Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Xilinx CAN device driver
   3 *
   4 * Copyright (C) 2012 - 2022 Xilinx, Inc.
   5 * Copyright (C) 2009 PetaLogix. All rights reserved.
   6 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
   7 *
   8 * Description:
   9 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
  10 */
  11
  12#include <linux/bitfield.h>
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/ethtool.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/netdevice.h>
  22#include <linux/of.h>
 
  23#include <linux/platform_device.h>
  24#include <linux/property.h>
  25#include <linux/skbuff.h>
  26#include <linux/spinlock.h>
  27#include <linux/string.h>
  28#include <linux/types.h>
  29#include <linux/can/dev.h>
  30#include <linux/can/error.h>
  31#include <linux/phy/phy.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/reset.h>
  34
  35#define DRIVER_NAME	"xilinx_can"
  36
  37/* CAN registers set */
  38enum xcan_reg {
  39	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
  40	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
  41	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
  42	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
  43	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
  44	XCAN_ESR_OFFSET		= 0x14, /* Error status */
  45	XCAN_SR_OFFSET		= 0x18, /* Status */
  46	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
  47	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
  48	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
  49
  50	/* not on CAN FD cores */
  51	XCAN_TXFIFO_OFFSET	= 0x30, /* TX FIFO base */
  52	XCAN_RXFIFO_OFFSET	= 0x50, /* RX FIFO base */
  53	XCAN_AFR_OFFSET		= 0x60, /* Acceptance Filter */
  54
  55	/* only on CAN FD cores */
  56	XCAN_F_BRPR_OFFSET	= 0x088, /* Data Phase Baud Rate
  57					  * Prescaler
  58					  */
  59	XCAN_F_BTR_OFFSET	= 0x08C, /* Data Phase Bit Timing */
  60	XCAN_TRR_OFFSET		= 0x0090, /* TX Buffer Ready Request */
  61	XCAN_AFR_EXT_OFFSET	= 0x00E0, /* Acceptance Filter */
  62	XCAN_FSR_OFFSET		= 0x00E8, /* RX FIFO Status */
  63	XCAN_TXMSG_BASE_OFFSET	= 0x0100, /* TX Message Space */
  64	XCAN_RXMSG_BASE_OFFSET	= 0x1100, /* RX Message Space */
  65	XCAN_RXMSG_2_BASE_OFFSET	= 0x2100, /* RX Message Space */
  66	XCAN_AFR_2_MASK_OFFSET	= 0x0A00, /* Acceptance Filter MASK */
  67	XCAN_AFR_2_ID_OFFSET	= 0x0A04, /* Acceptance Filter ID */
  68};
  69
  70#define XCAN_FRAME_ID_OFFSET(frame_base)	((frame_base) + 0x00)
  71#define XCAN_FRAME_DLC_OFFSET(frame_base)	((frame_base) + 0x04)
  72#define XCAN_FRAME_DW1_OFFSET(frame_base)	((frame_base) + 0x08)
  73#define XCAN_FRAME_DW2_OFFSET(frame_base)	((frame_base) + 0x0C)
  74#define XCANFD_FRAME_DW_OFFSET(frame_base)	((frame_base) + 0x08)
  75
  76#define XCAN_CANFD_FRAME_SIZE		0x48
  77#define XCAN_TXMSG_FRAME_OFFSET(n)	(XCAN_TXMSG_BASE_OFFSET + \
  78					 XCAN_CANFD_FRAME_SIZE * (n))
  79#define XCAN_RXMSG_FRAME_OFFSET(n)	(XCAN_RXMSG_BASE_OFFSET + \
  80					 XCAN_CANFD_FRAME_SIZE * (n))
  81#define XCAN_RXMSG_2_FRAME_OFFSET(n)	(XCAN_RXMSG_2_BASE_OFFSET + \
  82					 XCAN_CANFD_FRAME_SIZE * (n))
  83
  84/* the single TX mailbox used by this driver on CAN FD HW */
  85#define XCAN_TX_MAILBOX_IDX		0
  86
  87/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
  88#define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
  89#define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
  90#define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
  91#define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
  92#define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
  93#define XCAN_BRPR_TDCO_MASK		GENMASK(12, 8)  /* TDCO */
  94#define XCAN_2_BRPR_TDCO_MASK		GENMASK(13, 8)  /* TDCO for CANFD 2.0 */
  95#define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
  96#define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
  97#define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
  98#define XCAN_BTR_SJW_MASK_CANFD		0x000F0000 /* Synchronous jump width */
  99#define XCAN_BTR_TS2_MASK_CANFD		0x00000F00 /* Time segment 2 */
 100#define XCAN_BTR_TS1_MASK_CANFD		0x0000003F /* Time segment 1 */
 101#define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
 102#define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
 103#define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
 104#define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
 105#define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
 106#define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
 107#define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
 108#define XCAN_SR_TDCV_MASK		GENMASK(22, 16) /* TDCV Value */
 109#define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
 110#define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
 111#define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
 112#define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
 113#define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
 114#define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
 115#define XCAN_IXR_RXMNF_MASK		0x00020000 /* RX match not finished */
 116#define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
 117#define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
 118#define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
 119#define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
 120#define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
 121#define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
 122#define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
 123#define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
 124#define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
 125#define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
 126#define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
 127#define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
 128#define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
 129#define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
 130#define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
 131#define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
 132#define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
 133#define XCAN_FSR_FL_MASK		0x00003F00 /* RX Fill Level */
 134#define XCAN_2_FSR_FL_MASK		0x00007F00 /* RX Fill Level */
 135#define XCAN_FSR_IRI_MASK		0x00000080 /* RX Increment Read Index */
 136#define XCAN_FSR_RI_MASK		0x0000001F /* RX Read Index */
 137#define XCAN_2_FSR_RI_MASK		0x0000003F /* RX Read Index */
 138#define XCAN_DLCR_EDL_MASK		0x08000000 /* EDL Mask in DLC */
 139#define XCAN_DLCR_BRS_MASK		0x04000000 /* BRS Mask in DLC */
 140
 141/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
 142#define XCAN_BRPR_TDC_ENABLE		BIT(16) /* Transmitter Delay Compensation (TDC) Enable */
 143#define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
 144#define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
 145#define XCAN_BTR_SJW_SHIFT_CANFD	16 /* Synchronous jump width */
 146#define XCAN_BTR_TS2_SHIFT_CANFD	8  /* Time segment 2 */
 147#define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
 148#define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
 149#define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
 150#define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
 151
 152/* CAN frame length constants */
 153#define XCAN_FRAME_MAX_DATA_LEN		8
 154#define XCANFD_DW_BYTES			4
 155#define XCAN_TIMEOUT			(1 * HZ)
 156
 157/* TX-FIFO-empty interrupt available */
 158#define XCAN_FLAG_TXFEMP	0x0001
 159/* RX Match Not Finished interrupt available */
 160#define XCAN_FLAG_RXMNF		0x0002
 161/* Extended acceptance filters with control at 0xE0 */
 162#define XCAN_FLAG_EXT_FILTERS	0x0004
 163/* TX mailboxes instead of TX FIFO */
 164#define XCAN_FLAG_TX_MAILBOXES	0x0008
 165/* RX FIFO with each buffer in separate registers at 0x1100
 166 * instead of the regular FIFO at 0x50
 167 */
 168#define XCAN_FLAG_RX_FIFO_MULTI	0x0010
 169#define XCAN_FLAG_CANFD_2	0x0020
 170
 171enum xcan_ip_type {
 172	XAXI_CAN = 0,
 173	XZYNQ_CANPS,
 174	XAXI_CANFD,
 175	XAXI_CANFD_2_0,
 176};
 177
 178struct xcan_devtype_data {
 179	enum xcan_ip_type cantype;
 180	unsigned int flags;
 181	const struct can_bittiming_const *bittiming_const;
 182	const char *bus_clk_name;
 183	unsigned int btr_ts2_shift;
 184	unsigned int btr_sjw_shift;
 185};
 186
 187/**
 188 * struct xcan_priv - This definition define CAN driver instance
 189 * @can:			CAN private data structure.
 190 * @tx_lock:			Lock for synchronizing TX interrupt handling
 191 * @tx_head:			Tx CAN packets ready to send on the queue
 192 * @tx_tail:			Tx CAN packets successfully sended on the queue
 193 * @tx_max:			Maximum number packets the driver can send
 194 * @napi:			NAPI structure
 195 * @read_reg:			For reading data from CAN registers
 196 * @write_reg:			For writing data to CAN registers
 197 * @dev:			Network device data structure
 198 * @reg_base:			Ioremapped address to registers
 199 * @irq_flags:			For request_irq()
 200 * @bus_clk:			Pointer to struct clk
 201 * @can_clk:			Pointer to struct clk
 202 * @devtype:			Device type specific constants
 203 * @transceiver:		Optional pointer to associated CAN transceiver
 204 * @rstc:			Pointer to reset control
 205 */
 206struct xcan_priv {
 207	struct can_priv can;
 208	spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
 209	unsigned int tx_head;
 210	unsigned int tx_tail;
 211	unsigned int tx_max;
 212	struct napi_struct napi;
 213	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
 214	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
 215			  u32 val);
 216	struct device *dev;
 217	void __iomem *reg_base;
 218	unsigned long irq_flags;
 219	struct clk *bus_clk;
 220	struct clk *can_clk;
 221	struct xcan_devtype_data devtype;
 222	struct phy *transceiver;
 223	struct reset_control *rstc;
 224};
 225
 226/* CAN Bittiming constants as per Xilinx CAN specs */
 227static const struct can_bittiming_const xcan_bittiming_const = {
 228	.name = DRIVER_NAME,
 229	.tseg1_min = 1,
 230	.tseg1_max = 16,
 231	.tseg2_min = 1,
 232	.tseg2_max = 8,
 233	.sjw_max = 4,
 234	.brp_min = 1,
 235	.brp_max = 256,
 236	.brp_inc = 1,
 237};
 238
 239/* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
 240static const struct can_bittiming_const xcan_bittiming_const_canfd = {
 241	.name = DRIVER_NAME,
 242	.tseg1_min = 1,
 243	.tseg1_max = 64,
 244	.tseg2_min = 1,
 245	.tseg2_max = 16,
 246	.sjw_max = 16,
 247	.brp_min = 1,
 248	.brp_max = 256,
 249	.brp_inc = 1,
 250};
 251
 252/* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
 253static const struct can_bittiming_const xcan_data_bittiming_const_canfd = {
 254	.name = DRIVER_NAME,
 255	.tseg1_min = 1,
 256	.tseg1_max = 16,
 257	.tseg2_min = 1,
 258	.tseg2_max = 8,
 259	.sjw_max = 8,
 260	.brp_min = 1,
 261	.brp_max = 256,
 262	.brp_inc = 1,
 263};
 264
 265/* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
 266static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
 267	.name = DRIVER_NAME,
 268	.tseg1_min = 1,
 269	.tseg1_max = 256,
 270	.tseg2_min = 1,
 271	.tseg2_max = 128,
 272	.sjw_max = 128,
 273	.brp_min = 1,
 274	.brp_max = 256,
 275	.brp_inc = 1,
 276};
 277
 278/* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
 279static const struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
 280	.name = DRIVER_NAME,
 281	.tseg1_min = 1,
 282	.tseg1_max = 32,
 283	.tseg2_min = 1,
 284	.tseg2_max = 16,
 285	.sjw_max = 16,
 286	.brp_min = 1,
 287	.brp_max = 256,
 288	.brp_inc = 1,
 289};
 290
 291/* Transmission Delay Compensation constants for CANFD 1.0 */
 292static const struct can_tdc_const xcan_tdc_const_canfd = {
 293	.tdcv_min = 0,
 294	.tdcv_max = 0, /* Manual mode not supported. */
 295	.tdco_min = 0,
 296	.tdco_max = 32,
 297	.tdcf_min = 0, /* Filter window not supported */
 298	.tdcf_max = 0,
 299};
 300
 301/* Transmission Delay Compensation constants for CANFD 2.0 */
 302static const struct can_tdc_const xcan_tdc_const_canfd2 = {
 303	.tdcv_min = 0,
 304	.tdcv_max = 0, /* Manual mode not supported. */
 305	.tdco_min = 0,
 306	.tdco_max = 64,
 307	.tdcf_min = 0, /* Filter window not supported */
 308	.tdcf_max = 0,
 309};
 310
 311/**
 312 * xcan_write_reg_le - Write a value to the device register little endian
 313 * @priv:	Driver private data structure
 314 * @reg:	Register offset
 315 * @val:	Value to write at the Register offset
 316 *
 317 * Write data to the paricular CAN register
 318 */
 319static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
 320			      u32 val)
 321{
 322	iowrite32(val, priv->reg_base + reg);
 323}
 324
 325/**
 326 * xcan_read_reg_le - Read a value from the device register little endian
 327 * @priv:	Driver private data structure
 328 * @reg:	Register offset
 329 *
 330 * Read data from the particular CAN register
 331 * Return: value read from the CAN register
 332 */
 333static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
 334{
 335	return ioread32(priv->reg_base + reg);
 336}
 337
 338/**
 339 * xcan_write_reg_be - Write a value to the device register big endian
 340 * @priv:	Driver private data structure
 341 * @reg:	Register offset
 342 * @val:	Value to write at the Register offset
 343 *
 344 * Write data to the paricular CAN register
 345 */
 346static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
 347			      u32 val)
 348{
 349	iowrite32be(val, priv->reg_base + reg);
 350}
 351
 352/**
 353 * xcan_read_reg_be - Read a value from the device register big endian
 354 * @priv:	Driver private data structure
 355 * @reg:	Register offset
 356 *
 357 * Read data from the particular CAN register
 358 * Return: value read from the CAN register
 359 */
 360static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
 361{
 362	return ioread32be(priv->reg_base + reg);
 363}
 364
 365/**
 366 * xcan_rx_int_mask - Get the mask for the receive interrupt
 367 * @priv:	Driver private data structure
 368 *
 369 * Return: The receive interrupt mask used by the driver on this HW
 370 */
 371static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
 372{
 373	/* RXNEMP is better suited for our use case as it cannot be cleared
 374	 * while the FIFO is non-empty, but CAN FD HW does not have it
 375	 */
 376	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
 377		return XCAN_IXR_RXOK_MASK;
 378	else
 379		return XCAN_IXR_RXNEMP_MASK;
 380}
 381
 382/**
 383 * set_reset_mode - Resets the CAN device mode
 384 * @ndev:	Pointer to net_device structure
 385 *
 386 * This is the driver reset mode routine.The driver
 387 * enters into configuration mode.
 388 *
 389 * Return: 0 on success and failure value on error
 390 */
 391static int set_reset_mode(struct net_device *ndev)
 392{
 393	struct xcan_priv *priv = netdev_priv(ndev);
 394	unsigned long timeout;
 395
 396	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
 397
 398	timeout = jiffies + XCAN_TIMEOUT;
 399	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
 400		if (time_after(jiffies, timeout)) {
 401			netdev_warn(ndev, "timed out for config mode\n");
 402			return -ETIMEDOUT;
 403		}
 404		usleep_range(500, 10000);
 405	}
 406
 407	/* reset clears FIFOs */
 408	priv->tx_head = 0;
 409	priv->tx_tail = 0;
 410
 411	return 0;
 412}
 413
 414/**
 415 * xcan_set_bittiming - CAN set bit timing routine
 416 * @ndev:	Pointer to net_device structure
 417 *
 418 * This is the driver set bittiming  routine.
 419 * Return: 0 on success and failure value on error
 420 */
 421static int xcan_set_bittiming(struct net_device *ndev)
 422{
 423	struct xcan_priv *priv = netdev_priv(ndev);
 424	struct can_bittiming *bt = &priv->can.bittiming;
 425	struct can_bittiming *dbt = &priv->can.data_bittiming;
 426	u32 btr0, btr1;
 427	u32 is_config_mode;
 428
 429	/* Check whether Xilinx CAN is in configuration mode.
 430	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
 431	 */
 432	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
 433				XCAN_SR_CONFIG_MASK;
 434	if (!is_config_mode) {
 435		netdev_alert(ndev,
 436			     "BUG! Cannot set bittiming - CAN is not in config mode\n");
 437		return -EPERM;
 438	}
 439
 440	/* Setting Baud Rate prescaler value in BRPR Register */
 441	btr0 = (bt->brp - 1);
 442
 443	/* Setting Time Segment 1 in BTR Register */
 444	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
 445
 446	/* Setting Time Segment 2 in BTR Register */
 447	btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 448
 449	/* Setting Synchronous jump width in BTR Register */
 450	btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
 451
 452	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
 453	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
 454
 455	if (priv->devtype.cantype == XAXI_CANFD ||
 456	    priv->devtype.cantype == XAXI_CANFD_2_0) {
 457		/* Setting Baud Rate prescaler value in F_BRPR Register */
 458		btr0 = dbt->brp - 1;
 459		if (can_tdc_is_enabled(&priv->can)) {
 460			if (priv->devtype.cantype == XAXI_CANFD)
 461				btr0 |= FIELD_PREP(XCAN_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
 462					XCAN_BRPR_TDC_ENABLE;
 463			else
 464				btr0 |= FIELD_PREP(XCAN_2_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
 465					XCAN_BRPR_TDC_ENABLE;
 466		}
 467
 468		/* Setting Time Segment 1 in BTR Register */
 469		btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
 470
 471		/* Setting Time Segment 2 in BTR Register */
 472		btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 473
 474		/* Setting Synchronous jump width in BTR Register */
 475		btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
 476
 477		priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
 478		priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
 479	}
 480
 481	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
 482		   priv->read_reg(priv, XCAN_BRPR_OFFSET),
 483		   priv->read_reg(priv, XCAN_BTR_OFFSET));
 484
 485	return 0;
 486}
 487
 488/**
 489 * xcan_chip_start - This the drivers start routine
 490 * @ndev:	Pointer to net_device structure
 491 *
 492 * This is the drivers start routine.
 493 * Based on the State of the CAN device it puts
 494 * the CAN device into a proper mode.
 495 *
 496 * Return: 0 on success and failure value on error
 497 */
 498static int xcan_chip_start(struct net_device *ndev)
 499{
 500	struct xcan_priv *priv = netdev_priv(ndev);
 501	u32 reg_msr;
 502	int err;
 503	u32 ier;
 504
 505	/* Check if it is in reset mode */
 506	err = set_reset_mode(ndev);
 507	if (err < 0)
 508		return err;
 509
 510	err = xcan_set_bittiming(ndev);
 511	if (err < 0)
 512		return err;
 513
 514	/* Enable interrupts
 515	 *
 516	 * We enable the ERROR interrupt even with
 517	 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
 518	 * dedicated interrupt for a state change to
 519	 * ERROR_WARNING/ERROR_PASSIVE.
