Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2006, Intel Corporation.
   4 *
   5 * Copyright (C) 2006-2008 Intel Corporation
   6 * Author: Ashok Raj <ashok.raj@intel.com>
   7 * Author: Shaohua Li <shaohua.li@intel.com>
   8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *
  10 * This file implements early detection/parsing of Remapping Devices
  11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
  12 * tables.
  13 *
  14 * These routines are used by both DMA-remapping and Interrupt-remapping
  15 */
  16
  17#define pr_fmt(fmt)     "DMAR: " fmt
  18
  19#include <linux/pci.h>
  20#include <linux/dmar.h>
  21#include <linux/iova.h>
  22#include <linux/timer.h>
  23#include <linux/irq.h>
  24#include <linux/interrupt.h>
  25#include <linux/tboot.h>
  26#include <linux/dmi.h>
  27#include <linux/slab.h>
  28#include <linux/iommu.h>
  29#include <linux/numa.h>
  30#include <linux/limits.h>
  31#include <asm/irq_remapping.h>
  32
  33#include "iommu.h"
  34#include "../irq_remapping.h"
  35#include "perf.h"
  36#include "trace.h"
  37#include "perfmon.h"
  38
  39typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
  40struct dmar_res_callback {
  41	dmar_res_handler_t	cb[ACPI_DMAR_TYPE_RESERVED];
  42	void			*arg[ACPI_DMAR_TYPE_RESERVED];
  43	bool			ignore_unhandled;
  44	bool			print_entry;
  45};
  46
  47/*
  48 * Assumptions:
  49 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
  50 *    before IO devices managed by that unit.
  51 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
  52 *    after IO devices managed by that unit.
  53 * 3) Hotplug events are rare.
  54 *
  55 * Locking rules for DMA and interrupt remapping related global data structures:
  56 * 1) Use dmar_global_lock in process context
  57 * 2) Use RCU in interrupt context
  58 */
  59DECLARE_RWSEM(dmar_global_lock);
  60LIST_HEAD(dmar_drhd_units);
  61
  62struct acpi_table_header * __initdata dmar_tbl;
  63static int dmar_dev_scope_status = 1;
  64static DEFINE_IDA(dmar_seq_ids);
  65
  66static int alloc_iommu(struct dmar_drhd_unit *drhd);
  67static void free_iommu(struct intel_iommu *iommu);
  68
  69static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
  70{
  71	/*
  72	 * add INCLUDE_ALL at the tail, so scan the list will find it at
  73	 * the very end.
  74	 */
  75	if (drhd->include_all)
  76		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
  77	else
  78		list_add_rcu(&drhd->list, &dmar_drhd_units);
  79}
  80
  81void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
  82{
  83	struct acpi_dmar_device_scope *scope;
  84
  85	*cnt = 0;
  86	while (start < end) {
  87		scope = start;
  88		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
  89		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
  90		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
  91			(*cnt)++;
  92		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
  93			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
  94			pr_warn("Unsupported device scope\n");
  95		}
  96		start += scope->length;
  97	}
  98	if (*cnt == 0)
  99		return NULL;
 100
 101	return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
 102}
 103
 104void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
 105{
 106	int i;
 107	struct device *tmp_dev;
 108
 109	if (*devices && *cnt) {
 110		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
 111			put_device(tmp_dev);
 112		kfree(*devices);
 113	}
 114
 115	*devices = NULL;
 116	*cnt = 0;
 117}
 118
 119/* Optimize out kzalloc()/kfree() for normal cases */
 120static char dmar_pci_notify_info_buf[64];
 121
 122static struct dmar_pci_notify_info *
 123dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
 124{
 125	int level = 0;
 126	size_t size;
 127	struct pci_dev *tmp;
 128	struct dmar_pci_notify_info *info;
 129
 
 
 130	/*
 131	 * Ignore devices that have a domain number higher than what can
 132	 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
 133	 */
 134	if (pci_domain_nr(dev->bus) > U16_MAX)
 135		return NULL;
 136
 137	/* Only generate path[] for device addition event */
 138	if (event == BUS_NOTIFY_ADD_DEVICE)
 139		for (tmp = dev; tmp; tmp = tmp->bus->self)
 140			level++;
 141
 142	size = struct_size(info, path, level);
 143	if (size <= sizeof(dmar_pci_notify_info_buf)) {
 144		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
 145	} else {
 146		info = kzalloc(size, GFP_KERNEL);
 147		if (!info) {
 148			if (dmar_dev_scope_status == 0)
 149				dmar_dev_scope_status = -ENOMEM;
 150			return NULL;
 151		}
 152	}
 153
 154	info->event = event;
 155	info->dev = dev;
 156	info->seg = pci_domain_nr(dev->bus);
 157	info->level = level;
 158	if (event == BUS_NOTIFY_ADD_DEVICE) {
 159		for (tmp = dev; tmp; tmp = tmp->bus->self) {
 160			level--;
 161			info->path[level].bus = tmp->bus->number;
 162			info->path[level].device = PCI_SLOT(tmp->devfn);
 163			info->path[level].function = PCI_FUNC(tmp->devfn);
 164			if (pci_is_root_bus(tmp->bus))
 165				info->bus = tmp->bus->number;
 166		}
 167	}
 168
 169	return info;
 170}
 171
 172static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
 173{
 174	if ((void *)info != dmar_pci_notify_info_buf)
 175		kfree(info);
 176}
 177
 178static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
 179				struct acpi_dmar_pci_path *path, int count)
 180{
 181	int i;
 182
 183	if (info->bus != bus)
 184		goto fallback;
 185	if (info->level != count)
 186		goto fallback;
 187
 188	for (i = 0; i < count; i++) {
 189		if (path[i].device != info->path[i].device ||
 190		    path[i].function != info->path[i].function)
 191			goto fallback;
 192	}
 193
 194	return true;
 195
 196fallback:
 197
 198	if (count != 1)
 199		return false;
 200
 201	i = info->level - 1;
 202	if (bus              == info->path[i].bus &&
 203	    path[0].device   == info->path[i].device &&
 204	    path[0].function == info->path[i].function) {
 205		pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
 206			bus, path[0].device, path[0].function);
 207		return true;
 208	}
 209
 210	return false;
 211}
 212
 213/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
 214int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
 215			  void *start, void*end, u16 segment,
 216			  struct dmar_dev_scope *devices,
 217			  int devices_cnt)
 218{
 219	int i, level;
 220	struct device *tmp, *dev = &info->dev->dev;
 221	struct acpi_dmar_device_scope *scope;
 222	struct acpi_dmar_pci_path *path;
 223
 224	if (segment != info->seg)
 225		return 0;
 226
 227	for (; start < end; start += scope->length) {
 228		scope = start;
 229		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
 230		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
 231			continue;
 232
 233		path = (struct acpi_dmar_pci_path *)(scope + 1);
 234		level = (scope->length - sizeof(*scope)) / sizeof(*path);
 235		if (!dmar_match_pci_path(info, scope->bus, path, level))
 236			continue;
 237
 238		/*
 239		 * We expect devices with endpoint scope to have normal PCI
 240		 * headers, and devices with bridge scope to have bridge PCI
 241		 * headers.  However PCI NTB devices may be listed in the
 242		 * DMAR table with bridge scope, even though they have a
 243		 * normal PCI header.  NTB devices are identified by class
 244		 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
 245		 * for this special case.
 246		 */
 247		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
 248		     info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
 249		    (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
 250		     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
 251		      info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
 252			pr_warn("Device scope type does not match for %s\n",
 253				pci_name(info->dev));
 254			return -EINVAL;
 255		}
 256
 257		for_each_dev_scope(devices, devices_cnt, i, tmp)
 258			if (tmp == NULL) {
 259				devices[i].bus = info->dev->bus->number;
 260				devices[i].devfn = info->dev->devfn;
 261				rcu_assign_pointer(devices[i].dev,
 262						   get_device(dev));
 263				return 1;
 264			}
 265		if (WARN_ON(i >= devices_cnt))
 266			return -EINVAL;
 267	}
 268
 269	return 0;
 270}
 271
 272int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
 273			  struct dmar_dev_scope *devices, int count)
 274{
 275	int index;
 276	struct device *tmp;
 277
 278	if (info->seg != segment)
 279		return 0;
 280
 281	for_each_active_dev_scope(devices, count, index, tmp)
 282		if (tmp == &info->dev->dev) {
 283			RCU_INIT_POINTER(devices[index].dev, NULL);
 284			synchronize_rcu();
 285			put_device(tmp);
 286			return 1;
 287		}
 288
 289	return 0;
 290}
 291
 292static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
 293{
 294	int ret = 0;
 295	struct dmar_drhd_unit *dmaru;
 296	struct acpi_dmar_hardware_unit *drhd;
 297
 298	for_each_drhd_unit(dmaru) {
 299		if (dmaru->include_all)
 300			continue;
 301
 302		drhd = container_of(dmaru->hdr,
 303				    struct acpi_dmar_hardware_unit, header);
 304		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
 305				((void *)drhd) + drhd->header.length,
 306				dmaru->segment,
 307				dmaru->devices, dmaru->devices_cnt);
 308		if (ret)
 309			break;
 310	}
 311	if (ret >= 0)
 312		ret = dmar_iommu_notify_scope_dev(info);
 313	if (ret < 0 && dmar_dev_scope_status == 0)
 314		dmar_dev_scope_status = ret;
 315
 316	if (ret >= 0)
 317		intel_irq_remap_add_device(info);
 318
 319	return ret;
 320}
 321
 322static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
 323{
 324	struct dmar_drhd_unit *dmaru;
 325
 326	for_each_drhd_unit(dmaru)
 327		if (dmar_remove_dev_scope(info, dmaru->segment,
 328			dmaru->devices, dmaru->devices_cnt))
 329			break;
 330	dmar_iommu_notify_scope_dev(info);
 331}
 332
 333static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
 334{
 335	struct pci_dev *physfn = pci_physfn(pdev);
 336
 337	dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
 338}
 339
 340static int dmar_pci_bus_notifier(struct notifier_block *nb,
 341				 unsigned long action, void *data)
 342{
 343	struct pci_dev *pdev = to_pci_dev(data);
 344	struct dmar_pci_notify_info *info;
 345
 346	/* Only care about add/remove events for physical functions.
 347	 * For VFs we actually do the lookup based on the corresponding
 348	 * PF in device_to_iommu() anyway. */
 349	if (pdev->is_virtfn) {
 350		/*
 351		 * Ensure that the VF device inherits the irq domain of the
 352		 * PF device. Ideally the device would inherit the domain
 353		 * from the bus, but DMAR can have multiple units per bus
 354		 * which makes this impossible. The VF 'bus' could inherit
 355		 * from the PF device, but that's yet another x86'sism to
 356		 * inflict on everybody else.
 357		 */
 358		if (action == BUS_NOTIFY_ADD_DEVICE)
 359			vf_inherit_msi_domain(pdev);
 360		return NOTIFY_DONE;
 361	}
 362
 363	if (action != BUS_NOTIFY_ADD_DEVICE &&
 364	    action != BUS_NOTIFY_REMOVED_DEVICE)
 365		return NOTIFY_DONE;
 366
 367	info = dmar_alloc_pci_notify_info(pdev, action);
 368	if (!info)
 369		return NOTIFY_DONE;
 370
 371	down_write(&dmar_global_lock);
 372	if (action == BUS_NOTIFY_ADD_DEVICE)
 373		dmar_pci_bus_add_dev(info);
 374	else if (action == BUS_NOTIFY_REMOVED_DEVICE)
 375		dmar_pci_bus_del_dev(info);
 376	up_write(&dmar_global_lock);
 377
 378	dmar_free_pci_notify_info(info);
 379
 380	return NOTIFY_OK;
 381}
 382
 383static struct notifier_block dmar_pci_bus_nb = {
 384	.notifier_call = dmar_pci_bus_notifier,
 385	.priority = 1,
 386};
 387
 388static struct dmar_drhd_unit *
 389dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
 390{
 391	struct dmar_drhd_unit *dmaru;
 392
 393	list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
 394				dmar_rcu_check())
 395		if (dmaru->segment == drhd->segment &&
 396		    dmaru->reg_base_addr == drhd->address)
 397			return dmaru;
 398
 399	return NULL;
 400}
 401
 402/*
 403 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 404 * structure which uniquely represent one DMA remapping hardware unit
 405 * present in the platform
 406 */
 407static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
 408{
 409	struct acpi_dmar_hardware_unit *drhd;
 410	struct dmar_drhd_unit *dmaru;
 411	int ret;
 412
 413	drhd = (struct acpi_dmar_hardware_unit *)header;
 414	dmaru = dmar_find_dmaru(drhd);
 415	if (dmaru)
 416		goto out;
 417
 418	dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
 419	if (!dmaru)
 420		return -ENOMEM;
 421
 422	/*
 423	 * If header is allocated from slab by ACPI _DSM method, we need to
 424	 * copy the content because the memory buffer will be freed on return.
 425	 */
 426	dmaru->hdr = (void *)(dmaru + 1);
 427	memcpy(dmaru->hdr, header, header->length);
 428	dmaru->reg_base_addr = drhd->address;
 429	dmaru->segment = drhd->segment;
 430	/* The size of the register set is 2 ^ N 4 KB pages. */
 431	dmaru->reg_size = 1UL << (drhd->size + 12);
 432	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
 433	dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
 434					      ((void *)drhd) + drhd->header.length,
 435					      &dmaru->devices_cnt);
 436	if (dmaru->devices_cnt && dmaru->devices == NULL) {
 437		kfree(dmaru);
 438		return -ENOMEM;
 439	}
 440
 441	ret = alloc_iommu(dmaru);
 442	if (ret) {
 443		dmar_free_dev_scope(&dmaru->devices,
 444				    &dmaru->devices_cnt);
 445		kfree(dmaru);
 446		return ret;
 447	}
 448	dmar_register_drhd_unit(dmaru);
 449
 450out:
 451	if (arg)
 452		(*(int *)arg)++;
 453
 454	return 0;
 455}
 456
 457static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
 458{
 459	if (dmaru->devices && dmaru->devices_cnt)
 460		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
 461	if (dmaru->iommu)
 462		free_iommu(dmaru->iommu);
 463	kfree(dmaru);
 464}
 465
 466static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
 467				      void *arg)
 468{
 469	struct acpi_dmar_andd *andd = (void *)header;
 470
 471	/* Check for NUL termination within the designated length */
 472	if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
 473		pr_warn(FW_BUG
 474			   "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
 475			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 476			   dmi_get_system_info(DMI_BIOS_VENDOR),
 477			   dmi_get_system_info(DMI_BIOS_VERSION),
 478			   dmi_get_system_info(DMI_PRODUCT_VERSION));
 479		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 480		return -EINVAL;
 481	}
 482	pr_info("ANDD device: %x name: %s\n", andd->device_number,
 483		andd->device_name);
 484
 485	return 0;
 486}
 487
 488#ifdef CONFIG_ACPI_NUMA
 489static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
 490{
 491	struct acpi_dmar_rhsa *rhsa;
 492	struct dmar_drhd_unit *drhd;
 493
 494	rhsa = (struct acpi_dmar_rhsa *)header;
 495	for_each_drhd_unit(drhd) {
 496		if (drhd->reg_base_addr == rhsa->base_address) {
 497			int node = pxm_to_node(rhsa->proximity_domain);
 498
 499			if (node != NUMA_NO_NODE && !node_online(node))
 500				node = NUMA_NO_NODE;
 501			drhd->iommu->node = node;
 502			return 0;
 503		}
 504	}
 505	pr_warn(FW_BUG
 506		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
 507		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 508		rhsa->base_address,
 509		dmi_get_system_info(DMI_BIOS_VENDOR),
 510		dmi_get_system_info(DMI_BIOS_VERSION),
 511		dmi_get_system_info(DMI_PRODUCT_VERSION));
 512	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 513
 514	return 0;
 515}
 516#else
 517#define	dmar_parse_one_rhsa		dmar_res_noop
 518#endif
 519
 520static void
 521dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
 522{
 523	struct acpi_dmar_hardware_unit *drhd;
 524	struct acpi_dmar_reserved_memory *rmrr;
 525	struct acpi_dmar_atsr *atsr;
 526	struct acpi_dmar_rhsa *rhsa;
 527	struct acpi_dmar_satc *satc;
 528
 529	switch (header->type) {
 530	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
 531		drhd = container_of(header, struct acpi_dmar_hardware_unit,
 532				    header);
 533		pr_info("DRHD base: %#016Lx flags: %#x\n",
 534			(unsigned long long)drhd->address, drhd->flags);
 535		break;
 536	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
 537		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
 538				    header);
 539		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
 540			(unsigned long long)rmrr->base_address,
 541			(unsigned long long)rmrr->end_address);
 542		break;
 543	case ACPI_DMAR_TYPE_ROOT_ATS:
 544		atsr = container_of(header, struct acpi_dmar_atsr, header);
 545		pr_info("ATSR flags: %#x\n", atsr->flags);
 546		break;
 547	case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
 548		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
 549		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
 550		       (unsigned long long)rhsa->base_address,
 551		       rhsa->proximity_domain);
 552		break;
 553	case ACPI_DMAR_TYPE_NAMESPACE:
 554		/* We don't print this here because we need to sanity-check
 555		   it first. So print it in dmar_parse_one_andd() instead. */
 556		break;
 557	case ACPI_DMAR_TYPE_SATC:
 558		satc = container_of(header, struct acpi_dmar_satc, header);
 559		pr_info("SATC flags: 0x%x\n", satc->flags);
 560		break;
 561	}
 562}
 563
 564/**
 565 * dmar_table_detect - checks to see if the platform supports DMAR devices
 566 */
 567static int __init dmar_table_detect(void)
 568{
 569	acpi_status status = AE_OK;
 570
 571	/* if we could find DMAR table, then there are DMAR devices */
 572	status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
 573
 574	if (ACPI_SUCCESS(status) && !dmar_tbl) {
 575		pr_warn("Unable to map DMAR\n");
 576		status = AE_NOT_FOUND;
 577	}
 578
 579	return ACPI_SUCCESS(status) ? 0 : -ENOENT;
 580}
 581
 582static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
 583				       size_t len, struct dmar_res_callback *cb)
 584{
 585	struct acpi_dmar_header *iter, *next;
 586	struct acpi_dmar_header *end = ((void *)start) + len;
 587
 588	for (iter = start; iter < end; iter = next) {
 589		next = (void *)iter + iter->length;
 590		if (iter->length == 0) {
 591			/* Avoid looping forever on bad ACPI tables */
 592			pr_debug(FW_BUG "Invalid 0-length structure\n");
 593			break;
 594		} else if (next > end) {
 595			/* Avoid passing table end */
 596			pr_warn(FW_BUG "Record passes table end\n");
 597			return -EINVAL;
 598		}
 599
 600		if (cb->print_entry)
 601			dmar_table_print_dmar_entry(iter);
 602
 603		if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
 604			/* continue for forward compatibility */
 605			pr_debug("Unknown DMAR structure type %d\n",
 606				 iter->type);
 607		} else if (cb->cb[iter->type]) {
 608			int ret;
 609
 610			ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
 611			if (ret)
 612				return ret;
 613		} else if (!cb->ignore_unhandled) {
 614			pr_warn("No handler for DMAR structure type %d\n",
 615				iter->type);
 616			return -EINVAL;
 617		}
 618	}
 619
 620	return 0;
 621}
 622
 623static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
 624				       struct dmar_res_callback *cb)
 625{
 626	return dmar_walk_remapping_entries((void *)(dmar + 1),
 627			dmar->header.length - sizeof(*dmar), cb);
 628}
 629
 630/**
 631 * parse_dmar_table - parses the DMA reporting table
 632 */
 633static int __init
 634parse_dmar_table(void)
 635{
 636	struct acpi_table_dmar *dmar;
 637	int drhd_count = 0;
 638	int ret;
 639	struct dmar_res_callback cb = {
 640		.print_entry = true,
 641		.ignore_unhandled = true,
 642		.arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
 643		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
 644		.cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
 645		.cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
 646		.cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
 647		.cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
 648		.cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
 649	};
 650
 651	/*
 652	 * Do it again, earlier dmar_tbl mapping could be mapped with
 653	 * fixed map.
 654	 */
 655	dmar_table_detect();
 656
 657	/*
 658	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
 659	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
 660	 */
 661	dmar_tbl = tboot_get_dmar_table(dmar_tbl);
 662
 663	dmar = (struct acpi_table_dmar *)dmar_tbl;
 664	if (!dmar)
 665		return -ENODEV;
 666
 667	if (dmar->width < PAGE_SHIFT - 1) {
 668		pr_warn("Invalid DMAR haw\n");
 669		return -EINVAL;
 670	}
 671
 672	pr_info("Host address width %d\n", dmar->width + 1);
 673	ret = dmar_walk_dmar_table(dmar, &cb);
 674	if (ret == 0 && drhd_count == 0)
 675		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
 676
 677	return ret;
 678}
 679
 680static int dmar_pci_device_match(struct dmar_dev_scope devices[],
 681				 int cnt, struct pci_dev *dev)
 682{
 683	int index;
 684	struct device *tmp;
 685
 686	while (dev) {
 687		for_each_active_dev_scope(devices, cnt, index, tmp)
 688			if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
 689				return 1;
 690
 691		/* Check our parent */
 692		dev = dev->bus->self;
 693	}
 694
 695	return 0;
 696}
 697
 698struct dmar_drhd_unit *
 699dmar_find_matched_drhd_unit(struct pci_dev *dev)
 700{
 701	struct dmar_drhd_unit *dmaru;
 702	struct acpi_dmar_hardware_unit *drhd;
 703
 704	dev = pci_physfn(dev);
 705
 706	rcu_read_lock();
 707	for_each_drhd_unit(dmaru) {
 708		drhd = container_of(dmaru->hdr,
 709				    struct acpi_dmar_hardware_unit,
 710				    header);
 711
 712		if (dmaru->include_all &&
 713		    drhd->segment == pci_domain_nr(dev->bus))
 714			goto out;
 715
 716		if (dmar_pci_device_match(dmaru->devices,
 717					  dmaru->devices_cnt, dev))
 718			goto out;
 719	}
 720	dmaru = NULL;
 721out:
 722	rcu_read_unlock();
 723
 724	return dmaru;
 725}
 726
 727static void __init dmar_acpi_insert_dev_scope(u8 device_number,
 728					      struct acpi_device *adev)
 729{
 730	struct dmar_drhd_unit *dmaru;
 731	struct acpi_dmar_hardware_unit *drhd;
 732	struct acpi_dmar_device_scope *scope;
 733	struct device *tmp;
 734	int i;
 735	struct acpi_dmar_pci_path *path;
 736
 737	for_each_drhd_unit(dmaru) {
 738		drhd = container_of(dmaru->hdr,
 739				    struct acpi_dmar_hardware_unit,
 740				    header);
 741
 742		for (scope = (void *)(drhd + 1);
 743		     (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
 744		     scope = ((void *)scope) + scope->length) {
 745			if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
 746				continue;
 747			if (scope->enumeration_id != device_number)
 748				continue;
 749
 750			path = (void *)(scope + 1);
 751			pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
 752				dev_name(&adev->dev), dmaru->reg_base_addr,
 753				scope->bus, path->device, path->function);
 754			for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
 755				if (tmp == NULL) {
 756					dmaru->devices[i].bus = scope->bus;
 757					dmaru->devices[i].devfn = PCI_DEVFN(path->device,
 758									    path->function);
 759					rcu_assign_pointer(dmaru->devices[i].dev,
 760							   get_device(&adev->dev));
 761					return;
 762				}
 763			BUG_ON(i >= dmaru->devices_cnt);
 764		}
 765	}
 766	pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
 767		device_number, dev_name(&adev->dev));
 768}
 769
 770static int __init dmar_acpi_dev_scope_init(void)
 771{
 772	struct acpi_dmar_andd *andd;
 773
 774	if (dmar_tbl == NULL)
 775		return -ENODEV;
 776
 777	for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
 778	     ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
 779	     andd = ((void *)andd) + andd->header.length) {
 780		if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
 781			acpi_handle h;
 782			struct acpi_device *adev;
 783
 784			if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
 785							  andd->device_name,
 786							  &h))) {
 787				pr_err("Failed to find handle for ACPI object %s\n",
 788				       andd->device_name);
 789				continue;
 790			}
 791			adev = acpi_fetch_acpi_dev(h);
 792			if (!adev) {
 793				pr_err("Failed to get device for ACPI object %s\n",
 794				       andd->device_name);
 795				continue;
 796			}
 797			dmar_acpi_insert_dev_scope(andd->device_number, adev);
 798		}
 799	}
 800	return 0;
 801}
 802
 803int __init dmar_dev_scope_init(void)
 804{
 805	struct pci_dev *dev = NULL;
 806	struct dmar_pci_notify_info *info;
 807
 808	if (dmar_dev_scope_status != 1)
 809		return dmar_dev_scope_status;
 810
 811	if (list_empty(&dmar_drhd_units)) {
 812		dmar_dev_scope_status = -ENODEV;
 813	} else {
 814		dmar_dev_scope_status = 0;
 815
 816		dmar_acpi_dev_scope_init();
 817
 818		for_each_pci_dev(dev) {
 819			if (dev->is_virtfn)
 820				continue;
 821
 822			info = dmar_alloc_pci_notify_info(dev,
 823					BUS_NOTIFY_ADD_DEVICE);
 824			if (!info) {
 825				pci_dev_put(dev);
 826				return dmar_dev_scope_status;
 827			} else {
 828				dmar_pci_bus_add_dev(info);
 829				dmar_free_pci_notify_info(info);
 830			}
 831		}
 832	}
 833
 834	return dmar_dev_scope_status;
 835}
 836
 837void __init dmar_register_bus_notifier(void)
 838{
 839	bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
 840}
 841
 842
 843int __init dmar_table_init(void)
 844{
 845	static int dmar_table_initialized;
 846	int ret;
 847
 848	if (dmar_table_initialized == 0) {
 849		ret = parse_dmar_table();
 850		if (ret < 0) {
 851			if (ret != -ENODEV)
 852				pr_info("Parse DMAR table failure.\n");
 853		} else  if (list_empty(&dmar_drhd_units)) {
 854			pr_info("No DMAR devices found\n");
 855			ret = -ENODEV;
 856		}
 857
 858		if (ret < 0)
 859			dmar_table_initialized = ret;
 860		else
 861			dmar_table_initialized = 1;
 862	}
 863
 864	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
 865}
 866
 867static void warn_invalid_dmar(u64 addr, const char *message)
 868{
 869	pr_warn_once(FW_BUG
 870		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
 871		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 872		addr, message,
 873		dmi_get_system_info(DMI_BIOS_VENDOR),
 874		dmi_get_system_info(DMI_BIOS_VERSION),
 875		dmi_get_system_info(DMI_PRODUCT_VERSION));
 876	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 877}
 878
 879static int __ref
 880dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
 881{
 882	struct acpi_dmar_hardware_unit *drhd;
 883	void __iomem *addr;
 884	u64 cap, ecap;
 885
 886	drhd = (void *)entry;
 887	if (!drhd->address) {
 888		warn_invalid_dmar(0, "");
 889		return -EINVAL;
 890	}
 891
 892	if (arg)
 893		addr = ioremap(drhd->address, VTD_PAGE_SIZE);
 894	else
 895		addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
 896	if (!addr) {
 897		pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
 898		return -EINVAL;
 899	}
 900
 901	cap = dmar_readq(addr + DMAR_CAP_REG);
 902	ecap = dmar_readq(addr + DMAR_ECAP_REG);
 903
 904	if (arg)
 905		iounmap(addr);
 906	else
 907		early_iounmap(addr, VTD_PAGE_SIZE);
 908
 909	if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
 910		warn_invalid_dmar(drhd->address, " returns all ones");
 911		return -EINVAL;
 912	}
 913
 914	return 0;
 915}
 916
 917void __init detect_intel_iommu(void)
 918{
 919	int ret;
 920	struct dmar_res_callback validate_drhd_cb = {
 921		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
 922		.ignore_unhandled = true,
 923	};
 924
 925	down_write(&dmar_global_lock);
 926	ret = dmar_table_detect();
 927	if (!ret)
 928		ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
 929					   &validate_drhd_cb);
 930	if (!ret && !no_iommu && !iommu_detected &&
 931	    (!dmar_disabled || dmar_platform_optin())) {
 932		iommu_detected = 1;
 933		/* Make sure ACS will be enabled */
 934		pci_request_acs();
 935	}
 936
 937#ifdef CONFIG_X86
 938	if (!ret) {
 939		x86_init.iommu.iommu_init = intel_iommu_init;
 940		x86_platform.iommu_shutdown = intel_iommu_shutdown;
 941	}
 942
 943#endif
 944
 945	if (dmar_tbl) {
 946		acpi_put_table(dmar_tbl);
 947		dmar_tbl = NULL;
 948	}
 949	up_write(&dmar_global_lock);
 950}
 951
 952static void unmap_iommu(struct intel_iommu *iommu)
 953{
 954	iounmap(iommu->reg);
 955	release_mem_region(iommu->reg_phys, iommu->reg_size);
 956}
 957
 958/**
 959 * map_iommu: map the iommu's registers
 960 * @iommu: the iommu to map
 961 * @drhd: DMA remapping hardware definition structure
 962 *
 963 * Memory map the iommu's registers.  Start w/ a single page, and
 964 * possibly expand if that turns out to be insufficent.
 965 */
 966static int map_iommu(struct intel_iommu *iommu, struct dmar_drhd_unit *drhd)
 967{
 968	u64 phys_addr = drhd->reg_base_addr;
 969	int map_size, err=0;
 970
 971	iommu->reg_phys = phys_addr;
 972	iommu->reg_size = drhd->reg_size;
 973
 974	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
 975		pr_err("Can't reserve memory\n");
 976		err = -EBUSY;
 977		goto out;
 978	}
 979
 980	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
 981	if (!iommu->reg) {
 982		pr_err("Can't map the region\n");
 983		err = -ENOMEM;
 984		goto release;
 985	}
 986
 987	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
 988	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
 989
 990	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
 991		err = -EINVAL;
 992		warn_invalid_dmar(phys_addr, " returns all ones");
 993		goto unmap;
 994	}
 
