Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * RDMA Transport Layer
   4 *
   5 * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
   6 * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
   7 * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
   8 */
   9
  10#undef pr_fmt
  11#define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
  12
  13#include <linux/module.h>
  14#include <linux/rculist.h>
  15#include <linux/random.h>
  16
  17#include "rtrs-clt.h"
  18#include "rtrs-log.h"
  19#include "rtrs-clt-trace.h"
  20
  21#define RTRS_CONNECT_TIMEOUT_MS 30000
  22/*
  23 * Wait a bit before trying to reconnect after a failure
  24 * in order to give server time to finish clean up which
  25 * leads to "false positives" failed reconnect attempts
  26 */
  27#define RTRS_RECONNECT_BACKOFF 1000
  28/*
  29 * Wait for additional random time between 0 and 8 seconds
  30 * before starting to reconnect to avoid clients reconnecting
  31 * all at once in case of a major network outage
  32 */
  33#define RTRS_RECONNECT_SEED 8
  34
  35#define FIRST_CONN 0x01
  36/* limit to 128 * 4k = 512k max IO */
  37#define RTRS_MAX_SEGMENTS          128
  38
  39MODULE_DESCRIPTION("RDMA Transport Client");
  40MODULE_LICENSE("GPL");
  41
  42static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
  43static struct rtrs_rdma_dev_pd dev_pd = {
  44	.ops = &dev_pd_ops
  45};
  46
  47static struct workqueue_struct *rtrs_wq;
  48static const struct class rtrs_clt_dev_class = {
  49	.name = "rtrs-client",
  50};
  51
  52static inline bool rtrs_clt_is_connected(const struct rtrs_clt_sess *clt)
  53{
  54	struct rtrs_clt_path *clt_path;
  55	bool connected = false;
  56
  57	rcu_read_lock();
  58	list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry)
  59		if (READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTED) {
  60			connected = true;
  61			break;
  62		}
  63	rcu_read_unlock();
  64
  65	return connected;
  66}
  67
  68static struct rtrs_permit *
  69__rtrs_get_permit(struct rtrs_clt_sess *clt, enum rtrs_clt_con_type con_type)
  70{
  71	size_t max_depth = clt->queue_depth;
  72	struct rtrs_permit *permit;
  73	int bit;
  74
  75	/*
  76	 * Adapted from null_blk get_tag(). Callers from different cpus may
  77	 * grab the same bit, since find_first_zero_bit is not atomic.
  78	 * But then the test_and_set_bit_lock will fail for all the
  79	 * callers but one, so that they will loop again.
  80	 * This way an explicit spinlock is not required.
  81	 */
  82	do {
  83		bit = find_first_zero_bit(clt->permits_map, max_depth);
  84		if (bit >= max_depth)
  85			return NULL;
  86	} while (test_and_set_bit_lock(bit, clt->permits_map));
  87
  88	permit = get_permit(clt, bit);
  89	WARN_ON(permit->mem_id != bit);
  90	permit->cpu_id = raw_smp_processor_id();
  91	permit->con_type = con_type;
  92
  93	return permit;
  94}
  95
  96static inline void __rtrs_put_permit(struct rtrs_clt_sess *clt,
  97				      struct rtrs_permit *permit)
  98{
  99	clear_bit_unlock(permit->mem_id, clt->permits_map);
 100}
 101
 102/**
 103 * rtrs_clt_get_permit() - allocates permit for future RDMA operation
 104 * @clt:	Current session
 105 * @con_type:	Type of connection to use with the permit
 106 * @can_wait:	Wait type
 107 *
 108 * Description:
 109 *    Allocates permit for the following RDMA operation.  Permit is used
 110 *    to preallocate all resources and to propagate memory pressure
 111 *    up earlier.
 112 *
 113 * Context:
 114 *    Can sleep if @wait == RTRS_PERMIT_WAIT
 115 */
 116struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt_sess *clt,
 117					  enum rtrs_clt_con_type con_type,
 118					  enum wait_type can_wait)
 119{
 120	struct rtrs_permit *permit;
 121	DEFINE_WAIT(wait);
 122
 123	permit = __rtrs_get_permit(clt, con_type);
 124	if (permit || !can_wait)
 125		return permit;
 126
 127	do {
 128		prepare_to_wait(&clt->permits_wait, &wait,
 129				TASK_UNINTERRUPTIBLE);
 130		permit = __rtrs_get_permit(clt, con_type);
 131		if (permit)
 132			break;
 133
 134		io_schedule();
 135	} while (1);
 136
 137	finish_wait(&clt->permits_wait, &wait);
 138
 139	return permit;
 140}
 141EXPORT_SYMBOL(rtrs_clt_get_permit);
 142
 143/**
 144 * rtrs_clt_put_permit() - puts allocated permit
 145 * @clt:	Current session
 146 * @permit:	Permit to be freed
 147 *
 148 * Context:
 149 *    Does not matter
 150 */
 151void rtrs_clt_put_permit(struct rtrs_clt_sess *clt,
 152			 struct rtrs_permit *permit)
 153{
 154	if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map)))
 155		return;
 156
 157	__rtrs_put_permit(clt, permit);
 158
 159	/*
 160	 * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list
 161	 * before calling schedule(). So if rtrs_clt_get_permit() is sleeping
 162	 * it must have added itself to &clt->permits_wait before
 163	 * __rtrs_put_permit() finished.
 164	 * Hence it is safe to guard wake_up() with a waitqueue_active() test.
 165	 */
 166	if (waitqueue_active(&clt->permits_wait))
 167		wake_up(&clt->permits_wait);
 168}
 169EXPORT_SYMBOL(rtrs_clt_put_permit);
 170
 171/**
 172 * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit
 173 * @clt_path: client path pointer
 174 * @permit: permit for the allocation of the RDMA buffer
 175 * Note:
 176 *     IO connection starts from 1.
 177 *     0 connection is for user messages.
 178 */
 179static
 180struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_path *clt_path,
 181					    struct rtrs_permit *permit)
 182{
 183	int id = 0;
 184
 185	if (permit->con_type == RTRS_IO_CON)
 186		id = (permit->cpu_id % (clt_path->s.irq_con_num - 1)) + 1;
 187
 188	return to_clt_con(clt_path->s.con[id]);
 189}
 190
 191/**
 192 * rtrs_clt_change_state() - change the session state through session state
 193 * machine.
 194 *
 195 * @clt_path: client path to change the state of.
 196 * @new_state: state to change to.
 197 *
 198 * returns true if sess's state is changed to new state, otherwise return false.
 199 *
 200 * Locks:
 201 * state_wq lock must be hold.
 202 */
 203static bool rtrs_clt_change_state(struct rtrs_clt_path *clt_path,
 204				     enum rtrs_clt_state new_state)
 205{
 206	enum rtrs_clt_state old_state;
 207	bool changed = false;
 208
 209	lockdep_assert_held(&clt_path->state_wq.lock);
 210
 211	old_state = clt_path->state;
 212	switch (new_state) {
 213	case RTRS_CLT_CONNECTING:
 214		switch (old_state) {
 215		case RTRS_CLT_RECONNECTING:
 216			changed = true;
 217			fallthrough;
 218		default:
 219			break;
 220		}
 221		break;
 222	case RTRS_CLT_RECONNECTING:
 223		switch (old_state) {
 224		case RTRS_CLT_CONNECTED:
 225		case RTRS_CLT_CONNECTING_ERR:
 226		case RTRS_CLT_CLOSED:
 227			changed = true;
 228			fallthrough;
 229		default:
 230			break;
 231		}
 232		break;
 233	case RTRS_CLT_CONNECTED:
 234		switch (old_state) {
 235		case RTRS_CLT_CONNECTING:
 236			changed = true;
 237			fallthrough;
 238		default:
 239			break;
 240		}
 241		break;
 242	case RTRS_CLT_CONNECTING_ERR:
 243		switch (old_state) {
 244		case RTRS_CLT_CONNECTING:
 245			changed = true;
 246			fallthrough;
 247		default:
 248			break;
 249		}
 250		break;
 251	case RTRS_CLT_CLOSING:
 252		switch (old_state) {
 253		case RTRS_CLT_CONNECTING:
 254		case RTRS_CLT_CONNECTING_ERR:
 255		case RTRS_CLT_RECONNECTING:
 256		case RTRS_CLT_CONNECTED:
 257			changed = true;
 258			fallthrough;
 259		default:
 260			break;
 261		}
 262		break;
 263	case RTRS_CLT_CLOSED:
 264		switch (old_state) {
 265		case RTRS_CLT_CLOSING:
 266			changed = true;
 267			fallthrough;
 268		default:
 269			break;
 270		}
 271		break;
 272	case RTRS_CLT_DEAD:
 273		switch (old_state) {
 274		case RTRS_CLT_CLOSED:
 275			changed = true;
 276			fallthrough;
 277		default:
 278			break;
 279		}
 280		break;
 281	default:
 282		break;
 283	}
 284	if (changed) {
 285		clt_path->state = new_state;
 286		wake_up_locked(&clt_path->state_wq);
 287	}
 288
 289	return changed;
 290}
 291
 292static bool rtrs_clt_change_state_from_to(struct rtrs_clt_path *clt_path,
 293					   enum rtrs_clt_state old_state,
 294					   enum rtrs_clt_state new_state)
 295{
 296	bool changed = false;
 297
 298	spin_lock_irq(&clt_path->state_wq.lock);
 299	if (clt_path->state == old_state)
 300		changed = rtrs_clt_change_state(clt_path, new_state);
 301	spin_unlock_irq(&clt_path->state_wq.lock);
 302
 303	return changed;
 304}
 305
 306static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_path *clt_path);
 307static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con)
 308{
 309	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 310
 311	trace_rtrs_rdma_error_recovery(clt_path);
 312
 313	if (rtrs_clt_change_state_from_to(clt_path,
 314					   RTRS_CLT_CONNECTED,
 315					   RTRS_CLT_RECONNECTING)) {
 316		queue_work(rtrs_wq, &clt_path->err_recovery_work);
 317	} else {
 318		/*
 319		 * Error can happen just on establishing new connection,
 320		 * so notify waiter with error state, waiter is responsible
 321		 * for cleaning the rest and reconnect if needed.
 322		 */
 323		rtrs_clt_change_state_from_to(clt_path,
 324					       RTRS_CLT_CONNECTING,
 325					       RTRS_CLT_CONNECTING_ERR);
 326	}
 327}
 328
 329static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc)
 330{
 331	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
 332
 333	if (wc->status != IB_WC_SUCCESS) {
 334		rtrs_err(con->c.path, "Failed IB_WR_REG_MR: %s\n",
 335			  ib_wc_status_msg(wc->status));
 336		rtrs_rdma_error_recovery(con);
 337	}
 338}
 339
 340static struct ib_cqe fast_reg_cqe = {
 341	.done = rtrs_clt_fast_reg_done
 342};
 343
 344static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
 345			      bool notify, bool can_wait);
 346
 347static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
 348{
 349	struct rtrs_clt_io_req *req =
 350		container_of(wc->wr_cqe, typeof(*req), inv_cqe);
 351	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
 352
 353	if (wc->status != IB_WC_SUCCESS) {
 354		rtrs_err(con->c.path, "Failed IB_WR_LOCAL_INV: %s\n",
 355			  ib_wc_status_msg(wc->status));
 356		rtrs_rdma_error_recovery(con);
 357	}
 358	req->need_inv = false;
 359	if (req->need_inv_comp)
 360		complete(&req->inv_comp);
 361	else
 362		/* Complete request from INV callback */
 363		complete_rdma_req(req, req->inv_errno, true, false);
 364}
 365
 366static int rtrs_inv_rkey(struct rtrs_clt_io_req *req)
 367{
 368	struct rtrs_clt_con *con = req->con;
 369	struct ib_send_wr wr = {
 370		.opcode		    = IB_WR_LOCAL_INV,
 371		.wr_cqe		    = &req->inv_cqe,
 372		.send_flags	    = IB_SEND_SIGNALED,
 373		.ex.invalidate_rkey = req->mr->rkey,
 374	};
 375	req->inv_cqe.done = rtrs_clt_inv_rkey_done;
 376
 377	return ib_post_send(con->c.qp, &wr, NULL);
 378}
 379
 380static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
 381			      bool notify, bool can_wait)
 382{
 383	struct rtrs_clt_con *con = req->con;
 384	struct rtrs_clt_path *clt_path;
 385	int err;
 386
 387	if (!req->in_use)
 388		return;
 389	if (WARN_ON(!req->con))
 390		return;
 391	clt_path = to_clt_path(con->c.path);
 392
 393	if (req->sg_cnt) {
 394		if (req->dir == DMA_FROM_DEVICE && req->need_inv) {
 395			/*
 396			 * We are here to invalidate read requests
 397			 * ourselves.  In normal scenario server should
 398			 * send INV for all read requests, but
 399			 * we are here, thus two things could happen:
 400			 *
 401			 *    1.  this is failover, when errno != 0
 402			 *        and can_wait == 1,
 403			 *
 404			 *    2.  something totally bad happened and
 405			 *        server forgot to send INV, so we
 406			 *        should do that ourselves.
 407			 */
 408
 409			if (can_wait) {
 410				req->need_inv_comp = true;
 411			} else {
 412				/* This should be IO path, so always notify */
 413				WARN_ON(!notify);
 414				/* Save errno for INV callback */
 415				req->inv_errno = errno;
 416			}
 417
 418			refcount_inc(&req->ref);
 419			err = rtrs_inv_rkey(req);
 420			if (err) {
 421				rtrs_err(con->c.path, "Send INV WR key=%#x: %d\n",
 422					  req->mr->rkey, err);
 423			} else if (can_wait) {
 424				wait_for_completion(&req->inv_comp);
 425			} else {
 426				/*
 427				 * Something went wrong, so request will be
 428				 * completed from INV callback.
 429				 */
 430				WARN_ON_ONCE(1);
 431
 432				return;
 433			}
 434			if (!refcount_dec_and_test(&req->ref))
 435				return;
 436		}
 437		ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
 438				req->sg_cnt, req->dir);
 439	}
 440	if (!refcount_dec_and_test(&req->ref))
 441		return;
 442	if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
 443		atomic_dec(&clt_path->stats->inflight);
 444
 445	req->in_use = false;
 446	req->con = NULL;
 447
 448	if (errno) {
 449		rtrs_err_rl(con->c.path, "IO request failed: error=%d path=%s [%s:%u] notify=%d\n",
 450			    errno, kobject_name(&clt_path->kobj), clt_path->hca_name,
 451			    clt_path->hca_port, notify);
 452	}
 453
 454	if (notify)
 455		req->conf(req->priv, errno);
 456}
 457
 458static int rtrs_post_send_rdma(struct rtrs_clt_con *con,
 459				struct rtrs_clt_io_req *req,
 460				struct rtrs_rbuf *rbuf, u32 off,
 461				u32 imm, struct ib_send_wr *wr)
 462{
 463	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 464	enum ib_send_flags flags;
 465	struct ib_sge sge;
 466
 467	if (!req->sg_size) {
 468		rtrs_wrn(con->c.path,
 469			 "Doing RDMA Write failed, no data supplied\n");
 470		return -EINVAL;
 471	}
 472
 473	/* user data and user message in the first list element */
 474	sge.addr   = req->iu->dma_addr;
 475	sge.length = req->sg_size;
 476	sge.lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
 477
 478	/*
 479	 * From time to time we have to post signalled sends,
 480	 * or send queue will fill up and only QP reset can help.
 481	 */
 482	flags = atomic_inc_return(&con->c.wr_cnt) % clt_path->s.signal_interval ?
 483			0 : IB_SEND_SIGNALED;
 484
 485	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
 486				      req->iu->dma_addr,
 487				      req->sg_size, DMA_TO_DEVICE);
 488
 489	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1,
 490					    rbuf->rkey, rbuf->addr + off,
 491					    imm, flags, wr, NULL);
 492}
 493
 494static void process_io_rsp(struct rtrs_clt_path *clt_path, u32 msg_id,
 495			   s16 errno, bool w_inval)
 496{
 497	struct rtrs_clt_io_req *req;
 498
 499	if (WARN_ON(msg_id >= clt_path->queue_depth))
 500		return;
 501
 502	req = &clt_path->reqs[msg_id];
 503	/* Drop need_inv if server responded with send with invalidation */
 504	req->need_inv &= !w_inval;
 505	complete_rdma_req(req, errno, true, false);
 506}
 507
 508static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc)
 509{
 510	struct rtrs_iu *iu;
 511	int err;
 512	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 513
 514	WARN_ON((clt_path->flags & RTRS_MSG_NEW_RKEY_F) == 0);
 515	iu = container_of(wc->wr_cqe, struct rtrs_iu,
 516			  cqe);
 517	err = rtrs_iu_post_recv(&con->c, iu);
 518	if (err) {
 519		rtrs_err(con->c.path, "post iu failed %d\n", err);
 520		rtrs_rdma_error_recovery(con);
 521	}
 522}
 523
 524static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc)
 525{
 526	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 527	struct rtrs_msg_rkey_rsp *msg;
 528	u32 imm_type, imm_payload;
 529	bool w_inval = false;
 530	struct rtrs_iu *iu;
 531	u32 buf_id;
 532	int err;
 533
 534	WARN_ON((clt_path->flags & RTRS_MSG_NEW_RKEY_F) == 0);
 535
 536	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
 537
 538	if (wc->byte_len < sizeof(*msg)) {
 539		rtrs_err(con->c.path, "rkey response is malformed: size %d\n",
 540			  wc->byte_len);
 541		goto out;
 542	}
 543	ib_dma_sync_single_for_cpu(clt_path->s.dev->ib_dev, iu->dma_addr,
 544				   iu->size, DMA_FROM_DEVICE);
 545	msg = iu->buf;
 546	if (le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP) {
 547		rtrs_err(clt_path->clt,
 548			  "rkey response is malformed: type %d\n",
 549			  le16_to_cpu(msg->type));
 550		goto out;
 551	}
 552	buf_id = le16_to_cpu(msg->buf_id);
 553	if (WARN_ON(buf_id >= clt_path->queue_depth))
 554		goto out;
 555
 556	rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload);
 557	if (imm_type == RTRS_IO_RSP_IMM ||
 558	    imm_type == RTRS_IO_RSP_W_INV_IMM) {
 559		u32 msg_id;
 560
 561		w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
 562		rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
 563
 564		if (WARN_ON(buf_id != msg_id))
 565			goto out;
 566		clt_path->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey);
 567		process_io_rsp(clt_path, msg_id, err, w_inval);
 568	}
 569	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev, iu->dma_addr,
 570				      iu->size, DMA_FROM_DEVICE);
 571	return rtrs_clt_recv_done(con, wc);
 572out:
 573	rtrs_rdma_error_recovery(con);
 574}
 575
 576static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
 577
 578static struct ib_cqe io_comp_cqe = {
 579	.done = rtrs_clt_rdma_done
 580};
 581
 582/*
 583 * Post x2 empty WRs: first is for this RDMA with IMM,
 584 * second is for RECV with INV, which happened earlier.
 585 */
 586static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe)
 587{
 588	struct ib_recv_wr wr_arr[2], *wr;
 589	int i;
 590
 591	memset(wr_arr, 0, sizeof(wr_arr));
 592	for (i = 0; i < ARRAY_SIZE(wr_arr); i++) {
 593		wr = &wr_arr[i];
 594		wr->wr_cqe  = cqe;
 595		if (i)
 596			/* Chain backwards */
 597			wr->next = &wr_arr[i - 1];
 598	}
 599
 600	return ib_post_recv(con->qp, wr, NULL);
 601}
 602
 603static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
 604{
 605	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
 606	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 607	u32 imm_type, imm_payload;
 608	bool w_inval = false;
 609	int err;
 610
 611	if (wc->status != IB_WC_SUCCESS) {
 612		if (wc->status != IB_WC_WR_FLUSH_ERR) {
 613			rtrs_err(clt_path->clt, "RDMA failed: %s\n",
 614				  ib_wc_status_msg(wc->status));
 615			rtrs_rdma_error_recovery(con);
 616		}
 617		return;
 618	}
 619	rtrs_clt_update_wc_stats(con);
 620
 621	switch (wc->opcode) {
 622	case IB_WC_RECV_RDMA_WITH_IMM:
 623		/*
 624		 * post_recv() RDMA write completions of IO reqs (read/write)
 625		 * and hb
 626		 */
 627		if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done))
 628			return;
 629		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
 630			       &imm_type, &imm_payload);
 631		if (imm_type == RTRS_IO_RSP_IMM ||
 632		    imm_type == RTRS_IO_RSP_W_INV_IMM) {
 633			u32 msg_id;
 634
 635			w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
 636			rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
 637
 638			process_io_rsp(clt_path, msg_id, err, w_inval);
 639		} else if (imm_type == RTRS_HB_MSG_IMM) {
 640			WARN_ON(con->c.cid);
 641			rtrs_send_hb_ack(&clt_path->s);
 642			if (clt_path->flags & RTRS_MSG_NEW_RKEY_F)
 643				return  rtrs_clt_recv_done(con, wc);
 644		} else if (imm_type == RTRS_HB_ACK_IMM) {
 645			WARN_ON(con->c.cid);
 646			clt_path->s.hb_missed_cnt = 0;
 647			clt_path->s.hb_cur_latency =
 648				ktime_sub(ktime_get(), clt_path->s.hb_last_sent);
 649			if (clt_path->flags & RTRS_MSG_NEW_RKEY_F)
 650				return  rtrs_clt_recv_done(con, wc);
 651		} else {
 652			rtrs_wrn(con->c.path, "Unknown IMM type %u\n",
 653				  imm_type);
 654		}
 655		if (w_inval)
 656			/*
 657			 * Post x2 empty WRs: first is for this RDMA with IMM,
 658			 * second is for RECV with INV, which happened earlier.
 659			 */
 660			err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe);
 661		else
 662			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
 663		if (err) {
 664			rtrs_err(con->c.path, "rtrs_post_recv_empty(): %d\n",
 665				  err);
 666			rtrs_rdma_error_recovery(con);
 667		}
 668		break;
 669	case IB_WC_RECV:
 670		/*
 671		 * Key invalidations from server side
 672		 */
 673		WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE ||
 674			  wc->wc_flags & IB_WC_WITH_IMM));
 675		WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done);
 676		if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) {
 677			if (wc->wc_flags & IB_WC_WITH_INVALIDATE)
 678				return  rtrs_clt_recv_done(con, wc);
 679
 680			return  rtrs_clt_rkey_rsp_done(con, wc);
 681		}
 682		break;
 683	case IB_WC_RDMA_WRITE:
 684		/*
 685		 * post_send() RDMA write completions of IO reqs (read/write)
 686		 * and hb.
 687		 */
 688		break;
 689
 690	default:
 691		rtrs_wrn(clt_path->clt, "Unexpected WC type: %d\n", wc->opcode);
 692		return;
 693	}
 694}
 695
 696static int post_recv_io(struct rtrs_clt_con *con, size_t q_size)
 697{
 698	int err, i;
 699	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 700
 701	for (i = 0; i < q_size; i++) {
 702		if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) {
 703			struct rtrs_iu *iu = &con->rsp_ius[i];
 704
 705			err = rtrs_iu_post_recv(&con->c, iu);
 706		} else {
 707			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
 708		}
 709		if (err)
 710			return err;
 711	}
 712
 713	return 0;
 714}
 715
 716static int post_recv_path(struct rtrs_clt_path *clt_path)
 717{
 718	size_t q_size = 0;
 719	int err, cid;
 720
 721	for (cid = 0; cid < clt_path->s.con_num; cid++) {
 722		if (cid == 0)
 723			q_size = SERVICE_CON_QUEUE_DEPTH;
 724		else
 725			q_size = clt_path->queue_depth;
 726
 727		/*
 728		 * x2 for RDMA read responses + FR key invalidations,
 729		 * RDMA writes do not require any FR registrations.
 730		 */
 731		q_size *= 2;
 732
 733		err = post_recv_io(to_clt_con(clt_path->s.con[cid]), q_size);
 734		if (err) {
 735			rtrs_err(clt_path->clt, "post_recv_io(), err: %d\n",
 736				 err);
 737			return err;
 738		}
 739	}
 740
 741	return 0;
 742}
 743
 744struct path_it {
 745	int i;
 746	struct list_head skip_list;
 747	struct rtrs_clt_sess *clt;
 748	struct rtrs_clt_path *(*next_path)(struct path_it *it);
 749};
 750
 751/*
 752 * rtrs_clt_get_next_path_or_null - get clt path from the list or return NULL
 753 * @head:	the head for the list.
 754 * @clt_path:	The element to take the next clt_path from.
 755 *
 756 * Next clt path returned in round-robin fashion, i.e. head will be skipped,
 757 * but if list is observed as empty, NULL will be returned.
 758 *
 759 * This function may safely run concurrently with the _rcu list-mutation
 760 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 761 */
 762static inline struct rtrs_clt_path *
 763rtrs_clt_get_next_path_or_null(struct list_head *head, struct rtrs_clt_path *clt_path)
 764{
 765	return list_next_or_null_rcu(head, &clt_path->s.entry, typeof(*clt_path), s.entry) ?:
 766				     list_next_or_null_rcu(head,
 767							   READ_ONCE((&clt_path->s.entry)->next),
 768							   typeof(*clt_path), s.entry);
 769}
 770
 771/**
 772 * get_next_path_rr() - Returns path in round-robin fashion.
 773 * @it:	the path pointer
 774 *
 775 * Related to @MP_POLICY_RR
 776 *
 777 * Locks:
 778 *    rcu_read_lock() must be held.
 779 */
 780static struct rtrs_clt_path *get_next_path_rr(struct path_it *it)
 781{
 782	struct rtrs_clt_path __rcu **ppcpu_path;
 783	struct rtrs_clt_path *path;
 784	struct rtrs_clt_sess *clt;
 785
 786	/*
 787	 * Assert that rcu lock must be held
 788	 */
 789	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu read lock held");
 790
 791	clt = it->clt;
 792
 793	/*
 794	 * Here we use two RCU objects: @paths_list and @pcpu_path
 795	 * pointer.  See rtrs_clt_remove_path_from_arr() for details
 796	 * how that is handled.
 797	 */
 798
 799	ppcpu_path = this_cpu_ptr(clt->pcpu_path);
 800	path = rcu_dereference(*ppcpu_path);
 801	if (!path)
 802		path = list_first_or_null_rcu(&clt->paths_list,
 803					      typeof(*path), s.entry);
 804	else
 805		path = rtrs_clt_get_next_path_or_null(&clt->paths_list, path);
 806
 807	rcu_assign_pointer(*ppcpu_path, path);
 808
 809	return path;
 810}
 811
 812/**
 813 * get_next_path_min_inflight() - Returns path with minimal inflight count.
 814 * @it:	the path pointer
 815 *
 816 * Related to @MP_POLICY_MIN_INFLIGHT
 817 *
 818 * Locks:
 819 *    rcu_read_lock() must be hold.
 820 */
 821static struct rtrs_clt_path *get_next_path_min_inflight(struct path_it *it)
 822{
 823	struct rtrs_clt_path *min_path = NULL;
 824	struct rtrs_clt_sess *clt = it->clt;
 825	struct rtrs_clt_path *clt_path;
 826	int min_inflight = INT_MAX;
 827	int inflight;
 828
 829	list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry) {
 830		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
 831			continue;
 832
 833		if (!list_empty(raw_cpu_ptr(clt_path->mp_skip_entry)))
 834			continue;
 835
 836		inflight = atomic_read(&clt_path->stats->inflight);
 837
 838		if (inflight < min_inflight) {
 839			min_inflight = inflight;
 840			min_path = clt_path;
 841		}
 842	}
 843
 844	/*
 845	 * add the path to the skip list, so that next time we can get
 846	 * a different one
 847	 */
 848	if (min_path)
 849		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
 850
 851	return min_path;
 852}
 853
 854/**
 855 * get_next_path_min_latency() - Returns path with minimal latency.
 856 * @it:	the path pointer
 857 *
 858 * Return: a path with the lowest latency or NULL if all paths are tried
 859 *
 860 * Locks:
 861 *    rcu_read_lock() must be hold.
 862 *
 863 * Related to @MP_POLICY_MIN_LATENCY
 864 *
 865 * This DOES skip an already-tried path.
 866 * There is a skip-list to skip a path if the path has tried but failed.
 867 * It will try the minimum latency path and then the second minimum latency
 868 * path and so on. Finally it will return NULL if all paths are tried.
 869 * Therefore the caller MUST check the returned
 870 * path is NULL and trigger the IO error.
 871 */
 872static struct rtrs_clt_path *get_next_path_min_latency(struct path_it *it)
 873{
 874	struct rtrs_clt_path *min_path = NULL;
 875	struct rtrs_clt_sess *clt = it->clt;
 876	struct rtrs_clt_path *clt_path;
 877	ktime_t min_latency = KTIME_MAX;
 878	ktime_t latency;
 879
 880	list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry) {
 881		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
 882			continue;
 883
 884		if (!list_empty(raw_cpu_ptr(clt_path->mp_skip_entry)))
 885			continue;
 886
 887		latency = clt_path->s.hb_cur_latency;
 888
 889		if (latency < min_latency) {
 890			min_latency = latency;
 891			min_path = clt_path;
 892		}
 893	}
 894
 895	/*
 896	 * add the path to the skip list, so that next time we can get
 897	 * a different one
 898	 */
 899	if (min_path)
 900		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
 901
 902	return min_path;
 903}
 904
 905static inline void path_it_init(struct path_it *it, struct rtrs_clt_sess *clt)
 906{
 907	INIT_LIST_HEAD(&it->skip_list);
 908	it->clt = clt;
 909	it->i = 0;
 910
 911	if (clt->mp_policy == MP_POLICY_RR)
 912		it->next_path = get_next_path_rr;
 913	else if (clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
 914		it->next_path = get_next_path_min_inflight;
 915	else
 916		it->next_path = get_next_path_min_latency;
 917}
 918
 919static inline void path_it_deinit(struct path_it *it)
 920{
 921	struct list_head *skip, *tmp;
 922	/*
 923	 * The skip_list is used only for the MIN_INFLIGHT and MIN_LATENCY policies.
 924	 * We need to remove paths from it, so that next IO can insert
 925	 * paths (->mp_skip_entry) into a skip_list again.
 926	 */
 927	list_for_each_safe(skip, tmp, &it->skip_list)
 928		list_del_init(skip);
 929}
 930
 931/**
 932 * rtrs_clt_init_req() - Initialize an rtrs_clt_io_req holding information
 933 * about an inflight IO.
 934 * The user buffer holding user control message (not data) is copied into
 935 * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will
 936 * also hold the control message of rtrs.
 937 * @req: an io request holding information about IO.
 938 * @clt_path: client path
 939 * @conf: conformation callback function to notify upper layer.
 940 * @permit: permit for allocation of RDMA remote buffer
 941 * @priv: private pointer
 942 * @vec: kernel vector containing control message
 943 * @usr_len: length of the user message
 944 * @sg: scater list for IO data
 945 * @sg_cnt: number of scater list entries
 946 * @data_len: length of the IO data
 947 * @dir: direction of the IO.
 948 */
 949static void rtrs_clt_init_req(struct rtrs_clt_io_req *req,
 950			      struct rtrs_clt_path *clt_path,
 951			      void (*conf)(void *priv, int errno),
 952			      struct rtrs_permit *permit, void *priv,
 953			      const struct kvec *vec, size_t usr_len,
 954			      struct scatterlist *sg, size_t sg_cnt,
 955			      size_t data_len, int dir)
 956{
 957	struct iov_iter iter;
 958	size_t len;
 959
 960	req->permit = permit;
 961	req->in_use = true;
 962	req->usr_len = usr_len;
 963	req->data_len = data_len;
 964	req->sglist = sg;
 965	req->sg_cnt = sg_cnt;
 966	req->priv = priv;
 967	req->dir = dir;
 968	req->con = rtrs_permit_to_clt_con(clt_path, permit);
 969	req->conf = conf;
 970	req->need_inv = false;
 971	req->need_inv_comp = false;
 972	req->inv_errno = 0;
 973	refcount_set(&req->ref, 1);
 974	req->mp_policy = clt_path->clt->mp_policy;
 975
 976	iov_iter_kvec(&iter, ITER_SOURCE, vec, 1, usr_len);
 977	len = _copy_from_iter(req->iu->buf, usr_len, &iter);
 978	WARN_ON(len != usr_len);
 979
 980	reinit_completion(&req->inv_comp);
 981}
 982
 983static struct rtrs_clt_io_req *
 984rtrs_clt_get_req(struct rtrs_clt_path *clt_path,
 985		 void (*conf)(void *priv, int errno),
 986		 struct rtrs_permit *permit, void *priv,
 987		 const struct kvec *vec, size_t usr_len,
 988		 struct scatterlist *sg, size_t sg_cnt,
 989		 size_t data_len, int dir)
 990{
 991	struct rtrs_clt_io_req *req;
 992
 993	req = &clt_path->reqs[permit->mem_id];
 994	rtrs_clt_init_req(req, clt_path, conf, permit, priv, vec, usr_len,
 995			   sg, sg_cnt, data_len, dir);
 996	return req;
 997}
 998
 999static struct rtrs_clt_io_req *
1000rtrs_clt_get_copy_req(struct rtrs_clt_path *alive_path,
1001		       struct rtrs_clt_io_req *fail_req)
1002{
1003	struct rtrs_clt_io_req *req;
1004	struct kvec vec = {
1005		.iov_base = fail_req->iu->buf,
1006		.iov_len  = fail_req->usr_len
1007	};
1008
1009	req = &alive_path->reqs[fail_req->permit->mem_id];
1010	rtrs_clt_init_req(req, alive_path, fail_req->conf, fail_req->permit,
1011			   fail_req->priv, &vec, fail_req->usr_len,
1012			   fail_req->sglist, fail_req->sg_cnt,
1013			   fail_req->data_len, fail_req->dir);
1014	return req;
1015}
1016
1017static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con,
1018				   struct rtrs_clt_io_req *req,
1019				   struct rtrs_rbuf *rbuf, bool fr_en,
1020				   u32 count, u32 size, u32 imm,
1021				   struct ib_send_wr *wr,
1022				   struct ib_send_wr *tail)
1023{
1024	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1025	struct ib_sge *sge = req->sge;
1026	enum ib_send_flags flags;
1027	struct scatterlist *sg;
1028	size_t num_sge;
1029	int i;
1030	struct ib_send_wr *ptail = NULL;
1031
1032	if (fr_en) {
1033		i = 0;
1034		sge[i].addr   = req->mr->iova;
1035		sge[i].length = req->mr->length;
1036		sge[i].lkey   = req->mr->lkey;
1037		i++;
1038		num_sge = 2;
1039		ptail = tail;
1040	} else {
1041		for_each_sg(req->sglist, sg, count, i) {
1042			sge[i].addr   = sg_dma_address(sg);
1043			sge[i].length = sg_dma_len(sg);
1044			sge[i].lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
1045		}
1046		num_sge = 1 + count;
1047	}
1048	sge[i].addr   = req->iu->dma_addr;
1049	sge[i].length = size;
1050	sge[i].lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
1051
1052	/*
1053	 * From time to time we have to post signalled sends,
1054	 * or send queue will fill up and only QP reset can help.
1055	 */
1056	flags = atomic_inc_return(&con->c.wr_cnt) % clt_path->s.signal_interval ?
1057			0 : IB_SEND_SIGNALED;
1058
1059	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
1060				      req->iu->dma_addr,
1061				      size, DMA_TO_DEVICE);
1062
1063	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge,
1064					    rbuf->rkey, rbuf->addr, imm,
1065					    flags, wr, ptail);
1066}
1067
1068static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count)
1069{
1070	int nr;
1071
1072	/* Align the MR to a 4K page size to match the block virt boundary */
1073	nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K);
1074	if (nr != count)
1075		return nr < 0 ? nr : -EINVAL;
1076	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1077
1078	return nr;
1079}
1080
1081static int rtrs_clt_write_req(struct rtrs_clt_io_req *req)
1082{
1083	struct rtrs_clt_con *con = req->con;
1084	struct rtrs_path *s = con->c.path;
1085	struct rtrs_clt_path *clt_path = to_clt_path(s);
1086	struct rtrs_msg_rdma_write *msg;
1087
1088	struct rtrs_rbuf *rbuf;
1089	int ret, count = 0;
1090	u32 imm, buf_id;
1091	struct ib_reg_wr rwr;
1092	struct ib_send_wr inv_wr;
1093	struct ib_send_wr *wr = NULL;
1094	bool fr_en = false;
1095
1096	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1097
1098	if (tsize > clt_path->chunk_size) {
1099		rtrs_wrn(s, "Write request failed, size too big %zu > %d\n",
1100			  tsize, clt_path->chunk_size);
1101		return -EMSGSIZE;
1102	}
1103	if (req->sg_cnt) {
1104		count = ib_dma_map_sg(clt_path->s.dev->ib_dev, req->sglist,
1105				      req->sg_cnt, req->dir);
1106		if (!count) {
1107			rtrs_wrn(s, "Write request failed, map failed\n");
1108			return -EINVAL;
1109		}
1110	}
1111	/* put rtrs msg after sg and user message */
1112	msg = req->iu->buf + req->usr_len;
1113	msg->type = cpu_to_le16(RTRS_MSG_WRITE);
1114	msg->usr_len = cpu_to_le16(req->usr_len);
1115
1116	/* rtrs message on server side will be after user data and message */
1117	imm = req->permit->mem_off + req->data_len + req->usr_len;
1118	imm = rtrs_to_io_req_imm(imm);
1119	buf_id = req->permit->mem_id;
1120	req->sg_size = tsize;
1121	rbuf = &clt_path->rbufs[buf_id];
1122
1123	if (count) {
1124		ret = rtrs_map_sg_fr(req, count);
1125		if (ret < 0) {
1126			rtrs_err_rl(s,
1127				    "Write request failed, failed to map fast reg. data, err: %d\n",
1128				    ret);
1129			ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
1130					req->sg_cnt, req->dir);
1131			return ret;
1132		}
1133		inv_wr = (struct ib_send_wr) {
1134			.opcode		    = IB_WR_LOCAL_INV,
1135			.wr_cqe		    = &req->inv_cqe,
1136			.send_flags	    = IB_SEND_SIGNALED,
1137			.ex.invalidate_rkey = req->mr->rkey,
1138		};
1139		req->inv_cqe.done = rtrs_clt_inv_rkey_done;
1140		rwr = (struct ib_reg_wr) {
1141			.wr.opcode = IB_WR_REG_MR,
1142			.wr.wr_cqe = &fast_reg_cqe,
1143			.mr = req->mr,
1144			.key = req->mr->rkey,
1145			.access = (IB_ACCESS_LOCAL_WRITE),
1146		};
1147		wr = &rwr.wr;
1148		fr_en = true;
1149		refcount_inc(&req->ref);
1150	}
1151	/*
1152	 * Update stats now, after request is successfully sent it is not
1153	 * safe anymore to touch it.
1154	 */
1155	rtrs_clt_update_all_stats(req, WRITE);
1156
1157	ret = rtrs_post_rdma_write_sg(req->con, req, rbuf, fr_en, count,
1158				      req->usr_len + sizeof(*msg),
1159				      imm, wr, &inv_wr);
1160	if (ret) {
1161		rtrs_err_rl(s,
1162			    "Write request failed: error=%d path=%s [%s:%u]\n",
1163			    ret, kobject_name(&clt_path->kobj), clt_path->hca_name,
1164			    clt_path->hca_port);
1165		if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
1166			atomic_dec(&clt_path->stats->inflight);
1167		if (req->sg_cnt)
1168			ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
1169					req->sg_cnt, req->dir);
1170	}
1171
1172	return ret;
1173}
1174
1175static int rtrs_clt_read_req(struct rtrs_clt_io_req *req)
1176{
1177	struct rtrs_clt_con *con = req->con;
1178	struct rtrs_path *s = con->c.path;
1179	struct rtrs_clt_path *clt_path = to_clt_path(s);
1180	struct rtrs_msg_rdma_read *msg;
1181	struct rtrs_ib_dev *dev = clt_path->s.dev;
1182
1183	struct ib_reg_wr rwr;
1184	struct ib_send_wr *wr = NULL;
1185
1186	int ret, count = 0;
1187	u32 imm, buf_id;
1188
1189	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1190
1191	if (tsize > clt_path->chunk_size) {
1192		rtrs_wrn(s,
1193			  "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n",
1194			  tsize, clt_path->chunk_size);
1195		return -EMSGSIZE;
1196	}
1197
1198	if (req->sg_cnt) {
1199		count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1200				      req->dir);
1201		if (!count) {
1202			rtrs_wrn(s,
1203				  "Read request failed, dma map failed\n");
1204			return -EINVAL;
1205		}
1206	}
1207	/* put our message into req->buf after user message*/
1208	msg = req->iu->buf + req->usr_len;
1209	msg->type = cpu_to_le16(RTRS_MSG_READ);
1210	msg->usr_len = cpu_to_le16(req->usr_len);
1211
1212	if (count) {
1213		ret = rtrs_map_sg_fr(req, count);
1214		if (ret < 0) {
1215			rtrs_err_rl(s,
1216				     "Read request failed, failed to map  fast reg. data, err: %d\n",
1217				     ret);
1218			ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1219					req->dir);
1220			return ret;
1221		}
1222		rwr = (struct ib_reg_wr) {
1223			.wr.opcode = IB_WR_REG_MR,
1224			.wr.wr_cqe = &fast_reg_cqe,
1225			.mr = req->mr,
1226			.key = req->mr->rkey,
1227			.access = (IB_ACCESS_LOCAL_WRITE |
1228				   IB_ACCESS_REMOTE_WRITE),
1229		};
1230		wr = &rwr.wr;
1231
1232		msg->sg_cnt = cpu_to_le16(1);
1233		msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F);
1234
1235		msg->desc[0].addr = cpu_to_le64(req->mr->iova);
1236		msg->desc[0].key = cpu_to_le32(req->mr->rkey);
1237		msg->desc[0].len = cpu_to_le32(req->mr->length);
1238
1239		/* Further invalidation is required */
1240		req->need_inv = !!RTRS_MSG_NEED_INVAL_F;
1241
1242	} else {
1243		msg->sg_cnt = 0;
1244		msg->flags = 0;
1245	}
1246	/*
1247	 * rtrs message will be after the space reserved for disk data and
1248	 * user message
1249	 */
1250	imm = req->permit->mem_off + req->data_len + req->usr_len;
1251	imm = rtrs_to_io_req_imm(imm);
1252	buf_id = req->permit->mem_id;
1253
1254	req->sg_size  = sizeof(*msg);
1255	req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc);
1256	req->sg_size += req->usr_len;
1257
1258	/*
1259	 * Update stats now, after request is successfully sent it is not
1260	 * safe anymore to touch it.
1261	 */
1262	rtrs_clt_update_all_stats(req, READ);
1263
1264	ret = rtrs_post_send_rdma(req->con, req, &clt_path->rbufs[buf_id],
1265				   req->data_len, imm, wr);
1266	if (ret) {
1267		rtrs_err_rl(s,
1268			    "Read request failed: error=%d path=%s [%s:%u]\n",
1269			    ret, kobject_name(&clt_path->kobj), clt_path->hca_name,
1270			    clt_path->hca_port);
1271		if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
1272			atomic_dec(&clt_path->stats->inflight);
1273		req->need_inv = false;
1274		if (req->sg_cnt)
1275			ib_dma_unmap_sg(dev->ib_dev, req->sglist,
1276					req->sg_cnt, req->dir);
1277	}
1278
1279	return ret;
1280}
1281
1282/**
1283 * rtrs_clt_failover_req() - Try to find an active path for a failed request
1284 * @clt: clt context
1285 * @fail_req: a failed io request.
1286 */
1287static int rtrs_clt_failover_req(struct rtrs_clt_sess *clt,
1288				 struct rtrs_clt_io_req *fail_req)
1289{
1290	struct rtrs_clt_path *alive_path;
1291	struct rtrs_clt_io_req *req;
1292	int err = -ECONNABORTED;
1293	struct path_it it;
1294
1295	rcu_read_lock();
1296	for (path_it_init(&it, clt);
1297	     (alive_path = it.next_path(&it)) && it.i < it.clt->paths_num;
1298	     it.i++) {
1299		if (READ_ONCE(alive_path->state) != RTRS_CLT_CONNECTED)
1300			continue;
1301		req = rtrs_clt_get_copy_req(alive_path, fail_req);
1302		if (req->dir == DMA_TO_DEVICE)
1303			err = rtrs_clt_write_req(req);
1304		else
1305			err = rtrs_clt_read_req(req);
1306		if (err) {
1307			req->in_use = false;
1308			continue;
1309		}
1310		/* Success path */
1311		rtrs_clt_inc_failover_cnt(alive_path->stats);
1312		break;
1313	}
1314	path_it_deinit(&it);
1315	rcu_read_unlock();
1316
1317	return err;
1318}
1319
1320static void fail_all_outstanding_reqs(struct rtrs_clt_path *clt_path)
1321{
1322	struct rtrs_clt_sess *clt = clt_path->clt;
1323	struct rtrs_clt_io_req *req;
1324	int i, err;
1325
1326	if (!clt_path->reqs)
1327		return;
1328	for (i = 0; i < clt_path->queue_depth; ++i) {
1329		req = &clt_path->reqs[i];
1330		if (!req->in_use)
1331			continue;
1332
1333		/*
1334		 * Safely (without notification) complete failed request.
1335		 * After completion this request is still useble and can
1336		 * be failovered to another path.
1337		 */
1338		complete_rdma_req(req, -ECONNABORTED, false, true);
1339
1340		err = rtrs_clt_failover_req(clt, req);
1341		if (err)
1342			/* Failover failed, notify anyway */
1343			req->conf(req->priv, err);
1344	}
1345}
1346
1347static void free_path_reqs(struct rtrs_clt_path *clt_path)
1348{
1349	struct rtrs_clt_io_req *req;
1350	int i;
1351
1352	if (!clt_path->reqs)
1353		return;
1354	for (i = 0; i < clt_path->queue_depth; ++i) {
1355		req = &clt_path->reqs[i];
1356		if (req->mr)
1357			ib_dereg_mr(req->mr);
1358		kfree(req->sge);
1359		rtrs_iu_free(req->iu, clt_path->s.dev->ib_dev, 1);
1360	}
1361	kfree(clt_path->reqs);
1362	clt_path->reqs = NULL;
1363}
1364
1365static int alloc_path_reqs(struct rtrs_clt_path *clt_path)
1366{
1367	struct rtrs_clt_io_req *req;
1368	int i, err = -ENOMEM;
1369
1370	clt_path->reqs = kcalloc(clt_path->queue_depth,
1371				 sizeof(*clt_path->reqs),
1372				 GFP_KERNEL);
1373	if (!clt_path->reqs)
1374		return -ENOMEM;
1375
1376	for (i = 0; i < clt_path->queue_depth; ++i) {
1377		req = &clt_path->reqs[i];
1378		req->iu = rtrs_iu_alloc(1, clt_path->max_hdr_size, GFP_KERNEL,
1379					 clt_path->s.dev->ib_dev,
1380					 DMA_TO_DEVICE,
1381					 rtrs_clt_rdma_done);
1382		if (!req->iu)
1383			goto out;
1384
1385		req->sge = kcalloc(2, sizeof(*req->sge), GFP_KERNEL);
1386		if (!req->sge)
1387			goto out;
1388
1389		req->mr = ib_alloc_mr(clt_path->s.dev->ib_pd,
1390				      IB_MR_TYPE_MEM_REG,
1391				      clt_path->max_pages_per_mr);
1392		if (IS_ERR(req->mr)) {
1393			err = PTR_ERR(req->mr);
1394			pr_err("Failed to alloc clt_path->max_pages_per_mr %d: %pe\n",
1395			       clt_path->max_pages_per_mr, req->mr);
1396			req->mr = NULL;
 
