro_receive(&ring->napi, skb);
2373 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2374
2375next:
2376 rxpktprocessed++;
2377 if (likely(ring->read_ptr < ring->end_ptr))
2378 ring->read_ptr++;
2379 else
2380 ring->read_ptr = ring->cb_ptr;
2381
2382 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2383 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2384 }
2385
2386 ring->dim.bytes = bytes_processed;
2387 ring->dim.packets = rxpktprocessed;
2388
2389 return rxpktprocessed;
2390}
2391
2392/* Rx NAPI polling method */
2393static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2394{
2395 struct bcmgenet_rx_ring *ring = container_of(napi,
2396 struct bcmgenet_rx_ring, napi);
2397 struct dim_sample dim_sample = {};
2398 unsigned int work_done;
2399
2400 work_done = bcmgenet_desc_rx(ring, budget);
2401
2402 if (work_done < budget) {
2403 napi_complete_done(napi, work_done);
2404 ring->int_enable(ring);
2405 }
2406
2407 if (ring->dim.use_dim) {
2408 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2409 ring->dim.bytes, &dim_sample);
2410 net_dim(&ring->dim.dim, dim_sample);
2411 }
2412
2413 return work_done;
2414}
2415
2416static void bcmgenet_dim_work(struct work_struct *work)
2417{
2418 struct dim *dim = container_of(work, struct dim, work);
2419 struct bcmgenet_net_dim *ndim =
2420 container_of(dim, struct bcmgenet_net_dim, dim);
2421 struct bcmgenet_rx_ring *ring =
2422 container_of(ndim, struct bcmgenet_rx_ring, dim);
2423 struct dim_cq_moder cur_profile =
2424 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2425
2426 bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2427 dim->state = DIM_START_MEASURE;
2428}
2429
2430/* Assign skb to RX DMA descriptor. */
2431static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2432 struct bcmgenet_rx_ring *ring)
2433{
2434 struct enet_cb *cb;
2435 struct sk_buff *skb;
2436 int i;
2437
2438 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2439
2440 /* loop here for each buffer needing assign */
2441 for (i = 0; i < ring->size; i++) {
2442 cb = ring->cbs + i;
2443 skb = bcmgenet_rx_refill(priv, cb);
2444 if (skb)
2445 dev_consume_skb_any(skb);
2446 if (!cb->skb)
2447 return -ENOMEM;
2448 }
2449
2450 return 0;
2451}
2452
2453static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2454{
2455 struct sk_buff *skb;
2456 struct enet_cb *cb;
2457 int i;
2458
2459 for (i = 0; i < priv->num_rx_bds; i++) {
2460 cb = &priv->rx_cbs[i];
2461
2462 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2463 if (skb)
2464 dev_consume_skb_any(skb);
2465 }
2466}
2467
2468static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2469{
2470 u32 reg;
2471
2472 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2473 if (reg & CMD_SW_RESET)
2474 return;
2475 if (enable)
2476 reg |= mask;
2477 else
2478 reg &= ~mask;
2479 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2480
2481 /* UniMAC stops on a packet boundary, wait for a full-size packet
2482 * to be processed
2483 */
2484 if (enable == 0)
2485 usleep_range(1000, 2000);
2486}
2487
2488static void reset_umac(struct bcmgenet_priv *priv)
2489{
2490 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2491 bcmgenet_rbuf_ctrl_set(priv, 0);
2492 udelay(10);
2493
2494 /* issue soft reset and disable MAC while updating its registers */
2495 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2496 udelay(2);
2497}
2498
2499static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2500{
2501 /* Mask all interrupts.*/
2502 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2503 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2504 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2505 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2506}
2507
2508static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2509{
2510 u32 int0_enable = 0;
2511
2512 /* Monitor cable plug/unplugged event for internal PHY, external PHY
2513 * and MoCA PHY
2514 */
2515 if (priv->internal_phy) {
2516 int0_enable |= UMAC_IRQ_LINK_EVENT;
2517 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2518 int0_enable |= UMAC_IRQ_PHY_DET_R;
2519 } else if (priv->ext_phy) {
2520 int0_enable |= UMAC_IRQ_LINK_EVENT;
2521 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2522 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2523 int0_enable |= UMAC_IRQ_LINK_EVENT;
2524 }
2525 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2526}
2527
2528static void init_umac(struct bcmgenet_priv *priv)
2529{
2530 struct device *kdev = &priv->pdev->dev;
2531 u32 reg;
2532 u32 int0_enable = 0;
2533
2534 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2535
2536 reset_umac(priv);
2537
2538 /* clear tx/rx counter */
2539 bcmgenet_umac_writel(priv,
2540 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2541 UMAC_MIB_CTRL);
2542 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2543
2544 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2545
2546 /* init tx registers, enable TSB */
2547 reg = bcmgenet_tbuf_ctrl_get(priv);
2548 reg |= TBUF_64B_EN;
2549 bcmgenet_tbuf_ctrl_set(priv, reg);
2550
2551 /* init rx registers, enable ip header optimization and RSB */
2552 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2553 reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2554 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2555
2556 /* enable rx checksumming */
2557 reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2558 reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2559 /* If UniMAC forwards CRC, we need to skip over it to get
2560 * a valid CHK bit to be set in the per-packet status word
2561 */
2562 if (priv->crc_fwd_en)
2563 reg |= RBUF_SKIP_FCS;
2564 else
2565 reg &= ~RBUF_SKIP_FCS;
2566 bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2567
2568 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2569 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2570
2571 bcmgenet_intr_disable(priv);
2572
2573 /* Configure backpressure vectors for MoCA */
2574 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2575 reg = bcmgenet_bp_mc_get(priv);
2576 reg |= BIT(priv->hw_params->bp_in_en_shift);
2577
2578 /* bp_mask: back pressure mask */
2579 if (netif_is_multiqueue(priv->dev))
2580 reg |= priv->hw_params->bp_in_mask;
2581 else
2582 reg &= ~priv->hw_params->bp_in_mask;
2583 bcmgenet_bp_mc_set(priv, reg);
2584 }
2585
2586 /* Enable MDIO interrupts on GENET v3+ */
2587 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2588 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2589
2590 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2591
2592 dev_dbg(kdev, "done init umac\n");
2593}
2594
2595static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2596 void (*cb)(struct work_struct *work))
2597{
2598 struct bcmgenet_net_dim *dim = &ring->dim;
2599
2600 INIT_WORK(&dim->dim.work, cb);
2601 dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2602 dim->event_ctr = 0;
2603 dim->packets = 0;
2604 dim->bytes = 0;
2605}
2606
2607static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2608{
2609 struct bcmgenet_net_dim *dim = &ring->dim;
2610 struct dim_cq_moder moder;
2611 u32 usecs, pkts;
2612
2613 usecs = ring->rx_coalesce_usecs;
2614 pkts = ring->rx_max_coalesced_frames;
2615
2616 /* If DIM was enabled, re-apply default parameters */
2617 if (dim->use_dim) {
2618 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2619 usecs = moder.usec;
2620 pkts = moder.pkts;
2621 }
2622
2623 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2624}
2625
2626/* Initialize a Tx ring along with corresponding hardware registers */
2627static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2628 unsigned int index, unsigned int size,
2629 unsigned int start_ptr, unsigned int end_ptr)
2630{
2631 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2632 u32 words_per_bd = WORDS_PER_BD(priv);
2633 u32 flow_period_val = 0;
2634
2635 spin_lock_init(&ring->lock);
2636 ring->priv = priv;
2637 ring->index = index;
2638 if (index == DESC_INDEX) {
2639 ring->queue = 0;
2640 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2641 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2642 } else {
2643 ring->queue = index + 1;
2644 ring->int_enable = bcmgenet_tx_ring_int_enable;
2645 ring->int_disable = bcmgenet_tx_ring_int_disable;
2646 }
2647 ring->cbs = priv->tx_cbs + start_ptr;
2648 ring->size = size;
2649 ring->clean_ptr = start_ptr;
2650 ring->c_index = 0;
2651 ring->free_bds = size;
2652 ring->write_ptr = start_ptr;
2653 ring->cb_ptr = start_ptr;
2654 ring->end_ptr = end_ptr - 1;
2655 ring->prod_index = 0;
2656
2657 /* Set flow period for ring != 16 */
2658 if (index != DESC_INDEX)
2659 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2660
2661 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2662 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2663 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2664 /* Disable rate control for now */
2665 bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2666 TDMA_FLOW_PERIOD);
2667 bcmgenet_tdma_ring_writel(priv, index,
2668 ((size << DMA_RING_SIZE_SHIFT) |
2669 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2670
2671 /* Set start and end address, read and write pointers */
2672 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2673 DMA_START_ADDR);
2674 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2675 TDMA_READ_PTR);
2676 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2677 TDMA_WRITE_PTR);
2678 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2679 DMA_END_ADDR);
2680
2681 /* Initialize Tx NAPI */
2682 netif_napi_add_tx(priv->dev, &ring->napi, bcmgenet_tx_poll);
2683}
2684
2685/* Initialize a RDMA ring */
2686static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2687 unsigned int index, unsigned int size,
2688 unsigned int start_ptr, unsigned int end_ptr)
2689{
2690 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2691 u32 words_per_bd = WORDS_PER_BD(priv);
2692 int ret;
2693
2694 ring->priv = priv;
2695 ring->index = index;
2696 if (index == DESC_INDEX) {
2697 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2698 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2699 } else {
2700 ring->int_enable = bcmgenet_rx_ring_int_enable;
2701 ring->int_disable = bcmgenet_rx_ring_int_disable;
2702 }
2703 ring->cbs = priv->rx_cbs + start_ptr;
2704 ring->size = size;
2705 ring->c_index = 0;
2706 ring->read_ptr = start_ptr;
2707 ring->cb_ptr = start_ptr;
2708 ring->end_ptr = end_ptr - 1;
2709
2710 ret = bcmgenet_alloc_rx_buffers(priv, ring);
2711 if (ret)
2712 return ret;
2713
2714 bcmgenet_init_dim(ring, bcmgenet_dim_work);
2715 bcmgenet_init_rx_coalesce(ring);
2716
2717 /* Initialize Rx NAPI */
2718 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll);
2719
2720 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2721 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2722 bcmgenet_rdma_ring_writel(priv, index,
2723 ((size << DMA_RING_SIZE_SHIFT) |
2724 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2725 bcmgenet_rdma_ring_writel(priv, index,
2726 (DMA_FC_THRESH_LO <<
2727 DMA_XOFF_THRESHOLD_SHIFT) |
2728 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2729
2730 /* Set start and end address, read and write pointers */
2731 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2732 DMA_START_ADDR);
2733 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2734 RDMA_READ_PTR);
2735 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2736 RDMA_WRITE_PTR);
2737 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2738 DMA_END_ADDR);
2739
2740 return ret;
2741}
2742
2743static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2744{
2745 unsigned int i;
2746 struct bcmgenet_tx_ring *ring;
2747
2748 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2749 ring = &priv->tx_rings[i];
2750 napi_enable(&ring->napi);
2751 ring->int_enable(ring);
2752 }
2753
2754 ring = &priv->tx_rings[DESC_INDEX];
2755 napi_enable(&ring->napi);
2756 ring->int_enable(ring);
2757}
2758
2759static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2760{
2761 unsigned int i;
2762 struct bcmgenet_tx_ring *ring;
2763
2764 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2765 ring = &priv->tx_rings[i];
2766 napi_disable(&ring->napi);
2767 }
2768
2769 ring = &priv->tx_rings[DESC_INDEX];
2770 napi_disable(&ring->napi);
2771}
2772
2773static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2774{
2775 unsigned int i;
2776 struct bcmgenet_tx_ring *ring;
2777
2778 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2779 ring = &priv->tx_rings[i];
2780 netif_napi_del(&ring->napi);
2781 }
2782
2783 ring = &priv->tx_rings[DESC_INDEX];
2784 netif_napi_del(&ring->napi);
2785}
2786
2787/* Initialize Tx queues
2788 *
2789 * Queues 0-3 are priority-based, each one has 32 descriptors,
2790 * with queue 0 being the highest priority queue.
2791 *
2792 * Queue 16 is the default Tx queue with
2793 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2794 *
2795 * The transmit control block pool is then partitioned as follows:
2796 * - Tx queue 0 uses tx_cbs[0..31]
2797 * - Tx queue 1 uses tx_cbs[32..63]
2798 * - Tx queue 2 uses tx_cbs[64..95]
2799 * - Tx queue 3 uses tx_cbs[96..127]
2800 * - Tx queue 16 uses tx_cbs[128..255]
2801 */
2802static void bcmgenet_init_tx_queues(struct net_device *dev)
2803{
2804 struct bcmgenet_priv *priv = netdev_priv(dev);
2805 u32 i, dma_enable;
2806 u32 dma_ctrl, ring_cfg;
2807 u32 dma_priority[3] = {0, 0, 0};
2808
2809 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2810 dma_enable = dma_ctrl & DMA_EN;
2811 dma_ctrl &= ~DMA_EN;
2812 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2813
2814 dma_ctrl = 0;
2815 ring_cfg = 0;
2816
2817 /* Enable strict priority arbiter mode */
2818 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2819
2820 /* Initialize Tx priority queues */
2821 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2822 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2823 i * priv->hw_params->tx_bds_per_q,
2824 (i + 1) * priv->hw_params->tx_bds_per_q);
2825 ring_cfg |= (1 << i);
2826 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2827 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2828 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2829 }
2830
2831 /* Initialize Tx default queue 16 */
2832 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2833 priv->hw_params->tx_queues *
2834 priv->hw_params->tx_bds_per_q,
2835 TOTAL_DESC);
2836 ring_cfg |= (1 << DESC_INDEX);
2837 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2838 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2839 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2840 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2841
2842 /* Set Tx queue priorities */
2843 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2844 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2845 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2846
2847 /* Enable Tx queues */
2848 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2849
2850 /* Enable Tx DMA */
2851 if (dma_enable)
2852 dma_ctrl |= DMA_EN;
2853 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2854}
2855
2856static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2857{
2858 unsigned int i;
2859 struct bcmgenet_rx_ring *ring;
2860
2861 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2862 ring = &priv->rx_rings[i];
2863 napi_enable(&ring->napi);
2864 ring->int_enable(ring);
2865 }
2866
2867 ring = &priv->rx_rings[DESC_INDEX];
2868 napi_enable(&ring->napi);
2869 ring->int_enable(ring);
2870}
2871
2872static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2873{
2874 unsigned int i;
2875 struct bcmgenet_rx_ring *ring;
2876
2877 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2878 ring = &priv->rx_rings[i];
2879 napi_disable(&ring->napi);
2880 cancel_work_sync(&ring->dim.dim.work);
2881 }
2882
2883 ring = &priv->rx_rings[DESC_INDEX];
2884 napi_disable(&ring->napi);
2885 cancel_work_sync(&ring->dim.dim.work);
2886}
2887
2888static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2889{
2890 unsigned int i;
2891 struct bcmgenet_rx_ring *ring;
2892
2893 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2894 ring = &priv->rx_rings[i];
2895 netif_napi_del(&ring->napi);
2896 }
2897
2898 ring = &priv->rx_rings[DESC_INDEX];
2899 netif_napi_del(&ring->napi);
2900}
2901
2902/* Initialize Rx queues
2903 *
2904 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2905 * used to direct traffic to these queues.
2906 *
2907 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2908 */
2909static int bcmgenet_init_rx_queues(struct net_device *dev)
2910{
2911 struct bcmgenet_priv *priv = netdev_priv(dev);
2912 u32 i;
2913 u32 dma_enable;
2914 u32 dma_ctrl;
2915 u32 ring_cfg;
2916 int ret;
2917
2918 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2919 dma_enable = dma_ctrl & DMA_EN;
2920 dma_ctrl &= ~DMA_EN;
2921 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2922
2923 dma_ctrl = 0;
2924 ring_cfg = 0;
2925
2926 /* Initialize Rx priority queues */
2927 for (i = 0; i < priv->hw_params->rx_queues; i++) {
2928 ret = bcmgenet_init_rx_ring(priv, i,
2929 priv->hw_params->rx_bds_per_q,
2930 i * priv->hw_params->rx_bds_per_q,
2931 (i + 1) *
2932 priv->hw_params->rx_bds_per_q);
2933 if (ret)
2934 return ret;
2935
2936 ring_cfg |= (1 << i);
2937 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2938 }
2939
2940 /* Initialize Rx default queue 16 */
2941 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2942 priv->hw_params->rx_queues *
2943 priv->hw_params->rx_bds_per_q,
2944 TOTAL_DESC);
2945 if (ret)
2946 return ret;
2947
2948 ring_cfg |= (1 << DESC_INDEX);
2949 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2950
2951 /* Enable rings */
2952 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2953
2954 /* Configure ring as descriptor ring and re-enable DMA if enabled */
2955 if (dma_enable)
2956 dma_ctrl |= DMA_EN;
2957 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2958
2959 return 0;
2960}
2961
2962static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2963{
2964 int ret = 0;
2965 int timeout = 0;
2966 u32 reg;
2967 u32 dma_ctrl;
2968 int i;
2969
2970 /* Disable TDMA to stop add more frames in TX DMA */
2971 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2972 reg &= ~DMA_EN;
2973 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2974
2975 /* Check TDMA status register to confirm TDMA is disabled */
2976 while (timeout++ < DMA_TIMEOUT_VAL) {
2977 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2978 if (reg & DMA_DISABLED)
2979 break;
2980
2981 udelay(1);
2982 }
2983
2984 if (timeout == DMA_TIMEOUT_VAL) {
2985 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2986 ret = -ETIMEDOUT;
2987 }
2988
2989 /* Wait 10ms for packet drain in both tx and rx dma */
2990 usleep_range(10000, 20000);
2991
2992 /* Disable RDMA */
2993 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2994 reg &= ~DMA_EN;
2995 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2996
2997 timeout = 0;
2998 /* Check RDMA status register to confirm RDMA is disabled */
2999 while (timeout++ < DMA_TIMEOUT_VAL) {
3000 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
3001 if (reg & DMA_DISABLED)
3002 break;
3003
3004 udelay(1);
3005 }
3006
3007 if (timeout == DMA_TIMEOUT_VAL) {
3008 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
3009 ret = -ETIMEDOUT;
3010 }
3011
3012 dma_ctrl = 0;
3013 for (i = 0; i < priv->hw_params->rx_queues; i++)
3014 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3015 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3016 reg &= ~dma_ctrl;
3017 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3018
3019 dma_ctrl = 0;
3020 for (i = 0; i < priv->hw_params->tx_queues; i++)
3021 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3022 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3023 reg &= ~dma_ctrl;
3024 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3025
3026 return ret;
3027}
3028
3029static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
3030{
3031 struct netdev_queue *txq;
3032 int i;
3033
3034 bcmgenet_fini_rx_napi(priv);
3035 bcmgenet_fini_tx_napi(priv);
3036
3037 for (i = 0; i < priv->num_tx_bds; i++)
3038 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
3039 priv->tx_cbs + i));
3040
3041 for (i = 0; i < priv->hw_params->tx_queues; i++) {
3042 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
3043 netdev_tx_reset_queue(txq);
3044 }
3045
3046 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
3047 netdev_tx_reset_queue(txq);
3048
3049 bcmgenet_free_rx_buffers(priv);
3050 kfree(priv->rx_cbs);
3051 kfree(priv->tx_cbs);
3052}
3053
3054/* init_edma: Initialize DMA control register */
3055static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
3056{
3057 int ret;
3058 unsigned int i;
3059 struct enet_cb *cb;
3060
3061 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3062
3063 /* Initialize common Rx ring structures */
3064 priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3065 priv->num_rx_bds = TOTAL_DESC;
3066 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3067 GFP_KERNEL);
3068 if (!priv->rx_cbs)
3069 return -ENOMEM;
3070
3071 for (i = 0; i < priv->num_rx_bds; i++) {
3072 cb = priv->rx_cbs + i;
3073 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3074 }
3075
3076 /* Initialize common TX ring structures */
3077 priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3078 priv->num_tx_bds = TOTAL_DESC;
3079 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3080 GFP_KERNEL);
3081 if (!priv->tx_cbs) {
3082 kfree(priv->rx_cbs);
3083 return -ENOMEM;
3084 }
3085
3086 for (i = 0; i < priv->num_tx_bds; i++) {
3087 cb = priv->tx_cbs + i;
3088 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3089 }
3090
3091 /* Init rDma */
3092 bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3093 DMA_SCB_BURST_SIZE);
3094
3095 /* Initialize Rx queues */
3096 ret = bcmgenet_init_rx_queues(priv->dev);
3097 if (ret) {
3098 netdev_err(priv->dev, "failed to initialize Rx queues\n");
3099 bcmgenet_free_rx_buffers(priv);
3100 kfree(priv->rx_cbs);
3101 kfree(priv->tx_cbs);
3102 return ret;
3103 }
3104
3105 /* Init tDma */
3106 bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3107 DMA_SCB_BURST_SIZE);
3108
3109 /* Initialize Tx queues */
3110 bcmgenet_init_tx_queues(priv->dev);
3111
3112 return 0;
3113}
3114
3115/* Interrupt bottom half */
3116static void bcmgenet_irq_task(struct work_struct *work)
3117{
3118 unsigned int status;
3119 struct bcmgenet_priv *priv = container_of(
3120 work, struct bcmgenet_priv, bcmgenet_irq_work);
3121
3122 netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3123
3124 spin_lock_irq(&priv->lock);
3125 status = priv->irq0_stat;
3126 priv->irq0_stat = 0;
3127 spin_unlock_irq(&priv->lock);
3128
3129 if (status & UMAC_IRQ_PHY_DET_R &&
3130 priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3131 phy_init_hw(priv->dev->phydev);
3132 genphy_config_aneg(priv->dev->phydev);
3133 }
3134
3135 /* Link UP/DOWN event */
3136 if (status & UMAC_IRQ_LINK_EVENT)
3137 phy_mac_interrupt(priv->dev->phydev);
3138
3139}
3140
3141/* bcmgenet_isr1: handle Rx and Tx priority queues */
3142static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3143{
3144 struct bcmgenet_priv *priv = dev_id;
3145 struct bcmgenet_rx_ring *rx_ring;
3146 struct bcmgenet_tx_ring *tx_ring;
3147 unsigned int index, status;
3148
3149 /* Read irq status */
3150 status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3151 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3152
3153 /* clear interrupts */
3154 bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3155
3156 netif_dbg(priv, intr, priv->dev,
3157 "%s: IRQ=0x%x\n", __func__, status);
3158
3159 /* Check Rx priority queue interrupts */
3160 for (index = 0; index < priv->hw_params->rx_queues; index++) {
3161 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3162 continue;
3163
3164 rx_ring = &priv->rx_rings[index];
3165 rx_ring->dim.event_ctr++;
3166
3167 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3168 rx_ring->int_disable(rx_ring);
3169 __napi_schedule_irqoff(&rx_ring->napi);
3170 }
3171 }
3172
3173 /* Check Tx priority queue interrupts */
3174 for (index = 0; index < priv->hw_params->tx_queues; index++) {
3175 if (!(status & BIT(index)))
3176 continue;
3177
3178 tx_ring = &priv->tx_rings[index];
3179
3180 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3181 tx_ring->int_disable(tx_ring);
3182 __napi_schedule_irqoff(&tx_ring->napi);
3183 }
3184 }
3185
3186 return IRQ_HANDLED;
3187}
3188
3189/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3190static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3191{
3192 struct bcmgenet_priv *priv = dev_id;
3193 struct bcmgenet_rx_ring *rx_ring;
3194 struct bcmgenet_tx_ring *tx_ring;
3195 unsigned int status;
3196 unsigned long flags;
3197
3198 /* Read irq status */
3199 status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3200 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3201
3202 /* clear interrupts */
3203 bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3204
3205 netif_dbg(priv, intr, priv->dev,
3206 "IRQ=0x%x\n", status);
3207
3208 if (status & UMAC_IRQ_RXDMA_DONE) {
3209 rx_ring = &priv->rx_rings[DESC_INDEX];
3210 rx_ring->dim.event_ctr++;
3211
3212 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3213 rx_ring->int_disable(rx_ring);
3214 __napi_schedule_irqoff(&rx_ring->napi);
3215 }
3216 }
3217
3218 if (status & UMAC_IRQ_TXDMA_DONE) {
3219 tx_ring = &priv->tx_rings[DESC_INDEX];
3220
3221 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3222 tx_ring->int_disable(tx_ring);
3223 __napi_schedule_irqoff(&tx_ring->napi);
3224 }
3225 }
3226
3227 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3228 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3229 wake_up(&priv->wq);
3230 }
3231
3232 /* all other interested interrupts handled in bottom half */
3233 status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3234 if (status) {
3235 /* Save irq status for bottom-half processing. */
3236 spin_lock_irqsave(&priv->lock, flags);
3237 priv->irq0_stat |= status;
3238 spin_unlock_irqrestore(&priv->lock, flags);
3239
3240 schedule_work(&priv->bcmgenet_irq_work);
3241 }
3242
3243 return IRQ_HANDLED;
3244}
3245
3246static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3247{
3248 /* Acknowledge the interrupt */
3249 return IRQ_HANDLED;
3250}
3251
3252static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3253{
3254 u32 reg;
3255
3256 reg = bcmgenet_rbuf_ctrl_get(priv);
3257 reg |= BIT(1);
3258 bcmgenet_rbuf_ctrl_set(priv, reg);
3259 udelay(10);
3260
3261 reg &= ~BIT(1);
3262 bcmgenet_rbuf_ctrl_set(priv, reg);
3263 udelay(10);
3264}
3265
3266static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3267 const unsigned char *addr)
3268{
3269 bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3270 bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3271}
3272
3273static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3274 unsigned char *addr)
3275{
3276 u32 addr_tmp;
3277
3278 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3279 put_unaligned_be32(addr_tmp, &addr[0]);
3280 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3281 put_unaligned_be16(addr_tmp, &addr[4]);
3282}
3283
3284/* Returns a reusable dma control register value */
3285static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3286{
3287 unsigned int i;
3288 u32 reg;
3289 u32 dma_ctrl;
3290
3291 /* disable DMA */
3292 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3293 for (i = 0; i < priv->hw_params->tx_queues; i++)
3294 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3295 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3296 reg &= ~dma_ctrl;
3297 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3298
3299 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3300 for (i = 0; i < priv->hw_params->rx_queues; i++)
3301 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3302 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3303 reg &= ~dma_ctrl;
3304 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3305
3306 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3307 udelay(10);
3308 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3309
3310 return dma_ctrl;
3311}
3312
3313static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3314{
3315 u32 reg;
3316
3317 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3318 reg |= dma_ctrl;
3319 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3320
3321 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3322 reg |= dma_ctrl;
3323 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3324}
3325
3326static void bcmgenet_netif_start(struct net_device *dev)
3327{
3328 struct bcmgenet_priv *priv = netdev_priv(dev);
3329
3330 /* Start the network engine */
3331 bcmgenet_set_rx_mode(dev);
3332 bcmgenet_enable_rx_napi(priv);
3333
3334 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3335
3336 bcmgenet_enable_tx_napi(priv);
3337
3338 /* Monitor link interrupts now */
3339 bcmgenet_link_intr_enable(priv);
3340
3341 phy_start(dev->phydev);
3342}
3343
3344static int bcmgenet_open(struct net_device *dev)
3345{
3346 struct bcmgenet_priv *priv = netdev_priv(dev);
3347 unsigned long dma_ctrl;
3348 int ret;
3349
3350 netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3351
3352 /* Turn on the clock */
3353 clk_prepare_enable(priv->clk);
3354
3355 /* If this is an internal GPHY, power it back on now, before UniMAC is
3356 * brought out of reset as absolutely no UniMAC activity is allowed
3357 */
3358 if (priv->internal_phy)
3359 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3360
3361 /* take MAC out of reset */
3362 bcmgenet_umac_reset(priv);
3363
3364 init_umac(priv);
3365
3366 /* Apply features again in case we changed them while interface was
3367 * down
3368 */
3369 bcmgenet_set_features(dev, dev->features);
3370
3371 bcmgenet_set_hw_addr(priv, dev->dev_addr);
3372
3373 /* Disable RX/TX DMA and flush TX queues */
3374 dma_ctrl = bcmgenet_dma_disable(priv);
3375
3376 /* Reinitialize TDMA and RDMA and SW housekeeping */
3377 ret = bcmgenet_init_dma(priv);
3378 if (ret) {
3379 netdev_err(dev, "failed to initialize DMA\n");
3380 goto err_clk_disable;
3381 }
3382
3383 /* Always enable ring 16 - descriptor ring */
3384 bcmgenet_enable_dma(priv, dma_ctrl);
3385
3386 /* HFB init */
3387 bcmgenet_hfb_init(priv);
3388
3389 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3390 dev->name, priv);
3391 if (ret < 0) {
3392 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3393 goto err_fini_dma;
3394 }
3395
3396 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3397 dev->name, priv);
3398 if (ret < 0) {
3399 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3400 goto err_irq0;
3401 }
3402
3403 ret = bcmgenet_mii_probe(dev);
3404 if (ret) {
3405 netdev_err(dev, "failed to connect to PHY\n");
3406 goto err_irq1;
3407 }
3408
3409 bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
3410
3411 bcmgenet_netif_start(dev);
3412
3413 netif_tx_start_all_queues(dev);
3414
3415 return 0;
3416
3417err_irq1:
3418 free_irq(priv->irq1, priv);
3419err_irq0:
3420 free_irq(priv->irq0, priv);
3421err_fini_dma:
3422 bcmgenet_dma_teardown(priv);
3423 bcmgenet_fini_dma(priv);
3424err_clk_disable:
3425 if (priv->internal_phy)
3426 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3427 clk_disable_unprepare(priv->clk);
3428 return ret;
3429}
3430
3431static void bcmgenet_netif_stop(struct net_device *dev, bool stop_phy)
3432{
3433 struct bcmgenet_priv *priv = netdev_priv(dev);
3434
3435 bcmgenet_disable_tx_napi(priv);
3436 netif_tx_disable(dev);
3437
3438 /* Disable MAC receive */
3439 umac_enable_set(priv, CMD_RX_EN, false);
3440
3441 bcmgenet_dma_teardown(priv);
3442
3443 /* Disable MAC transmit. TX DMA disabled must be done before this */
3444 umac_enable_set(priv, CMD_TX_EN, false);
3445
3446 if (stop_phy)
3447 phy_stop(dev->phydev);
3448 bcmgenet_disable_rx_napi(priv);
3449 bcmgenet_intr_disable(priv);
3450
3451 /* Wait for pending work items to complete. Since interrupts are
3452 * disabled no new work will be scheduled.