 
 995
 996	/* the registers might be more than one page */
 997	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
 998			 cap_max_fault_reg_offset(iommu->cap));
 999	map_size = VTD_PAGE_ALIGN(map_size);
1000	if (map_size > iommu->reg_size) {
1001		iounmap(iommu->reg);
1002		release_mem_region(iommu->reg_phys, iommu->reg_size);
1003		iommu->reg_size = map_size;
1004		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1005					iommu->name)) {
1006			pr_err("Can't reserve memory\n");
1007			err = -EBUSY;
1008			goto out;
1009		}
1010		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1011		if (!iommu->reg) {
1012			pr_err("Can't map the region\n");
1013			err = -ENOMEM;
1014			goto release;
1015		}
1016	}
1017
1018	if (cap_ecmds(iommu->cap)) {
1019		int i;
1020
1021		for (i = 0; i < DMA_MAX_NUM_ECMDCAP; i++) {
1022			iommu->ecmdcap[i] = dmar_readq(iommu->reg + DMAR_ECCAP_REG +
1023						       i * DMA_ECMD_REG_STEP);
1024		}
1025	}
1026
1027	err = 0;
1028	goto out;
1029
1030unmap:
1031	iounmap(iommu->reg);
1032release:
1033	release_mem_region(iommu->reg_phys, iommu->reg_size);
1034out:
1035	return err;
1036}
1037
1038static int alloc_iommu(struct dmar_drhd_unit *drhd)
1039{
1040	struct intel_iommu *iommu;
1041	u32 ver, sts;
1042	int agaw = -1;
1043	int msagaw = -1;
1044	int err;
1045
1046	if (!drhd->reg_base_addr) {
1047		warn_invalid_dmar(0, "");
1048		return -EINVAL;
1049	}
1050
1051	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1052	if (!iommu)
1053		return -ENOMEM;
1054
1055	iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1056					DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1057	if (iommu->seq_id < 0) {
1058		pr_err("Failed to allocate seq_id\n");
1059		err = iommu->seq_id;
1060		goto error;
1061	}
1062	sprintf(iommu->name, "dmar%d", iommu->seq_id);
1063
1064	err = map_iommu(iommu, drhd);
1065	if (err) {
1066		pr_err("Failed to map %s\n", iommu->name);
1067		goto error_free_seq_id;
1068	}
1069
1070	err = -EINVAL;
1071	if (!cap_sagaw(iommu->cap) &&
1072	    (!ecap_smts(iommu->ecap) || ecap_slts(iommu->ecap))) {
1073		pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1074			iommu->name);
1075		drhd->ignored = 1;
1076	}
1077
1078	if (!drhd->ignored) {
1079		agaw = iommu_calculate_agaw(iommu);
1080		if (agaw < 0) {
1081			pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1082			       iommu->seq_id);
1083			drhd->ignored = 1;
1084		}
1085	}
1086	if (!drhd->ignored) {
1087		msagaw = iommu_calculate_max_sagaw(iommu);
1088		if (msagaw < 0) {
1089			pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1090			       iommu->seq_id);
1091			drhd->ignored = 1;
1092			agaw = -1;
1093		}
1094	}
1095	iommu->agaw = agaw;
1096	iommu->msagaw = msagaw;
1097	iommu->segment = drhd->segment;
1098
1099	iommu->node = NUMA_NO_NODE;
1100
1101	ver = readl(iommu->reg + DMAR_VER_REG);
1102	pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1103		iommu->name,
1104		(unsigned long long)drhd->reg_base_addr,
1105		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1106		(unsigned long long)iommu->cap,
1107		(unsigned long long)iommu->ecap);
1108
1109	/* Reflect status in gcmd */
1110	sts = readl(iommu->reg + DMAR_GSTS_REG);
1111	if (sts & DMA_GSTS_IRES)
1112		iommu->gcmd |= DMA_GCMD_IRE;
1113	if (sts & DMA_GSTS_TES)
1114		iommu->gcmd |= DMA_GCMD_TE;
1115	if (sts & DMA_GSTS_QIES)
1116		iommu->gcmd |= DMA_GCMD_QIE;
1117
1118	if (alloc_iommu_pmu(iommu))
1119		pr_debug("Cannot alloc PMU for iommu (seq_id = %d)\n", iommu->seq_id);
1120
1121	raw_spin_lock_init(&iommu->register_lock);
1122
1123	/*
1124	 * A value of N in PSS field of eCap register indicates hardware
1125	 * supports PASID field of N+1 bits.
1126	 */
1127	if (pasid_supported(iommu))
1128		iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap);
1129
1130	/*
1131	 * This is only for hotplug; at boot time intel_iommu_enabled won't
1132	 * be set yet. When intel_iommu_init() runs, it registers the units
1133	 * present at boot time, then sets intel_iommu_enabled.
1134	 */
1135	if (intel_iommu_enabled && !drhd->ignored) {
1136		err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1137					     intel_iommu_groups,
1138					     "%s", iommu->name);
1139		if (err)
1140			goto err_unmap;
1141
1142		err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1143		if (err)
1144			goto err_sysfs;
1145
1146		iommu_pmu_register(iommu);
1147	}
1148
1149	drhd->iommu = iommu;
1150	iommu->drhd = drhd;
1151
1152	return 0;
1153
1154err_sysfs:
1155	iommu_device_sysfs_remove(&iommu->iommu);
1156err_unmap:
1157	free_iommu_pmu(iommu);
1158	unmap_iommu(iommu);
1159error_free_seq_id:
1160	ida_free(&dmar_seq_ids, iommu->seq_id);
1161error:
1162	kfree(iommu);
1163	return err;
1164}
1165
1166static void free_iommu(struct intel_iommu *iommu)
1167{
1168	if (intel_iommu_enabled && !iommu->drhd->ignored) {
1169		iommu_pmu_unregister(iommu);
1170		iommu_device_unregister(&iommu->iommu);
1171		iommu_device_sysfs_remove(&iommu->iommu);
1172	}
1173
1174	free_iommu_pmu(iommu);
1175
1176	if (iommu->irq) {
1177		if (iommu->pr_irq) {
1178			free_irq(iommu->pr_irq, iommu);
1179			dmar_free_hwirq(iommu->pr_irq);
1180			iommu->pr_irq = 0;
1181		}
1182		free_irq(iommu->irq, iommu);
1183		dmar_free_hwirq(iommu->irq);
1184		iommu->irq = 0;
1185	}
1186
1187	if (iommu->qi) {
1188		free_page((unsigned long)iommu->qi->desc);
1189		kfree(iommu->qi->desc_status);
1190		kfree(iommu->qi);
1191	}
1192
1193	if (iommu->reg)
1194		unmap_iommu(iommu);
1195
1196	ida_free(&dmar_seq_ids, iommu->seq_id);
1197	kfree(iommu);
1198}
1199
1200/*
1201 * Reclaim all the submitted descriptors which have completed its work.
1202 */
1203static inline void reclaim_free_desc(struct q_inval *qi)
1204{
1205	while (qi->desc_status[qi->free_tail] == QI_DONE ||
1206	       qi->desc_status[qi->free_tail] == QI_ABORT) {
1207		qi->desc_status[qi->free_tail] = QI_FREE;
1208		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1209		qi->free_cnt++;
1210	}
1211}
1212
1213static const char *qi_type_string(u8 type)
1214{
1215	switch (type) {
1216	case QI_CC_TYPE:
1217		return "Context-cache Invalidation";
1218	case QI_IOTLB_TYPE:
1219		return "IOTLB Invalidation";
1220	case QI_DIOTLB_TYPE:
1221		return "Device-TLB Invalidation";
1222	case QI_IEC_TYPE:
1223		return "Interrupt Entry Cache Invalidation";
1224	case QI_IWD_TYPE:
1225		return "Invalidation Wait";
1226	case QI_EIOTLB_TYPE:
1227		return "PASID-based IOTLB Invalidation";
1228	case QI_PC_TYPE:
1229		return "PASID-cache Invalidation";
1230	case QI_DEIOTLB_TYPE:
1231		return "PASID-based Device-TLB Invalidation";
1232	case QI_PGRP_RESP_TYPE:
1233		return "Page Group Response";
1234	default:
1235		return "UNKNOWN";
1236	}
1237}
1238
1239static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1240{
1241	unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1242	u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1243	struct qi_desc *desc = iommu->qi->desc + head;
1244
1245	if (fault & DMA_FSTS_IQE)
1246		pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1247		       DMAR_IQER_REG_IQEI(iqe_err));
1248	if (fault & DMA_FSTS_ITE)
1249		pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1250		       DMAR_IQER_REG_ITESID(iqe_err));
1251	if (fault & DMA_FSTS_ICE)
1252		pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1253		       DMAR_IQER_REG_ICESID(iqe_err));
1254
1255	pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1256	       qi_type_string(desc->qw0 & 0xf),
1257	       (unsigned long long)desc->qw0,
1258	       (unsigned long long)desc->qw1);
1259
1260	head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1261	head <<= qi_shift(iommu);
1262	desc = iommu->qi->desc + head;
1263
1264	pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1265	       qi_type_string(desc->qw0 & 0xf),
1266	       (unsigned long long)desc->qw0,
1267	       (unsigned long long)desc->qw1);
1268}
1269
1270static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1271{
1272	u32 fault;
1273	int head, tail;
1274	struct q_inval *qi = iommu->qi;
1275	int shift = qi_shift(iommu);
1276
1277	if (qi->desc_status[wait_index] == QI_ABORT)
1278		return -EAGAIN;
1279
1280	fault = readl(iommu->reg + DMAR_FSTS_REG);
1281	if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1282		qi_dump_fault(iommu, fault);
1283
1284	/*
1285	 * If IQE happens, the head points to the descriptor associated
1286	 * with the error. No new descriptors are fetched until the IQE
1287	 * is cleared.
1288	 */
1289	if (fault & DMA_FSTS_IQE) {
1290		head = readl(iommu->reg + DMAR_IQH_REG);
1291		if ((head >> shift) == index) {
1292			struct qi_desc *desc = qi->desc + head;
1293
1294			/*
1295			 * desc->qw2 and desc->qw3 are either reserved or
1296			 * used by software as private data. We won't print
1297			 * out these two qw's for security consideration.
1298			 */
1299			memcpy(desc, qi->desc + (wait_index << shift),
1300			       1 << shift);
1301			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1302			pr_info("Invalidation Queue Error (IQE) cleared\n");
1303			return -EINVAL;
1304		}
1305	}
1306
1307	/*
1308	 * If ITE happens, all pending wait_desc commands are aborted.
1309	 * No new descriptors are fetched until the ITE is cleared.
1310	 */
1311	if (fault & DMA_FSTS_ITE) {
1312		head = readl(iommu->reg + DMAR_IQH_REG);
1313		head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1314		head |= 1;
1315		tail = readl(iommu->reg + DMAR_IQT_REG);
1316		tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1317
1318		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1319		pr_info("Invalidation Time-out Error (ITE) cleared\n");
1320
1321		do {
1322			if (qi->desc_status[head] == QI_IN_USE)
1323				qi->desc_status[head] = QI_ABORT;
1324			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1325		} while (head != tail);
1326
1327		if (qi->desc_status[wait_index] == QI_ABORT)
1328			return -EAGAIN;
1329	}
1330
1331	if (fault & DMA_FSTS_ICE) {
1332		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1333		pr_info("Invalidation Completion Error (ICE) cleared\n");
1334	}
1335
1336	return 0;
1337}
1338
1339/*
1340 * Function to submit invalidation descriptors of all types to the queued
1341 * invalidation interface(QI). Multiple descriptors can be submitted at a
1342 * time, a wait descriptor will be appended to each submission to ensure
1343 * hardware has completed the invalidation before return. Wait descriptors
1344 * can be part of the submission but it will not be polled for completion.
1345 */
1346int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1347		   unsigned int count, unsigned long options)
1348{
1349	struct q_inval *qi = iommu->qi;
1350	s64 devtlb_start_ktime = 0;
1351	s64 iotlb_start_ktime = 0;
1352	s64 iec_start_ktime = 0;
1353	struct qi_desc wait_desc;
1354	int wait_index, index;
1355	unsigned long flags;
1356	int offset, shift;
1357	int rc, i;
1358	u64 type;
1359
1360	if (!qi)
1361		return 0;
1362
1363	type = desc->qw0 & GENMASK_ULL(3, 0);
1364
1365	if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1366	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1367		iotlb_start_ktime = ktime_to_ns(ktime_get());
1368
1369	if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1370	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1371		devtlb_start_ktime = ktime_to_ns(ktime_get());
1372
1373	if (type == QI_IEC_TYPE &&
1374	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1375		iec_start_ktime = ktime_to_ns(ktime_get());
1376
1377restart:
1378	rc = 0;
1379
1380	raw_spin_lock_irqsave(&qi->q_lock, flags);
1381	/*
1382	 * Check if we have enough empty slots in the queue to submit,
1383	 * the calculation is based on:
1384	 * # of desc + 1 wait desc + 1 space between head and tail
1385	 */
1386	while (qi->free_cnt < count + 2) {
1387		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1388		cpu_relax();
1389		raw_spin_lock_irqsave(&qi->q_lock, flags);
1390	}
1391
1392	index = qi->free_head;
1393	wait_index = (index + count) % QI_LENGTH;
1394	shift = qi_shift(iommu);
1395
1396	for (i = 0; i < count; i++) {
1397		offset = ((index + i) % QI_LENGTH) << shift;
1398		memcpy(qi->desc + offset, &desc[i], 1 << shift);
1399		qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1400		trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1401				desc[i].qw2, desc[i].qw3);
1402	}
1403	qi->desc_status[wait_index] = QI_IN_USE;
1404
1405	wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1406			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1407	if (options & QI_OPT_WAIT_DRAIN)
1408		wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1409	wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1410	wait_desc.qw2 = 0;
1411	wait_desc.qw3 = 0;
1412
1413	offset = wait_index << shift;
1414	memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1415
1416	qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1417	qi->free_cnt -= count + 1;
1418
1419	/*
1420	 * update the HW tail register indicating the presence of
1421	 * new descriptors.
1422	 */
1423	writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1424
1425	while (qi->desc_status[wait_index] != QI_DONE) {
1426		/*
1427		 * We will leave the interrupts disabled, to prevent interrupt
1428		 * context to queue another cmd while a cmd is already submitted
1429		 * and waiting for completion on this cpu. This is to avoid
1430		 * a deadlock where the interrupt context can wait indefinitely
1431		 * for free slots in the queue.
1432		 */
1433		rc = qi_check_fault(iommu, index, wait_index);
1434		if (rc)
1435			break;
1436
1437		raw_spin_unlock(&qi->q_lock);
1438		cpu_relax();
1439		raw_spin_lock(&qi->q_lock);
1440	}
1441
1442	for (i = 0; i < count; i++)
1443		qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1444
1445	reclaim_free_desc(qi);
1446	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1447
1448	if (rc == -EAGAIN)
1449		goto restart;
1450
1451	if (iotlb_start_ktime)
1452		dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1453				ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1454
1455	if (devtlb_start_ktime)
1456		dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1457				ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1458
1459	if (iec_start_ktime)
1460		dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1461				ktime_to_ns(ktime_get()) - iec_start_ktime);
1462
1463	return rc;
1464}
1465
1466/*
1467 * Flush the global interrupt entry cache.
1468 */
1469void qi_global_iec(struct intel_iommu *iommu)
1470{
1471	struct qi_desc desc;
1472
1473	desc.qw0 = QI_IEC_TYPE;
1474	desc.qw1 = 0;
1475	desc.qw2 = 0;
1476	desc.qw3 = 0;
1477
1478	/* should never fail */
1479	qi_submit_sync(iommu, &desc, 1, 0);
1480}
1481
1482void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1483		      u64 type)
1484{
1485	struct qi_desc desc;
1486
1487	desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1488			| QI_CC_GRAN(type) | QI_CC_TYPE;
1489	desc.qw1 = 0;
1490	desc.qw2 = 0;
1491	desc.qw3 = 0;
1492
1493	qi_submit_sync(iommu, &desc, 1, 0);
1494}
1495
1496void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1497		    unsigned int size_order, u64 type)
1498{
1499	u8 dw = 0, dr = 0;
1500
1501	struct qi_desc desc;
1502	int ih = 0;
1503
1504	if (cap_write_drain(iommu->cap))
1505		dw = 1;
1506
1507	if (cap_read_drain(iommu->cap))
1508		dr = 1;
1509
1510	desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1511		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1512	desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1513		| QI_IOTLB_AM(size_order);
1514	desc.qw2 = 0;
1515	desc.qw3 = 0;
1516
1517	qi_submit_sync(iommu, &desc, 1, 0);
1518}
1519
1520void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1521			u16 qdep, u64 addr, unsigned mask)
1522{
1523	struct qi_desc desc;
1524
1525	/*
1526	 * VT-d spec, section 4.3:
1527	 *
1528	 * Software is recommended to not submit any Device-TLB invalidation
1529	 * requests while address remapping hardware is disabled.
1530	 */
1531	if (!(iommu->gcmd & DMA_GCMD_TE))
1532		return;
1533
1534	if (mask) {
1535		addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1536		desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1537	} else
1538		desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1539
1540	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1541		qdep = 0;
1542
1543	desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1544		   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1545	desc.qw2 = 0;
1546	desc.qw3 = 0;
1547
1548	qi_submit_sync(iommu, &desc, 1, 0);
1549}
1550
1551/* PASID-based IOTLB invalidation */
1552void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1553		     unsigned long npages, bool ih)
1554{
1555	struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1556
1557	/*
1558	 * npages == -1 means a PASID-selective invalidation, otherwise,
1559	 * a positive value for Page-selective-within-PASID invalidation.
1560	 * 0 is not a valid input.
1561	 */
1562	if (WARN_ON(!npages)) {
1563		pr_err("Invalid input npages = %ld\n", npages);
1564		return;
1565	}
1566
1567	if (npages == -1) {
1568		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1569				QI_EIOTLB_DID(did) |
1570				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1571				QI_EIOTLB_TYPE;
1572		desc.qw1 = 0;
1573	} else {
1574		int mask = ilog2(__roundup_pow_of_two(npages));
1575		unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1576
1577		if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1578			addr = ALIGN_DOWN(addr, align);
1579
1580		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1581				QI_EIOTLB_DID(did) |
1582				QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1583				QI_EIOTLB_TYPE;
1584		desc.qw1 = QI_EIOTLB_ADDR(addr) |
1585				QI_EIOTLB_IH(ih) |
1586				QI_EIOTLB_AM(mask);
1587	}
1588
1589	qi_submit_sync(iommu, &desc, 1, 0);
1590}
1591
1592/* PASID-based device IOTLB Invalidate */
1593void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1594			      u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1595{
1596	unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1597	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1598
1599	/*
1600	 * VT-d spec, section 4.3:
1601	 *
1602	 * Software is recommended to not submit any Device-TLB invalidation
1603	 * requests while address remapping hardware is disabled.
1604	 */
1605	if (!(iommu->gcmd & DMA_GCMD_TE))
1606		return;
1607
1608	desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1609		QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1610		QI_DEV_IOTLB_PFSID(pfsid);
1611
1612	/*
1613	 * If S bit is 0, we only flush a single page. If S bit is set,
1614	 * The least significant zero bit indicates the invalidation address
1615	 * range. VT-d spec 6.5.2.6.
1616	 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1617	 * size order = 0 is PAGE_SIZE 4KB
1618	 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1619	 * ECAP.
1620	 */
1621	if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1622		pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1623				    addr, size_order);
1624
1625	/* Take page address */
1626	desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1627
1628	if (size_order) {
1629		/*
1630		 * Existing 0s in address below size_order may be the least
1631		 * significant bit, we must set them to 1s to avoid having
1632		 * smaller size than desired.
1633		 */
1634		desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1635					VTD_PAGE_SHIFT);
1636		/* Clear size_order bit to indicate size */
1637		desc.qw1 &= ~mask;
1638		/* Set the S bit to indicate flushing more than 1 page */
1639		desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1640	}
1641
1642	qi_submit_sync(iommu, &desc, 1, 0);
1643}
1644
1645void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1646			  u64 granu, u32 pasid)
1647{
1648	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1649
1650	desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1651			QI_PC_GRAN(granu) | QI_PC_TYPE;
1652	qi_submit_sync(iommu, &desc, 1, 0);
1653}
1654
1655/*
1656 * Disable Queued Invalidation interface.
1657 */
1658void dmar_disable_qi(struct intel_iommu *iommu)
1659{
1660	unsigned long flags;
1661	u32 sts;
1662	cycles_t start_time = get_cycles();
1663
1664	if (!ecap_qis(iommu->ecap))
1665		return;
1666
1667	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1668
1669	sts =  readl(iommu->reg + DMAR_GSTS_REG);
1670	if (!(sts & DMA_GSTS_QIES))
1671		goto end;
1672
1673	/*
1674	 * Give a chance to HW to complete the pending invalidation requests.
1675	 */
1676	while ((readl(iommu->reg + DMAR_IQT_REG) !=
1677		readl(iommu->reg + DMAR_IQH_REG)) &&
1678		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1679		cpu_relax();
1680
1681	iommu->gcmd &= ~DMA_GCMD_QIE;
1682	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1683
1684	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1685		      !(sts & DMA_GSTS_QIES), sts);
1686end:
1687	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1688}
1689
1690/*
1691 * Enable queued invalidation.
1692 */
1693static void __dmar_enable_qi(struct intel_iommu *iommu)
1694{
1695	u32 sts;
1696	unsigned long flags;
1697	struct q_inval *qi = iommu->qi;
1698	u64 val = virt_to_phys(qi->desc);
1699
1700	qi->free_head = qi->free_tail = 0;
1701	qi->free_cnt = QI_LENGTH;
1702
1703	/*
1704	 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1705	 * is present.
1706	 */
1707	if (ecap_smts(iommu->ecap))
1708		val |= BIT_ULL(11) | BIT_ULL(0);
1709
1710	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1711
1712	/* write zero to the tail reg */
1713	writel(0, iommu->reg + DMAR_IQT_REG);
1714
1715	dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1716
1717	iommu->gcmd |= DMA_GCMD_QIE;
1718	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1719
1720	/* Make sure hardware complete it */
1721	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1722
1723	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1724}
1725
1726/*
1727 * Enable Queued Invalidation interface. This is a must to support
1728 * interrupt-remapping. Also used by DMA-remapping, which replaces
1729 * register based IOTLB invalidation.
1730 */
1731int dmar_enable_qi(struct intel_iommu *iommu)
1732{
1733	struct q_inval *qi;
1734	struct page *desc_page;
1735
1736	if (!ecap_qis(iommu->ecap))
1737		return -ENOENT;
1738
1739	/*
1740	 * queued invalidation is already setup and enabled.
1741	 */
1742	if (iommu->qi)
1743		return 0;
1744
1745	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1746	if (!iommu->qi)
1747		return -ENOMEM;
1748
1749	qi = iommu->qi;
1750
1751	/*
1752	 * Need two pages to accommodate 256 descriptors of 256 bits each
1753	 * if the remapping hardware supports scalable mode translation.
1754	 */
1755	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1756				     !!ecap_smts(iommu->ecap));
1757	if (!desc_page) {
1758		kfree(qi);
1759		iommu->qi = NULL;
1760		return -ENOMEM;
1761	}
1762
1763	qi->desc = page_address(desc_page);
1764
1765	qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1766	if (!qi->desc_status) {
1767		free_page((unsigned long) qi->desc);
1768		kfree(qi);
1769		iommu->qi = NULL;
1770		return -ENOMEM;
1771	}
1772
1773	raw_spin_lock_init(&qi->q_lock);
1774
1775	__dmar_enable_qi(iommu);
1776
1777	return 0;
1778}
1779
1780/* iommu interrupt handling. Most stuff are MSI-like. */
1781
1782enum faulttype {
1783	DMA_REMAP,
1784	INTR_REMAP,
1785	UNKNOWN,
1786};
1787
1788static const char *dma_remap_fault_reasons[] =
1789{
1790	"Software",
1791	"Present bit in root entry is clear",
1792	"Present bit in context entry is clear",
1793	"Invalid context entry",
1794	"Access beyond MGAW",
1795	"PTE Write access is not set",
1796	"PTE Read access is not set",
1797	"Next page table ptr is invalid",
1798	"Root table address invalid",
1799	"Context table ptr is invalid",
1800	"non-zero reserved fields in RTP",
1801	"non-zero reserved fields in CTP",
1802	"non-zero reserved fields in PTE",
1803	"PCE for translation request specifies blocking",
1804};
1805
1806static const char * const dma_remap_sm_fault_reasons[] = {
1807	"SM: Invalid Root Table Address",
1808	"SM: TTM 0 for request with PASID",
1809	"SM: TTM 0 for page group request",
1810	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1811	"SM: Error attempting to access Root Entry",
1812	"SM: Present bit in Root Entry is clear",
1813	"SM: Non-zero reserved field set in Root Entry",
1814	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1815	"SM: Error attempting to access Context Entry",
1816	"SM: Present bit in Context Entry is clear",
1817	"SM: Non-zero reserved field set in the Context Entry",
1818	"SM: Invalid Context Entry",
1819	"SM: DTE field in Context Entry is clear",
1820	"SM: PASID Enable field in Context Entry is clear",
1821	"SM: PASID is larger than the max in Context Entry",
1822	"SM: PRE field in Context-Entry is clear",
1823	"SM: RID_PASID field error in Context-Entry",
1824	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1825	"SM: Error attempting to access the PASID Directory Entry",
1826	"SM: Present bit in Directory Entry is clear",
1827	"SM: Non-zero reserved field set in PASID Directory Entry",
1828	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1829	"SM: Error attempting to access PASID Table Entry",
1830	"SM: Present bit in PASID Table Entry is clear",
1831	"SM: Non-zero reserved field set in PASID Table Entry",
1832	"SM: Invalid Scalable-Mode PASID Table Entry",
1833	"SM: ERE field is clear in PASID Table Entry",
1834	"SM: SRE field is clear in PASID Table Entry",
1835	"Unknown", "Unknown",/* 0x5E-0x5F */
1836	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1837	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1838	"SM: Error attempting to access first-level paging entry",
1839	"SM: Present bit in first-level paging entry is clear",
1840	"SM: Non-zero reserved field set in first-level paging entry",
1841	"SM: Error attempting to access FL-PML4 entry",
1842	"SM: First-level entry address beyond MGAW in Nested translation",
1843	"SM: Read permission error in FL-PML4 entry in Nested translation",
1844	"SM: Read permission error in first-level paging entry in Nested translation",
1845	"SM: Write permission error in first-level paging entry in Nested translation",
1846	"SM: Error attempting to access second-level paging entry",
1847	"SM: Read/Write permission error in second-level paging entry",
1848	"SM: Non-zero reserved field set in second-level paging entry",
1849	"SM: Invalid second-level page table pointer",
1850	"SM: A/D bit update needed in second-level entry when set up in no snoop",
1851	"Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1852	"SM: Address in first-level translation is not canonical",
1853	"SM: U/S set 0 for first-level translation with user privilege",
1854	"SM: No execute permission for request with PASID and ER=1",
1855	"SM: Address beyond the DMA hardware max",
1856	"SM: Second-level entry address beyond the max",
1857	"SM: No write permission for Write/AtomicOp request",
1858	"SM: No read permission for Read/AtomicOp request",
1859	"SM: Invalid address-interrupt address",
1860	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1861	"SM: A/D bit update needed in first-level entry when set up in no snoop",
1862};
1863
1864static const char *irq_remap_fault_reasons[] =
1865{
1866	"Detected reserved fields in the decoded interrupt-remapped request",
1867	"Interrupt index exceeded the interrupt-remapping table size",
1868	"Present field in the IRTE entry is clear",
1869	"Error accessing interrupt-remapping table pointed by IRTA_REG",
1870	"Detected reserved fields in the IRTE entry",
1871	"Blocked a compatibility format interrupt request",
1872	"Blocked an interrupt request due to source-id verification failure",
1873};
1874
1875static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1876{
1877	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1878					ARRAY_SIZE(irq_remap_fault_reasons))) {
1879		*fault_type = INTR_REMAP;
1880		return irq_remap_fault_reasons[fault_reason - 0x20];
1881	} else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1882			ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1883		*fault_type = DMA_REMAP;
1884		return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1885	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1886		*fault_type = DMA_REMAP;
1887		return dma_remap_fault_reasons[fault_reason];
1888	} else {
1889		*fault_type = UNKNOWN;
1890		return "Unknown";
1891	}
1892}
1893
1894
1895static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1896{
1897	if (iommu->irq == irq)
1898		return DMAR_FECTL_REG;
1899	else if (iommu->pr_irq == irq)
1900		return DMAR_PECTL_REG;
1901	else if (iommu->perf_irq == irq)
1902		return DMAR_PERFINTRCTL_REG;
1903	else
1904		BUG();
1905}
1906
1907void dmar_msi_unmask(struct irq_data *data)
1908{
1909	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1910	int reg = dmar_msi_reg(iommu, data->irq);
1911	unsigned long flag;
1912
1913	/* unmask it */
1914	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1915	writel(0, iommu->reg + reg);
1916	/* Read a reg to force flush the post write */
1917	readl(iommu->reg + reg);
1918	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1919}
1920
1921void dmar_msi_mask(struct irq_data *data)
1922{
1923	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1924	int reg = dmar_msi_reg(iommu, data->irq);
1925	unsigned long flag;
1926
1927	/* mask it */
1928	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1929	writel(DMA_FECTL_IM, iommu->reg + reg);
1930	/* Read a reg to force flush the post write */
1931	readl(iommu->reg + reg);
1932	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1933}
1934
1935void dmar_msi_write(int irq, struct msi_msg *msg)
1936{
1937	struct intel_iommu *iommu = irq_get_handler_data(irq);
1938	int reg = dmar_msi_reg(iommu, irq);
1939	unsigned long flag;
1940
1941	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1942	writel(msg->data, iommu->reg + reg + 4);
1943	writel(msg->address_lo, iommu->reg + reg + 8);
1944	writel(msg->address_hi, iommu->reg + reg + 12);
1945	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1946}
1947
1948void dmar_msi_read(int irq, struct msi_msg *msg)
1949{
1950	struct intel_iommu *iommu = irq_get_handler_data(irq);
1951	int reg = dmar_msi_reg(iommu, irq);
1952	unsigned long flag;
1953
1954	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1955	msg->data = readl(iommu->reg + reg + 4);
1956	msg->address_lo = readl(iommu->reg + reg + 8);
1957	msg->address_hi = readl(iommu->reg + reg + 12);
1958	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1959}
1960
1961static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1962		u8 fault_reason, u32 pasid, u16 source_id,
1963		unsigned long long addr)
1964{
1965	const char *reason;
1966	int fault_type;
1967
1968	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1969
1970	if (fault_type == INTR_REMAP) {
1971		pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1972		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1973		       PCI_FUNC(source_id & 0xFF), addr >> 48,
1974		       fault_reason, reason);
1975
1976		return 0;
1977	}
1978
1979	if (pasid == IOMMU_PASID_INVALID)
1980		pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1981		       type ? "DMA Read" : "DMA Write",
1982		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1983		       PCI_FUNC(source_id & 0xFF), addr,
1984		       fault_reason, reason);
1985	else
1986		pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1987		       type ? "DMA Read" : "DMA Write", pasid,
1988		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1989		       PCI_FUNC(source_id & 0xFF), addr,
1990		       fault_reason, reason);
1991
1992	dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
1993
1994	return 0;
1995}
1996
1997#define PRIMARY_FAULT_REG_LEN (16)
1998irqreturn_t dmar_fault(int irq, void *dev_id)
1999{
2000	struct intel_iommu *iommu = dev_id;
2001	int reg, fault_index;
2002	u32 fault_status;
2003	unsigned long flag;
2004	static DEFINE_RATELIMIT_STATE(rs,
2005				      DEFAULT_RATELIMIT_INTERVAL,
2006				      DEFAULT_RATELIMIT_BURST);
2007
2008	raw_spin_lock_irqsave(&iommu->register_lock, flag);
2009	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2010	if (fault_status && __ratelimit(&rs))
2011		pr_err("DRHD: handling fault status reg %x\n", fault_status);
2012
2013	/* TBD: ignore advanced fault log currently */
2014	if (!(fault_status & DMA_FSTS_PPF))
2015		goto unlock_exit;
2016
2017	fault_index = dma_fsts_fault_record_index(fault_status);
2018	reg = cap_fault_reg_offset(iommu->cap);
2019	while (1) {
2020		/* Disable printing, simply clear the fault when ratelimited */
2021		bool ratelimited = !__ratelimit(&rs);
2022		u8 fault_reason;
2023		u16 source_id;
2024		u64 guest_addr;
2025		u32 pasid;
2026		int type;
2027		u32 data;
2028		bool pasid_present;
2029
2030		/* highest 32 bits */
2031		data = readl(iommu->reg + reg +
2032				fault_index * PRIMARY_FAULT_REG_LEN + 12);
2033		if (!(data & DMA_FRCD_F))
2034			break;
2035
2036		if (!ratelimited) {
2037			fault_reason = dma_frcd_fault_reason(data);
2038			type = dma_frcd_type(data);
2039
2040			pasid = dma_frcd_pasid_value(data);
2041			data = readl(iommu->reg + reg +
2042				     fault_index * PRIMARY_FAULT_REG_LEN + 8);
2043			source_id = dma_frcd_source_id(data);
2044
2045			pasid_present = dma_frcd_pasid_present(data);
2046			guest_addr = dmar_readq(iommu->reg + reg +
2047					fault_index * PRIMARY_FAULT_REG_LEN);
2048			guest_addr = dma_frcd_page_addr(guest_addr);
2049		}
2050
2051		/* clear the fault */
2052		writel(DMA_FRCD_F, iommu->reg + reg +
2053			fault_index * PRIMARY_FAULT_REG_LEN + 12);
2054
2055		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2056
2057		if (!ratelimited)
2058			/* Using pasid -1 if pasid is not present */
2059			dmar_fault_do_one(iommu, type, fault_reason,
2060					  pasid_present ? pasid : IOMMU_PASID_INVALID,
2061					  source_id, guest_addr);
2062
2063		fault_index++;
2064		if (fault_index >= cap_num_fault_regs(iommu->cap))
2065			fault_index = 0;
2066		raw_spin_lock_irqsave(&iommu->register_lock, flag);
2067	}
2068
2069	writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2070	       iommu->reg + DMAR_FSTS_REG);
2071
2072unlock_exit:
2073	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2074	return IRQ_HANDLED;
2075}
2076
2077int dmar_set_interrupt(struct intel_iommu *iommu)
2078{
2079	int irq, ret;
2080
2081	/*
2082	 * Check if the fault interrupt is already initialized.
2083	 */
2084	if (iommu->irq)
2085		return 0;
2086
2087	irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2088	if (irq > 0) {
2089		iommu->irq = irq;
2090	} else {
2091		pr_err("No free IRQ vectors\n");
2092		return -EINVAL;
2093	}
2094
2095	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2096	if (ret)
2097		pr_err("Can't request irq\n");
2098	return ret;
2099}
2100
2101int __init enable_drhd_fault_handling(void)
2102{
2103	struct dmar_drhd_unit *drhd;
2104	struct intel_iommu *iommu;
2105
2106	/*
2107	 * Enable fault control interrupt.
2108	 */
2109	for_each_iommu(iommu, drhd) {
2110		u32 fault_status;
2111		int ret = dmar_set_interrupt(iommu);
2112
2113		if (ret) {
2114			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2115			       (unsigned long long)drhd->reg_base_addr, ret);
2116			return -1;
2117		}
2118
2119		/*
2120		 * Clear any previous faults.
2121		 */
2122		dmar_fault(iommu->irq, iommu);
2123		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2124		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2125	}
2126
2127	return 0;
2128}
2129
2130/*
2131 * Re-enable Queued Invalidation interface.
2132 */
2133int dmar_reenable_qi(struct intel_iommu *iommu)
2134{
2135	if (!ecap_qis(iommu->ecap))
2136		return -ENOENT;
2137
2138	if (!iommu->qi)
2139		return -ENOENT;
2140
2141	/*
2142	 * First disable queued invalidation.
2143	 */
2144	dmar_disable_qi(iommu);
2145	/*
2146	 * Then enable queued invalidation again. Since there is no pending
2147	 * invalidation requests now, it's safe to re-enable queued
2148	 * invalidation.
2149	 */
2150	__dmar_enable_qi(iommu);
2151
2152	return 0;
2153}
2154
2155/*
2156 * Check interrupt remapping support in DMAR table description.
2157 */
2158int __init dmar_ir_support(void)
2159{
2160	struct acpi_table_dmar *dmar;
2161	dmar = (struct acpi_table_dmar *)dmar_tbl;
2162	if (!dmar)
2163		return 0;
2164	return dmar->flags & 0x1;
2165}
2166
2167/* Check whether DMAR units are in use */
2168static inline bool dmar_in_use(void)
2169{
2170	return irq_remapping_enabled || intel_iommu_enabled;
2171}
2172
2173static int __init dmar_free_unused_resources(void)
2174{
2175	struct dmar_drhd_unit *dmaru, *dmaru_n;
2176
2177	if (dmar_in_use())
2178		return 0;
2179
2180	if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2181		bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2182
2183	down_write(&dmar_global_lock);
2184	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2185		list_del(&dmaru->list);
2186		dmar_free_drhd(dmaru);
2187	}
2188	up_write(&dmar_global_lock);
2189
2190	return 0;
2191}
2192
2193late_initcall(dmar_free_unused_resources);
2194
2195/*
2196 * DMAR Hotplug Support
2197 * For more details, please refer to Intel(R) Virtualization Technology
2198 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2199 * "Remapping Hardware Unit Hot Plug".
2200 */
2201static guid_t dmar_hp_guid =
2202	GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2203		  0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2204
2205/*
2206 * Currently there's only one revision and BIOS will not check the revision id,
2207 * so use 0 for safety.
2208 */
2209#define	DMAR_DSM_REV_ID			0
2210#define	DMAR_DSM_FUNC_DRHD		1
2211#define	DMAR_DSM_FUNC_ATSR		2
2212#define	DMAR_DSM_FUNC_RHSA		3
2213#define	DMAR_DSM_FUNC_SATC		4
2214
2215static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2216{
2217	return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2218}
2219
2220static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2221				  dmar_res_handler_t handler, void *arg)
2222{
2223	int ret = -ENODEV;
2224	union acpi_object *obj;
2225	struct acpi_dmar_header *start;
2226	struct dmar_res_callback callback;
2227	static int res_type[] = {
2228		[DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2229		[DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2230		[DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2231		[DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2232	};
2233
2234	if (!dmar_detect_dsm(handle, func))
2235		return 0;
2236
2237	obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2238				      func, NULL, ACPI_TYPE_BUFFER);
2239	if (!obj)
2240		return -ENODEV;
2241
2242	memset(&callback, 0, sizeof(callback));
2243	callback.cb[res_type[func]] = handler;
2244	callback.arg[res_type[func]] = arg;
2245	start = (struct acpi_dmar_header *)obj->buffer.pointer;
2246	ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2247
2248	ACPI_FREE(obj);
2249
2250	return ret;
2251}
2252
2253static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2254{
2255	int ret;
2256	struct dmar_drhd_unit *dmaru;
2257
2258	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2259	if (!dmaru)
2260		return -ENODEV;
2261
2262	ret = dmar_ir_hotplug(dmaru, true);
2263	if (ret == 0)
2264		ret = dmar_iommu_hotplug(dmaru, true);
2265
2266	return ret;
2267}
2268
2269static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2270{
2271	int i, ret;
2272	struct device *dev;
2273	struct dmar_drhd_unit *dmaru;
2274
2275	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2276	if (!dmaru)
2277		return 0;
2278
2279	/*
2280	 * All PCI devices managed by this unit should have been destroyed.
2281	 */
2282	if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2283		for_each_active_dev_scope(dmaru->devices,
2284					  dmaru->devices_cnt, i, dev)
2285			return -EBUSY;
2286	}
2287
2288	ret = dmar_ir_hotplug(dmaru, false);
2289	if (ret == 0)
2290		ret = dmar_iommu_hotplug(dmaru, false);
2291
2292	return ret;
2293}
2294
2295static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2296{
2297	struct dmar_drhd_unit *dmaru;
2298
2299	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2300	if (dmaru) {
2301		list_del_rcu(&dmaru->list);
2302		synchronize_rcu();
2303		dmar_free_drhd(dmaru);
2304	}
2305
2306	return 0;
2307}
2308
2309static int dmar_hotplug_insert(acpi_handle handle)
2310{
2311	int ret;
2312	int drhd_count = 0;
2313
2314	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2315				     &dmar_validate_one_drhd, (void *)1);
2316	if (ret)
2317		goto out;
2318
2319	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2320				     &dmar_parse_one_drhd, (void *)&drhd_count);
2321	if (ret == 0 && drhd_count == 0) {
2322		pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2323		goto out;
2324	} else if (ret) {
2325		goto release_drhd;
2326	}
2327
2328	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2329				     &dmar_parse_one_rhsa, NULL);
2330	if (ret)
2331		goto release_drhd;
2332
2333	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2334				     &dmar_parse_one_atsr, NULL);
2335	if (ret)
2336		goto release_atsr;
2337
2338	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2339				     &dmar_hp_add_drhd, NULL);
2340	if (!ret)
2341		return 0;
2342
2343	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2344			       &dmar_hp_remove_drhd, NULL);
2345release_atsr:
2346	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2347			       &dmar_release_one_atsr, NULL);
2348release_drhd:
2349	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2350			       &dmar_hp_release_drhd, NULL);
2351out:
2352	return ret;
2353}
2354
2355static int dmar_hotplug_remove(acpi_handle handle)
2356{
2357	int ret;
2358
2359	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2360				     &dmar_check_one_atsr, NULL);
2361	if (ret)
2362		return ret;
2363
2364	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2365				     &dmar_hp_remove_drhd, NULL);
2366	if (ret == 0) {
2367		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2368					       &dmar_release_one_atsr, NULL));
2369		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2370					       &dmar_hp_release_drhd, NULL));
2371	} else {
2372		dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2373				       &dmar_hp_add_drhd, NULL);
2374	}
2375
2376	return ret;
2377}
2378
2379static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2380				       void *context, void **retval)
2381{
2382	acpi_handle *phdl = retval;
2383
2384	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2385		*phdl = handle;
2386		return AE_CTRL_TERMINATE;
2387	}
2388
2389	return AE_OK;
2390}
2391
2392static int dmar_device_hotplug(acpi_handle handle, bool insert)
2393{
2394	int ret;
2395	acpi_handle tmp = NULL;
2396	acpi_status status;
2397
2398	if (!dmar_in_use())
2399		return 0;
2400
2401	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2402		tmp = handle;
2403	} else {
2404		status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2405					     ACPI_UINT32_MAX,
2406					     dmar_get_dsm_handle,
2407					     NULL, NULL, &tmp);
2408		if (ACPI_FAILURE(status)) {
2409			pr_warn("Failed to locate _DSM method.\n");
2410			return -ENXIO;
2411		}
2412	}
2413	if (tmp == NULL)
2414		return 0;
2415
2416	down_write(&dmar_global_lock);
2417	if (insert)
2418		ret = dmar_hotplug_insert(tmp);
2419	else
2420		ret = dmar_hotplug_remove(tmp);
2421	up_write(&dmar_global_lock);
2422
2423	return ret;
2424}
2425
2426int dmar_device_add(acpi_handle handle)
2427{
2428	return dmar_device_hotplug(handle, true);
2429}
2430
2431int dmar_device_remove(acpi_handle handle)
2432{
2433	return dmar_device_hotplug(handle, false);
2434}
2435
2436/*
2437 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2438 *
2439 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2440 * the ACPI DMAR table. This means that the platform boot firmware has made
2441 * sure no device can issue DMA outside of RMRR regions.
2442 */
2443bool dmar_platform_optin(void)
2444{
2445	struct acpi_table_dmar *dmar;
2446	acpi_status status;
2447	bool ret;
2448
2449	status = acpi_get_table(ACPI_SIG_DMAR, 0,
2450				(struct acpi_table_header **)&dmar);
2451	if (ACPI_FAILURE(status))
2452		return false;
2453
2454	ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2455	acpi_put_table((struct acpi_table_header *)dmar);
2456
2457	return ret;
2458}
2459EXPORT_SYMBOL_GPL(dmar_platform_optin);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2006, Intel Corporation.
   4 *
   5 * Copyright (C) 2006-2008 Intel Corporation
   6 * Author: Ashok Raj <ashok.raj@intel.com>
   7 * Author: Shaohua Li <shaohua.li@intel.com>
   8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *
  10 * This file implements early detection/parsing of Remapping Devices
  11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
  12 * tables.
  13 *
  14 * These routines are used by both DMA-remapping and Interrupt-remapping
  15 */
  16
  17#define pr_fmt(fmt)     "DMAR: " fmt
  18
  19#include <linux/pci.h>
  20#include <linux/dmar.h>
  21#include <linux/iova.h>
  22#include <linux/timer.h>
  23#include <linux/irq.h>
  24#include <linux/interrupt.h>
  25#include <linux/tboot.h>
  26#include <linux/dmi.h>
  27#include <linux/slab.h>
  28#include <linux/iommu.h>
  29#include <linux/numa.h>
  30#include <linux/limits.h>
  31#include <asm/irq_remapping.h>
  32
  33#include "iommu.h"
  34#include "../irq_remapping.h"
  35#include "perf.h"
  36#include "trace.h"
 