 520	 */
 521	ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
 522		XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
 523		XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
 524		XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
 525
 526	if (priv->devtype.flags & XCAN_FLAG_RXMNF)
 527		ier |= XCAN_IXR_RXMNF_MASK;
 528
 529	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
 530
 531	/* Check whether it is loopback mode or normal mode  */
 532	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
 533		reg_msr = XCAN_MSR_LBACK_MASK;
 534	else
 535		reg_msr = 0x0;
 536
 537	/* enable the first extended filter, if any, as cores with extended
 538	 * filtering default to non-receipt if all filters are disabled
 539	 */
 540	if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
 541		priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
 542
 543	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
 544	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
 545
 546	netdev_dbg(ndev, "status:#x%08x\n",
 547		   priv->read_reg(priv, XCAN_SR_OFFSET));
 548
 549	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 550	return 0;
 551}
 552
 553/**
 554 * xcan_do_set_mode - This sets the mode of the driver
 555 * @ndev:	Pointer to net_device structure
 556 * @mode:	Tells the mode of the driver
 557 *
 558 * This check the drivers state and calls the corresponding modes to set.
 559 *
 560 * Return: 0 on success and failure value on error
 561 */
 562static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
 563{
 564	int ret;
 565
 566	switch (mode) {
 567	case CAN_MODE_START:
 568		ret = xcan_chip_start(ndev);
 569		if (ret < 0) {
 570			netdev_err(ndev, "xcan_chip_start failed!\n");
 571			return ret;
 572		}
 573		netif_wake_queue(ndev);
 574		break;
 575	default:
 576		ret = -EOPNOTSUPP;
 577		break;
 578	}
 579
 580	return ret;
 581}
 582
 583/**
 584 * xcan_write_frame - Write a frame to HW
 585 * @ndev:		Pointer to net_device structure
 586 * @skb:		sk_buff pointer that contains data to be Txed
 587 * @frame_offset:	Register offset to write the frame to
 588 */
 589static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
 590			     int frame_offset)
 591{
 592	u32 id, dlc, data[2] = {0, 0};
 593	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
 594	u32 ramoff, dwindex = 0, i;
 595	struct xcan_priv *priv = netdev_priv(ndev);
 596
 597	/* Watch carefully on the bit sequence */
 598	if (cf->can_id & CAN_EFF_FLAG) {
 599		/* Extended CAN ID format */
 600		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
 601			XCAN_IDR_ID2_MASK;
 602		id |= (((cf->can_id & CAN_EFF_MASK) >>
 603			(CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
 604			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
 605
 606		/* The substibute remote TX request bit should be "1"
 607		 * for extended frames as in the Xilinx CAN datasheet
 608		 */
 609		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
 610
 611		if (cf->can_id & CAN_RTR_FLAG)
 612			/* Extended frames remote TX request */
 613			id |= XCAN_IDR_RTR_MASK;
 614	} else {
 615		/* Standard CAN ID format */
 616		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
 617			XCAN_IDR_ID1_MASK;
 618
 619		if (cf->can_id & CAN_RTR_FLAG)
 620			/* Standard frames remote TX request */
 621			id |= XCAN_IDR_SRR_MASK;
 622	}
 623
 624	dlc = can_fd_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
 625	if (can_is_canfd_skb(skb)) {
 626		if (cf->flags & CANFD_BRS)
 627			dlc |= XCAN_DLCR_BRS_MASK;
 628		dlc |= XCAN_DLCR_EDL_MASK;
 629	}
 630
 631	if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
 632	    (priv->devtype.flags & XCAN_FLAG_TXFEMP))
 633		can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max, 0);
 634	else
 635		can_put_echo_skb(skb, ndev, 0, 0);
 636
 637	priv->tx_head++;
 638
 639	priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
 640	/* If the CAN frame is RTR frame this write triggers transmission
 641	 * (not on CAN FD)
 642	 */
 643	priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
 644	if (priv->devtype.cantype == XAXI_CANFD ||
 645	    priv->devtype.cantype == XAXI_CANFD_2_0) {
 646		for (i = 0; i < cf->len; i += 4) {
 647			ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
 648					(dwindex * XCANFD_DW_BYTES);
 649			priv->write_reg(priv, ramoff,
 650					be32_to_cpup((__be32 *)(cf->data + i)));
 651			dwindex++;
 652		}
 653	} else {
 654		if (cf->len > 0)
 655			data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
 656		if (cf->len > 4)
 657			data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
 658
 659		if (!(cf->can_id & CAN_RTR_FLAG)) {
 660			priv->write_reg(priv,
 661					XCAN_FRAME_DW1_OFFSET(frame_offset),
 662					data[0]);
 663			/* If the CAN frame is Standard/Extended frame this
 664			 * write triggers transmission (not on CAN FD)
 665			 */
 666			priv->write_reg(priv,
 667					XCAN_FRAME_DW2_OFFSET(frame_offset),
 668					data[1]);
 669		}
 670	}
 671}
 672
 673/**
 674 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
 675 * @skb:	sk_buff pointer that contains data to be Txed
 676 * @ndev:	Pointer to net_device structure
 677 *
 678 * Return: 0 on success, -ENOSPC if FIFO is full.
 679 */
 680static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
 681{
 682	struct xcan_priv *priv = netdev_priv(ndev);
 683	unsigned long flags;
 684
 685	/* Check if the TX buffer is full */
 686	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
 687			XCAN_SR_TXFLL_MASK))
 688		return -ENOSPC;
 689
 690	spin_lock_irqsave(&priv->tx_lock, flags);
 691
 692	xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
 693
 694	/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
 695	if (priv->tx_max > 1)
 696		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
 697
 698	/* Check if the TX buffer is full */
 699	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
 700		netif_stop_queue(ndev);
 701
 702	spin_unlock_irqrestore(&priv->tx_lock, flags);
 703
 704	return 0;
 705}
 706
 707/**
 708 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
 709 * @skb:	sk_buff pointer that contains data to be Txed
 710 * @ndev:	Pointer to net_device structure
 711 *
 712 * Return: 0 on success, -ENOSPC if there is no space
 713 */
 714static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
 715{
 716	struct xcan_priv *priv = netdev_priv(ndev);
 717	unsigned long flags;
 718
 719	if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
 720		     BIT(XCAN_TX_MAILBOX_IDX)))
 721		return -ENOSPC;
 722
 723	spin_lock_irqsave(&priv->tx_lock, flags);
 724
 725	xcan_write_frame(ndev, skb,
 726			 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
 727
 728	/* Mark buffer as ready for transmit */
 729	priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
 730
 731	netif_stop_queue(ndev);
 732
 733	spin_unlock_irqrestore(&priv->tx_lock, flags);
 734
 735	return 0;
 736}
 737
 738/**
 739 * xcan_start_xmit - Starts the transmission
 740 * @skb:	sk_buff pointer that contains data to be Txed
 741 * @ndev:	Pointer to net_device structure
 742 *
 743 * This function is invoked from upper layers to initiate transmission.
 744 *
 745 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
 746 */
 747static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 748{
 749	struct xcan_priv *priv = netdev_priv(ndev);
 750	int ret;
 751
 752	if (can_dev_dropped_skb(ndev, skb))
 753		return NETDEV_TX_OK;
 754
 755	if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
 756		ret = xcan_start_xmit_mailbox(skb, ndev);
 757	else
 758		ret = xcan_start_xmit_fifo(skb, ndev);
 759
 760	if (ret < 0) {
 761		netdev_err(ndev, "BUG!, TX full when queue awake!\n");
 762		netif_stop_queue(ndev);
 763		return NETDEV_TX_BUSY;
 764	}
 765
 766	return NETDEV_TX_OK;
 767}
 768
 769/**
 770 * xcan_rx -  Is called from CAN isr to complete the received
 771 *		frame  processing
 772 * @ndev:	Pointer to net_device structure
 773 * @frame_base:	Register offset to the frame to be read
 774 *
 775 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 776 * does minimal processing and invokes "netif_receive_skb" to complete further
 777 * processing.
 778 * Return: 1 on success and 0 on failure.
 779 */
 780static int xcan_rx(struct net_device *ndev, int frame_base)
 781{
 782	struct xcan_priv *priv = netdev_priv(ndev);
 783	struct net_device_stats *stats = &ndev->stats;
 784	struct can_frame *cf;
 785	struct sk_buff *skb;
 786	u32 id_xcan, dlc, data[2] = {0, 0};
 787
 788	skb = alloc_can_skb(ndev, &cf);
 789	if (unlikely(!skb)) {
 790		stats->rx_dropped++;
 791		return 0;
 792	}
 793
 794	/* Read a frame from Xilinx zynq CANPS */
 795	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 796	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
 797				   XCAN_DLCR_DLC_SHIFT;
 798
 799	/* Change Xilinx CAN data length format to socketCAN data format */
 800	cf->len = can_cc_dlc2len(dlc);
 801
 802	/* Change Xilinx CAN ID format to socketCAN ID format */
 803	if (id_xcan & XCAN_IDR_IDE_MASK) {
 804		/* The received frame is an Extended format frame */
 805		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 806		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 807				XCAN_IDR_ID2_SHIFT;
 808		cf->can_id |= CAN_EFF_FLAG;
 809		if (id_xcan & XCAN_IDR_RTR_MASK)
 810			cf->can_id |= CAN_RTR_FLAG;
 811	} else {
 812		/* The received frame is a standard format frame */
 813		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 814				XCAN_IDR_ID1_SHIFT;
 815		if (id_xcan & XCAN_IDR_SRR_MASK)
 816			cf->can_id |= CAN_RTR_FLAG;
 817	}
 818
 819	/* DW1/DW2 must always be read to remove message from RXFIFO */
 820	data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
 821	data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
 822
 823	if (!(cf->can_id & CAN_RTR_FLAG)) {
 824		/* Change Xilinx CAN data format to socketCAN data format */
 825		if (cf->len > 0)
 826			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
 827		if (cf->len > 4)
 828			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
 829
 830		stats->rx_bytes += cf->len;
 831	}
 832	stats->rx_packets++;
 833
 834	netif_receive_skb(skb);
 835
 836	return 1;
 837}
 838
 839/**
 840 * xcanfd_rx -  Is called from CAN isr to complete the received
 841 *		frame  processing
 842 * @ndev:	Pointer to net_device structure
 843 * @frame_base:	Register offset to the frame to be read
 844 *
 845 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 846 * does minimal processing and invokes "netif_receive_skb" to complete further
 847 * processing.
 848 * Return: 1 on success and 0 on failure.
 849 */
 850static int xcanfd_rx(struct net_device *ndev, int frame_base)
 851{
 852	struct xcan_priv *priv = netdev_priv(ndev);
 853	struct net_device_stats *stats = &ndev->stats;
 854	struct canfd_frame *cf;
 855	struct sk_buff *skb;
 856	u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
 857
 858	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 859	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
 860	if (dlc & XCAN_DLCR_EDL_MASK)
 861		skb = alloc_canfd_skb(ndev, &cf);
 862	else
 863		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
 864
 865	if (unlikely(!skb)) {
 866		stats->rx_dropped++;
 867		return 0;
 868	}
 869
 870	/* Change Xilinx CANFD data length format to socketCAN data
 871	 * format
 872	 */
 873	if (dlc & XCAN_DLCR_EDL_MASK)
 874		cf->len = can_fd_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
 875				  XCAN_DLCR_DLC_SHIFT);
 876	else
 877		cf->len = can_cc_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
 878					  XCAN_DLCR_DLC_SHIFT);
 879
 880	/* Change Xilinx CAN ID format to socketCAN ID format */
 881	if (id_xcan & XCAN_IDR_IDE_MASK) {
 882		/* The received frame is an Extended format frame */
 883		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 884		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 885				XCAN_IDR_ID2_SHIFT;
 886		cf->can_id |= CAN_EFF_FLAG;
 887		if (id_xcan & XCAN_IDR_RTR_MASK)
 888			cf->can_id |= CAN_RTR_FLAG;
 889	} else {
 890		/* The received frame is a standard format frame */
 891		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 892				XCAN_IDR_ID1_SHIFT;
 893		if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
 894					XCAN_IDR_SRR_MASK))
 895			cf->can_id |= CAN_RTR_FLAG;
 896	}
 897
 898	/* Check the frame received is FD or not*/
 899	if (dlc & XCAN_DLCR_EDL_MASK) {
 900		for (i = 0; i < cf->len; i += 4) {
 901			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
 902					(dwindex * XCANFD_DW_BYTES);
 903			data[0] = priv->read_reg(priv, dw_offset);
 904			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 905			dwindex++;
 906		}
 907	} else {
 908		for (i = 0; i < cf->len; i += 4) {
 909			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
 910			data[0] = priv->read_reg(priv, dw_offset + i);
 911			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 912		}
 913	}
 914
 915	if (!(cf->can_id & CAN_RTR_FLAG))
 916		stats->rx_bytes += cf->len;
 917	stats->rx_packets++;
 918
 919	netif_receive_skb(skb);
 920
 921	return 1;
 922}
 923
 924/**
 925 * xcan_current_error_state - Get current error state from HW
 926 * @ndev:	Pointer to net_device structure
 927 *
 928 * Checks the current CAN error state from the HW. Note that this
 929 * only checks for ERROR_PASSIVE and ERROR_WARNING.
 930 *
 931 * Return:
 932 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
 933 * otherwise.
 934 */
 935static enum can_state xcan_current_error_state(struct net_device *ndev)
 936{
 937	struct xcan_priv *priv = netdev_priv(ndev);
 938	u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
 939
 940	if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
 941		return CAN_STATE_ERROR_PASSIVE;
 942	else if (status & XCAN_SR_ERRWRN_MASK)
 943		return CAN_STATE_ERROR_WARNING;
 944	else
 945		return CAN_STATE_ERROR_ACTIVE;
 946}
 947
 948/**
 949 * xcan_set_error_state - Set new CAN error state
 950 * @ndev:	Pointer to net_device structure
 951 * @new_state:	The new CAN state to be set
 952 * @cf:		Error frame to be populated or NULL
 953 *
 954 * Set new CAN error state for the device, updating statistics and
 955 * populating the error frame if given.
 956 */
 957static void xcan_set_error_state(struct net_device *ndev,
 958				 enum can_state new_state,
 959				 struct can_frame *cf)
 960{
 961	struct xcan_priv *priv = netdev_priv(ndev);
 962	u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
 963	u32 txerr = ecr & XCAN_ECR_TEC_MASK;
 964	u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
 965	enum can_state tx_state = txerr >= rxerr ? new_state : 0;
 966	enum can_state rx_state = txerr <= rxerr ? new_state : 0;
 967
 968	/* non-ERROR states are handled elsewhere */
 969	if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
 970		return;
 971
 972	can_change_state(ndev, cf, tx_state, rx_state);
 973
 974	if (cf) {
 975		cf->can_id |= CAN_ERR_CNT;
 976		cf->data[6] = txerr;
 977		cf->data[7] = rxerr;
 978	}
 979}
 980
 981/**
 982 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
 983 * @ndev:	Pointer to net_device structure
 984 *
 985 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
 986 * the performed RX/TX has caused it to drop to a lesser state and set
 987 * the interface state accordingly.
 988 */
 989static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
 990{
 991	struct xcan_priv *priv = netdev_priv(ndev);
 992	enum can_state old_state = priv->can.state;
 993	enum can_state new_state;
 994
 995	/* changing error state due to successful frame RX/TX can only
 996	 * occur from these states
 997	 */
 998	if (old_state != CAN_STATE_ERROR_WARNING &&
 999	    old_state != CAN_STATE_ERROR_PASSIVE)
1000		return;
1001
1002	new_state = xcan_current_error_state(ndev);
1003
1004	if (new_state != old_state) {
1005		struct sk_buff *skb;
1006		struct can_frame *cf;
1007
1008		skb = alloc_can_err_skb(ndev, &cf);
1009
1010		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
1011
1012		if (skb)
1013			netif_rx(skb);
1014	}
1015}
1016
1017/**
1018 * xcan_err_interrupt - error frame Isr
1019 * @ndev:	net_device pointer
1020 * @isr:	interrupt status register value
1021 *
1022 * This is the CAN error interrupt and it will
1023 * check the type of error and forward the error
1024 * frame to upper layers.
1025 */
1026static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
1027{
1028	struct xcan_priv *priv = netdev_priv(ndev);
1029	struct net_device_stats *stats = &ndev->stats;
1030	struct can_frame cf = { };
1031	u32 err_status;
1032
1033	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
1034	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
1035
1036	if (isr & XCAN_IXR_BSOFF_MASK) {
1037		priv->can.state = CAN_STATE_BUS_OFF;
1038		priv->can.can_stats.bus_off++;
1039		/* Leave device in Config Mode in bus-off state */
1040		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1041		can_bus_off(ndev);
1042		cf.can_id |= CAN_ERR_BUSOFF;
1043	} else {
1044		enum can_state new_state = xcan_current_error_state(ndev);
1045
1046		if (new_state != priv->can.state)
1047			xcan_set_error_state(ndev, new_state, &cf);
1048	}
1049
1050	/* Check for Arbitration lost interrupt */
1051	if (isr & XCAN_IXR_ARBLST_MASK) {
1052		priv->can.can_stats.arbitration_lost++;
1053		cf.can_id |= CAN_ERR_LOSTARB;
1054		cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
1055	}
1056
1057	/* Check for RX FIFO Overflow interrupt */
1058	if (isr & XCAN_IXR_RXOFLW_MASK) {
1059		stats->rx_over_errors++;
1060		stats->rx_errors++;
1061		cf.can_id |= CAN_ERR_CRTL;
1062		cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1063	}
1064
1065	/* Check for RX Match Not Finished interrupt */
1066	if (isr & XCAN_IXR_RXMNF_MASK) {
1067		stats->rx_dropped++;
1068		stats->rx_errors++;
1069		netdev_err(ndev, "RX match not finished, frame discarded\n");
1070		cf.can_id |= CAN_ERR_CRTL;
1071		cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
1072	}
1073
1074	/* Check for error interrupt */
1075	if (isr & XCAN_IXR_ERROR_MASK) {
1076		bool berr_reporting = false;
1077
1078		if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1079			berr_reporting = true;
1080			cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1081		}
1082
1083		/* Check for Ack error interrupt */
1084		if (err_status & XCAN_ESR_ACKER_MASK) {
1085			stats->tx_errors++;
1086			if (berr_reporting) {
1087				cf.can_id |= CAN_ERR_ACK;
1088				cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1089			}
1090		}
1091
1092		/* Check for Bit error interrupt */
1093		if (err_status & XCAN_ESR_BERR_MASK) {
1094			stats->tx_errors++;
1095			if (berr_reporting) {
1096				cf.can_id |= CAN_ERR_PROT;
1097				cf.data[2] = CAN_ERR_PROT_BIT;
1098			}
1099		}
1100
1101		/* Check for Stuff error interrupt */
1102		if (err_status & XCAN_ESR_STER_MASK) {
1103			stats->rx_errors++;
1104			if (berr_reporting) {