 
1397			goto out;
1398		}
1399
1400		init_completion(&req->inv_comp);
1401	}
1402
1403	return 0;
1404
1405out:
1406	free_path_reqs(clt_path);
1407
1408	return err;
1409}
1410
1411static int alloc_permits(struct rtrs_clt_sess *clt)
1412{
1413	unsigned int chunk_bits;
1414	int err, i;
1415
1416	clt->permits_map = bitmap_zalloc(clt->queue_depth, GFP_KERNEL);
1417	if (!clt->permits_map) {
1418		err = -ENOMEM;
1419		goto out_err;
1420	}
1421	clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL);
1422	if (!clt->permits) {
1423		err = -ENOMEM;
1424		goto err_map;
1425	}
1426	chunk_bits = ilog2(clt->queue_depth - 1) + 1;
1427	for (i = 0; i < clt->queue_depth; i++) {
1428		struct rtrs_permit *permit;
1429
1430		permit = get_permit(clt, i);
1431		permit->mem_id = i;
1432		permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits);
1433	}
1434
1435	return 0;
1436
1437err_map:
1438	bitmap_free(clt->permits_map);
1439	clt->permits_map = NULL;
1440out_err:
1441	return err;
1442}
1443
1444static void free_permits(struct rtrs_clt_sess *clt)
1445{
1446	if (clt->permits_map)
1447		wait_event(clt->permits_wait,
1448			   bitmap_empty(clt->permits_map, clt->queue_depth));
1449
1450	bitmap_free(clt->permits_map);
1451	clt->permits_map = NULL;
1452	kfree(clt->permits);
1453	clt->permits = NULL;
1454}
1455
1456static void query_fast_reg_mode(struct rtrs_clt_path *clt_path)
1457{
1458	struct ib_device *ib_dev;
1459	u64 max_pages_per_mr;
1460	int mr_page_shift;
1461
1462	ib_dev = clt_path->s.dev->ib_dev;
1463
1464	/*
1465	 * Use the smallest page size supported by the HCA, down to a
1466	 * minimum of 4096 bytes. We're unlikely to build large sglists
1467	 * out of smaller entries.
1468	 */
1469	mr_page_shift      = max(12, ffs(ib_dev->attrs.page_size_cap) - 1);
1470	max_pages_per_mr   = ib_dev->attrs.max_mr_size;
1471	do_div(max_pages_per_mr, (1ull << mr_page_shift));
1472	clt_path->max_pages_per_mr =
1473		min3(clt_path->max_pages_per_mr, (u32)max_pages_per_mr,
1474		     ib_dev->attrs.max_fast_reg_page_list_len);
1475	clt_path->clt->max_segments =
1476		min(clt_path->max_pages_per_mr, clt_path->clt->max_segments);
1477}
1478
1479static bool rtrs_clt_change_state_get_old(struct rtrs_clt_path *clt_path,
1480					   enum rtrs_clt_state new_state,
1481					   enum rtrs_clt_state *old_state)
1482{
1483	bool changed;
1484
1485	spin_lock_irq(&clt_path->state_wq.lock);
1486	if (old_state)
1487		*old_state = clt_path->state;
1488	changed = rtrs_clt_change_state(clt_path, new_state);
1489	spin_unlock_irq(&clt_path->state_wq.lock);
1490
1491	return changed;
1492}
1493
1494static void rtrs_clt_hb_err_handler(struct rtrs_con *c)
1495{
1496	struct rtrs_clt_con *con = container_of(c, typeof(*con), c);
1497
1498	rtrs_rdma_error_recovery(con);
1499}
1500
1501static void rtrs_clt_init_hb(struct rtrs_clt_path *clt_path)
1502{
1503	rtrs_init_hb(&clt_path->s, &io_comp_cqe,
1504		      RTRS_HB_INTERVAL_MS,
1505		      RTRS_HB_MISSED_MAX,
1506		      rtrs_clt_hb_err_handler,
1507		      rtrs_wq);
1508}
1509
1510static void rtrs_clt_reconnect_work(struct work_struct *work);
1511static void rtrs_clt_close_work(struct work_struct *work);
1512
1513static void rtrs_clt_err_recovery_work(struct work_struct *work)
1514{
1515	struct rtrs_clt_path *clt_path;
1516	struct rtrs_clt_sess *clt;
1517	int delay_ms;
1518
1519	clt_path = container_of(work, struct rtrs_clt_path, err_recovery_work);
1520	clt = clt_path->clt;
1521	delay_ms = clt->reconnect_delay_sec * 1000;
1522	rtrs_clt_stop_and_destroy_conns(clt_path);
1523	queue_delayed_work(rtrs_wq, &clt_path->reconnect_dwork,
1524			   msecs_to_jiffies(delay_ms +
1525					    get_random_u32_below(RTRS_RECONNECT_SEED)));
1526}
1527
1528static struct rtrs_clt_path *alloc_path(struct rtrs_clt_sess *clt,
1529					const struct rtrs_addr *path,
1530					size_t con_num, u32 nr_poll_queues)
1531{
1532	struct rtrs_clt_path *clt_path;
1533	int err = -ENOMEM;
1534	int cpu;
1535	size_t total_con;
1536
1537	clt_path = kzalloc(sizeof(*clt_path), GFP_KERNEL);
1538	if (!clt_path)
1539		goto err;
1540
1541	/*
1542	 * irqmode and poll
1543	 * +1: Extra connection for user messages
1544	 */
1545	total_con = con_num + nr_poll_queues + 1;
1546	clt_path->s.con = kcalloc(total_con, sizeof(*clt_path->s.con),
1547				  GFP_KERNEL);
1548	if (!clt_path->s.con)
1549		goto err_free_path;
1550
1551	clt_path->s.con_num = total_con;
1552	clt_path->s.irq_con_num = con_num + 1;
1553
1554	clt_path->stats = kzalloc(sizeof(*clt_path->stats), GFP_KERNEL);
1555	if (!clt_path->stats)
1556		goto err_free_con;
1557
1558	mutex_init(&clt_path->init_mutex);
1559	uuid_gen(&clt_path->s.uuid);
1560	memcpy(&clt_path->s.dst_addr, path->dst,
1561	       rdma_addr_size((struct sockaddr *)path->dst));
1562
1563	/*
1564	 * rdma_resolve_addr() passes src_addr to cma_bind_addr, which
1565	 * checks the sa_family to be non-zero. If user passed src_addr=NULL
1566	 * the sess->src_addr will contain only zeros, which is then fine.
1567	 */
1568	if (path->src)
1569		memcpy(&clt_path->s.src_addr, path->src,
1570		       rdma_addr_size((struct sockaddr *)path->src));
1571	strscpy(clt_path->s.sessname, clt->sessname,
1572		sizeof(clt_path->s.sessname));
1573	clt_path->clt = clt;
1574	clt_path->max_pages_per_mr = RTRS_MAX_SEGMENTS;
1575	init_waitqueue_head(&clt_path->state_wq);
1576	clt_path->state = RTRS_CLT_CONNECTING;
1577	atomic_set(&clt_path->connected_cnt, 0);
1578	INIT_WORK(&clt_path->close_work, rtrs_clt_close_work);
1579	INIT_WORK(&clt_path->err_recovery_work, rtrs_clt_err_recovery_work);
1580	INIT_DELAYED_WORK(&clt_path->reconnect_dwork, rtrs_clt_reconnect_work);
1581	rtrs_clt_init_hb(clt_path);
1582
1583	clt_path->mp_skip_entry = alloc_percpu(typeof(*clt_path->mp_skip_entry));
1584	if (!clt_path->mp_skip_entry)
1585		goto err_free_stats;
1586
1587	for_each_possible_cpu(cpu)
1588		INIT_LIST_HEAD(per_cpu_ptr(clt_path->mp_skip_entry, cpu));
1589
1590	err = rtrs_clt_init_stats(clt_path->stats);
1591	if (err)
1592		goto err_free_percpu;
1593
1594	return clt_path;
1595
1596err_free_percpu:
1597	free_percpu(clt_path->mp_skip_entry);
1598err_free_stats:
1599	kfree(clt_path->stats);
1600err_free_con:
1601	kfree(clt_path->s.con);
1602err_free_path:
1603	kfree(clt_path);
1604err:
1605	return ERR_PTR(err);
1606}
1607
1608void free_path(struct rtrs_clt_path *clt_path)
1609{
1610	free_percpu(clt_path->mp_skip_entry);
1611	mutex_destroy(&clt_path->init_mutex);
1612	kfree(clt_path->s.con);
1613	kfree(clt_path->rbufs);
1614	kfree(clt_path);
1615}
1616
1617static int create_con(struct rtrs_clt_path *clt_path, unsigned int cid)
1618{
1619	struct rtrs_clt_con *con;
1620
1621	con = kzalloc(sizeof(*con), GFP_KERNEL);
1622	if (!con)
1623		return -ENOMEM;
1624
1625	/* Map first two connections to the first CPU */
1626	con->cpu  = (cid ? cid - 1 : 0) % nr_cpu_ids;
1627	con->c.cid = cid;
1628	con->c.path = &clt_path->s;
1629	/* Align with srv, init as 1 */
1630	atomic_set(&con->c.wr_cnt, 1);
1631	mutex_init(&con->con_mutex);
1632
1633	clt_path->s.con[cid] = &con->c;
1634
1635	return 0;
1636}
1637
1638static void destroy_con(struct rtrs_clt_con *con)
1639{
1640	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1641
1642	clt_path->s.con[con->c.cid] = NULL;
1643	mutex_destroy(&con->con_mutex);
1644	kfree(con);
1645}
1646
1647static int create_con_cq_qp(struct rtrs_clt_con *con)
1648{
1649	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1650	u32 max_send_wr, max_recv_wr, cq_num, max_send_sge, wr_limit;
1651	int err, cq_vector;
1652	struct rtrs_msg_rkey_rsp *rsp;
1653
1654	lockdep_assert_held(&con->con_mutex);
1655	if (con->c.cid == 0) {
1656		max_send_sge = 1;
1657		/* We must be the first here */
1658		if (WARN_ON(clt_path->s.dev))
1659			return -EINVAL;
1660
1661		/*
1662		 * The whole session uses device from user connection.
1663		 * Be careful not to close user connection before ib dev
1664		 * is gracefully put.
1665		 */
1666		clt_path->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device,
1667						       &dev_pd);
1668		if (!clt_path->s.dev) {
1669			rtrs_wrn(clt_path->clt,
1670				  "rtrs_ib_dev_find_get_or_add(): no memory\n");
1671			return -ENOMEM;
1672		}
1673		clt_path->s.dev_ref = 1;
1674		query_fast_reg_mode(clt_path);
1675		wr_limit = clt_path->s.dev->ib_dev->attrs.max_qp_wr;
1676		/*
1677		 * Two (request + registration) completion for send
1678		 * Two for recv if always_invalidate is set on server
1679		 * or one for recv.
1680		 * + 2 for drain and heartbeat
1681		 * in case qp gets into error state.
1682		 */
1683		max_send_wr =
1684			min_t(int, wr_limit, SERVICE_CON_QUEUE_DEPTH * 2 + 2);
1685		max_recv_wr = max_send_wr;
1686	} else {
1687		/*
1688		 * Here we assume that session members are correctly set.
1689		 * This is always true if user connection (cid == 0) is
1690		 * established first.
1691		 */
1692		if (WARN_ON(!clt_path->s.dev))
1693			return -EINVAL;
1694		if (WARN_ON(!clt_path->queue_depth))
1695			return -EINVAL;
1696
1697		wr_limit = clt_path->s.dev->ib_dev->attrs.max_qp_wr;
1698		/* Shared between connections */
1699		clt_path->s.dev_ref++;
1700		max_send_wr = min_t(int, wr_limit,
1701			      /* QD * (REQ + RSP + FR REGS or INVS) + drain */
1702			      clt_path->queue_depth * 4 + 1);
1703		max_recv_wr = min_t(int, wr_limit,
1704			      clt_path->queue_depth * 3 + 1);
1705		max_send_sge = 2;
1706	}
1707	atomic_set(&con->c.sq_wr_avail, max_send_wr);
1708	cq_num = max_send_wr + max_recv_wr;
1709	/* alloc iu to recv new rkey reply when server reports flags set */
1710	if (clt_path->flags & RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) {
1711		con->rsp_ius = rtrs_iu_alloc(cq_num, sizeof(*rsp),
1712					      GFP_KERNEL,
1713					      clt_path->s.dev->ib_dev,
1714					      DMA_FROM_DEVICE,
1715					      rtrs_clt_rdma_done);
1716		if (!con->rsp_ius)
1717			return -ENOMEM;
1718		con->queue_num = cq_num;
1719	}
 