  37
  38typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
  39struct dmar_res_callback {
  40	dmar_res_handler_t	cb[ACPI_DMAR_TYPE_RESERVED];
  41	void			*arg[ACPI_DMAR_TYPE_RESERVED];
  42	bool			ignore_unhandled;
  43	bool			print_entry;
  44};
  45
  46/*
  47 * Assumptions:
  48 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
  49 *    before IO devices managed by that unit.
  50 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
  51 *    after IO devices managed by that unit.
  52 * 3) Hotplug events are rare.
  53 *
  54 * Locking rules for DMA and interrupt remapping related global data structures:
  55 * 1) Use dmar_global_lock in process context
  56 * 2) Use RCU in interrupt context
  57 */
  58DECLARE_RWSEM(dmar_global_lock);
  59LIST_HEAD(dmar_drhd_units);
  60
  61struct acpi_table_header * __initdata dmar_tbl;
  62static int dmar_dev_scope_status = 1;
  63static DEFINE_IDA(dmar_seq_ids);
  64
  65static int alloc_iommu(struct dmar_drhd_unit *drhd);
  66static void free_iommu(struct intel_iommu *iommu);
  67
  68static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
  69{
  70	/*
  71	 * add INCLUDE_ALL at the tail, so scan the list will find it at
  72	 * the very end.
  73	 */
  74	if (drhd->include_all)
  75		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
  76	else
  77		list_add_rcu(&drhd->list, &dmar_drhd_units);
  78}
  79
  80void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
  81{
  82	struct acpi_dmar_device_scope *scope;
  83
  84	*cnt = 0;
  85	while (start < end) {
  86		scope = start;
  87		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
  88		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
  89		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
  90			(*cnt)++;
  91		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
  92			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
  93			pr_warn("Unsupported device scope\n");
  94		}
  95		start += scope->length;
  96	}
  97	if (*cnt == 0)
  98		return NULL;
  99
 100	return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
 101}
 102
 103void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
 104{
 105	int i;
 106	struct device *tmp_dev;
 107
 108	if (*devices && *cnt) {
 109		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
 110			put_device(tmp_dev);
 111		kfree(*devices);
 112	}
 113
 114	*devices = NULL;
 115	*cnt = 0;
 116}
 117
 118/* Optimize out kzalloc()/kfree() for normal cases */
 119static char dmar_pci_notify_info_buf[64];
 120
 121static struct dmar_pci_notify_info *
 122dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
 123{
 124	int level = 0;
 125	size_t size;
 126	struct pci_dev *tmp;
 127	struct dmar_pci_notify_info *info;
 128
 129	BUG_ON(dev->is_virtfn);
 130
 131	/*
 132	 * Ignore devices that have a domain number higher than what can
 133	 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
 134	 */
 135	if (pci_domain_nr(dev->bus) > U16_MAX)
 136		return NULL;
 137
 138	/* Only generate path[] for device addition event */
 139	if (event == BUS_NOTIFY_ADD_DEVICE)
 140		for (tmp = dev; tmp; tmp = tmp->bus->self)
 141			level++;
 142
 143	size = struct_size(info, path, level);
 144	if (size <= sizeof(dmar_pci_notify_info_buf)) {
 145		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
 146	} else {
 147		info = kzalloc(size, GFP_KERNEL);
 148		if (!info) {
 149			if (dmar_dev_scope_status == 0)
 150				dmar_dev_scope_status = -ENOMEM;
 151			return NULL;
 152		}
 153	}
 154
 155	info->event = event;
 156	info->dev = dev;
 157	info->seg = pci_domain_nr(dev->bus);
 158	info->level = level;
 159	if (event == BUS_NOTIFY_ADD_DEVICE) {
 160		for (tmp = dev; tmp; tmp = tmp->bus->self) {
 161			level--;
 162			info->path[level].bus = tmp->bus->number;
 163			info->path[level].device = PCI_SLOT(tmp->devfn);
 164			info->path[level].function = PCI_FUNC(tmp->devfn);
 165			if (pci_is_root_bus(tmp->bus))
 166				info->bus = tmp->bus->number;
 167		}
 168	}
 169
 170	return info;
 171}
 172
 173static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
 174{
 175	if ((void *)info != dmar_pci_notify_info_buf)
 176		kfree(info);
 177}
 178
 179static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
 180				struct acpi_dmar_pci_path *path, int count)
 181{
 182	int i;
 183
 184	if (info->bus != bus)
 185		goto fallback;
 186	if (info->level != count)
 187		goto fallback;
 188
 189	for (i = 0; i < count; i++) {
 190		if (path[i].device != info->path[i].device ||
 191		    path[i].function != info->path[i].function)
 192			goto fallback;
 193	}
 194
 195	return true;
 196
 197fallback:
 198
 199	if (count != 1)
 200		return false;
 201
 202	i = info->level - 1;
 203	if (bus              == info->path[i].bus &&
 204	    path[0].device   == info->path[i].device &&
 205	    path[0].function == info->path[i].function) {
 206		pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
 207			bus, path[0].device, path[0].function);
 208		return true;
 209	}
 210
 211	return false;
 212}
 213
 214/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
 215int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
 216			  void *start, void*end, u16 segment,
 217			  struct dmar_dev_scope *devices,
 218			  int devices_cnt)
 219{
 220	int i, level;
 221	struct device *tmp, *dev = &info->dev->dev;
 222	struct acpi_dmar_device_scope *scope;
 223	struct acpi_dmar_pci_path *path;
 224
 225	if (segment != info->seg)
 226		return 0;
 227
 228	for (; start < end; start += scope->length) {
 229		scope = start;
 230		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
 231		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
 232			continue;
 233
 234		path = (struct acpi_dmar_pci_path *)(scope + 1);
 235		level = (scope->length - sizeof(*scope)) / sizeof(*path);
 236		if (!dmar_match_pci_path(info, scope->bus, path, level))
 237			continue;
 238
 239		/*
 240		 * We expect devices with endpoint scope to have normal PCI
 241		 * headers, and devices with bridge scope to have bridge PCI
 242		 * headers.  However PCI NTB devices may be listed in the
 243		 * DMAR table with bridge scope, even though they have a
 244		 * normal PCI header.  NTB devices are identified by class
 245		 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
 246		 * for this special case.
 247		 */
 248		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
 249		     info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
 250		    (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
 251		     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
 252		      info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
 253			pr_warn("Device scope type does not match for %s\n",
 254				pci_name(info->dev));
 255			return -EINVAL;
 256		}
 257
 258		for_each_dev_scope(devices, devices_cnt, i, tmp)
 259			if (tmp == NULL) {
 260				devices[i].bus = info->dev->bus->number;
 261				devices[i].devfn = info->dev->devfn;
 262				rcu_assign_pointer(devices[i].dev,
 263						   get_device(dev));
 264				return 1;
 265			}
 266		BUG_ON(i >= devices_cnt);
 