1105				cf.can_id |= CAN_ERR_PROT;
1106				cf.data[2] = CAN_ERR_PROT_STUFF;
1107			}
1108		}
1109
1110		/* Check for Form error interrupt */
1111		if (err_status & XCAN_ESR_FMER_MASK) {
1112			stats->rx_errors++;
1113			if (berr_reporting) {
1114				cf.can_id |= CAN_ERR_PROT;
1115				cf.data[2] = CAN_ERR_PROT_FORM;
1116			}
1117		}
1118
1119		/* Check for CRC error interrupt */
1120		if (err_status & XCAN_ESR_CRCER_MASK) {
1121			stats->rx_errors++;
1122			if (berr_reporting) {
1123				cf.can_id |= CAN_ERR_PROT;
1124				cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1125			}
1126		}
1127		priv->can.can_stats.bus_error++;
1128	}
1129
1130	if (cf.can_id) {
1131		struct can_frame *skb_cf;
1132		struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1133
1134		if (skb) {
1135			skb_cf->can_id |= cf.can_id;
1136			memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1137			netif_rx(skb);
1138		}
1139	}
1140
1141	netdev_dbg(ndev, "%s: error status register:0x%x\n",
1142		   __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1143}
1144
1145/**
1146 * xcan_state_interrupt - It will check the state of the CAN device
1147 * @ndev:	net_device pointer
1148 * @isr:	interrupt status register value
1149 *
1150 * This will checks the state of the CAN device
1151 * and puts the device into appropriate state.
1152 */
1153static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1154{
1155	struct xcan_priv *priv = netdev_priv(ndev);
1156
1157	/* Check for Sleep interrupt if set put CAN device in sleep state */
1158	if (isr & XCAN_IXR_SLP_MASK)
1159		priv->can.state = CAN_STATE_SLEEPING;
1160
1161	/* Check for Wake up interrupt if set put CAN device in Active state */
1162	if (isr & XCAN_IXR_WKUP_MASK)
1163		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1164}
1165
1166/**
1167 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1168 * @priv:	Driver private data structure
1169 *
1170 * Return: Register offset of the next frame in RX FIFO.
1171 */
1172static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1173{
1174	int offset;
1175
1176	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1177		u32 fsr, mask;
1178
1179		/* clear RXOK before the is-empty check so that any newly
1180		 * received frame will reassert it without a race
1181		 */
1182		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1183
1184		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1185
1186		/* check if RX FIFO is empty */
1187		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1188			mask = XCAN_2_FSR_FL_MASK;
1189		else
1190			mask = XCAN_FSR_FL_MASK;
1191
1192		if (!(fsr & mask))
1193			return -ENOENT;
1194
1195		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1196			offset =
1197			  XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1198		else
1199			offset =
1200			  XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1201
1202	} else {
1203		/* check if RX FIFO is empty */
1204		if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1205		      XCAN_IXR_RXNEMP_MASK))
1206			return -ENOENT;
1207
1208		/* frames are read from a static offset */
1209		offset = XCAN_RXFIFO_OFFSET;
1210	}
1211
1212	return offset;
1213}
1214
1215/**
1216 * xcan_rx_poll - Poll routine for rx packets (NAPI)
1217 * @napi:	napi structure pointer
1218 * @quota:	Max number of rx packets to be processed.
1219 *
1220 * This is the poll routine for rx part.
1221 * It will process the packets maximux quota value.
1222 *
1223 * Return: number of packets received
1224 */
1225static int xcan_rx_poll(struct napi_struct *napi, int quota)
1226{
1227	struct net_device *ndev = napi->dev;
1228	struct xcan_priv *priv = netdev_priv(ndev);
1229	u32 ier;
1230	int work_done = 0;
1231	int frame_offset;
1232
1233	while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1234	       (work_done < quota)) {
1235		if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1236			work_done += xcanfd_rx(ndev, frame_offset);
1237		else
1238			work_done += xcan_rx(ndev, frame_offset);
1239
1240		if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1241			/* increment read index */
1242			priv->write_reg(priv, XCAN_FSR_OFFSET,
1243					XCAN_FSR_IRI_MASK);
1244		else
1245			/* clear rx-not-empty (will actually clear only if
1246			 * empty)
1247			 */
1248			priv->write_reg(priv, XCAN_ICR_OFFSET,
1249					XCAN_IXR_RXNEMP_MASK);
1250	}
1251
1252	if (work_done)
1253		xcan_update_error_state_after_rxtx(ndev);
1254
1255	if (work_done < quota) {
1256		if (napi_complete_done(napi, work_done)) {
1257			ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1258			ier |= xcan_rx_int_mask(priv);
1259			priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1260		}
1261	}
1262	return work_done;
1263}
1264
1265/**
1266 * xcan_tx_interrupt - Tx Done Isr
1267 * @ndev:	net_device pointer
1268 * @isr:	Interrupt status register value
1269 */
1270static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1271{
1272	struct xcan_priv *priv = netdev_priv(ndev);
1273	struct net_device_stats *stats = &ndev->stats;
1274	unsigned int frames_in_fifo;
1275	int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1276	unsigned long flags;
1277	int retries = 0;
1278
1279	/* Synchronize with xmit as we need to know the exact number
1280	 * of frames in the FIFO to stay in sync due to the TXFEMP
1281	 * handling.
1282	 * This also prevents a race between netif_wake_queue() and
1283	 * netif_stop_queue().
1284	 */
1285	spin_lock_irqsave(&priv->tx_lock, flags);
1286
1287	frames_in_fifo = priv->tx_head - priv->tx_tail;
1288
1289	if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1290		/* clear TXOK anyway to avoid getting back here */
1291		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1292		spin_unlock_irqrestore(&priv->tx_lock, flags);
1293		return;
1294	}
1295
1296	/* Check if 2 frames were sent (TXOK only means that at least 1
1297	 * frame was sent).
1298	 */
1299	if (frames_in_fifo > 1) {
1300		WARN_ON(frames_in_fifo > priv->tx_max);
1301
1302		/* Synchronize TXOK and isr so that after the loop:
1303		 * (1) isr variable is up-to-date at least up to TXOK clear
1304		 *     time. This avoids us clearing a TXOK of a second frame
1305		 *     but not noticing that the FIFO is now empty and thus
1306		 *     marking only a single frame as sent.
1307		 * (2) No TXOK is left. Having one could mean leaving a
1308		 *     stray TXOK as we might process the associated frame
1309		 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1310		 *     clear to satisfy (1).
1311		 */
1312		while ((isr & XCAN_IXR_TXOK_MASK) &&
1313		       !WARN_ON(++retries == 100)) {
1314			priv->write_reg(priv, XCAN_ICR_OFFSET,
1315					XCAN_IXR_TXOK_MASK);
1316			isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1317		}
1318
1319		if (isr & XCAN_IXR_TXFEMP_MASK) {
1320			/* nothing in FIFO anymore */
1321			frames_sent = frames_in_fifo;
1322		}
1323	} else {
1324		/* single frame in fifo, just clear TXOK */
1325		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1326	}
1327
1328	while (frames_sent--) {
1329		stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1330						    priv->tx_max, NULL);
1331		priv->tx_tail++;
1332		stats->tx_packets++;
1333	}
1334
1335	netif_wake_queue(ndev);
1336
1337	spin_unlock_irqrestore(&priv->tx_lock, flags);
1338
1339	xcan_update_error_state_after_rxtx(ndev);
1340}
1341
1342/**
1343 * xcan_interrupt - CAN Isr
1344 * @irq:	irq number
1345 * @dev_id:	device id pointer
1346 *
1347 * This is the xilinx CAN Isr. It checks for the type of interrupt
1348 * and invokes the corresponding ISR.
1349 *
1350 * Return:
1351 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1352 */
1353static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1354{
1355	struct net_device *ndev = (struct net_device *)dev_id;
1356	struct xcan_priv *priv = netdev_priv(ndev);
1357	u32 isr, ier;
1358	u32 isr_errors;
1359	u32 rx_int_mask = xcan_rx_int_mask(priv);
1360
1361	/* Get the interrupt status from Xilinx CAN */
1362	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1363	if (!isr)
1364		return IRQ_NONE;
1365
1366	/* Check for the type of interrupt and Processing it */
1367	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1368		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1369				XCAN_IXR_WKUP_MASK));
1370		xcan_state_interrupt(ndev, isr);
1371	}
1372
1373	/* Check for Tx interrupt and Processing it */
1374	if (isr & XCAN_IXR_TXOK_MASK)
1375		xcan_tx_interrupt(ndev, isr);
1376
1377	/* Check for the type of error interrupt and Processing it */
1378	isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1379			    XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1380			    XCAN_IXR_RXMNF_MASK);
1381	if (isr_errors) {
1382		priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1383		xcan_err_interrupt(ndev, isr);
1384	}
1385
1386	/* Check for the type of receive interrupt and Processing it */
1387	if (isr & rx_int_mask) {
1388		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1389		ier &= ~rx_int_mask;
1390		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1391		napi_schedule(&priv->napi);
1392	}
1393	return IRQ_HANDLED;
1394}
1395
1396/**
1397 * xcan_chip_stop - Driver stop routine
1398 * @ndev:	Pointer to net_device structure
1399 *
1400 * This is the drivers stop routine. It will disable the
1401 * interrupts and put the device into configuration mode.
1402 */
1403static void xcan_chip_stop(struct net_device *ndev)
1404{
1405	struct xcan_priv *priv = netdev_priv(ndev);
1406	int ret;
1407
1408	/* Disable interrupts and leave the can in configuration mode */
1409	ret = set_reset_mode(ndev);
1410	if (ret < 0)
1411		netdev_dbg(ndev, "set_reset_mode() Failed\n");
1412
1413	priv->can.state = CAN_STATE_STOPPED;
1414}
1415
1416/**
1417 * xcan_open - Driver open routine
1418 * @ndev:	Pointer to net_device structure
1419 *
1420 * This is the driver open routine.
1421 * Return: 0 on success and failure value on error
1422 */
1423static int xcan_open(struct net_device *ndev)
1424{
1425	struct xcan_priv *priv = netdev_priv(ndev);
1426	int ret;
1427
1428	ret = phy_power_on(priv->transceiver);
1429	if (ret)
1430		return ret;
1431
1432	ret = pm_runtime_get_sync(priv->dev);
1433	if (ret < 0) {
1434		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1435			   __func__, ret);
1436		goto err;
1437	}
1438
1439	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1440			  ndev->name, ndev);
1441	if (ret < 0) {
1442		netdev_err(ndev, "irq allocation for CAN failed\n");
1443		goto err;
1444	}
1445
1446	/* Set chip into reset mode */
1447	ret = set_reset_mode(ndev);
1448	if (ret < 0) {
1449		netdev_err(ndev, "mode resetting failed!\n");
1450		goto err_irq;
1451	}
1452
1453	/* Common open */
1454	ret = open_candev(ndev);
1455	if (ret)
1456		goto err_irq;
1457
1458	ret = xcan_chip_start(ndev);
1459	if (ret < 0) {
1460		netdev_err(ndev, "xcan_chip_start failed!\n");
1461		goto err_candev;
1462	}
1463
1464	napi_enable(&priv->napi);
1465	netif_start_queue(ndev);
1466
1467	return 0;
1468
1469err_candev:
1470	close_candev(ndev);
1471err_irq:
1472	free_irq(ndev->irq, ndev);
1473err:
1474	pm_runtime_put(priv->dev);
1475	phy_power_off(priv->transceiver);
1476
1477	return ret;
1478}
1479
1480/**
1481 * xcan_close - Driver close routine
1482 * @ndev:	Pointer to net_device structure
1483 *
1484 * Return: 0 always
1485 */
1486static int xcan_close(struct net_device *ndev)
1487{
1488	struct xcan_priv *priv = netdev_priv(ndev);
1489
1490	netif_stop_queue(ndev);
1491	napi_disable(&priv->napi);
1492	xcan_chip_stop(ndev);
1493	free_irq(ndev->irq, ndev);
1494	close_candev(ndev);
1495
1496	pm_runtime_put(priv->dev);
1497	phy_power_off(priv->transceiver);
1498
1499	return 0;
1500}
1501
1502/**
1503 * xcan_get_berr_counter - error counter routine
1504 * @ndev:	Pointer to net_device structure
1505 * @bec:	Pointer to can_berr_counter structure
1506 *
1507 * This is the driver error counter routine.
1508 * Return: 0 on success and failure value on error
1509 */
1510static int xcan_get_berr_counter(const struct net_device *ndev,
1511				 struct can_berr_counter *bec)
1512{
1513	struct xcan_priv *priv = netdev_priv(ndev);
1514	int ret;
1515
1516	ret = pm_runtime_get_sync(priv->dev);
1517	if (ret < 0) {
1518		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1519			   __func__, ret);
1520		pm_runtime_put(priv->dev);
1521		return ret;
1522	}
1523
1524	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1525	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1526			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1527
1528	pm_runtime_put(priv->dev);
1529
1530	return 0;
1531}
1532
1533/**
1534 * xcan_get_auto_tdcv - Get Transmitter Delay Compensation Value
1535 * @ndev:	Pointer to net_device structure
1536 * @tdcv:	Pointer to TDCV value
1537 *
1538 * Return: 0 on success
1539 */
1540static int xcan_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
1541{
1542	struct xcan_priv *priv = netdev_priv(ndev);
1543
1544	*tdcv = FIELD_GET(XCAN_SR_TDCV_MASK, priv->read_reg(priv, XCAN_SR_OFFSET));
1545
1546	return 0;
1547}
1548
1549static const struct net_device_ops xcan_netdev_ops = {
1550	.ndo_open	= xcan_open,
1551	.ndo_stop	= xcan_close,
1552	.ndo_start_xmit	= xcan_start_xmit,
1553	.ndo_change_mtu	= can_change_mtu,
1554};
1555
1556static const struct ethtool_ops xcan_ethtool_ops = {
1557	.get_ts_info = ethtool_op_get_ts_info,
1558};
1559
1560/**
1561 * xcan_suspend - Suspend method for the driver
1562 * @dev:	Address of the device structure
1563 *
1564 * Put the driver into low power mode.
1565 * Return: 0 on success and failure value on error
1566 */
1567static int __maybe_unused xcan_suspend(struct device *dev)
1568{
1569	struct net_device *ndev = dev_get_drvdata(dev);
1570
1571	if (netif_running(ndev)) {
1572		netif_stop_queue(ndev);
1573		netif_device_detach(ndev);
1574		xcan_chip_stop(ndev);
1575	}
1576
1577	return pm_runtime_force_suspend(dev);
1578}
1579
1580/**
1581 * xcan_resume - Resume from suspend
1582 * @dev:	Address of the device structure
1583 *
1584 * Resume operation after suspend.
1585 * Return: 0 on success and failure value on error
1586 */
1587static int __maybe_unused xcan_resume(struct device *dev)
1588{
1589	struct net_device *ndev = dev_get_drvdata(dev);
1590	int ret;
1591
1592	ret = pm_runtime_force_resume(dev);
1593	if (ret) {
1594		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1595		return ret;
1596	}
1597
1598	if (netif_running(ndev)) {
1599		ret = xcan_chip_start(ndev);
1600		if (ret) {
1601			dev_err(dev, "xcan_chip_start failed on resume\n");
1602			return ret;
1603		}
1604
1605		netif_device_attach(ndev);
1606		netif_start_queue(ndev);
1607	}
1608
1609	return 0;
1610}
1611
1612/**
1613 * xcan_runtime_suspend - Runtime suspend method for the driver
1614 * @dev:	Address of the device structure
1615 *
1616 * Put the driver into low power mode.
1617 * Return: 0 always
1618 */
1619static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1620{
1621	struct net_device *ndev = dev_get_drvdata(dev);
1622	struct xcan_priv *priv = netdev_priv(ndev);
1623
1624	clk_disable_unprepare(priv->bus_clk);
1625	clk_disable_unprepare(priv->can_clk);
1626
1627	return 0;
1628}
1629
1630/**
1631 * xcan_runtime_resume - Runtime resume from suspend
1632 * @dev:	Address of the device structure
1633 *
1634 * Resume operation after suspend.
1635 * Return: 0 on success and failure value on error
1636 */
1637static int __maybe_unused xcan_runtime_resume(struct device *dev)
1638{
1639	struct net_device *ndev = dev_get_drvdata(dev);
1640	struct xcan_priv *priv = netdev_priv(ndev);
1641	int ret;
1642
1643	ret = clk_prepare_enable(priv->bus_clk);
1644	if (ret) {
1645		dev_err(dev, "Cannot enable clock.\n");
1646		return ret;
1647	}
1648	ret = clk_prepare_enable(priv->can_clk);
1649	if (ret) {
1650		dev_err(dev, "Cannot enable clock.\n");
1651		clk_disable_unprepare(priv->bus_clk);
1652		return ret;
1653	}
1654
1655	return 0;
1656}
1657
1658static const struct dev_pm_ops xcan_dev_pm_ops = {
1659	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1660	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1661};
1662
1663static const struct xcan_devtype_data xcan_zynq_data = {
1664	.cantype = XZYNQ_CANPS,
1665	.flags = XCAN_FLAG_TXFEMP,
1666	.bittiming_const = &xcan_bittiming_const,
1667	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1668	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1669	.bus_clk_name = "pclk",
1670};
1671
1672static const struct xcan_devtype_data xcan_axi_data = {
1673	.cantype = XAXI_CAN,
1674	.bittiming_const = &xcan_bittiming_const,
1675	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1676	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1677	.bus_clk_name = "s_axi_aclk",
1678};
1679
1680static const struct xcan_devtype_data xcan_canfd_data = {
1681	.cantype = XAXI_CANFD,
1682	.flags = XCAN_FLAG_EXT_FILTERS |
1683		 XCAN_FLAG_RXMNF |
1684		 XCAN_FLAG_TX_MAILBOXES |
1685		 XCAN_FLAG_RX_FIFO_MULTI,
1686	.bittiming_const = &xcan_bittiming_const_canfd,
1687	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1688	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1689	.bus_clk_name = "s_axi_aclk",
1690};
1691
1692static const struct xcan_devtype_data xcan_canfd2_data = {
1693	.cantype = XAXI_CANFD_2_0,
1694	.flags = XCAN_FLAG_EXT_FILTERS |
1695		 XCAN_FLAG_RXMNF |
1696		 XCAN_FLAG_TX_MAILBOXES |
1697		 XCAN_FLAG_CANFD_2 |
1698		 XCAN_FLAG_RX_FIFO_MULTI,
1699	.bittiming_const = &xcan_bittiming_const_canfd2,
1700	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1701	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1702	.bus_clk_name = "s_axi_aclk",
1703};
1704
1705/* Match table for OF platform binding */
1706static const struct of_device_id xcan_of_match[] = {
1707	{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1708	{ .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1709	{ .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1710	{ .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1711	{ /* end of list */ },
1712};
1713MODULE_DEVICE_TABLE(of, xcan_of_match);
1714
1715/**
1716 * xcan_probe - Platform registration call
1717 * @pdev:	Handle to the platform device structure
1718 *
1719 * This function does all the memory allocation and registration for the CAN
1720 * device.
1721 *
1722 * Return: 0 on success and failure value on error
1723 */
1724static int xcan_probe(struct platform_device *pdev)
1725{
1726	struct net_device *ndev;
1727	struct xcan_priv *priv;
1728	struct phy *transceiver;
1729	const struct xcan_devtype_data *devtype;
1730	void __iomem *addr;
1731	int ret;
1732	int rx_max, tx_max;
1733	u32 hw_tx_max = 0, hw_rx_max = 0;
1734	const char *hw_tx_max_property;
1735
1736	/* Get the virtual base address for the device */
1737	addr = devm_platform_ioremap_resource(pdev, 0);
1738	if (IS_ERR(addr)) {
1739		ret = PTR_ERR(addr);
1740		goto err;
1741	}
1742
1743	devtype = device_get_match_data(&pdev->dev);
 