1720	cq_vector = con->cpu % clt_path->s.dev->ib_dev->num_comp_vectors;
1721	if (con->c.cid >= clt_path->s.irq_con_num)
1722		err = rtrs_cq_qp_create(&clt_path->s, &con->c, max_send_sge,
1723					cq_vector, cq_num, max_send_wr,
1724					max_recv_wr, IB_POLL_DIRECT);
1725	else
1726		err = rtrs_cq_qp_create(&clt_path->s, &con->c, max_send_sge,
1727					cq_vector, cq_num, max_send_wr,
1728					max_recv_wr, IB_POLL_SOFTIRQ);
1729	/*
1730	 * In case of error we do not bother to clean previous allocations,
1731	 * since destroy_con_cq_qp() must be called.
1732	 */
1733	return err;
1734}
1735
1736static void destroy_con_cq_qp(struct rtrs_clt_con *con)
1737{
1738	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1739
1740	/*
1741	 * Be careful here: destroy_con_cq_qp() can be called even
1742	 * create_con_cq_qp() failed, see comments there.
1743	 */
1744	lockdep_assert_held(&con->con_mutex);
1745	rtrs_cq_qp_destroy(&con->c);
1746	if (con->rsp_ius) {
1747		rtrs_iu_free(con->rsp_ius, clt_path->s.dev->ib_dev,
1748			     con->queue_num);
1749		con->rsp_ius = NULL;
1750		con->queue_num = 0;
1751	}
1752	if (clt_path->s.dev_ref && !--clt_path->s.dev_ref) {
1753		rtrs_ib_dev_put(clt_path->s.dev);
1754		clt_path->s.dev = NULL;
1755	}
1756}
1757
1758static void stop_cm(struct rtrs_clt_con *con)
1759{
1760	rdma_disconnect(con->c.cm_id);
1761	if (con->c.qp)
1762		ib_drain_qp(con->c.qp);
1763}
1764
1765static void destroy_cm(struct rtrs_clt_con *con)
1766{
1767	rdma_destroy_id(con->c.cm_id);
1768	con->c.cm_id = NULL;
1769}
1770
1771static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con)
1772{
1773	struct rtrs_path *s = con->c.path;
1774	int err;
1775
1776	mutex_lock(&con->con_mutex);
1777	err = create_con_cq_qp(con);
1778	mutex_unlock(&con->con_mutex);
1779	if (err) {
1780		rtrs_err(s, "create_con_cq_qp(), err: %d\n", err);
1781		return err;
1782	}
1783	err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS);
1784	if (err)
1785		rtrs_err(s, "Resolving route failed, err: %d\n", err);
1786
1787	return err;
1788}
1789
1790static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con)
1791{
1792	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1793	struct rtrs_clt_sess *clt = clt_path->clt;
1794	struct rtrs_msg_conn_req msg;
1795	struct rdma_conn_param param;
1796
1797	int err;
1798
1799	param = (struct rdma_conn_param) {
1800		.retry_count = 7,
1801		.rnr_retry_count = 7,
1802		.private_data = &msg,
1803		.private_data_len = sizeof(msg),
1804	};
1805
1806	msg = (struct rtrs_msg_conn_req) {
1807		.magic = cpu_to_le16(RTRS_MAGIC),
1808		.version = cpu_to_le16(RTRS_PROTO_VER),
1809		.cid = cpu_to_le16(con->c.cid),
1810		.cid_num = cpu_to_le16(clt_path->s.con_num),
1811		.recon_cnt = cpu_to_le16(clt_path->s.recon_cnt),
1812	};
1813	msg.first_conn = clt_path->for_new_clt ? FIRST_CONN : 0;
1814	uuid_copy(&msg.sess_uuid, &clt_path->s.uuid);
1815	uuid_copy(&msg.paths_uuid, &clt->paths_uuid);
1816
1817	err = rdma_connect_locked(con->c.cm_id, &param);
1818	if (err)
1819		rtrs_err(clt, "rdma_connect_locked(): %d\n", err);
1820
1821	return err;
1822}
1823
1824static int rtrs_rdma_conn_established(struct rtrs_clt_con *con,
1825				       struct rdma_cm_event *ev)
1826{
1827	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1828	struct rtrs_clt_sess *clt = clt_path->clt;
1829	const struct rtrs_msg_conn_rsp *msg;
1830	u16 version, queue_depth;
1831	int errno;
1832	u8 len;
1833
1834	msg = ev->param.conn.private_data;
1835	len = ev->param.conn.private_data_len;
1836	if (len < sizeof(*msg)) {
1837		rtrs_err(clt, "Invalid RTRS connection response\n");
1838		return -ECONNRESET;
1839	}
1840	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1841		rtrs_err(clt, "Invalid RTRS magic\n");
1842		return -ECONNRESET;
1843	}
1844	version = le16_to_cpu(msg->version);
1845	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1846		rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n",
1847			  version >> 8, RTRS_PROTO_VER_MAJOR);
1848		return -ECONNRESET;
1849	}
1850	errno = le16_to_cpu(msg->errno);
1851	if (errno) {
1852		rtrs_err(clt, "Invalid RTRS message: errno %d\n",
1853			  errno);
1854		return -ECONNRESET;
1855	}
1856	if (con->c.cid == 0) {
1857		queue_depth = le16_to_cpu(msg->queue_depth);
1858
1859		if (clt_path->queue_depth > 0 && queue_depth != clt_path->queue_depth) {
1860			rtrs_err(clt, "Error: queue depth changed\n");
1861
1862			/*
1863			 * Stop any more reconnection attempts
1864			 */
1865			clt_path->reconnect_attempts = -1;
1866			rtrs_err(clt,
1867				"Disabling auto-reconnect. Trigger a manual reconnect after issue is resolved\n");
1868			return -ECONNRESET;
1869		}
1870
1871		if (!clt_path->rbufs) {
1872			clt_path->rbufs = kcalloc(queue_depth,
1873						  sizeof(*clt_path->rbufs),
1874						  GFP_KERNEL);
1875			if (!clt_path->rbufs)
1876				return -ENOMEM;
1877		}
1878		clt_path->queue_depth = queue_depth;
1879		clt_path->s.signal_interval = min_not_zero(queue_depth,
1880						(unsigned short) SERVICE_CON_QUEUE_DEPTH);
1881		clt_path->max_hdr_size = le32_to_cpu(msg->max_hdr_size);
1882		clt_path->max_io_size = le32_to_cpu(msg->max_io_size);
1883		clt_path->flags = le32_to_cpu(msg->flags);
1884		clt_path->chunk_size = clt_path->max_io_size + clt_path->max_hdr_size;
1885
1886		/*
1887		 * Global IO size is always a minimum.
1888		 * If while a reconnection server sends us a value a bit
1889		 * higher - client does not care and uses cached minimum.
1890		 *
1891		 * Since we can have several sessions (paths) restablishing
1892		 * connections in parallel, use lock.
1893		 */
1894		mutex_lock(&clt->paths_mutex);
1895		clt->queue_depth = clt_path->queue_depth;
1896		clt->max_io_size = min_not_zero(clt_path->max_io_size,
1897						clt->max_io_size);
1898		mutex_unlock(&clt->paths_mutex);
1899
1900		/*
1901		 * Cache the hca_port and hca_name for sysfs
1902		 */
1903		clt_path->hca_port = con->c.cm_id->port_num;
1904		scnprintf(clt_path->hca_name, sizeof(clt_path->hca_name),
1905			  clt_path->s.dev->ib_dev->name);
1906		clt_path->s.src_addr = con->c.cm_id->route.addr.src_addr;
1907		/* set for_new_clt, to allow future reconnect on any path */
1908		clt_path->for_new_clt = 1;
1909	}
1910
1911	return 0;
1912}
1913
1914static inline void flag_success_on_conn(struct rtrs_clt_con *con)
1915{
1916	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1917
1918	atomic_inc(&clt_path->connected_cnt);
1919	con->cm_err = 1;
1920}
1921
1922static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con,
1923				    struct rdma_cm_event *ev)
1924{
1925	struct rtrs_path *s = con->c.path;
1926	const struct rtrs_msg_conn_rsp *msg;
1927	const char *rej_msg;
1928	int status, errno;
1929	u8 data_len;
1930
1931	status = ev->status;
1932	rej_msg = rdma_reject_msg(con->c.cm_id, status);
1933	msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len);
1934
1935	if (msg && data_len >= sizeof(*msg)) {
1936		errno = (int16_t)le16_to_cpu(msg->errno);
1937		if (errno == -EBUSY)
1938			rtrs_err(s,
1939				  "Previous session is still exists on the server, please reconnect later\n");
1940		else
1941			rtrs_err(s,
1942				  "Connect rejected: status %d (%s), rtrs errno %d\n",
1943				  status, rej_msg, errno);
1944	} else {
1945		rtrs_err(s,
1946			  "Connect rejected but with malformed message: status %d (%s)\n",
1947			  status, rej_msg);
1948	}
1949
1950	return -ECONNRESET;
1951}
1952
1953void rtrs_clt_close_conns(struct rtrs_clt_path *clt_path, bool wait)
1954{
1955	trace_rtrs_clt_close_conns(clt_path);
1956
1957	if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CLOSING, NULL))
1958		queue_work(rtrs_wq, &clt_path->close_work);
1959	if (wait)
1960		flush_work(&clt_path->close_work);
1961}
1962
1963static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err)
1964{
1965	if (con->cm_err == 1) {
1966		struct rtrs_clt_path *clt_path;
1967
1968		clt_path = to_clt_path(con->c.path);
1969		if (atomic_dec_and_test(&clt_path->connected_cnt))
1970
1971			wake_up(&clt_path->state_wq);
1972	}
1973	con->cm_err = cm_err;
1974}
1975
1976static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id,
1977				     struct rdma_cm_event *ev)
1978{
1979	struct rtrs_clt_con *con = cm_id->context;
1980	struct rtrs_path *s = con->c.path;
1981	struct rtrs_clt_path *clt_path = to_clt_path(s);
1982	int cm_err = 0;
1983
1984	switch (ev->event) {
1985	case RDMA_CM_EVENT_ADDR_RESOLVED:
1986		cm_err = rtrs_rdma_addr_resolved(con);
1987		break;
1988	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1989		cm_err = rtrs_rdma_route_resolved(con);
1990		break;
1991	case RDMA_CM_EVENT_ESTABLISHED:
1992		cm_err = rtrs_rdma_conn_established(con, ev);
1993		if (!cm_err) {
1994			/*
1995			 * Report success and wake up. Here we abuse state_wq,
1996			 * i.e. wake up without state change, but we set cm_err.
1997			 */
1998			flag_success_on_conn(con);
1999			wake_up(&clt_path->state_wq);
2000			return 0;
2001		}
2002		break;
2003	case RDMA_CM_EVENT_REJECTED:
2004		cm_err = rtrs_rdma_conn_rejected(con, ev);
2005		break;
2006	case RDMA_CM_EVENT_DISCONNECTED:
2007		/* No message for disconnecting */
2008		cm_err = -ECONNRESET;
2009		break;
2010	case RDMA_CM_EVENT_CONNECT_ERROR:
2011	case RDMA_CM_EVENT_UNREACHABLE:
2012	case RDMA_CM_EVENT_ADDR_CHANGE:
2013	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2014		rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
2015			 rdma_event_msg(ev->event), ev->status);
2016		cm_err = -ECONNRESET;
2017		break;
2018	case RDMA_CM_EVENT_ADDR_ERROR:
2019	case RDMA_CM_EVENT_ROUTE_ERROR:
2020		rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
2021			 rdma_event_msg(ev->event), ev->status);
2022		cm_err = -EHOSTUNREACH;
2023		break;
2024	case RDMA_CM_EVENT_DEVICE_REMOVAL:
2025		/*
2026		 * Device removal is a special case.  Queue close and return 0.
2027		 */
2028		rtrs_wrn_rl(s, "CM event: %s, status: %d\n", rdma_event_msg(ev->event),
2029			    ev->status);
2030		rtrs_clt_close_conns(clt_path, false);
2031		return 0;
2032	default:
2033		rtrs_err(s, "Unexpected RDMA CM error (CM event: %s, err: %d)\n",
2034			 rdma_event_msg(ev->event), ev->status);
2035		cm_err = -ECONNRESET;
2036		break;
2037	}
2038
2039	if (cm_err) {
2040		/*
2041		 * cm error makes sense only on connection establishing,
2042		 * in other cases we rely on normal procedure of reconnecting.
2043		 */
2044		flag_error_on_conn(con, cm_err);
2045		rtrs_rdma_error_recovery(con);
2046	}
2047
2048	return 0;
2049}
2050
2051/* The caller should do the cleanup in case of error */
2052static int create_cm(struct rtrs_clt_con *con)
2053{
2054	struct rtrs_path *s = con->c.path;
2055	struct rtrs_clt_path *clt_path = to_clt_path(s);
2056	struct rdma_cm_id *cm_id;
2057	int err;
2058
2059	cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con,
2060			       clt_path->s.dst_addr.ss_family == AF_IB ?
2061			       RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC);
2062	if (IS_ERR(cm_id)) {
2063		rtrs_err(s, "Failed to create CM ID, err: %pe\n", cm_id);
2064		return PTR_ERR(cm_id);
 
 
2065	}
2066	con->c.cm_id = cm_id;
2067	con->cm_err = 0;
2068	/* allow the port to be reused */
2069	err = rdma_set_reuseaddr(cm_id, 1);
2070	if (err != 0) {
2071		rtrs_err(s, "Set address reuse failed, err: %d\n", err);
2072		return err;
2073	}
2074	err = rdma_resolve_addr(cm_id, (struct sockaddr *)&clt_path->s.src_addr,
2075				(struct sockaddr *)&clt_path->s.dst_addr,
2076				RTRS_CONNECT_TIMEOUT_MS);
2077	if (err) {
2078		rtrs_err(s, "Failed to resolve address, err: %d\n", err);
2079		return err;
2080	}
2081	/*
2082	 * Combine connection status and session events. This is needed
2083	 * for waiting two possible cases: cm_err has something meaningful
2084	 * or session state was really changed to error by device removal.
2085	 */
2086	err = wait_event_interruptible_timeout(
2087			clt_path->state_wq,
2088			con->cm_err || clt_path->state != RTRS_CLT_CONNECTING,
2089			msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2090	if (err == 0 || err == -ERESTARTSYS) {
2091		if (err == 0)
2092			err = -ETIMEDOUT;
2093		/* Timedout or interrupted */
2094		return err;
 
 
 
 
2095	}
2096	if (con->cm_err < 0)
2097		return con->cm_err;
2098	if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTING)
2099		/* Device removal */
2100		return -ECONNABORTED;
 
 
2101
2102	return 0;
 
 
 
 
 
 
 
 
 
 
2103}
2104
2105static void rtrs_clt_path_up(struct rtrs_clt_path *clt_path)
2106{
2107	struct rtrs_clt_sess *clt = clt_path->clt;
2108	int up;
2109
2110	/*
2111	 * We can fire RECONNECTED event only when all paths were
2112	 * connected on rtrs_clt_open(), then each was disconnected
2113	 * and the first one connected again.  That's why this nasty
2114	 * game with counter value.
2115	 */
2116
2117	mutex_lock(&clt->paths_ev_mutex);
2118	up = ++clt->paths_up;
2119	/*
2120	 * Here it is safe to access paths num directly since up counter
2121	 * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is
2122	 * in progress, thus paths removals are impossible.
2123	 */
2124	if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num)
2125		clt->paths_up = clt->paths_num;
2126	else if (up == 1)
2127		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED);
2128	mutex_unlock(&clt->paths_ev_mutex);
2129
2130	/* Mark session as established */
2131	clt_path->established = true;
2132	clt_path->reconnect_attempts = 0;
2133	clt_path->stats->reconnects.successful_cnt++;
2134}
2135
2136static void rtrs_clt_path_down(struct rtrs_clt_path *clt_path)
2137{
2138	struct rtrs_clt_sess *clt = clt_path->clt;
2139
2140	if (!clt_path->established)
2141		return;
2142
2143	clt_path->established = false;
2144	mutex_lock(&clt->paths_ev_mutex);
2145	WARN_ON(!clt->paths_up);
2146	if (--clt->paths_up == 0)
2147		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED);
2148	mutex_unlock(&clt->paths_ev_mutex);
2149}
2150
2151static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_path *clt_path)
2152{
2153	struct rtrs_clt_con *con;
2154	unsigned int cid;
2155
2156	WARN_ON(READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTED);
2157
2158	/*
2159	 * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes
2160	 * exactly in between.  Start destroying after it finishes.
2161	 */
2162	mutex_lock(&clt_path->init_mutex);
2163	mutex_unlock(&clt_path->init_mutex);
2164
2165	/*
2166	 * All IO paths must observe !CONNECTED state before we
2167	 * free everything.
2168	 */
2169	synchronize_rcu();
2170
2171	rtrs_stop_hb(&clt_path->s);
2172
2173	/*
2174	 * The order it utterly crucial: firstly disconnect and complete all
2175	 * rdma requests with error (thus set in_use=false for requests),
2176	 * then fail outstanding requests checking in_use for each, and
2177	 * eventually notify upper layer about session disconnection.
2178	 */
2179
2180	for (cid = 0; cid < clt_path->s.con_num; cid++) {
2181		if (!clt_path->s.con[cid])
2182			break;
2183		con = to_clt_con(clt_path->s.con[cid]);
2184		stop_cm(con);
2185	}
2186	fail_all_outstanding_reqs(clt_path);
2187	free_path_reqs(clt_path);
2188	rtrs_clt_path_down(clt_path);
2189
2190	/*
2191	 * Wait for graceful shutdown, namely when peer side invokes
2192	 * rdma_disconnect(). 'connected_cnt' is decremented only on
2193	 * CM events, thus if other side had crashed and hb has detected
2194	 * something is wrong, here we will stuck for exactly timeout ms,
2195	 * since CM does not fire anything.  That is fine, we are not in
2196	 * hurry.
2197	 */
2198	wait_event_timeout(clt_path->state_wq,
2199			   !atomic_read(&clt_path->connected_cnt),
2200			   msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2201
2202	for (cid = 0; cid < clt_path->s.con_num; cid++) {
2203		if (!clt_path->s.con[cid])
2204			break;
2205		con = to_clt_con(clt_path->s.con[cid]);
2206		mutex_lock(&con->con_mutex);
2207		destroy_con_cq_qp(con);
2208		mutex_unlock(&con->con_mutex);
2209		destroy_cm(con);
2210		destroy_con(con);
2211	}
2212}
2213
2214static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_path *clt_path)
2215{
2216	struct rtrs_clt_sess *clt = clt_path->clt;
2217	struct rtrs_clt_path *next;
2218	bool wait_for_grace = false;
2219	int cpu;
2220
2221	mutex_lock(&clt->paths_mutex);
2222	list_del_rcu(&clt_path->s.entry);
2223
2224	/* Make sure everybody observes path removal. */
2225	synchronize_rcu();
2226
2227	/*
2228	 * At this point nobody sees @sess in the list, but still we have
2229	 * dangling pointer @pcpu_path which _can_ point to @sess.  Since
2230	 * nobody can observe @sess in the list, we guarantee that IO path
2231	 * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal
2232	 * to @sess, but can never again become @sess.
2233	 */
2234
2235	/*
2236	 * Decrement paths number only after grace period, because
2237	 * caller of do_each_path() must firstly observe list without
2238	 * path and only then decremented paths number.
2239	 *
2240	 * Otherwise there can be the following situation:
2241	 *    o Two paths exist and IO is coming.
2242	 *    o One path is removed:
2243	 *      CPU#0                          CPU#1
2244	 *      do_each_path():                rtrs_clt_remove_path_from_arr():
2245	 *          path = get_next_path()
2246	 *          ^^^                            list_del_rcu(path)
2247	 *          [!CONNECTED path]              clt->paths_num--
2248	 *                                              ^^^^^^^^^
2249	 *          load clt->paths_num                 from 2 to 1
2250	 *                    ^^^^^^^^^
2251	 *                    sees 1
2252	 *
2253	 *      path is observed as !CONNECTED, but do_each_path() loop
2254	 *      ends, because expression i < clt->paths_num is false.
2255	 */
2256	clt->paths_num--;
2257
2258	/*
2259	 * Get @next connection from current @sess which is going to be
2260	 * removed.  If @sess is the last element, then @next is NULL.
2261	 */
2262	rcu_read_lock();
2263	next = rtrs_clt_get_next_path_or_null(&clt->paths_list, clt_path);
2264	rcu_read_unlock();
2265
2266	/*
2267	 * @pcpu paths can still point to the path which is going to be
2268	 * removed, so change the pointer manually.
2269	 */
2270	for_each_possible_cpu(cpu) {
2271		struct rtrs_clt_path __rcu **ppcpu_path;
2272
2273		ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu);
2274		if (rcu_dereference_protected(*ppcpu_path,
2275			lockdep_is_held(&clt->paths_mutex)) != clt_path)
2276			/*
2277			 * synchronize_rcu() was called just after deleting
2278			 * entry from the list, thus IO code path cannot
2279			 * change pointer back to the pointer which is going
2280			 * to be removed, we are safe here.
2281			 */
2282			continue;
2283
2284		/*
2285		 * We race with IO code path, which also changes pointer,
2286		 * thus we have to be careful not to overwrite it.
2287		 */
2288		if (try_cmpxchg((struct rtrs_clt_path **)ppcpu_path, &clt_path,
2289				next))
2290			/*
2291			 * @ppcpu_path was successfully replaced with @next,
2292			 * that means that someone could also pick up the
2293			 * @sess and dereferencing it right now, so wait for
2294			 * a grace period is required.
2295			 */
2296			wait_for_grace = true;
2297	}
2298	if (wait_for_grace)
2299		synchronize_rcu();
2300
2301	mutex_unlock(&clt->paths_mutex);
2302}
2303
2304static void rtrs_clt_add_path_to_arr(struct rtrs_clt_path *clt_path)
2305{
2306	struct rtrs_clt_sess *clt = clt_path->clt;
2307
2308	mutex_lock(&clt->paths_mutex);
2309	clt->paths_num++;
2310
2311	list_add_tail_rcu(&clt_path->s.entry, &clt->paths_list);
2312	mutex_unlock(&clt->paths_mutex);
2313}
2314
2315static void rtrs_clt_close_work(struct work_struct *work)
2316{
2317	struct rtrs_clt_path *clt_path;
2318
2319	clt_path = container_of(work, struct rtrs_clt_path, close_work);
2320
2321	cancel_work_sync(&clt_path->err_recovery_work);
2322	cancel_delayed_work_sync(&clt_path->reconnect_dwork);
2323	rtrs_clt_stop_and_destroy_conns(clt_path);
2324	rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CLOSED, NULL);
2325}
2326
2327static int init_conns(struct rtrs_clt_path *clt_path)
2328{
2329	unsigned int cid;
2330	int err, i;
2331
2332	/*
2333	 * On every new session connections increase reconnect counter
2334	 * to avoid clashes with previous sessions not yet closed
2335	 * sessions on a server side.
2336	 */
2337	clt_path->s.recon_cnt++;
2338
2339	/* Establish all RDMA connections  */
2340	for (cid = 0; cid < clt_path->s.con_num; cid++) {
2341		err = create_con(clt_path, cid);
2342		if (err)
2343			goto destroy;
2344
2345		err = create_cm(to_clt_con(clt_path->s.con[cid]));
2346		if (err)
 
2347			goto destroy;
 
2348	}
2349	err = alloc_path_reqs(clt_path);
2350	if (err)
2351		goto destroy;
2352
 