 267	}
 268
 269	return 0;
 270}
 271
 272int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
 273			  struct dmar_dev_scope *devices, int count)
 274{
 275	int index;
 276	struct device *tmp;
 277
 278	if (info->seg != segment)
 279		return 0;
 280
 281	for_each_active_dev_scope(devices, count, index, tmp)
 282		if (tmp == &info->dev->dev) {
 283			RCU_INIT_POINTER(devices[index].dev, NULL);
 284			synchronize_rcu();
 285			put_device(tmp);
 286			return 1;
 287		}
 288
 289	return 0;
 290}
 291
 292static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
 293{
 294	int ret = 0;
 295	struct dmar_drhd_unit *dmaru;
 296	struct acpi_dmar_hardware_unit *drhd;
 297
 298	for_each_drhd_unit(dmaru) {
 299		if (dmaru->include_all)
 300			continue;
 301
 302		drhd = container_of(dmaru->hdr,
 303				    struct acpi_dmar_hardware_unit, header);
 304		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
 305				((void *)drhd) + drhd->header.length,
 306				dmaru->segment,
 307				dmaru->devices, dmaru->devices_cnt);
 308		if (ret)
 309			break;
 310	}
 311	if (ret >= 0)
 312		ret = dmar_iommu_notify_scope_dev(info);
 313	if (ret < 0 && dmar_dev_scope_status == 0)
 314		dmar_dev_scope_status = ret;
 315
 316	if (ret >= 0)
 317		intel_irq_remap_add_device(info);
 318
 319	return ret;
 320}
 321
 322static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
 323{
 324	struct dmar_drhd_unit *dmaru;
 325
 326	for_each_drhd_unit(dmaru)
 327		if (dmar_remove_dev_scope(info, dmaru->segment,
 328			dmaru->devices, dmaru->devices_cnt))
 329			break;
 330	dmar_iommu_notify_scope_dev(info);
 331}
 332
 333static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
 334{
 335	struct pci_dev *physfn = pci_physfn(pdev);
 336
 337	dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
 338}
 339
 340static int dmar_pci_bus_notifier(struct notifier_block *nb,
 341				 unsigned long action, void *data)
 342{
 343	struct pci_dev *pdev = to_pci_dev(data);
 344	struct dmar_pci_notify_info *info;
 345
 346	/* Only care about add/remove events for physical functions.
 347	 * For VFs we actually do the lookup based on the corresponding
 348	 * PF in device_to_iommu() anyway. */
 349	if (pdev->is_virtfn) {
 350		/*
 351		 * Ensure that the VF device inherits the irq domain of the
 352		 * PF device. Ideally the device would inherit the domain
 353		 * from the bus, but DMAR can have multiple units per bus
 354		 * which makes this impossible. The VF 'bus' could inherit
 355		 * from the PF device, but that's yet another x86'sism to
 356		 * inflict on everybody else.
 357		 */
 358		if (action == BUS_NOTIFY_ADD_DEVICE)
 359			vf_inherit_msi_domain(pdev);
 360		return NOTIFY_DONE;
 361	}
 362
 363	if (action != BUS_NOTIFY_ADD_DEVICE &&
 364	    action != BUS_NOTIFY_REMOVED_DEVICE)
 365		return NOTIFY_DONE;
 366
 367	info = dmar_alloc_pci_notify_info(pdev, action);
 368	if (!info)
 369		return NOTIFY_DONE;
 370
 371	down_write(&dmar_global_lock);
 372	if (action == BUS_NOTIFY_ADD_DEVICE)
 373		dmar_pci_bus_add_dev(info);
 374	else if (action == BUS_NOTIFY_REMOVED_DEVICE)
 375		dmar_pci_bus_del_dev(info);
 376	up_write(&dmar_global_lock);
 377
 378	dmar_free_pci_notify_info(info);
 379
 380	return NOTIFY_OK;
 381}
 382
 383static struct notifier_block dmar_pci_bus_nb = {
 384	.notifier_call = dmar_pci_bus_notifier,
 385	.priority = 1,
 386};
 387
 388static struct dmar_drhd_unit *
 389dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
 390{
 391	struct dmar_drhd_unit *dmaru;
 392
 393	list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
 394				dmar_rcu_check())
 395		if (dmaru->segment == drhd->segment &&
 396		    dmaru->reg_base_addr == drhd->address)
 397			return dmaru;
 398
 399	return NULL;
 400}
 401
 402/*
 403 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 404 * structure which uniquely represent one DMA remapping hardware unit
 405 * present in the platform
 406 */
 407static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
 408{
 409	struct acpi_dmar_hardware_unit *drhd;
 410	struct dmar_drhd_unit *dmaru;
 411	int ret;
 412
 413	drhd = (struct acpi_dmar_hardware_unit *)header;
 414	dmaru = dmar_find_dmaru(drhd);
 415	if (dmaru)
 416		goto out;
 417
 418	dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
 419	if (!dmaru)
 420		return -ENOMEM;
 421
 422	/*
 423	 * If header is allocated from slab by ACPI _DSM method, we need to
 424	 * copy the content because the memory buffer will be freed on return.
 425	 */
 426	dmaru->hdr = (void *)(dmaru + 1);
 427	memcpy(dmaru->hdr, header, header->length);
 428	dmaru->reg_base_addr = drhd->address;
 429	dmaru->segment = drhd->segment;
 