 
1744
1745	hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1746			     "tx-mailbox-count" : "tx-fifo-depth";
1747
1748	ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1749				   &hw_tx_max);
1750	if (ret < 0) {
1751		dev_err(&pdev->dev, "missing %s property\n",
1752			hw_tx_max_property);
1753		goto err;
1754	}
1755
1756	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1757				   &hw_rx_max);
1758	if (ret < 0) {
1759		dev_err(&pdev->dev,
1760			"missing rx-fifo-depth property (mailbox mode is not supported)\n");
1761		goto err;
1762	}
1763
1764	/* With TX FIFO:
1765	 *
1766	 * There is no way to directly figure out how many frames have been
1767	 * sent when the TXOK interrupt is processed. If TXFEMP
1768	 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1769	 * to determine if 1 or 2 frames have been sent.
1770	 * Theoretically we should be able to use TXFWMEMP to determine up
1771	 * to 3 frames, but it seems that after putting a second frame in the
1772	 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1773	 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1774	 * sent), which is not a sensible state - possibly TXFWMEMP is not
1775	 * completely synchronized with the rest of the bits?
1776	 *
1777	 * With TX mailboxes:
1778	 *
1779	 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1780	 * we submit frames one at a time.
1781	 */
1782	if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1783	    (devtype->flags & XCAN_FLAG_TXFEMP))
1784		tx_max = min(hw_tx_max, 2U);
1785	else
1786		tx_max = 1;
1787
1788	rx_max = hw_rx_max;
1789
1790	/* Create a CAN device instance */
1791	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1792	if (!ndev)
1793		return -ENOMEM;
1794
1795	priv = netdev_priv(ndev);
1796	priv->dev = &pdev->dev;
1797	priv->can.bittiming_const = devtype->bittiming_const;
1798	priv->can.do_set_mode = xcan_do_set_mode;
1799	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1800	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1801					CAN_CTRLMODE_BERR_REPORTING;
1802	priv->rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
1803	if (IS_ERR(priv->rstc)) {
1804		dev_err(&pdev->dev, "Cannot get CAN reset.\n");
1805		ret = PTR_ERR(priv->rstc);
1806		goto err_free;
1807	}
1808
1809	ret = reset_control_reset(priv->rstc);
1810	if (ret)
1811		goto err_free;
1812
1813	if (devtype->cantype == XAXI_CANFD) {
1814		priv->can.data_bittiming_const =
1815			&xcan_data_bittiming_const_canfd;
1816		priv->can.tdc_const = &xcan_tdc_const_canfd;
1817	}
1818
1819	if (devtype->cantype == XAXI_CANFD_2_0) {
1820		priv->can.data_bittiming_const =
1821			&xcan_data_bittiming_const_canfd2;
1822		priv->can.tdc_const = &xcan_tdc_const_canfd2;
1823	}
1824
1825	if (devtype->cantype == XAXI_CANFD ||
1826	    devtype->cantype == XAXI_CANFD_2_0) {
1827		priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD |
1828						CAN_CTRLMODE_TDC_AUTO;
1829		priv->can.do_get_auto_tdcv = xcan_get_auto_tdcv;
1830	}
1831
1832	priv->reg_base = addr;
1833	priv->tx_max = tx_max;
1834	priv->devtype = *devtype;
1835	spin_lock_init(&priv->tx_lock);
1836
1837	/* Get IRQ for the device */
1838	ret = platform_get_irq(pdev, 0);
1839	if (ret < 0)
1840		goto err_reset;
1841
1842	ndev->irq = ret;
1843
1844	ndev->flags |= IFF_ECHO;	/* We support local echo */
1845
1846	platform_set_drvdata(pdev, ndev);
1847	SET_NETDEV_DEV(ndev, &pdev->dev);
1848	ndev->netdev_ops = &xcan_netdev_ops;
1849	ndev->ethtool_ops = &xcan_ethtool_ops;
1850
1851	/* Getting the CAN can_clk info */
1852	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1853	if (IS_ERR(priv->can_clk)) {
1854		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->can_clk),
1855				    "device clock not found\n");
1856		goto err_reset;
1857	}
1858
1859	priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1860	if (IS_ERR(priv->bus_clk)) {
1861		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->bus_clk),
1862				    "bus clock not found\n");
1863		goto err_reset;
1864	}
1865
1866	transceiver = devm_phy_optional_get(&pdev->dev, NULL);
1867	if (IS_ERR(transceiver)) {
1868		ret = PTR_ERR(transceiver);
1869		dev_err_probe(&pdev->dev, ret, "failed to get phy\n");
1870		goto err_reset;
1871	}
1872	priv->transceiver = transceiver;
1873
1874	priv->write_reg = xcan_write_reg_le;
1875	priv->read_reg = xcan_read_reg_le;
1876
1877	pm_runtime_enable(&pdev->dev);
1878	ret = pm_runtime_get_sync(&pdev->dev);
1879	if (ret < 0) {
1880		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1881			   __func__, ret);
1882		goto err_disableclks;
1883	}
1884
1885	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1886		priv->write_reg = xcan_write_reg_be;
1887		priv->read_reg = xcan_read_reg_be;
1888	}
1889
1890	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1891
1892	netif_napi_add_weight(ndev, &priv->napi, xcan_rx_poll, rx_max);
1893
1894	ret = register_candev(ndev);
1895	if (ret) {
1896		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1897		goto err_disableclks;
1898	}
1899
1900	of_can_transceiver(ndev);
1901	pm_runtime_put(&pdev->dev);
1902
1903	if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
1904		priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
1905		priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
1906	}
1907
1908	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1909		   priv->reg_base, ndev->irq, priv->can.clock.freq,
1910		   hw_tx_max, priv->tx_max);
1911
1912	return 0;
1913
1914err_disableclks:
1915	pm_runtime_put(priv->dev);
1916	pm_runtime_disable(&pdev->dev);
1917err_reset:
1918	reset_control_assert(priv->rstc);
1919err_free:
1920	free_candev(ndev);
1921err:
1922	return ret;
1923}
1924
1925/**
1926 * xcan_remove - Unregister the device after releasing the resources
1927 * @pdev:	Handle to the platform device structure
1928 *
1929 * This function frees all the resources allocated to the device.
1930 * Return: 0 always
1931 */
1932static void xcan_remove(struct platform_device *pdev)
1933{
1934	struct net_device *ndev = platform_get_drvdata(pdev);
1935	struct xcan_priv *priv = netdev_priv(ndev);
1936
1937	unregister_candev(ndev);
1938	pm_runtime_disable(&pdev->dev);
1939	reset_control_assert(priv->rstc);
1940	free_candev(ndev);
 