3453 */
3454 cancel_work_sync(&priv->bcmgenet_irq_work);
3455
3456 /* tx reclaim */
3457 bcmgenet_tx_reclaim_all(dev);
3458 bcmgenet_fini_dma(priv);
3459}
3460
3461static int bcmgenet_close(struct net_device *dev)
3462{
3463 struct bcmgenet_priv *priv = netdev_priv(dev);
3464 int ret = 0;
3465
3466 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3467
3468 bcmgenet_netif_stop(dev, false);
3469
3470 /* Really kill the PHY state machine and disconnect from it */
3471 phy_disconnect(dev->phydev);
3472
3473 free_irq(priv->irq0, priv);
3474 free_irq(priv->irq1, priv);
3475
3476 if (priv->internal_phy)
3477 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3478
3479 clk_disable_unprepare(priv->clk);
3480
3481 return ret;
3482}
3483
3484static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3485{
3486 struct bcmgenet_priv *priv = ring->priv;
3487 u32 p_index, c_index, intsts, intmsk;
3488 struct netdev_queue *txq;
3489 unsigned int free_bds;
3490 bool txq_stopped;
3491
3492 if (!netif_msg_tx_err(priv))
3493 return;
3494
3495 txq = netdev_get_tx_queue(priv->dev, ring->queue);
3496
3497 spin_lock(&ring->lock);
3498 if (ring->index == DESC_INDEX) {
3499 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3500 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3501 } else {
3502 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3503 intmsk = 1 << ring->index;
3504 }
3505 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3506 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3507 txq_stopped = netif_tx_queue_stopped(txq);
3508 free_bds = ring->free_bds;
3509 spin_unlock(&ring->lock);
3510
3511 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3512 "TX queue status: %s, interrupts: %s\n"
3513 "(sw)free_bds: %d (sw)size: %d\n"
3514 "(sw)p_index: %d (hw)p_index: %d\n"
3515 "(sw)c_index: %d (hw)c_index: %d\n"
3516 "(sw)clean_p: %d (sw)write_p: %d\n"
3517 "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3518 ring->index, ring->queue,
3519 txq_stopped ? "stopped" : "active",
3520 intsts & intmsk ? "enabled" : "disabled",
3521 free_bds, ring->size,
3522 ring->prod_index, p_index & DMA_P_INDEX_MASK,
3523 ring->c_index, c_index & DMA_C_INDEX_MASK,
3524 ring->clean_ptr, ring->write_ptr,
3525 ring->cb_ptr, ring->end_ptr);
3526}
3527
3528static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3529{
3530 struct bcmgenet_priv *priv = netdev_priv(dev);
3531 u32 int0_enable = 0;
3532 u32 int1_enable = 0;
3533 unsigned int q;
3534
3535 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3536
3537 for (q = 0; q < priv->hw_params->tx_queues; q++)
3538 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3539 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3540
3541 bcmgenet_tx_reclaim_all(dev);
3542
3543 for (q = 0; q < priv->hw_params->tx_queues; q++)
3544 int1_enable |= (1 << q);
3545
3546 int0_enable = UMAC_IRQ_TXDMA_DONE;
3547
3548 /* Re-enable TX interrupts if disabled */
3549 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3550 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3551
3552 netif_trans_update(dev);
3553
3554 dev->stats.tx_errors++;
3555
3556 netif_tx_wake_all_queues(dev);
3557}
3558
3559#define MAX_MDF_FILTER 17
3560
3561static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3562 const unsigned char *addr,
3563 int *i)
3564{
3565 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3566 UMAC_MDF_ADDR + (*i * 4));
3567 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3568 addr[4] << 8 | addr[5],
3569 UMAC_MDF_ADDR + ((*i + 1) * 4));
3570 *i += 2;
3571}
3572
3573static void bcmgenet_set_rx_mode(struct net_device *dev)
3574{
3575 struct bcmgenet_priv *priv = netdev_priv(dev);
3576 struct netdev_hw_addr *ha;
3577 int i, nfilter;
3578 u32 reg;
3579
3580 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3581
3582 /* Number of filters needed */
3583 nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3584
3585 /*
3586 * Turn on promicuous mode for three scenarios
3587 * 1. IFF_PROMISC flag is set
3588 * 2. IFF_ALLMULTI flag is set
3589 * 3. The number of filters needed exceeds the number filters
3590 * supported by the hardware.
3591 */
3592 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3593 if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3594 (nfilter > MAX_MDF_FILTER)) {
3595 reg |= CMD_PROMISC;
3596 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3597 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3598 return;
3599 } else {
3600 reg &= ~CMD_PROMISC;
3601 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3602 }
3603
3604 /* update MDF filter */
3605 i = 0;
3606 /* Broadcast */
3607 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3608 /* my own address.*/
3609 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3610
3611 /* Unicast */
3612 netdev_for_each_uc_addr(ha, dev)
3613 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3614
3615 /* Multicast */
3616 netdev_for_each_mc_addr(ha, dev)
3617 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3618
3619 /* Enable filters */
3620 reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3621 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3622}
3623
3624/* Set the hardware MAC address. */
3625static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3626{
3627 struct sockaddr *addr = p;
3628
3629 /* Setting the MAC address at the hardware level is not possible
3630 * without disabling the UniMAC RX/TX enable bits.
3631 */
3632 if (netif_running(dev))
3633 return -EBUSY;
3634
3635 eth_hw_addr_set(dev, addr->sa_data);
3636
3637 return 0;
3638}
3639
3640static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3641{
3642 struct bcmgenet_priv *priv = netdev_priv(dev);
3643 unsigned long tx_bytes = 0, tx_packets = 0;
3644 unsigned long rx_bytes = 0, rx_packets = 0;
3645 unsigned long rx_errors = 0, rx_dropped = 0;
3646 struct bcmgenet_tx_ring *tx_ring;
3647 struct bcmgenet_rx_ring *rx_ring;
3648 unsigned int q;
3649
3650 for (q = 0; q < priv->hw_params->tx_queues; q++) {
3651 tx_ring = &priv->tx_rings[q];
3652 tx_bytes += tx_ring->bytes;
3653 tx_packets += tx_ring->packets;
3654 }
3655 tx_ring = &priv->tx_rings[DESC_INDEX];
3656 tx_bytes += tx_ring->bytes;
3657 tx_packets += tx_ring->packets;
3658
3659 for (q = 0; q < priv->hw_params->rx_queues; q++) {
3660 rx_ring = &priv->rx_rings[q];
3661
3662 rx_bytes += rx_ring->bytes;
3663 rx_packets += rx_ring->packets;
3664 rx_errors += rx_ring->errors;
3665 rx_dropped += rx_ring->dropped;
3666 }
3667 rx_ring = &priv->rx_rings[DESC_INDEX];
3668 rx_bytes += rx_ring->bytes;
3669 rx_packets += rx_ring->packets;
3670 rx_errors += rx_ring->errors;
3671 rx_dropped += rx_ring->dropped;
3672
3673 dev->stats.tx_bytes = tx_bytes;
3674 dev->stats.tx_packets = tx_packets;
3675 dev->stats.rx_bytes = rx_bytes;
3676 dev->stats.rx_packets = rx_packets;
3677 dev->stats.rx_errors = rx_errors;
3678 dev->stats.rx_missed_errors = rx_errors;
3679 dev->stats.rx_dropped = rx_dropped;
3680 return &dev->stats;
3681}
3682
3683static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3684{
3685 struct bcmgenet_priv *priv = netdev_priv(dev);
3686
3687 if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3688 priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3689 return -EOPNOTSUPP;
3690
3691 if (new_carrier)
3692 netif_carrier_on(dev);
3693 else
3694 netif_carrier_off(dev);
3695
3696 return 0;
3697}
3698
3699static const struct net_device_ops bcmgenet_netdev_ops = {
3700 .ndo_open = bcmgenet_open,
3701 .ndo_stop = bcmgenet_close,
3702 .ndo_start_xmit = bcmgenet_xmit,
3703 .ndo_tx_timeout = bcmgenet_timeout,
3704 .ndo_set_rx_mode = bcmgenet_set_rx_mode,
3705 .ndo_set_mac_address = bcmgenet_set_mac_addr,
3706 .ndo_eth_ioctl = phy_do_ioctl_running,
3707 .ndo_set_features = bcmgenet_set_features,
3708 .ndo_get_stats = bcmgenet_get_stats,
3709 .ndo_change_carrier = bcmgenet_change_carrier,
3710};
3711
3712/* Array of GENET hardware parameters/characteristics */
3713static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3714 [GENET_V1] = {
3715 .tx_queues = 0,
3716 .tx_bds_per_q = 0,
3717 .rx_queues = 0,
3718 .rx_bds_per_q = 0,
3719 .bp_in_en_shift = 16,
3720 .bp_in_mask = 0xffff,
3721 .hfb_filter_cnt = 16,
3722 .qtag_mask = 0x1F,
3723 .hfb_offset = 0x1000,
3724 .rdma_offset = 0x2000,
3725 .tdma_offset = 0x3000,
3726 .words_per_bd = 2,
3727 },
3728 [GENET_V2] = {
3729 .tx_queues = 4,
3730 .tx_bds_per_q = 32,
3731 .rx_queues = 0,
3732 .rx_bds_per_q = 0,
3733 .bp_in_en_shift = 16,
3734 .bp_in_mask = 0xffff,
3735 .hfb_filter_cnt = 16,
3736 .qtag_mask = 0x1F,
3737 .tbuf_offset = 0x0600,
3738 .hfb_offset = 0x1000,
3739 .hfb_reg_offset = 0x2000,
3740 .rdma_offset = 0x3000,
3741 .tdma_offset = 0x4000,
3742 .words_per_bd = 2,
3743 .flags = GENET_HAS_EXT,
3744 },
3745 [GENET_V3] = {
3746 .tx_queues = 4,
3747 .tx_bds_per_q = 32,
3748 .rx_queues = 0,
3749 .rx_bds_per_q = 0,
3750 .bp_in_en_shift = 17,
3751 .bp_in_mask = 0x1ffff,
3752 .hfb_filter_cnt = 48,
3753 .hfb_filter_size = 128,
3754 .qtag_mask = 0x3F,
3755 .tbuf_offset = 0x0600,
3756 .hfb_offset = 0x8000,
3757 .hfb_reg_offset = 0xfc00,
3758 .rdma_offset = 0x10000,
3759 .tdma_offset = 0x11000,
3760 .words_per_bd = 2,
3761 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3762 GENET_HAS_MOCA_LINK_DET,
3763 },
3764 [GENET_V4] = {
3765 .tx_queues = 4,
3766 .tx_bds_per_q = 32,
3767 .rx_queues = 0,
3768 .rx_bds_per_q = 0,
3769 .bp_in_en_shift = 17,
3770 .bp_in_mask = 0x1ffff,
3771 .hfb_filter_cnt = 48,
3772 .hfb_filter_size = 128,
3773 .qtag_mask = 0x3F,
3774 .tbuf_offset = 0x0600,
3775 .hfb_offset = 0x8000,
3776 .hfb_reg_offset = 0xfc00,
3777 .rdma_offset = 0x2000,
3778 .tdma_offset = 0x4000,
3779 .words_per_bd = 3,
3780 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3781 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3782 },
3783 [GENET_V5] = {
3784 .tx_queues = 4,
3785 .tx_bds_per_q = 32,
3786 .rx_queues = 0,
3787 .rx_bds_per_q = 0,
3788 .bp_in_en_shift = 17,
3789 .bp_in_mask = 0x1ffff,
3790 .hfb_filter_cnt = 48,
3791 .hfb_filter_size = 128,
3792 .qtag_mask = 0x3F,
3793 .tbuf_offset = 0x0600,
3794 .hfb_offset = 0x8000,
3795 .hfb_reg_offset = 0xfc00,
3796 .rdma_offset = 0x2000,
3797 .tdma_offset = 0x4000,
3798 .words_per_bd = 3,
3799 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3800 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3801 },
3802};
3803
3804/* Infer hardware parameters from the detected GENET version */
3805static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3806{
3807 struct bcmgenet_hw_params *params;
3808 u32 reg;
3809 u8 major;
3810 u16 gphy_rev;
3811
3812 if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3813 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3814 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3815 } else if (GENET_IS_V3(priv)) {
3816 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3817 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3818 } else if (GENET_IS_V2(priv)) {
3819 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3820 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3821 } else if (GENET_IS_V1(priv)) {
3822 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3823 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3824 }
3825
3826 /* enum genet_version starts at 1 */
3827 priv->hw_params = &bcmgenet_hw_params[priv->version];
3828 params = priv->hw_params;
3829
3830 /* Read GENET HW version */
3831 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3832 major = (reg >> 24 & 0x0f);
3833 if (major == 6)
3834 major = 5;
3835 else if (major == 5)
3836 major = 4;
3837 else if (major == 0)
3838 major = 1;
3839 if (major != priv->version) {
3840 dev_err(&priv->pdev->dev,
3841 "GENET version mismatch, got: %d, configured for: %d\n",
3842 major, priv->version);
3843 }
3844
3845 /* Print the GENET core version */
3846 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3847 major, (reg >> 16) & 0x0f, reg & 0xffff);
3848
3849 /* Store the integrated PHY revision for the MDIO probing function
3850 * to pass this information to the PHY driver. The PHY driver expects
3851 * to find the PHY major revision in bits 15:8 while the GENET register
3852 * stores that information in bits 7:0, account for that.
3853 *
3854 * On newer chips, starting with PHY revision G0, a new scheme is
3855 * deployed similar to the Starfighter 2 switch with GPHY major
3856 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3857 * is reserved as well as special value 0x01ff, we have a small
3858 * heuristic to check for the new GPHY revision and re-arrange things
3859 * so the GPHY driver is happy.
3860 */
3861 gphy_rev = reg & 0xffff;
3862
3863 if (GENET_IS_V5(priv)) {
3864 /* The EPHY revision should come from the MDIO registers of
3865 * the PHY not from GENET.