 
 430	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
 431	dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
 432					      ((void *)drhd) + drhd->header.length,
 433					      &dmaru->devices_cnt);
 434	if (dmaru->devices_cnt && dmaru->devices == NULL) {
 435		kfree(dmaru);
 436		return -ENOMEM;
 437	}
 438
 439	ret = alloc_iommu(dmaru);
 440	if (ret) {
 441		dmar_free_dev_scope(&dmaru->devices,
 442				    &dmaru->devices_cnt);
 443		kfree(dmaru);
 444		return ret;
 445	}
 446	dmar_register_drhd_unit(dmaru);
 447
 448out:
 449	if (arg)
 450		(*(int *)arg)++;
 451
 452	return 0;
 453}
 454
 455static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
 456{
 457	if (dmaru->devices && dmaru->devices_cnt)
 458		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
 459	if (dmaru->iommu)
 460		free_iommu(dmaru->iommu);
 461	kfree(dmaru);
 462}
 463
 464static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
 465				      void *arg)
 466{
 467	struct acpi_dmar_andd *andd = (void *)header;
 468
 469	/* Check for NUL termination within the designated length */
 470	if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
 471		pr_warn(FW_BUG
 472			   "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
 473			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 474			   dmi_get_system_info(DMI_BIOS_VENDOR),
 475			   dmi_get_system_info(DMI_BIOS_VERSION),
 476			   dmi_get_system_info(DMI_PRODUCT_VERSION));
 477		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 478		return -EINVAL;
 479	}
 480	pr_info("ANDD device: %x name: %s\n", andd->device_number,
 481		andd->device_name);
 482
 483	return 0;
 484}
 485
 486#ifdef CONFIG_ACPI_NUMA
 487static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
 488{
 489	struct acpi_dmar_rhsa *rhsa;
 490	struct dmar_drhd_unit *drhd;
 491
 492	rhsa = (struct acpi_dmar_rhsa *)header;
 493	for_each_drhd_unit(drhd) {
 494		if (drhd->reg_base_addr == rhsa->base_address) {
 495			int node = pxm_to_node(rhsa->proximity_domain);
 496
 497			if (node != NUMA_NO_NODE && !node_online(node))
 498				node = NUMA_NO_NODE;
 499			drhd->iommu->node = node;
 500			return 0;
 501		}
 502	}
 503	pr_warn(FW_BUG
 504		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
 505		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 506		rhsa->base_address,
 507		dmi_get_system_info(DMI_BIOS_VENDOR),
 508		dmi_get_system_info(DMI_BIOS_VERSION),
 509		dmi_get_system_info(DMI_PRODUCT_VERSION));
 510	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 511
 512	return 0;
 513}
 514#else
 515#define	dmar_parse_one_rhsa		dmar_res_noop
 516#endif
 517
 518static void
 519dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
 520{
 521	struct acpi_dmar_hardware_unit *drhd;
 522	struct acpi_dmar_reserved_memory *rmrr;
 523	struct acpi_dmar_atsr *atsr;
 524	struct acpi_dmar_rhsa *rhsa;
 525	struct acpi_dmar_satc *satc;
 526
 527	switch (header->type) {
 528	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
 529		drhd = container_of(header, struct acpi_dmar_hardware_unit,
 530				    header);
 531		pr_info("DRHD base: %#016Lx flags: %#x\n",
 532			(unsigned long long)drhd->address, drhd->flags);
 533		break;
 534	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
 535		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
 536				    header);
 537		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
 538			(unsigned long long)rmrr->base_address,
 539			(unsigned long long)rmrr->end_address);
 540		break;
 541	case ACPI_DMAR_TYPE_ROOT_ATS:
 542		atsr = container_of(header, struct acpi_dmar_atsr, header);
 543		pr_info("ATSR flags: %#x\n", atsr->flags);
 544		break;
 545	case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
 546		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
 547		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
 548		       (unsigned long long)rhsa->base_address,
 549		       rhsa->proximity_domain);
 550		break;
 551	case ACPI_DMAR_TYPE_NAMESPACE:
 552		/* We don't print this here because we need to sanity-check
 553		   it first. So print it in dmar_parse_one_andd() instead. */
 554		break;
 555	case ACPI_DMAR_TYPE_SATC:
 556		satc = container_of(header, struct acpi_dmar_satc, header);
 557		pr_info("SATC flags: 0x%x\n", satc->flags);
 558		break;
 559	}
 560}
 561
 562/**
 563 * dmar_table_detect - checks to see if the platform supports DMAR devices
 564 */
 565static int __init dmar_table_detect(void)
 566{
 567	acpi_status status = AE_OK;
 568
 569	/* if we could find DMAR table, then there are DMAR devices */
 570	status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
 571
 572	if (ACPI_SUCCESS(status) && !dmar_tbl) {
 573		pr_warn("Unable to map DMAR\n");
 574		status = AE_NOT_FOUND;
 575	}
 576
 577	return ACPI_SUCCESS(status) ? 0 : -ENOENT;
 578}
 579
 580static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
 581				       size_t len, struct dmar_res_callback *cb)
 582{
 583	struct acpi_dmar_header *iter, *next;
 584	struct acpi_dmar_header *end = ((void *)start) + len;
 585
 586	for (iter = start; iter < end; iter = next) {
 587		next = (void *)iter + iter->length;
 588		if (iter->length == 0) {
 589			/* Avoid looping forever on bad ACPI tables */
 590			pr_debug(FW_BUG "Invalid 0-length structure\n");
 591			break;
 592		} else if (next > end) {
 593			/* Avoid passing table end */
 594			pr_warn(FW_BUG "Record passes table end\n");
 595			return -EINVAL;
 596		}
 597
 598		if (cb->print_entry)
 599			dmar_table_print_dmar_entry(iter);
 600
 601		if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
 602			/* continue for forward compatibility */
 603			pr_debug("Unknown DMAR structure type %d\n",
 604				 iter->type);
 605		} else if (cb->cb[iter->type]) {
 606			int ret;
 607
 608			ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
 609			if (ret)
 610				return ret;
 611		} else if (!cb->ignore_unhandled) {
 612			pr_warn("No handler for DMAR structure type %d\n",
 613				iter->type);
 614			return -EINVAL;
 615		}
 616	}
 617
 618	return 0;
 619}
 620
 621static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
 622				       struct dmar_res_callback *cb)
 623{
 624	return dmar_walk_remapping_entries((void *)(dmar + 1),
 625			dmar->header.length - sizeof(*dmar), cb);
 626}
 627
 628/**
 629 * parse_dmar_table - parses the DMA reporting table
 630 */
 631static int __init
 632parse_dmar_table(void)
 633{
 634	struct acpi_table_dmar *dmar;
 635	int drhd_count = 0;
 636	int ret;
 637	struct dmar_res_callback cb = {
 638		.print_entry = true,
 639		.ignore_unhandled = true,
 640		.arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
 641		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
 642		.cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
 643		.cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
 644		.cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
 645		.cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
 646		.cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
 647	};
 648
 649	/*
 650	 * Do it again, earlier dmar_tbl mapping could be mapped with
 651	 * fixed map.
 652	 */
 653	dmar_table_detect();
 654
 655	/*
 656	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
 657	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
 658	 */
 659	dmar_tbl = tboot_get_dmar_table(dmar_tbl);
 660
 661	dmar = (struct acpi_table_dmar *)dmar_tbl;
 662	if (!dmar)
 663		return -ENODEV;
 664
 665	if (dmar->width < PAGE_SHIFT - 1) {
 666		pr_warn("Invalid DMAR haw\n");
 667		return -EINVAL;
 668	}
 669
 670	pr_info("Host address width %d\n", dmar->width + 1);
 671	ret = dmar_walk_dmar_table(dmar, &cb);
 672	if (ret == 0 && drhd_count == 0)
 673		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
 674
 675	return ret;
 676}
 677
 678static int dmar_pci_device_match(struct dmar_dev_scope devices[],
 679				 int cnt, struct pci_dev *dev)
 680{
 681	int index;
 682	struct device *tmp;
 683
 684	while (dev) {
 685		for_each_active_dev_scope(devices, cnt, index, tmp)
 686			if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
 687				return 1;
 688
 689		/* Check our parent */
 690		dev = dev->bus->self;
 691	}
 692
 693	return 0;
 694}
 695
 696struct dmar_drhd_unit *
 697dmar_find_matched_drhd_unit(struct pci_dev *dev)
 698{
 699	struct dmar_drhd_unit *dmaru;
 700	struct acpi_dmar_hardware_unit *drhd;
 701
 702	dev = pci_physfn(dev);
 703
 704	rcu_read_lock();
 705	for_each_drhd_unit(dmaru) {
 706		drhd = container_of(dmaru->hdr,
 707				    struct acpi_dmar_hardware_unit,
 708				    header);
 709
 710		if (dmaru->include_all &&
 711		    drhd->segment == pci_domain_nr(dev->bus))
 712			goto out;
 713
 714		if (dmar_pci_device_match(dmaru->devices,
 715					  dmaru->devices_cnt, dev))
 716			goto out;
 717	}
 718	dmaru = NULL;
 719out:
 720	rcu_read_unlock();
 721
 722	return dmaru;
 723}
 724
 725static void __init dmar_acpi_insert_dev_scope(u8 device_number,
 726					      struct acpi_device *adev)
 727{
 728	struct dmar_drhd_unit *dmaru;
 729	struct acpi_dmar_hardware_unit *drhd;
 730	struct acpi_dmar_device_scope *scope;
 731	struct device *tmp;
 732	int i;
 733	struct acpi_dmar_pci_path *path;
 734
 735	for_each_drhd_unit(dmaru) {
 736		drhd = container_of(dmaru->hdr,
 737				    struct acpi_dmar_hardware_unit,
 738				    header);
 739
 740		for (scope = (void *)(drhd + 1);
 741		     (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
 742		     scope = ((void *)scope) + scope->length) {
 743			if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
 744				continue;
 745			if (scope->enumeration_id != device_number)
 746				continue;
 747
 748			path = (void *)(scope + 1);
 749			pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
 750				dev_name(&adev->dev), dmaru->reg_base_addr,
 751				scope->bus, path->device, path->function);
 752			for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
 753				if (tmp == NULL) {
 754					dmaru->devices[i].bus = scope->bus;
 755					dmaru->devices[i].devfn = PCI_DEVFN(path->device,
 756									    path->function);
 757					rcu_assign_pointer(dmaru->devices[i].dev,
 758							   get_device(&adev->dev));
 759					return;
 760				}
 761			BUG_ON(i >= dmaru->devices_cnt);
 762		}
 763	}
 764	pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
 765		device_number, dev_name(&adev->dev));
 766}
 767
 768static int __init dmar_acpi_dev_scope_init(void)
 769{
 770	struct acpi_dmar_andd *andd;
 771
 772	if (dmar_tbl == NULL)
 773		return -ENODEV;
 774
 775	for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
 776	     ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
 777	     andd = ((void *)andd) + andd->header.length) {
 778		if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
 779			acpi_handle h;
 780			struct acpi_device *adev;
 781
 782			if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
 783							  andd->device_name,
 784							  &h))) {
 785				pr_err("Failed to find handle for ACPI object %s\n",
 786				       andd->device_name);
 787				continue;
 788			}
 789			adev = acpi_fetch_acpi_dev(h);
 790			if (!adev) {
 791				pr_err("Failed to get device for ACPI object %s\n",
 792				       andd->device_name);
 793				continue;
 794			}
 795			dmar_acpi_insert_dev_scope(andd->device_number, adev);
 796		}
 797	}
 798	return 0;
 799}
 800
 801int __init dmar_dev_scope_init(void)
 802{
 803	struct pci_dev *dev = NULL;
 804	struct dmar_pci_notify_info *info;
 805
 806	if (dmar_dev_scope_status != 1)
 807		return dmar_dev_scope_status;
 808
 809	if (list_empty(&dmar_drhd_units)) {
 810		dmar_dev_scope_status = -ENODEV;
 811	} else {
 812		dmar_dev_scope_status = 0;
 813
 814		dmar_acpi_dev_scope_init();
 815
 816		for_each_pci_dev(dev) {
 817			if (dev->is_virtfn)
 818				continue;
 819
 820			info = dmar_alloc_pci_notify_info(dev,
 821					BUS_NOTIFY_ADD_DEVICE);
 822			if (!info) {
 823				pci_dev_put(dev);
 824				return dmar_dev_scope_status;
 825			} else {
 826				dmar_pci_bus_add_dev(info);
 827				dmar_free_pci_notify_info(info);
 828			}
 829		}
 830	}
 831
 832	return dmar_dev_scope_status;
 833}
 834
 835void __init dmar_register_bus_notifier(void)
 836{
 837	bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
 838}
 839
 840
 841int __init dmar_table_init(void)
 842{
 843	static int dmar_table_initialized;
 844	int ret;
 845
 846	if (dmar_table_initialized == 0) {
 847		ret = parse_dmar_table();
 848		if (ret < 0) {
 849			if (ret != -ENODEV)
 850				pr_info("Parse DMAR table failure.\n");
 851		} else  if (list_empty(&dmar_drhd_units)) {
 852			pr_info("No DMAR devices found\n");
 853			ret = -ENODEV;
 854		}
 855
 856		if (ret < 0)
 857			dmar_table_initialized = ret;
 858		else
 859			dmar_table_initialized = 1;
 860	}
 861
 862	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
 863}
 864
 865static void warn_invalid_dmar(u64 addr, const char *message)
 866{
 867	pr_warn_once(FW_BUG
 868		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
 869		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
 870		addr, message,
 871		dmi_get_system_info(DMI_BIOS_VENDOR),
 872		dmi_get_system_info(DMI_BIOS_VERSION),
 873		dmi_get_system_info(DMI_PRODUCT_VERSION));
 874	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 875}
 876
 877static int __ref
 878dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
 879{
 880	struct acpi_dmar_hardware_unit *drhd;
 881	void __iomem *addr;
 882	u64 cap, ecap;
 883
 884	drhd = (void *)entry;
 885	if (!drhd->address) {
 886		warn_invalid_dmar(0, "");
 887		return -EINVAL;
 888	}
 889
 890	if (arg)
 891		addr = ioremap(drhd->address, VTD_PAGE_SIZE);
 892	else
 893		addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
 894	if (!addr) {
 895		pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
 896		return -EINVAL;
 897	}
 898
 899	cap = dmar_readq(addr + DMAR_CAP_REG);
 900	ecap = dmar_readq(addr + DMAR_ECAP_REG);
 901
 902	if (arg)
 903		iounmap(addr);
 904	else
 905		early_iounmap(addr, VTD_PAGE_SIZE);
 906
 907	if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
 908		warn_invalid_dmar(drhd->address, " returns all ones");
 909		return -EINVAL;
 910	}
 911
 912	return 0;
 913}
 914
 915void __init detect_intel_iommu(void)
 916{
 917	int ret;
 918	struct dmar_res_callback validate_drhd_cb = {
 919		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
 920		.ignore_unhandled = true,
 921	};
 922
 923	down_write(&dmar_global_lock);
 924	ret = dmar_table_detect();
 925	if (!ret)
 926		ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
 927					   &validate_drhd_cb);
 928	if (!ret && !no_iommu && !iommu_detected &&
 929	    (!dmar_disabled || dmar_platform_optin())) {
 930		iommu_detected = 1;
 931		/* Make sure ACS will be enabled */
 932		pci_request_acs();
 933	}
 934
 935#ifdef CONFIG_X86
 936	if (!ret) {
 937		x86_init.iommu.iommu_init = intel_iommu_init;
 938		x86_platform.iommu_shutdown = intel_iommu_shutdown;
 939	}
 940
 941#endif
 942
 943	if (dmar_tbl) {
 944		acpi_put_table(dmar_tbl);
 945		dmar_tbl = NULL;
 946	}
 947	up_write(&dmar_global_lock);
 948}
 949
 950static void unmap_iommu(struct intel_iommu *iommu)
 951{
 952	iounmap(iommu->reg);
 953	release_mem_region(iommu->reg_phys, iommu->reg_size);
 954}
 955
 956/**
 957 * map_iommu: map the iommu's registers
 958 * @iommu: the iommu to map
 959 * @phys_addr: the physical address of the base resgister
 960 *
 961 * Memory map the iommu's registers.  Start w/ a single page, and
 962 * possibly expand if that turns out to be insufficent.
 963 */
 964static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
 965{
 