 
2353	return 0;
2354
2355destroy:
2356	/* Make sure we do the cleanup in the order they are created */
2357	for (i = 0; i <= cid; i++) {
2358		struct rtrs_clt_con *con;
2359
2360		if (!clt_path->s.con[i])
2361			break;
2362
2363		con = to_clt_con(clt_path->s.con[i]);
2364		if (con->c.cm_id) {
2365			stop_cm(con);
2366			mutex_lock(&con->con_mutex);
2367			destroy_con_cq_qp(con);
2368			mutex_unlock(&con->con_mutex);
2369			destroy_cm(con);
2370		}
2371		destroy_con(con);
2372	}
2373	/*
2374	 * If we've never taken async path and got an error, say,
2375	 * doing rdma_resolve_addr(), switch to CONNECTION_ERR state
2376	 * manually to keep reconnecting.
2377	 */
2378	rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING_ERR, NULL);
2379
2380	return err;
2381}
2382
2383static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
2384{
2385	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2386	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
2387	struct rtrs_iu *iu;
2388
2389	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2390	rtrs_iu_free(iu, clt_path->s.dev->ib_dev, 1);
2391
2392	if (wc->status != IB_WC_SUCCESS) {
2393		rtrs_err(clt_path->clt, "Path info request send failed: %s\n",
2394			  ib_wc_status_msg(wc->status));
2395		rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING_ERR, NULL);
2396		return;
2397	}
2398
2399	rtrs_clt_update_wc_stats(con);
2400}
2401
2402static int process_info_rsp(struct rtrs_clt_path *clt_path,
2403			    const struct rtrs_msg_info_rsp *msg)
2404{
2405	unsigned int sg_cnt, total_len;
2406	int i, sgi;
2407
2408	sg_cnt = le16_to_cpu(msg->sg_cnt);
2409	if (!sg_cnt || (clt_path->queue_depth % sg_cnt)) {
2410		rtrs_err(clt_path->clt,
2411			  "Incorrect sg_cnt %d, is not multiple\n",
2412			  sg_cnt);
2413		return -EINVAL;
2414	}
2415
2416	/*
2417	 * Check if IB immediate data size is enough to hold the mem_id and
2418	 * the offset inside the memory chunk.
2419	 */
2420	if ((ilog2(sg_cnt - 1) + 1) + (ilog2(clt_path->chunk_size - 1) + 1) >
2421	    MAX_IMM_PAYL_BITS) {
2422		rtrs_err(clt_path->clt,
2423			  "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n",
2424			  MAX_IMM_PAYL_BITS, sg_cnt, clt_path->chunk_size);
2425		return -EINVAL;
2426	}
2427	total_len = 0;
2428	for (sgi = 0, i = 0; sgi < sg_cnt && i < clt_path->queue_depth; sgi++) {
2429		const struct rtrs_sg_desc *desc = &msg->desc[sgi];
2430		u32 len, rkey;
2431		u64 addr;
2432
2433		addr = le64_to_cpu(desc->addr);
2434		rkey = le32_to_cpu(desc->key);
2435		len  = le32_to_cpu(desc->len);
2436
2437		total_len += len;
2438
2439		if (!len || (len % clt_path->chunk_size)) {
2440			rtrs_err(clt_path->clt, "Incorrect [%d].len %d\n",
2441				  sgi,
2442				  len);
2443			return -EINVAL;
2444		}
2445		for ( ; len && i < clt_path->queue_depth; i++) {
2446			clt_path->rbufs[i].addr = addr;
2447			clt_path->rbufs[i].rkey = rkey;
2448
2449			len  -= clt_path->chunk_size;
2450			addr += clt_path->chunk_size;
2451		}
2452	}
2453	/* Sanity check */
2454	if (sgi != sg_cnt || i != clt_path->queue_depth) {
2455		rtrs_err(clt_path->clt,
2456			 "Incorrect sg vector, not fully mapped\n");
2457		return -EINVAL;
2458	}
2459	if (total_len != clt_path->chunk_size * clt_path->queue_depth) {
2460		rtrs_err(clt_path->clt, "Incorrect total_len %d\n", total_len);
2461		return -EINVAL;
2462	}
2463
2464	return 0;
2465}
2466
2467static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
2468{
2469	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2470	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
2471	struct rtrs_msg_info_rsp *msg;
2472	enum rtrs_clt_state state;
2473	struct rtrs_iu *iu;
2474	size_t rx_sz;
2475	int err;
2476
2477	state = RTRS_CLT_CONNECTING_ERR;
2478
2479	WARN_ON(con->c.cid);
2480	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2481	if (wc->status != IB_WC_SUCCESS) {
2482		rtrs_err(clt_path->clt, "Path info response recv failed: %s\n",
2483			  ib_wc_status_msg(wc->status));
2484		goto out;
2485	}
2486	WARN_ON(wc->opcode != IB_WC_RECV);
2487
2488	if (wc->byte_len < sizeof(*msg)) {
2489		rtrs_err(clt_path->clt, "Path info response is malformed: size %d\n",
2490			  wc->byte_len);
2491		goto out;
2492	}
2493	ib_dma_sync_single_for_cpu(clt_path->s.dev->ib_dev, iu->dma_addr,
2494				   iu->size, DMA_FROM_DEVICE);
2495	msg = iu->buf;
2496	if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP) {
2497		rtrs_err(clt_path->clt, "Path info response is malformed: type %d\n",
2498			  le16_to_cpu(msg->type));
2499		goto out;
2500	}
2501	rx_sz  = sizeof(*msg);
2502	rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt);
2503	if (wc->byte_len < rx_sz) {
2504		rtrs_err(clt_path->clt, "Path info response is malformed: size %d\n",
2505			  wc->byte_len);
2506		goto out;
2507	}
2508	err = process_info_rsp(clt_path, msg);
2509	if (err)
2510		goto out;
2511
2512	err = post_recv_path(clt_path);
2513	if (err)
2514		goto out;
2515
2516	state = RTRS_CLT_CONNECTED;
2517
2518out:
2519	rtrs_clt_update_wc_stats(con);
2520	rtrs_iu_free(iu, clt_path->s.dev->ib_dev, 1);
2521	rtrs_clt_change_state_get_old(clt_path, state, NULL);
2522}
2523
2524static int rtrs_send_path_info(struct rtrs_clt_path *clt_path)
2525{
2526	struct rtrs_clt_con *usr_con = to_clt_con(clt_path->s.con[0]);
2527	struct rtrs_msg_info_req *msg;
2528	struct rtrs_iu *tx_iu, *rx_iu;
2529	size_t rx_sz;
2530	int err;
2531
2532	rx_sz  = sizeof(struct rtrs_msg_info_rsp);
2533	rx_sz += sizeof(struct rtrs_sg_desc) * clt_path->queue_depth;
2534
2535	tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL,
2536			       clt_path->s.dev->ib_dev, DMA_TO_DEVICE,
2537			       rtrs_clt_info_req_done);
2538	rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, clt_path->s.dev->ib_dev,
2539			       DMA_FROM_DEVICE, rtrs_clt_info_rsp_done);
2540	if (!tx_iu || !rx_iu) {
2541		err = -ENOMEM;
2542		goto out;
2543	}
2544	/* Prepare for getting info response */
2545	err = rtrs_iu_post_recv(&usr_con->c, rx_iu);
2546	if (err) {
2547		rtrs_err(clt_path->clt, "rtrs_iu_post_recv(), err: %d\n", err);
2548		goto out;
2549	}
2550	rx_iu = NULL;
2551
2552	msg = tx_iu->buf;
2553	msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ);
2554	memcpy(msg->pathname, clt_path->s.sessname, sizeof(msg->pathname));
2555
2556	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
2557				      tx_iu->dma_addr,
2558				      tx_iu->size, DMA_TO_DEVICE);
2559
2560	/* Send info request */
2561	err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL);
2562	if (err) {
2563		rtrs_err(clt_path->clt, "rtrs_iu_post_send(), err: %d\n", err);
2564		goto out;
2565	}
2566	tx_iu = NULL;
2567
2568	/* Wait for state change */
2569	wait_event_interruptible_timeout(clt_path->state_wq,
2570					 clt_path->state != RTRS_CLT_CONNECTING,
2571					 msecs_to_jiffies(
2572						 RTRS_CONNECT_TIMEOUT_MS));
2573	if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED) {
2574		if (READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTING_ERR)
2575			err = -ECONNRESET;
2576		else
2577			err = -ETIMEDOUT;
2578	}
2579
2580out:
2581	if (tx_iu)
2582		rtrs_iu_free(tx_iu, clt_path->s.dev->ib_dev, 1);
2583	if (rx_iu)
2584		rtrs_iu_free(rx_iu, clt_path->s.dev->ib_dev, 1);
2585	if (err)
2586		/* If we've never taken async path because of malloc problems */
2587		rtrs_clt_change_state_get_old(clt_path,
2588					      RTRS_CLT_CONNECTING_ERR, NULL);
2589
2590	return err;
2591}
2592
2593/**
2594 * init_path() - establishes all path connections and does handshake
2595 * @clt_path: client path.
2596 * In case of error full close or reconnect procedure should be taken,
2597 * because reconnect or close async works can be started.
2598 */
2599static int init_path(struct rtrs_clt_path *clt_path)
2600{
2601	int err;
2602	char str[NAME_MAX];
2603	struct rtrs_addr path = {
2604		.src = &clt_path->s.src_addr,
2605		.dst = &clt_path->s.dst_addr,
2606	};
2607
2608	rtrs_addr_to_str(&path, str, sizeof(str));
2609
2610	mutex_lock(&clt_path->init_mutex);
2611	err = init_conns(clt_path);
2612	if (err) {
2613		rtrs_err(clt_path->clt,
2614			 "init_conns() failed: err=%d path=%s [%s:%u]\n", err,
2615			 str, clt_path->hca_name, clt_path->hca_port);
2616		goto out;
2617	}
2618	err = rtrs_send_path_info(clt_path);
2619	if (err) {
2620		rtrs_err(clt_path->clt,
2621			 "rtrs_send_path_info() failed: err=%d path=%s [%s:%u]\n",
2622			 err, str, clt_path->hca_name, clt_path->hca_port);
2623		goto out;
2624	}
2625	rtrs_clt_path_up(clt_path);
2626	rtrs_start_hb(&clt_path->s);
2627out:
2628	mutex_unlock(&clt_path->init_mutex);
2629
2630	return err;
2631}
2632
2633static void rtrs_clt_reconnect_work(struct work_struct *work)
2634{
2635	struct rtrs_clt_path *clt_path;
2636	struct rtrs_clt_sess *clt;
2637	int err;
2638
2639	clt_path = container_of(to_delayed_work(work), struct rtrs_clt_path,
2640				reconnect_dwork);
2641	clt = clt_path->clt;
2642
2643	trace_rtrs_clt_reconnect_work(clt_path);
2644
2645	if (READ_ONCE(clt_path->state) != RTRS_CLT_RECONNECTING)
2646		return;
2647
2648	if (clt_path->reconnect_attempts >= clt->max_reconnect_attempts) {
2649		/* Close a path completely if max attempts is reached */
2650		rtrs_clt_close_conns(clt_path, false);
2651		return;
2652	}
2653	clt_path->reconnect_attempts++;
2654
2655	msleep(RTRS_RECONNECT_BACKOFF);
2656	if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING, NULL)) {
2657		err = init_path(clt_path);
2658		if (err)
2659			goto reconnect_again;
2660	}
2661
2662	return;
2663
2664reconnect_again:
2665	if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_RECONNECTING, NULL)) {
2666		clt_path->stats->reconnects.fail_cnt++;
2667		queue_work(rtrs_wq, &clt_path->err_recovery_work);
2668	}
2669}
2670
2671static void rtrs_clt_dev_release(struct device *dev)
2672{
2673	struct rtrs_clt_sess *clt = container_of(dev, struct rtrs_clt_sess,
2674						 dev);
2675
2676	mutex_destroy(&clt->paths_ev_mutex);
2677	mutex_destroy(&clt->paths_mutex);
2678	kfree(clt);
2679}
2680
2681static struct rtrs_clt_sess *alloc_clt(const char *sessname, size_t paths_num,
2682				  u16 port, size_t pdu_sz, void *priv,
2683				  void	(*link_ev)(void *priv,
2684						   enum rtrs_clt_link_ev ev),
2685				  unsigned int reconnect_delay_sec,
2686				  unsigned int max_reconnect_attempts)
2687{
2688	struct rtrs_clt_sess *clt;
2689	int err;
2690
2691	if (!paths_num || paths_num > MAX_PATHS_NUM)
2692		return ERR_PTR(-EINVAL);
2693
2694	if (strlen(sessname) >= sizeof(clt->sessname))
2695		return ERR_PTR(-EINVAL);
2696
2697	clt = kzalloc(sizeof(*clt), GFP_KERNEL);
2698	if (!clt)
2699		return ERR_PTR(-ENOMEM);
2700
2701	clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path));
2702	if (!clt->pcpu_path) {
2703		kfree(clt);
2704		return ERR_PTR(-ENOMEM);
2705	}
2706
2707	clt->dev.class = &rtrs_clt_dev_class;
2708	clt->dev.release = rtrs_clt_dev_release;
2709	uuid_gen(&clt->paths_uuid);
2710	INIT_LIST_HEAD_RCU(&clt->paths_list);
2711	clt->paths_num = paths_num;
2712	clt->paths_up = MAX_PATHS_NUM;
2713	clt->port = port;
2714	clt->pdu_sz = pdu_sz;
2715	clt->max_segments = RTRS_MAX_SEGMENTS;
2716	clt->reconnect_delay_sec = reconnect_delay_sec;
2717	clt->max_reconnect_attempts = max_reconnect_attempts;
2718	clt->priv = priv;
2719	clt->link_ev = link_ev;
2720	clt->mp_policy = MP_POLICY_MIN_INFLIGHT;
2721	strscpy(clt->sessname, sessname, sizeof(clt->sessname));
2722	init_waitqueue_head(&clt->permits_wait);
2723	mutex_init(&clt->paths_ev_mutex);
2724	mutex_init(&clt->paths_mutex);
2725	device_initialize(&clt->dev);
2726
2727	err = dev_set_name(&clt->dev, "%s", sessname);
2728	if (err)
2729		goto err_put;
2730
2731	/*
2732	 * Suppress user space notification until
2733	 * sysfs files are created
2734	 */
2735	dev_set_uevent_suppress(&clt->dev, true);
2736	err = device_add(&clt->dev);
2737	if (err)
2738		goto err_put;
2739
2740	clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj);
2741	if (!clt->kobj_paths) {
2742		err = -ENOMEM;
2743		goto err_del;
2744	}
2745	err = rtrs_clt_create_sysfs_root_files(clt);
2746	if (err) {
2747		kobject_del(clt->kobj_paths);
2748		kobject_put(clt->kobj_paths);
2749		goto err_del;
2750	}
2751	dev_set_uevent_suppress(&clt->dev, false);
2752	kobject_uevent(&clt->dev.kobj, KOBJ_ADD);
2753
2754	return clt;
2755err_del:
2756	device_del(&clt->dev);
2757err_put:
2758	free_percpu(clt->pcpu_path);
2759	put_device(&clt->dev);
2760	return ERR_PTR(err);
2761}
2762
2763static void free_clt(struct rtrs_clt_sess *clt)
2764{
2765	free_percpu(clt->pcpu_path);
2766
2767	/*
2768	 * release callback will free clt and destroy mutexes in last put
2769	 */
2770	device_unregister(&clt->dev);
2771}
2772
2773/**
2774 * rtrs_clt_open() - Open a path to an RTRS server
2775 * @ops: holds the link event callback and the private pointer.
2776 * @pathname: name of the path to an RTRS server
2777 * @paths: Paths to be established defined by their src and dst addresses
2778 * @paths_num: Number of elements in the @paths array
2779 * @port: port to be used by the RTRS session
2780 * @pdu_sz: Size of extra payload which can be accessed after permit allocation.
2781 * @reconnect_delay_sec: time between reconnect tries
2782 * @max_reconnect_attempts: Number of times to reconnect on error before giving
2783 *			    up, 0 for * disabled, -1 for forever
2784 * @nr_poll_queues: number of polling mode connection using IB_POLL_DIRECT flag
2785 *
2786 * Starts session establishment with the rtrs_server. The function can block
2787 * up to ~2000ms before it returns.
2788 *
2789 * Return a valid pointer on success otherwise PTR_ERR.
2790 */
2791struct rtrs_clt_sess *rtrs_clt_open(struct rtrs_clt_ops *ops,
2792				 const char *pathname,
2793				 const struct rtrs_addr *paths,
2794				 size_t paths_num, u16 port,
2795				 size_t pdu_sz, u8 reconnect_delay_sec,
2796				 s16 max_reconnect_attempts, u32 nr_poll_queues)
2797{
2798	struct rtrs_clt_path *clt_path, *tmp;
2799	struct rtrs_clt_sess *clt;
2800	int err, i;
2801
2802	if (strchr(pathname, '/') || strchr(pathname, '.')) {
2803		pr_err("pathname cannot contain / and .\n");
2804		err = -EINVAL;
2805		goto out;
2806	}
2807
2808	clt = alloc_clt(pathname, paths_num, port, pdu_sz, ops->priv,
2809			ops->link_ev,
2810			reconnect_delay_sec,
2811			max_reconnect_attempts);
2812	if (IS_ERR(clt)) {
2813		err = PTR_ERR(clt);
2814		goto out;
2815	}
2816	for (i = 0; i < paths_num; i++) {
2817		struct rtrs_clt_path *clt_path;
2818
2819		clt_path = alloc_path(clt, &paths[i], nr_cpu_ids,
2820				  nr_poll_queues);
2821		if (IS_ERR(clt_path)) {
2822			err = PTR_ERR(clt_path);
2823			goto close_all_path;
2824		}
2825		if (!i)
2826			clt_path->for_new_clt = 1;
2827		list_add_tail_rcu(&clt_path->s.entry, &clt->paths_list);
2828
2829		err = init_path(clt_path);
2830		if (err) {
2831			list_del_rcu(&clt_path->s.entry);
2832			rtrs_clt_close_conns(clt_path, true);
2833			free_percpu(clt_path->stats->pcpu_stats);
2834			kfree(clt_path->stats);
2835			free_path(clt_path);
2836			goto close_all_path;
2837		}
2838
2839		err = rtrs_clt_create_path_files(clt_path);
2840		if (err) {
2841			list_del_rcu(&clt_path->s.entry);
2842			rtrs_clt_close_conns(clt_path, true);
2843			free_percpu(clt_path->stats->pcpu_stats);
2844			kfree(clt_path->stats);
2845			free_path(clt_path);
2846			goto close_all_path;
2847		}
2848	}
2849	err = alloc_permits(clt);
2850	if (err)
2851		goto close_all_path;
2852
2853	return clt;
2854
2855close_all_path:
2856	list_for_each_entry_safe(clt_path, tmp, &clt->paths_list, s.entry) {
2857		rtrs_clt_destroy_path_files(clt_path, NULL);
2858		rtrs_clt_close_conns(clt_path, true);
2859		kobject_put(&clt_path->kobj);
2860	}
2861	rtrs_clt_destroy_sysfs_root(clt);
2862	free_clt(clt);
2863
2864out:
2865	return ERR_PTR(err);
2866}
2867EXPORT_SYMBOL(rtrs_clt_open);
2868
2869/**
2870 * rtrs_clt_close() - Close a path
2871 * @clt: Session handle. Session is freed upon return.
2872 */
2873void rtrs_clt_close(struct rtrs_clt_sess *clt)
2874{
2875	struct rtrs_clt_path *clt_path, *tmp;
2876
2877	/* Firstly forbid sysfs access */
2878	rtrs_clt_destroy_sysfs_root(clt);
2879
2880	/* Now it is safe to iterate over all paths without locks */
2881	list_for_each_entry_safe(clt_path, tmp, &clt->paths_list, s.entry) {
2882		rtrs_clt_close_conns(clt_path, true);
2883		rtrs_clt_destroy_path_files(clt_path, NULL);
2884		kobject_put(&clt_path->kobj);
2885	}
2886	free_permits(clt);
2887	free_clt(clt);
2888}
2889EXPORT_SYMBOL(rtrs_clt_close);
2890
2891int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_path *clt_path)
2892{
2893	enum rtrs_clt_state old_state;
2894	int err = -EBUSY;
2895	bool changed;
2896
2897	changed = rtrs_clt_change_state_get_old(clt_path,
2898						 RTRS_CLT_RECONNECTING,
2899						 &old_state);
2900	if (changed) {
2901		clt_path->reconnect_attempts = 0;
2902		rtrs_clt_stop_and_destroy_conns(clt_path);
2903		queue_delayed_work(rtrs_wq, &clt_path->reconnect_dwork, 0);
2904	}
2905	if (changed || old_state == RTRS_CLT_RECONNECTING) {
2906		/*
2907		 * flush_delayed_work() queues pending work for immediate
2908		 * execution, so do the flush if we have queued something
2909		 * right now or work is pending.
2910		 */
2911		flush_delayed_work(&clt_path->reconnect_dwork);
2912		err = (READ_ONCE(clt_path->state) ==
2913		       RTRS_CLT_CONNECTED ? 0 : -ENOTCONN);
2914	}
2915
2916	return err;
2917}
2918
2919int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_path *clt_path,
2920				     const struct attribute *sysfs_self)
2921{
2922	enum rtrs_clt_state old_state;
2923	bool changed;
2924
2925	/*
2926	 * Continue stopping path till state was changed to DEAD or
2927	 * state was observed as DEAD:
2928	 * 1. State was changed to DEAD - we were fast and nobody
2929	 *    invoked rtrs_clt_reconnect(), which can again start
2930	 *    reconnecting.
2931	 * 2. State was observed as DEAD - we have someone in parallel
2932	 *    removing the path.
2933	 */
2934	do {
2935		rtrs_clt_close_conns(clt_path, true);
2936		changed = rtrs_clt_change_state_get_old(clt_path,
2937							RTRS_CLT_DEAD,
2938							&old_state);
2939	} while (!changed && old_state != RTRS_CLT_DEAD);
2940
2941	if (changed) {
2942		rtrs_clt_remove_path_from_arr(clt_path);
2943		rtrs_clt_destroy_path_files(clt_path, sysfs_self);
2944		kobject_put(&clt_path->kobj);
2945	}
2946
2947	return 0;
2948}
2949
2950void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt_sess *clt, int value)
2951{
2952	clt->max_reconnect_attempts = (unsigned int)value;
2953}
2954
2955int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt_sess *clt)
2956{
2957	return (int)clt->max_reconnect_attempts;
2958}
2959
2960/**
2961 * rtrs_clt_request() - Request data transfer to/from server via RDMA.
2962 *
2963 * @dir:	READ/WRITE
2964 * @ops:	callback function to be called as confirmation, and the pointer.
2965 * @clt:	Session
2966 * @permit:	Preallocated permit
2967 * @vec:	Message that is sent to server together with the request.
2968 *		Sum of len of all @vec elements limited to <= IO_MSG_SIZE.
2969 *		Since the msg is copied internally it can be allocated on stack.
2970 * @nr:		Number of elements in @vec.
2971 * @data_len:	length of data sent to/from server
2972 * @sg:		Pages to be sent/received to/from server.
2973 * @sg_cnt:	Number of elements in the @sg
2974 *
2975 * Return:
2976 * 0:		Success
2977 * <0:		Error
2978 *
2979 * On dir=READ rtrs client will request a data transfer from Server to client.
2980 * The data that the server will respond with will be stored in @sg when
2981 * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event.
2982 * On dir=WRITE rtrs client will rdma write data in sg to server side.
2983 */
2984int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops,
2985		     struct rtrs_clt_sess *clt, struct rtrs_permit *permit,
2986		     const struct kvec *vec, size_t nr, size_t data_len,
2987		     struct scatterlist *sg, unsigned int sg_cnt)
2988{
2989	struct rtrs_clt_io_req *req;
2990	struct rtrs_clt_path *clt_path;
2991
2992	enum dma_data_direction dma_dir;
2993	int err = -ECONNABORTED, i;
2994	size_t usr_len, hdr_len;
2995	struct path_it it;
2996
2997	/* Get kvec length */
2998	for (i = 0, usr_len = 0; i < nr; i++)
2999		usr_len += vec[i].iov_len;
3000
3001	if (dir == READ) {
3002		hdr_len = sizeof(struct rtrs_msg_rdma_read) +
3003			  sg_cnt * sizeof(struct rtrs_sg_desc);
3004		dma_dir = DMA_FROM_DEVICE;
3005	} else {
3006		hdr_len = sizeof(struct rtrs_msg_rdma_write);
3007		dma_dir = DMA_TO_DEVICE;
3008	}
3009
3010	rcu_read_lock();
3011	for (path_it_init(&it, clt);
3012	     (clt_path = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
3013		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
3014			continue;
3015
3016		if (usr_len + hdr_len > clt_path->max_hdr_size) {
3017			rtrs_wrn_rl(clt_path->clt,
3018				     "%s request failed, user message size is %zu and header length %zu, but max size is %u\n",
3019				     dir == READ ? "Read" : "Write",
3020				     usr_len, hdr_len, clt_path->max_hdr_size);
3021			err = -EMSGSIZE;
3022			break;
3023		}
3024		req = rtrs_clt_get_req(clt_path, ops->conf_fn, permit, ops->priv,
3025				       vec, usr_len, sg, sg_cnt, data_len,
3026				       dma_dir);
3027		if (dir == READ)
3028			err = rtrs_clt_read_req(req);
3029		else
3030			err = rtrs_clt_write_req(req);
3031		if (err) {
3032			req->in_use = false;
3033			continue;
3034		}
3035		/* Success path */
3036		break;
3037	}
3038	path_it_deinit(&it);
3039	rcu_read_unlock();
3040
3041	return err;
3042}
3043EXPORT_SYMBOL(rtrs_clt_request);
3044
3045int rtrs_clt_rdma_cq_direct(struct rtrs_clt_sess *clt, unsigned int index)
3046{
3047	/* If no path, return -1 for block layer not to try again */
3048	int cnt = -1;
3049	struct rtrs_con *con;
3050	struct rtrs_clt_path *clt_path;
3051	struct path_it it;
3052
3053	rcu_read_lock();
3054	for (path_it_init(&it, clt);
3055	     (clt_path = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
3056		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
3057			continue;
3058
3059		con = clt_path->s.con[index + 1];
3060		cnt = ib_process_cq_direct(con->cq, -1);
3061		if (cnt)
3062			break;
3063	}
3064	path_it_deinit(&it);
3065	rcu_read_unlock();
3066
3067	return cnt;
3068}
3069EXPORT_SYMBOL(rtrs_clt_rdma_cq_direct);
3070
3071/**
3072 * rtrs_clt_query() - queries RTRS session attributes
3073 *@clt: session pointer
3074 *@attr: query results for session attributes.
3075 * Returns:
3076 *    0 on success
3077 *    -ECOMM		no connection to the server
3078 */
3079int rtrs_clt_query(struct rtrs_clt_sess *clt, struct rtrs_attrs *attr)
3080{
3081	if (!rtrs_clt_is_connected(clt))
3082		return -ECOMM;
3083
3084	attr->queue_depth      = clt->queue_depth;
3085	attr->max_segments     = clt->max_segments;
3086	/* Cap max_io_size to min of remote buffer size and the fr pages */
3087	attr->max_io_size = min_t(int, clt->max_io_size,
3088				  clt->max_segments * SZ_4K);
3089
3090	return 0;
3091}
3092EXPORT_SYMBOL(rtrs_clt_query);
3093
3094int rtrs_clt_create_path_from_sysfs(struct rtrs_clt_sess *clt,
3095				     struct rtrs_addr *addr)
3096{
3097	struct rtrs_clt_path *clt_path;
3098	int err;
3099
3100	clt_path = alloc_path(clt, addr, nr_cpu_ids, 0);
3101	if (IS_ERR(clt_path))
3102		return PTR_ERR(clt_path);
3103
3104	mutex_lock(&clt->paths_mutex);
3105	if (clt->paths_num == 0) {
3106		/*
3107		 * When all the paths are removed for a session,
3108		 * the addition of the first path is like a new session for
3109		 * the storage server
3110		 */
3111		clt_path->for_new_clt = 1;
3112	}
3113
3114	mutex_unlock(&clt->paths_mutex);
3115
3116	/*
3117	 * It is totally safe to add path in CONNECTING state: coming
3118	 * IO will never grab it.  Also it is very important to add
3119	 * path before init, since init fires LINK_CONNECTED event.
3120	 */
3121	rtrs_clt_add_path_to_arr(clt_path);
3122
3123	err = init_path(clt_path);
3124	if (err)
3125		goto close_path;
3126
3127	err = rtrs_clt_create_path_files(clt_path);
3128	if (err)
3129		goto close_path;
3130
3131	return 0;
3132
3133close_path:
3134	rtrs_clt_remove_path_from_arr(clt_path);
3135	rtrs_clt_close_conns(clt_path, true);
3136	free_percpu(clt_path->stats->pcpu_stats);
3137	kfree(clt_path->stats);
3138	free_path(clt_path);
3139
3140	return err;
3141}
3142
3143static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev)
3144{
3145	if (!(dev->ib_dev->attrs.device_cap_flags &
3146	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
3147		pr_err("Memory registrations not supported.\n");
3148		return -ENOTSUPP;
3149	}
3150
3151	return 0;
3152}
3153
3154static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = {
3155	.init = rtrs_clt_ib_dev_init
3156};
3157
3158static int __init rtrs_client_init(void)
3159{
3160	int ret = 0;
3161
3162	rtrs_rdma_dev_pd_init(0, &dev_pd);
3163	ret = class_register(&rtrs_clt_dev_class);
3164	if (ret) {
 