3866 */
3867 if (gphy_rev != 0) {
3868 pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3869 gphy_rev);
3870 }
3871 /* This is reserved so should require special treatment */
3872 } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3873 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3874 return;
3875 /* This is the good old scheme, just GPHY major, no minor nor patch */
3876 } else if ((gphy_rev & 0xf0) != 0) {
3877 priv->gphy_rev = gphy_rev << 8;
3878 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3879 } else if ((gphy_rev & 0xff00) != 0) {
3880 priv->gphy_rev = gphy_rev;
3881 }
3882
3883#ifdef CONFIG_PHYS_ADDR_T_64BIT
3884 if (!(params->flags & GENET_HAS_40BITS))
3885 pr_warn("GENET does not support 40-bits PA\n");
3886#endif
3887
3888 pr_debug("Configuration for version: %d\n"
3889 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3890 "BP << en: %2d, BP msk: 0x%05x\n"
3891 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3892 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3893 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3894 "Words/BD: %d\n",
3895 priv->version,
3896 params->tx_queues, params->tx_bds_per_q,
3897 params->rx_queues, params->rx_bds_per_q,
3898 params->bp_in_en_shift, params->bp_in_mask,
3899 params->hfb_filter_cnt, params->qtag_mask,
3900 params->tbuf_offset, params->hfb_offset,
3901 params->hfb_reg_offset,
3902 params->rdma_offset, params->tdma_offset,
3903 params->words_per_bd);
3904}
3905
3906struct bcmgenet_plat_data {
3907 enum bcmgenet_version version;
3908 u32 dma_max_burst_length;
3909 bool ephy_16nm;
3910};
3911
3912static const struct bcmgenet_plat_data v1_plat_data = {
3913 .version = GENET_V1,
3914 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3915};
3916
3917static const struct bcmgenet_plat_data v2_plat_data = {
3918 .version = GENET_V2,
3919 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3920};
3921
3922static const struct bcmgenet_plat_data v3_plat_data = {
3923 .version = GENET_V3,
3924 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3925};
3926
3927static const struct bcmgenet_plat_data v4_plat_data = {
3928 .version = GENET_V4,
3929 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3930};
3931
3932static const struct bcmgenet_plat_data v5_plat_data = {
3933 .version = GENET_V5,
3934 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3935};
3936
3937static const struct bcmgenet_plat_data bcm2711_plat_data = {
3938 .version = GENET_V5,
3939 .dma_max_burst_length = 0x08,
3940};
3941
3942static const struct bcmgenet_plat_data bcm7712_plat_data = {
3943 .version = GENET_V5,
3944 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3945 .ephy_16nm = true,
3946};
3947
3948static const struct of_device_id bcmgenet_match[] = {
3949 { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3950 { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3951 { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3952 { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3953 { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3954 { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3955 { .compatible = "brcm,bcm7712-genet-v5", .data = &bcm7712_plat_data },
3956 { },
3957};
3958MODULE_DEVICE_TABLE(of, bcmgenet_match);
3959
3960static int bcmgenet_probe(struct platform_device *pdev)
3961{
3962 struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3963 const struct bcmgenet_plat_data *pdata;
3964 struct bcmgenet_priv *priv;
3965 struct net_device *dev;
3966 unsigned int i;
3967 int err = -EIO;
3968
3969 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3970 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3971 GENET_MAX_MQ_CNT + 1);
3972 if (!dev) {
3973 dev_err(&pdev->dev, "can't allocate net device\n");
3974 return -ENOMEM;
3975 }
3976
3977 priv = netdev_priv(dev);
3978 priv->irq0 = platform_get_irq(pdev, 0);
3979 if (priv->irq0 < 0) {
3980 err = priv->irq0;
3981 goto err;
3982 }
3983 priv->irq1 = platform_get_irq(pdev, 1);
3984 if (priv->irq1 < 0) {
3985 err = priv->irq1;
3986 goto err;
3987 }
3988 priv->wol_irq = platform_get_irq_optional(pdev, 2);
3989 if (priv->wol_irq == -EPROBE_DEFER) {
3990 err = priv->wol_irq;
3991 goto err;
3992 }
3993
3994 priv->base = devm_platform_ioremap_resource(pdev, 0);
3995 if (IS_ERR(priv->base)) {
3996 err = PTR_ERR(priv->base);
3997 goto err;
3998 }
3999
4000 spin_lock_init(&priv->lock);
4001
4002 /* Set default pause parameters */
4003 priv->autoneg_pause = 1;
4004 priv->tx_pause = 1;
4005 priv->rx_pause = 1;
4006
4007 SET_NETDEV_DEV(dev, &pdev->dev);
4008 dev_set_drvdata(&pdev->dev, dev);
4009 dev->watchdog_timeo = 2 * HZ;
4010 dev->ethtool_ops = &bcmgenet_ethtool_ops;
4011 dev->netdev_ops = &bcmgenet_netdev_ops;
4012
4013 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
4014
4015 /* Set default features */
4016 dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
4017 NETIF_F_RXCSUM;
4018 dev->hw_features |= dev->features;
4019 dev->vlan_features |= dev->features;
4020
4021 /* Request the WOL interrupt and advertise suspend if available */
4022 priv->wol_irq_disabled = true;
4023 if (priv->wol_irq > 0) {
4024 err = devm_request_irq(&pdev->dev, priv->wol_irq,
4025 bcmgenet_wol_isr, 0, dev->name, priv);
4026 if (!err)
4027 device_set_wakeup_capable(&pdev->dev, 1);
4028 }
4029
4030 /* Set the needed headroom to account for any possible
4031 * features enabling/disabling at runtime
4032 */
4033 dev->needed_headroom += 64;
4034
4035 priv->dev = dev;
4036 priv->pdev = pdev;
4037
4038 pdata = device_get_match_data(&pdev->dev);
4039 if (pdata) {
4040 priv->version = pdata->version;
4041 priv->dma_max_burst_length = pdata->dma_max_burst_length;
4042 priv->ephy_16nm = pdata->ephy_16nm;
4043 } else {
4044 priv->version = pd->genet_version;
4045 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
4046 }
4047
4048 priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
4049 if (IS_ERR(priv->clk)) {
4050 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
4051 err = PTR_ERR(priv->clk);
4052 goto err;
4053 }
4054
4055 err = clk_prepare_enable(priv->clk);
4056 if (err)
4057 goto err;
4058
4059 bcmgenet_set_hw_params(priv);
4060
4061 err = -EIO;
4062 if (priv->hw_params->flags & GENET_HAS_40BITS)
4063 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4064 if (err)
4065 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4066 if (err)
4067 goto err_clk_disable;
4068
4069 /* Mii wait queue */
4070 init_waitqueue_head(&priv->wq);
4071 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4072 priv->rx_buf_len = RX_BUF_LENGTH;
4073 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4074
4075 priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4076 if (IS_ERR(priv->clk_wol)) {
4077 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4078 err = PTR_ERR(priv->clk_wol);
4079 goto err_clk_disable;
4080 }
4081
4082 priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4083 if (IS_ERR(priv->clk_eee)) {
4084 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4085 err = PTR_ERR(priv->clk_eee);
4086 goto err_clk_disable;
4087 }
4088
4089 /* If this is an internal GPHY, power it on now, before UniMAC is
4090 * brought out of reset as absolutely no UniMAC activity is allowed
4091 */
4092 if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4093 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4094
4095 if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4096 eth_hw_addr_set(dev, pd->mac_address);
4097 else
4098 if (device_get_ethdev_address(&pdev->dev, dev))
4099 if (has_acpi_companion(&pdev->dev)) {
4100 u8 addr[ETH_ALEN];
4101
4102 bcmgenet_get_hw_addr(priv, addr);
4103 eth_hw_addr_set(dev, addr);
4104 }
4105
4106 if (!is_valid_ether_addr(dev->dev_addr)) {
4107 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4108 eth_hw_addr_random(dev);
4109 }
4110
4111 reset_umac(priv);
4112
4113 err = bcmgenet_mii_init(dev);
4114 if (err)
4115 goto err_clk_disable;
4116
4117 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
4118 * just the ring 16 descriptor based TX
4119 */
4120 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4121 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4122
4123 /* Set default coalescing parameters */
4124 for (i = 0; i < priv->hw_params->rx_queues; i++)
4125 priv->rx_rings[i].rx_max_coalesced_frames = 1;
4126 priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4127
4128 /* libphy will determine the link state */
4129 netif_carrier_off(dev);
4130
4131 /* Turn off the main clock, WOL clock is handled separately */
4132 clk_disable_unprepare(priv->clk);
4133
4134 err = register_netdev(dev);
4135 if (err) {
4136 bcmgenet_mii_exit(dev);
4137 goto err;
4138 }
4139
4140 return err;
4141
4142err_clk_disable:
4143 clk_disable_unprepare(priv->clk);
4144err:
4145 free_netdev(dev);
4146 return err;
4147}
4148
4149static void bcmgenet_remove(struct platform_device *pdev)
4150{
4151 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4152
4153 dev_set_drvdata(&pdev->dev, NULL);
4154 unregister_netdev(priv->dev);
4155 bcmgenet_mii_exit(priv->dev);
4156 free_netdev(priv->dev);
4157}
4158
4159static void bcmgenet_shutdown(struct platform_device *pdev)
4160{
4161 bcmgenet_remove(pdev);
4162}
4163
4164#ifdef CONFIG_PM_SLEEP
4165static int bcmgenet_resume_noirq(struct device *d)
4166{
4167 struct net_device *dev = dev_get_drvdata(d);
4168 struct bcmgenet_priv *priv = netdev_priv(dev);
4169 int ret;
4170 u32 reg;
4171
4172 if (!netif_running(dev))
4173 return 0;
4174
4175 /* Turn on the clock */
4176 ret = clk_prepare_enable(priv->clk);
4177 if (ret)
4178 return ret;
4179
4180 if (device_may_wakeup(d) && priv->wolopts) {
4181 /* Account for Wake-on-LAN events and clear those events
4182 * (Some devices need more time between enabling the clocks
4183 * and the interrupt register reflecting the wake event so
4184 * read the register twice)
4185 */
4186 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4187 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4188 if (reg & UMAC_IRQ_WAKE_EVENT)
4189 pm_wakeup_event(&priv->pdev->dev, 0);
4190 }
4191
4192 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4193
4194 return 0;
4195}
4196
4197static int bcmgenet_resume(struct device *d)
4198{
4199 struct net_device *dev = dev_get_drvdata(d);
4200 struct bcmgenet_priv *priv = netdev_priv(dev);
4201 struct bcmgenet_rxnfc_rule *rule;
4202 unsigned long dma_ctrl;
4203 int ret;
4204
4205 if (!netif_running(dev))
4206 return 0;
4207
4208 /* From WOL-enabled suspend, switch to regular clock */
4209 if (device_may_wakeup(d) && priv->wolopts)
4210 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4211
4212 /* If this is an internal GPHY, power it back on now, before UniMAC is
4213 * brought out of reset as absolutely no UniMAC activity is allowed
4214 */
4215 if (priv->internal_phy)
4216 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4217
4218 bcmgenet_umac_reset(priv);
4219
4220 init_umac(priv);
4221
4222 phy_init_hw(dev->phydev);
4223
4224 /* Speed settings must be restored */
4225 genphy_config_aneg(dev->phydev);
4226 bcmgenet_mii_config(priv->dev, false);
4227
4228 /* Restore enabled features */
4229 bcmgenet_set_features(dev, dev->features);
4230
4231 bcmgenet_set_hw_addr(priv, dev->dev_addr);
4232
4233 /* Restore hardware filters */
4234 bcmgenet_hfb_clear(priv);
4235 list_for_each_entry(rule, &priv->rxnfc_list, list)
4236 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4237 bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4238
4239 /* Disable RX/TX DMA and flush TX queues */
4240 dma_ctrl = bcmgenet_dma_disable(priv);
4241
4242 /* Reinitialize TDMA and RDMA and SW housekeeping */
4243 ret = bcmgenet_init_dma(priv);
4244 if (ret) {
4245 netdev_err(dev, "failed to initialize DMA\n");
4246 goto out_clk_disable;
4247 }
4248
4249 /* Always enable ring 16 - descriptor ring */
4250 bcmgenet_enable_dma(priv, dma_ctrl);
4251
4252 if (!device_may_wakeup(d))
4253 phy_resume(dev->phydev);
4254
4255 bcmgenet_netif_start(dev);
4256
4257 netif_device_attach(dev);
4258
4259 return 0;
4260
4261out_clk_disable:
4262 if (priv->internal_phy)
4263 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4264 clk_disable_unprepare(priv->clk);
4265 return ret;
4266}
4267
4268static int bcmgenet_suspend(struct device *d)
4269{
4270 struct net_device *dev = dev_get_drvdata(d);
4271 struct bcmgenet_priv *priv = netdev_priv(dev);
4272
4273 if (!netif_running(dev))
4274 return 0;
4275
4276 netif_device_detach(dev);
4277
4278 bcmgenet_netif_stop(dev, true);
4279
4280 if (!device_may_wakeup(d))
4281 phy_suspend(dev->phydev);
4282
4283 /* Disable filtering */
4284 bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4285
4286 return 0;
4287}
4288
4289static int bcmgenet_suspend_noirq(struct device *d)
4290{
4291 struct net_device *dev = dev_get_drvdata(d);
4292 struct bcmgenet_priv *priv = netdev_priv(dev);
4293 int ret = 0;
4294
4295 if (!netif_running(dev))
4296 return 0;
4297
4298 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
4299 if (device_may_wakeup(d) && priv->wolopts)
4300 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4301 else if (priv->internal_phy)
4302 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4303
4304 /* Let the framework handle resumption and leave the clocks on */
4305 if (ret)
4306 return ret;
4307
4308 /* Turn off the clocks */
4309 clk_disable_unprepare(priv->clk);
4310
4311 return 0;
4312}
4313#else
4314#define bcmgenet_suspend NULL
4315#define bcmgenet_suspend_noirq NULL
4316#define bcmgenet_resume NULL
4317#define bcmgenet_resume_noirq NULL
4318#endif /* CONFIG_PM_SLEEP */
4319
4320static const struct dev_pm_ops bcmgenet_pm_ops = {
4321 .suspend = bcmgenet_suspend,
4322 .suspend_noirq = bcmgenet_suspend_noirq,
4323 .resume = bcmgenet_resume,
4324 .resume_noirq = bcmgenet_resume_noirq,
4325};
4326
4327static const struct acpi_device_id genet_acpi_match[] = {
4328 { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4329 { },
4330};
4331MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4332
4333static struct platform_driver bcmgenet_driver = {
4334 .probe = bcmgenet_probe,
4335 .remove_new = bcmgenet_remove,
4336 .shutdown = bcmgenet_shutdown,
4337 .driver = {
4338 .name = "bcmgenet",
4339 .of_match_table = bcmgenet_match,
4340 .pm = &bcmgenet_pm_ops,
4341 .acpi_match_table = genet_acpi_match,
4342 },
4343};
4344module_platform_driver(bcmgenet_driver);
4345
4346MODULE_AUTHOR("Broadcom Corporation");
4347MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4348MODULE_ALIAS("platform:bcmgenet");
4349MODULE_LICENSE("GPL");
4350MODULE_SOFTDEP("pre: mdio-bcm-unimac");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Broadcom GENET (Gigabit Ethernet) controller driver
4 *
5 * Copyright (c) 2014-2020 Broadcom
6 */
7
8#define pr_fmt(fmt) "bcmgenet: " fmt
9
10#include <linux/acpi.h>
11#include <linux/kernel.h>
12#include <linux/module.h>
13#include <linux/sched.h>
14#include <linux/types.h>
15#include <linux/fcntl.h>
16#include <linux/interrupt.h>
17#include <linux/string.h>
18#include <linux/if_ether.h>
19#include <linux/init.h>
20#include <linux/errno.h>
21#include <linux/delay.h>
22#include <linux/platform_device.h>
23#include <linux/dma-mapping.h>
24#include <linux/pm.h>
25#include <linux/clk.h>
26#include <net/arp.h>
27
28#include <linux/mii.h>
29#include <linux/ethtool.h>
30#include <linux/netdevice.h>
31#include <linux/inetdevice.h>
32#include <linux/etherdevice.h>
33#include <linux/skbuff.h>
34#include <linux/in.h>
35#include <linux/ip.h>
36#include <linux/ipv6.h>
37#include <linux/phy.h>
38#include <linux/platform_data/bcmgenet.h>
39
40#include <asm/unaligned.h>
41
42#include "bcmgenet.h"
43
44/* Maximum number of hardware queues, downsized if needed */
45#define GENET_MAX_MQ_CNT 4
46
47/* Default highest priority queue for multi queue support */
48#define GENET_Q0_PRIORITY 0
49
50#define GENET_Q16_RX_BD_CNT \
51 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52#define GENET_Q16_TX_BD_CNT \
53 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54
55#define RX_BUF_LENGTH 2048
56#define SKB_ALIGNMENT 32
57
58/* Tx/Rx DMA register offset, skip 256 descriptors */
59#define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
60#define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
61
62#define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
63 TOTAL_DESC * DMA_DESC_SIZE)
64
65#define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
66 TOTAL_DESC * DMA_DESC_SIZE)
67
68/* Forward declarations */
69static void bcmgenet_set_rx_mode(struct net_device *dev);
70
71static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72{
73 /* MIPS chips strapped for BE will automagically configure the
74 * peripheral registers for CPU-native byte order.
75 */
76 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77 __raw_writel(value, offset);
78 else
79 writel_relaxed(value, offset);
80}
81
82static inline u32 bcmgenet_readl(void __iomem *offset)
83{
84 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85 return __raw_readl(offset);
86 else
87 return readl_relaxed(offset);
88}
89
90static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91 void __iomem *d, u32 value)
92{
93 bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94}
95
96static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97 void __iomem *d,
98 dma_addr_t addr)
99{
100 bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101
102 /* Register writes to GISB bus can take couple hundred nanoseconds
103 * and are done for each packet, save these expensive writes unless
104 * the platform is explicitly configured for 64-bits/LPAE.
105 */
106#ifdef CONFIG_PHYS_ADDR_T_64BIT
107 if (priv->hw_params->flags & GENET_HAS_40BITS)
108 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109#endif
110}
111
112/* Combined address + length/status setter */
113static inline void dmadesc_set(struct bcmgenet_priv *priv,
114 void __iomem *d, dma_addr_t addr, u32 val)
115{
116 dmadesc_set_addr(priv, d, addr);
117 dmadesc_set_length_status(priv, d, val);
118}
119
120#define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
121
122#define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
123 NETIF_MSG_LINK)
124
125static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
126{
127 if (GENET_IS_V1(priv))
128 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
129 else
130 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
131}
132
133static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
134{
135 if (GENET_IS_V1(priv))
136 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
137 else
138 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
139}
140
141/* These macros are defined to deal with register map change
142 * between GENET1.1 and GENET2. Only those currently being used
143 * by driver are defined.
144 */
145static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
146{
147 if (GENET_IS_V1(priv))
148 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
149 else
150 return bcmgenet_readl(priv->base +
151 priv->hw_params->tbuf_offset + TBUF_CTRL);
152}
153
154static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
155{
156 if (GENET_IS_V1(priv))
157 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
158 else
159 bcmgenet_writel(val, priv->base +
160 priv->hw_params->tbuf_offset + TBUF_CTRL);
161}
162
163static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
164{
165 if (GENET_IS_V1(priv))
166 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
167 else
168 return bcmgenet_readl(priv->base +
169 priv->hw_params->tbuf_offset + TBUF_BP_MC);
170}
171
172static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
173{
174 if (GENET_IS_V1(priv))
175 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
176 else
177 bcmgenet_writel(val, priv->base +
178 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179}
180
181/* RX/TX DMA register accessors */
182enum dma_reg {
183 DMA_RING_CFG = 0,
184 DMA_CTRL,
185 DMA_STATUS,
186 DMA_SCB_BURST_SIZE,
187 DMA_ARB_CTRL,
188 DMA_PRIORITY_0,
189 DMA_PRIORITY_1,
190 DMA_PRIORITY_2,
191 DMA_INDEX2RING_0,
192 DMA_INDEX2RING_1,
193 DMA_INDEX2RING_2,
194 DMA_INDEX2RING_3,
195 DMA_INDEX2RING_4,
196 DMA_INDEX2RING_5,
197 DMA_INDEX2RING_6,
198 DMA_INDEX2RING_7,
199 DMA_RING0_TIMEOUT,
200 DMA_RING1_TIMEOUT,
201 DMA_RING2_TIMEOUT,
202 DMA_RING3_TIMEOUT,
203 DMA_RING4_TIMEOUT,
204 DMA_RING5_TIMEOUT,
205 DMA_RING6_TIMEOUT,
206 DMA_RING7_TIMEOUT,
207 DMA_RING8_TIMEOUT,
208 DMA_RING9_TIMEOUT,
209 DMA_RING10_TIMEOUT,
210 DMA_RING11_TIMEOUT,
211 DMA_RING12_TIMEOUT,
212 DMA_RING13_TIMEOUT,
213 DMA_RING14_TIMEOUT,
214 DMA_RING15_TIMEOUT,
215 DMA_RING16_TIMEOUT,
216};
217
218static const u8 bcmgenet_dma_regs_v3plus[] = {
219 [DMA_RING_CFG] = 0x00,
220 [DMA_CTRL] = 0x04,
221 [DMA_STATUS] = 0x08,
222 [DMA_SCB_BURST_SIZE] = 0x0C,
223 [DMA_ARB_CTRL] = 0x2C,
224 [DMA_PRIORITY_0] = 0x30,
225 [DMA_PRIORITY_1] = 0x34,
226 [DMA_PRIORITY_2] = 0x38,
227 [DMA_RING0_TIMEOUT] = 0x2C,
228 [DMA_RING1_TIMEOUT] = 0x30,
229 [DMA_RING2_TIMEOUT] = 0x34,
230 [DMA_RING3_TIMEOUT] = 0x38,
231 [DMA_RING4_TIMEOUT] = 0x3c,
232 [DMA_RING5_TIMEOUT] = 0x40,
233 [DMA_RING6_TIMEOUT] = 0x44,
234 [DMA_RING7_TIMEOUT] = 0x48,
235 [DMA_RING8_TIMEOUT] = 0x4c,
236 [DMA_RING9_TIMEOUT] = 0x50,
237 [DMA_RING10_TIMEOUT] = 0x54,
238 [DMA_RING11_TIMEOUT] = 0x58,
239 [DMA_RING12_TIMEOUT] = 0x5c,
240 [DMA_RING13_TIMEOUT] = 0x60,
241 [DMA_RING14_TIMEOUT] = 0x64,
242 [DMA_RING15_TIMEOUT] = 0x68,
243 [DMA_RING16_TIMEOUT] = 0x6C,
244 [DMA_INDEX2RING_0] = 0x70,
245 [DMA_INDEX2RING_1] = 0x74,
246 [DMA_INDEX2RING_2] = 0x78,
247 [DMA_INDEX2RING_3] = 0x7C,
248 [DMA_INDEX2RING_4] = 0x80,
249 [DMA_INDEX2RING_5] = 0x84,
250 [DMA_INDEX2RING_6] = 0x88,
251 [DMA_INDEX2RING_7] = 0x8C,
252};
253
254static const u8 bcmgenet_dma_regs_v2[] = {
255 [DMA_RING_CFG] = 0x00,
256 [DMA_CTRL] = 0x04,
257 [DMA_STATUS] = 0x08,
258 [DMA_SCB_BURST_SIZE] = 0x0C,
259 [DMA_ARB_CTRL] = 0x30,
260 [DMA_PRIORITY_0] = 0x34,
261 [DMA_PRIORITY_1] = 0x38,
262 [DMA_PRIORITY_2] = 0x3C,
263 [DMA_RING0_TIMEOUT] = 0x2C,
264 [DMA_RING1_TIMEOUT] = 0x30,
265 [DMA_RING2_TIMEOUT] = 0x34,
266 [DMA_RING3_TIMEOUT] = 0x38,
267 [DMA_RING4_TIMEOUT] = 0x3c,
268 [DMA_RING5_TIMEOUT] = 0x40,
269 [DMA_RING6_TIMEOUT] = 0x44,
270 [DMA_RING7_TIMEOUT] = 0x48,
271 [DMA_RING8_TIMEOUT] = 0x4c,
272 [DMA_RING9_TIMEOUT] = 0x50,
273 [DMA_RING10_TIMEOUT] = 0x54,
274 [DMA_RING11_TIMEOUT] = 0x58,
275 [DMA_RING12_TIMEOUT] = 0x5c,
276 [DMA_RING13_TIMEOUT] = 0x60,
277 [DMA_RING14_TIMEOUT] = 0x64,
278 [DMA_RING15_TIMEOUT] = 0x68,
279 [DMA_RING16_TIMEOUT] = 0x6C,
280};
281
282static const u8 bcmgenet_dma_regs_v1[] = {
283 [DMA_CTRL] = 0x00,
284 [DMA_STATUS] = 0x04,
285 [DMA_SCB_BURST_SIZE] = 0x0C,
286 [DMA_ARB_CTRL] = 0x30,
287 [DMA_PRIORITY_0] = 0x34,
288 [DMA_PRIORITY_1] = 0x38,
289 [DMA_PRIORITY_2] = 0x3C,
290 [DMA_RING0_TIMEOUT] = 0x2C,
291 [DMA_RING1_TIMEOUT] = 0x30,
292 [DMA_RING2_TIMEOUT] = 0x34,
293 [DMA_RING3_TIMEOUT] = 0x38,
294 [DMA_RING4_TIMEOUT] = 0x3c,
295 [DMA_RING5_TIMEOUT] = 0x40,
296 [DMA_RING6_TIMEOUT] = 0x44,
297 [DMA_RING7_TIMEOUT] = 0x48,
298 [DMA_RING8_TIMEOUT] = 0x4c,
299 [DMA_RING9_TIMEOUT] = 0x50,
300 [DMA_RING10_TIMEOUT] = 0x54,
301 [DMA_RING11_TIMEOUT] = 0x58,
302 [DMA_RING12_TIMEOUT] = 0x5c,
303 [DMA_RING13_TIMEOUT] = 0x60,
304 [DMA_RING14_TIMEOUT] = 0x64,
305 [DMA_RING15_TIMEOUT] = 0x68,
306 [DMA_RING16_TIMEOUT] = 0x6C,
307};
308
309/* Set at runtime once bcmgenet version is known */
310static const u8 *bcmgenet_dma_regs;
311
312static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
313{
314 return netdev_priv(dev_get_drvdata(dev));
315}
316
317static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
318 enum dma_reg r)
319{
320 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
321 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
322}
323
324static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
325 u32 val, enum dma_reg r)
326{
327 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
328 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
329}
330
331static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
332 enum dma_reg r)
333{
334 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
335 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
336}
337
338static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
339 u32 val, enum dma_reg r)
340{
341 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
342 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
343}
344
345/* RDMA/TDMA ring registers and accessors
346 * we merge the common fields and just prefix with T/D the registers
347 * having different meaning depending on the direction
348 */
349enum dma_ring_reg {
350 TDMA_READ_PTR = 0,
351 RDMA_WRITE_PTR = TDMA_READ_PTR,
352 TDMA_READ_PTR_HI,
353 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
354 TDMA_CONS_INDEX,
355 RDMA_PROD_INDEX = TDMA_CONS_INDEX,
356 TDMA_PROD_INDEX,
357 RDMA_CONS_INDEX = TDMA_PROD_INDEX,
358 DMA_RING_BUF_SIZE,
359 DMA_START_ADDR,
360 DMA_START_ADDR_HI,
361 DMA_END_ADDR,
362 DMA_END_ADDR_HI,
363 DMA_MBUF_DONE_THRESH,
364 TDMA_FLOW_PERIOD,
365 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
366 TDMA_WRITE_PTR,
367 RDMA_READ_PTR = TDMA_WRITE_PTR,
368 TDMA_WRITE_PTR_HI,
369 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
370};
371
372/* GENET v4 supports 40-bits pointer addressing
373 * for obvious reasons the LO and HI word parts
374 * are contiguous, but this offsets the other
375 * registers.