 966	int map_size, err=0;
 967
 968	iommu->reg_phys = phys_addr;
 969	iommu->reg_size = VTD_PAGE_SIZE;
 970
 971	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
 972		pr_err("Can't reserve memory\n");
 973		err = -EBUSY;
 974		goto out;
 975	}
 976
 977	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
 978	if (!iommu->reg) {
 979		pr_err("Can't map the region\n");
 980		err = -ENOMEM;
 981		goto release;
 982	}
 983
 984	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
 985	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
 986
 987	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
 988		err = -EINVAL;
 989		warn_invalid_dmar(phys_addr, " returns all ones");
 990		goto unmap;
 991	}
 992	if (ecap_vcs(iommu->ecap))
 993		iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
 994
 995	/* the registers might be more than one page */
 996	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
 997			 cap_max_fault_reg_offset(iommu->cap));
 998	map_size = VTD_PAGE_ALIGN(map_size);
 999	if (map_size > iommu->reg_size) {
1000		iounmap(iommu->reg);
1001		release_mem_region(iommu->reg_phys, iommu->reg_size);
1002		iommu->reg_size = map_size;
1003		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1004					iommu->name)) {
1005			pr_err("Can't reserve memory\n");
1006			err = -EBUSY;
1007			goto out;
1008		}
1009		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1010		if (!iommu->reg) {
1011			pr_err("Can't map the region\n");
1012			err = -ENOMEM;
1013			goto release;
1014		}
1015	}
 
 
 
 
 
 
 
 
 
 
1016	err = 0;
1017	goto out;
1018
1019unmap:
1020	iounmap(iommu->reg);
1021release:
1022	release_mem_region(iommu->reg_phys, iommu->reg_size);
1023out:
1024	return err;
1025}
1026
1027static int alloc_iommu(struct dmar_drhd_unit *drhd)
1028{
1029	struct intel_iommu *iommu;
1030	u32 ver, sts;
1031	int agaw = -1;
1032	int msagaw = -1;
1033	int err;
1034
1035	if (!drhd->reg_base_addr) {
1036		warn_invalid_dmar(0, "");
1037		return -EINVAL;
1038	}
1039
1040	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1041	if (!iommu)
1042		return -ENOMEM;
1043
1044	iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1045					DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1046	if (iommu->seq_id < 0) {
1047		pr_err("Failed to allocate seq_id\n");
1048		err = iommu->seq_id;
1049		goto error;
1050	}
1051	sprintf(iommu->name, "dmar%d", iommu->seq_id);
1052
1053	err = map_iommu(iommu, drhd->reg_base_addr);
1054	if (err) {
1055		pr_err("Failed to map %s\n", iommu->name);
1056		goto error_free_seq_id;
1057	}
1058
1059	err = -EINVAL;
1060	if (cap_sagaw(iommu->cap) == 0) {
 
1061		pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1062			iommu->name);
1063		drhd->ignored = 1;
1064	}
1065
1066	if (!drhd->ignored) {
1067		agaw = iommu_calculate_agaw(iommu);
1068		if (agaw < 0) {
1069			pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1070			       iommu->seq_id);
1071			drhd->ignored = 1;
1072		}
1073	}
1074	if (!drhd->ignored) {
1075		msagaw = iommu_calculate_max_sagaw(iommu);
1076		if (msagaw < 0) {
1077			pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1078			       iommu->seq_id);
1079			drhd->ignored = 1;
1080			agaw = -1;
1081		}
1082	}
1083	iommu->agaw = agaw;
1084	iommu->msagaw = msagaw;
1085	iommu->segment = drhd->segment;
1086
1087	iommu->node = NUMA_NO_NODE;
1088
1089	ver = readl(iommu->reg + DMAR_VER_REG);
1090	pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1091		iommu->name,
1092		(unsigned long long)drhd->reg_base_addr,
1093		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1094		(unsigned long long)iommu->cap,
1095		(unsigned long long)iommu->ecap);
1096
1097	/* Reflect status in gcmd */
1098	sts = readl(iommu->reg + DMAR_GSTS_REG);
1099	if (sts & DMA_GSTS_IRES)
1100		iommu->gcmd |= DMA_GCMD_IRE;
1101	if (sts & DMA_GSTS_TES)
1102		iommu->gcmd |= DMA_GCMD_TE;
1103	if (sts & DMA_GSTS_QIES)
1104		iommu->gcmd |= DMA_GCMD_QIE;
1105
 
 
 
1106	raw_spin_lock_init(&iommu->register_lock);
1107
1108	/*
1109	 * A value of N in PSS field of eCap register indicates hardware
1110	 * supports PASID field of N+1 bits.
1111	 */
1112	if (pasid_supported(iommu))
1113		iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap);
1114
1115	/*
1116	 * This is only for hotplug; at boot time intel_iommu_enabled won't
1117	 * be set yet. When intel_iommu_init() runs, it registers the units
1118	 * present at boot time, then sets intel_iommu_enabled.
1119	 */
1120	if (intel_iommu_enabled && !drhd->ignored) {
1121		err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1122					     intel_iommu_groups,
1123					     "%s", iommu->name);
1124		if (err)
1125			goto err_unmap;
1126
1127		err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1128		if (err)
1129			goto err_sysfs;
 
 
1130	}
1131
1132	drhd->iommu = iommu;
1133	iommu->drhd = drhd;
1134
1135	return 0;
1136
1137err_sysfs:
1138	iommu_device_sysfs_remove(&iommu->iommu);
1139err_unmap:
 
1140	unmap_iommu(iommu);
1141error_free_seq_id:
1142	ida_free(&dmar_seq_ids, iommu->seq_id);
1143error:
1144	kfree(iommu);
1145	return err;
1146}
1147
1148static void free_iommu(struct intel_iommu *iommu)
1149{
1150	if (intel_iommu_enabled && !iommu->drhd->ignored) {
 
1151		iommu_device_unregister(&iommu->iommu);
1152		iommu_device_sysfs_remove(&iommu->iommu);
1153	}
1154
 