3165		pr_err("Failed to create rtrs-client dev class\n");
3166		return ret;
3167	}
3168	rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0);
3169	if (!rtrs_wq) {
3170		class_unregister(&rtrs_clt_dev_class);
3171		return -ENOMEM;
3172	}
3173
3174	return 0;
3175}
3176
3177static void __exit rtrs_client_exit(void)
3178{
3179	destroy_workqueue(rtrs_wq);
3180	class_unregister(&rtrs_clt_dev_class);
3181	rtrs_rdma_dev_pd_deinit(&dev_pd);
3182}
3183
3184module_init(rtrs_client_init);
3185module_exit(rtrs_client_exit);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * RDMA Transport Layer
   4 *
   5 * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
   6 * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
   7 * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
   8 */
   9
  10#undef pr_fmt
  11#define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
  12
  13#include <linux/module.h>
  14#include <linux/rculist.h>
  15#include <linux/random.h>
  16
  17#include "rtrs-clt.h"
  18#include "rtrs-log.h"
  19#include "rtrs-clt-trace.h"
  20
  21#define RTRS_CONNECT_TIMEOUT_MS 30000
  22/*
  23 * Wait a bit before trying to reconnect after a failure
  24 * in order to give server time to finish clean up which
  25 * leads to "false positives" failed reconnect attempts
  26 */
  27#define RTRS_RECONNECT_BACKOFF 1000
  28/*
  29 * Wait for additional random time between 0 and 8 seconds
  30 * before starting to reconnect to avoid clients reconnecting
  31 * all at once in case of a major network outage
  32 */
  33#define RTRS_RECONNECT_SEED 8
  34
  35#define FIRST_CONN 0x01
  36/* limit to 128 * 4k = 512k max IO */
  37#define RTRS_MAX_SEGMENTS          128
  38
  39MODULE_DESCRIPTION("RDMA Transport Client");
  40MODULE_LICENSE("GPL");
  41
  42static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
  43static struct rtrs_rdma_dev_pd dev_pd = {
  44	.ops = &dev_pd_ops
  45};
  46
  47static struct workqueue_struct *rtrs_wq;
  48static struct class *rtrs_clt_dev_class;
 
 
  49
  50static inline bool rtrs_clt_is_connected(const struct rtrs_clt_sess *clt)
  51{
  52	struct rtrs_clt_path *clt_path;
  53	bool connected = false;
  54
  55	rcu_read_lock();
  56	list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry)
  57		if (READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTED) {
  58			connected = true;
  59			break;
  60		}
  61	rcu_read_unlock();
  62
  63	return connected;
  64}
  65
  66static struct rtrs_permit *
  67__rtrs_get_permit(struct rtrs_clt_sess *clt, enum rtrs_clt_con_type con_type)
  68{
  69	size_t max_depth = clt->queue_depth;
  70	struct rtrs_permit *permit;
  71	int bit;
  72
  73	/*
  74	 * Adapted from null_blk get_tag(). Callers from different cpus may
  75	 * grab the same bit, since find_first_zero_bit is not atomic.
  76	 * But then the test_and_set_bit_lock will fail for all the
  77	 * callers but one, so that they will loop again.
  78	 * This way an explicit spinlock is not required.
  79	 */
  80	do {
  81		bit = find_first_zero_bit(clt->permits_map, max_depth);
  82		if (bit >= max_depth)
  83			return NULL;
  84	} while (test_and_set_bit_lock(bit, clt->permits_map));
  85
  86	permit = get_permit(clt, bit);
  87	WARN_ON(permit->mem_id != bit);
  88	permit->cpu_id = raw_smp_processor_id();
  89	permit->con_type = con_type;
  90
  91	return permit;
  92}
  93
  94static inline void __rtrs_put_permit(struct rtrs_clt_sess *clt,
  95				      struct rtrs_permit *permit)
  96{
  97	clear_bit_unlock(permit->mem_id, clt->permits_map);
  98}
  99
 100/**
 101 * rtrs_clt_get_permit() - allocates permit for future RDMA operation
 102 * @clt:	Current session
 103 * @con_type:	Type of connection to use with the permit
 104 * @can_wait:	Wait type
 105 *
 106 * Description:
 107 *    Allocates permit for the following RDMA operation.  Permit is used
 108 *    to preallocate all resources and to propagate memory pressure
 109 *    up earlier.
 110 *
 111 * Context:
 112 *    Can sleep if @wait == RTRS_PERMIT_WAIT
 113 */
 114struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt_sess *clt,
 115					  enum rtrs_clt_con_type con_type,
 116					  enum wait_type can_wait)
 117{
 118	struct rtrs_permit *permit;
 119	DEFINE_WAIT(wait);
 120
 121	permit = __rtrs_get_permit(clt, con_type);
 122	if (permit || !can_wait)
 123		return permit;
 124
 125	do {
 126		prepare_to_wait(&clt->permits_wait, &wait,
 127				TASK_UNINTERRUPTIBLE);
 128		permit = __rtrs_get_permit(clt, con_type);
 129		if (permit)
 130			break;
 131
 132		io_schedule();
 133	} while (1);
 134
 135	finish_wait(&clt->permits_wait, &wait);
 136
 137	return permit;
 138}
 139EXPORT_SYMBOL(rtrs_clt_get_permit);
 140
 141/**
 142 * rtrs_clt_put_permit() - puts allocated permit
 143 * @clt:	Current session
 144 * @permit:	Permit to be freed
 145 *
 146 * Context:
 147 *    Does not matter
 148 */
 149void rtrs_clt_put_permit(struct rtrs_clt_sess *clt,
 150			 struct rtrs_permit *permit)
 151{
 152	if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map)))
 153		return;
 154
 155	__rtrs_put_permit(clt, permit);
 156
 157	/*
 158	 * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list
 159	 * before calling schedule(). So if rtrs_clt_get_permit() is sleeping
 160	 * it must have added itself to &clt->permits_wait before
 161	 * __rtrs_put_permit() finished.
 162	 * Hence it is safe to guard wake_up() with a waitqueue_active() test.
 163	 */
 164	if (waitqueue_active(&clt->permits_wait))
 165		wake_up(&clt->permits_wait);
 166}
 167EXPORT_SYMBOL(rtrs_clt_put_permit);
 168
 169/**
 170 * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit
 171 * @clt_path: client path pointer
 172 * @permit: permit for the allocation of the RDMA buffer
 173 * Note:
 174 *     IO connection starts from 1.
 175 *     0 connection is for user messages.
 176 */
 177static
 178struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_path *clt_path,
 179					    struct rtrs_permit *permit)
 180{
 181	int id = 0;
 182
 183	if (permit->con_type == RTRS_IO_CON)
 184		id = (permit->cpu_id % (clt_path->s.irq_con_num - 1)) + 1;
 185
 186	return to_clt_con(clt_path->s.con[id]);
 187}
 188
 189/**
 190 * rtrs_clt_change_state() - change the session state through session state
 191 * machine.
 192 *
 193 * @clt_path: client path to change the state of.
 194 * @new_state: state to change to.
 195 *
 196 * returns true if sess's state is changed to new state, otherwise return false.
 197 *
 198 * Locks:
 199 * state_wq lock must be hold.
 200 */
 201static bool rtrs_clt_change_state(struct rtrs_clt_path *clt_path,
 202				     enum rtrs_clt_state new_state)
 203{
 204	enum rtrs_clt_state old_state;
 205	bool changed = false;
 206
 207	lockdep_assert_held(&clt_path->state_wq.lock);
 208
 209	old_state = clt_path->state;
 210	switch (new_state) {
 211	case RTRS_CLT_CONNECTING:
 212		switch (old_state) {
 213		case RTRS_CLT_RECONNECTING:
 214			changed = true;
 215			fallthrough;
 216		default:
 217			break;
 218		}
 219		break;
 220	case RTRS_CLT_RECONNECTING:
 221		switch (old_state) {
 222		case RTRS_CLT_CONNECTED:
 223		case RTRS_CLT_CONNECTING_ERR:
 224		case RTRS_CLT_CLOSED:
 225			changed = true;
 226			fallthrough;
 227		default:
 228			break;
 229		}
 230		break;
 231	case RTRS_CLT_CONNECTED:
 232		switch (old_state) {
 233		case RTRS_CLT_CONNECTING:
 234			changed = true;
 235			fallthrough;
 236		default:
 237			break;
 238		}
 239		break;
 240	case RTRS_CLT_CONNECTING_ERR:
 241		switch (old_state) {
 242		case RTRS_CLT_CONNECTING:
 243			changed = true;
 244			fallthrough;
 245		default:
 246			break;
 247		}
 248		break;
 249	case RTRS_CLT_CLOSING:
 250		switch (old_state) {
 251		case RTRS_CLT_CONNECTING:
 252		case RTRS_CLT_CONNECTING_ERR:
 253		case RTRS_CLT_RECONNECTING:
 254		case RTRS_CLT_CONNECTED:
 255			changed = true;
 256			fallthrough;
 257		default:
 258			break;
 259		}
 260		break;
 261	case RTRS_CLT_CLOSED:
 262		switch (old_state) {
 263		case RTRS_CLT_CLOSING:
 264			changed = true;
 265			fallthrough;
 266		default:
 267			break;
 268		}
 269		break;
 270	case RTRS_CLT_DEAD:
 271		switch (old_state) {
 272		case RTRS_CLT_CLOSED:
 273			changed = true;
 274			fallthrough;
 275		default:
 276			break;
 277		}
 278		break;
 279	default:
 280		break;
 281	}
 282	if (changed) {
 283		clt_path->state = new_state;
 284		wake_up_locked(&clt_path->state_wq);
 285	}
 286
 287	return changed;
 288}
 289
 290static bool rtrs_clt_change_state_from_to(struct rtrs_clt_path *clt_path,
 291					   enum rtrs_clt_state old_state,
 292					   enum rtrs_clt_state new_state)
 293{
 294	bool changed = false;
 295
 296	spin_lock_irq(&clt_path->state_wq.lock);
 297	if (clt_path->state == old_state)
 298		changed = rtrs_clt_change_state(clt_path, new_state);
 299	spin_unlock_irq(&clt_path->state_wq.lock);
 300
 301	return changed;
 302}
 303
 304static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_path *clt_path);
 305static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con)
 306{
 307	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 308
 309	trace_rtrs_rdma_error_recovery(clt_path);
 310
 311	if (rtrs_clt_change_state_from_to(clt_path,
 312					   RTRS_CLT_CONNECTED,
 313					   RTRS_CLT_RECONNECTING)) {
 314		queue_work(rtrs_wq, &clt_path->err_recovery_work);
 315	} else {
 316		/*
 317		 * Error can happen just on establishing new connection,
 318		 * so notify waiter with error state, waiter is responsible
 319		 * for cleaning the rest and reconnect if needed.
 320		 */
 321		rtrs_clt_change_state_from_to(clt_path,
 322					       RTRS_CLT_CONNECTING,
 323					       RTRS_CLT_CONNECTING_ERR);
 324	}
 325}
 326
 327static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc)
 328{
 329	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
 330
 331	if (wc->status != IB_WC_SUCCESS) {
 332		rtrs_err(con->c.path, "Failed IB_WR_REG_MR: %s\n",
 333			  ib_wc_status_msg(wc->status));
 334		rtrs_rdma_error_recovery(con);
 335	}
 336}
 337
 338static struct ib_cqe fast_reg_cqe = {
 339	.done = rtrs_clt_fast_reg_done
 340};
 341
 342static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
 343			      bool notify, bool can_wait);
 344
 345static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
 346{
 347	struct rtrs_clt_io_req *req =
 348		container_of(wc->wr_cqe, typeof(*req), inv_cqe);
 349	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
 350
 351	if (wc->status != IB_WC_SUCCESS) {
 352		rtrs_err(con->c.path, "Failed IB_WR_LOCAL_INV: %s\n",
 353			  ib_wc_status_msg(wc->status));
 354		rtrs_rdma_error_recovery(con);
 355	}
 356	req->need_inv = false;
 357	if (req->need_inv_comp)
 358		complete(&req->inv_comp);
 359	else
 360		/* Complete request from INV callback */
 361		complete_rdma_req(req, req->inv_errno, true, false);
 362}
 363
 364static int rtrs_inv_rkey(struct rtrs_clt_io_req *req)
 365{
 366	struct rtrs_clt_con *con = req->con;
 367	struct ib_send_wr wr = {
 368		.opcode		    = IB_WR_LOCAL_INV,
 369		.wr_cqe		    = &req->inv_cqe,
 370		.send_flags	    = IB_SEND_SIGNALED,
 371		.ex.invalidate_rkey = req->mr->rkey,
 372	};
 373	req->inv_cqe.done = rtrs_clt_inv_rkey_done;
 374
 375	return ib_post_send(con->c.qp, &wr, NULL);
 376}
 377
 378static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
 379			      bool notify, bool can_wait)
 380{
 381	struct rtrs_clt_con *con = req->con;
 382	struct rtrs_clt_path *clt_path;
 383	int err;
 384
 385	if (WARN_ON(!req->in_use))
 386		return;
 387	if (WARN_ON(!req->con))
 388		return;
 389	clt_path = to_clt_path(con->c.path);
 390
 391	if (req->sg_cnt) {
 392		if (req->dir == DMA_FROM_DEVICE && req->need_inv) {
 393			/*
 394			 * We are here to invalidate read requests
 395			 * ourselves.  In normal scenario server should
 396			 * send INV for all read requests, but
 397			 * we are here, thus two things could happen:
 398			 *
 399			 *    1.  this is failover, when errno != 0
 400			 *        and can_wait == 1,
 401			 *
 402			 *    2.  something totally bad happened and
 403			 *        server forgot to send INV, so we
 404			 *        should do that ourselves.
 405			 */
 406
 407			if (can_wait) {
 408				req->need_inv_comp = true;
 409			} else {
 410				/* This should be IO path, so always notify */
 411				WARN_ON(!notify);
 412				/* Save errno for INV callback */
 413				req->inv_errno = errno;
 414			}
 415
 416			refcount_inc(&req->ref);
 417			err = rtrs_inv_rkey(req);
 418			if (err) {
 419				rtrs_err(con->c.path, "Send INV WR key=%#x: %d\n",
 420					  req->mr->rkey, err);
 421			} else if (can_wait) {
 422				wait_for_completion(&req->inv_comp);
 423			} else {
 424				/*
 425				 * Something went wrong, so request will be
 426				 * completed from INV callback.
 427				 */
 428				WARN_ON_ONCE(1);
 429
 430				return;
 431			}
 432			if (!refcount_dec_and_test(&req->ref))
 433				return;
 434		}
 435		ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
 436				req->sg_cnt, req->dir);
 437	}
 438	if (!refcount_dec_and_test(&req->ref))
 439		return;
 440	if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
 441		atomic_dec(&clt_path->stats->inflight);
 442
 443	req->in_use = false;
 444	req->con = NULL;
 445
 446	if (errno) {
 447		rtrs_err_rl(con->c.path, "IO request failed: error=%d path=%s [%s:%u] notify=%d\n",
 448			    errno, kobject_name(&clt_path->kobj), clt_path->hca_name,
 449			    clt_path->hca_port, notify);
 450	}
 451
 452	if (notify)
 453		req->conf(req->priv, errno);
 454}
 455
 456static int rtrs_post_send_rdma(struct rtrs_clt_con *con,
 457				struct rtrs_clt_io_req *req,
 458				struct rtrs_rbuf *rbuf, u32 off,
 459				u32 imm, struct ib_send_wr *wr)
 460{
 461	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 462	enum ib_send_flags flags;
 463	struct ib_sge sge;
 464
 465	if (!req->sg_size) {
 466		rtrs_wrn(con->c.path,
 467			 "Doing RDMA Write failed, no data supplied\n");
 468		return -EINVAL;
 469	}
 470
 471	/* user data and user message in the first list element */
 472	sge.addr   = req->iu->dma_addr;
 473	sge.length = req->sg_size;
 474	sge.lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
 475
 476	/*
 477	 * From time to time we have to post signalled sends,
 478	 * or send queue will fill up and only QP reset can help.
 479	 */
 480	flags = atomic_inc_return(&con->c.wr_cnt) % clt_path->s.signal_interval ?
 481			0 : IB_SEND_SIGNALED;
 482
 483	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
 484				      req->iu->dma_addr,
 485				      req->sg_size, DMA_TO_DEVICE);
 486
 487	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1,
 488					    rbuf->rkey, rbuf->addr + off,
 489					    imm, flags, wr, NULL);
 490}
 491
 492static void process_io_rsp(struct rtrs_clt_path *clt_path, u32 msg_id,
 493			   s16 errno, bool w_inval)
 494{
 495	struct rtrs_clt_io_req *req;
 496
 497	if (WARN_ON(msg_id >= clt_path->queue_depth))
 498		return;
 499
 500	req = &clt_path->reqs[msg_id];
 501	/* Drop need_inv if server responded with send with invalidation */
 502	req->need_inv &= !w_inval;
 503	complete_rdma_req(req, errno, true, false);
 504}
 505
 506static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc)
 507{
 508	struct rtrs_iu *iu;
 509	int err;
 510	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 511
 512	WARN_ON((clt_path->flags & RTRS_MSG_NEW_RKEY_F) == 0);
 513	iu = container_of(wc->wr_cqe, struct rtrs_iu,
 514			  cqe);
 515	err = rtrs_iu_post_recv(&con->c, iu);
 516	if (err) {
 517		rtrs_err(con->c.path, "post iu failed %d\n", err);
 518		rtrs_rdma_error_recovery(con);
 519	}
 520}
 521
 522static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc)
 523{
 524	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 525	struct rtrs_msg_rkey_rsp *msg;
 526	u32 imm_type, imm_payload;
 527	bool w_inval = false;
 528	struct rtrs_iu *iu;
 529	u32 buf_id;
 530	int err;
 531
 532	WARN_ON((clt_path->flags & RTRS_MSG_NEW_RKEY_F) == 0);
 533
 534	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
 535
 536	if (wc->byte_len < sizeof(*msg)) {
 537		rtrs_err(con->c.path, "rkey response is malformed: size %d\n",
 538			  wc->byte_len);
 539		goto out;
 540	}
 541	ib_dma_sync_single_for_cpu(clt_path->s.dev->ib_dev, iu->dma_addr,
 542				   iu->size, DMA_FROM_DEVICE);
 543	msg = iu->buf;
 544	if (le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP) {
 545		rtrs_err(clt_path->clt,
 546			  "rkey response is malformed: type %d\n",
 547			  le16_to_cpu(msg->type));
 548		goto out;
 549	}
 550	buf_id = le16_to_cpu(msg->buf_id);
 551	if (WARN_ON(buf_id >= clt_path->queue_depth))
 552		goto out;
 553
 554	rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload);
 555	if (imm_type == RTRS_IO_RSP_IMM ||
 556	    imm_type == RTRS_IO_RSP_W_INV_IMM) {
 557		u32 msg_id;
 558
 559		w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
 560		rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
 561
 562		if (WARN_ON(buf_id != msg_id))
 563			goto out;
 564		clt_path->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey);
 565		process_io_rsp(clt_path, msg_id, err, w_inval);
 566	}
 567	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev, iu->dma_addr,
 568				      iu->size, DMA_FROM_DEVICE);
 569	return rtrs_clt_recv_done(con, wc);
 570out:
 571	rtrs_rdma_error_recovery(con);
 572}
 573
 574static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
 575
 576static struct ib_cqe io_comp_cqe = {
 577	.done = rtrs_clt_rdma_done
 578};
 579
 580/*
 581 * Post x2 empty WRs: first is for this RDMA with IMM,
 582 * second is for RECV with INV, which happened earlier.
 583 */
 584static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe)
 585{
 586	struct ib_recv_wr wr_arr[2], *wr;
 587	int i;
 588
 589	memset(wr_arr, 0, sizeof(wr_arr));
 590	for (i = 0; i < ARRAY_SIZE(wr_arr); i++) {
 591		wr = &wr_arr[i];
 592		wr->wr_cqe  = cqe;
 593		if (i)
 594			/* Chain backwards */
 595			wr->next = &wr_arr[i - 1];
 596	}
 597
 598	return ib_post_recv(con->qp, wr, NULL);
 599}
 600
 601static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
 602{
 603	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
 604	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 605	u32 imm_type, imm_payload;
 606	bool w_inval = false;
 607	int err;
 608
 609	if (wc->status != IB_WC_SUCCESS) {
 610		if (wc->status != IB_WC_WR_FLUSH_ERR) {
 611			rtrs_err(clt_path->clt, "RDMA failed: %s\n",
 612				  ib_wc_status_msg(wc->status));
 613			rtrs_rdma_error_recovery(con);
 614		}
 615		return;
 616	}
 617	rtrs_clt_update_wc_stats(con);
 618
 619	switch (wc->opcode) {
 620	case IB_WC_RECV_RDMA_WITH_IMM:
 621		/*
 622		 * post_recv() RDMA write completions of IO reqs (read/write)
 623		 * and hb
 624		 */
 625		if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done))
 626			return;
 627		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
 628			       &imm_type, &imm_payload);
 629		if (imm_type == RTRS_IO_RSP_IMM ||
 630		    imm_type == RTRS_IO_RSP_W_INV_IMM) {
 631			u32 msg_id;
 632
 633			w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
 634			rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
 635
 636			process_io_rsp(clt_path, msg_id, err, w_inval);
 637		} else if (imm_type == RTRS_HB_MSG_IMM) {
 638			WARN_ON(con->c.cid);
 639			rtrs_send_hb_ack(&clt_path->s);
 640			if (clt_path->flags & RTRS_MSG_NEW_RKEY_F)
 641				return  rtrs_clt_recv_done(con, wc);
 642		} else if (imm_type == RTRS_HB_ACK_IMM) {
 643			WARN_ON(con->c.cid);
 644			clt_path->s.hb_missed_cnt = 0;
 645			clt_path->s.hb_cur_latency =
 646				ktime_sub(ktime_get(), clt_path->s.hb_last_sent);
 647			if (clt_path->flags & RTRS_MSG_NEW_RKEY_F)
 648				return  rtrs_clt_recv_done(con, wc);
 649		} else {
 650			rtrs_wrn(con->c.path, "Unknown IMM type %u\n",
 651				  imm_type);
 652		}
 653		if (w_inval)
 654			/*
 655			 * Post x2 empty WRs: first is for this RDMA with IMM,
 656			 * second is for RECV with INV, which happened earlier.
 657			 */
 658			err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe);
 659		else
 660			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
 661		if (err) {
 662			rtrs_err(con->c.path, "rtrs_post_recv_empty(): %d\n",
 663				  err);
 664			rtrs_rdma_error_recovery(con);
 665		}
 666		break;
 667	case IB_WC_RECV:
 668		/*
 669		 * Key invalidations from server side
 670		 */
 671		WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE ||
 672			  wc->wc_flags & IB_WC_WITH_IMM));
 673		WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done);
 674		if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) {
 675			if (wc->wc_flags & IB_WC_WITH_INVALIDATE)
 676				return  rtrs_clt_recv_done(con, wc);
 677
 678			return  rtrs_clt_rkey_rsp_done(con, wc);
 679		}
 680		break;
 681	case IB_WC_RDMA_WRITE:
 682		/*
 683		 * post_send() RDMA write completions of IO reqs (read/write)
 684		 * and hb.
 685		 */
 686		break;
 687
 688	default:
 689		rtrs_wrn(clt_path->clt, "Unexpected WC type: %d\n", wc->opcode);
 690		return;
 691	}
 692}
 693
 694static int post_recv_io(struct rtrs_clt_con *con, size_t q_size)
 695{
 696	int err, i;
 697	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 698
 699	for (i = 0; i < q_size; i++) {
 700		if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) {
 701			struct rtrs_iu *iu = &con->rsp_ius[i];
 702
 703			err = rtrs_iu_post_recv(&con->c, iu);
 704		} else {
 705			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
 706		}
 707		if (err)
 708			return err;
 709	}
 710
 711	return 0;
 712}
 713
 714static int post_recv_path(struct rtrs_clt_path *clt_path)
 715{
 716	size_t q_size = 0;
 717	int err, cid;
 718
 719	for (cid = 0; cid < clt_path->s.con_num; cid++) {
 720		if (cid == 0)
 721			q_size = SERVICE_CON_QUEUE_DEPTH;
 722		else
 723			q_size = clt_path->queue_depth;
 724
 725		/*
 726		 * x2 for RDMA read responses + FR key invalidations,
 727		 * RDMA writes do not require any FR registrations.
 728		 */
 729		q_size *= 2;
 730
 731		err = post_recv_io(to_clt_con(clt_path->s.con[cid]), q_size);
 732		if (err) {
 733			rtrs_err(clt_path->clt, "post_recv_io(), err: %d\n",
 734				 err);
 735			return err;
 736		}
 737	}
 738
 739	return 0;
 740}
 741
 742struct path_it {
 743	int i;
 744	struct list_head skip_list;
 745	struct rtrs_clt_sess *clt;
 746	struct rtrs_clt_path *(*next_path)(struct path_it *it);
 747};
 748
 749/*
 750 * rtrs_clt_get_next_path_or_null - get clt path from the list or return NULL
 751 * @head:	the head for the list.
 752 * @clt_path:	The element to take the next clt_path from.
 753 *
 754 * Next clt path returned in round-robin fashion, i.e. head will be skipped,
 755 * but if list is observed as empty, NULL will be returned.
 756 *
 757 * This function may safely run concurrently with the _rcu list-mutation
 758 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 759 */
 760static inline struct rtrs_clt_path *
 761rtrs_clt_get_next_path_or_null(struct list_head *head, struct rtrs_clt_path *clt_path)
 762{
 763	return list_next_or_null_rcu(head, &clt_path->s.entry, typeof(*clt_path), s.entry) ?:
 764				     list_next_or_null_rcu(head,
 765							   READ_ONCE((&clt_path->s.entry)->next),
 766							   typeof(*clt_path), s.entry);
 767}
 768
 769/**
 770 * get_next_path_rr() - Returns path in round-robin fashion.
 771 * @it:	the path pointer
 772 *
 773 * Related to @MP_POLICY_RR
 774 *
 775 * Locks:
 776 *    rcu_read_lock() must be hold.
 777 */
 778static struct rtrs_clt_path *get_next_path_rr(struct path_it *it)
 779{
 780	struct rtrs_clt_path __rcu **ppcpu_path;
 781	struct rtrs_clt_path *path;
 782	struct rtrs_clt_sess *clt;
 783
 
 
 
 
 