376 */
377static const u8 genet_dma_ring_regs_v4[] = {
378 [TDMA_READ_PTR] = 0x00,
379 [TDMA_READ_PTR_HI] = 0x04,
380 [TDMA_CONS_INDEX] = 0x08,
381 [TDMA_PROD_INDEX] = 0x0C,
382 [DMA_RING_BUF_SIZE] = 0x10,
383 [DMA_START_ADDR] = 0x14,
384 [DMA_START_ADDR_HI] = 0x18,
385 [DMA_END_ADDR] = 0x1C,
386 [DMA_END_ADDR_HI] = 0x20,
387 [DMA_MBUF_DONE_THRESH] = 0x24,
388 [TDMA_FLOW_PERIOD] = 0x28,
389 [TDMA_WRITE_PTR] = 0x2C,
390 [TDMA_WRITE_PTR_HI] = 0x30,
391};
392
393static const u8 genet_dma_ring_regs_v123[] = {
394 [TDMA_READ_PTR] = 0x00,
395 [TDMA_CONS_INDEX] = 0x04,
396 [TDMA_PROD_INDEX] = 0x08,
397 [DMA_RING_BUF_SIZE] = 0x0C,
398 [DMA_START_ADDR] = 0x10,
399 [DMA_END_ADDR] = 0x14,
400 [DMA_MBUF_DONE_THRESH] = 0x18,
401 [TDMA_FLOW_PERIOD] = 0x1C,
402 [TDMA_WRITE_PTR] = 0x20,
403};
404
405/* Set at runtime once GENET version is known */
406static const u8 *genet_dma_ring_regs;
407
408static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
409 unsigned int ring,
410 enum dma_ring_reg r)
411{
412 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
413 (DMA_RING_SIZE * ring) +
414 genet_dma_ring_regs[r]);
415}
416
417static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
418 unsigned int ring, u32 val,
419 enum dma_ring_reg r)
420{
421 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
422 (DMA_RING_SIZE * ring) +
423 genet_dma_ring_regs[r]);
424}
425
426static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
427 unsigned int ring,
428 enum dma_ring_reg r)
429{
430 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
431 (DMA_RING_SIZE * ring) +
432 genet_dma_ring_regs[r]);
433}
434
435static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
436 unsigned int ring, u32 val,
437 enum dma_ring_reg r)
438{
439 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
440 (DMA_RING_SIZE * ring) +
441 genet_dma_ring_regs[r]);
442}
443
444static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
445{
446 u32 offset;
447 u32 reg;
448
449 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
450 reg = bcmgenet_hfb_reg_readl(priv, offset);
451 reg |= (1 << (f_index % 32));
452 bcmgenet_hfb_reg_writel(priv, reg, offset);
453 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
454 reg |= RBUF_HFB_EN;
455 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
456}
457
458static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
459{
460 u32 offset, reg, reg1;
461
462 offset = HFB_FLT_ENABLE_V3PLUS;
463 reg = bcmgenet_hfb_reg_readl(priv, offset);
464 reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
465 if (f_index < 32) {
466 reg1 &= ~(1 << (f_index % 32));
467 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
468 } else {
469 reg &= ~(1 << (f_index % 32));
470 bcmgenet_hfb_reg_writel(priv, reg, offset);
471 }
472 if (!reg && !reg1) {
473 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
474 reg &= ~RBUF_HFB_EN;
475 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
476 }
477}
478
479static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
480 u32 f_index, u32 rx_queue)
481{
482 u32 offset;
483 u32 reg;
484
485 offset = f_index / 8;
486 reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
487 reg &= ~(0xF << (4 * (f_index % 8)));
488 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
489 bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
490}
491
492static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
493 u32 f_index, u32 f_length)
494{
495 u32 offset;
496 u32 reg;
497
498 offset = HFB_FLT_LEN_V3PLUS +
499 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
500 sizeof(u32);
501 reg = bcmgenet_hfb_reg_readl(priv, offset);
502 reg &= ~(0xFF << (8 * (f_index % 4)));
503 reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
504 bcmgenet_hfb_reg_writel(priv, reg, offset);
505}
506
507static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
508{
509 while (size) {
510 switch (*(unsigned char *)mask++) {
511 case 0x00:
512 case 0x0f:
513 case 0xf0:
514 case 0xff:
515 size--;
516 continue;
517 default:
518 return -EINVAL;
519 }
520 }
521
522 return 0;
523}
524
525#define VALIDATE_MASK(x) \
526 bcmgenet_hfb_validate_mask(&(x), sizeof(x))
527
528static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
529 u32 offset, void *val, void *mask,
530 size_t size)
531{
532 u32 index, tmp;
533
534 index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
535 tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
536
537 while (size--) {
538 if (offset++ & 1) {
539 tmp &= ~0x300FF;
540 tmp |= (*(unsigned char *)val++);
541 switch ((*(unsigned char *)mask++)) {
542 case 0xFF:
543 tmp |= 0x30000;
544 break;
545 case 0xF0:
546 tmp |= 0x20000;
547 break;
548 case 0x0F:
549 tmp |= 0x10000;
550 break;
551 }
552 bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
553 if (size)
554 tmp = bcmgenet_hfb_readl(priv,
555 index * sizeof(u32));
556 } else {
557 tmp &= ~0xCFF00;
558 tmp |= (*(unsigned char *)val++) << 8;
559 switch ((*(unsigned char *)mask++)) {
560 case 0xFF:
561 tmp |= 0xC0000;
562 break;
563 case 0xF0:
564 tmp |= 0x80000;
565 break;
566 case 0x0F:
567 tmp |= 0x40000;
568 break;
569 }
570 if (!size)
571 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
572 }
573 }
574
575 return 0;
576}
577
578static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
579 struct bcmgenet_rxnfc_rule *rule)
580{
581 struct ethtool_rx_flow_spec *fs = &rule->fs;
582 u32 offset = 0, f_length = 0, f;
583 u8 val_8, mask_8;
584 __be16 val_16;
585 u16 mask_16;
586 size_t size;
587
588 f = fs->location;
589 if (fs->flow_type & FLOW_MAC_EXT) {
590 bcmgenet_hfb_insert_data(priv, f, 0,
591 &fs->h_ext.h_dest, &fs->m_ext.h_dest,
592 sizeof(fs->h_ext.h_dest));
593 }
594
595 if (fs->flow_type & FLOW_EXT) {
596 if (fs->m_ext.vlan_etype ||
597 fs->m_ext.vlan_tci) {
598 bcmgenet_hfb_insert_data(priv, f, 12,
599 &fs->h_ext.vlan_etype,
600 &fs->m_ext.vlan_etype,
601 sizeof(fs->h_ext.vlan_etype));
602 bcmgenet_hfb_insert_data(priv, f, 14,
603 &fs->h_ext.vlan_tci,
604 &fs->m_ext.vlan_tci,
605 sizeof(fs->h_ext.vlan_tci));
606 offset += VLAN_HLEN;
607 f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
608 }
609 }
610
611 switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
612 case ETHER_FLOW:
613 f_length += DIV_ROUND_UP(ETH_HLEN, 2);
614 bcmgenet_hfb_insert_data(priv, f, 0,
615 &fs->h_u.ether_spec.h_dest,
616 &fs->m_u.ether_spec.h_dest,
617 sizeof(fs->h_u.ether_spec.h_dest));
618 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
619 &fs->h_u.ether_spec.h_source,
620 &fs->m_u.ether_spec.h_source,
621 sizeof(fs->h_u.ether_spec.h_source));
622 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
623 &fs->h_u.ether_spec.h_proto,
624 &fs->m_u.ether_spec.h_proto,
625 sizeof(fs->h_u.ether_spec.h_proto));
626 break;
627 case IP_USER_FLOW:
628 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
629 /* Specify IP Ether Type */
630 val_16 = htons(ETH_P_IP);
631 mask_16 = 0xFFFF;
632 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
633 &val_16, &mask_16, sizeof(val_16));
634 bcmgenet_hfb_insert_data(priv, f, 15 + offset,
635 &fs->h_u.usr_ip4_spec.tos,
636 &fs->m_u.usr_ip4_spec.tos,
637 sizeof(fs->h_u.usr_ip4_spec.tos));
638 bcmgenet_hfb_insert_data(priv, f, 23 + offset,
639 &fs->h_u.usr_ip4_spec.proto,
640 &fs->m_u.usr_ip4_spec.proto,
641 sizeof(fs->h_u.usr_ip4_spec.proto));
642 bcmgenet_hfb_insert_data(priv, f, 26 + offset,
643 &fs->h_u.usr_ip4_spec.ip4src,
644 &fs->m_u.usr_ip4_spec.ip4src,
645 sizeof(fs->h_u.usr_ip4_spec.ip4src));
646 bcmgenet_hfb_insert_data(priv, f, 30 + offset,
647 &fs->h_u.usr_ip4_spec.ip4dst,
648 &fs->m_u.usr_ip4_spec.ip4dst,
649 sizeof(fs->h_u.usr_ip4_spec.ip4dst));
650 if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
651 break;
652
653 /* Only supports 20 byte IPv4 header */
654 val_8 = 0x45;
655 mask_8 = 0xFF;
656 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
657 &val_8, &mask_8,
658 sizeof(val_8));
659 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
660 bcmgenet_hfb_insert_data(priv, f,
661 ETH_HLEN + 20 + offset,
662 &fs->h_u.usr_ip4_spec.l4_4_bytes,
663 &fs->m_u.usr_ip4_spec.l4_4_bytes,
664 size);
665 f_length += DIV_ROUND_UP(size, 2);
666 break;
667 }
668
669 bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
670 if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
671 /* Ring 0 flows can be handled by the default Descriptor Ring
672 * We'll map them to ring 0, but don't enable the filter
673 */
674 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
675 rule->state = BCMGENET_RXNFC_STATE_DISABLED;
676 } else {
677 /* Other Rx rings are direct mapped here */
678 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
679 fs->ring_cookie);
680 bcmgenet_hfb_enable_filter(priv, f);
681 rule->state = BCMGENET_RXNFC_STATE_ENABLED;
682 }
683}
684
685/* bcmgenet_hfb_clear
686 *
687 * Clear Hardware Filter Block and disable all filtering.
688 */
689static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
690{
691 u32 base, i;
692
693 base = f_index * priv->hw_params->hfb_filter_size;
694 for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
695 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
696}
697
698static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
699{
700 u32 i;
701
702 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
703 return;
704
705 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
706 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
707 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
708
709 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
710 bcmgenet_rdma_writel(priv, 0x0, i);
711
712 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
713 bcmgenet_hfb_reg_writel(priv, 0x0,
714 HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
715
716 for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
717 bcmgenet_hfb_clear_filter(priv, i);
718}
719
720static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
721{
722 int i;
723
724 INIT_LIST_HEAD(&priv->rxnfc_list);
725 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
726 return;
727
728 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
729 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
730 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
731 }
732
733 bcmgenet_hfb_clear(priv);
734}
735
736static int bcmgenet_begin(struct net_device *dev)
737{
738 struct bcmgenet_priv *priv = netdev_priv(dev);
739
740 /* Turn on the clock */
741 return clk_prepare_enable(priv->clk);
742}
743
744static void bcmgenet_complete(struct net_device *dev)
745{
746 struct bcmgenet_priv *priv = netdev_priv(dev);
747
748 /* Turn off the clock */
749 clk_disable_unprepare(priv->clk);
750}
751
752static int bcmgenet_get_link_ksettings(struct net_device *dev,
753 struct ethtool_link_ksettings *cmd)
754{
755 if (!netif_running(dev))
756 return -EINVAL;
757
758 if (!dev->phydev)
759 return -ENODEV;
760
761 phy_ethtool_ksettings_get(dev->phydev, cmd);
762
763 return 0;
764}
765
766static int bcmgenet_set_link_ksettings(struct net_device *dev,
767 const struct ethtool_link_ksettings *cmd)
768{
769 if (!netif_running(dev))
770 return -EINVAL;
771
772 if (!dev->phydev)
773 return -ENODEV;
774
775 return phy_ethtool_ksettings_set(dev->phydev, cmd);
776}
777
778static int bcmgenet_set_features(struct net_device *dev,
779 netdev_features_t features)
780{
781 struct bcmgenet_priv *priv = netdev_priv(dev);
782 u32 reg;
783 int ret;
784
785 ret = clk_prepare_enable(priv->clk);
786 if (ret)
787 return ret;
788
789 /* Make sure we reflect the value of CRC_CMD_FWD */
790 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
791 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
792
793 clk_disable_unprepare(priv->clk);
794
795 return ret;
796}
797
798static u32 bcmgenet_get_msglevel(struct net_device *dev)
799{
800 struct bcmgenet_priv *priv = netdev_priv(dev);
801
802 return priv->msg_enable;
803}
804
805static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
806{
807 struct bcmgenet_priv *priv = netdev_priv(dev);
808
809 priv->msg_enable = level;
810}
811
812static int bcmgenet_get_coalesce(struct net_device *dev,
813 struct ethtool_coalesce *ec,
814 struct kernel_ethtool_coalesce *kernel_coal,
815 struct netlink_ext_ack *extack)
816{
817 struct bcmgenet_priv *priv = netdev_priv(dev);
818 struct bcmgenet_rx_ring *ring;
819 unsigned int i;
820
821 ec->tx_max_coalesced_frames =
822 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
823 DMA_MBUF_DONE_THRESH);
824 ec->rx_max_coalesced_frames =
825 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
826 DMA_MBUF_DONE_THRESH);
827 ec->rx_coalesce_usecs =
828 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
829
830 for (i = 0; i < priv->hw_params->rx_queues; i++) {
831 ring = &priv->rx_rings[i];
832 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
833 }
834 ring = &priv->rx_rings[DESC_INDEX];
835 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
836
837 return 0;
838}
839
840static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
841 u32 usecs, u32 pkts)
842{
843 struct bcmgenet_priv *priv = ring->priv;
844 unsigned int i = ring->index;
845 u32 reg;
846
847 bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
848
849 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
850 reg &= ~DMA_TIMEOUT_MASK;
851 reg |= DIV_ROUND_UP(usecs * 1000, 8192);
852 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
853}
854
855static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
856 struct ethtool_coalesce *ec)
857{
858 struct dim_cq_moder moder;
859 u32 usecs, pkts;
860
861 ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
862 ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
863 usecs = ring->rx_coalesce_usecs;
864 pkts = ring->rx_max_coalesced_frames;
865
866 if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
867 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
868 usecs = moder.usec;
869 pkts = moder.pkts;
870 }
871
872 ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
873 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
874}
875
876static int bcmgenet_set_coalesce(struct net_device *dev,
877 struct ethtool_coalesce *ec,
878 struct kernel_ethtool_coalesce *kernel_coal,
879 struct netlink_ext_ack *extack)
880{
881 struct bcmgenet_priv *priv = netdev_priv(dev);
882 unsigned int i;
883
884 /* Base system clock is 125Mhz, DMA timeout is this reference clock
885 * divided by 1024, which yields roughly 8.192us, our maximum value
886 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
887 */
888 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
889 ec->tx_max_coalesced_frames == 0 ||
890 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
891 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
892 return -EINVAL;
893
894 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
895 return -EINVAL;
896
897 /* GENET TDMA hardware does not support a configurable timeout, but will
898 * always generate an interrupt either after MBDONE packets have been
899 * transmitted, or when the ring is empty.
900 */
901
902 /* Program all TX queues with the same values, as there is no
903 * ethtool knob to do coalescing on a per-queue basis
904 */
905 for (i = 0; i < priv->hw_params->tx_queues; i++)
906 bcmgenet_tdma_ring_writel(priv, i,
907 ec->tx_max_coalesced_frames,
908 DMA_MBUF_DONE_THRESH);
909 bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
910 ec->tx_max_coalesced_frames,
911 DMA_MBUF_DONE_THRESH);
912
913 for (i = 0; i < priv->hw_params->rx_queues; i++)
914 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
915 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
916
917 return 0;
918}
919
920static void bcmgenet_get_pauseparam(struct net_device *dev,
921 struct ethtool_pauseparam *epause)
922{
923 struct bcmgenet_priv *priv;
924 u32 umac_cmd;
925
926 priv = netdev_priv(dev);
927
928 epause->autoneg = priv->autoneg_pause;
929
930 if (netif_carrier_ok(dev)) {
931 /* report active state when link is up */
932 umac_cmd = bcmgenet_umac_readl(priv, UMAC_CMD);
933 epause->tx_pause = !(umac_cmd & CMD_TX_PAUSE_IGNORE);
934 epause->rx_pause = !(umac_cmd & CMD_RX_PAUSE_IGNORE);
935 } else {
936 /* otherwise report stored settings */
937 epause->tx_pause = priv->tx_pause;
938 epause->rx_pause = priv->rx_pause;
939 }
940}
941
942static int bcmgenet_set_pauseparam(struct net_device *dev,
943 struct ethtool_pauseparam *epause)
944{
945 struct bcmgenet_priv *priv = netdev_priv(dev);
946
947 if (!dev->phydev)
948 return -ENODEV;
949
950 if (!phy_validate_pause(dev->phydev, epause))
951 return -EINVAL;
952
953 priv->autoneg_pause = !!epause->autoneg;
954 priv->tx_pause = !!epause->tx_pause;
955 priv->rx_pause = !!epause->rx_pause;
956
957 bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
958
959 return 0;
960}
961
962/* standard ethtool support functions. */
963enum bcmgenet_stat_type {
964 BCMGENET_STAT_NETDEV = -1,
965 BCMGENET_STAT_MIB_RX,
966 BCMGENET_STAT_MIB_TX,
967 BCMGENET_STAT_RUNT,
968 BCMGENET_STAT_MISC,
969 BCMGENET_STAT_SOFT,
970};
971
972struct bcmgenet_stats {
973 char stat_string[ETH_GSTRING_LEN];
974 int stat_sizeof;
975 int stat_offset;
976 enum bcmgenet_stat_type type;
977 /* reg offset from UMAC base for misc counters */
978 u16 reg_offset;
979};
980
981#define STAT_NETDEV(m) { \
982 .stat_string = __stringify(m), \
983 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
984 .stat_offset = offsetof(struct net_device_stats, m), \
985 .type = BCMGENET_STAT_NETDEV, \
986}
987
988#define STAT_GENET_MIB(str, m, _type) { \
989 .stat_string = str, \
990 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
991 .stat_offset = offsetof(struct bcmgenet_priv, m), \
992 .type = _type, \
993}
994
995#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
996#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
997#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
998#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
999
1000#define STAT_GENET_MISC(str, m, offset) { \
1001 .stat_string = str, \
1002 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1003 .stat_offset = offsetof(struct bcmgenet_priv, m), \
1004 .type = BCMGENET_STAT_MISC, \
1005 .reg_offset = offset, \
1006}
1007
1008#define STAT_GENET_Q(num) \
1009 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
1010 tx_rings[num].packets), \
1011 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
1012 tx_rings[num].bytes), \
1013 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
1014 rx_rings[num].bytes), \
1015 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
1016 rx_rings[num].packets), \
1017 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
1018 rx_rings[num].errors), \
1019 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
1020 rx_rings[num].dropped)
1021
1022/* There is a 0xC gap between the end of RX and beginning of TX stats and then
1023 * between the end of TX stats and the beginning of the RX RUNT
1024 */
1025#define BCMGENET_STAT_OFFSET 0xc
1026
1027/* Hardware counters must be kept in sync because the order/offset
1028 * is important here (order in structure declaration = order in hardware)
1029 */
1030static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1031 /* general stats */
1032 STAT_NETDEV(rx_packets),
1033 STAT_NETDEV(tx_packets),
1034 STAT_NETDEV(rx_bytes),
1035 STAT_NETDEV(tx_bytes),
1036 STAT_NETDEV(rx_errors),
1037 STAT_NETDEV(tx_errors),
1038 STAT_NETDEV(rx_dropped),
1039 STAT_NETDEV(tx_dropped),
1040 STAT_NETDEV(multicast),
1041 /* UniMAC RSV counters */
1042 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1043 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1044 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1045 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1046 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1047 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1048 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1049 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1050 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1051 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1052 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1053 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1054 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1055 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1056 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1057 STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1058 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1059 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1060 STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1061 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1062 STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1063 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1064 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1065 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1066 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1067 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1068 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1069 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1070 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1071 /* UniMAC TSV counters */
1072 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1073 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1074 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1075 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1076 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1077 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1078 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1079 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1080 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1081 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1082 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1083 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1084 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1085 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1086 STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1087 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1088 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1089 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1090 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1091 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1092 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1093 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1094 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1095 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1096 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1097 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1098 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1099 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1100 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1101 /* UniMAC RUNT counters */
1102 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1103 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1104 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1105 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1106 /* Misc UniMAC counters */
1107 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1108 UMAC_RBUF_OVFL_CNT_V1),
1109 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1110 UMAC_RBUF_ERR_CNT_V1),
1111 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1112 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1113 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1114 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1115 STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1116 STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1117 mib.tx_realloc_tsb_failed),
1118 /* Per TX queues */
1119 STAT_GENET_Q(0),
1120 STAT_GENET_Q(1),
1121 STAT_GENET_Q(2),
1122 STAT_GENET_Q(3),
1123 STAT_GENET_Q(16),
1124};
1125
1126#define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
1127
1128static void bcmgenet_get_drvinfo(struct net_device *dev,
1129 struct ethtool_drvinfo *info)
1130{
1131 strscpy(info->driver, "bcmgenet", sizeof(info->driver));
1132}
1133
1134static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1135{