 
1941}
1942
1943static struct platform_driver xcan_driver = {
1944	.probe = xcan_probe,
1945	.remove_new = xcan_remove,
1946	.driver	= {
1947		.name = DRIVER_NAME,
1948		.pm = &xcan_dev_pm_ops,
1949		.of_match_table	= xcan_of_match,
1950	},
1951};
1952
1953module_platform_driver(xcan_driver);
1954
1955MODULE_LICENSE("GPL");
1956MODULE_AUTHOR("Xilinx Inc");
1957MODULE_DESCRIPTION("Xilinx CAN interface");
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Xilinx CAN device driver
   3 *
   4 * Copyright (C) 2012 - 2022 Xilinx, Inc.
   5 * Copyright (C) 2009 PetaLogix. All rights reserved.
   6 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
   7 *
   8 * Description:
   9 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
  10 */
  11
  12#include <linux/bitfield.h>
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/ethtool.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/netdevice.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/platform_device.h>
 
  25#include <linux/skbuff.h>
  26#include <linux/spinlock.h>
  27#include <linux/string.h>
  28#include <linux/types.h>
  29#include <linux/can/dev.h>
  30#include <linux/can/error.h>
 
  31#include <linux/pm_runtime.h>
 
  32
  33#define DRIVER_NAME	"xilinx_can"
  34
  35/* CAN registers set */
  36enum xcan_reg {
  37	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
  38	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
  39	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
  40	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
  41	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
  42	XCAN_ESR_OFFSET		= 0x14, /* Error status */
  43	XCAN_SR_OFFSET		= 0x18, /* Status */
  44	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
  45	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
  46	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
  47
  48	/* not on CAN FD cores */
  49	XCAN_TXFIFO_OFFSET	= 0x30, /* TX FIFO base */
  50	XCAN_RXFIFO_OFFSET	= 0x50, /* RX FIFO base */
  51	XCAN_AFR_OFFSET		= 0x60, /* Acceptance Filter */
  52
  53	/* only on CAN FD cores */
  54	XCAN_F_BRPR_OFFSET	= 0x088, /* Data Phase Baud Rate
  55					  * Prescaler
  56					  */
  57	XCAN_F_BTR_OFFSET	= 0x08C, /* Data Phase Bit Timing */
  58	XCAN_TRR_OFFSET		= 0x0090, /* TX Buffer Ready Request */
  59	XCAN_AFR_EXT_OFFSET	= 0x00E0, /* Acceptance Filter */
  60	XCAN_FSR_OFFSET		= 0x00E8, /* RX FIFO Status */
  61	XCAN_TXMSG_BASE_OFFSET	= 0x0100, /* TX Message Space */
  62	XCAN_RXMSG_BASE_OFFSET	= 0x1100, /* RX Message Space */
  63	XCAN_RXMSG_2_BASE_OFFSET	= 0x2100, /* RX Message Space */
  64	XCAN_AFR_2_MASK_OFFSET	= 0x0A00, /* Acceptance Filter MASK */
  65	XCAN_AFR_2_ID_OFFSET	= 0x0A04, /* Acceptance Filter ID */
  66};
  67
  68#define XCAN_FRAME_ID_OFFSET(frame_base)	((frame_base) + 0x00)
  69#define XCAN_FRAME_DLC_OFFSET(frame_base)	((frame_base) + 0x04)
  70#define XCAN_FRAME_DW1_OFFSET(frame_base)	((frame_base) + 0x08)
  71#define XCAN_FRAME_DW2_OFFSET(frame_base)	((frame_base) + 0x0C)
  72#define XCANFD_FRAME_DW_OFFSET(frame_base)	((frame_base) + 0x08)
  73
  74#define XCAN_CANFD_FRAME_SIZE		0x48
  75#define XCAN_TXMSG_FRAME_OFFSET(n)	(XCAN_TXMSG_BASE_OFFSET + \
  76					 XCAN_CANFD_FRAME_SIZE * (n))
  77#define XCAN_RXMSG_FRAME_OFFSET(n)	(XCAN_RXMSG_BASE_OFFSET + \
  78					 XCAN_CANFD_FRAME_SIZE * (n))
  79#define XCAN_RXMSG_2_FRAME_OFFSET(n)	(XCAN_RXMSG_2_BASE_OFFSET + \
  80					 XCAN_CANFD_FRAME_SIZE * (n))
  81
  82/* the single TX mailbox used by this driver on CAN FD HW */
  83#define XCAN_TX_MAILBOX_IDX		0
  84
  85/* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
  86#define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
  87#define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
  88#define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
  89#define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
  90#define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
  91#define XCAN_BRPR_TDCO_MASK		GENMASK(12, 8)  /* TDCO */
  92#define XCAN_2_BRPR_TDCO_MASK		GENMASK(13, 8)  /* TDCO for CANFD 2.0 */
  93#define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
  94#define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
  95#define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
  96#define XCAN_BTR_SJW_MASK_CANFD		0x000F0000 /* Synchronous jump width */
  97#define XCAN_BTR_TS2_MASK_CANFD		0x00000F00 /* Time segment 2 */
  98#define XCAN_BTR_TS1_MASK_CANFD		0x0000003F /* Time segment 1 */
  99#define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
 100#define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
 101#define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
 102#define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
 103#define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
 104#define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
 105#define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
 106#define XCAN_SR_TDCV_MASK		GENMASK(22, 16) /* TDCV Value */
 107#define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
 108#define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
 109#define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
 110#define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
 111#define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
 112#define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
 113#define XCAN_IXR_RXMNF_MASK		0x00020000 /* RX match not finished */
 114#define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
 115#define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
 116#define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
 117#define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
 118#define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
 119#define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
 120#define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
 121#define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
 122#define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
 123#define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
 124#define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
 125#define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
 126#define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
 127#define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
 128#define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
 129#define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
 130#define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
 131#define XCAN_FSR_FL_MASK		0x00003F00 /* RX Fill Level */
 132#define XCAN_2_FSR_FL_MASK		0x00007F00 /* RX Fill Level */
 133#define XCAN_FSR_IRI_MASK		0x00000080 /* RX Increment Read Index */
 134#define XCAN_FSR_RI_MASK		0x0000001F /* RX Read Index */
 135#define XCAN_2_FSR_RI_MASK		0x0000003F /* RX Read Index */
 136#define XCAN_DLCR_EDL_MASK		0x08000000 /* EDL Mask in DLC */
 137#define XCAN_DLCR_BRS_MASK		0x04000000 /* BRS Mask in DLC */
 138
 139/* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
 140#define XCAN_BRPR_TDC_ENABLE		BIT(16) /* Transmitter Delay Compensation (TDC) Enable */
 141#define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
 142#define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
 143#define XCAN_BTR_SJW_SHIFT_CANFD	16 /* Synchronous jump width */
 144#define XCAN_BTR_TS2_SHIFT_CANFD	8  /* Time segment 2 */
 145#define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
 146#define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
 147#define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
 148#define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
 149
 150/* CAN frame length constants */
 151#define XCAN_FRAME_MAX_DATA_LEN		8
 152#define XCANFD_DW_BYTES			4
 153#define XCAN_TIMEOUT			(1 * HZ)
 154
 155/* TX-FIFO-empty interrupt available */
 156#define XCAN_FLAG_TXFEMP	0x0001
 157/* RX Match Not Finished interrupt available */
 158#define XCAN_FLAG_RXMNF		0x0002
 159/* Extended acceptance filters with control at 0xE0 */
 160#define XCAN_FLAG_EXT_FILTERS	0x0004
 161/* TX mailboxes instead of TX FIFO */
 162#define XCAN_FLAG_TX_MAILBOXES	0x0008
 163/* RX FIFO with each buffer in separate registers at 0x1100
 164 * instead of the regular FIFO at 0x50
 165 */
 166#define XCAN_FLAG_RX_FIFO_MULTI	0x0010
 167#define XCAN_FLAG_CANFD_2	0x0020
 168
 169enum xcan_ip_type {
 170	XAXI_CAN = 0,
 171	XZYNQ_CANPS,
 172	XAXI_CANFD,
 173	XAXI_CANFD_2_0,
 174};
 175
 176struct xcan_devtype_data {
 177	enum xcan_ip_type cantype;
 178	unsigned int flags;
 179	const struct can_bittiming_const *bittiming_const;
 180	const char *bus_clk_name;
 181	unsigned int btr_ts2_shift;
 182	unsigned int btr_sjw_shift;
 183};
 184
 185/**
 186 * struct xcan_priv - This definition define CAN driver instance
 187 * @can:			CAN private data structure.
 188 * @tx_lock:			Lock for synchronizing TX interrupt handling
 189 * @tx_head:			Tx CAN packets ready to send on the queue
 190 * @tx_tail:			Tx CAN packets successfully sended on the queue
 191 * @tx_max:			Maximum number packets the driver can send
 192 * @napi:			NAPI structure
 193 * @read_reg:			For reading data from CAN registers
 194 * @write_reg:			For writing data to CAN registers
 195 * @dev:			Network device data structure
 196 * @reg_base:			Ioremapped address to registers
 197 * @irq_flags:			For request_irq()
 198 * @bus_clk:			Pointer to struct clk
 199 * @can_clk:			Pointer to struct clk
 200 * @devtype:			Device type specific constants
 
 
 201 */
 202struct xcan_priv {
 203	struct can_priv can;
 204	spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
 205	unsigned int tx_head;
 206	unsigned int tx_tail;
 207	unsigned int tx_max;
 208	struct napi_struct napi;
 209	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
 210	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
 211			  u32 val);
 212	struct device *dev;
 213	void __iomem *reg_base;
 214	unsigned long irq_flags;
 215	struct clk *bus_clk;
 216	struct clk *can_clk;
 217	struct xcan_devtype_data devtype;
 