 784	clt = it->clt;
 785
 786	/*
 787	 * Here we use two RCU objects: @paths_list and @pcpu_path
 788	 * pointer.  See rtrs_clt_remove_path_from_arr() for details
 789	 * how that is handled.
 790	 */
 791
 792	ppcpu_path = this_cpu_ptr(clt->pcpu_path);
 793	path = rcu_dereference(*ppcpu_path);
 794	if (!path)
 795		path = list_first_or_null_rcu(&clt->paths_list,
 796					      typeof(*path), s.entry);
 797	else
 798		path = rtrs_clt_get_next_path_or_null(&clt->paths_list, path);
 799
 800	rcu_assign_pointer(*ppcpu_path, path);
 801
 802	return path;
 803}
 804
 805/**
 806 * get_next_path_min_inflight() - Returns path with minimal inflight count.
 807 * @it:	the path pointer
 808 *
 809 * Related to @MP_POLICY_MIN_INFLIGHT
 810 *
 811 * Locks:
 812 *    rcu_read_lock() must be hold.
 813 */
 814static struct rtrs_clt_path *get_next_path_min_inflight(struct path_it *it)
 815{
 816	struct rtrs_clt_path *min_path = NULL;
 817	struct rtrs_clt_sess *clt = it->clt;
 818	struct rtrs_clt_path *clt_path;
 819	int min_inflight = INT_MAX;
 820	int inflight;
 821
 822	list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry) {
 823		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
 824			continue;
 825
 826		if (!list_empty(raw_cpu_ptr(clt_path->mp_skip_entry)))
 827			continue;
 828
 829		inflight = atomic_read(&clt_path->stats->inflight);
 830
 831		if (inflight < min_inflight) {
 832			min_inflight = inflight;
 833			min_path = clt_path;
 834		}
 835	}
 836
 837	/*
 838	 * add the path to the skip list, so that next time we can get
 839	 * a different one
 840	 */
 841	if (min_path)
 842		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
 843
 844	return min_path;
 845}
 846
 847/**
 848 * get_next_path_min_latency() - Returns path with minimal latency.
 849 * @it:	the path pointer
 850 *
 851 * Return: a path with the lowest latency or NULL if all paths are tried
 852 *
 853 * Locks:
 854 *    rcu_read_lock() must be hold.
 855 *
 856 * Related to @MP_POLICY_MIN_LATENCY
 857 *
 858 * This DOES skip an already-tried path.
 859 * There is a skip-list to skip a path if the path has tried but failed.
 860 * It will try the minimum latency path and then the second minimum latency
 861 * path and so on. Finally it will return NULL if all paths are tried.
 862 * Therefore the caller MUST check the returned
 863 * path is NULL and trigger the IO error.
 864 */
 865static struct rtrs_clt_path *get_next_path_min_latency(struct path_it *it)
 866{
 867	struct rtrs_clt_path *min_path = NULL;
 868	struct rtrs_clt_sess *clt = it->clt;
 869	struct rtrs_clt_path *clt_path;
 870	ktime_t min_latency = KTIME_MAX;
 871	ktime_t latency;
 872
 873	list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry) {
 874		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
 875			continue;
 876
 877		if (!list_empty(raw_cpu_ptr(clt_path->mp_skip_entry)))
 878			continue;
 879
 880		latency = clt_path->s.hb_cur_latency;
 881
 882		if (latency < min_latency) {
 883			min_latency = latency;
 884			min_path = clt_path;
 885		}
 886	}
 887
 888	/*
 889	 * add the path to the skip list, so that next time we can get
 890	 * a different one
 891	 */
 892	if (min_path)
 893		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
 894
 895	return min_path;
 896}
 897
 898static inline void path_it_init(struct path_it *it, struct rtrs_clt_sess *clt)
 899{
 900	INIT_LIST_HEAD(&it->skip_list);
 901	it->clt = clt;
 902	it->i = 0;
 903
 904	if (clt->mp_policy == MP_POLICY_RR)
 905		it->next_path = get_next_path_rr;
 906	else if (clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
 907		it->next_path = get_next_path_min_inflight;
 908	else
 909		it->next_path = get_next_path_min_latency;
 910}
 911
 912static inline void path_it_deinit(struct path_it *it)
 913{
 914	struct list_head *skip, *tmp;
 915	/*
 916	 * The skip_list is used only for the MIN_INFLIGHT and MIN_LATENCY policies.
 917	 * We need to remove paths from it, so that next IO can insert
 918	 * paths (->mp_skip_entry) into a skip_list again.
 919	 */
 920	list_for_each_safe(skip, tmp, &it->skip_list)
 921		list_del_init(skip);
 922}
 923
 924/**
 925 * rtrs_clt_init_req() - Initialize an rtrs_clt_io_req holding information
 926 * about an inflight IO.
 927 * The user buffer holding user control message (not data) is copied into
 928 * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will
 929 * also hold the control message of rtrs.
 930 * @req: an io request holding information about IO.
 931 * @clt_path: client path
 932 * @conf: conformation callback function to notify upper layer.
 933 * @permit: permit for allocation of RDMA remote buffer
 934 * @priv: private pointer
 935 * @vec: kernel vector containing control message
 936 * @usr_len: length of the user message
 937 * @sg: scater list for IO data
 938 * @sg_cnt: number of scater list entries
 939 * @data_len: length of the IO data
 940 * @dir: direction of the IO.
 941 */
 942static void rtrs_clt_init_req(struct rtrs_clt_io_req *req,
 943			      struct rtrs_clt_path *clt_path,
 944			      void (*conf)(void *priv, int errno),
 945			      struct rtrs_permit *permit, void *priv,
 946			      const struct kvec *vec, size_t usr_len,
 947			      struct scatterlist *sg, size_t sg_cnt,
 948			      size_t data_len, int dir)
 949{
 950	struct iov_iter iter;
 951	size_t len;
 952
 953	req->permit = permit;
 954	req->in_use = true;
 955	req->usr_len = usr_len;
 956	req->data_len = data_len;
 957	req->sglist = sg;
 958	req->sg_cnt = sg_cnt;
 959	req->priv = priv;
 960	req->dir = dir;
 961	req->con = rtrs_permit_to_clt_con(clt_path, permit);
 962	req->conf = conf;
 963	req->need_inv = false;
 964	req->need_inv_comp = false;
 965	req->inv_errno = 0;
 966	refcount_set(&req->ref, 1);
 967	req->mp_policy = clt_path->clt->mp_policy;
 968
 969	iov_iter_kvec(&iter, ITER_SOURCE, vec, 1, usr_len);
 970	len = _copy_from_iter(req->iu->buf, usr_len, &iter);
 971	WARN_ON(len != usr_len);
 972
 973	reinit_completion(&req->inv_comp);
 974}
 975
 976static struct rtrs_clt_io_req *
 977rtrs_clt_get_req(struct rtrs_clt_path *clt_path,
 978		 void (*conf)(void *priv, int errno),
 979		 struct rtrs_permit *permit, void *priv,
 980		 const struct kvec *vec, size_t usr_len,
 981		 struct scatterlist *sg, size_t sg_cnt,
 982		 size_t data_len, int dir)
 983{
 984	struct rtrs_clt_io_req *req;
 985
 986	req = &clt_path->reqs[permit->mem_id];
 987	rtrs_clt_init_req(req, clt_path, conf, permit, priv, vec, usr_len,
 988			   sg, sg_cnt, data_len, dir);
 989	return req;
 990}
 991
 992static struct rtrs_clt_io_req *
 993rtrs_clt_get_copy_req(struct rtrs_clt_path *alive_path,
 994		       struct rtrs_clt_io_req *fail_req)
 995{
 996	struct rtrs_clt_io_req *req;
 997	struct kvec vec = {
 998		.iov_base = fail_req->iu->buf,
 999		.iov_len  = fail_req->usr_len
1000	};
1001
1002	req = &alive_path->reqs[fail_req->permit->mem_id];
1003	rtrs_clt_init_req(req, alive_path, fail_req->conf, fail_req->permit,
1004			   fail_req->priv, &vec, fail_req->usr_len,
1005			   fail_req->sglist, fail_req->sg_cnt,
1006			   fail_req->data_len, fail_req->dir);
1007	return req;
1008}
1009
1010static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con,
1011				   struct rtrs_clt_io_req *req,
1012				   struct rtrs_rbuf *rbuf, bool fr_en,
1013				   u32 count, u32 size, u32 imm,
1014				   struct ib_send_wr *wr,
1015				   struct ib_send_wr *tail)
1016{
1017	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1018	struct ib_sge *sge = req->sge;
1019	enum ib_send_flags flags;
1020	struct scatterlist *sg;
1021	size_t num_sge;
1022	int i;
1023	struct ib_send_wr *ptail = NULL;
1024
1025	if (fr_en) {
1026		i = 0;
1027		sge[i].addr   = req->mr->iova;
1028		sge[i].length = req->mr->length;
1029		sge[i].lkey   = req->mr->lkey;
1030		i++;
1031		num_sge = 2;
1032		ptail = tail;
1033	} else {
1034		for_each_sg(req->sglist, sg, count, i) {
1035			sge[i].addr   = sg_dma_address(sg);
1036			sge[i].length = sg_dma_len(sg);
1037			sge[i].lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
1038		}
1039		num_sge = 1 + count;
1040	}
1041	sge[i].addr   = req->iu->dma_addr;
1042	sge[i].length = size;
1043	sge[i].lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
1044
1045	/*
1046	 * From time to time we have to post signalled sends,
1047	 * or send queue will fill up and only QP reset can help.
1048	 */
1049	flags = atomic_inc_return(&con->c.wr_cnt) % clt_path->s.signal_interval ?
1050			0 : IB_SEND_SIGNALED;
1051
1052	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
1053				      req->iu->dma_addr,
1054				      size, DMA_TO_DEVICE);
1055
1056	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge,
1057					    rbuf->rkey, rbuf->addr, imm,
1058					    flags, wr, ptail);
1059}
1060
1061static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count)
1062{
1063	int nr;
1064
1065	/* Align the MR to a 4K page size to match the block virt boundary */
1066	nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K);
1067	if (nr != count)
1068		return nr < 0 ? nr : -EINVAL;
1069	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1070
1071	return nr;
1072}
1073
1074static int rtrs_clt_write_req(struct rtrs_clt_io_req *req)
1075{
1076	struct rtrs_clt_con *con = req->con;
1077	struct rtrs_path *s = con->c.path;
1078	struct rtrs_clt_path *clt_path = to_clt_path(s);
1079	struct rtrs_msg_rdma_write *msg;
1080
1081	struct rtrs_rbuf *rbuf;
1082	int ret, count = 0;
1083	u32 imm, buf_id;
1084	struct ib_reg_wr rwr;
1085	struct ib_send_wr inv_wr;
1086	struct ib_send_wr *wr = NULL;
1087	bool fr_en = false;
1088
1089	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1090
1091	if (tsize > clt_path->chunk_size) {
1092		rtrs_wrn(s, "Write request failed, size too big %zu > %d\n",
1093			  tsize, clt_path->chunk_size);
1094		return -EMSGSIZE;
1095	}
1096	if (req->sg_cnt) {
1097		count = ib_dma_map_sg(clt_path->s.dev->ib_dev, req->sglist,
1098				      req->sg_cnt, req->dir);
1099		if (!count) {
1100			rtrs_wrn(s, "Write request failed, map failed\n");
1101			return -EINVAL;
1102		}
1103	}
1104	/* put rtrs msg after sg and user message */
1105	msg = req->iu->buf + req->usr_len;
1106	msg->type = cpu_to_le16(RTRS_MSG_WRITE);
1107	msg->usr_len = cpu_to_le16(req->usr_len);
1108
1109	/* rtrs message on server side will be after user data and message */
1110	imm = req->permit->mem_off + req->data_len + req->usr_len;
1111	imm = rtrs_to_io_req_imm(imm);
1112	buf_id = req->permit->mem_id;
1113	req->sg_size = tsize;
1114	rbuf = &clt_path->rbufs[buf_id];
1115
1116	if (count) {
1117		ret = rtrs_map_sg_fr(req, count);
1118		if (ret < 0) {
1119			rtrs_err_rl(s,
1120				    "Write request failed, failed to map fast reg. data, err: %d\n",
1121				    ret);
1122			ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
1123					req->sg_cnt, req->dir);
1124			return ret;
1125		}
1126		inv_wr = (struct ib_send_wr) {
1127			.opcode		    = IB_WR_LOCAL_INV,
1128			.wr_cqe		    = &req->inv_cqe,
1129			.send_flags	    = IB_SEND_SIGNALED,
1130			.ex.invalidate_rkey = req->mr->rkey,
1131		};
1132		req->inv_cqe.done = rtrs_clt_inv_rkey_done;
1133		rwr = (struct ib_reg_wr) {
1134			.wr.opcode = IB_WR_REG_MR,
1135			.wr.wr_cqe = &fast_reg_cqe,
1136			.mr = req->mr,
1137			.key = req->mr->rkey,
1138			.access = (IB_ACCESS_LOCAL_WRITE),
1139		};
1140		wr = &rwr.wr;
1141		fr_en = true;
1142		refcount_inc(&req->ref);
1143	}
1144	/*
1145	 * Update stats now, after request is successfully sent it is not
1146	 * safe anymore to touch it.
1147	 */
1148	rtrs_clt_update_all_stats(req, WRITE);
1149
1150	ret = rtrs_post_rdma_write_sg(req->con, req, rbuf, fr_en, count,
1151				      req->usr_len + sizeof(*msg),
1152				      imm, wr, &inv_wr);
1153	if (ret) {
1154		rtrs_err_rl(s,
1155			    "Write request failed: error=%d path=%s [%s:%u]\n",
1156			    ret, kobject_name(&clt_path->kobj), clt_path->hca_name,
1157			    clt_path->hca_port);
1158		if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
1159			atomic_dec(&clt_path->stats->inflight);
1160		if (req->sg_cnt)
1161			ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
1162					req->sg_cnt, req->dir);
1163	}
1164
1165	return ret;
1166}
1167
1168static int rtrs_clt_read_req(struct rtrs_clt_io_req *req)
1169{
1170	struct rtrs_clt_con *con = req->con;
1171	struct rtrs_path *s = con->c.path;
1172	struct rtrs_clt_path *clt_path = to_clt_path(s);
1173	struct rtrs_msg_rdma_read *msg;
1174	struct rtrs_ib_dev *dev = clt_path->s.dev;
1175
1176	struct ib_reg_wr rwr;
1177	struct ib_send_wr *wr = NULL;
1178
1179	int ret, count = 0;
1180	u32 imm, buf_id;
1181
1182	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1183
1184	if (tsize > clt_path->chunk_size) {
1185		rtrs_wrn(s,
1186			  "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n",
1187			  tsize, clt_path->chunk_size);
1188		return -EMSGSIZE;
1189	}
1190
1191	if (req->sg_cnt) {
1192		count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1193				      req->dir);
1194		if (!count) {
1195			rtrs_wrn(s,
1196				  "Read request failed, dma map failed\n");
1197			return -EINVAL;
1198		}
1199	}
1200	/* put our message into req->buf after user message*/
1201	msg = req->iu->buf + req->usr_len;
1202	msg->type = cpu_to_le16(RTRS_MSG_READ);
1203	msg->usr_len = cpu_to_le16(req->usr_len);
1204
1205	if (count) {
1206		ret = rtrs_map_sg_fr(req, count);
1207		if (ret < 0) {
1208			rtrs_err_rl(s,
1209				     "Read request failed, failed to map  fast reg. data, err: %d\n",
1210				     ret);
1211			ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1212					req->dir);
1213			return ret;
1214		}
1215		rwr = (struct ib_reg_wr) {
1216			.wr.opcode = IB_WR_REG_MR,
1217			.wr.wr_cqe = &fast_reg_cqe,
1218			.mr = req->mr,
1219			.key = req->mr->rkey,
1220			.access = (IB_ACCESS_LOCAL_WRITE |
1221				   IB_ACCESS_REMOTE_WRITE),
1222		};
1223		wr = &rwr.wr;
1224
1225		msg->sg_cnt = cpu_to_le16(1);
1226		msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F);
1227
1228		msg->desc[0].addr = cpu_to_le64(req->mr->iova);
1229		msg->desc[0].key = cpu_to_le32(req->mr->rkey);
1230		msg->desc[0].len = cpu_to_le32(req->mr->length);
1231
1232		/* Further invalidation is required */
1233		req->need_inv = !!RTRS_MSG_NEED_INVAL_F;
1234
1235	} else {
1236		msg->sg_cnt = 0;
1237		msg->flags = 0;
1238	}
1239	/*
1240	 * rtrs message will be after the space reserved for disk data and
1241	 * user message
1242	 */
1243	imm = req->permit->mem_off + req->data_len + req->usr_len;
1244	imm = rtrs_to_io_req_imm(imm);
1245	buf_id = req->permit->mem_id;
1246
1247	req->sg_size  = sizeof(*msg);
1248	req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc);
1249	req->sg_size += req->usr_len;
1250
1251	/*
1252	 * Update stats now, after request is successfully sent it is not
1253	 * safe anymore to touch it.
1254	 */
1255	rtrs_clt_update_all_stats(req, READ);
1256
1257	ret = rtrs_post_send_rdma(req->con, req, &clt_path->rbufs[buf_id],
1258				   req->data_len, imm, wr);
1259	if (ret) {
1260		rtrs_err_rl(s,
1261			    "Read request failed: error=%d path=%s [%s:%u]\n",
1262			    ret, kobject_name(&clt_path->kobj), clt_path->hca_name,
1263			    clt_path->hca_port);
1264		if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
1265			atomic_dec(&clt_path->stats->inflight);
1266		req->need_inv = false;
1267		if (req->sg_cnt)
1268			ib_dma_unmap_sg(dev->ib_dev, req->sglist,
1269					req->sg_cnt, req->dir);
1270	}
1271
1272	return ret;
1273}
1274
1275/**
1276 * rtrs_clt_failover_req() - Try to find an active path for a failed request
1277 * @clt: clt context
1278 * @fail_req: a failed io request.
1279 */
1280static int rtrs_clt_failover_req(struct rtrs_clt_sess *clt,
1281				 struct rtrs_clt_io_req *fail_req)
1282{
1283	struct rtrs_clt_path *alive_path;
1284	struct rtrs_clt_io_req *req;
1285	int err = -ECONNABORTED;
1286	struct path_it it;
1287
1288	rcu_read_lock();
1289	for (path_it_init(&it, clt);
1290	     (alive_path = it.next_path(&it)) && it.i < it.clt->paths_num;
1291	     it.i++) {
1292		if (READ_ONCE(alive_path->state) != RTRS_CLT_CONNECTED)
1293			continue;
1294		req = rtrs_clt_get_copy_req(alive_path, fail_req);
1295		if (req->dir == DMA_TO_DEVICE)
1296			err = rtrs_clt_write_req(req);
1297		else
1298			err = rtrs_clt_read_req(req);
1299		if (err) {
1300			req->in_use = false;
1301			continue;
1302		}
1303		/* Success path */
1304		rtrs_clt_inc_failover_cnt(alive_path->stats);
1305		break;
1306	}
1307	path_it_deinit(&it);
1308	rcu_read_unlock();
1309
1310	return err;
1311}
1312
1313static void fail_all_outstanding_reqs(struct rtrs_clt_path *clt_path)
1314{
1315	struct rtrs_clt_sess *clt = clt_path->clt;
1316	struct rtrs_clt_io_req *req;
1317	int i, err;
1318
1319	if (!clt_path->reqs)
1320		return;
1321	for (i = 0; i < clt_path->queue_depth; ++i) {
1322		req = &clt_path->reqs[i];
1323		if (!req->in_use)
1324			continue;
1325
1326		/*
1327		 * Safely (without notification) complete failed request.
1328		 * After completion this request is still useble and can
1329		 * be failovered to another path.
1330		 */
1331		complete_rdma_req(req, -ECONNABORTED, false, true);
1332
1333		err = rtrs_clt_failover_req(clt, req);
1334		if (err)
1335			/* Failover failed, notify anyway */
1336			req->conf(req->priv, err);
1337	}
1338}
1339
1340static void free_path_reqs(struct rtrs_clt_path *clt_path)
1341{
1342	struct rtrs_clt_io_req *req;
1343	int i;
1344
1345	if (!clt_path->reqs)
1346		return;
1347	for (i = 0; i < clt_path->queue_depth; ++i) {
1348		req = &clt_path->reqs[i];
1349		if (req->mr)
1350			ib_dereg_mr(req->mr);
1351		kfree(req->sge);
1352		rtrs_iu_free(req->iu, clt_path->s.dev->ib_dev, 1);
1353	}
1354	kfree(clt_path->reqs);
1355	clt_path->reqs = NULL;
1356}
1357
1358static int alloc_path_reqs(struct rtrs_clt_path *clt_path)
1359{
1360	struct rtrs_clt_io_req *req;
1361	int i, err = -ENOMEM;
1362
1363	clt_path->reqs = kcalloc(clt_path->queue_depth,
1364				 sizeof(*clt_path->reqs),
1365				 GFP_KERNEL);
1366	if (!clt_path->reqs)
1367		return -ENOMEM;
1368
1369	for (i = 0; i < clt_path->queue_depth; ++i) {
1370		req = &clt_path->reqs[i];
1371		req->iu = rtrs_iu_alloc(1, clt_path->max_hdr_size, GFP_KERNEL,
1372					 clt_path->s.dev->ib_dev,
1373					 DMA_TO_DEVICE,
1374					 rtrs_clt_rdma_done);
1375		if (!req->iu)
1376			goto out;
1377
1378		req->sge = kcalloc(2, sizeof(*req->sge), GFP_KERNEL);
1379		if (!req->sge)
1380			goto out;
1381
1382		req->mr = ib_alloc_mr(clt_path->s.dev->ib_pd,
1383				      IB_MR_TYPE_MEM_REG,
1384				      clt_path->max_pages_per_mr);
1385		if (IS_ERR(req->mr)) {
1386			err = PTR_ERR(req->mr);
 