1136 switch (string_set) {
1137 case ETH_SS_STATS:
1138 return BCMGENET_STATS_LEN;
1139 default:
1140 return -EOPNOTSUPP;
1141 }
1142}
1143
1144static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1145 u8 *data)
1146{
1147 int i;
1148
1149 switch (stringset) {
1150 case ETH_SS_STATS:
1151 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1152 memcpy(data + i * ETH_GSTRING_LEN,
1153 bcmgenet_gstrings_stats[i].stat_string,
1154 ETH_GSTRING_LEN);
1155 }
1156 break;
1157 }
1158}
1159
1160static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1161{
1162 u16 new_offset;
1163 u32 val;
1164
1165 switch (offset) {
1166 case UMAC_RBUF_OVFL_CNT_V1:
1167 if (GENET_IS_V2(priv))
1168 new_offset = RBUF_OVFL_CNT_V2;
1169 else
1170 new_offset = RBUF_OVFL_CNT_V3PLUS;
1171
1172 val = bcmgenet_rbuf_readl(priv, new_offset);
1173 /* clear if overflowed */
1174 if (val == ~0)
1175 bcmgenet_rbuf_writel(priv, 0, new_offset);
1176 break;
1177 case UMAC_RBUF_ERR_CNT_V1:
1178 if (GENET_IS_V2(priv))
1179 new_offset = RBUF_ERR_CNT_V2;
1180 else
1181 new_offset = RBUF_ERR_CNT_V3PLUS;
1182
1183 val = bcmgenet_rbuf_readl(priv, new_offset);
1184 /* clear if overflowed */
1185 if (val == ~0)
1186 bcmgenet_rbuf_writel(priv, 0, new_offset);
1187 break;
1188 default:
1189 val = bcmgenet_umac_readl(priv, offset);
1190 /* clear if overflowed */
1191 if (val == ~0)
1192 bcmgenet_umac_writel(priv, 0, offset);
1193 break;
1194 }
1195
1196 return val;
1197}
1198
1199static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1200{
1201 int i, j = 0;
1202
1203 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1204 const struct bcmgenet_stats *s;
1205 u8 offset = 0;
1206 u32 val = 0;
1207 char *p;
1208
1209 s = &bcmgenet_gstrings_stats[i];
1210 switch (s->type) {
1211 case BCMGENET_STAT_NETDEV:
1212 case BCMGENET_STAT_SOFT:
1213 continue;
1214 case BCMGENET_STAT_RUNT:
1215 offset += BCMGENET_STAT_OFFSET;
1216 fallthrough;
1217 case BCMGENET_STAT_MIB_TX:
1218 offset += BCMGENET_STAT_OFFSET;
1219 fallthrough;
1220 case BCMGENET_STAT_MIB_RX:
1221 val = bcmgenet_umac_readl(priv,
1222 UMAC_MIB_START + j + offset);
1223 offset = 0; /* Reset Offset */
1224 break;
1225 case BCMGENET_STAT_MISC:
1226 if (GENET_IS_V1(priv)) {
1227 val = bcmgenet_umac_readl(priv, s->reg_offset);
1228 /* clear if overflowed */
1229 if (val == ~0)
1230 bcmgenet_umac_writel(priv, 0,
1231 s->reg_offset);
1232 } else {
1233 val = bcmgenet_update_stat_misc(priv,
1234 s->reg_offset);
1235 }
1236 break;
1237 }
1238
1239 j += s->stat_sizeof;
1240 p = (char *)priv + s->stat_offset;
1241 *(u32 *)p = val;
1242 }
1243}
1244
1245static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1246 struct ethtool_stats *stats,
1247 u64 *data)
1248{
1249 struct bcmgenet_priv *priv = netdev_priv(dev);
1250 int i;
1251
1252 if (netif_running(dev))
1253 bcmgenet_update_mib_counters(priv);
1254
1255 dev->netdev_ops->ndo_get_stats(dev);
1256
1257 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1258 const struct bcmgenet_stats *s;
1259 char *p;
1260
1261 s = &bcmgenet_gstrings_stats[i];
1262 if (s->type == BCMGENET_STAT_NETDEV)
1263 p = (char *)&dev->stats;
1264 else
1265 p = (char *)priv;
1266 p += s->stat_offset;
1267 if (sizeof(unsigned long) != sizeof(u32) &&
1268 s->stat_sizeof == sizeof(unsigned long))
1269 data[i] = *(unsigned long *)p;
1270 else
1271 data[i] = *(u32 *)p;
1272 }
1273}
1274
1275static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1276{
1277 struct bcmgenet_priv *priv = netdev_priv(dev);
1278 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1279 u32 reg;
1280
1281 if (enable && !priv->clk_eee_enabled) {
1282 clk_prepare_enable(priv->clk_eee);
1283 priv->clk_eee_enabled = true;
1284 }
1285
1286 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1287 if (enable)
1288 reg |= EEE_EN;
1289 else
1290 reg &= ~EEE_EN;
1291 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1292
1293 /* Enable EEE and switch to a 27Mhz clock automatically */
1294 reg = bcmgenet_readl(priv->base + off);
1295 if (enable)
1296 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1297 else
1298 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1299 bcmgenet_writel(reg, priv->base + off);
1300
1301 /* Do the same for thing for RBUF */
1302 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1303 if (enable)
1304 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1305 else
1306 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1307 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1308
1309 if (!enable && priv->clk_eee_enabled) {
1310 clk_disable_unprepare(priv->clk_eee);
1311 priv->clk_eee_enabled = false;
1312 }
1313
1314 priv->eee.eee_enabled = enable;
1315 priv->eee.eee_active = enable;
1316}
1317
1318static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1319{
1320 struct bcmgenet_priv *priv = netdev_priv(dev);
1321 struct ethtool_eee *p = &priv->eee;
1322
1323 if (GENET_IS_V1(priv))
1324 return -EOPNOTSUPP;
1325
1326 if (!dev->phydev)
1327 return -ENODEV;
1328
1329 e->eee_enabled = p->eee_enabled;
1330 e->eee_active = p->eee_active;
1331 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1332
1333 return phy_ethtool_get_eee(dev->phydev, e);
1334}
1335
1336static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1337{
1338 struct bcmgenet_priv *priv = netdev_priv(dev);
1339 struct ethtool_eee *p = &priv->eee;
1340 int ret = 0;
1341
1342 if (GENET_IS_V1(priv))
1343 return -EOPNOTSUPP;
1344
1345 if (!dev->phydev)
1346 return -ENODEV;
1347
1348 p->eee_enabled = e->eee_enabled;
1349
1350 if (!p->eee_enabled) {
1351 bcmgenet_eee_enable_set(dev, false);
1352 } else {
1353 ret = phy_init_eee(dev->phydev, false);
1354 if (ret) {
1355 netif_err(priv, hw, dev, "EEE initialization failed\n");
1356 return ret;
1357 }
1358
1359 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1360 bcmgenet_eee_enable_set(dev, true);
1361 }
1362
1363 return phy_ethtool_set_eee(dev->phydev, e);
1364}
1365
1366static int bcmgenet_validate_flow(struct net_device *dev,
1367 struct ethtool_rxnfc *cmd)
1368{
1369 struct ethtool_usrip4_spec *l4_mask;
1370 struct ethhdr *eth_mask;
1371
1372 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES &&
1373 cmd->fs.location != RX_CLS_LOC_ANY) {
1374 netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1375 cmd->fs.location);
1376 return -EINVAL;
1377 }
1378
1379 switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1380 case IP_USER_FLOW:
1381 l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1382 /* don't allow mask which isn't valid */
1383 if (VALIDATE_MASK(l4_mask->ip4src) ||
1384 VALIDATE_MASK(l4_mask->ip4dst) ||
1385 VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1386 VALIDATE_MASK(l4_mask->proto) ||
1387 VALIDATE_MASK(l4_mask->ip_ver) ||
1388 VALIDATE_MASK(l4_mask->tos)) {
1389 netdev_err(dev, "rxnfc: Unsupported mask\n");
1390 return -EINVAL;
1391 }
1392 break;
1393 case ETHER_FLOW:
1394 eth_mask = &cmd->fs.m_u.ether_spec;
1395 /* don't allow mask which isn't valid */
1396 if (VALIDATE_MASK(eth_mask->h_dest) ||
1397 VALIDATE_MASK(eth_mask->h_source) ||
1398 VALIDATE_MASK(eth_mask->h_proto)) {
1399 netdev_err(dev, "rxnfc: Unsupported mask\n");
1400 return -EINVAL;
1401 }
1402 break;
1403 default:
1404 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1405 cmd->fs.flow_type);
1406 return -EINVAL;
1407 }
1408
1409 if ((cmd->fs.flow_type & FLOW_EXT)) {
1410 /* don't allow mask which isn't valid */
1411 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1412 VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1413 netdev_err(dev, "rxnfc: Unsupported mask\n");
1414 return -EINVAL;
1415 }
1416 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1417 netdev_err(dev, "rxnfc: user-def not supported\n");
1418 return -EINVAL;
1419 }
1420 }
1421
1422 if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1423 /* don't allow mask which isn't valid */
1424 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1425 netdev_err(dev, "rxnfc: Unsupported mask\n");
1426 return -EINVAL;
1427 }
1428 }
1429
1430 return 0;
1431}
1432
1433static int bcmgenet_insert_flow(struct net_device *dev,
1434 struct ethtool_rxnfc *cmd)
1435{
1436 struct bcmgenet_priv *priv = netdev_priv(dev);
1437 struct bcmgenet_rxnfc_rule *loc_rule;
1438 int err, i;
1439
1440 if (priv->hw_params->hfb_filter_size < 128) {
1441 netdev_err(dev, "rxnfc: Not supported by this device\n");
1442 return -EINVAL;
1443 }
1444
1445 if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1446 cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1447 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1448 cmd->fs.ring_cookie);
1449 return -EINVAL;
1450 }
1451
1452 err = bcmgenet_validate_flow(dev, cmd);
1453 if (err)
1454 return err;
1455
1456 if (cmd->fs.location == RX_CLS_LOC_ANY) {
1457 list_for_each_entry(loc_rule, &priv->rxnfc_list, list) {
1458 cmd->fs.location = loc_rule->fs.location;
1459 err = memcmp(&loc_rule->fs, &cmd->fs,
1460 sizeof(struct ethtool_rx_flow_spec));
1461 if (!err)
1462 /* rule exists so return current location */
1463 return 0;
1464 }
1465 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
1466 loc_rule = &priv->rxnfc_rules[i];
1467 if (loc_rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1468 cmd->fs.location = i;
1469 break;
1470 }
1471 }
1472 if (i == MAX_NUM_OF_FS_RULES) {
1473 cmd->fs.location = RX_CLS_LOC_ANY;
1474 return -ENOSPC;
1475 }
1476 } else {
1477 loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1478 }
1479 if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1480 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1481 if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1482 list_del(&loc_rule->list);
1483 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1484 }
1485 loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1486 memcpy(&loc_rule->fs, &cmd->fs,
1487 sizeof(struct ethtool_rx_flow_spec));
1488
1489 bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1490
1491 list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1492
1493 return 0;
1494}
1495
1496static int bcmgenet_delete_flow(struct net_device *dev,
1497 struct ethtool_rxnfc *cmd)
1498{
1499 struct bcmgenet_priv *priv = netdev_priv(dev);
1500 struct bcmgenet_rxnfc_rule *rule;
1501 int err = 0;
1502
1503 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1504 return -EINVAL;
1505
1506 rule = &priv->rxnfc_rules[cmd->fs.location];
1507 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1508 err = -ENOENT;
1509 goto out;
1510 }
1511
1512 if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1513 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1514 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1515 list_del(&rule->list);
1516 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1517 }
1518 rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1519 memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1520
1521out:
1522 return err;
1523}
1524
1525static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1526{
1527 struct bcmgenet_priv *priv = netdev_priv(dev);
1528 int err = 0;
1529
1530 switch (cmd->cmd) {
1531 case ETHTOOL_SRXCLSRLINS:
1532 err = bcmgenet_insert_flow(dev, cmd);
1533 break;
1534 case ETHTOOL_SRXCLSRLDEL:
1535 err = bcmgenet_delete_flow(dev, cmd);
1536 break;
1537 default:
1538 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1539 cmd->cmd);
1540 return -EINVAL;
1541 }
1542
1543 return err;
1544}
1545
1546static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1547 int loc)
1548{
1549 struct bcmgenet_priv *priv = netdev_priv(dev);
1550 struct bcmgenet_rxnfc_rule *rule;
1551 int err = 0;
1552
1553 if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1554 return -EINVAL;
1555
1556 rule = &priv->rxnfc_rules[loc];
1557 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1558 err = -ENOENT;
1559 else
1560 memcpy(&cmd->fs, &rule->fs,
1561 sizeof(struct ethtool_rx_flow_spec));
1562
1563 return err;
1564}
1565
1566static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1567{
1568 struct list_head *pos;
1569 int res = 0;
1570
1571 list_for_each(pos, &priv->rxnfc_list)
1572 res++;
1573
1574 return res;
1575}
1576
1577static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1578 u32 *rule_locs)
1579{
1580 struct bcmgenet_priv *priv = netdev_priv(dev);
1581 struct bcmgenet_rxnfc_rule *rule;
1582 int err = 0;
1583 int i = 0;
1584
1585 switch (cmd->cmd) {
1586 case ETHTOOL_GRXRINGS:
1587 cmd->data = priv->hw_params->rx_queues ?: 1;
1588 break;
1589 case ETHTOOL_GRXCLSRLCNT:
1590 cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1591 cmd->data = MAX_NUM_OF_FS_RULES | RX_CLS_LOC_SPECIAL;
1592 break;
1593 case ETHTOOL_GRXCLSRULE:
1594 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1595 break;
1596 case ETHTOOL_GRXCLSRLALL:
1597 list_for_each_entry(rule, &priv->rxnfc_list, list)
1598 if (i < cmd->rule_cnt)
1599 rule_locs[i++] = rule->fs.location;
1600 cmd->rule_cnt = i;
1601 cmd->data = MAX_NUM_OF_FS_RULES;
1602 break;
1603 default:
1604 err = -EOPNOTSUPP;
1605 break;
1606 }
1607
1608 return err;
1609}
1610
1611/* standard ethtool support functions. */
1612static const struct ethtool_ops bcmgenet_ethtool_ops = {
1613 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1614 ETHTOOL_COALESCE_MAX_FRAMES |
1615 ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1616 .begin = bcmgenet_begin,
1617 .complete = bcmgenet_complete,
1618 .get_strings = bcmgenet_get_strings,
1619 .get_sset_count = bcmgenet_get_sset_count,
1620 .get_ethtool_stats = bcmgenet_get_ethtool_stats,
1621 .get_drvinfo = bcmgenet_get_drvinfo,
1622 .get_link = ethtool_op_get_link,
1623 .get_msglevel = bcmgenet_get_msglevel,
1624 .set_msglevel = bcmgenet_set_msglevel,
1625 .get_wol = bcmgenet_get_wol,
1626 .set_wol = bcmgenet_set_wol,
1627 .get_eee = bcmgenet_get_eee,
1628 .set_eee = bcmgenet_set_eee,
1629 .nway_reset = phy_ethtool_nway_reset,
1630 .get_coalesce = bcmgenet_get_coalesce,
1631 .set_coalesce = bcmgenet_set_coalesce,
1632 .get_link_ksettings = bcmgenet_get_link_ksettings,
1633 .set_link_ksettings = bcmgenet_set_link_ksettings,
1634 .get_ts_info = ethtool_op_get_ts_info,
1635 .get_rxnfc = bcmgenet_get_rxnfc,
1636 .set_rxnfc = bcmgenet_set_rxnfc,
1637 .get_pauseparam = bcmgenet_get_pauseparam,
1638 .set_pauseparam = bcmgenet_set_pauseparam,
1639};
1640
1641/* Power down the unimac, based on mode. */
1642static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1643 enum bcmgenet_power_mode mode)
1644{
1645 int ret = 0;
1646 u32 reg;
1647
1648 switch (mode) {
1649 case GENET_POWER_CABLE_SENSE:
1650 phy_detach(priv->dev->phydev);
1651 break;
1652
1653 case GENET_POWER_WOL_MAGIC:
1654 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1655 break;
1656
1657 case GENET_POWER_PASSIVE:
1658 /* Power down LED */
1659 if (priv->hw_params->flags & GENET_HAS_EXT) {
1660 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1661 if (GENET_IS_V5(priv) && !priv->ephy_16nm)
1662 reg |= EXT_PWR_DOWN_PHY_EN |
1663 EXT_PWR_DOWN_PHY_RD |
1664 EXT_PWR_DOWN_PHY_SD |
1665 EXT_PWR_DOWN_PHY_RX |
1666 EXT_PWR_DOWN_PHY_TX |
1667 EXT_IDDQ_GLBL_PWR;
1668 else
1669 reg |= EXT_PWR_DOWN_PHY;
1670
1671 reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1672 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1673
1674 bcmgenet_phy_power_set(priv->dev, false);
1675 }
1676 break;
1677 default:
1678 break;
1679 }
1680
1681 return ret;
1682}
1683
1684static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1685 enum bcmgenet_power_mode mode)
1686{
1687 u32 reg;
1688
1689 if (!(priv->hw_params->flags & GENET_HAS_EXT))
1690 return;
1691
1692 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1693
1694 switch (mode) {
1695 case GENET_POWER_PASSIVE:
1696 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1697 EXT_ENERGY_DET_MASK);
1698 if (GENET_IS_V5(priv) && !priv->ephy_16nm) {
1699 reg &= ~(EXT_PWR_DOWN_PHY_EN |
1700 EXT_PWR_DOWN_PHY_RD |
1701 EXT_PWR_DOWN_PHY_SD |
1702 EXT_PWR_DOWN_PHY_RX |
1703 EXT_PWR_DOWN_PHY_TX |
1704 EXT_IDDQ_GLBL_PWR);
1705 reg |= EXT_PHY_RESET;
1706 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1707 mdelay(1);
1708
1709 reg &= ~EXT_PHY_RESET;
1710 } else {
1711 reg &= ~EXT_PWR_DOWN_PHY;
1712 reg |= EXT_PWR_DN_EN_LD;
1713 }
1714 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1715 bcmgenet_phy_power_set(priv->dev, true);
1716 break;
1717
1718 case GENET_POWER_CABLE_SENSE:
1719 /* enable APD */
1720 if (!GENET_IS_V5(priv)) {
1721 reg |= EXT_PWR_DN_EN_LD;
1722 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1723 }
1724 break;
1725 case GENET_POWER_WOL_MAGIC:
1726 bcmgenet_wol_power_up_cfg(priv, mode);
1727 return;
1728 default:
1729 break;
1730 }
1731}
1732
1733static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1734 struct bcmgenet_tx_ring *ring)
1735{
1736 struct enet_cb *tx_cb_ptr;
1737
1738 tx_cb_ptr = ring->cbs;
1739 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1740
1741 /* Advancing local write pointer */
1742 if (ring->write_ptr == ring->end_ptr)
1743 ring->write_ptr = ring->cb_ptr;
1744 else
1745 ring->write_ptr++;
1746
1747 return tx_cb_ptr;
1748}
1749
1750static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1751 struct bcmgenet_tx_ring *ring)
1752{
1753 struct enet_cb *tx_cb_ptr;
1754
1755 tx_cb_ptr = ring->cbs;
1756 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1757
1758 /* Rewinding local write pointer */
1759 if (ring->write_ptr == ring->cb_ptr)
1760 ring->write_ptr = ring->end_ptr;
1761 else
1762 ring->write_ptr--;
1763
1764 return tx_cb_ptr;
1765}
1766
1767static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1768{
1769 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1770 INTRL2_CPU_MASK_SET);
1771}
1772
1773static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1774{
1775 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1776 INTRL2_CPU_MASK_CLEAR);
1777}
1778
1779static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1780{
1781 bcmgenet_intrl2_1_writel(ring->priv,
1782 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1783 INTRL2_CPU_MASK_SET);
1784}
1785
1786static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1787{
1788 bcmgenet_intrl2_1_writel(ring->priv,
1789 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1790 INTRL2_CPU_MASK_CLEAR);
1791}
1792
1793static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1794{
1795 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1796 INTRL2_CPU_MASK_SET);
1797}
1798
1799static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1800{
1801 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1802 INTRL2_CPU_MASK_CLEAR);
1803}
1804
1805static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1806{
1807 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1808 INTRL2_CPU_MASK_CLEAR);
1809}
1810
1811static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1812{
1813 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1814 INTRL2_CPU_MASK_SET);
1815}
1816
1817/* Simple helper to free a transmit control block's resources
1818 * Returns an skb when the last transmit control block associated with the
1819 * skb is freed. The skb should be freed by the caller if necessary.
1820 */
1821static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1822 struct enet_cb *cb)
1823{
1824 struct sk_buff *skb;
1825
1826 skb = cb->skb;
1827
1828 if (skb) {
1829 cb->skb = NULL;
1830 if (cb == GENET_CB(skb)->first_cb)
1831 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1832 dma_unmap_len(cb, dma_len),
1833 DMA_TO_DEVICE);
1834 else
1835 dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1836 dma_unmap_len(cb, dma_len),
1837 DMA_TO_DEVICE);
1838 dma_unmap_addr_set(cb, dma_addr, 0);
1839
1840 if (cb == GENET_CB(skb)->last_cb)
1841 return skb;
1842
1843 } else if (dma_unmap_addr(cb, dma_addr)) {
1844 dma_unmap_page(dev,
1845 dma_unmap_addr(cb, dma_addr),
1846 dma_unmap_len(cb, dma_len),
1847 DMA_TO_DEVICE);
1848 dma_unmap_addr_set(cb, dma_addr, 0);
1849 }
1850
1851 return NULL;
1852}
1853
1854/* Simple helper to free a receive control block's resources */
1855static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1856 struct enet_cb *cb)
1857{
1858 struct sk_buff *skb;
1859
1860 skb = cb->skb;
1861 cb->skb = NULL;
1862
1863 if (dma_unmap_addr(cb, dma_addr)) {
1864 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1865 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1866 dma_unmap_addr_set(cb, dma_addr, 0);
1867 }
1868
1869 return skb;
1870}
1871
1872/* Unlocked version of the reclaim routine */
1873static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1874 struct bcmgenet_tx_ring *ring)
1875{
1876 struct bcmgenet_priv *priv = netdev_priv(dev);
1877 unsigned int txbds_processed = 0;
1878 unsigned int bytes_compl = 0;
1879 unsigned int pkts_compl = 0;
1880 unsigned int txbds_ready;
1881 unsigned int c_index;
1882 struct sk_buff *skb;
1883
1884 /* Clear status before servicing to reduce spurious interrupts */
1885 if (ring->index == DESC_INDEX)
1886 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1887 INTRL2_CPU_CLEAR);
1888 else
1889 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1890 INTRL2_CPU_CLEAR);
1891
1892 /* Compute how many buffers are transmitted since last xmit call */
1893 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1894 & DMA_C_INDEX_MASK;
1895 txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1896
1897 netif_dbg(priv, tx_done, dev,
1898 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1899 __func__, ring->index, ring->c_index, c_index, txbds_ready);
1900
1901 /* Reclaim transmitted buffers */
1902 while (txbds_processed < txbds_ready) {
1903 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1904 &priv->tx_cbs[ring->clean_ptr]);
1905 if (skb) {
1906 pkts_compl++;
1907 bytes_compl += GENET_CB(skb)->bytes_sent;
1908 dev_consume_skb_any(skb);
1909 }
1910
1911 txbds_processed++;
1912 if (likely(ring->clean_ptr < ring->end_ptr))
1913 ring->clean_ptr++;
1914 else
1915 ring->clean_ptr = ring->cb_ptr;
1916 }
1917
1918 ring->free_bds += txbds_processed;
1919 ring->c_index = c_index;
1920
1921 ring->packets += pkts_compl;
1922 ring->bytes += bytes_compl;
1923
1924 netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1925 pkts_compl, bytes_compl);
1926
1927 return txbds_processed;
1928}
1929
1930static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1931 struct bcmgenet_tx_ring *ring)
1932{
1933 unsigned int released;
1934
1935 spin_lock_bh(&ring->lock);
1936 released = __bcmgenet_tx_reclaim(dev, ring);
1937 spin_unlock_bh(&ring->lock);
1938
1939 return released;
1940}
1941
1942static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1943{
1944 struct bcmgenet_tx_ring *ring =
1945 container_of(napi, struct bcmgenet_tx_ring, napi);
1946 unsigned int work_done = 0;
1947 struct netdev_queue *txq;
1948
1949 spin_lock(&ring->lock);
1950 work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1951 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1952 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1953 netif_tx_wake_queue(txq);
1954 }
1955 spin_unlock(&ring->lock);
1956
1957 if (work_done == 0) {
1958 napi_complete(napi);
1959 ring->int_enable(ring);
1960
1961 return 0;
1962 }
1963
1964 return budget;
1965}
1966
1967static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1968{
1969 struct bcmgenet_priv *priv = netdev_priv(dev);
1970 int i;
1971
1972 if (netif_is_multiqueue(dev)) {
1973 for (i = 0; i < priv->hw_params->tx_queues; i++)
1974 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1975 }
1976
1977 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1978}
1979
1980/* Reallocate the SKB to put enough headroom in front of it and insert
1981 * the transmit checksum offsets in the descriptors
1982 */
1983static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1984 struct sk_buff *skb)
1985{
1986 struct bcmgenet_priv *priv = netdev_priv(dev);
1987 struct status_64 *status = NULL;
1988 struct sk_buff *new_skb;
1989 u16 offset;
1990 u8 ip_proto;
1991 __be16 ip_ver;
1992 u32 tx_csum_info;
1993
1994 if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1995 /* If 64 byte status block enabled, must make sure skb has
1996 * enough headroom for us to insert 64B status block.