 
 218};
 219
 220/* CAN Bittiming constants as per Xilinx CAN specs */
 221static const struct can_bittiming_const xcan_bittiming_const = {
 222	.name = DRIVER_NAME,
 223	.tseg1_min = 1,
 224	.tseg1_max = 16,
 225	.tseg2_min = 1,
 226	.tseg2_max = 8,
 227	.sjw_max = 4,
 228	.brp_min = 1,
 229	.brp_max = 256,
 230	.brp_inc = 1,
 231};
 232
 233/* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
 234static const struct can_bittiming_const xcan_bittiming_const_canfd = {
 235	.name = DRIVER_NAME,
 236	.tseg1_min = 1,
 237	.tseg1_max = 64,
 238	.tseg2_min = 1,
 239	.tseg2_max = 16,
 240	.sjw_max = 16,
 241	.brp_min = 1,
 242	.brp_max = 256,
 243	.brp_inc = 1,
 244};
 245
 246/* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
 247static const struct can_bittiming_const xcan_data_bittiming_const_canfd = {
 248	.name = DRIVER_NAME,
 249	.tseg1_min = 1,
 250	.tseg1_max = 16,
 251	.tseg2_min = 1,
 252	.tseg2_max = 8,
 253	.sjw_max = 8,
 254	.brp_min = 1,
 255	.brp_max = 256,
 256	.brp_inc = 1,
 257};
 258
 259/* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
 260static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
 261	.name = DRIVER_NAME,
 262	.tseg1_min = 1,
 263	.tseg1_max = 256,
 264	.tseg2_min = 1,
 265	.tseg2_max = 128,
 266	.sjw_max = 128,
 267	.brp_min = 1,
 268	.brp_max = 256,
 269	.brp_inc = 1,
 270};
 271
 272/* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
 273static const struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
 274	.name = DRIVER_NAME,
 275	.tseg1_min = 1,
 276	.tseg1_max = 32,
 277	.tseg2_min = 1,
 278	.tseg2_max = 16,
 279	.sjw_max = 16,
 280	.brp_min = 1,
 281	.brp_max = 256,
 282	.brp_inc = 1,
 283};
 284
 285/* Transmission Delay Compensation constants for CANFD 1.0 */
 286static const struct can_tdc_const xcan_tdc_const_canfd = {
 287	.tdcv_min = 0,
 288	.tdcv_max = 0, /* Manual mode not supported. */
 289	.tdco_min = 0,
 290	.tdco_max = 32,
 291	.tdcf_min = 0, /* Filter window not supported */
 292	.tdcf_max = 0,
 293};
 294
 295/* Transmission Delay Compensation constants for CANFD 2.0 */
 296static const struct can_tdc_const xcan_tdc_const_canfd2 = {
 297	.tdcv_min = 0,
 298	.tdcv_max = 0, /* Manual mode not supported. */
 299	.tdco_min = 0,
 300	.tdco_max = 64,
 301	.tdcf_min = 0, /* Filter window not supported */
 302	.tdcf_max = 0,
 303};
 304
 305/**
 306 * xcan_write_reg_le - Write a value to the device register little endian
 307 * @priv:	Driver private data structure
 308 * @reg:	Register offset
 309 * @val:	Value to write at the Register offset
 310 *
 311 * Write data to the paricular CAN register
 312 */
 313static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
 314			      u32 val)
 315{
 316	iowrite32(val, priv->reg_base + reg);
 317}
 318
 319/**
 320 * xcan_read_reg_le - Read a value from the device register little endian
 321 * @priv:	Driver private data structure
 322 * @reg:	Register offset
 323 *
 324 * Read data from the particular CAN register
 325 * Return: value read from the CAN register
 326 */
 327static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
 328{
 329	return ioread32(priv->reg_base + reg);
 330}
 331
 332/**
 333 * xcan_write_reg_be - Write a value to the device register big endian
 334 * @priv:	Driver private data structure
 335 * @reg:	Register offset
 336 * @val:	Value to write at the Register offset
 337 *
 338 * Write data to the paricular CAN register
 339 */
 340static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
 341			      u32 val)
 342{
 343	iowrite32be(val, priv->reg_base + reg);
 344}
 345
 346/**
 347 * xcan_read_reg_be - Read a value from the device register big endian
 348 * @priv:	Driver private data structure
 349 * @reg:	Register offset
 350 *
 351 * Read data from the particular CAN register
 352 * Return: value read from the CAN register
 353 */
 354static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
 355{
 356	return ioread32be(priv->reg_base + reg);
 357}
 358
 359/**
 360 * xcan_rx_int_mask - Get the mask for the receive interrupt
 361 * @priv:	Driver private data structure
 362 *
 363 * Return: The receive interrupt mask used by the driver on this HW
 364 */
 365static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
 366{
 367	/* RXNEMP is better suited for our use case as it cannot be cleared
 368	 * while the FIFO is non-empty, but CAN FD HW does not have it
 369	 */
 370	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
 371		return XCAN_IXR_RXOK_MASK;
 372	else
 373		return XCAN_IXR_RXNEMP_MASK;
 374}
 375
 376/**
 377 * set_reset_mode - Resets the CAN device mode
 378 * @ndev:	Pointer to net_device structure
 379 *
 380 * This is the driver reset mode routine.The driver
 381 * enters into configuration mode.
 382 *
 383 * Return: 0 on success and failure value on error
 384 */
 385static int set_reset_mode(struct net_device *ndev)
 386{
 387	struct xcan_priv *priv = netdev_priv(ndev);
 388	unsigned long timeout;
 389
 390	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
 391
 392	timeout = jiffies + XCAN_TIMEOUT;
 393	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
 394		if (time_after(jiffies, timeout)) {
 395			netdev_warn(ndev, "timed out for config mode\n");
 396			return -ETIMEDOUT;
 397		}
 398		usleep_range(500, 10000);
 399	}
 400
 401	/* reset clears FIFOs */
 402	priv->tx_head = 0;
 403	priv->tx_tail = 0;
 404
 405	return 0;
 406}
 407
 408/**
 409 * xcan_set_bittiming - CAN set bit timing routine
 410 * @ndev:	Pointer to net_device structure
 411 *
 412 * This is the driver set bittiming  routine.
 413 * Return: 0 on success and failure value on error
 414 */
 415static int xcan_set_bittiming(struct net_device *ndev)
 416{
 417	struct xcan_priv *priv = netdev_priv(ndev);
 418	struct can_bittiming *bt = &priv->can.bittiming;
 419	struct can_bittiming *dbt = &priv->can.data_bittiming;
 420	u32 btr0, btr1;
 421	u32 is_config_mode;
 422
 423	/* Check whether Xilinx CAN is in configuration mode.
 424	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
 425	 */
 426	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
 427				XCAN_SR_CONFIG_MASK;
 428	if (!is_config_mode) {
 429		netdev_alert(ndev,
 430			     "BUG! Cannot set bittiming - CAN is not in config mode\n");
 431		return -EPERM;
 432	}
 433
 434	/* Setting Baud Rate prescaler value in BRPR Register */
 435	btr0 = (bt->brp - 1);
 436
 437	/* Setting Time Segment 1 in BTR Register */
 438	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
 439
 440	/* Setting Time Segment 2 in BTR Register */
 441	btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 442
 443	/* Setting Synchronous jump width in BTR Register */
 444	btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
 445
 446	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
 447	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
 448
 449	if (priv->devtype.cantype == XAXI_CANFD ||
 450	    priv->devtype.cantype == XAXI_CANFD_2_0) {
 451		/* Setting Baud Rate prescaler value in F_BRPR Register */
 452		btr0 = dbt->brp - 1;
 453		if (can_tdc_is_enabled(&priv->can)) {
 454			if (priv->devtype.cantype == XAXI_CANFD)
 455				btr0 |= FIELD_PREP(XCAN_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
 456					XCAN_BRPR_TDC_ENABLE;
 457			else
 458				btr0 |= FIELD_PREP(XCAN_2_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
 459					XCAN_BRPR_TDC_ENABLE;
 460		}
 461
 462		/* Setting Time Segment 1 in BTR Register */
 463		btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
 464
 465		/* Setting Time Segment 2 in BTR Register */
 466		btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
 467
 468		/* Setting Synchronous jump width in BTR Register */
 469		btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
 470
 471		priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
 472		priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
 473	}
 474
 475	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
 476		   priv->read_reg(priv, XCAN_BRPR_OFFSET),
 477		   priv->read_reg(priv, XCAN_BTR_OFFSET));
 478
 479	return 0;
 480}
 481
 482/**
 483 * xcan_chip_start - This the drivers start routine
 484 * @ndev:	Pointer to net_device structure
 485 *
 486 * This is the drivers start routine.
 487 * Based on the State of the CAN device it puts
 488 * the CAN device into a proper mode.
 489 *
 490 * Return: 0 on success and failure value on error
 491 */
 492static int xcan_chip_start(struct net_device *ndev)
 493{
 494	struct xcan_priv *priv = netdev_priv(ndev);
 495	u32 reg_msr;
 496	int err;
 497	u32 ier;
 498
 499	/* Check if it is in reset mode */
 500	err = set_reset_mode(ndev);
 501	if (err < 0)
 502		return err;
 503
 504	err = xcan_set_bittiming(ndev);
 505	if (err < 0)
 506		return err;
 507
 508	/* Enable interrupts
 509	 *
 510	 * We enable the ERROR interrupt even with
 511	 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
 512	 * dedicated interrupt for a state change to
 513	 * ERROR_WARNING/ERROR_PASSIVE.
 514	 */
 515	ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
 516		XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
 517		XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
 518		XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
 519
 520	if (priv->devtype.flags & XCAN_FLAG_RXMNF)
 521		ier |= XCAN_IXR_RXMNF_MASK;
 522
 523	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
 524
 525	/* Check whether it is loopback mode or normal mode  */
 526	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
 527		reg_msr = XCAN_MSR_LBACK_MASK;
 528	else
 529		reg_msr = 0x0;
 530
 531	/* enable the first extended filter, if any, as cores with extended
 532	 * filtering default to non-receipt if all filters are disabled
 533	 */
 534	if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
 535		priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
 536
 537	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
 538	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
 539
 540	netdev_dbg(ndev, "status:#x%08x\n",
 541		   priv->read_reg(priv, XCAN_SR_OFFSET));
 542
 543	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 544	return 0;
 545}
 546
 547/**
 548 * xcan_do_set_mode - This sets the mode of the driver
 549 * @ndev:	Pointer to net_device structure
 550 * @mode:	Tells the mode of the driver
 551 *
 552 * This check the drivers state and calls the corresponding modes to set.
 553 *
 554 * Return: 0 on success and failure value on error
 555 */
 556static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
 557{
 558	int ret;
 559
 560	switch (mode) {
 561	case CAN_MODE_START:
 562		ret = xcan_chip_start(ndev);
 563		if (ret < 0) {
 564			netdev_err(ndev, "xcan_chip_start failed!\n");
 565			return ret;
 566		}
 567		netif_wake_queue(ndev);
 568		break;
 569	default:
 570		ret = -EOPNOTSUPP;
 571		break;
 572	}
 573
 574	return ret;
 575}
 576
 577/**
 578 * xcan_write_frame - Write a frame to HW
 579 * @ndev:		Pointer to net_device structure
 580 * @skb:		sk_buff pointer that contains data to be Txed
 581 * @frame_offset:	Register offset to write the frame to
 582 */
 583static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
 584			     int frame_offset)
 585{
 586	u32 id, dlc, data[2] = {0, 0};
 587	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
 588	u32 ramoff, dwindex = 0, i;
 589	struct xcan_priv *priv = netdev_priv(ndev);
 590
 591	/* Watch carefully on the bit sequence */
 592	if (cf->can_id & CAN_EFF_FLAG) {
 593		/* Extended CAN ID format */
 594		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
 595			XCAN_IDR_ID2_MASK;
 596		id |= (((cf->can_id & CAN_EFF_MASK) >>
 597			(CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
 598			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
 599
 600		/* The substibute remote TX request bit should be "1"
 601		 * for extended frames as in the Xilinx CAN datasheet
 602		 */
 603		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
 604
 605		if (cf->can_id & CAN_RTR_FLAG)
 606			/* Extended frames remote TX request */
 607			id |= XCAN_IDR_RTR_MASK;
 608	} else {
 609		/* Standard CAN ID format */
 610		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
 611			XCAN_IDR_ID1_MASK;
 612
 613		if (cf->can_id & CAN_RTR_FLAG)
 614			/* Standard frames remote TX request */
 615			id |= XCAN_IDR_SRR_MASK;
 616	}
 617
 618	dlc = can_fd_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
 619	if (can_is_canfd_skb(skb)) {
 620		if (cf->flags & CANFD_BRS)
 621			dlc |= XCAN_DLCR_BRS_MASK;
 622		dlc |= XCAN_DLCR_EDL_MASK;
 623	}
 624
 625	if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
 626	    (priv->devtype.flags & XCAN_FLAG_TXFEMP))
 627		can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max, 0);
 628	else
 629		can_put_echo_skb(skb, ndev, 0, 0);
 630
 631	priv->tx_head++;
 632
 633	priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
 634	/* If the CAN frame is RTR frame this write triggers transmission
 635	 * (not on CAN FD)
 636	 */
 637	priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
 638	if (priv->devtype.cantype == XAXI_CANFD ||
 639	    priv->devtype.cantype == XAXI_CANFD_2_0) {
 640		for (i = 0; i < cf->len; i += 4) {
 641			ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
 642					(dwindex * XCANFD_DW_BYTES);
 643			priv->write_reg(priv, ramoff,
 644					be32_to_cpup((__be32 *)(cf->data + i)));
 645			dwindex++;
 646		}
 647	} else {
 648		if (cf->len > 0)
 649			data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
 650		if (cf->len > 4)
 651			data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
 652
 653		if (!(cf->can_id & CAN_RTR_FLAG)) {
 654			priv->write_reg(priv,
 655					XCAN_FRAME_DW1_OFFSET(frame_offset),
 656					data[0]);
 657			/* If the CAN frame is Standard/Extended frame this
 658			 * write triggers transmission (not on CAN FD)
 659			 */
 660			priv->write_reg(priv,
 661					XCAN_FRAME_DW2_OFFSET(frame_offset),
 662					data[1]);
 663		}
 664	}
 665}
 666
 667/**
 668 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
 669 * @skb:	sk_buff pointer that contains data to be Txed
 670 * @ndev:	Pointer to net_device structure
 671 *
 672 * Return: 0 on success, -ENOSPC if FIFO is full.
 673 */
 674static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
 675{
 676	struct xcan_priv *priv = netdev_priv(ndev);
 677	unsigned long flags;
 678
 679	/* Check if the TX buffer is full */
 680	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
 681			XCAN_SR_TXFLL_MASK))
 682		return -ENOSPC;
 683
 684	spin_lock_irqsave(&priv->tx_lock, flags);
 685
 686	xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
 687
 688	/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
 689	if (priv->tx_max > 1)
 690		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
 691
 692	/* Check if the TX buffer is full */
 693	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
 694		netif_stop_queue(ndev);
 695
 696	spin_unlock_irqrestore(&priv->tx_lock, flags);
 697
 698	return 0;
 699}
 700
 701/**
 702 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
 703 * @skb:	sk_buff pointer that contains data to be Txed
 704 * @ndev:	Pointer to net_device structure
 705 *
 706 * Return: 0 on success, -ENOSPC if there is no space
 707 */
 708static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
 709{
 710	struct xcan_priv *priv = netdev_priv(ndev);
 711	unsigned long flags;
 712
 713	if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
 714		     BIT(XCAN_TX_MAILBOX_IDX)))
 715		return -ENOSPC;
 716
 717	spin_lock_irqsave(&priv->tx_lock, flags);
 718
 719	xcan_write_frame(ndev, skb,
 720			 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
 721
 722	/* Mark buffer as ready for transmit */
 723	priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
 724
 725	netif_stop_queue(ndev);
 726
 727	spin_unlock_irqrestore(&priv->tx_lock, flags);
 728
 729	return 0;
 730}
 731
 732/**
 733 * xcan_start_xmit - Starts the transmission
 734 * @skb:	sk_buff pointer that contains data to be Txed
 735 * @ndev:	Pointer to net_device structure
 736 *
 737 * This function is invoked from upper layers to initiate transmission.
 738 *
 739 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
 740 */
 741static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 742{
 743	struct xcan_priv *priv = netdev_priv(ndev);
 744	int ret;
 745
 746	if (can_dev_dropped_skb(ndev, skb))
 747		return NETDEV_TX_OK;
 748
 749	if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
 750		ret = xcan_start_xmit_mailbox(skb, ndev);
 751	else
 752		ret = xcan_start_xmit_fifo(skb, ndev);
 753
 754	if (ret < 0) {
 755		netdev_err(ndev, "BUG!, TX full when queue awake!\n");
 756		netif_stop_queue(ndev);
 757		return NETDEV_TX_BUSY;
 758	}
 759
 760	return NETDEV_TX_OK;
 761}
 762
 763/**
 764 * xcan_rx -  Is called from CAN isr to complete the received
 765 *		frame  processing
 766 * @ndev:	Pointer to net_device structure
 767 * @frame_base:	Register offset to the frame to be read
 768 *
 769 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 770 * does minimal processing and invokes "netif_receive_skb" to complete further
 771 * processing.
 772 * Return: 1 on success and 0 on failure.
 773 */
 774static int xcan_rx(struct net_device *ndev, int frame_base)
 775{
 776	struct xcan_priv *priv = netdev_priv(ndev);
 777	struct net_device_stats *stats = &ndev->stats;
 778	struct can_frame *cf;
 779	struct sk_buff *skb;
 780	u32 id_xcan, dlc, data[2] = {0, 0};
 781
 782	skb = alloc_can_skb(ndev, &cf);
 783	if (unlikely(!skb)) {
 784		stats->rx_dropped++;
 785		return 0;
 786	}
 787
 788	/* Read a frame from Xilinx zynq CANPS */
 789	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 790	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
 791				   XCAN_DLCR_DLC_SHIFT;
 792
 793	/* Change Xilinx CAN data length format to socketCAN data format */
 794	cf->len = can_cc_dlc2len(dlc);
 795
 796	/* Change Xilinx CAN ID format to socketCAN ID format */
 797	if (id_xcan & XCAN_IDR_IDE_MASK) {
 798		/* The received frame is an Extended format frame */
 799		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 800		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 801				XCAN_IDR_ID2_SHIFT;
 802		cf->can_id |= CAN_EFF_FLAG;
 803		if (id_xcan & XCAN_IDR_RTR_MASK)
 804			cf->can_id |= CAN_RTR_FLAG;
 805	} else {
 806		/* The received frame is a standard format frame */
 807		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 808				XCAN_IDR_ID1_SHIFT;
 809		if (id_xcan & XCAN_IDR_SRR_MASK)
 810			cf->can_id |= CAN_RTR_FLAG;
 811	}
 812
 813	/* DW1/DW2 must always be read to remove message from RXFIFO */
 814	data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
 815	data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
 816
 817	if (!(cf->can_id & CAN_RTR_FLAG)) {
 818		/* Change Xilinx CAN data format to socketCAN data format */
 819		if (cf->len > 0)
 820			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