 
1387			req->mr = NULL;
1388			pr_err("Failed to alloc clt_path->max_pages_per_mr %d\n",
1389			       clt_path->max_pages_per_mr);
1390			goto out;
1391		}
1392
1393		init_completion(&req->inv_comp);
1394	}
1395
1396	return 0;
1397
1398out:
1399	free_path_reqs(clt_path);
1400
1401	return err;
1402}
1403
1404static int alloc_permits(struct rtrs_clt_sess *clt)
1405{
1406	unsigned int chunk_bits;
1407	int err, i;
1408
1409	clt->permits_map = bitmap_zalloc(clt->queue_depth, GFP_KERNEL);
1410	if (!clt->permits_map) {
1411		err = -ENOMEM;
1412		goto out_err;
1413	}
1414	clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL);
1415	if (!clt->permits) {
1416		err = -ENOMEM;
1417		goto err_map;
1418	}
1419	chunk_bits = ilog2(clt->queue_depth - 1) + 1;
1420	for (i = 0; i < clt->queue_depth; i++) {
1421		struct rtrs_permit *permit;
1422
1423		permit = get_permit(clt, i);
1424		permit->mem_id = i;
1425		permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits);
1426	}
1427
1428	return 0;
1429
1430err_map:
1431	bitmap_free(clt->permits_map);
1432	clt->permits_map = NULL;
1433out_err:
1434	return err;
1435}
1436
1437static void free_permits(struct rtrs_clt_sess *clt)
1438{
1439	if (clt->permits_map)
1440		wait_event(clt->permits_wait,
1441			   bitmap_empty(clt->permits_map, clt->queue_depth));
1442
1443	bitmap_free(clt->permits_map);
1444	clt->permits_map = NULL;
1445	kfree(clt->permits);
1446	clt->permits = NULL;
1447}
1448
1449static void query_fast_reg_mode(struct rtrs_clt_path *clt_path)
1450{
1451	struct ib_device *ib_dev;
1452	u64 max_pages_per_mr;
1453	int mr_page_shift;
1454
1455	ib_dev = clt_path->s.dev->ib_dev;
1456
1457	/*
1458	 * Use the smallest page size supported by the HCA, down to a
1459	 * minimum of 4096 bytes. We're unlikely to build large sglists
1460	 * out of smaller entries.
1461	 */
1462	mr_page_shift      = max(12, ffs(ib_dev->attrs.page_size_cap) - 1);
1463	max_pages_per_mr   = ib_dev->attrs.max_mr_size;
1464	do_div(max_pages_per_mr, (1ull << mr_page_shift));
1465	clt_path->max_pages_per_mr =
1466		min3(clt_path->max_pages_per_mr, (u32)max_pages_per_mr,
1467		     ib_dev->attrs.max_fast_reg_page_list_len);
1468	clt_path->clt->max_segments =
1469		min(clt_path->max_pages_per_mr, clt_path->clt->max_segments);
1470}
1471
1472static bool rtrs_clt_change_state_get_old(struct rtrs_clt_path *clt_path,
1473					   enum rtrs_clt_state new_state,
1474					   enum rtrs_clt_state *old_state)
1475{
1476	bool changed;
1477
1478	spin_lock_irq(&clt_path->state_wq.lock);
1479	if (old_state)
1480		*old_state = clt_path->state;
1481	changed = rtrs_clt_change_state(clt_path, new_state);
1482	spin_unlock_irq(&clt_path->state_wq.lock);
1483
1484	return changed;
1485}
1486
1487static void rtrs_clt_hb_err_handler(struct rtrs_con *c)
1488{
1489	struct rtrs_clt_con *con = container_of(c, typeof(*con), c);
1490
1491	rtrs_rdma_error_recovery(con);
1492}
1493
1494static void rtrs_clt_init_hb(struct rtrs_clt_path *clt_path)
1495{
1496	rtrs_init_hb(&clt_path->s, &io_comp_cqe,
1497		      RTRS_HB_INTERVAL_MS,
1498		      RTRS_HB_MISSED_MAX,
1499		      rtrs_clt_hb_err_handler,
1500		      rtrs_wq);
1501}
1502
1503static void rtrs_clt_reconnect_work(struct work_struct *work);
1504static void rtrs_clt_close_work(struct work_struct *work);
1505
1506static void rtrs_clt_err_recovery_work(struct work_struct *work)
1507{
1508	struct rtrs_clt_path *clt_path;
1509	struct rtrs_clt_sess *clt;
1510	int delay_ms;
1511
1512	clt_path = container_of(work, struct rtrs_clt_path, err_recovery_work);
1513	clt = clt_path->clt;
1514	delay_ms = clt->reconnect_delay_sec * 1000;
1515	rtrs_clt_stop_and_destroy_conns(clt_path);
1516	queue_delayed_work(rtrs_wq, &clt_path->reconnect_dwork,
1517			   msecs_to_jiffies(delay_ms +
1518					    get_random_u32_below(RTRS_RECONNECT_SEED)));
1519}
1520
1521static struct rtrs_clt_path *alloc_path(struct rtrs_clt_sess *clt,
1522					const struct rtrs_addr *path,
1523					size_t con_num, u32 nr_poll_queues)
1524{
1525	struct rtrs_clt_path *clt_path;
1526	int err = -ENOMEM;
1527	int cpu;
1528	size_t total_con;
1529
1530	clt_path = kzalloc(sizeof(*clt_path), GFP_KERNEL);
1531	if (!clt_path)
1532		goto err;
1533
1534	/*
1535	 * irqmode and poll
1536	 * +1: Extra connection for user messages
1537	 */
1538	total_con = con_num + nr_poll_queues + 1;
1539	clt_path->s.con = kcalloc(total_con, sizeof(*clt_path->s.con),
1540				  GFP_KERNEL);
1541	if (!clt_path->s.con)
1542		goto err_free_path;
1543
1544	clt_path->s.con_num = total_con;
1545	clt_path->s.irq_con_num = con_num + 1;
1546
1547	clt_path->stats = kzalloc(sizeof(*clt_path->stats), GFP_KERNEL);
1548	if (!clt_path->stats)
1549		goto err_free_con;
1550
1551	mutex_init(&clt_path->init_mutex);
1552	uuid_gen(&clt_path->s.uuid);
1553	memcpy(&clt_path->s.dst_addr, path->dst,
1554	       rdma_addr_size((struct sockaddr *)path->dst));
1555
1556	/*
1557	 * rdma_resolve_addr() passes src_addr to cma_bind_addr, which
1558	 * checks the sa_family to be non-zero. If user passed src_addr=NULL
1559	 * the sess->src_addr will contain only zeros, which is then fine.
1560	 */
1561	if (path->src)
1562		memcpy(&clt_path->s.src_addr, path->src,
1563		       rdma_addr_size((struct sockaddr *)path->src));
1564	strscpy(clt_path->s.sessname, clt->sessname,
1565		sizeof(clt_path->s.sessname));
1566	clt_path->clt = clt;
1567	clt_path->max_pages_per_mr = RTRS_MAX_SEGMENTS;
1568	init_waitqueue_head(&clt_path->state_wq);
1569	clt_path->state = RTRS_CLT_CONNECTING;
1570	atomic_set(&clt_path->connected_cnt, 0);
1571	INIT_WORK(&clt_path->close_work, rtrs_clt_close_work);
1572	INIT_WORK(&clt_path->err_recovery_work, rtrs_clt_err_recovery_work);
1573	INIT_DELAYED_WORK(&clt_path->reconnect_dwork, rtrs_clt_reconnect_work);
1574	rtrs_clt_init_hb(clt_path);
1575
1576	clt_path->mp_skip_entry = alloc_percpu(typeof(*clt_path->mp_skip_entry));
1577	if (!clt_path->mp_skip_entry)
1578		goto err_free_stats;
1579
1580	for_each_possible_cpu(cpu)
1581		INIT_LIST_HEAD(per_cpu_ptr(clt_path->mp_skip_entry, cpu));
1582
1583	err = rtrs_clt_init_stats(clt_path->stats);
1584	if (err)
1585		goto err_free_percpu;
1586
1587	return clt_path;
1588
1589err_free_percpu:
1590	free_percpu(clt_path->mp_skip_entry);
1591err_free_stats:
1592	kfree(clt_path->stats);
1593err_free_con:
1594	kfree(clt_path->s.con);
1595err_free_path:
1596	kfree(clt_path);
1597err:
1598	return ERR_PTR(err);
1599}
1600
1601void free_path(struct rtrs_clt_path *clt_path)
1602{
1603	free_percpu(clt_path->mp_skip_entry);
1604	mutex_destroy(&clt_path->init_mutex);
1605	kfree(clt_path->s.con);
1606	kfree(clt_path->rbufs);
1607	kfree(clt_path);
1608}
1609
1610static int create_con(struct rtrs_clt_path *clt_path, unsigned int cid)
1611{
1612	struct rtrs_clt_con *con;
1613
1614	con = kzalloc(sizeof(*con), GFP_KERNEL);
1615	if (!con)
1616		return -ENOMEM;
1617
1618	/* Map first two connections to the first CPU */
1619	con->cpu  = (cid ? cid - 1 : 0) % nr_cpu_ids;
1620	con->c.cid = cid;
1621	con->c.path = &clt_path->s;
1622	/* Align with srv, init as 1 */
1623	atomic_set(&con->c.wr_cnt, 1);
1624	mutex_init(&con->con_mutex);
1625
1626	clt_path->s.con[cid] = &con->c;
1627
1628	return 0;
1629}
1630
1631static void destroy_con(struct rtrs_clt_con *con)
1632{
1633	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1634
1635	clt_path->s.con[con->c.cid] = NULL;
1636	mutex_destroy(&con->con_mutex);
1637	kfree(con);
1638}
1639
1640static int create_con_cq_qp(struct rtrs_clt_con *con)
1641{
1642	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1643	u32 max_send_wr, max_recv_wr, cq_num, max_send_sge, wr_limit;
1644	int err, cq_vector;
1645	struct rtrs_msg_rkey_rsp *rsp;
1646
1647	lockdep_assert_held(&con->con_mutex);
1648	if (con->c.cid == 0) {
1649		max_send_sge = 1;
1650		/* We must be the first here */
1651		if (WARN_ON(clt_path->s.dev))
1652			return -EINVAL;
1653
1654		/*
1655		 * The whole session uses device from user connection.
1656		 * Be careful not to close user connection before ib dev
1657		 * is gracefully put.
1658		 */
1659		clt_path->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device,
1660						       &dev_pd);
1661		if (!clt_path->s.dev) {
1662			rtrs_wrn(clt_path->clt,
1663				  "rtrs_ib_dev_find_get_or_add(): no memory\n");
1664			return -ENOMEM;
1665		}
1666		clt_path->s.dev_ref = 1;
1667		query_fast_reg_mode(clt_path);
1668		wr_limit = clt_path->s.dev->ib_dev->attrs.max_qp_wr;
1669		/*
1670		 * Two (request + registration) completion for send
1671		 * Two for recv if always_invalidate is set on server
1672		 * or one for recv.
1673		 * + 2 for drain and heartbeat
1674		 * in case qp gets into error state.
1675		 */
1676		max_send_wr =
1677			min_t(int, wr_limit, SERVICE_CON_QUEUE_DEPTH * 2 + 2);
1678		max_recv_wr = max_send_wr;
1679	} else {
1680		/*
1681		 * Here we assume that session members are correctly set.
1682		 * This is always true if user connection (cid == 0) is
1683		 * established first.
1684		 */
1685		if (WARN_ON(!clt_path->s.dev))
1686			return -EINVAL;
1687		if (WARN_ON(!clt_path->queue_depth))
1688			return -EINVAL;
1689
1690		wr_limit = clt_path->s.dev->ib_dev->attrs.max_qp_wr;
1691		/* Shared between connections */
1692		clt_path->s.dev_ref++;
1693		max_send_wr = min_t(int, wr_limit,
1694			      /* QD * (REQ + RSP + FR REGS or INVS) + drain */
1695			      clt_path->queue_depth * 3 + 1);
1696		max_recv_wr = min_t(int, wr_limit,
1697			      clt_path->queue_depth * 3 + 1);
1698		max_send_sge = 2;
1699	}
1700	atomic_set(&con->c.sq_wr_avail, max_send_wr);
1701	cq_num = max_send_wr + max_recv_wr;
1702	/* alloc iu to recv new rkey reply when server reports flags set */
1703	if (clt_path->flags & RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) {
1704		con->rsp_ius = rtrs_iu_alloc(cq_num, sizeof(*rsp),
1705					      GFP_KERNEL,
1706					      clt_path->s.dev->ib_dev,
1707					      DMA_FROM_DEVICE,
1708					      rtrs_clt_rdma_done);
1709		if (!con->rsp_ius)
1710			return -ENOMEM;
1711		con->queue_num = cq_num;
1712	}
1713	cq_num = max_send_wr + max_recv_wr;
1714	cq_vector = con->cpu % clt_path->s.dev->ib_dev->num_comp_vectors;
1715	if (con->c.cid >= clt_path->s.irq_con_num)
1716		err = rtrs_cq_qp_create(&clt_path->s, &con->c, max_send_sge,
1717					cq_vector, cq_num, max_send_wr,
1718					max_recv_wr, IB_POLL_DIRECT);
1719	else
1720		err = rtrs_cq_qp_create(&clt_path->s, &con->c, max_send_sge,
1721					cq_vector, cq_num, max_send_wr,
1722					max_recv_wr, IB_POLL_SOFTIRQ);
1723	/*
1724	 * In case of error we do not bother to clean previous allocations,
1725	 * since destroy_con_cq_qp() must be called.
1726	 */
1727	return err;
1728}
1729
1730static void destroy_con_cq_qp(struct rtrs_clt_con *con)
1731{
1732	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1733
1734	/*
1735	 * Be careful here: destroy_con_cq_qp() can be called even
1736	 * create_con_cq_qp() failed, see comments there.
1737	 */
1738	lockdep_assert_held(&con->con_mutex);
1739	rtrs_cq_qp_destroy(&con->c);
1740	if (con->rsp_ius) {
1741		rtrs_iu_free(con->rsp_ius, clt_path->s.dev->ib_dev,
1742			     con->queue_num);
1743		con->rsp_ius = NULL;
1744		con->queue_num = 0;
1745	}
1746	if (clt_path->s.dev_ref && !--clt_path->s.dev_ref) {
1747		rtrs_ib_dev_put(clt_path->s.dev);
1748		clt_path->s.dev = NULL;
1749	}
1750}
1751
1752static void stop_cm(struct rtrs_clt_con *con)
1753{
1754	rdma_disconnect(con->c.cm_id);
1755	if (con->c.qp)
1756		ib_drain_qp(con->c.qp);
1757}
1758
1759static void destroy_cm(struct rtrs_clt_con *con)
1760{
1761	rdma_destroy_id(con->c.cm_id);
1762	con->c.cm_id = NULL;
1763}
1764
1765static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con)
1766{
1767	struct rtrs_path *s = con->c.path;
1768	int err;
1769
1770	mutex_lock(&con->con_mutex);
1771	err = create_con_cq_qp(con);
1772	mutex_unlock(&con->con_mutex);
1773	if (err) {
1774		rtrs_err(s, "create_con_cq_qp(), err: %d\n", err);
1775		return err;
1776	}
1777	err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS);
1778	if (err)
1779		rtrs_err(s, "Resolving route failed, err: %d\n", err);
1780
1781	return err;
1782}
1783
1784static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con)
1785{
1786	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1787	struct rtrs_clt_sess *clt = clt_path->clt;
1788	struct rtrs_msg_conn_req msg;
1789	struct rdma_conn_param param;
1790
1791	int err;
1792
1793	param = (struct rdma_conn_param) {
1794		.retry_count = 7,
1795		.rnr_retry_count = 7,
1796		.private_data = &msg,
1797		.private_data_len = sizeof(msg),
1798	};
1799
1800	msg = (struct rtrs_msg_conn_req) {
1801		.magic = cpu_to_le16(RTRS_MAGIC),
1802		.version = cpu_to_le16(RTRS_PROTO_VER),
1803		.cid = cpu_to_le16(con->c.cid),
1804		.cid_num = cpu_to_le16(clt_path->s.con_num),
1805		.recon_cnt = cpu_to_le16(clt_path->s.recon_cnt),
1806	};
1807	msg.first_conn = clt_path->for_new_clt ? FIRST_CONN : 0;
1808	uuid_copy(&msg.sess_uuid, &clt_path->s.uuid);
1809	uuid_copy(&msg.paths_uuid, &clt->paths_uuid);
1810
1811	err = rdma_connect_locked(con->c.cm_id, &param);
1812	if (err)
1813		rtrs_err(clt, "rdma_connect_locked(): %d\n", err);
1814
1815	return err;
1816}
1817
1818static int rtrs_rdma_conn_established(struct rtrs_clt_con *con,
1819				       struct rdma_cm_event *ev)
1820{
1821	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1822	struct rtrs_clt_sess *clt = clt_path->clt;
1823	const struct rtrs_msg_conn_rsp *msg;
1824	u16 version, queue_depth;
1825	int errno;
1826	u8 len;
1827
1828	msg = ev->param.conn.private_data;
1829	len = ev->param.conn.private_data_len;
1830	if (len < sizeof(*msg)) {
1831		rtrs_err(clt, "Invalid RTRS connection response\n");
1832		return -ECONNRESET;
1833	}
1834	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1835		rtrs_err(clt, "Invalid RTRS magic\n");
1836		return -ECONNRESET;
1837	}
1838	version = le16_to_cpu(msg->version);
1839	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1840		rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n",
1841			  version >> 8, RTRS_PROTO_VER_MAJOR);
1842		return -ECONNRESET;
1843	}
1844	errno = le16_to_cpu(msg->errno);
1845	if (errno) {
1846		rtrs_err(clt, "Invalid RTRS message: errno %d\n",
1847			  errno);
1848		return -ECONNRESET;
1849	}
1850	if (con->c.cid == 0) {
1851		queue_depth = le16_to_cpu(msg->queue_depth);
1852
1853		if (clt_path->queue_depth > 0 && queue_depth != clt_path->queue_depth) {
1854			rtrs_err(clt, "Error: queue depth changed\n");
1855
1856			/*
1857			 * Stop any more reconnection attempts
1858			 */
1859			clt_path->reconnect_attempts = -1;
1860			rtrs_err(clt,
1861				"Disabling auto-reconnect. Trigger a manual reconnect after issue is resolved\n");
1862			return -ECONNRESET;
1863		}
1864
1865		if (!clt_path->rbufs) {
1866			clt_path->rbufs = kcalloc(queue_depth,
1867						  sizeof(*clt_path->rbufs),
1868						  GFP_KERNEL);
1869			if (!clt_path->rbufs)
1870				return -ENOMEM;
1871		}
1872		clt_path->queue_depth = queue_depth;
1873		clt_path->s.signal_interval = min_not_zero(queue_depth,
1874						(unsigned short) SERVICE_CON_QUEUE_DEPTH);
1875		clt_path->max_hdr_size = le32_to_cpu(msg->max_hdr_size);
1876		clt_path->max_io_size = le32_to_cpu(msg->max_io_size);
1877		clt_path->flags = le32_to_cpu(msg->flags);
1878		clt_path->chunk_size = clt_path->max_io_size + clt_path->max_hdr_size;
1879
1880		/*
1881		 * Global IO size is always a minimum.
1882		 * If while a reconnection server sends us a value a bit
1883		 * higher - client does not care and uses cached minimum.
1884		 *
1885		 * Since we can have several sessions (paths) restablishing
1886		 * connections in parallel, use lock.
1887		 */
1888		mutex_lock(&clt->paths_mutex);
1889		clt->queue_depth = clt_path->queue_depth;
1890		clt->max_io_size = min_not_zero(clt_path->max_io_size,
1891						clt->max_io_size);
1892		mutex_unlock(&clt->paths_mutex);
1893
1894		/*
1895		 * Cache the hca_port and hca_name for sysfs
1896		 */
1897		clt_path->hca_port = con->c.cm_id->port_num;
1898		scnprintf(clt_path->hca_name, sizeof(clt_path->hca_name),
1899			  clt_path->s.dev->ib_dev->name);
1900		clt_path->s.src_addr = con->c.cm_id->route.addr.src_addr;
1901		/* set for_new_clt, to allow future reconnect on any path */
1902		clt_path->for_new_clt = 1;
1903	}
1904
1905	return 0;
1906}
1907
1908static inline void flag_success_on_conn(struct rtrs_clt_con *con)
1909{
1910	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1911
1912	atomic_inc(&clt_path->connected_cnt);
1913	con->cm_err = 1;
1914}
1915
1916static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con,
1917				    struct rdma_cm_event *ev)
1918{
1919	struct rtrs_path *s = con->c.path;
1920	const struct rtrs_msg_conn_rsp *msg;
1921	const char *rej_msg;
1922	int status, errno;
1923	u8 data_len;
1924
1925	status = ev->status;
1926	rej_msg = rdma_reject_msg(con->c.cm_id, status);
1927	msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len);
1928
1929	if (msg && data_len >= sizeof(*msg)) {
1930		errno = (int16_t)le16_to_cpu(msg->errno);
1931		if (errno == -EBUSY)
1932			rtrs_err(s,
1933				  "Previous session is still exists on the server, please reconnect later\n");
1934		else
1935			rtrs_err(s,
1936				  "Connect rejected: status %d (%s), rtrs errno %d\n",
1937				  status, rej_msg, errno);
1938	} else {
1939		rtrs_err(s,
1940			  "Connect rejected but with malformed message: status %d (%s)\n",
1941			  status, rej_msg);
1942	}
1943
1944	return -ECONNRESET;
1945}
1946
1947void rtrs_clt_close_conns(struct rtrs_clt_path *clt_path, bool wait)
1948{
1949	trace_rtrs_clt_close_conns(clt_path);
1950
1951	if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CLOSING, NULL))
1952		queue_work(rtrs_wq, &clt_path->close_work);
1953	if (wait)
1954		flush_work(&clt_path->close_work);
1955}
1956
1957static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err)
1958{
1959	if (con->cm_err == 1) {
1960		struct rtrs_clt_path *clt_path;
1961
1962		clt_path = to_clt_path(con->c.path);
1963		if (atomic_dec_and_test(&clt_path->connected_cnt))
1964
1965			wake_up(&clt_path->state_wq);
1966	}
1967	con->cm_err = cm_err;
1968}
1969
1970static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id,
1971				     struct rdma_cm_event *ev)
1972{
1973	struct rtrs_clt_con *con = cm_id->context;
1974	struct rtrs_path *s = con->c.path;
1975	struct rtrs_clt_path *clt_path = to_clt_path(s);
1976	int cm_err = 0;
1977
1978	switch (ev->event) {
1979	case RDMA_CM_EVENT_ADDR_RESOLVED:
1980		cm_err = rtrs_rdma_addr_resolved(con);
1981		break;
1982	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1983		cm_err = rtrs_rdma_route_resolved(con);
1984		break;
1985	case RDMA_CM_EVENT_ESTABLISHED:
1986		cm_err = rtrs_rdma_conn_established(con, ev);
1987		if (!cm_err) {
1988			/*
1989			 * Report success and wake up. Here we abuse state_wq,
1990			 * i.e. wake up without state change, but we set cm_err.
1991			 */
1992			flag_success_on_conn(con);
1993			wake_up(&clt_path->state_wq);
1994			return 0;
1995		}
1996		break;
1997	case RDMA_CM_EVENT_REJECTED:
1998		cm_err = rtrs_rdma_conn_rejected(con, ev);
1999		break;
2000	case RDMA_CM_EVENT_DISCONNECTED:
2001		/* No message for disconnecting */
2002		cm_err = -ECONNRESET;
2003		break;
2004	case RDMA_CM_EVENT_CONNECT_ERROR:
2005	case RDMA_CM_EVENT_UNREACHABLE:
2006	case RDMA_CM_EVENT_ADDR_CHANGE:
2007	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2008		rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
2009			 rdma_event_msg(ev->event), ev->status);
2010		cm_err = -ECONNRESET;
2011		break;
2012	case RDMA_CM_EVENT_ADDR_ERROR:
2013	case RDMA_CM_EVENT_ROUTE_ERROR:
2014		rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
2015			 rdma_event_msg(ev->event), ev->status);
2016		cm_err = -EHOSTUNREACH;
2017		break;
2018	case RDMA_CM_EVENT_DEVICE_REMOVAL:
2019		/*
2020		 * Device removal is a special case.  Queue close and return 0.
2021		 */
 
 
2022		rtrs_clt_close_conns(clt_path, false);
2023		return 0;
2024	default:
2025		rtrs_err(s, "Unexpected RDMA CM error (CM event: %s, err: %d)\n",
2026			 rdma_event_msg(ev->event), ev->status);
2027		cm_err = -ECONNRESET;
2028		break;
2029	}
2030
2031	if (cm_err) {
2032		/*
2033		 * cm error makes sense only on connection establishing,
2034		 * in other cases we rely on normal procedure of reconnecting.
2035		 */
2036		flag_error_on_conn(con, cm_err);
2037		rtrs_rdma_error_recovery(con);
2038	}
2039
2040	return 0;
2041}
2042
 
2043static int create_cm(struct rtrs_clt_con *con)
2044{
2045	struct rtrs_path *s = con->c.path;
2046	struct rtrs_clt_path *clt_path = to_clt_path(s);
2047	struct rdma_cm_id *cm_id;
2048	int err;
2049
2050	cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con,
2051			       clt_path->s.dst_addr.ss_family == AF_IB ?
2052			       RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC);
2053	if (IS_ERR(cm_id)) {
2054		err = PTR_ERR(cm_id);
2055		rtrs_err(s, "Failed to create CM ID, err: %d\n", err);
2056
2057		return err;
2058	}
2059	con->c.cm_id = cm_id;
2060	con->cm_err = 0;
2061	/* allow the port to be reused */
2062	err = rdma_set_reuseaddr(cm_id, 1);
2063	if (err != 0) {
2064		rtrs_err(s, "Set address reuse failed, err: %d\n", err);
2065		goto destroy_cm;
2066	}
2067	err = rdma_resolve_addr(cm_id, (struct sockaddr *)&clt_path->s.src_addr,
2068				(struct sockaddr *)&clt_path->s.dst_addr,
2069				RTRS_CONNECT_TIMEOUT_MS);
2070	if (err) {
2071		rtrs_err(s, "Failed to resolve address, err: %d\n", err);
2072		goto destroy_cm;
2073	}
2074	/*
2075	 * Combine connection status and session events. This is needed
2076	 * for waiting two possible cases: cm_err has something meaningful
2077	 * or session state was really changed to error by device removal.
2078	 */
2079	err = wait_event_interruptible_timeout(
2080			clt_path->state_wq,
2081			con->cm_err || clt_path->state != RTRS_CLT_CONNECTING,
2082			msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2083	if (err == 0 || err == -ERESTARTSYS) {
2084		if (err == 0)
2085			err = -ETIMEDOUT;
2086		/* Timedout or interrupted */
2087		goto errr;
2088	}
2089	if (con->cm_err < 0) {
2090		err = con->cm_err;
2091		goto errr;
2092	}
2093	if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTING) {
 
 
2094		/* Device removal */
2095		err = -ECONNABORTED;
2096		goto errr;
2097	}
2098
2099	return 0;
2100
2101errr:
2102	stop_cm(con);
2103	mutex_lock(&con->con_mutex);
2104	destroy_con_cq_qp(con);
2105	mutex_unlock(&con->con_mutex);
2106destroy_cm:
2107	destroy_cm(con);
2108
2109	return err;
2110}
2111
2112static void rtrs_clt_path_up(struct rtrs_clt_path *clt_path)
2113{
2114	struct rtrs_clt_sess *clt = clt_path->clt;
2115	int up;
2116
2117	/*
2118	 * We can fire RECONNECTED event only when all paths were
2119	 * connected on rtrs_clt_open(), then each was disconnected
2120	 * and the first one connected again.  That's why this nasty
2121	 * game with counter value.
2122	 */
2123
2124	mutex_lock(&clt->paths_ev_mutex);
2125	up = ++clt->paths_up;
2126	/*
2127	 * Here it is safe to access paths num directly since up counter
2128	 * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is
2129	 * in progress, thus paths removals are impossible.
2130	 */
2131	if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num)
2132		clt->paths_up = clt->paths_num;
2133	else if (up == 1)
2134		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED);
2135	mutex_unlock(&clt->paths_ev_mutex);
2136
2137	/* Mark session as established */
2138	clt_path->established = true;
2139	clt_path->reconnect_attempts = 0;
2140	clt_path->stats->reconnects.successful_cnt++;
2141}
2142
2143static void rtrs_clt_path_down(struct rtrs_clt_path *clt_path)
2144{
2145	struct rtrs_clt_sess *clt = clt_path->clt;
2146
2147	if (!clt_path->established)
2148		return;
2149
2150	clt_path->established = false;
2151	mutex_lock(&clt->paths_ev_mutex);
2152	WARN_ON(!clt->paths_up);
2153	if (--clt->paths_up == 0)
2154		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED);
2155	mutex_unlock(&clt->paths_ev_mutex);
2156}
2157
2158static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_path *clt_path)
2159{
2160	struct rtrs_clt_con *con;
2161	unsigned int cid;
2162
2163	WARN_ON(READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTED);
2164
2165	/*
2166	 * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes
2167	 * exactly in between.  Start destroying after it finishes.
2168	 */
2169	mutex_lock(&clt_path->init_mutex);
2170	mutex_unlock(&clt_path->init_mutex);
2171
2172	/*
2173	 * All IO paths must observe !CONNECTED state before we
2174	 * free everything.
2175	 */
2176	synchronize_rcu();
2177
2178	rtrs_stop_hb(&clt_path->s);
2179
2180	/*
2181	 * The order it utterly crucial: firstly disconnect and complete all
2182	 * rdma requests with error (thus set in_use=false for requests),
2183	 * then fail outstanding requests checking in_use for each, and
2184	 * eventually notify upper layer about session disconnection.
2185	 */
2186
2187	for (cid = 0; cid < clt_path->s.con_num; cid++) {
2188		if (!clt_path->s.con[cid])
2189			break;
2190		con = to_clt_con(clt_path->s.con[cid]);
2191		stop_cm(con);
2192	}
2193	fail_all_outstanding_reqs(clt_path);
2194	free_path_reqs(clt_path);
2195	rtrs_clt_path_down(clt_path);
2196
2197	/*
2198	 * Wait for graceful shutdown, namely when peer side invokes
2199	 * rdma_disconnect(). 'connected_cnt' is decremented only on
2200	 * CM events, thus if other side had crashed and hb has detected
2201	 * something is wrong, here we will stuck for exactly timeout ms,
2202	 * since CM does not fire anything.  That is fine, we are not in
2203	 * hurry.
2204	 */
2205	wait_event_timeout(clt_path->state_wq,
2206			   !atomic_read(&clt_path->connected_cnt),
2207			   msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2208
2209	for (cid = 0; cid < clt_path->s.con_num; cid++) {
2210		if (!clt_path->s.con[cid])
2211			break;
2212		con = to_clt_con(clt_path->s.con[cid]);
2213		mutex_lock(&con->con_mutex);
2214		destroy_con_cq_qp(con);
2215		mutex_unlock(&con->con_mutex);
2216		destroy_cm(con);
2217		destroy_con(con);
2218	}
2219}
2220
2221static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_path *clt_path)
2222{
2223	struct rtrs_clt_sess *clt = clt_path->clt;
2224	struct rtrs_clt_path *next;
2225	bool wait_for_grace = false;
2226	int cpu;
2227
2228	mutex_lock(&clt->paths_mutex);
2229	list_del_rcu(&clt_path->s.entry);
2230
2231	/* Make sure everybody observes path removal. */
2232	synchronize_rcu();
2233
2234	/*
2235	 * At this point nobody sees @sess in the list, but still we have
2236	 * dangling pointer @pcpu_path which _can_ point to @sess.  Since
2237	 * nobody can observe @sess in the list, we guarantee that IO path
2238	 * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal
2239	 * to @sess, but can never again become @sess.
2240	 */
2241
2242	/*
2243	 * Decrement paths number only after grace period, because
2244	 * caller of do_each_path() must firstly observe list without
2245	 * path and only then decremented paths number.
2246	 *
2247	 * Otherwise there can be the following situation:
2248	 *    o Two paths exist and IO is coming.
2249	 *    o One path is removed:
2250	 *      CPU#0                          CPU#1
2251	 *      do_each_path():                rtrs_clt_remove_path_from_arr():
2252	 *          path = get_next_path()
2253	 *          ^^^                            list_del_rcu(path)
2254	 *          [!CONNECTED path]              clt->paths_num--
2255	 *                                              ^^^^^^^^^
2256	 *          load clt->paths_num                 from 2 to 1
2257	 *                    ^^^^^^^^^
2258	 *                    sees 1
2259	 *
2260	 *      path is observed as !CONNECTED, but do_each_path() loop
2261	 *      ends, because expression i < clt->paths_num is false.
2262	 */
2263	clt->paths_num--;
2264
2265	/*
2266	 * Get @next connection from current @sess which is going to be
2267	 * removed.  If @sess is the last element, then @next is NULL.
2268	 */
2269	rcu_read_lock();
2270	next = rtrs_clt_get_next_path_or_null(&clt->paths_list, clt_path);
2271	rcu_read_unlock();
2272
2273	/*
2274	 * @pcpu paths can still point to the path which is going to be
2275	 * removed, so change the pointer manually.
2276	 */
2277	for_each_possible_cpu(cpu) {
2278		struct rtrs_clt_path __rcu **ppcpu_path;
2279
2280		ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu);
2281		if (rcu_dereference_protected(*ppcpu_path,
2282			lockdep_is_held(&clt->paths_mutex)) != clt_path)
2283			/*
2284			 * synchronize_rcu() was called just after deleting
2285			 * entry from the list, thus IO code path cannot
2286			 * change pointer back to the pointer which is going
2287			 * to be removed, we are safe here.
2288			 */
2289			continue;
2290
2291		/*
2292		 * We race with IO code path, which also changes pointer,
2293		 * thus we have to be careful not to overwrite it.
2294		 */
2295		if (try_cmpxchg((struct rtrs_clt_path **)ppcpu_path, &clt_path,
2296				next))
2297			/*
2298			 * @ppcpu_path was successfully replaced with @next,
2299			 * that means that someone could also pick up the
2300			 * @sess and dereferencing it right now, so wait for
2301			 * a grace period is required.
2302			 */
2303			wait_for_grace = true;
2304	}
2305	if (wait_for_grace)
2306		synchronize_rcu();
2307
2308	mutex_unlock(&clt->paths_mutex);
2309}
2310
2311static void rtrs_clt_add_path_to_arr(struct rtrs_clt_path *clt_path)
2312{
2313	struct rtrs_clt_sess *clt = clt_path->clt;
2314
2315	mutex_lock(&clt->paths_mutex);
2316	clt->paths_num++;
2317
2318	list_add_tail_rcu(&clt_path->s.entry, &clt->paths_list);
2319	mutex_unlock(&clt->paths_mutex);
2320}
2321
2322static void rtrs_clt_close_work(struct work_struct *work)
2323{
2324	struct rtrs_clt_path *clt_path;
2325
2326	clt_path = container_of(work, struct rtrs_clt_path, close_work);
2327
2328	cancel_work_sync(&clt_path->err_recovery_work);
2329	cancel_delayed_work_sync(&clt_path->reconnect_dwork);
2330	rtrs_clt_stop_and_destroy_conns(clt_path);
2331	rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CLOSED, NULL);
2332}
2333
2334static int init_conns(struct rtrs_clt_path *clt_path)
2335{
2336	unsigned int cid;
2337	int err;
2338
2339	/*
2340	 * On every new session connections increase reconnect counter
2341	 * to avoid clashes with previous sessions not yet closed
2342	 * sessions on a server side.
2343	 */
2344	clt_path->s.recon_cnt++;
2345
2346	/* Establish all RDMA connections  */
2347	for (cid = 0; cid < clt_path->s.con_num; cid++) {
2348		err = create_con(clt_path, cid);
2349		if (err)
2350			goto destroy;
2351
2352		err = create_cm(to_clt_con(clt_path->s.con[cid]));
2353		if (err) {
2354			destroy_con(to_clt_con(clt_path->s.con[cid]));
2355			goto destroy;
2356		}
2357	}
2358	err = alloc_path_reqs(clt_path);
2359	if (err)
2360		goto destroy;
2361
2362	rtrs_start_hb(&clt_path->s);
2363
2364	return 0;
2365
2366destroy:
2367	while (cid--) {
2368		struct rtrs_clt_con *con = to_clt_con(clt_path->s.con[cid]);
 
2369
2370		stop_cm(con);
 
2371
2372		mutex_lock(&con->con_mutex);
2373		destroy_con_cq_qp(con);
2374		mutex_unlock(&con->con_mutex);
2375		destroy_cm(con);
 
 
 