1997 */
1998 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1999 if (!new_skb) {
2000 dev_kfree_skb_any(skb);
2001 priv->mib.tx_realloc_tsb_failed++;
2002 dev->stats.tx_dropped++;
2003 return NULL;
2004 }
2005 dev_consume_skb_any(skb);
2006 skb = new_skb;
2007 priv->mib.tx_realloc_tsb++;
2008 }
2009
2010 skb_push(skb, sizeof(*status));
2011 status = (struct status_64 *)skb->data;
2012
2013 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2014 ip_ver = skb->protocol;
2015 switch (ip_ver) {
2016 case htons(ETH_P_IP):
2017 ip_proto = ip_hdr(skb)->protocol;
2018 break;
2019 case htons(ETH_P_IPV6):
2020 ip_proto = ipv6_hdr(skb)->nexthdr;
2021 break;
2022 default:
2023 /* don't use UDP flag */
2024 ip_proto = 0;
2025 break;
2026 }
2027
2028 offset = skb_checksum_start_offset(skb) - sizeof(*status);
2029 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
2030 (offset + skb->csum_offset) |
2031 STATUS_TX_CSUM_LV;
2032
2033 /* Set the special UDP flag for UDP */
2034 if (ip_proto == IPPROTO_UDP)
2035 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
2036
2037 status->tx_csum_info = tx_csum_info;
2038 }
2039
2040 return skb;
2041}
2042
2043static void bcmgenet_hide_tsb(struct sk_buff *skb)
2044{
2045 __skb_pull(skb, sizeof(struct status_64));
2046}
2047
2048static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
2049{
2050 struct bcmgenet_priv *priv = netdev_priv(dev);
2051 struct device *kdev = &priv->pdev->dev;
2052 struct bcmgenet_tx_ring *ring = NULL;
2053 struct enet_cb *tx_cb_ptr;
2054 struct netdev_queue *txq;
2055 int nr_frags, index;
2056 dma_addr_t mapping;
2057 unsigned int size;
2058 skb_frag_t *frag;
2059 u32 len_stat;
2060 int ret;
2061 int i;
2062
2063 index = skb_get_queue_mapping(skb);
2064 /* Mapping strategy:
2065 * queue_mapping = 0, unclassified, packet xmited through ring16
2066 * queue_mapping = 1, goes to ring 0. (highest priority queue
2067 * queue_mapping = 2, goes to ring 1.
2068 * queue_mapping = 3, goes to ring 2.
2069 * queue_mapping = 4, goes to ring 3.
2070 */
2071 if (index == 0)
2072 index = DESC_INDEX;
2073 else
2074 index -= 1;
2075
2076 ring = &priv->tx_rings[index];
2077 txq = netdev_get_tx_queue(dev, ring->queue);
2078
2079 nr_frags = skb_shinfo(skb)->nr_frags;
2080
2081 spin_lock(&ring->lock);
2082 if (ring->free_bds <= (nr_frags + 1)) {
2083 if (!netif_tx_queue_stopped(txq)) {
2084 netif_tx_stop_queue(txq);
2085 netdev_err(dev,
2086 "%s: tx ring %d full when queue %d awake\n",
2087 __func__, index, ring->queue);
2088 }
2089 ret = NETDEV_TX_BUSY;
2090 goto out;
2091 }
2092
2093 /* Retain how many bytes will be sent on the wire, without TSB inserted
2094 * by transmit checksum offload
2095 */
2096 GENET_CB(skb)->bytes_sent = skb->len;
2097
2098 /* add the Transmit Status Block */
2099 skb = bcmgenet_add_tsb(dev, skb);
2100 if (!skb) {
2101 ret = NETDEV_TX_OK;
2102 goto out;
2103 }
2104
2105 for (i = 0; i <= nr_frags; i++) {
2106 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2107
2108 BUG_ON(!tx_cb_ptr);
2109
2110 if (!i) {
2111 /* Transmit single SKB or head of fragment list */
2112 GENET_CB(skb)->first_cb = tx_cb_ptr;
2113 size = skb_headlen(skb);
2114 mapping = dma_map_single(kdev, skb->data, size,
2115 DMA_TO_DEVICE);
2116 } else {
2117 /* xmit fragment */
2118 frag = &skb_shinfo(skb)->frags[i - 1];
2119 size = skb_frag_size(frag);
2120 mapping = skb_frag_dma_map(kdev, frag, 0, size,
2121 DMA_TO_DEVICE);
2122 }
2123
2124 ret = dma_mapping_error(kdev, mapping);
2125 if (ret) {
2126 priv->mib.tx_dma_failed++;
2127 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2128 ret = NETDEV_TX_OK;
2129 goto out_unmap_frags;
2130 }
2131 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2132 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2133
2134 tx_cb_ptr->skb = skb;
2135
2136 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2137 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2138
2139 /* Note: if we ever change from DMA_TX_APPEND_CRC below we
2140 * will need to restore software padding of "runt" packets
2141 */
2142 if (!i) {
2143 len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2144 if (skb->ip_summed == CHECKSUM_PARTIAL)
2145 len_stat |= DMA_TX_DO_CSUM;
2146 }
2147 if (i == nr_frags)
2148 len_stat |= DMA_EOP;
2149
2150 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2151 }
2152
2153 GENET_CB(skb)->last_cb = tx_cb_ptr;
2154
2155 bcmgenet_hide_tsb(skb);
2156 skb_tx_timestamp(skb);
2157
2158 /* Decrement total BD count and advance our write pointer */
2159 ring->free_bds -= nr_frags + 1;
2160 ring->prod_index += nr_frags + 1;
2161 ring->prod_index &= DMA_P_INDEX_MASK;
2162
2163 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2164
2165 if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2166 netif_tx_stop_queue(txq);
2167
2168 if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2169 /* Packets are ready, update producer index */
2170 bcmgenet_tdma_ring_writel(priv, ring->index,
2171 ring->prod_index, TDMA_PROD_INDEX);
2172out:
2173 spin_unlock(&ring->lock);
2174
2175 return ret;
2176
2177out_unmap_frags:
2178 /* Back up for failed control block mapping */
2179 bcmgenet_put_txcb(priv, ring);
2180
2181 /* Unmap successfully mapped control blocks */
2182 while (i-- > 0) {
2183 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2184 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2185 }
2186
2187 dev_kfree_skb(skb);
2188 goto out;
2189}
2190
2191static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2192 struct enet_cb *cb)
2193{
2194 struct device *kdev = &priv->pdev->dev;
2195 struct sk_buff *skb;
2196 struct sk_buff *rx_skb;
2197 dma_addr_t mapping;
2198
2199 /* Allocate a new Rx skb */
2200 skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2201 GFP_ATOMIC | __GFP_NOWARN);
2202 if (!skb) {
2203 priv->mib.alloc_rx_buff_failed++;
2204 netif_err(priv, rx_err, priv->dev,
2205 "%s: Rx skb allocation failed\n", __func__);
2206 return NULL;
2207 }
2208
2209 /* DMA-map the new Rx skb */
2210 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2211 DMA_FROM_DEVICE);
2212 if (dma_mapping_error(kdev, mapping)) {
2213 priv->mib.rx_dma_failed++;
2214 dev_kfree_skb_any(skb);
2215 netif_err(priv, rx_err, priv->dev,
2216 "%s: Rx skb DMA mapping failed\n", __func__);
2217 return NULL;
2218 }
2219
2220 /* Grab the current Rx skb from the ring and DMA-unmap it */
2221 rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2222
2223 /* Put the new Rx skb on the ring */
2224 cb->skb = skb;
2225 dma_unmap_addr_set(cb, dma_addr, mapping);
2226 dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2227 dmadesc_set_addr(priv, cb->bd_addr, mapping);
2228
2229 /* Return the current Rx skb to caller */
2230 return rx_skb;
2231}
2232
2233/* bcmgenet_desc_rx - descriptor based rx process.
2234 * this could be called from bottom half, or from NAPI polling method.
2235 */
2236static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2237 unsigned int budget)
2238{
2239 struct bcmgenet_priv *priv = ring->priv;
2240 struct net_device *dev = priv->dev;
2241 struct enet_cb *cb;
2242 struct sk_buff *skb;
2243 u32 dma_length_status;
2244 unsigned long dma_flag;
2245 int len;
2246 unsigned int rxpktprocessed = 0, rxpkttoprocess;
2247 unsigned int bytes_processed = 0;
2248 unsigned int p_index, mask;
2249 unsigned int discards;
2250
2251 /* Clear status before servicing to reduce spurious interrupts */
2252 if (ring->index == DESC_INDEX) {
2253 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2254 INTRL2_CPU_CLEAR);
2255 } else {
2256 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2257 bcmgenet_intrl2_1_writel(priv,
2258 mask,
2259 INTRL2_CPU_CLEAR);
2260 }
2261
2262 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2263
2264 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2265 DMA_P_INDEX_DISCARD_CNT_MASK;
2266 if (discards > ring->old_discards) {
2267 discards = discards - ring->old_discards;
2268 ring->errors += discards;
2269 ring->old_discards += discards;
2270
2271 /* Clear HW register when we reach 75% of maximum 0xFFFF */
2272 if (ring->old_discards >= 0xC000) {
2273 ring->old_discards = 0;
2274 bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2275 RDMA_PROD_INDEX);
2276 }
2277 }
2278
2279 p_index &= DMA_P_INDEX_MASK;
2280 rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2281
2282 netif_dbg(priv, rx_status, dev,
2283 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2284
2285 while ((rxpktprocessed < rxpkttoprocess) &&
2286 (rxpktprocessed < budget)) {
2287 struct status_64 *status;
2288 __be16 rx_csum;
2289
2290 cb = &priv->rx_cbs[ring->read_ptr];
2291 skb = bcmgenet_rx_refill(priv, cb);
2292
2293 if (unlikely(!skb)) {
2294 ring->dropped++;
2295 goto next;
2296 }
2297
2298 status = (struct status_64 *)skb->data;
2299 dma_length_status = status->length_status;
2300 if (dev->features & NETIF_F_RXCSUM) {
2301 rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2302 if (rx_csum) {
2303 skb->csum = (__force __wsum)ntohs(rx_csum);
2304 skb->ip_summed = CHECKSUM_COMPLETE;
2305 }
2306 }
2307
2308 /* DMA flags and length are still valid no matter how
2309 * we got the Receive Status Vector (64B RSB or register)
2310 */
2311 dma_flag = dma_length_status & 0xffff;
2312 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2313
2314 netif_dbg(priv, rx_status, dev,
2315 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2316 __func__, p_index, ring->c_index,
2317 ring->read_ptr, dma_length_status);
2318
2319 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2320 netif_err(priv, rx_status, dev,
2321 "dropping fragmented packet!\n");
2322 ring->errors++;
2323 dev_kfree_skb_any(skb);
2324 goto next;
2325 }
2326
2327 /* report errors */
2328 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2329 DMA_RX_OV |
2330 DMA_RX_NO |
2331 DMA_RX_LG |
2332 DMA_RX_RXER))) {
2333 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2334 (unsigned int)dma_flag);
2335 if (dma_flag & DMA_RX_CRC_ERROR)
2336 dev->stats.rx_crc_errors++;
2337 if (dma_flag & DMA_RX_OV)
2338 dev->stats.rx_over_errors++;
2339 if (dma_flag & DMA_RX_NO)
2340 dev->stats.rx_frame_errors++;
2341 if (dma_flag & DMA_RX_LG)
2342 dev->stats.rx_length_errors++;
2343 dev->stats.rx_errors++;
2344 dev_kfree_skb_any(skb);
2345 goto next;
2346 } /* error packet */
2347
2348 skb_put(skb, len);
2349
2350 /* remove RSB and hardware 2bytes added for IP alignment */
2351 skb_pull(skb, 66);
2352 len -= 66;
2353
2354 if (priv->crc_fwd_en) {
2355 skb_trim(skb, len - ETH_FCS_LEN);
2356 len -= ETH_FCS_LEN;
2357 }
2358
2359 bytes_processed += len;
2360
2361 /*Finish setting up the received SKB and send it to the kernel*/
2362 skb->protocol = eth_type_trans(skb, priv->dev);
2363 ring->packets++;
2364 ring->bytes += len;
2365 if (dma_flag & DMA_RX_MULT)
2366 dev->stats.multicast++;
2367
2368 /* Notify kernel */
2369 napi_gro_receive(&ring->napi, skb);
2370 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2371
2372next:
2373 rxpktprocessed++;
2374 if (likely(ring->read_ptr < ring->end_ptr))
2375 ring->read_ptr++;
2376 else
2377 ring->read_ptr = ring->cb_ptr;
2378
2379 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2380 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2381 }
2382
2383 ring->dim.bytes = bytes_processed;
2384 ring->dim.packets = rxpktprocessed;
2385
2386 return rxpktprocessed;
2387}
2388
2389/* Rx NAPI polling method */
2390static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2391{
2392 struct bcmgenet_rx_ring *ring = container_of(napi,
2393 struct bcmgenet_rx_ring, napi);
2394 struct dim_sample dim_sample = {};
2395 unsigned int work_done;
2396
2397 work_done = bcmgenet_desc_rx(ring, budget);
2398
2399 if (work_done < budget) {
2400 napi_complete_done(napi, work_done);
2401 ring->int_enable(ring);
2402 }
2403
2404 if (ring->dim.use_dim) {
2405 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2406 ring->dim.bytes, &dim_sample);
2407 net_dim(&ring->dim.dim, dim_sample);
2408 }
2409
2410 return work_done;
2411}
2412
2413static void bcmgenet_dim_work(struct work_struct *work)
2414{
2415 struct dim *dim = container_of(work, struct dim, work);
2416 struct bcmgenet_net_dim *ndim =
2417 container_of(dim, struct bcmgenet_net_dim, dim);
2418 struct bcmgenet_rx_ring *ring =
2419 container_of(ndim, struct bcmgenet_rx_ring, dim);
2420 struct dim_cq_moder cur_profile =
2421 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2422
2423 bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2424 dim->state = DIM_START_MEASURE;
2425}
2426
2427/* Assign skb to RX DMA descriptor. */
2428static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2429 struct bcmgenet_rx_ring *ring)
2430{
2431 struct enet_cb *cb;
2432 struct sk_buff *skb;
2433 int i;
2434
2435 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2436
2437 /* loop here for each buffer needing assign */
2438 for (i = 0; i < ring->size; i++) {
2439 cb = ring->cbs + i;
2440 skb = bcmgenet_rx_refill(priv, cb);
2441 if (skb)
2442 dev_consume_skb_any(skb);
2443 if (!cb->skb)
2444 return -ENOMEM;
2445 }
2446
2447 return 0;
2448}
2449
2450static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2451{
2452 struct sk_buff *skb;
2453 struct enet_cb *cb;
2454 int i;
2455
2456 for (i = 0; i < priv->num_rx_bds; i++) {
2457 cb = &priv->rx_cbs[i];
2458
2459 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2460 if (skb)
2461 dev_consume_skb_any(skb);
2462 }
2463}
2464
2465static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2466{
2467 u32 reg;
2468
2469 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2470 if (reg & CMD_SW_RESET)
2471 return;
2472 if (enable)
2473 reg |= mask;
2474 else
2475 reg &= ~mask;
2476 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2477
2478 /* UniMAC stops on a packet boundary, wait for a full-size packet
2479 * to be processed
2480 */
2481 if (enable == 0)
2482 usleep_range(1000, 2000);
2483}
2484
2485static void reset_umac(struct bcmgenet_priv *priv)
2486{
2487 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2488 bcmgenet_rbuf_ctrl_set(priv, 0);
2489 udelay(10);
2490
2491 /* issue soft reset and disable MAC while updating its registers */
2492 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2493 udelay(2);
2494}
2495
2496static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2497{
2498 /* Mask all interrupts.*/
2499 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2500 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2501 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2502 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2503}
2504
2505static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2506{
2507 u32 int0_enable = 0;
2508
2509 /* Monitor cable plug/unplugged event for internal PHY, external PHY
2510 * and MoCA PHY
2511 */
2512 if (priv->internal_phy) {
2513 int0_enable |= UMAC_IRQ_LINK_EVENT;
2514 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2515 int0_enable |= UMAC_IRQ_PHY_DET_R;
2516 } else if (priv->ext_phy) {
2517 int0_enable |= UMAC_IRQ_LINK_EVENT;
2518 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2519 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2520 int0_enable |= UMAC_IRQ_LINK_EVENT;
2521 }
2522 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2523}
2524
2525static void init_umac(struct bcmgenet_priv *priv)
2526{
2527 struct device *kdev = &priv->pdev->dev;
2528 u32 reg;
2529 u32 int0_enable = 0;
2530
2531 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2532
2533 reset_umac(priv);
2534
2535 /* clear tx/rx counter */
2536 bcmgenet_umac_writel(priv,
2537 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2538 UMAC_MIB_CTRL);
2539 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2540
2541 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2542
2543 /* init tx registers, enable TSB */
2544 reg = bcmgenet_tbuf_ctrl_get(priv);
2545 reg |= TBUF_64B_EN;
2546 bcmgenet_tbuf_ctrl_set(priv, reg);
2547
2548 /* init rx registers, enable ip header optimization and RSB */
2549 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2550 reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2551 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2552
2553 /* enable rx checksumming */
2554 reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2555 reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2556 /* If UniMAC forwards CRC, we need to skip over it to get
2557 * a valid CHK bit to be set in the per-packet status word
2558 */
2559 if (priv->crc_fwd_en)
2560 reg |= RBUF_SKIP_FCS;
2561 else
2562 reg &= ~RBUF_SKIP_FCS;
2563 bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2564
2565 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2566 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2567
2568 bcmgenet_intr_disable(priv);
2569
2570 /* Configure backpressure vectors for MoCA */
2571 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2572 reg = bcmgenet_bp_mc_get(priv);
2573 reg |= BIT(priv->hw_params->bp_in_en_shift);
2574
2575 /* bp_mask: back pressure mask */
2576 if (netif_is_multiqueue(priv->dev))
2577 reg |= priv->hw_params->bp_in_mask;
2578 else
2579 reg &= ~priv->hw_params->bp_in_mask;
2580 bcmgenet_bp_mc_set(priv, reg);
2581 }
2582
2583 /* Enable MDIO interrupts on GENET v3+ */
2584 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2585 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2586
2587 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2588
2589 dev_dbg(kdev, "done init umac\n");
2590}
2591
2592static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2593 void (*cb)(struct work_struct *work))
2594{
2595 struct bcmgenet_net_dim *dim = &ring->dim;
2596
2597 INIT_WORK(&dim->dim.work, cb);
2598 dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2599 dim->event_ctr = 0;
2600 dim->packets = 0;
2601 dim->bytes = 0;
2602}
2603
2604static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2605{
2606 struct bcmgenet_net_dim *dim = &ring->dim;
2607 struct dim_cq_moder moder;
2608 u32 usecs, pkts;
2609
2610 usecs = ring->rx_coalesce_usecs;
2611 pkts = ring->rx_max_coalesced_frames;
2612
2613 /* If DIM was enabled, re-apply default parameters */
2614 if (dim->use_dim) {
2615 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2616 usecs = moder.usec;
2617 pkts = moder.pkts;
2618 }
2619
2620 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2621}
2622
2623/* Initialize a Tx ring along with corresponding hardware registers */
2624static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2625 unsigned int index, unsigned int size,
2626 unsigned int start_ptr, unsigned int end_ptr)
2627{
2628 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2629 u32 words_per_bd = WORDS_PER_BD(priv);
2630 u32 flow_period_val = 0;
2631
2632 spin_lock_init(&ring->lock);
2633 ring->priv = priv;
2634 ring->index = index;
2635 if (index == DESC_INDEX) {
2636 ring->queue = 0;
2637 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2638 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2639 } else {
2640 ring->queue = index + 1;
2641 ring->int_enable = bcmgenet_tx_ring_int_enable;
2642 ring->int_disable = bcmgenet_tx_ring_int_disable;
2643 }
2644 ring->cbs = priv->tx_cbs + start_ptr;
2645 ring->size = size;
2646 ring->clean_ptr = start_ptr;
2647 ring->c_index = 0;
2648 ring->free_bds = size;
2649 ring->write_ptr = start_ptr;
2650 ring->cb_ptr = start_ptr;
2651 ring->end_ptr = end_ptr - 1;
2652 ring->prod_index = 0;
2653
2654 /* Set flow period for ring != 16 */
2655 if (index != DESC_INDEX)
2656 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2657
2658 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2659 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2660 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2661 /* Disable rate control for now */
2662 bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2663 TDMA_FLOW_PERIOD);
2664 bcmgenet_tdma_ring_writel(priv, index,
2665 ((size << DMA_RING_SIZE_SHIFT) |
2666 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2667
2668 /* Set start and end address, read and write pointers */
2669 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2670 DMA_START_ADDR);
2671 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2672 TDMA_READ_PTR);
2673 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2674 TDMA_WRITE_PTR);
2675 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2676 DMA_END_ADDR);
2677
2678 /* Initialize Tx NAPI */
2679 netif_napi_add_tx(priv->dev, &ring->napi, bcmgenet_tx_poll);
2680}
2681
2682/* Initialize a RDMA ring */
2683static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2684 unsigned int index, unsigned int size,
2685 unsigned int start_ptr, unsigned int end_ptr)
2686{
2687 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2688 u32 words_per_bd = WORDS_PER_BD(priv);
2689 int ret;
2690
2691 ring->priv = priv;
2692 ring->index = index;
2693 if (index == DESC_INDEX) {
2694 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2695 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2696 } else {
2697 ring->int_enable = bcmgenet_rx_ring_int_enable;
2698 ring->int_disable = bcmgenet_rx_ring_int_disable;
2699 }
2700 ring->cbs = priv->rx_cbs + start_ptr;
2701 ring->size = size;
2702 ring->c_index = 0;
2703 ring->read_ptr = start_ptr;
2704 ring->cb_ptr = start_ptr;
2705 ring->end_ptr = end_ptr - 1;
2706
2707 ret = bcmgenet_alloc_rx_buffers(priv, ring);
2708 if (ret)
2709 return ret;
2710
2711 bcmgenet_init_dim(ring, bcmgenet_dim_work);
2712 bcmgenet_init_rx_coalesce(ring);
2713
2714 /* Initialize Rx NAPI */
2715 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll);
2716
2717 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2718 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2719 bcmgenet_rdma_ring_writel(priv, index,
2720 ((size << DMA_RING_SIZE_SHIFT) |
2721 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2722 bcmgenet_rdma_ring_writel(priv, index,
2723 (DMA_FC_THRESH_LO <<
2724 DMA_XOFF_THRESHOLD_SHIFT) |
2725 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2726
2727 /* Set start and end address, read and write pointers */
2728 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2729 DMA_START_ADDR);
2730 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2731 RDMA_READ_PTR);
2732 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2733 RDMA_WRITE_PTR);
2734 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2735 DMA_END_ADDR);
2736
2737 return ret;
2738}
2739
2740static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2741{
2742 unsigned int i;
2743 struct bcmgenet_tx_ring *ring;
2744
2745 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2746 ring = &priv->tx_rings[i];
2747 napi_enable(&ring->napi);
2748 ring->int_enable(ring);
2749 }
2750
2751 ring = &priv->tx_rings[DESC_INDEX];
2752 napi_enable(&ring->napi);
2753 ring->int_enable(ring);
2754}
2755
2756static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2757{
2758 unsigned int i;
2759 struct bcmgenet_tx_ring *ring;
2760
2761 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2762 ring = &priv->tx_rings[i];
2763 napi_disable(&ring->napi);
2764 }
2765
2766 ring = &priv->tx_rings[DESC_INDEX];
2767 napi_disable(&ring->napi);
2768}
2769
2770static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2771{
2772 unsigned int i;
2773 struct bcmgenet_tx_ring *ring;
2774
2775 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2776 ring = &priv->tx_rings[i];
2777 netif_napi_del(&ring->napi);
2778 }
2779
2780 ring = &priv->tx_rings[DESC_INDEX];
2781 netif_napi_del(&ring->napi);
2782}
2783
2784/* Initialize Tx queues
2785 *
2786 * Queues 0-3 are priority-based, each one has 32 descriptors,
2787 * with queue 0 being the highest priority queue.