 821		if (cf->len > 4)
 822			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
 823
 824		stats->rx_bytes += cf->len;
 825	}
 826	stats->rx_packets++;
 827
 828	netif_receive_skb(skb);
 829
 830	return 1;
 831}
 832
 833/**
 834 * xcanfd_rx -  Is called from CAN isr to complete the received
 835 *		frame  processing
 836 * @ndev:	Pointer to net_device structure
 837 * @frame_base:	Register offset to the frame to be read
 838 *
 839 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
 840 * does minimal processing and invokes "netif_receive_skb" to complete further
 841 * processing.
 842 * Return: 1 on success and 0 on failure.
 843 */
 844static int xcanfd_rx(struct net_device *ndev, int frame_base)
 845{
 846	struct xcan_priv *priv = netdev_priv(ndev);
 847	struct net_device_stats *stats = &ndev->stats;
 848	struct canfd_frame *cf;
 849	struct sk_buff *skb;
 850	u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
 851
 852	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
 853	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
 854	if (dlc & XCAN_DLCR_EDL_MASK)
 855		skb = alloc_canfd_skb(ndev, &cf);
 856	else
 857		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
 858
 859	if (unlikely(!skb)) {
 860		stats->rx_dropped++;
 861		return 0;
 862	}
 863
 864	/* Change Xilinx CANFD data length format to socketCAN data
 865	 * format
 866	 */
 867	if (dlc & XCAN_DLCR_EDL_MASK)
 868		cf->len = can_fd_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
 869				  XCAN_DLCR_DLC_SHIFT);
 870	else
 871		cf->len = can_cc_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
 872					  XCAN_DLCR_DLC_SHIFT);
 873
 874	/* Change Xilinx CAN ID format to socketCAN ID format */
 875	if (id_xcan & XCAN_IDR_IDE_MASK) {
 876		/* The received frame is an Extended format frame */
 877		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
 878		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
 879				XCAN_IDR_ID2_SHIFT;
 880		cf->can_id |= CAN_EFF_FLAG;
 881		if (id_xcan & XCAN_IDR_RTR_MASK)
 882			cf->can_id |= CAN_RTR_FLAG;
 883	} else {
 884		/* The received frame is a standard format frame */
 885		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
 886				XCAN_IDR_ID1_SHIFT;
 887		if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
 888					XCAN_IDR_SRR_MASK))
 889			cf->can_id |= CAN_RTR_FLAG;
 890	}
 891
 892	/* Check the frame received is FD or not*/
 893	if (dlc & XCAN_DLCR_EDL_MASK) {
 894		for (i = 0; i < cf->len; i += 4) {
 895			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
 896					(dwindex * XCANFD_DW_BYTES);
 897			data[0] = priv->read_reg(priv, dw_offset);
 898			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 899			dwindex++;
 900		}
 901	} else {
 902		for (i = 0; i < cf->len; i += 4) {
 903			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
 904			data[0] = priv->read_reg(priv, dw_offset + i);
 905			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
 906		}
 907	}
 908
 909	if (!(cf->can_id & CAN_RTR_FLAG))
 910		stats->rx_bytes += cf->len;
 911	stats->rx_packets++;
 912
 913	netif_receive_skb(skb);
 914
 915	return 1;
 916}
 917
 918/**
 919 * xcan_current_error_state - Get current error state from HW
 920 * @ndev:	Pointer to net_device structure
 921 *
 922 * Checks the current CAN error state from the HW. Note that this
 923 * only checks for ERROR_PASSIVE and ERROR_WARNING.
 924 *
 925 * Return:
 926 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
 927 * otherwise.
 928 */
 929static enum can_state xcan_current_error_state(struct net_device *ndev)
 930{
 931	struct xcan_priv *priv = netdev_priv(ndev);
 932	u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
 933
 934	if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
 935		return CAN_STATE_ERROR_PASSIVE;
 936	else if (status & XCAN_SR_ERRWRN_MASK)
 937		return CAN_STATE_ERROR_WARNING;
 938	else
 939		return CAN_STATE_ERROR_ACTIVE;
 940}
 941
 942/**
 943 * xcan_set_error_state - Set new CAN error state
 944 * @ndev:	Pointer to net_device structure
 945 * @new_state:	The new CAN state to be set
 946 * @cf:		Error frame to be populated or NULL
 947 *
 948 * Set new CAN error state for the device, updating statistics and
 949 * populating the error frame if given.
 950 */
 951static void xcan_set_error_state(struct net_device *ndev,
 952				 enum can_state new_state,
 953				 struct can_frame *cf)
 954{
 955	struct xcan_priv *priv = netdev_priv(ndev);
 956	u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
 957	u32 txerr = ecr & XCAN_ECR_TEC_MASK;
 958	u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
 959	enum can_state tx_state = txerr >= rxerr ? new_state : 0;
 960	enum can_state rx_state = txerr <= rxerr ? new_state : 0;
 961
 962	/* non-ERROR states are handled elsewhere */
 963	if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
 964		return;
 965
 966	can_change_state(ndev, cf, tx_state, rx_state);
 967
 968	if (cf) {
 969		cf->can_id |= CAN_ERR_CNT;
 970		cf->data[6] = txerr;
 971		cf->data[7] = rxerr;
 972	}
 973}
 974
 975/**
 976 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
 977 * @ndev:	Pointer to net_device structure
 978 *
 979 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
 980 * the performed RX/TX has caused it to drop to a lesser state and set
 981 * the interface state accordingly.
 982 */
 983static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
 984{
 985	struct xcan_priv *priv = netdev_priv(ndev);
 986	enum can_state old_state = priv->can.state;
 987	enum can_state new_state;
 988
 989	/* changing error state due to successful frame RX/TX can only
 990	 * occur from these states
 991	 */
 992	if (old_state != CAN_STATE_ERROR_WARNING &&
 993	    old_state != CAN_STATE_ERROR_PASSIVE)
 994		return;
 995
 996	new_state = xcan_current_error_state(ndev);
 997
 998	if (new_state != old_state) {
 999		struct sk_buff *skb;
1000		struct can_frame *cf;
1001
1002		skb = alloc_can_err_skb(ndev, &cf);
1003
1004		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
1005
1006		if (skb)
1007			netif_rx(skb);
1008	}
1009}
1010
1011/**
1012 * xcan_err_interrupt - error frame Isr
1013 * @ndev:	net_device pointer
1014 * @isr:	interrupt status register value
1015 *
1016 * This is the CAN error interrupt and it will
1017 * check the type of error and forward the error
1018 * frame to upper layers.
1019 */
1020static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
1021{
1022	struct xcan_priv *priv = netdev_priv(ndev);
1023	struct net_device_stats *stats = &ndev->stats;
1024	struct can_frame cf = { };
1025	u32 err_status;
1026
1027	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
1028	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
1029
1030	if (isr & XCAN_IXR_BSOFF_MASK) {
1031		priv->can.state = CAN_STATE_BUS_OFF;
1032		priv->can.can_stats.bus_off++;
1033		/* Leave device in Config Mode in bus-off state */
1034		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1035		can_bus_off(ndev);
1036		cf.can_id |= CAN_ERR_BUSOFF;
1037	} else {
1038		enum can_state new_state = xcan_current_error_state(ndev);
1039
1040		if (new_state != priv->can.state)
1041			xcan_set_error_state(ndev, new_state, &cf);
1042	}
1043
1044	/* Check for Arbitration lost interrupt */
1045	if (isr & XCAN_IXR_ARBLST_MASK) {
1046		priv->can.can_stats.arbitration_lost++;
1047		cf.can_id |= CAN_ERR_LOSTARB;
1048		cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
1049	}
1050
1051	/* Check for RX FIFO Overflow interrupt */
1052	if (isr & XCAN_IXR_RXOFLW_MASK) {
1053		stats->rx_over_errors++;
1054		stats->rx_errors++;
1055		cf.can_id |= CAN_ERR_CRTL;
1056		cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1057	}
1058
1059	/* Check for RX Match Not Finished interrupt */
1060	if (isr & XCAN_IXR_RXMNF_MASK) {
1061		stats->rx_dropped++;
1062		stats->rx_errors++;
1063		netdev_err(ndev, "RX match not finished, frame discarded\n");
1064		cf.can_id |= CAN_ERR_CRTL;
1065		cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
1066	}
1067
1068	/* Check for error interrupt */
1069	if (isr & XCAN_IXR_ERROR_MASK) {
1070		bool berr_reporting = false;
1071
1072		if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1073			berr_reporting = true;
1074			cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1075		}
1076
1077		/* Check for Ack error interrupt */
1078		if (err_status & XCAN_ESR_ACKER_MASK) {
1079			stats->tx_errors++;
1080			if (berr_reporting) {
1081				cf.can_id |= CAN_ERR_ACK;
1082				cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1083			}
1084		}
1085
1086		/* Check for Bit error interrupt */
1087		if (err_status & XCAN_ESR_BERR_MASK) {
1088			stats->tx_errors++;
1089			if (berr_reporting) {
1090				cf.can_id |= CAN_ERR_PROT;
1091				cf.data[2] = CAN_ERR_PROT_BIT;
1092			}
1093		}
1094
1095		/* Check for Stuff error interrupt */
1096		if (err_status & XCAN_ESR_STER_MASK) {
1097			stats->rx_errors++;
1098			if (berr_reporting) {
1099				cf.can_id |= CAN_ERR_PROT;
1100				cf.data[2] = CAN_ERR_PROT_STUFF;
1101			}
1102		}
1103
1104		/* Check for Form error interrupt */
1105		if (err_status & XCAN_ESR_FMER_MASK) {
1106			stats->rx_errors++;
1107			if (berr_reporting) {
1108				cf.can_id |= CAN_ERR_PROT;
1109				cf.data[2] = CAN_ERR_PROT_FORM;
1110			}
1111		}
1112
1113		/* Check for CRC error interrupt */
1114		if (err_status & XCAN_ESR_CRCER_MASK) {
1115			stats->rx_errors++;
1116			if (berr_reporting) {
1117				cf.can_id |= CAN_ERR_PROT;
1118				cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1119			}
1120		}
1121		priv->can.can_stats.bus_error++;
1122	}
1123
1124	if (cf.can_id) {
1125		struct can_frame *skb_cf;
1126		struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1127
1128		if (skb) {
1129			skb_cf->can_id |= cf.can_id;
1130			memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1131			netif_rx(skb);
1132		}
1133	}
1134
1135	netdev_dbg(ndev, "%s: error status register:0x%x\n",
1136		   __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1137}
1138
1139/**
1140 * xcan_state_interrupt - It will check the state of the CAN device
1141 * @ndev:	net_device pointer
1142 * @isr:	interrupt status register value
1143 *
1144 * This will checks the state of the CAN device
1145 * and puts the device into appropriate state.
1146 */
1147static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1148{
1149	struct xcan_priv *priv = netdev_priv(ndev);
1150
1151	/* Check for Sleep interrupt if set put CAN device in sleep state */
1152	if (isr & XCAN_IXR_SLP_MASK)
1153		priv->can.state = CAN_STATE_SLEEPING;
1154
1155	/* Check for Wake up interrupt if set put CAN device in Active state */
1156	if (isr & XCAN_IXR_WKUP_MASK)
1157		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1158}
1159
1160/**
1161 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1162 * @priv:	Driver private data structure
1163 *
1164 * Return: Register offset of the next frame in RX FIFO.
1165 */
1166static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1167{
1168	int offset;
1169
1170	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1171		u32 fsr, mask;
1172
1173		/* clear RXOK before the is-empty check so that any newly
1174		 * received frame will reassert it without a race
1175		 */
1176		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1177
1178		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1179
1180		/* check if RX FIFO is empty */
1181		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1182			mask = XCAN_2_FSR_FL_MASK;
1183		else
1184			mask = XCAN_FSR_FL_MASK;
1185
1186		if (!(fsr & mask))
1187			return -ENOENT;
1188
1189		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1190			offset =
1191			  XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1192		else
1193			offset =
1194			  XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1195
1196	} else {
1197		/* check if RX FIFO is empty */
1198		if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1199		      XCAN_IXR_RXNEMP_MASK))
1200			return -ENOENT;
1201
1202		/* frames are read from a static offset */
1203		offset = XCAN_RXFIFO_OFFSET;
1204	}
1205
1206	return offset;
1207}
1208
1209/**
1210 * xcan_rx_poll - Poll routine for rx packets (NAPI)
1211 * @napi:	napi structure pointer
1212 * @quota:	Max number of rx packets to be processed.
1213 *
1214 * This is the poll routine for rx part.
1215 * It will process the packets maximux quota value.
1216 *
1217 * Return: number of packets received
1218 */
1219static int xcan_rx_poll(struct napi_struct *napi, int quota)
1220{
1221	struct net_device *ndev = napi->dev;
1222	struct xcan_priv *priv = netdev_priv(ndev);
1223	u32 ier;
1224	int work_done = 0;
1225	int frame_offset;
1226
1227	while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1228	       (work_done < quota)) {
1229		if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1230			work_done += xcanfd_rx(ndev, frame_offset);
1231		else
1232			work_done += xcan_rx(ndev, frame_offset);
1233
1234		if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1235			/* increment read index */
1236			priv->write_reg(priv, XCAN_FSR_OFFSET,
1237					XCAN_FSR_IRI_MASK);
1238		else
1239			/* clear rx-not-empty (will actually clear only if
1240			 * empty)
1241			 */
1242			priv->write_reg(priv, XCAN_ICR_OFFSET,
1243					XCAN_IXR_RXNEMP_MASK);
1244	}
1245
1246	if (work_done)
1247		xcan_update_error_state_after_rxtx(ndev);
1248
1249	if (work_done < quota) {
1250		if (napi_complete_done(napi, work_done)) {
1251			ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1252			ier |= xcan_rx_int_mask(priv);
1253			priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1254		}
1255	}
1256	return work_done;
1257}
1258
1259/**
1260 * xcan_tx_interrupt - Tx Done Isr
1261 * @ndev:	net_device pointer
1262 * @isr:	Interrupt status register value
1263 */
1264static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1265{
1266	struct xcan_priv *priv = netdev_priv(ndev);
1267	struct net_device_stats *stats = &ndev->stats;
1268	unsigned int frames_in_fifo;
1269	int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1270	unsigned long flags;
1271	int retries = 0;
1272
1273	/* Synchronize with xmit as we need to know the exact number
1274	 * of frames in the FIFO to stay in sync due to the TXFEMP
1275	 * handling.
1276	 * This also prevents a race between netif_wake_queue() and
1277	 * netif_stop_queue().
1278	 */
1279	spin_lock_irqsave(&priv->tx_lock, flags);
1280
1281	frames_in_fifo = priv->tx_head - priv->tx_tail;
1282
1283	if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1284		/* clear TXOK anyway to avoid getting back here */
1285		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1286		spin_unlock_irqrestore(&priv->tx_lock, flags);
1287		return;
1288	}
1289
1290	/* Check if 2 frames were sent (TXOK only means that at least 1
1291	 * frame was sent).
1292	 */
1293	if (frames_in_fifo > 1) {
1294		WARN_ON(frames_in_fifo > priv->tx_max);
1295
1296		/* Synchronize TXOK and isr so that after the loop:
1297		 * (1) isr variable is up-to-date at least up to TXOK clear
1298		 *     time. This avoids us clearing a TXOK of a second frame
1299		 *     but not noticing that the FIFO is now empty and thus
1300		 *     marking only a single frame as sent.
1301		 * (2) No TXOK is left. Having one could mean leaving a
1302		 *     stray TXOK as we might process the associated frame
1303		 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1304		 *     clear to satisfy (1).
1305		 */
1306		while ((isr & XCAN_IXR_TXOK_MASK) &&
1307		       !WARN_ON(++retries == 100)) {
1308			priv->write_reg(priv, XCAN_ICR_OFFSET,
1309					XCAN_IXR_TXOK_MASK);
1310			isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1311		}
1312
1313		if (isr & XCAN_IXR_TXFEMP_MASK) {
1314			/* nothing in FIFO anymore */
1315			frames_sent = frames_in_fifo;
1316		}
1317	} else {
1318		/* single frame in fifo, just clear TXOK */
1319		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1320	}
1321
1322	while (frames_sent--) {
1323		stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1324						    priv->tx_max, NULL);
1325		priv->tx_tail++;
1326		stats->tx_packets++;
1327	}
1328
1329	netif_wake_queue(ndev);
1330
1331	spin_unlock_irqrestore(&priv->tx_lock, flags);
1332
1333	xcan_update_error_state_after_rxtx(ndev);
1334}
1335
1336/**
1337 * xcan_interrupt - CAN Isr
1338 * @irq:	irq number
1339 * @dev_id:	device id pointer
1340 *
1341 * This is the xilinx CAN Isr. It checks for the type of interrupt
1342 * and invokes the corresponding ISR.
1343 *
1344 * Return:
1345 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1346 */
1347static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1348{
1349	struct net_device *ndev = (struct net_device *)dev_id;
1350	struct xcan_priv *priv = netdev_priv(ndev);
1351	u32 isr, ier;
1352	u32 isr_errors;
1353	u32 rx_int_mask = xcan_rx_int_mask(priv);
1354
1355	/* Get the interrupt status from Xilinx CAN */
1356	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1357	if (!isr)
1358		return IRQ_NONE;
1359
1360	/* Check for the type of interrupt and Processing it */
1361	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1362		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1363				XCAN_IXR_WKUP_MASK));
1364		xcan_state_interrupt(ndev, isr);
1365	}
1366
1367	/* Check for Tx interrupt and Processing it */
1368	if (isr & XCAN_IXR_TXOK_MASK)
1369		xcan_tx_interrupt(ndev, isr);
1370
1371	/* Check for the type of error interrupt and Processing it */
1372	isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1373			    XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1374			    XCAN_IXR_RXMNF_MASK);
1375	if (isr_errors) {
1376		priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1377		xcan_err_interrupt(ndev, isr);
1378	}
1379
1380	/* Check for the type of receive interrupt and Processing it */
1381	if (isr & rx_int_mask) {
1382		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1383		ier &= ~rx_int_mask;
1384		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1385		napi_schedule(&priv->napi);
1386	}
1387	return IRQ_HANDLED;
1388}
1389
1390/**
1391 * xcan_chip_stop - Driver stop routine
1392 * @ndev:	Pointer to net_device structure
1393 *
1394 * This is the drivers stop routine. It will disable the
1395 * interrupts and put the device into configuration mode.
1396 */
1397static void xcan_chip_stop(struct net_device *ndev)
1398{
1399	struct xcan_priv *priv = netdev_priv(ndev);
1400	int ret;
1401
1402	/* Disable interrupts and leave the can in configuration mode */
1403	ret = set_reset_mode(ndev);
1404	if (ret < 0)
1405		netdev_dbg(ndev, "set_reset_mode() Failed\n");
1406
1407	priv->can.state = CAN_STATE_STOPPED;
1408}
1409
1410/**
1411 * xcan_open - Driver open routine
1412 * @ndev:	Pointer to net_device structure
1413 *
1414 * This is the driver open routine.
1415 * Return: 0 on success and failure value on error
1416 */
1417static int xcan_open(struct net_device *ndev)
1418{
1419	struct xcan_priv *priv = netdev_priv(ndev);
1420	int ret;
1421
 