 
2376		destroy_con(con);
2377	}
2378	/*
2379	 * If we've never taken async path and got an error, say,
2380	 * doing rdma_resolve_addr(), switch to CONNECTION_ERR state
2381	 * manually to keep reconnecting.
2382	 */
2383	rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING_ERR, NULL);
2384
2385	return err;
2386}
2387
2388static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
2389{
2390	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2391	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
2392	struct rtrs_iu *iu;
2393
2394	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2395	rtrs_iu_free(iu, clt_path->s.dev->ib_dev, 1);
2396
2397	if (wc->status != IB_WC_SUCCESS) {
2398		rtrs_err(clt_path->clt, "Path info request send failed: %s\n",
2399			  ib_wc_status_msg(wc->status));
2400		rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING_ERR, NULL);
2401		return;
2402	}
2403
2404	rtrs_clt_update_wc_stats(con);
2405}
2406
2407static int process_info_rsp(struct rtrs_clt_path *clt_path,
2408			    const struct rtrs_msg_info_rsp *msg)
2409{
2410	unsigned int sg_cnt, total_len;
2411	int i, sgi;
2412
2413	sg_cnt = le16_to_cpu(msg->sg_cnt);
2414	if (!sg_cnt || (clt_path->queue_depth % sg_cnt)) {
2415		rtrs_err(clt_path->clt,
2416			  "Incorrect sg_cnt %d, is not multiple\n",
2417			  sg_cnt);
2418		return -EINVAL;
2419	}
2420
2421	/*
2422	 * Check if IB immediate data size is enough to hold the mem_id and
2423	 * the offset inside the memory chunk.
2424	 */
2425	if ((ilog2(sg_cnt - 1) + 1) + (ilog2(clt_path->chunk_size - 1) + 1) >
2426	    MAX_IMM_PAYL_BITS) {
2427		rtrs_err(clt_path->clt,
2428			  "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n",
2429			  MAX_IMM_PAYL_BITS, sg_cnt, clt_path->chunk_size);
2430		return -EINVAL;
2431	}
2432	total_len = 0;
2433	for (sgi = 0, i = 0; sgi < sg_cnt && i < clt_path->queue_depth; sgi++) {
2434		const struct rtrs_sg_desc *desc = &msg->desc[sgi];
2435		u32 len, rkey;
2436		u64 addr;
2437
2438		addr = le64_to_cpu(desc->addr);
2439		rkey = le32_to_cpu(desc->key);
2440		len  = le32_to_cpu(desc->len);
2441
2442		total_len += len;
2443
2444		if (!len || (len % clt_path->chunk_size)) {
2445			rtrs_err(clt_path->clt, "Incorrect [%d].len %d\n",
2446				  sgi,
2447				  len);
2448			return -EINVAL;
2449		}
2450		for ( ; len && i < clt_path->queue_depth; i++) {
2451			clt_path->rbufs[i].addr = addr;
2452			clt_path->rbufs[i].rkey = rkey;
2453
2454			len  -= clt_path->chunk_size;
2455			addr += clt_path->chunk_size;
2456		}
2457	}
2458	/* Sanity check */
2459	if (sgi != sg_cnt || i != clt_path->queue_depth) {
2460		rtrs_err(clt_path->clt,
2461			 "Incorrect sg vector, not fully mapped\n");
2462		return -EINVAL;
2463	}
2464	if (total_len != clt_path->chunk_size * clt_path->queue_depth) {
2465		rtrs_err(clt_path->clt, "Incorrect total_len %d\n", total_len);
2466		return -EINVAL;
2467	}
2468
2469	return 0;
2470}
2471
2472static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
2473{
2474	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2475	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
2476	struct rtrs_msg_info_rsp *msg;
2477	enum rtrs_clt_state state;
2478	struct rtrs_iu *iu;
2479	size_t rx_sz;
2480	int err;
2481
2482	state = RTRS_CLT_CONNECTING_ERR;
2483
2484	WARN_ON(con->c.cid);
2485	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2486	if (wc->status != IB_WC_SUCCESS) {
2487		rtrs_err(clt_path->clt, "Path info response recv failed: %s\n",
2488			  ib_wc_status_msg(wc->status));
2489		goto out;
2490	}
2491	WARN_ON(wc->opcode != IB_WC_RECV);
2492
2493	if (wc->byte_len < sizeof(*msg)) {
2494		rtrs_err(clt_path->clt, "Path info response is malformed: size %d\n",
2495			  wc->byte_len);
2496		goto out;
2497	}
2498	ib_dma_sync_single_for_cpu(clt_path->s.dev->ib_dev, iu->dma_addr,
2499				   iu->size, DMA_FROM_DEVICE);
2500	msg = iu->buf;
2501	if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP) {
2502		rtrs_err(clt_path->clt, "Path info response is malformed: type %d\n",
2503			  le16_to_cpu(msg->type));
2504		goto out;
2505	}
2506	rx_sz  = sizeof(*msg);
2507	rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt);
2508	if (wc->byte_len < rx_sz) {
2509		rtrs_err(clt_path->clt, "Path info response is malformed: size %d\n",
2510			  wc->byte_len);
2511		goto out;
2512	}
2513	err = process_info_rsp(clt_path, msg);
2514	if (err)
2515		goto out;
2516
2517	err = post_recv_path(clt_path);
2518	if (err)
2519		goto out;
2520
2521	state = RTRS_CLT_CONNECTED;
2522
2523out:
2524	rtrs_clt_update_wc_stats(con);
2525	rtrs_iu_free(iu, clt_path->s.dev->ib_dev, 1);
2526	rtrs_clt_change_state_get_old(clt_path, state, NULL);
2527}
2528
2529static int rtrs_send_path_info(struct rtrs_clt_path *clt_path)
2530{
2531	struct rtrs_clt_con *usr_con = to_clt_con(clt_path->s.con[0]);
2532	struct rtrs_msg_info_req *msg;
2533	struct rtrs_iu *tx_iu, *rx_iu;
2534	size_t rx_sz;
2535	int err;
2536
2537	rx_sz  = sizeof(struct rtrs_msg_info_rsp);
2538	rx_sz += sizeof(struct rtrs_sg_desc) * clt_path->queue_depth;
2539
2540	tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL,
2541			       clt_path->s.dev->ib_dev, DMA_TO_DEVICE,
2542			       rtrs_clt_info_req_done);
2543	rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, clt_path->s.dev->ib_dev,
2544			       DMA_FROM_DEVICE, rtrs_clt_info_rsp_done);
2545	if (!tx_iu || !rx_iu) {
2546		err = -ENOMEM;
2547		goto out;
2548	}
2549	/* Prepare for getting info response */
2550	err = rtrs_iu_post_recv(&usr_con->c, rx_iu);
2551	if (err) {
2552		rtrs_err(clt_path->clt, "rtrs_iu_post_recv(), err: %d\n", err);
2553		goto out;
2554	}
2555	rx_iu = NULL;
2556
2557	msg = tx_iu->buf;
2558	msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ);
2559	memcpy(msg->pathname, clt_path->s.sessname, sizeof(msg->pathname));
2560
2561	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
2562				      tx_iu->dma_addr,
2563				      tx_iu->size, DMA_TO_DEVICE);
2564
2565	/* Send info request */
2566	err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL);
2567	if (err) {
2568		rtrs_err(clt_path->clt, "rtrs_iu_post_send(), err: %d\n", err);
2569		goto out;
2570	}
2571	tx_iu = NULL;
2572
2573	/* Wait for state change */
2574	wait_event_interruptible_timeout(clt_path->state_wq,
2575					 clt_path->state != RTRS_CLT_CONNECTING,
2576					 msecs_to_jiffies(
2577						 RTRS_CONNECT_TIMEOUT_MS));
2578	if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED) {
2579		if (READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTING_ERR)
2580			err = -ECONNRESET;
2581		else
2582			err = -ETIMEDOUT;
2583	}
2584
2585out:
2586	if (tx_iu)
2587		rtrs_iu_free(tx_iu, clt_path->s.dev->ib_dev, 1);
2588	if (rx_iu)
2589		rtrs_iu_free(rx_iu, clt_path->s.dev->ib_dev, 1);
2590	if (err)
2591		/* If we've never taken async path because of malloc problems */
2592		rtrs_clt_change_state_get_old(clt_path,
2593					      RTRS_CLT_CONNECTING_ERR, NULL);
2594
2595	return err;
2596}
2597
2598/**
2599 * init_path() - establishes all path connections and does handshake
2600 * @clt_path: client path.
2601 * In case of error full close or reconnect procedure should be taken,
2602 * because reconnect or close async works can be started.
2603 */
2604static int init_path(struct rtrs_clt_path *clt_path)
2605{
2606	int err;
2607	char str[NAME_MAX];
2608	struct rtrs_addr path = {
2609		.src = &clt_path->s.src_addr,
2610		.dst = &clt_path->s.dst_addr,
2611	};
2612
2613	rtrs_addr_to_str(&path, str, sizeof(str));
2614
2615	mutex_lock(&clt_path->init_mutex);
2616	err = init_conns(clt_path);
2617	if (err) {
2618		rtrs_err(clt_path->clt,
2619			 "init_conns() failed: err=%d path=%s [%s:%u]\n", err,
2620			 str, clt_path->hca_name, clt_path->hca_port);
2621		goto out;
2622	}
2623	err = rtrs_send_path_info(clt_path);
2624	if (err) {
2625		rtrs_err(clt_path->clt,
2626			 "rtrs_send_path_info() failed: err=%d path=%s [%s:%u]\n",
2627			 err, str, clt_path->hca_name, clt_path->hca_port);
2628		goto out;
2629	}
2630	rtrs_clt_path_up(clt_path);
 
2631out:
2632	mutex_unlock(&clt_path->init_mutex);
2633
2634	return err;
2635}
2636
2637static void rtrs_clt_reconnect_work(struct work_struct *work)
2638{
2639	struct rtrs_clt_path *clt_path;
2640	struct rtrs_clt_sess *clt;
2641	int err;
2642
2643	clt_path = container_of(to_delayed_work(work), struct rtrs_clt_path,
2644				reconnect_dwork);
2645	clt = clt_path->clt;
2646
2647	trace_rtrs_clt_reconnect_work(clt_path);
2648
2649	if (READ_ONCE(clt_path->state) != RTRS_CLT_RECONNECTING)
2650		return;
2651
2652	if (clt_path->reconnect_attempts >= clt->max_reconnect_attempts) {
2653		/* Close a path completely if max attempts is reached */
2654		rtrs_clt_close_conns(clt_path, false);
2655		return;
2656	}
2657	clt_path->reconnect_attempts++;
2658
2659	msleep(RTRS_RECONNECT_BACKOFF);
2660	if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING, NULL)) {
2661		err = init_path(clt_path);
2662		if (err)
2663			goto reconnect_again;
2664	}
2665
2666	return;
2667
2668reconnect_again:
2669	if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_RECONNECTING, NULL)) {
2670		clt_path->stats->reconnects.fail_cnt++;
2671		queue_work(rtrs_wq, &clt_path->err_recovery_work);
2672	}
2673}
2674
2675static void rtrs_clt_dev_release(struct device *dev)
2676{
2677	struct rtrs_clt_sess *clt = container_of(dev, struct rtrs_clt_sess,
2678						 dev);
2679
2680	mutex_destroy(&clt->paths_ev_mutex);
2681	mutex_destroy(&clt->paths_mutex);
2682	kfree(clt);
2683}
2684
2685static struct rtrs_clt_sess *alloc_clt(const char *sessname, size_t paths_num,
2686				  u16 port, size_t pdu_sz, void *priv,
2687				  void	(*link_ev)(void *priv,
2688						   enum rtrs_clt_link_ev ev),
2689				  unsigned int reconnect_delay_sec,
2690				  unsigned int max_reconnect_attempts)
2691{
2692	struct rtrs_clt_sess *clt;
2693	int err;
2694
2695	if (!paths_num || paths_num > MAX_PATHS_NUM)
2696		return ERR_PTR(-EINVAL);
2697
2698	if (strlen(sessname) >= sizeof(clt->sessname))
2699		return ERR_PTR(-EINVAL);
2700
2701	clt = kzalloc(sizeof(*clt), GFP_KERNEL);
2702	if (!clt)
2703		return ERR_PTR(-ENOMEM);
2704
2705	clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path));
2706	if (!clt->pcpu_path) {
2707		kfree(clt);
2708		return ERR_PTR(-ENOMEM);
2709	}
2710
2711	clt->dev.class = rtrs_clt_dev_class;
2712	clt->dev.release = rtrs_clt_dev_release;
2713	uuid_gen(&clt->paths_uuid);
2714	INIT_LIST_HEAD_RCU(&clt->paths_list);
2715	clt->paths_num = paths_num;
2716	clt->paths_up = MAX_PATHS_NUM;
2717	clt->port = port;
2718	clt->pdu_sz = pdu_sz;
2719	clt->max_segments = RTRS_MAX_SEGMENTS;
2720	clt->reconnect_delay_sec = reconnect_delay_sec;
2721	clt->max_reconnect_attempts = max_reconnect_attempts;
2722	clt->priv = priv;
2723	clt->link_ev = link_ev;
2724	clt->mp_policy = MP_POLICY_MIN_INFLIGHT;
2725	strscpy(clt->sessname, sessname, sizeof(clt->sessname));
2726	init_waitqueue_head(&clt->permits_wait);
2727	mutex_init(&clt->paths_ev_mutex);
2728	mutex_init(&clt->paths_mutex);
2729	device_initialize(&clt->dev);
2730
2731	err = dev_set_name(&clt->dev, "%s", sessname);
2732	if (err)
2733		goto err_put;
2734
2735	/*
2736	 * Suppress user space notification until
2737	 * sysfs files are created
2738	 */
2739	dev_set_uevent_suppress(&clt->dev, true);
2740	err = device_add(&clt->dev);
2741	if (err)
2742		goto err_put;
2743
2744	clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj);
2745	if (!clt->kobj_paths) {
2746		err = -ENOMEM;
2747		goto err_del;
2748	}
2749	err = rtrs_clt_create_sysfs_root_files(clt);
2750	if (err) {
2751		kobject_del(clt->kobj_paths);
2752		kobject_put(clt->kobj_paths);
2753		goto err_del;
2754	}
2755	dev_set_uevent_suppress(&clt->dev, false);
2756	kobject_uevent(&clt->dev.kobj, KOBJ_ADD);
2757
2758	return clt;
2759err_del:
2760	device_del(&clt->dev);
2761err_put:
2762	free_percpu(clt->pcpu_path);
2763	put_device(&clt->dev);
2764	return ERR_PTR(err);
2765}
2766
2767static void free_clt(struct rtrs_clt_sess *clt)
2768{
2769	free_percpu(clt->pcpu_path);
2770
2771	/*
2772	 * release callback will free clt and destroy mutexes in last put
2773	 */
2774	device_unregister(&clt->dev);
2775}
2776
2777/**
2778 * rtrs_clt_open() - Open a path to an RTRS server
2779 * @ops: holds the link event callback and the private pointer.
2780 * @pathname: name of the path to an RTRS server
2781 * @paths: Paths to be established defined by their src and dst addresses
2782 * @paths_num: Number of elements in the @paths array
2783 * @port: port to be used by the RTRS session
2784 * @pdu_sz: Size of extra payload which can be accessed after permit allocation.
2785 * @reconnect_delay_sec: time between reconnect tries
2786 * @max_reconnect_attempts: Number of times to reconnect on error before giving
2787 *			    up, 0 for * disabled, -1 for forever
2788 * @nr_poll_queues: number of polling mode connection using IB_POLL_DIRECT flag
2789 *
2790 * Starts session establishment with the rtrs_server. The function can block
2791 * up to ~2000ms before it returns.
2792 *
2793 * Return a valid pointer on success otherwise PTR_ERR.
2794 */
2795struct rtrs_clt_sess *rtrs_clt_open(struct rtrs_clt_ops *ops,
2796				 const char *pathname,
2797				 const struct rtrs_addr *paths,
2798				 size_t paths_num, u16 port,
2799				 size_t pdu_sz, u8 reconnect_delay_sec,
2800				 s16 max_reconnect_attempts, u32 nr_poll_queues)
2801{
2802	struct rtrs_clt_path *clt_path, *tmp;
2803	struct rtrs_clt_sess *clt;
2804	int err, i;
2805
2806	if (strchr(pathname, '/') || strchr(pathname, '.')) {
2807		pr_err("pathname cannot contain / and .\n");
2808		err = -EINVAL;
2809		goto out;
2810	}
2811
2812	clt = alloc_clt(pathname, paths_num, port, pdu_sz, ops->priv,
2813			ops->link_ev,
2814			reconnect_delay_sec,
2815			max_reconnect_attempts);
2816	if (IS_ERR(clt)) {
2817		err = PTR_ERR(clt);
2818		goto out;
2819	}
2820	for (i = 0; i < paths_num; i++) {
2821		struct rtrs_clt_path *clt_path;
2822
2823		clt_path = alloc_path(clt, &paths[i], nr_cpu_ids,
2824				  nr_poll_queues);
2825		if (IS_ERR(clt_path)) {
2826			err = PTR_ERR(clt_path);
2827			goto close_all_path;
2828		}
2829		if (!i)
2830			clt_path->for_new_clt = 1;
2831		list_add_tail_rcu(&clt_path->s.entry, &clt->paths_list);
2832
2833		err = init_path(clt_path);
2834		if (err) {
2835			list_del_rcu(&clt_path->s.entry);
2836			rtrs_clt_close_conns(clt_path, true);
2837			free_percpu(clt_path->stats->pcpu_stats);
2838			kfree(clt_path->stats);
2839			free_path(clt_path);
2840			goto close_all_path;
2841		}
2842
2843		err = rtrs_clt_create_path_files(clt_path);
2844		if (err) {
2845			list_del_rcu(&clt_path->s.entry);
2846			rtrs_clt_close_conns(clt_path, true);
2847			free_percpu(clt_path->stats->pcpu_stats);
2848			kfree(clt_path->stats);
2849			free_path(clt_path);
2850			goto close_all_path;
2851		}
2852	}
2853	err = alloc_permits(clt);
2854	if (err)
2855		goto close_all_path;
2856
2857	return clt;
2858
2859close_all_path:
2860	list_for_each_entry_safe(clt_path, tmp, &clt->paths_list, s.entry) {
2861		rtrs_clt_destroy_path_files(clt_path, NULL);
2862		rtrs_clt_close_conns(clt_path, true);
2863		kobject_put(&clt_path->kobj);
2864	}
2865	rtrs_clt_destroy_sysfs_root(clt);
2866	free_clt(clt);
2867
2868out:
2869	return ERR_PTR(err);
2870}
2871EXPORT_SYMBOL(rtrs_clt_open);
2872
2873/**
2874 * rtrs_clt_close() - Close a path
2875 * @clt: Session handle. Session is freed upon return.
2876 */
2877void rtrs_clt_close(struct rtrs_clt_sess *clt)
2878{
2879	struct rtrs_clt_path *clt_path, *tmp;
2880
2881	/* Firstly forbid sysfs access */
2882	rtrs_clt_destroy_sysfs_root(clt);
2883
2884	/* Now it is safe to iterate over all paths without locks */
2885	list_for_each_entry_safe(clt_path, tmp, &clt->paths_list, s.entry) {
2886		rtrs_clt_close_conns(clt_path, true);
2887		rtrs_clt_destroy_path_files(clt_path, NULL);
2888		kobject_put(&clt_path->kobj);
2889	}
2890	free_permits(clt);
2891	free_clt(clt);
2892}
2893EXPORT_SYMBOL(rtrs_clt_close);
2894
2895int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_path *clt_path)
2896{
2897	enum rtrs_clt_state old_state;
2898	int err = -EBUSY;
2899	bool changed;
2900
2901	changed = rtrs_clt_change_state_get_old(clt_path,
2902						 RTRS_CLT_RECONNECTING,
2903						 &old_state);
2904	if (changed) {
2905		clt_path->reconnect_attempts = 0;
2906		rtrs_clt_stop_and_destroy_conns(clt_path);
2907		queue_delayed_work(rtrs_wq, &clt_path->reconnect_dwork, 0);
2908	}
2909	if (changed || old_state == RTRS_CLT_RECONNECTING) {
2910		/*
2911		 * flush_delayed_work() queues pending work for immediate
2912		 * execution, so do the flush if we have queued something
2913		 * right now or work is pending.
2914		 */
2915		flush_delayed_work(&clt_path->reconnect_dwork);
2916		err = (READ_ONCE(clt_path->state) ==
2917		       RTRS_CLT_CONNECTED ? 0 : -ENOTCONN);
2918	}
2919
2920	return err;
2921}
2922
2923int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_path *clt_path,
2924				     const struct attribute *sysfs_self)
2925{
2926	enum rtrs_clt_state old_state;
2927	bool changed;
2928
2929	/*
2930	 * Continue stopping path till state was changed to DEAD or
2931	 * state was observed as DEAD:
2932	 * 1. State was changed to DEAD - we were fast and nobody
2933	 *    invoked rtrs_clt_reconnect(), which can again start
2934	 *    reconnecting.
2935	 * 2. State was observed as DEAD - we have someone in parallel
2936	 *    removing the path.
2937	 */
2938	do {
2939		rtrs_clt_close_conns(clt_path, true);
2940		changed = rtrs_clt_change_state_get_old(clt_path,
2941							RTRS_CLT_DEAD,
2942							&old_state);
2943	} while (!changed && old_state != RTRS_CLT_DEAD);
2944
2945	if (changed) {
2946		rtrs_clt_remove_path_from_arr(clt_path);
2947		rtrs_clt_destroy_path_files(clt_path, sysfs_self);
2948		kobject_put(&clt_path->kobj);
2949	}
2950
2951	return 0;
2952}
2953
2954void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt_sess *clt, int value)
2955{
2956	clt->max_reconnect_attempts = (unsigned int)value;
2957}
2958
2959int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt_sess *clt)
2960{
2961	return (int)clt->max_reconnect_attempts;
2962}
2963
2964/**
2965 * rtrs_clt_request() - Request data transfer to/from server via RDMA.
2966 *
2967 * @dir:	READ/WRITE
2968 * @ops:	callback function to be called as confirmation, and the pointer.
2969 * @clt:	Session
2970 * @permit:	Preallocated permit
2971 * @vec:	Message that is sent to server together with the request.
2972 *		Sum of len of all @vec elements limited to <= IO_MSG_SIZE.
2973 *		Since the msg is copied internally it can be allocated on stack.
2974 * @nr:		Number of elements in @vec.
2975 * @data_len:	length of data sent to/from server
2976 * @sg:		Pages to be sent/received to/from server.
2977 * @sg_cnt:	Number of elements in the @sg
2978 *
2979 * Return:
2980 * 0:		Success
2981 * <0:		Error
2982 *
2983 * On dir=READ rtrs client will request a data transfer from Server to client.
2984 * The data that the server will respond with will be stored in @sg when
2985 * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event.
2986 * On dir=WRITE rtrs client will rdma write data in sg to server side.
2987 */
2988int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops,
2989		     struct rtrs_clt_sess *clt, struct rtrs_permit *permit,
2990		     const struct kvec *vec, size_t nr, size_t data_len,
2991		     struct scatterlist *sg, unsigned int sg_cnt)
2992{
2993	struct rtrs_clt_io_req *req;
2994	struct rtrs_clt_path *clt_path;
2995
2996	enum dma_data_direction dma_dir;
2997	int err = -ECONNABORTED, i;
2998	size_t usr_len, hdr_len;
2999	struct path_it it;
3000
3001	/* Get kvec length */
3002	for (i = 0, usr_len = 0; i < nr; i++)
3003		usr_len += vec[i].iov_len;
3004
3005	if (dir == READ) {
3006		hdr_len = sizeof(struct rtrs_msg_rdma_read) +
3007			  sg_cnt * sizeof(struct rtrs_sg_desc);
3008		dma_dir = DMA_FROM_DEVICE;
3009	} else {
3010		hdr_len = sizeof(struct rtrs_msg_rdma_write);
3011		dma_dir = DMA_TO_DEVICE;
3012	}
3013
3014	rcu_read_lock();
3015	for (path_it_init(&it, clt);
3016	     (clt_path = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
3017		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
3018			continue;
3019
3020		if (usr_len + hdr_len > clt_path->max_hdr_size) {
3021			rtrs_wrn_rl(clt_path->clt,
3022				     "%s request failed, user message size is %zu and header length %zu, but max size is %u\n",
3023				     dir == READ ? "Read" : "Write",
3024				     usr_len, hdr_len, clt_path->max_hdr_size);
3025			err = -EMSGSIZE;
3026			break;
3027		}
3028		req = rtrs_clt_get_req(clt_path, ops->conf_fn, permit, ops->priv,
3029				       vec, usr_len, sg, sg_cnt, data_len,
3030				       dma_dir);
3031		if (dir == READ)
3032			err = rtrs_clt_read_req(req);
3033		else
3034			err = rtrs_clt_write_req(req);
3035		if (err) {
3036			req->in_use = false;
3037			continue;
3038		}
3039		/* Success path */
3040		break;
3041	}
3042	path_it_deinit(&it);
3043	rcu_read_unlock();
3044
3045	return err;
3046}
3047EXPORT_SYMBOL(rtrs_clt_request);
3048
3049int rtrs_clt_rdma_cq_direct(struct rtrs_clt_sess *clt, unsigned int index)
3050{
3051	/* If no path, return -1 for block layer not to try again */
3052	int cnt = -1;
3053	struct rtrs_con *con;
3054	struct rtrs_clt_path *clt_path;
3055	struct path_it it;
3056
3057	rcu_read_lock();
3058	for (path_it_init(&it, clt);
3059	     (clt_path = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
3060		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
3061			continue;
3062
3063		con = clt_path->s.con[index + 1];
3064		cnt = ib_process_cq_direct(con->cq, -1);
3065		if (cnt)
3066			break;
3067	}
3068	path_it_deinit(&it);
3069	rcu_read_unlock();
3070
3071	return cnt;
3072}
3073EXPORT_SYMBOL(rtrs_clt_rdma_cq_direct);
3074
3075/**
3076 * rtrs_clt_query() - queries RTRS session attributes
3077 *@clt: session pointer
3078 *@attr: query results for session attributes.
3079 * Returns:
3080 *    0 on success
3081 *    -ECOMM		no connection to the server
3082 */
3083int rtrs_clt_query(struct rtrs_clt_sess *clt, struct rtrs_attrs *attr)
3084{
3085	if (!rtrs_clt_is_connected(clt))
3086		return -ECOMM;
3087
3088	attr->queue_depth      = clt->queue_depth;
3089	attr->max_segments     = clt->max_segments;
3090	/* Cap max_io_size to min of remote buffer size and the fr pages */
3091	attr->max_io_size = min_t(int, clt->max_io_size,
3092				  clt->max_segments * SZ_4K);
3093
3094	return 0;
3095}
3096EXPORT_SYMBOL(rtrs_clt_query);
3097
3098int rtrs_clt_create_path_from_sysfs(struct rtrs_clt_sess *clt,
3099				     struct rtrs_addr *addr)
3100{
3101	struct rtrs_clt_path *clt_path;
3102	int err;
3103
3104	clt_path = alloc_path(clt, addr, nr_cpu_ids, 0);
3105	if (IS_ERR(clt_path))
3106		return PTR_ERR(clt_path);
3107
3108	mutex_lock(&clt->paths_mutex);
3109	if (clt->paths_num == 0) {
3110		/*
3111		 * When all the paths are removed for a session,
3112		 * the addition of the first path is like a new session for
3113		 * the storage server
3114		 */
3115		clt_path->for_new_clt = 1;
3116	}
3117
3118	mutex_unlock(&clt->paths_mutex);
3119
3120	/*
3121	 * It is totally safe to add path in CONNECTING state: coming
3122	 * IO will never grab it.  Also it is very important to add
3123	 * path before init, since init fires LINK_CONNECTED event.
3124	 */
3125	rtrs_clt_add_path_to_arr(clt_path);
3126
3127	err = init_path(clt_path);
3128	if (err)
3129		goto close_path;
3130
3131	err = rtrs_clt_create_path_files(clt_path);
3132	if (err)
3133		goto close_path;
3134
3135	return 0;
3136
3137close_path:
3138	rtrs_clt_remove_path_from_arr(clt_path);
3139	rtrs_clt_close_conns(clt_path, true);
3140	free_percpu(clt_path->stats->pcpu_stats);
3141	kfree(clt_path->stats);
3142	free_path(clt_path);
3143
3144	return err;
3145}
3146
3147static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev)
3148{
3149	if (!(dev->ib_dev->attrs.device_cap_flags &
3150	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
3151		pr_err("Memory registrations not supported.\n");
3152		return -ENOTSUPP;
3153	}
3154
3155	return 0;
3156}
3157
3158static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = {
3159	.init = rtrs_clt_ib_dev_init
3160};
3161
3162static int __init rtrs_client_init(void)
3163{
 
 
3164	rtrs_rdma_dev_pd_init(0, &dev_pd);
3165
3166	rtrs_clt_dev_class = class_create(THIS_MODULE, "rtrs-client");
3167	if (IS_ERR(rtrs_clt_dev_class)) {
3168		pr_err("Failed to create rtrs-client dev class\n");
3169		return PTR_ERR(rtrs_clt_dev_class);
3170	}
3171	rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0);
3172	if (!rtrs_wq) {
3173		class_destroy(rtrs_clt_dev_class);
3174		return -ENOMEM;
3175	}
3176
3177	return 0;
3178}
3179
3180static void __exit rtrs_client_exit(void)
3181{
3182	destroy_workqueue(rtrs_wq);
3183	class_destroy(rtrs_clt_dev_class);
3184	rtrs_rdma_dev_pd_deinit(&dev_pd);
3185}
3186
3187module_init(rtrs_client_init);
3188module_exit(rtrs_client_exit);