 
1155	if (iommu->irq) {
1156		if (iommu->pr_irq) {
1157			free_irq(iommu->pr_irq, iommu);
1158			dmar_free_hwirq(iommu->pr_irq);
1159			iommu->pr_irq = 0;
1160		}
1161		free_irq(iommu->irq, iommu);
1162		dmar_free_hwirq(iommu->irq);
1163		iommu->irq = 0;
1164	}
1165
1166	if (iommu->qi) {
1167		free_page((unsigned long)iommu->qi->desc);
1168		kfree(iommu->qi->desc_status);
1169		kfree(iommu->qi);
1170	}
1171
1172	if (iommu->reg)
1173		unmap_iommu(iommu);
1174
1175	ida_free(&dmar_seq_ids, iommu->seq_id);
1176	kfree(iommu);
1177}
1178
1179/*
1180 * Reclaim all the submitted descriptors which have completed its work.
1181 */
1182static inline void reclaim_free_desc(struct q_inval *qi)
1183{
1184	while (qi->desc_status[qi->free_tail] == QI_DONE ||
1185	       qi->desc_status[qi->free_tail] == QI_ABORT) {
1186		qi->desc_status[qi->free_tail] = QI_FREE;
1187		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1188		qi->free_cnt++;
1189	}
1190}
1191
1192static const char *qi_type_string(u8 type)
1193{
1194	switch (type) {
1195	case QI_CC_TYPE:
1196		return "Context-cache Invalidation";
1197	case QI_IOTLB_TYPE:
1198		return "IOTLB Invalidation";
1199	case QI_DIOTLB_TYPE:
1200		return "Device-TLB Invalidation";
1201	case QI_IEC_TYPE:
1202		return "Interrupt Entry Cache Invalidation";
1203	case QI_IWD_TYPE:
1204		return "Invalidation Wait";
1205	case QI_EIOTLB_TYPE:
1206		return "PASID-based IOTLB Invalidation";
1207	case QI_PC_TYPE:
1208		return "PASID-cache Invalidation";
1209	case QI_DEIOTLB_TYPE:
1210		return "PASID-based Device-TLB Invalidation";
1211	case QI_PGRP_RESP_TYPE:
1212		return "Page Group Response";
1213	default:
1214		return "UNKNOWN";
1215	}
1216}
1217
1218static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1219{
1220	unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1221	u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1222	struct qi_desc *desc = iommu->qi->desc + head;
1223
1224	if (fault & DMA_FSTS_IQE)
1225		pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1226		       DMAR_IQER_REG_IQEI(iqe_err));
1227	if (fault & DMA_FSTS_ITE)
1228		pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1229		       DMAR_IQER_REG_ITESID(iqe_err));
1230	if (fault & DMA_FSTS_ICE)
1231		pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1232		       DMAR_IQER_REG_ICESID(iqe_err));
1233
1234	pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1235	       qi_type_string(desc->qw0 & 0xf),
1236	       (unsigned long long)desc->qw0,
1237	       (unsigned long long)desc->qw1);
1238
1239	head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1240	head <<= qi_shift(iommu);
1241	desc = iommu->qi->desc + head;
1242
1243	pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1244	       qi_type_string(desc->qw0 & 0xf),
1245	       (unsigned long long)desc->qw0,
1246	       (unsigned long long)desc->qw1);
1247}
1248
1249static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1250{
1251	u32 fault;
1252	int head, tail;
1253	struct q_inval *qi = iommu->qi;
1254	int shift = qi_shift(iommu);
1255
1256	if (qi->desc_status[wait_index] == QI_ABORT)
1257		return -EAGAIN;
1258
1259	fault = readl(iommu->reg + DMAR_FSTS_REG);
1260	if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1261		qi_dump_fault(iommu, fault);
1262
1263	/*
1264	 * If IQE happens, the head points to the descriptor associated
1265	 * with the error. No new descriptors are fetched until the IQE
1266	 * is cleared.
1267	 */
1268	if (fault & DMA_FSTS_IQE) {
1269		head = readl(iommu->reg + DMAR_IQH_REG);
1270		if ((head >> shift) == index) {
1271			struct qi_desc *desc = qi->desc + head;
1272
1273			/*
1274			 * desc->qw2 and desc->qw3 are either reserved or
1275			 * used by software as private data. We won't print
1276			 * out these two qw's for security consideration.
1277			 */
1278			memcpy(desc, qi->desc + (wait_index << shift),
1279			       1 << shift);
1280			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1281			pr_info("Invalidation Queue Error (IQE) cleared\n");
1282			return -EINVAL;
1283		}
1284	}
1285
1286	/*
1287	 * If ITE happens, all pending wait_desc commands are aborted.
1288	 * No new descriptors are fetched until the ITE is cleared.
1289	 */
1290	if (fault & DMA_FSTS_ITE) {
1291		head = readl(iommu->reg + DMAR_IQH_REG);
1292		head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1293		head |= 1;
1294		tail = readl(iommu->reg + DMAR_IQT_REG);
1295		tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1296
1297		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1298		pr_info("Invalidation Time-out Error (ITE) cleared\n");
1299
1300		do {
1301			if (qi->desc_status[head] == QI_IN_USE)
1302				qi->desc_status[head] = QI_ABORT;
1303			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1304		} while (head != tail);
1305
1306		if (qi->desc_status[wait_index] == QI_ABORT)
1307			return -EAGAIN;
1308	}
1309
1310	if (fault & DMA_FSTS_ICE) {
1311		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1312		pr_info("Invalidation Completion Error (ICE) cleared\n");
1313	}
1314
1315	return 0;
1316}
1317
1318/*
1319 * Function to submit invalidation descriptors of all types to the queued
1320 * invalidation interface(QI). Multiple descriptors can be submitted at a
1321 * time, a wait descriptor will be appended to each submission to ensure
1322 * hardware has completed the invalidation before return. Wait descriptors
1323 * can be part of the submission but it will not be polled for completion.
1324 */
1325int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1326		   unsigned int count, unsigned long options)
1327{
1328	struct q_inval *qi = iommu->qi;
1329	s64 devtlb_start_ktime = 0;
1330	s64 iotlb_start_ktime = 0;
1331	s64 iec_start_ktime = 0;
1332	struct qi_desc wait_desc;
1333	int wait_index, index;
1334	unsigned long flags;
1335	int offset, shift;
1336	int rc, i;
1337	u64 type;
1338
1339	if (!qi)
1340		return 0;
1341
1342	type = desc->qw0 & GENMASK_ULL(3, 0);
1343
1344	if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1345	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1346		iotlb_start_ktime = ktime_to_ns(ktime_get());
1347
1348	if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1349	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1350		devtlb_start_ktime = ktime_to_ns(ktime_get());
1351
1352	if (type == QI_IEC_TYPE &&
1353	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1354		iec_start_ktime = ktime_to_ns(ktime_get());
1355
1356restart:
1357	rc = 0;
1358
1359	raw_spin_lock_irqsave(&qi->q_lock, flags);
1360	/*
1361	 * Check if we have enough empty slots in the queue to submit,
1362	 * the calculation is based on:
1363	 * # of desc + 1 wait desc + 1 space between head and tail
1364	 */
1365	while (qi->free_cnt < count + 2) {
1366		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1367		cpu_relax();
1368		raw_spin_lock_irqsave(&qi->q_lock, flags);
1369	}
1370
1371	index = qi->free_head;
1372	wait_index = (index + count) % QI_LENGTH;
1373	shift = qi_shift(iommu);
1374
1375	for (i = 0; i < count; i++) {
1376		offset = ((index + i) % QI_LENGTH) << shift;
1377		memcpy(qi->desc + offset, &desc[i], 1 << shift);
1378		qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1379		trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1380				desc[i].qw2, desc[i].qw3);
1381	}
1382	qi->desc_status[wait_index] = QI_IN_USE;
1383
1384	wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1385			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1386	if (options & QI_OPT_WAIT_DRAIN)
1387		wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1388	wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1389	wait_desc.qw2 = 0;
1390	wait_desc.qw3 = 0;
1391
1392	offset = wait_index << shift;
1393	memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1394
1395	qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1396	qi->free_cnt -= count + 1;
1397
1398	/*
1399	 * update the HW tail register indicating the presence of
1400	 * new descriptors.
1401	 */
1402	writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1403
1404	while (qi->desc_status[wait_index] != QI_DONE) {
1405		/*
1406		 * We will leave the interrupts disabled, to prevent interrupt
1407		 * context to queue another cmd while a cmd is already submitted
1408		 * and waiting for completion on this cpu. This is to avoid
1409		 * a deadlock where the interrupt context can wait indefinitely
1410		 * for free slots in the queue.
1411		 */
1412		rc = qi_check_fault(iommu, index, wait_index);
1413		if (rc)
1414			break;
1415
1416		raw_spin_unlock(&qi->q_lock);
1417		cpu_relax();
1418		raw_spin_lock(&qi->q_lock);
1419	}
1420
1421	for (i = 0; i < count; i++)
1422		qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1423
1424	reclaim_free_desc(qi);
1425	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1426
1427	if (rc == -EAGAIN)
1428		goto restart;
1429
1430	if (iotlb_start_ktime)
1431		dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1432				ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1433
1434	if (devtlb_start_ktime)
1435		dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1436				ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1437
1438	if (iec_start_ktime)
1439		dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1440				ktime_to_ns(ktime_get()) - iec_start_ktime);
1441
1442	return rc;
1443}
1444
1445/*
1446 * Flush the global interrupt entry cache.
1447 */
1448void qi_global_iec(struct intel_iommu *iommu)
1449{
1450	struct qi_desc desc;
1451
1452	desc.qw0 = QI_IEC_TYPE;
1453	desc.qw1 = 0;
1454	desc.qw2 = 0;
1455	desc.qw3 = 0;
1456
1457	/* should never fail */
1458	qi_submit_sync(iommu, &desc, 1, 0);
1459}
1460
1461void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1462		      u64 type)
1463{
1464	struct qi_desc desc;
1465
1466	desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1467			| QI_CC_GRAN(type) | QI_CC_TYPE;
1468	desc.qw1 = 0;
1469	desc.qw2 = 0;
1470	desc.qw3 = 0;
1471
1472	qi_submit_sync(iommu, &desc, 1, 0);
1473}
1474
1475void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1476		    unsigned int size_order, u64 type)
1477{
1478	u8 dw = 0, dr = 0;
1479
1480	struct qi_desc desc;
1481	int ih = 0;
1482
1483	if (cap_write_drain(iommu->cap))
1484		dw = 1;
1485
1486	if (cap_read_drain(iommu->cap))
1487		dr = 1;
1488
1489	desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1490		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1491	desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1492		| QI_IOTLB_AM(size_order);
1493	desc.qw2 = 0;
1494	desc.qw3 = 0;
1495
1496	qi_submit_sync(iommu, &desc, 1, 0);
1497}
1498
1499void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1500			u16 qdep, u64 addr, unsigned mask)
1501{
1502	struct qi_desc desc;
1503
 
 
 
 
 
 
 
 
 
1504	if (mask) {
1505		addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1506		desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1507	} else
1508		desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1509
1510	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1511		qdep = 0;
1512
1513	desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1514		   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1515	desc.qw2 = 0;
1516	desc.qw3 = 0;
1517
1518	qi_submit_sync(iommu, &desc, 1, 0);
1519}
1520
1521/* PASID-based IOTLB invalidation */
1522void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1523		     unsigned long npages, bool ih)
1524{
1525	struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1526
1527	/*
1528	 * npages == -1 means a PASID-selective invalidation, otherwise,
1529	 * a positive value for Page-selective-within-PASID invalidation.
1530	 * 0 is not a valid input.
1531	 */
1532	if (WARN_ON(!npages)) {
1533		pr_err("Invalid input npages = %ld\n", npages);
1534		return;
1535	}
1536
1537	if (npages == -1) {
1538		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1539				QI_EIOTLB_DID(did) |
1540				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1541				QI_EIOTLB_TYPE;
1542		desc.qw1 = 0;
1543	} else {
1544		int mask = ilog2(__roundup_pow_of_two(npages));
1545		unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1546
1547		if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1548			addr = ALIGN_DOWN(addr, align);
1549
1550		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1551				QI_EIOTLB_DID(did) |
1552				QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1553				QI_EIOTLB_TYPE;
1554		desc.qw1 = QI_EIOTLB_ADDR(addr) |
1555				QI_EIOTLB_IH(ih) |
1556				QI_EIOTLB_AM(mask);
1557	}
1558
1559	qi_submit_sync(iommu, &desc, 1, 0);
1560}
1561
1562/* PASID-based device IOTLB Invalidate */
1563void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1564			      u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1565{
1566	unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1567	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1568
 
 
 
 
 
 
 
 
 
1569	desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1570		QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1571		QI_DEV_IOTLB_PFSID(pfsid);
1572
1573	/*
1574	 * If S bit is 0, we only flush a single page. If S bit is set,
1575	 * The least significant zero bit indicates the invalidation address
1576	 * range. VT-d spec 6.5.2.6.
1577	 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1578	 * size order = 0 is PAGE_SIZE 4KB
1579	 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1580	 * ECAP.
1581	 */
1582	if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1583		pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1584				    addr, size_order);
1585
1586	/* Take page address */
1587	desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1588
1589	if (size_order) {
1590		/*
1591		 * Existing 0s in address below size_order may be the least
1592		 * significant bit, we must set them to 1s to avoid having
1593		 * smaller size than desired.
1594		 */
1595		desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1596					VTD_PAGE_SHIFT);
1597		/* Clear size_order bit to indicate size */
1598		desc.qw1 &= ~mask;
1599		/* Set the S bit to indicate flushing more than 1 page */
1600		desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1601	}
1602
1603	qi_submit_sync(iommu, &desc, 1, 0);
1604}
1605
1606void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1607			  u64 granu, u32 pasid)
1608{
1609	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1610
1611	desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1612			QI_PC_GRAN(granu) | QI_PC_TYPE;
1613	qi_submit_sync(iommu, &desc, 1, 0);
1614}
1615
1616/*
1617 * Disable Queued Invalidation interface.
1618 */
1619void dmar_disable_qi(struct intel_iommu *iommu)
1620{
1621	unsigned long flags;
1622	u32 sts;
1623	cycles_t start_time = get_cycles();
1624
1625	if (!ecap_qis(iommu->ecap))
1626		return;
1627
1628	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1629
1630	sts =  readl(iommu->reg + DMAR_GSTS_REG);
1631	if (!(sts & DMA_GSTS_QIES))
1632		goto end;
1633
1634	/*
1635	 * Give a chance to HW to complete the pending invalidation requests.
1636	 */
1637	while ((readl(iommu->reg + DMAR_IQT_REG) !=
1638		readl(iommu->reg + DMAR_IQH_REG)) &&
1639		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1640		cpu_relax();
1641
1642	iommu->gcmd &= ~DMA_GCMD_QIE;
1643	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1644
1645	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1646		      !(sts & DMA_GSTS_QIES), sts);
1647end:
1648	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1649}
1650
1651/*
1652 * Enable queued invalidation.
1653 */
1654static void __dmar_enable_qi(struct intel_iommu *iommu)
1655{
1656	u32 sts;
1657	unsigned long flags;
1658	struct q_inval *qi = iommu->qi;
1659	u64 val = virt_to_phys(qi->desc);
1660
1661	qi->free_head = qi->free_tail = 0;
1662	qi->free_cnt = QI_LENGTH;
1663
1664	/*
1665	 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1666	 * is present.
1667	 */
1668	if (ecap_smts(iommu->ecap))
1669		val |= (1 << 11) | 1;
1670
1671	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1672
1673	/* write zero to the tail reg */
1674	writel(0, iommu->reg + DMAR_IQT_REG);
1675
1676	dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1677
1678	iommu->gcmd |= DMA_GCMD_QIE;
1679	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1680
1681	/* Make sure hardware complete it */
1682	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1683
1684	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1685}
1686
1687/*
1688 * Enable Queued Invalidation interface. This is a must to support
1689 * interrupt-remapping. Also used by DMA-remapping, which replaces
1690 * register based IOTLB invalidation.
1691 */
1692int dmar_enable_qi(struct intel_iommu *iommu)
1693{
1694	struct q_inval *qi;
1695	struct page *desc_page;
1696
1697	if (!ecap_qis(iommu->ecap))
1698		return -ENOENT;
1699
1700	/*
1701	 * queued invalidation is already setup and enabled.
1702	 */
1703	if (iommu->qi)
1704		return 0;
1705
1706	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1707	if (!iommu->qi)
1708		return -ENOMEM;
1709
1710	qi = iommu->qi;
1711
1712	/*
1713	 * Need two pages to accommodate 256 descriptors of 256 bits each
1714	 * if the remapping hardware supports scalable mode translation.
1715	 */
1716	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1717				     !!ecap_smts(iommu->ecap));
1718	if (!desc_page) {
1719		kfree(qi);
1720		iommu->qi = NULL;
1721		return -ENOMEM;
1722	}
1723
1724	qi->desc = page_address(desc_page);
1725
1726	qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1727	if (!qi->desc_status) {
1728		free_page((unsigned long) qi->desc);
1729		kfree(qi);
1730		iommu->qi = NULL;
1731		return -ENOMEM;
1732	}
1733
1734	raw_spin_lock_init(&qi->q_lock);
1735
1736	__dmar_enable_qi(iommu);
1737
1738	return 0;
1739}
1740
1741/* iommu interrupt handling. Most stuff are MSI-like. */
1742
1743enum faulttype {
1744	DMA_REMAP,
1745	INTR_REMAP,
1746	UNKNOWN,
1747};
1748
1749static const char *dma_remap_fault_reasons[] =
1750{
1751	"Software",
1752	"Present bit in root entry is clear",
1753	"Present bit in context entry is clear",
1754	"Invalid context entry",
1755	"Access beyond MGAW",
1756	"PTE Write access is not set",
1757	"PTE Read access is not set",
1758	"Next page table ptr is invalid",
1759	"Root table address invalid",
1760	"Context table ptr is invalid",
1761	"non-zero reserved fields in RTP",
1762	"non-zero reserved fields in CTP",
1763	"non-zero reserved fields in PTE",
1764	"PCE for translation request specifies blocking",
1765};
1766
1767static const char * const dma_remap_sm_fault_reasons[] = {
1768	"SM: Invalid Root Table Address",
1769	"SM: TTM 0 for request with PASID",
1770	"SM: TTM 0 for page group request",
1771	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1772	"SM: Error attempting to access Root Entry",
1773	"SM: Present bit in Root Entry is clear",
1774	"SM: Non-zero reserved field set in Root Entry",
1775	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1776	"SM: Error attempting to access Context Entry",
1777	"SM: Present bit in Context Entry is clear",
1778	"SM: Non-zero reserved field set in the Context Entry",
1779	"SM: Invalid Context Entry",
1780	"SM: DTE field in Context Entry is clear",
1781	"SM: PASID Enable field in Context Entry is clear",
1782	"SM: PASID is larger than the max in Context Entry",
1783	"SM: PRE field in Context-Entry is clear",
1784	"SM: RID_PASID field error in Context-Entry",
1785	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1786	"SM: Error attempting to access the PASID Directory Entry",
1787	"SM: Present bit in Directory Entry is clear",
1788	"SM: Non-zero reserved field set in PASID Directory Entry",
1789	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1790	"SM: Error attempting to access PASID Table Entry",
1791	"SM: Present bit in PASID Table Entry is clear",
1792	"SM: Non-zero reserved field set in PASID Table Entry",
1793	"SM: Invalid Scalable-Mode PASID Table Entry",
1794	"SM: ERE field is clear in PASID Table Entry",
1795	"SM: SRE field is clear in PASID Table Entry",
1796	"Unknown", "Unknown",/* 0x5E-0x5F */
1797	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1798	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1799	"SM: Error attempting to access first-level paging entry",
1800	"SM: Present bit in first-level paging entry is clear",
1801	"SM: Non-zero reserved field set in first-level paging entry",
1802	"SM: Error attempting to access FL-PML4 entry",
1803	"SM: First-level entry address beyond MGAW in Nested translation",
1804	"SM: Read permission error in FL-PML4 entry in Nested translation",
1805	"SM: Read permission error in first-level paging entry in Nested translation",
1806	"SM: Write permission error in first-level paging entry in Nested translation",
1807	"SM: Error attempting to access second-level paging entry",
1808	"SM: Read/Write permission error in second-level paging entry",
1809	"SM: Non-zero reserved field set in second-level paging entry",
1810	"SM: Invalid second-level page table pointer",
1811	"SM: A/D bit update needed in second-level entry when set up in no snoop",
1812	"Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1813	"SM: Address in first-level translation is not canonical",
1814	"SM: U/S set 0 for first-level translation with user privilege",
1815	"SM: No execute permission for request with PASID and ER=1",
1816	"SM: Address beyond the DMA hardware max",
1817	"SM: Second-level entry address beyond the max",
1818	"SM: No write permission for Write/AtomicOp request",
1819	"SM: No read permission for Read/AtomicOp request",
1820	"SM: Invalid address-interrupt address",
1821	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1822	"SM: A/D bit update needed in first-level entry when set up in no snoop",
1823};
1824
1825static const char *irq_remap_fault_reasons[] =
1826{
1827	"Detected reserved fields in the decoded interrupt-remapped request",
1828	"Interrupt index exceeded the interrupt-remapping table size",
1829	"Present field in the IRTE entry is clear",
1830	"Error accessing interrupt-remapping table pointed by IRTA_REG",
1831	"Detected reserved fields in the IRTE entry",
1832	"Blocked a compatibility format interrupt request",
1833	"Blocked an interrupt request due to source-id verification failure",
1834};
1835
1836static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1837{
1838	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1839					ARRAY_SIZE(irq_remap_fault_reasons))) {
1840		*fault_type = INTR_REMAP;
1841		return irq_remap_fault_reasons[fault_reason - 0x20];
1842	} else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1843			ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1844		*fault_type = DMA_REMAP;
1845		return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1846	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1847		*fault_type = DMA_REMAP;
1848		return dma_remap_fault_reasons[fault_reason];
1849	} else {
1850		*fault_type = UNKNOWN;
1851		return "Unknown";
1852	}
1853}
1854
1855
1856static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1857{
1858	if (iommu->irq == irq)
1859		return DMAR_FECTL_REG;
1860	else if (iommu->pr_irq == irq)
1861		return DMAR_PECTL_REG;
 