2788 *
2789 * Queue 16 is the default Tx queue with
2790 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2791 *
2792 * The transmit control block pool is then partitioned as follows:
2793 * - Tx queue 0 uses tx_cbs[0..31]
2794 * - Tx queue 1 uses tx_cbs[32..63]
2795 * - Tx queue 2 uses tx_cbs[64..95]
2796 * - Tx queue 3 uses tx_cbs[96..127]
2797 * - Tx queue 16 uses tx_cbs[128..255]
2798 */
2799static void bcmgenet_init_tx_queues(struct net_device *dev)
2800{
2801 struct bcmgenet_priv *priv = netdev_priv(dev);
2802 u32 i, dma_enable;
2803 u32 dma_ctrl, ring_cfg;
2804 u32 dma_priority[3] = {0, 0, 0};
2805
2806 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2807 dma_enable = dma_ctrl & DMA_EN;
2808 dma_ctrl &= ~DMA_EN;
2809 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2810
2811 dma_ctrl = 0;
2812 ring_cfg = 0;
2813
2814 /* Enable strict priority arbiter mode */
2815 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2816
2817 /* Initialize Tx priority queues */
2818 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2819 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2820 i * priv->hw_params->tx_bds_per_q,
2821 (i + 1) * priv->hw_params->tx_bds_per_q);
2822 ring_cfg |= (1 << i);
2823 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2824 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2825 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2826 }
2827
2828 /* Initialize Tx default queue 16 */
2829 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2830 priv->hw_params->tx_queues *
2831 priv->hw_params->tx_bds_per_q,
2832 TOTAL_DESC);
2833 ring_cfg |= (1 << DESC_INDEX);
2834 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2835 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2836 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2837 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2838
2839 /* Set Tx queue priorities */
2840 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2841 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2842 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2843
2844 /* Enable Tx queues */
2845 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2846
2847 /* Enable Tx DMA */
2848 if (dma_enable)
2849 dma_ctrl |= DMA_EN;
2850 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2851}
2852
2853static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2854{
2855 unsigned int i;
2856 struct bcmgenet_rx_ring *ring;
2857
2858 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2859 ring = &priv->rx_rings[i];
2860 napi_enable(&ring->napi);
2861 ring->int_enable(ring);
2862 }
2863
2864 ring = &priv->rx_rings[DESC_INDEX];
2865 napi_enable(&ring->napi);
2866 ring->int_enable(ring);
2867}
2868
2869static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2870{
2871 unsigned int i;
2872 struct bcmgenet_rx_ring *ring;
2873
2874 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2875 ring = &priv->rx_rings[i];
2876 napi_disable(&ring->napi);
2877 cancel_work_sync(&ring->dim.dim.work);
2878 }
2879
2880 ring = &priv->rx_rings[DESC_INDEX];
2881 napi_disable(&ring->napi);
2882 cancel_work_sync(&ring->dim.dim.work);
2883}
2884
2885static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2886{
2887 unsigned int i;
2888 struct bcmgenet_rx_ring *ring;
2889
2890 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2891 ring = &priv->rx_rings[i];
2892 netif_napi_del(&ring->napi);
2893 }
2894
2895 ring = &priv->rx_rings[DESC_INDEX];
2896 netif_napi_del(&ring->napi);
2897}
2898
2899/* Initialize Rx queues
2900 *
2901 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2902 * used to direct traffic to these queues.
2903 *
2904 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2905 */
2906static int bcmgenet_init_rx_queues(struct net_device *dev)
2907{
2908 struct bcmgenet_priv *priv = netdev_priv(dev);
2909 u32 i;
2910 u32 dma_enable;
2911 u32 dma_ctrl;
2912 u32 ring_cfg;
2913 int ret;
2914
2915 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2916 dma_enable = dma_ctrl & DMA_EN;
2917 dma_ctrl &= ~DMA_EN;
2918 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2919
2920 dma_ctrl = 0;
2921 ring_cfg = 0;
2922
2923 /* Initialize Rx priority queues */
2924 for (i = 0; i < priv->hw_params->rx_queues; i++) {
2925 ret = bcmgenet_init_rx_ring(priv, i,
2926 priv->hw_params->rx_bds_per_q,
2927 i * priv->hw_params->rx_bds_per_q,
2928 (i + 1) *
2929 priv->hw_params->rx_bds_per_q);
2930 if (ret)
2931 return ret;
2932
2933 ring_cfg |= (1 << i);
2934 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2935 }
2936
2937 /* Initialize Rx default queue 16 */
2938 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2939 priv->hw_params->rx_queues *
2940 priv->hw_params->rx_bds_per_q,
2941 TOTAL_DESC);
2942 if (ret)
2943 return ret;
2944
2945 ring_cfg |= (1 << DESC_INDEX);
2946 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2947
2948 /* Enable rings */
2949 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2950
2951 /* Configure ring as descriptor ring and re-enable DMA if enabled */
2952 if (dma_enable)
2953 dma_ctrl |= DMA_EN;
2954 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2955
2956 return 0;
2957}
2958
2959static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2960{
2961 int ret = 0;
2962 int timeout = 0;
2963 u32 reg;
2964 u32 dma_ctrl;
2965 int i;
2966
2967 /* Disable TDMA to stop add more frames in TX DMA */
2968 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2969 reg &= ~DMA_EN;
2970 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2971
2972 /* Check TDMA status register to confirm TDMA is disabled */
2973 while (timeout++ < DMA_TIMEOUT_VAL) {
2974 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2975 if (reg & DMA_DISABLED)
2976 break;
2977
2978 udelay(1);
2979 }
2980
2981 if (timeout == DMA_TIMEOUT_VAL) {
2982 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2983 ret = -ETIMEDOUT;
2984 }
2985
2986 /* Wait 10ms for packet drain in both tx and rx dma */
2987 usleep_range(10000, 20000);
2988
2989 /* Disable RDMA */
2990 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2991 reg &= ~DMA_EN;
2992 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2993
2994 timeout = 0;
2995 /* Check RDMA status register to confirm RDMA is disabled */
2996 while (timeout++ < DMA_TIMEOUT_VAL) {
2997 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2998 if (reg & DMA_DISABLED)
2999 break;
3000
3001 udelay(1);
3002 }
3003
3004 if (timeout == DMA_TIMEOUT_VAL) {
3005 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
3006 ret = -ETIMEDOUT;
3007 }
3008
3009 dma_ctrl = 0;
3010 for (i = 0; i < priv->hw_params->rx_queues; i++)
3011 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3012 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3013 reg &= ~dma_ctrl;
3014 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3015
3016 dma_ctrl = 0;
3017 for (i = 0; i < priv->hw_params->tx_queues; i++)
3018 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3019 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3020 reg &= ~dma_ctrl;
3021 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3022
3023 return ret;
3024}
3025
3026static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
3027{
3028 struct netdev_queue *txq;
3029 int i;
3030
3031 bcmgenet_fini_rx_napi(priv);
3032 bcmgenet_fini_tx_napi(priv);
3033
3034 for (i = 0; i < priv->num_tx_bds; i++)
3035 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
3036 priv->tx_cbs + i));
3037
3038 for (i = 0; i < priv->hw_params->tx_queues; i++) {
3039 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
3040 netdev_tx_reset_queue(txq);
3041 }
3042
3043 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
3044 netdev_tx_reset_queue(txq);
3045
3046 bcmgenet_free_rx_buffers(priv);
3047 kfree(priv->rx_cbs);
3048 kfree(priv->tx_cbs);
3049}
3050
3051/* init_edma: Initialize DMA control register */
3052static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
3053{
3054 int ret;
3055 unsigned int i;
3056 struct enet_cb *cb;
3057
3058 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3059
3060 /* Initialize common Rx ring structures */
3061 priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3062 priv->num_rx_bds = TOTAL_DESC;
3063 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3064 GFP_KERNEL);
3065 if (!priv->rx_cbs)
3066 return -ENOMEM;
3067
3068 for (i = 0; i < priv->num_rx_bds; i++) {
3069 cb = priv->rx_cbs + i;
3070 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3071 }
3072
3073 /* Initialize common TX ring structures */
3074 priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3075 priv->num_tx_bds = TOTAL_DESC;
3076 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3077 GFP_KERNEL);
3078 if (!priv->tx_cbs) {
3079 kfree(priv->rx_cbs);
3080 return -ENOMEM;
3081 }
3082
3083 for (i = 0; i < priv->num_tx_bds; i++) {
3084 cb = priv->tx_cbs + i;
3085 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3086 }
3087
3088 /* Init rDma */
3089 bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3090 DMA_SCB_BURST_SIZE);
3091
3092 /* Initialize Rx queues */
3093 ret = bcmgenet_init_rx_queues(priv->dev);
3094 if (ret) {
3095 netdev_err(priv->dev, "failed to initialize Rx queues\n");
3096 bcmgenet_free_rx_buffers(priv);
3097 kfree(priv->rx_cbs);
3098 kfree(priv->tx_cbs);
3099 return ret;
3100 }
3101
3102 /* Init tDma */
3103 bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3104 DMA_SCB_BURST_SIZE);
3105
3106 /* Initialize Tx queues */
3107 bcmgenet_init_tx_queues(priv->dev);
3108
3109 return 0;
3110}
3111
3112/* Interrupt bottom half */
3113static void bcmgenet_irq_task(struct work_struct *work)
3114{
3115 unsigned int status;
3116 struct bcmgenet_priv *priv = container_of(
3117 work, struct bcmgenet_priv, bcmgenet_irq_work);
3118
3119 netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3120
3121 spin_lock_irq(&priv->lock);
3122 status = priv->irq0_stat;
3123 priv->irq0_stat = 0;
3124 spin_unlock_irq(&priv->lock);
3125
3126 if (status & UMAC_IRQ_PHY_DET_R &&
3127 priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3128 phy_init_hw(priv->dev->phydev);
3129 genphy_config_aneg(priv->dev->phydev);
3130 }
3131
3132 /* Link UP/DOWN event */
3133 if (status & UMAC_IRQ_LINK_EVENT)
3134 phy_mac_interrupt(priv->dev->phydev);
3135
3136}
3137
3138/* bcmgenet_isr1: handle Rx and Tx priority queues */
3139static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3140{
3141 struct bcmgenet_priv *priv = dev_id;
3142 struct bcmgenet_rx_ring *rx_ring;
3143 struct bcmgenet_tx_ring *tx_ring;
3144 unsigned int index, status;
3145
3146 /* Read irq status */
3147 status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3148 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3149
3150 /* clear interrupts */
3151 bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3152
3153 netif_dbg(priv, intr, priv->dev,
3154 "%s: IRQ=0x%x\n", __func__, status);
3155
3156 /* Check Rx priority queue interrupts */
3157 for (index = 0; index < priv->hw_params->rx_queues; index++) {
3158 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3159 continue;
3160
3161 rx_ring = &priv->rx_rings[index];
3162 rx_ring->dim.event_ctr++;
3163
3164 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3165 rx_ring->int_disable(rx_ring);
3166 __napi_schedule_irqoff(&rx_ring->napi);
3167 }
3168 }
3169
3170 /* Check Tx priority queue interrupts */
3171 for (index = 0; index < priv->hw_params->tx_queues; index++) {
3172 if (!(status & BIT(index)))
3173 continue;
3174
3175 tx_ring = &priv->tx_rings[index];
3176
3177 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3178 tx_ring->int_disable(tx_ring);
3179 __napi_schedule_irqoff(&tx_ring->napi);
3180 }
3181 }
3182
3183 return IRQ_HANDLED;
3184}
3185
3186/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3187static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3188{
3189 struct bcmgenet_priv *priv = dev_id;
3190 struct bcmgenet_rx_ring *rx_ring;
3191 struct bcmgenet_tx_ring *tx_ring;
3192 unsigned int status;
3193 unsigned long flags;
3194
3195 /* Read irq status */
3196 status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3197 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3198
3199 /* clear interrupts */
3200 bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3201
3202 netif_dbg(priv, intr, priv->dev,
3203 "IRQ=0x%x\n", status);
3204
3205 if (status & UMAC_IRQ_RXDMA_DONE) {
3206 rx_ring = &priv->rx_rings[DESC_INDEX];
3207 rx_ring->dim.event_ctr++;
3208
3209 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3210 rx_ring->int_disable(rx_ring);
3211 __napi_schedule_irqoff(&rx_ring->napi);
3212 }
3213 }
3214
3215 if (status & UMAC_IRQ_TXDMA_DONE) {
3216 tx_ring = &priv->tx_rings[DESC_INDEX];
3217
3218 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3219 tx_ring->int_disable(tx_ring);
3220 __napi_schedule_irqoff(&tx_ring->napi);
3221 }
3222 }
3223
3224 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3225 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3226 wake_up(&priv->wq);
3227 }
3228
3229 /* all other interested interrupts handled in bottom half */
3230 status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3231 if (status) {
3232 /* Save irq status for bottom-half processing. */
3233 spin_lock_irqsave(&priv->lock, flags);
3234 priv->irq0_stat |= status;
3235 spin_unlock_irqrestore(&priv->lock, flags);
3236
3237 schedule_work(&priv->bcmgenet_irq_work);
3238 }
3239
3240 return IRQ_HANDLED;
3241}
3242
3243static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3244{
3245 /* Acknowledge the interrupt */
3246 return IRQ_HANDLED;
3247}
3248
3249#ifdef CONFIG_NET_POLL_CONTROLLER
3250static void bcmgenet_poll_controller(struct net_device *dev)
3251{
3252 struct bcmgenet_priv *priv = netdev_priv(dev);
3253
3254 /* Invoke the main RX/TX interrupt handler */
3255 disable_irq(priv->irq0);
3256 bcmgenet_isr0(priv->irq0, priv);
3257 enable_irq(priv->irq0);
3258
3259 /* And the interrupt handler for RX/TX priority queues */
3260 disable_irq(priv->irq1);
3261 bcmgenet_isr1(priv->irq1, priv);
3262 enable_irq(priv->irq1);
3263}
3264#endif
3265
3266static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3267{
3268 u32 reg;
3269
3270 reg = bcmgenet_rbuf_ctrl_get(priv);
3271 reg |= BIT(1);
3272 bcmgenet_rbuf_ctrl_set(priv, reg);
3273 udelay(10);
3274
3275 reg &= ~BIT(1);
3276 bcmgenet_rbuf_ctrl_set(priv, reg);
3277 udelay(10);
3278}
3279
3280static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3281 const unsigned char *addr)
3282{
3283 bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3284 bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3285}
3286
3287static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3288 unsigned char *addr)
3289{
3290 u32 addr_tmp;
3291
3292 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3293 put_unaligned_be32(addr_tmp, &addr[0]);
3294 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3295 put_unaligned_be16(addr_tmp, &addr[4]);
3296}
3297
3298/* Returns a reusable dma control register value */
3299static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3300{
3301 unsigned int i;
3302 u32 reg;
3303 u32 dma_ctrl;
3304
3305 /* disable DMA */
3306 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3307 for (i = 0; i < priv->hw_params->tx_queues; i++)
3308 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3309 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3310 reg &= ~dma_ctrl;
3311 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3312
3313 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3314 for (i = 0; i < priv->hw_params->rx_queues; i++)
3315 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3316 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3317 reg &= ~dma_ctrl;
3318 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3319
3320 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3321 udelay(10);
3322 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3323
3324 return dma_ctrl;
3325}
3326
3327static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3328{
3329 u32 reg;
3330
3331 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3332 reg |= dma_ctrl;
3333 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3334
3335 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3336 reg |= dma_ctrl;
3337 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3338}
3339
3340static void bcmgenet_netif_start(struct net_device *dev)
3341{
3342 struct bcmgenet_priv *priv = netdev_priv(dev);
3343
3344 /* Start the network engine */
3345 bcmgenet_set_rx_mode(dev);
3346 bcmgenet_enable_rx_napi(priv);
3347
3348 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3349
3350 bcmgenet_enable_tx_napi(priv);
3351
3352 /* Monitor link interrupts now */
3353 bcmgenet_link_intr_enable(priv);
3354
3355 phy_start(dev->phydev);
3356}
3357
3358static int bcmgenet_open(struct net_device *dev)
3359{
3360 struct bcmgenet_priv *priv = netdev_priv(dev);
3361 unsigned long dma_ctrl;
3362 int ret;
3363
3364 netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3365
3366 /* Turn on the clock */
3367 clk_prepare_enable(priv->clk);
3368
3369 /* If this is an internal GPHY, power it back on now, before UniMAC is
3370 * brought out of reset as absolutely no UniMAC activity is allowed
3371 */
3372 if (priv->internal_phy)
3373 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3374
3375 /* take MAC out of reset */
3376 bcmgenet_umac_reset(priv);
3377
3378 init_umac(priv);
3379
3380 /* Apply features again in case we changed them while interface was
3381 * down
3382 */
3383 bcmgenet_set_features(dev, dev->features);
3384
3385 bcmgenet_set_hw_addr(priv, dev->dev_addr);
3386
3387 /* Disable RX/TX DMA and flush TX queues */
3388 dma_ctrl = bcmgenet_dma_disable(priv);
3389
3390 /* Reinitialize TDMA and RDMA and SW housekeeping */
3391 ret = bcmgenet_init_dma(priv);
3392 if (ret) {
3393 netdev_err(dev, "failed to initialize DMA\n");
3394 goto err_clk_disable;
3395 }
3396
3397 /* Always enable ring 16 - descriptor ring */
3398 bcmgenet_enable_dma(priv, dma_ctrl);
3399
3400 /* HFB init */
3401 bcmgenet_hfb_init(priv);
3402
3403 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3404 dev->name, priv);
3405 if (ret < 0) {
3406 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3407 goto err_fini_dma;
3408 }
3409
3410 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3411 dev->name, priv);
3412 if (ret < 0) {
3413 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3414 goto err_irq0;
3415 }
3416
3417 ret = bcmgenet_mii_probe(dev);
3418 if (ret) {
3419 netdev_err(dev, "failed to connect to PHY\n");
3420 goto err_irq1;
3421 }
3422
3423 bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
3424
3425 bcmgenet_netif_start(dev);
3426
3427 netif_tx_start_all_queues(dev);
3428
3429 return 0;
3430
3431err_irq1:
3432 free_irq(priv->irq1, priv);
3433err_irq0:
3434 free_irq(priv->irq0, priv);
3435err_fini_dma:
3436 bcmgenet_dma_teardown(priv);
3437 bcmgenet_fini_dma(priv);
3438err_clk_disable:
3439 if (priv->internal_phy)
3440 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3441 clk_disable_unprepare(priv->clk);
3442 return ret;
3443}
3444
3445static void bcmgenet_netif_stop(struct net_device *dev)
3446{
3447 struct bcmgenet_priv *priv = netdev_priv(dev);
3448
3449 bcmgenet_disable_tx_napi(priv);
3450 netif_tx_disable(dev);
3451
3452 /* Disable MAC receive */
3453 umac_enable_set(priv, CMD_RX_EN, false);
3454
3455 bcmgenet_dma_teardown(priv);
3456
3457 /* Disable MAC transmit. TX DMA disabled must be done before this */
3458 umac_enable_set(priv, CMD_TX_EN, false);
3459
3460 phy_stop(dev->phydev);
3461 bcmgenet_disable_rx_napi(priv);
3462 bcmgenet_intr_disable(priv);
3463
3464 /* Wait for pending work items to complete. Since interrupts are
3465 * disabled no new work will be scheduled.
3466 */
3467 cancel_work_sync(&priv->bcmgenet_irq_work);
3468
3469 /* tx reclaim */
3470 bcmgenet_tx_reclaim_all(dev);
3471 bcmgenet_fini_dma(priv);
3472}
3473
3474static int bcmgenet_close(struct net_device *dev)
3475{
3476 struct bcmgenet_priv *priv = netdev_priv(dev);
3477 int ret = 0;
3478
3479 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3480
3481 bcmgenet_netif_stop(dev);
3482
3483 /* Really kill the PHY state machine and disconnect from it */
3484 phy_disconnect(dev->phydev);
3485
3486 free_irq(priv->irq0, priv);
3487 free_irq(priv->irq1, priv);
3488
3489 if (priv->internal_phy)
3490 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3491
3492 clk_disable_unprepare(priv->clk);
3493
3494 return ret;
3495}
3496
3497static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3498{
3499 struct bcmgenet_priv *priv = ring->priv;
3500 u32 p_index, c_index, intsts, intmsk;
3501 struct netdev_queue *txq;
3502 unsigned int free_bds;
3503 bool txq_stopped;
3504
3505 if (!netif_msg_tx_err(priv))
3506 return;
3507
3508 txq = netdev_get_tx_queue(priv->dev, ring->queue);
3509
3510 spin_lock(&ring->lock);
3511 if (ring->index == DESC_INDEX) {
3512 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3513 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3514 } else {
3515 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3516 intmsk = 1 << ring->index;
3517 }
3518 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3519 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3520 txq_stopped = netif_tx_queue_stopped(txq);
3521 free_bds = ring->free_bds;
3522 spin_unlock(&ring->lock);
3523
3524 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3525 "TX queue status: %s, interrupts: %s\n"
3526 "(sw)free_bds: %d (sw)size: %d\n"
3527 "(sw)p_index: %d (hw)p_index: %d\n"
3528 "(sw)c_index: %d (hw)c_index: %d\n"
3529 "(sw)clean_p: %d (sw)write_p: %d\n"
3530 "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3531 ring->index, ring->queue,
3532 txq_stopped ? "stopped" : "active",
3533 intsts & intmsk ? "enabled" : "disabled",
3534 free_bds, ring->size,
3535 ring->prod_index, p_index & DMA_P_INDEX_MASK,
3536 ring->c_index, c_index & DMA_C_INDEX_MASK,
3537 ring->clean_ptr, ring->write_ptr,
3538 ring->cb_ptr, ring->end_ptr);
3539}
3540
3541static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3542{
3543 struct bcmgenet_priv *priv = netdev_priv(dev);
3544 u32 int0_enable = 0;
3545 u32 int1_enable = 0;
3546 unsigned int q;
3547
3548 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3549
3550 for (q = 0; q < priv->hw_params->tx_queues; q++)
3551 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3552 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3553
3554 bcmgenet_tx_reclaim_all(dev);
3555
3556 for (q = 0; q < priv->hw_params->tx_queues; q++)
3557 int1_enable |= (1 << q);
3558
3559 int0_enable = UMAC_IRQ_TXDMA_DONE;
3560
3561 /* Re-enable TX interrupts if disabled */
3562 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3563 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3564
3565 netif_trans_update(dev);
3566
3567 dev->stats.tx_errors++;
3568
3569 netif_tx_wake_all_queues(dev);
3570}
3571
3572#define MAX_MDF_FILTER 17
3573
3574static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3575 const unsigned char *addr,
3576 int *i)
3577{
3578 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3579 UMAC_MDF_ADDR + (*i * 4));
3580 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3581 addr[4] << 8 | addr[5],
3582 UMAC_MDF_ADDR + ((*i + 1) * 4));
3583 *i += 2;
3584}
3585
3586static void bcmgenet_set_rx_mode(struct net_device *dev)
3587{
3588 struct bcmgenet_priv *priv = netdev_priv(dev);
3589 struct netdev_hw_addr *ha;
3590 int i, nfilter;
3591 u32 reg;
3592
3593 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3594
3595 /* Number of filters needed */
3596 nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3597
3598 /*
3599 * Turn on promicuous mode for three scenarios
3600 * 1. IFF_PROMISC flag is set
3601 * 2. IFF_ALLMULTI flag is set
3602 * 3. The number of filters needed exceeds the number filters
3603 * supported by the hardware.
3604 */
3605 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3606 if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3607 (nfilter > MAX_MDF_FILTER)) {
3608 reg |= CMD_PROMISC;
3609 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3610 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3611 return;
3612 } else {
3613 reg &= ~CMD_PROMISC;
3614 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3615 }
3616
3617 /* update MDF filter */
3618 i = 0;
3619 /* Broadcast */
3620 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3621 /* my own address.*/
3622 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3623
3624 /* Unicast */
3625 netdev_for_each_uc_addr(ha, dev)
3626 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3627
3628 /* Multicast */
3629 netdev_for_each_mc_addr(ha, dev)
3630 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3631
3632 /* Enable filters */
3633 reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3634 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3635}
3636
3637/* Set the hardware MAC address. */
3638static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3639{
3640 struct sockaddr *addr = p;
3641
3642 /* Setting the MAC address at the hardware level is not possible
3643 * without disabling the UniMAC RX/TX enable bits.