 
 
 
1422	ret = pm_runtime_get_sync(priv->dev);
1423	if (ret < 0) {
1424		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1425			   __func__, ret);
1426		goto err;
1427	}
1428
1429	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1430			  ndev->name, ndev);
1431	if (ret < 0) {
1432		netdev_err(ndev, "irq allocation for CAN failed\n");
1433		goto err;
1434	}
1435
1436	/* Set chip into reset mode */
1437	ret = set_reset_mode(ndev);
1438	if (ret < 0) {
1439		netdev_err(ndev, "mode resetting failed!\n");
1440		goto err_irq;
1441	}
1442
1443	/* Common open */
1444	ret = open_candev(ndev);
1445	if (ret)
1446		goto err_irq;
1447
1448	ret = xcan_chip_start(ndev);
1449	if (ret < 0) {
1450		netdev_err(ndev, "xcan_chip_start failed!\n");
1451		goto err_candev;
1452	}
1453
1454	napi_enable(&priv->napi);
1455	netif_start_queue(ndev);
1456
1457	return 0;
1458
1459err_candev:
1460	close_candev(ndev);
1461err_irq:
1462	free_irq(ndev->irq, ndev);
1463err:
1464	pm_runtime_put(priv->dev);
 
1465
1466	return ret;
1467}
1468
1469/**
1470 * xcan_close - Driver close routine
1471 * @ndev:	Pointer to net_device structure
1472 *
1473 * Return: 0 always
1474 */
1475static int xcan_close(struct net_device *ndev)
1476{
1477	struct xcan_priv *priv = netdev_priv(ndev);
1478
1479	netif_stop_queue(ndev);
1480	napi_disable(&priv->napi);
1481	xcan_chip_stop(ndev);
1482	free_irq(ndev->irq, ndev);
1483	close_candev(ndev);
1484
1485	pm_runtime_put(priv->dev);
 
1486
1487	return 0;
1488}
1489
1490/**
1491 * xcan_get_berr_counter - error counter routine
1492 * @ndev:	Pointer to net_device structure
1493 * @bec:	Pointer to can_berr_counter structure
1494 *
1495 * This is the driver error counter routine.
1496 * Return: 0 on success and failure value on error
1497 */
1498static int xcan_get_berr_counter(const struct net_device *ndev,
1499				 struct can_berr_counter *bec)
1500{
1501	struct xcan_priv *priv = netdev_priv(ndev);
1502	int ret;
1503
1504	ret = pm_runtime_get_sync(priv->dev);
1505	if (ret < 0) {
1506		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1507			   __func__, ret);
1508		pm_runtime_put(priv->dev);
1509		return ret;
1510	}
1511
1512	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1513	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1514			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1515
1516	pm_runtime_put(priv->dev);
1517
1518	return 0;
1519}
1520
1521/**
1522 * xcan_get_auto_tdcv - Get Transmitter Delay Compensation Value
1523 * @ndev:	Pointer to net_device structure
1524 * @tdcv:	Pointer to TDCV value
1525 *
1526 * Return: 0 on success
1527 */
1528static int xcan_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
1529{
1530	struct xcan_priv *priv = netdev_priv(ndev);
1531
1532	*tdcv = FIELD_GET(XCAN_SR_TDCV_MASK, priv->read_reg(priv, XCAN_SR_OFFSET));
1533
1534	return 0;
1535}
1536
1537static const struct net_device_ops xcan_netdev_ops = {
1538	.ndo_open	= xcan_open,
1539	.ndo_stop	= xcan_close,
1540	.ndo_start_xmit	= xcan_start_xmit,
1541	.ndo_change_mtu	= can_change_mtu,
1542};
1543
1544static const struct ethtool_ops xcan_ethtool_ops = {
1545	.get_ts_info = ethtool_op_get_ts_info,
1546};
1547
1548/**
1549 * xcan_suspend - Suspend method for the driver
1550 * @dev:	Address of the device structure
1551 *
1552 * Put the driver into low power mode.
1553 * Return: 0 on success and failure value on error
1554 */
1555static int __maybe_unused xcan_suspend(struct device *dev)
1556{
1557	struct net_device *ndev = dev_get_drvdata(dev);
1558
1559	if (netif_running(ndev)) {
1560		netif_stop_queue(ndev);
1561		netif_device_detach(ndev);
1562		xcan_chip_stop(ndev);
1563	}
1564
1565	return pm_runtime_force_suspend(dev);
1566}
1567
1568/**
1569 * xcan_resume - Resume from suspend
1570 * @dev:	Address of the device structure
1571 *
1572 * Resume operation after suspend.
1573 * Return: 0 on success and failure value on error
1574 */
1575static int __maybe_unused xcan_resume(struct device *dev)
1576{
1577	struct net_device *ndev = dev_get_drvdata(dev);
1578	int ret;
1579
1580	ret = pm_runtime_force_resume(dev);
1581	if (ret) {
1582		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1583		return ret;
1584	}
1585
1586	if (netif_running(ndev)) {
1587		ret = xcan_chip_start(ndev);
1588		if (ret) {
1589			dev_err(dev, "xcan_chip_start failed on resume\n");
1590			return ret;
1591		}
1592
1593		netif_device_attach(ndev);
1594		netif_start_queue(ndev);
1595	}
1596
1597	return 0;
1598}
1599
1600/**
1601 * xcan_runtime_suspend - Runtime suspend method for the driver
1602 * @dev:	Address of the device structure
1603 *
1604 * Put the driver into low power mode.
1605 * Return: 0 always
1606 */
1607static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1608{
1609	struct net_device *ndev = dev_get_drvdata(dev);
1610	struct xcan_priv *priv = netdev_priv(ndev);
1611
1612	clk_disable_unprepare(priv->bus_clk);
1613	clk_disable_unprepare(priv->can_clk);
1614
1615	return 0;
1616}
1617
1618/**
1619 * xcan_runtime_resume - Runtime resume from suspend
1620 * @dev:	Address of the device structure
1621 *
1622 * Resume operation after suspend.
1623 * Return: 0 on success and failure value on error
1624 */
1625static int __maybe_unused xcan_runtime_resume(struct device *dev)
1626{
1627	struct net_device *ndev = dev_get_drvdata(dev);
1628	struct xcan_priv *priv = netdev_priv(ndev);
1629	int ret;
1630
1631	ret = clk_prepare_enable(priv->bus_clk);
1632	if (ret) {
1633		dev_err(dev, "Cannot enable clock.\n");
1634		return ret;
1635	}
1636	ret = clk_prepare_enable(priv->can_clk);
1637	if (ret) {
1638		dev_err(dev, "Cannot enable clock.\n");
1639		clk_disable_unprepare(priv->bus_clk);
1640		return ret;
1641	}
1642
1643	return 0;
1644}
1645
1646static const struct dev_pm_ops xcan_dev_pm_ops = {
1647	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1648	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1649};
1650
1651static const struct xcan_devtype_data xcan_zynq_data = {
1652	.cantype = XZYNQ_CANPS,
1653	.flags = XCAN_FLAG_TXFEMP,
1654	.bittiming_const = &xcan_bittiming_const,
1655	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1656	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1657	.bus_clk_name = "pclk",
1658};
1659
1660static const struct xcan_devtype_data xcan_axi_data = {
1661	.cantype = XAXI_CAN,
1662	.bittiming_const = &xcan_bittiming_const,
1663	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1664	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1665	.bus_clk_name = "s_axi_aclk",
1666};
1667
1668static const struct xcan_devtype_data xcan_canfd_data = {
1669	.cantype = XAXI_CANFD,
1670	.flags = XCAN_FLAG_EXT_FILTERS |
1671		 XCAN_FLAG_RXMNF |
1672		 XCAN_FLAG_TX_MAILBOXES |
1673		 XCAN_FLAG_RX_FIFO_MULTI,
1674	.bittiming_const = &xcan_bittiming_const_canfd,
1675	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1676	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1677	.bus_clk_name = "s_axi_aclk",
1678};
1679
1680static const struct xcan_devtype_data xcan_canfd2_data = {
1681	.cantype = XAXI_CANFD_2_0,
1682	.flags = XCAN_FLAG_EXT_FILTERS |
1683		 XCAN_FLAG_RXMNF |
1684		 XCAN_FLAG_TX_MAILBOXES |
1685		 XCAN_FLAG_CANFD_2 |
1686		 XCAN_FLAG_RX_FIFO_MULTI,
1687	.bittiming_const = &xcan_bittiming_const_canfd2,
1688	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1689	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1690	.bus_clk_name = "s_axi_aclk",
1691};
1692
1693/* Match table for OF platform binding */
1694static const struct of_device_id xcan_of_match[] = {
1695	{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1696	{ .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1697	{ .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1698	{ .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1699	{ /* end of list */ },
1700};
1701MODULE_DEVICE_TABLE(of, xcan_of_match);
1702
1703/**
1704 * xcan_probe - Platform registration call
1705 * @pdev:	Handle to the platform device structure
1706 *
1707 * This function does all the memory allocation and registration for the CAN
1708 * device.
1709 *
1710 * Return: 0 on success and failure value on error
1711 */
1712static int xcan_probe(struct platform_device *pdev)
1713{
1714	struct net_device *ndev;
1715	struct xcan_priv *priv;
1716	const struct of_device_id *of_id;
1717	const struct xcan_devtype_data *devtype = &xcan_axi_data;
1718	void __iomem *addr;
1719	int ret;
1720	int rx_max, tx_max;
1721	u32 hw_tx_max = 0, hw_rx_max = 0;
1722	const char *hw_tx_max_property;
1723
1724	/* Get the virtual base address for the device */
1725	addr = devm_platform_ioremap_resource(pdev, 0);
1726	if (IS_ERR(addr)) {
1727		ret = PTR_ERR(addr);
1728		goto err;
1729	}
1730
1731	of_id = of_match_device(xcan_of_match, &pdev->dev);
1732	if (of_id && of_id->data)
1733		devtype = of_id->data;
1734
1735	hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1736			     "tx-mailbox-count" : "tx-fifo-depth";
1737
1738	ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1739				   &hw_tx_max);
1740	if (ret < 0) {
1741		dev_err(&pdev->dev, "missing %s property\n",
1742			hw_tx_max_property);
1743		goto err;
1744	}
1745
1746	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1747				   &hw_rx_max);
1748	if (ret < 0) {
1749		dev_err(&pdev->dev,
1750			"missing rx-fifo-depth property (mailbox mode is not supported)\n");
1751		goto err;
1752	}
1753
1754	/* With TX FIFO:
1755	 *
1756	 * There is no way to directly figure out how many frames have been
1757	 * sent when the TXOK interrupt is processed. If TXFEMP
1758	 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1759	 * to determine if 1 or 2 frames have been sent.
1760	 * Theoretically we should be able to use TXFWMEMP to determine up
1761	 * to 3 frames, but it seems that after putting a second frame in the
1762	 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1763	 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1764	 * sent), which is not a sensible state - possibly TXFWMEMP is not
1765	 * completely synchronized with the rest of the bits?
1766	 *
1767	 * With TX mailboxes:
1768	 *
1769	 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1770	 * we submit frames one at a time.
1771	 */
1772	if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1773	    (devtype->flags & XCAN_FLAG_TXFEMP))
1774		tx_max = min(hw_tx_max, 2U);
1775	else
1776		tx_max = 1;
1777
1778	rx_max = hw_rx_max;
1779
1780	/* Create a CAN device instance */
1781	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1782	if (!ndev)
1783		return -ENOMEM;
1784
1785	priv = netdev_priv(ndev);
1786	priv->dev = &pdev->dev;
1787	priv->can.bittiming_const = devtype->bittiming_const;
1788	priv->can.do_set_mode = xcan_do_set_mode;
1789	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1790	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1791					CAN_CTRLMODE_BERR_REPORTING;
 
 
 
 
 
 
 
 
 
 
1792
1793	if (devtype->cantype == XAXI_CANFD) {
1794		priv->can.data_bittiming_const =
1795			&xcan_data_bittiming_const_canfd;
1796		priv->can.tdc_const = &xcan_tdc_const_canfd;
1797	}
1798
1799	if (devtype->cantype == XAXI_CANFD_2_0) {
1800		priv->can.data_bittiming_const =
1801			&xcan_data_bittiming_const_canfd2;
1802		priv->can.tdc_const = &xcan_tdc_const_canfd2;
1803	}
1804
1805	if (devtype->cantype == XAXI_CANFD ||
1806	    devtype->cantype == XAXI_CANFD_2_0) {
1807		priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD |
1808						CAN_CTRLMODE_TDC_AUTO;
1809		priv->can.do_get_auto_tdcv = xcan_get_auto_tdcv;
1810	}
1811
1812	priv->reg_base = addr;
1813	priv->tx_max = tx_max;
1814	priv->devtype = *devtype;
1815	spin_lock_init(&priv->tx_lock);
1816
1817	/* Get IRQ for the device */
1818	ret = platform_get_irq(pdev, 0);
1819	if (ret < 0)
1820		goto err_free;
1821
1822	ndev->irq = ret;
1823
1824	ndev->flags |= IFF_ECHO;	/* We support local echo */
1825
1826	platform_set_drvdata(pdev, ndev);
1827	SET_NETDEV_DEV(ndev, &pdev->dev);
1828	ndev->netdev_ops = &xcan_netdev_ops;
1829	ndev->ethtool_ops = &xcan_ethtool_ops;
1830
1831	/* Getting the CAN can_clk info */
1832	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1833	if (IS_ERR(priv->can_clk)) {
1834		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->can_clk),
1835				    "device clock not found\n");
1836		goto err_free;
1837	}
1838
1839	priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1840	if (IS_ERR(priv->bus_clk)) {
1841		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->bus_clk),
1842				    "bus clock not found\n");
1843		goto err_free;
 
 
 
 
 
 
 
1844	}
 
1845
1846	priv->write_reg = xcan_write_reg_le;
1847	priv->read_reg = xcan_read_reg_le;
1848
1849	pm_runtime_enable(&pdev->dev);
1850	ret = pm_runtime_get_sync(&pdev->dev);
1851	if (ret < 0) {
1852		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1853			   __func__, ret);
1854		goto err_disableclks;
1855	}
1856
1857	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1858		priv->write_reg = xcan_write_reg_be;
1859		priv->read_reg = xcan_read_reg_be;
1860	}
1861
1862	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1863
1864	netif_napi_add_weight(ndev, &priv->napi, xcan_rx_poll, rx_max);
1865
1866	ret = register_candev(ndev);
1867	if (ret) {
1868		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1869		goto err_disableclks;
1870	}
1871
 
1872	pm_runtime_put(&pdev->dev);
1873
1874	if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
1875		priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
1876		priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
1877	}
1878
1879	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1880		   priv->reg_base, ndev->irq, priv->can.clock.freq,
1881		   hw_tx_max, priv->tx_max);
1882
1883	return 0;
1884
1885err_disableclks:
1886	pm_runtime_put(priv->dev);
1887	pm_runtime_disable(&pdev->dev);
 
 
1888err_free:
1889	free_candev(ndev);
1890err:
1891	return ret;
1892}
1893
1894/**
1895 * xcan_remove - Unregister the device after releasing the resources
1896 * @pdev:	Handle to the platform device structure
1897 *
1898 * This function frees all the resources allocated to the device.
1899 * Return: 0 always
1900 */
1901static int xcan_remove(struct platform_device *pdev)
1902{
1903	struct net_device *ndev = platform_get_drvdata(pdev);
 
1904
1905	unregister_candev(ndev);
1906	pm_runtime_disable(&pdev->dev);
 
1907	free_candev(ndev);
1908
1909	return 0;
1910}
1911
1912static struct platform_driver xcan_driver = {
1913	.probe = xcan_probe,
1914	.remove	= xcan_remove,
1915	.driver	= {
1916		.name = DRIVER_NAME,
1917		.pm = &xcan_dev_pm_ops,
1918		.of_match_table	= xcan_of_match,
1919	},
1920};
1921
1922module_platform_driver(xcan_driver);
1923
1924MODULE_LICENSE("GPL");
1925MODULE_AUTHOR("Xilinx Inc");
1926MODULE_DESCRIPTION("Xilinx CAN interface");