 
1862	else
1863		BUG();
1864}
1865
1866void dmar_msi_unmask(struct irq_data *data)
1867{
1868	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1869	int reg = dmar_msi_reg(iommu, data->irq);
1870	unsigned long flag;
1871
1872	/* unmask it */
1873	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1874	writel(0, iommu->reg + reg);
1875	/* Read a reg to force flush the post write */
1876	readl(iommu->reg + reg);
1877	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1878}
1879
1880void dmar_msi_mask(struct irq_data *data)
1881{
1882	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1883	int reg = dmar_msi_reg(iommu, data->irq);
1884	unsigned long flag;
1885
1886	/* mask it */
1887	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1888	writel(DMA_FECTL_IM, iommu->reg + reg);
1889	/* Read a reg to force flush the post write */
1890	readl(iommu->reg + reg);
1891	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1892}
1893
1894void dmar_msi_write(int irq, struct msi_msg *msg)
1895{
1896	struct intel_iommu *iommu = irq_get_handler_data(irq);
1897	int reg = dmar_msi_reg(iommu, irq);
1898	unsigned long flag;
1899
1900	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1901	writel(msg->data, iommu->reg + reg + 4);
1902	writel(msg->address_lo, iommu->reg + reg + 8);
1903	writel(msg->address_hi, iommu->reg + reg + 12);
1904	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1905}
1906
1907void dmar_msi_read(int irq, struct msi_msg *msg)
1908{
1909	struct intel_iommu *iommu = irq_get_handler_data(irq);
1910	int reg = dmar_msi_reg(iommu, irq);
1911	unsigned long flag;
1912
1913	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1914	msg->data = readl(iommu->reg + reg + 4);
1915	msg->address_lo = readl(iommu->reg + reg + 8);
1916	msg->address_hi = readl(iommu->reg + reg + 12);
1917	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1918}
1919
1920static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1921		u8 fault_reason, u32 pasid, u16 source_id,
1922		unsigned long long addr)
1923{
1924	const char *reason;
1925	int fault_type;
1926
1927	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1928
1929	if (fault_type == INTR_REMAP) {
1930		pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1931		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1932		       PCI_FUNC(source_id & 0xFF), addr >> 48,
1933		       fault_reason, reason);
1934
1935		return 0;
1936	}
1937
1938	if (pasid == INVALID_IOASID)
1939		pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1940		       type ? "DMA Read" : "DMA Write",
1941		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1942		       PCI_FUNC(source_id & 0xFF), addr,
1943		       fault_reason, reason);
1944	else
1945		pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1946		       type ? "DMA Read" : "DMA Write", pasid,
1947		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1948		       PCI_FUNC(source_id & 0xFF), addr,
1949		       fault_reason, reason);
1950
1951	dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
1952
1953	return 0;
1954}
1955
1956#define PRIMARY_FAULT_REG_LEN (16)
1957irqreturn_t dmar_fault(int irq, void *dev_id)
1958{
1959	struct intel_iommu *iommu = dev_id;
1960	int reg, fault_index;
1961	u32 fault_status;
1962	unsigned long flag;
1963	static DEFINE_RATELIMIT_STATE(rs,
1964				      DEFAULT_RATELIMIT_INTERVAL,
1965				      DEFAULT_RATELIMIT_BURST);
1966
1967	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1968	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1969	if (fault_status && __ratelimit(&rs))
1970		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1971
1972	/* TBD: ignore advanced fault log currently */
1973	if (!(fault_status & DMA_FSTS_PPF))
1974		goto unlock_exit;
1975
1976	fault_index = dma_fsts_fault_record_index(fault_status);
1977	reg = cap_fault_reg_offset(iommu->cap);
1978	while (1) {
1979		/* Disable printing, simply clear the fault when ratelimited */
1980		bool ratelimited = !__ratelimit(&rs);
1981		u8 fault_reason;
1982		u16 source_id;
1983		u64 guest_addr;
1984		u32 pasid;
1985		int type;
1986		u32 data;
1987		bool pasid_present;
1988
1989		/* highest 32 bits */
1990		data = readl(iommu->reg + reg +
1991				fault_index * PRIMARY_FAULT_REG_LEN + 12);
1992		if (!(data & DMA_FRCD_F))
1993			break;
1994
1995		if (!ratelimited) {
1996			fault_reason = dma_frcd_fault_reason(data);
1997			type = dma_frcd_type(data);
1998
1999			pasid = dma_frcd_pasid_value(data);
2000			data = readl(iommu->reg + reg +
2001				     fault_index * PRIMARY_FAULT_REG_LEN + 8);
2002			source_id = dma_frcd_source_id(data);
2003
2004			pasid_present = dma_frcd_pasid_present(data);
2005			guest_addr = dmar_readq(iommu->reg + reg +
2006					fault_index * PRIMARY_FAULT_REG_LEN);
2007			guest_addr = dma_frcd_page_addr(guest_addr);
2008		}
2009
2010		/* clear the fault */
2011		writel(DMA_FRCD_F, iommu->reg + reg +
2012			fault_index * PRIMARY_FAULT_REG_LEN + 12);
2013
2014		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2015
2016		if (!ratelimited)
2017			/* Using pasid -1 if pasid is not present */
2018			dmar_fault_do_one(iommu, type, fault_reason,
2019					  pasid_present ? pasid : INVALID_IOASID,
2020					  source_id, guest_addr);
2021
2022		fault_index++;
2023		if (fault_index >= cap_num_fault_regs(iommu->cap))
2024			fault_index = 0;
2025		raw_spin_lock_irqsave(&iommu->register_lock, flag);
2026	}
2027
2028	writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2029	       iommu->reg + DMAR_FSTS_REG);
2030
2031unlock_exit:
2032	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2033	return IRQ_HANDLED;
2034}
2035
2036int dmar_set_interrupt(struct intel_iommu *iommu)
2037{
2038	int irq, ret;
2039
2040	/*
2041	 * Check if the fault interrupt is already initialized.
2042	 */
2043	if (iommu->irq)
2044		return 0;
2045
2046	irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2047	if (irq > 0) {
2048		iommu->irq = irq;
2049	} else {
2050		pr_err("No free IRQ vectors\n");
2051		return -EINVAL;
2052	}
2053
2054	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2055	if (ret)
2056		pr_err("Can't request irq\n");
2057	return ret;
2058}
2059
2060int __init enable_drhd_fault_handling(void)
2061{
2062	struct dmar_drhd_unit *drhd;
2063	struct intel_iommu *iommu;
2064
2065	/*
2066	 * Enable fault control interrupt.
2067	 */
2068	for_each_iommu(iommu, drhd) {
2069		u32 fault_status;
2070		int ret = dmar_set_interrupt(iommu);
2071
2072		if (ret) {
2073			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2074			       (unsigned long long)drhd->reg_base_addr, ret);
2075			return -1;
2076		}
2077
2078		/*
2079		 * Clear any previous faults.
2080		 */
2081		dmar_fault(iommu->irq, iommu);
2082		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2083		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2084	}
2085
2086	return 0;
2087}
2088
2089/*
2090 * Re-enable Queued Invalidation interface.
2091 */
2092int dmar_reenable_qi(struct intel_iommu *iommu)
2093{
2094	if (!ecap_qis(iommu->ecap))
2095		return -ENOENT;
2096
2097	if (!iommu->qi)
2098		return -ENOENT;
2099
2100	/*
2101	 * First disable queued invalidation.
2102	 */
2103	dmar_disable_qi(iommu);
2104	/*
2105	 * Then enable queued invalidation again. Since there is no pending
2106	 * invalidation requests now, it's safe to re-enable queued
2107	 * invalidation.
2108	 */
2109	__dmar_enable_qi(iommu);
2110
2111	return 0;
2112}
2113
2114/*
2115 * Check interrupt remapping support in DMAR table description.
2116 */
2117int __init dmar_ir_support(void)
2118{
2119	struct acpi_table_dmar *dmar;
2120	dmar = (struct acpi_table_dmar *)dmar_tbl;
2121	if (!dmar)
2122		return 0;
2123	return dmar->flags & 0x1;
2124}
2125
2126/* Check whether DMAR units are in use */
2127static inline bool dmar_in_use(void)
2128{
2129	return irq_remapping_enabled || intel_iommu_enabled;
2130}
2131
2132static int __init dmar_free_unused_resources(void)
2133{
2134	struct dmar_drhd_unit *dmaru, *dmaru_n;
2135
2136	if (dmar_in_use())
2137		return 0;
2138
2139	if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2140		bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2141
2142	down_write(&dmar_global_lock);
2143	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2144		list_del(&dmaru->list);
2145		dmar_free_drhd(dmaru);
2146	}
2147	up_write(&dmar_global_lock);
2148
2149	return 0;
2150}
2151
2152late_initcall(dmar_free_unused_resources);
2153
2154/*
2155 * DMAR Hotplug Support
2156 * For more details, please refer to Intel(R) Virtualization Technology
2157 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2158 * "Remapping Hardware Unit Hot Plug".
2159 */
2160static guid_t dmar_hp_guid =
2161	GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2162		  0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2163
2164/*
2165 * Currently there's only one revision and BIOS will not check the revision id,
2166 * so use 0 for safety.
2167 */
2168#define	DMAR_DSM_REV_ID			0
2169#define	DMAR_DSM_FUNC_DRHD		1
2170#define	DMAR_DSM_FUNC_ATSR		2
2171#define	DMAR_DSM_FUNC_RHSA		3
2172#define	DMAR_DSM_FUNC_SATC		4
2173
2174static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2175{
2176	return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2177}
2178
2179static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2180				  dmar_res_handler_t handler, void *arg)
2181{
2182	int ret = -ENODEV;
2183	union acpi_object *obj;
2184	struct acpi_dmar_header *start;
2185	struct dmar_res_callback callback;
2186	static int res_type[] = {
2187		[DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2188		[DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2189		[DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2190		[DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2191	};
2192
2193	if (!dmar_detect_dsm(handle, func))
2194		return 0;
2195
2196	obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2197				      func, NULL, ACPI_TYPE_BUFFER);
2198	if (!obj)
2199		return -ENODEV;
2200
2201	memset(&callback, 0, sizeof(callback));
2202	callback.cb[res_type[func]] = handler;
2203	callback.arg[res_type[func]] = arg;
2204	start = (struct acpi_dmar_header *)obj->buffer.pointer;
2205	ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2206
2207	ACPI_FREE(obj);
2208
2209	return ret;
2210}
2211
2212static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2213{
2214	int ret;
2215	struct dmar_drhd_unit *dmaru;
2216
2217	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2218	if (!dmaru)
2219		return -ENODEV;
2220
2221	ret = dmar_ir_hotplug(dmaru, true);
2222	if (ret == 0)
2223		ret = dmar_iommu_hotplug(dmaru, true);
2224
2225	return ret;
2226}
2227
2228static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2229{
2230	int i, ret;
2231	struct device *dev;
2232	struct dmar_drhd_unit *dmaru;
2233
2234	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2235	if (!dmaru)
2236		return 0;
2237
2238	/*
2239	 * All PCI devices managed by this unit should have been destroyed.
2240	 */
2241	if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2242		for_each_active_dev_scope(dmaru->devices,
2243					  dmaru->devices_cnt, i, dev)
2244			return -EBUSY;
2245	}
2246
2247	ret = dmar_ir_hotplug(dmaru, false);
2248	if (ret == 0)
2249		ret = dmar_iommu_hotplug(dmaru, false);
2250
2251	return ret;
2252}
2253
2254static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2255{
2256	struct dmar_drhd_unit *dmaru;
2257
2258	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2259	if (dmaru) {
2260		list_del_rcu(&dmaru->list);
2261		synchronize_rcu();
2262		dmar_free_drhd(dmaru);
2263	}
2264
2265	return 0;
2266}
2267
2268static int dmar_hotplug_insert(acpi_handle handle)
2269{
2270	int ret;
2271	int drhd_count = 0;
2272
2273	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2274				     &dmar_validate_one_drhd, (void *)1);
2275	if (ret)
2276		goto out;
2277
2278	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2279				     &dmar_parse_one_drhd, (void *)&drhd_count);
2280	if (ret == 0 && drhd_count == 0) {
2281		pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2282		goto out;
2283	} else if (ret) {
2284		goto release_drhd;
2285	}
2286
2287	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2288				     &dmar_parse_one_rhsa, NULL);
2289	if (ret)
2290		goto release_drhd;
2291
2292	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2293				     &dmar_parse_one_atsr, NULL);
2294	if (ret)
2295		goto release_atsr;
2296
2297	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2298				     &dmar_hp_add_drhd, NULL);
2299	if (!ret)
2300		return 0;
2301
2302	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2303			       &dmar_hp_remove_drhd, NULL);
2304release_atsr:
2305	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2306			       &dmar_release_one_atsr, NULL);
2307release_drhd:
2308	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2309			       &dmar_hp_release_drhd, NULL);
2310out:
2311	return ret;
2312}
2313
2314static int dmar_hotplug_remove(acpi_handle handle)
2315{
2316	int ret;
2317
2318	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2319				     &dmar_check_one_atsr, NULL);
2320	if (ret)
2321		return ret;
2322
2323	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2324				     &dmar_hp_remove_drhd, NULL);
2325	if (ret == 0) {
2326		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2327					       &dmar_release_one_atsr, NULL));
2328		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2329					       &dmar_hp_release_drhd, NULL));
2330	} else {
2331		dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2332				       &dmar_hp_add_drhd, NULL);
2333	}
2334
2335	return ret;
2336}
2337
2338static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2339				       void *context, void **retval)
2340{
2341	acpi_handle *phdl = retval;
2342
2343	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2344		*phdl = handle;
2345		return AE_CTRL_TERMINATE;
2346	}
2347
2348	return AE_OK;
2349}
2350
2351static int dmar_device_hotplug(acpi_handle handle, bool insert)
2352{
2353	int ret;
2354	acpi_handle tmp = NULL;
2355	acpi_status status;
2356
2357	if (!dmar_in_use())
2358		return 0;
2359
2360	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2361		tmp = handle;
2362	} else {
2363		status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2364					     ACPI_UINT32_MAX,
2365					     dmar_get_dsm_handle,
2366					     NULL, NULL, &tmp);
2367		if (ACPI_FAILURE(status)) {
2368			pr_warn("Failed to locate _DSM method.\n");
2369			return -ENXIO;
2370		}
2371	}
2372	if (tmp == NULL)
2373		return 0;
2374
2375	down_write(&dmar_global_lock);
2376	if (insert)
2377		ret = dmar_hotplug_insert(tmp);
2378	else
2379		ret = dmar_hotplug_remove(tmp);
2380	up_write(&dmar_global_lock);
2381
2382	return ret;
2383}
2384
2385int dmar_device_add(acpi_handle handle)
2386{
2387	return dmar_device_hotplug(handle, true);
2388}
2389
2390int dmar_device_remove(acpi_handle handle)
2391{
2392	return dmar_device_hotplug(handle, false);
2393}
2394
2395/*
2396 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2397 *
2398 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2399 * the ACPI DMAR table. This means that the platform boot firmware has made
2400 * sure no device can issue DMA outside of RMRR regions.
2401 */
2402bool dmar_platform_optin(void)
2403{
2404	struct acpi_table_dmar *dmar;
2405	acpi_status status;
2406	bool ret;
2407
2408	status = acpi_get_table(ACPI_SIG_DMAR, 0,
2409				(struct acpi_table_header **)&dmar);
2410	if (ACPI_FAILURE(status))
2411		return false;
2412
2413	ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2414	acpi_put_table((struct acpi_table_header *)dmar);
2415
2416	return ret;
2417}
2418EXPORT_SYMBOL_GPL(dmar_platform_optin);