3644 */
3645 if (netif_running(dev))
3646 return -EBUSY;
3647
3648 eth_hw_addr_set(dev, addr->sa_data);
3649
3650 return 0;
3651}
3652
3653static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3654{
3655 struct bcmgenet_priv *priv = netdev_priv(dev);
3656 unsigned long tx_bytes = 0, tx_packets = 0;
3657 unsigned long rx_bytes = 0, rx_packets = 0;
3658 unsigned long rx_errors = 0, rx_dropped = 0;
3659 struct bcmgenet_tx_ring *tx_ring;
3660 struct bcmgenet_rx_ring *rx_ring;
3661 unsigned int q;
3662
3663 for (q = 0; q < priv->hw_params->tx_queues; q++) {
3664 tx_ring = &priv->tx_rings[q];
3665 tx_bytes += tx_ring->bytes;
3666 tx_packets += tx_ring->packets;
3667 }
3668 tx_ring = &priv->tx_rings[DESC_INDEX];
3669 tx_bytes += tx_ring->bytes;
3670 tx_packets += tx_ring->packets;
3671
3672 for (q = 0; q < priv->hw_params->rx_queues; q++) {
3673 rx_ring = &priv->rx_rings[q];
3674
3675 rx_bytes += rx_ring->bytes;
3676 rx_packets += rx_ring->packets;
3677 rx_errors += rx_ring->errors;
3678 rx_dropped += rx_ring->dropped;
3679 }
3680 rx_ring = &priv->rx_rings[DESC_INDEX];
3681 rx_bytes += rx_ring->bytes;
3682 rx_packets += rx_ring->packets;
3683 rx_errors += rx_ring->errors;
3684 rx_dropped += rx_ring->dropped;
3685
3686 dev->stats.tx_bytes = tx_bytes;
3687 dev->stats.tx_packets = tx_packets;
3688 dev->stats.rx_bytes = rx_bytes;
3689 dev->stats.rx_packets = rx_packets;
3690 dev->stats.rx_errors = rx_errors;
3691 dev->stats.rx_missed_errors = rx_errors;
3692 dev->stats.rx_dropped = rx_dropped;
3693 return &dev->stats;
3694}
3695
3696static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3697{
3698 struct bcmgenet_priv *priv = netdev_priv(dev);
3699
3700 if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3701 priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3702 return -EOPNOTSUPP;
3703
3704 if (new_carrier)
3705 netif_carrier_on(dev);
3706 else
3707 netif_carrier_off(dev);
3708
3709 return 0;
3710}
3711
3712static const struct net_device_ops bcmgenet_netdev_ops = {
3713 .ndo_open = bcmgenet_open,
3714 .ndo_stop = bcmgenet_close,
3715 .ndo_start_xmit = bcmgenet_xmit,
3716 .ndo_tx_timeout = bcmgenet_timeout,
3717 .ndo_set_rx_mode = bcmgenet_set_rx_mode,
3718 .ndo_set_mac_address = bcmgenet_set_mac_addr,
3719 .ndo_eth_ioctl = phy_do_ioctl_running,
3720 .ndo_set_features = bcmgenet_set_features,
3721#ifdef CONFIG_NET_POLL_CONTROLLER
3722 .ndo_poll_controller = bcmgenet_poll_controller,
3723#endif
3724 .ndo_get_stats = bcmgenet_get_stats,
3725 .ndo_change_carrier = bcmgenet_change_carrier,
3726};
3727
3728/* Array of GENET hardware parameters/characteristics */
3729static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3730 [GENET_V1] = {
3731 .tx_queues = 0,
3732 .tx_bds_per_q = 0,
3733 .rx_queues = 0,
3734 .rx_bds_per_q = 0,
3735 .bp_in_en_shift = 16,
3736 .bp_in_mask = 0xffff,
3737 .hfb_filter_cnt = 16,
3738 .qtag_mask = 0x1F,
3739 .hfb_offset = 0x1000,
3740 .rdma_offset = 0x2000,
3741 .tdma_offset = 0x3000,
3742 .words_per_bd = 2,
3743 },
3744 [GENET_V2] = {
3745 .tx_queues = 4,
3746 .tx_bds_per_q = 32,
3747 .rx_queues = 0,
3748 .rx_bds_per_q = 0,
3749 .bp_in_en_shift = 16,
3750 .bp_in_mask = 0xffff,
3751 .hfb_filter_cnt = 16,
3752 .qtag_mask = 0x1F,
3753 .tbuf_offset = 0x0600,
3754 .hfb_offset = 0x1000,
3755 .hfb_reg_offset = 0x2000,
3756 .rdma_offset = 0x3000,
3757 .tdma_offset = 0x4000,
3758 .words_per_bd = 2,
3759 .flags = GENET_HAS_EXT,
3760 },
3761 [GENET_V3] = {
3762 .tx_queues = 4,
3763 .tx_bds_per_q = 32,
3764 .rx_queues = 0,
3765 .rx_bds_per_q = 0,
3766 .bp_in_en_shift = 17,
3767 .bp_in_mask = 0x1ffff,
3768 .hfb_filter_cnt = 48,
3769 .hfb_filter_size = 128,
3770 .qtag_mask = 0x3F,
3771 .tbuf_offset = 0x0600,
3772 .hfb_offset = 0x8000,
3773 .hfb_reg_offset = 0xfc00,
3774 .rdma_offset = 0x10000,
3775 .tdma_offset = 0x11000,
3776 .words_per_bd = 2,
3777 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3778 GENET_HAS_MOCA_LINK_DET,
3779 },
3780 [GENET_V4] = {
3781 .tx_queues = 4,
3782 .tx_bds_per_q = 32,
3783 .rx_queues = 0,
3784 .rx_bds_per_q = 0,
3785 .bp_in_en_shift = 17,
3786 .bp_in_mask = 0x1ffff,
3787 .hfb_filter_cnt = 48,
3788 .hfb_filter_size = 128,
3789 .qtag_mask = 0x3F,
3790 .tbuf_offset = 0x0600,
3791 .hfb_offset = 0x8000,
3792 .hfb_reg_offset = 0xfc00,
3793 .rdma_offset = 0x2000,
3794 .tdma_offset = 0x4000,
3795 .words_per_bd = 3,
3796 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3797 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3798 },
3799 [GENET_V5] = {
3800 .tx_queues = 4,
3801 .tx_bds_per_q = 32,
3802 .rx_queues = 0,
3803 .rx_bds_per_q = 0,
3804 .bp_in_en_shift = 17,
3805 .bp_in_mask = 0x1ffff,
3806 .hfb_filter_cnt = 48,
3807 .hfb_filter_size = 128,
3808 .qtag_mask = 0x3F,
3809 .tbuf_offset = 0x0600,
3810 .hfb_offset = 0x8000,
3811 .hfb_reg_offset = 0xfc00,
3812 .rdma_offset = 0x2000,
3813 .tdma_offset = 0x4000,
3814 .words_per_bd = 3,
3815 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3816 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3817 },
3818};
3819
3820/* Infer hardware parameters from the detected GENET version */
3821static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3822{
3823 struct bcmgenet_hw_params *params;
3824 u32 reg;
3825 u8 major;
3826 u16 gphy_rev;
3827
3828 if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3829 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3830 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3831 } else if (GENET_IS_V3(priv)) {
3832 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3833 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3834 } else if (GENET_IS_V2(priv)) {
3835 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3836 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3837 } else if (GENET_IS_V1(priv)) {
3838 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3839 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3840 }
3841
3842 /* enum genet_version starts at 1 */
3843 priv->hw_params = &bcmgenet_hw_params[priv->version];
3844 params = priv->hw_params;
3845
3846 /* Read GENET HW version */
3847 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3848 major = (reg >> 24 & 0x0f);
3849 if (major == 6)
3850 major = 5;
3851 else if (major == 5)
3852 major = 4;
3853 else if (major == 0)
3854 major = 1;
3855 if (major != priv->version) {
3856 dev_err(&priv->pdev->dev,
3857 "GENET version mismatch, got: %d, configured for: %d\n",
3858 major, priv->version);
3859 }
3860
3861 /* Print the GENET core version */
3862 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3863 major, (reg >> 16) & 0x0f, reg & 0xffff);
3864
3865 /* Store the integrated PHY revision for the MDIO probing function
3866 * to pass this information to the PHY driver. The PHY driver expects
3867 * to find the PHY major revision in bits 15:8 while the GENET register
3868 * stores that information in bits 7:0, account for that.
3869 *
3870 * On newer chips, starting with PHY revision G0, a new scheme is
3871 * deployed similar to the Starfighter 2 switch with GPHY major
3872 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3873 * is reserved as well as special value 0x01ff, we have a small
3874 * heuristic to check for the new GPHY revision and re-arrange things
3875 * so the GPHY driver is happy.
3876 */
3877 gphy_rev = reg & 0xffff;
3878
3879 if (GENET_IS_V5(priv)) {
3880 /* The EPHY revision should come from the MDIO registers of
3881 * the PHY not from GENET.
3882 */
3883 if (gphy_rev != 0) {
3884 pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3885 gphy_rev);
3886 }
3887 /* This is reserved so should require special treatment */
3888 } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3889 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3890 return;
3891 /* This is the good old scheme, just GPHY major, no minor nor patch */
3892 } else if ((gphy_rev & 0xf0) != 0) {
3893 priv->gphy_rev = gphy_rev << 8;
3894 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3895 } else if ((gphy_rev & 0xff00) != 0) {
3896 priv->gphy_rev = gphy_rev;
3897 }
3898
3899#ifdef CONFIG_PHYS_ADDR_T_64BIT
3900 if (!(params->flags & GENET_HAS_40BITS))
3901 pr_warn("GENET does not support 40-bits PA\n");
3902#endif
3903
3904 pr_debug("Configuration for version: %d\n"
3905 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3906 "BP << en: %2d, BP msk: 0x%05x\n"
3907 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3908 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3909 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3910 "Words/BD: %d\n",
3911 priv->version,
3912 params->tx_queues, params->tx_bds_per_q,
3913 params->rx_queues, params->rx_bds_per_q,
3914 params->bp_in_en_shift, params->bp_in_mask,
3915 params->hfb_filter_cnt, params->qtag_mask,
3916 params->tbuf_offset, params->hfb_offset,
3917 params->hfb_reg_offset,
3918 params->rdma_offset, params->tdma_offset,
3919 params->words_per_bd);
3920}
3921
3922struct bcmgenet_plat_data {
3923 enum bcmgenet_version version;
3924 u32 dma_max_burst_length;
3925 bool ephy_16nm;
3926};
3927
3928static const struct bcmgenet_plat_data v1_plat_data = {
3929 .version = GENET_V1,
3930 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3931};
3932
3933static const struct bcmgenet_plat_data v2_plat_data = {
3934 .version = GENET_V2,
3935 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3936};
3937
3938static const struct bcmgenet_plat_data v3_plat_data = {
3939 .version = GENET_V3,
3940 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3941};
3942
3943static const struct bcmgenet_plat_data v4_plat_data = {
3944 .version = GENET_V4,
3945 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3946};
3947
3948static const struct bcmgenet_plat_data v5_plat_data = {
3949 .version = GENET_V5,
3950 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3951};
3952
3953static const struct bcmgenet_plat_data bcm2711_plat_data = {
3954 .version = GENET_V5,
3955 .dma_max_burst_length = 0x08,
3956};
3957
3958static const struct bcmgenet_plat_data bcm7712_plat_data = {
3959 .version = GENET_V5,
3960 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3961 .ephy_16nm = true,
3962};
3963
3964static const struct of_device_id bcmgenet_match[] = {
3965 { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3966 { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3967 { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3968 { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3969 { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3970 { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3971 { .compatible = "brcm,bcm7712-genet-v5", .data = &bcm7712_plat_data },
3972 { },
3973};
3974MODULE_DEVICE_TABLE(of, bcmgenet_match);
3975
3976static int bcmgenet_probe(struct platform_device *pdev)
3977{
3978 struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3979 const struct bcmgenet_plat_data *pdata;
3980 struct bcmgenet_priv *priv;
3981 struct net_device *dev;
3982 unsigned int i;
3983 int err = -EIO;
3984
3985 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3986 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3987 GENET_MAX_MQ_CNT + 1);
3988 if (!dev) {
3989 dev_err(&pdev->dev, "can't allocate net device\n");
3990 return -ENOMEM;
3991 }
3992
3993 priv = netdev_priv(dev);
3994 priv->irq0 = platform_get_irq(pdev, 0);
3995 if (priv->irq0 < 0) {
3996 err = priv->irq0;
3997 goto err;
3998 }
3999 priv->irq1 = platform_get_irq(pdev, 1);
4000 if (priv->irq1 < 0) {
4001 err = priv->irq1;
4002 goto err;
4003 }
4004 priv->wol_irq = platform_get_irq_optional(pdev, 2);
4005 if (priv->wol_irq == -EPROBE_DEFER) {
4006 err = priv->wol_irq;
4007 goto err;
4008 }
4009
4010 priv->base = devm_platform_ioremap_resource(pdev, 0);
4011 if (IS_ERR(priv->base)) {
4012 err = PTR_ERR(priv->base);
4013 goto err;
4014 }
4015
4016 spin_lock_init(&priv->lock);
4017
4018 /* Set default pause parameters */
4019 priv->autoneg_pause = 1;
4020 priv->tx_pause = 1;
4021 priv->rx_pause = 1;
4022
4023 SET_NETDEV_DEV(dev, &pdev->dev);
4024 dev_set_drvdata(&pdev->dev, dev);
4025 dev->watchdog_timeo = 2 * HZ;
4026 dev->ethtool_ops = &bcmgenet_ethtool_ops;
4027 dev->netdev_ops = &bcmgenet_netdev_ops;
4028
4029 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
4030
4031 /* Set default features */
4032 dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
4033 NETIF_F_RXCSUM;
4034 dev->hw_features |= dev->features;
4035 dev->vlan_features |= dev->features;
4036
4037 /* Request the WOL interrupt and advertise suspend if available */
4038 priv->wol_irq_disabled = true;
4039 if (priv->wol_irq > 0) {
4040 err = devm_request_irq(&pdev->dev, priv->wol_irq,
4041 bcmgenet_wol_isr, 0, dev->name, priv);
4042 if (!err)
4043 device_set_wakeup_capable(&pdev->dev, 1);
4044 }
4045
4046 /* Set the needed headroom to account for any possible
4047 * features enabling/disabling at runtime
4048 */
4049 dev->needed_headroom += 64;
4050
4051 priv->dev = dev;
4052 priv->pdev = pdev;
4053
4054 pdata = device_get_match_data(&pdev->dev);
4055 if (pdata) {
4056 priv->version = pdata->version;
4057 priv->dma_max_burst_length = pdata->dma_max_burst_length;
4058 priv->ephy_16nm = pdata->ephy_16nm;
4059 } else {
4060 priv->version = pd->genet_version;
4061 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
4062 }
4063
4064 priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
4065 if (IS_ERR(priv->clk)) {
4066 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
4067 err = PTR_ERR(priv->clk);
4068 goto err;
4069 }
4070
4071 err = clk_prepare_enable(priv->clk);
4072 if (err)
4073 goto err;
4074
4075 bcmgenet_set_hw_params(priv);
4076
4077 err = -EIO;
4078 if (priv->hw_params->flags & GENET_HAS_40BITS)
4079 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4080 if (err)
4081 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4082 if (err)
4083 goto err_clk_disable;
4084
4085 /* Mii wait queue */
4086 init_waitqueue_head(&priv->wq);
4087 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4088 priv->rx_buf_len = RX_BUF_LENGTH;
4089 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4090
4091 priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4092 if (IS_ERR(priv->clk_wol)) {
4093 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4094 err = PTR_ERR(priv->clk_wol);
4095 goto err_clk_disable;
4096 }
4097
4098 priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4099 if (IS_ERR(priv->clk_eee)) {
4100 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4101 err = PTR_ERR(priv->clk_eee);
4102 goto err_clk_disable;
4103 }
4104
4105 /* If this is an internal GPHY, power it on now, before UniMAC is
4106 * brought out of reset as absolutely no UniMAC activity is allowed
4107 */
4108 if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4109 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4110
4111 if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4112 eth_hw_addr_set(dev, pd->mac_address);
4113 else
4114 if (device_get_ethdev_address(&pdev->dev, dev))
4115 if (has_acpi_companion(&pdev->dev)) {
4116 u8 addr[ETH_ALEN];
4117
4118 bcmgenet_get_hw_addr(priv, addr);
4119 eth_hw_addr_set(dev, addr);
4120 }
4121
4122 if (!is_valid_ether_addr(dev->dev_addr)) {
4123 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4124 eth_hw_addr_random(dev);
4125 }
4126
4127 reset_umac(priv);
4128
4129 err = bcmgenet_mii_init(dev);
4130 if (err)
4131 goto err_clk_disable;
4132
4133 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
4134 * just the ring 16 descriptor based TX
4135 */
4136 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4137 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4138
4139 /* Set default coalescing parameters */
4140 for (i = 0; i < priv->hw_params->rx_queues; i++)
4141 priv->rx_rings[i].rx_max_coalesced_frames = 1;
4142 priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4143
4144 /* libphy will determine the link state */
4145 netif_carrier_off(dev);
4146
4147 /* Turn off the main clock, WOL clock is handled separately */
4148 clk_disable_unprepare(priv->clk);
4149
4150 err = register_netdev(dev);
4151 if (err) {
4152 bcmgenet_mii_exit(dev);
4153 goto err;
4154 }
4155
4156 return err;
4157
4158err_clk_disable:
4159 clk_disable_unprepare(priv->clk);
4160err:
4161 free_netdev(dev);
4162 return err;
4163}
4164
4165static int bcmgenet_remove(struct platform_device *pdev)
4166{
4167 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4168
4169 dev_set_drvdata(&pdev->dev, NULL);
4170 unregister_netdev(priv->dev);
4171 bcmgenet_mii_exit(priv->dev);
4172 free_netdev(priv->dev);
4173
4174 return 0;
4175}
4176
4177static void bcmgenet_shutdown(struct platform_device *pdev)
4178{
4179 bcmgenet_remove(pdev);
4180}
4181
4182#ifdef CONFIG_PM_SLEEP
4183static int bcmgenet_resume_noirq(struct device *d)
4184{
4185 struct net_device *dev = dev_get_drvdata(d);
4186 struct bcmgenet_priv *priv = netdev_priv(dev);
4187 int ret;
4188 u32 reg;
4189
4190 if (!netif_running(dev))
4191 return 0;
4192
4193 /* Turn on the clock */
4194 ret = clk_prepare_enable(priv->clk);
4195 if (ret)
4196 return ret;
4197
4198 if (device_may_wakeup(d) && priv->wolopts) {
4199 /* Account for Wake-on-LAN events and clear those events
4200 * (Some devices need more time between enabling the clocks
4201 * and the interrupt register reflecting the wake event so
4202 * read the register twice)
4203 */
4204 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4205 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4206 if (reg & UMAC_IRQ_WAKE_EVENT)
4207 pm_wakeup_event(&priv->pdev->dev, 0);
4208 }
4209
4210 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4211
4212 return 0;
4213}
4214
4215static int bcmgenet_resume(struct device *d)
4216{
4217 struct net_device *dev = dev_get_drvdata(d);
4218 struct bcmgenet_priv *priv = netdev_priv(dev);
4219 struct bcmgenet_rxnfc_rule *rule;
4220 unsigned long dma_ctrl;
4221 int ret;
4222
4223 if (!netif_running(dev))
4224 return 0;
4225
4226 /* From WOL-enabled suspend, switch to regular clock */
4227 if (device_may_wakeup(d) && priv->wolopts)
4228 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4229
4230 /* If this is an internal GPHY, power it back on now, before UniMAC is
4231 * brought out of reset as absolutely no UniMAC activity is allowed
4232 */
4233 if (priv->internal_phy)
4234 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4235
4236 bcmgenet_umac_reset(priv);
4237
4238 init_umac(priv);
4239
4240 phy_init_hw(dev->phydev);
4241
4242 /* Speed settings must be restored */
4243 genphy_config_aneg(dev->phydev);
4244 bcmgenet_mii_config(priv->dev, false);
4245
4246 /* Restore enabled features */
4247 bcmgenet_set_features(dev, dev->features);
4248
4249 bcmgenet_set_hw_addr(priv, dev->dev_addr);
4250
4251 /* Restore hardware filters */
4252 bcmgenet_hfb_clear(priv);
4253 list_for_each_entry(rule, &priv->rxnfc_list, list)
4254 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4255 bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4256
4257 /* Disable RX/TX DMA and flush TX queues */
4258 dma_ctrl = bcmgenet_dma_disable(priv);
4259
4260 /* Reinitialize TDMA and RDMA and SW housekeeping */
4261 ret = bcmgenet_init_dma(priv);
4262 if (ret) {
4263 netdev_err(dev, "failed to initialize DMA\n");
4264 goto out_clk_disable;
4265 }
4266
4267 /* Always enable ring 16 - descriptor ring */
4268 bcmgenet_enable_dma(priv, dma_ctrl);
4269
4270 if (!device_may_wakeup(d))
4271 phy_resume(dev->phydev);
4272
4273 if (priv->eee.eee_enabled)
4274 bcmgenet_eee_enable_set(dev, true);
4275
4276 bcmgenet_netif_start(dev);
4277
4278 netif_device_attach(dev);
4279
4280 return 0;
4281
4282out_clk_disable:
4283 if (priv->internal_phy)
4284 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4285 clk_disable_unprepare(priv->clk);
4286 return ret;
4287}
4288
4289static int bcmgenet_suspend(struct device *d)
4290{
4291 struct net_device *dev = dev_get_drvdata(d);
4292 struct bcmgenet_priv *priv = netdev_priv(dev);
4293
4294 if (!netif_running(dev))
4295 return 0;
4296
4297 netif_device_detach(dev);
4298
4299 bcmgenet_netif_stop(dev);
4300
4301 if (!device_may_wakeup(d))
4302 phy_suspend(dev->phydev);
4303
4304 /* Disable filtering */
4305 bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4306
4307 return 0;
4308}
4309
4310static int bcmgenet_suspend_noirq(struct device *d)
4311{
4312 struct net_device *dev = dev_get_drvdata(d);
4313 struct bcmgenet_priv *priv = netdev_priv(dev);
4314 int ret = 0;
4315
4316 if (!netif_running(dev))
4317 return 0;
4318
4319 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
4320 if (device_may_wakeup(d) && priv->wolopts)
4321 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4322 else if (priv->internal_phy)
4323 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4324
4325 /* Let the framework handle resumption and leave the clocks on */
4326 if (ret)
4327 return ret;
4328
4329 /* Turn off the clocks */
4330 clk_disable_unprepare(priv->clk);
4331
4332 return 0;
4333}
4334#else
4335#define bcmgenet_suspend NULL
4336#define bcmgenet_suspend_noirq NULL
4337#define bcmgenet_resume NULL
4338#define bcmgenet_resume_noirq NULL
4339#endif /* CONFIG_PM_SLEEP */
4340
4341static const struct dev_pm_ops bcmgenet_pm_ops = {
4342 .suspend = bcmgenet_suspend,
4343 .suspend_noirq = bcmgenet_suspend_noirq,
4344 .resume = bcmgenet_resume,
4345 .resume_noirq = bcmgenet_resume_noirq,
4346};
4347
4348static const struct acpi_device_id genet_acpi_match[] = {
4349 { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4350 { },
4351};
4352MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4353
4354static struct platform_driver bcmgenet_driver = {
4355 .probe = bcmgenet_probe,
4356 .remove = bcmgenet_remove,
4357 .shutdown = bcmgenet_shutdown,
4358 .driver = {
4359 .name = "bcmgenet",
4360 .of_match_table = bcmgenet_match,
4361 .pm = &bcmgenet_pm_ops,
4362 .acpi_match_table = genet_acpi_match,
4363 },
4364};
4365module_platform_driver(bcmgenet_driver);
4366
4367MODULE_AUTHOR("Broadcom Corporation");
4368MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4369MODULE_ALIAS("platform:bcmgenet");
4370MODULE_LICENSE("GPL");
4371MODULE_SOFTDEP("pre: mdio-bcm-unimac");