Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *
  4 * Copyright (c) 2009, Microsoft Corporation.
  5 *
  6 * Authors:
  7 *   Haiyang Zhang <haiyangz@microsoft.com>
  8 *   Hank Janssen  <hjanssen@microsoft.com>
  9 *   K. Y. Srinivasan <kys@microsoft.com>
 10 */
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/kernel.h>
 14#include <linux/mm.h>
 15#include <linux/hyperv.h>
 16#include <linux/uio.h>
 17#include <linux/vmalloc.h>
 18#include <linux/slab.h>
 19#include <linux/prefetch.h>
 20#include <linux/io.h>
 21#include <asm/mshyperv.h>
 22
 23#include "hyperv_vmbus.h"
 24
 25#define VMBUS_PKT_TRAILER	8
 26
 27/*
 28 * When we write to the ring buffer, check if the host needs to
 29 * be signaled. Here is the details of this protocol:
 30 *
 31 *	1. The host guarantees that while it is draining the
 32 *	   ring buffer, it will set the interrupt_mask to
 33 *	   indicate it does not need to be interrupted when
 34 *	   new data is placed.
 35 *
 36 *	2. The host guarantees that it will completely drain
 37 *	   the ring buffer before exiting the read loop. Further,
 38 *	   once the ring buffer is empty, it will clear the
 39 *	   interrupt_mask and re-check to see if new data has
 40 *	   arrived.
 41 *
 42 * KYS: Oct. 30, 2016:
 43 * It looks like Windows hosts have logic to deal with DOS attacks that
 44 * can be triggered if it receives interrupts when it is not expecting
 45 * the interrupt. The host expects interrupts only when the ring
 46 * transitions from empty to non-empty (or full to non full on the guest
 47 * to host ring).
 48 * So, base the signaling decision solely on the ring state until the
 49 * host logic is fixed.
 50 */
 51
 52static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
 53{
 54	struct hv_ring_buffer_info *rbi = &channel->outbound;
 55
 56	virt_mb();
 57	if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
 58		return;
 59
 60	/* check interrupt_mask before read_index */
 61	virt_rmb();
 62	/*
 63	 * This is the only case we need to signal when the
 64	 * ring transitions from being empty to non-empty.
 65	 */
 66	if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
 67		++channel->intr_out_empty;
 68		vmbus_setevent(channel);
 69	}
 70}
 71
 72/* Get the next write location for the specified ring buffer. */
 73static inline u32
 74hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
 75{
 76	u32 next = ring_info->ring_buffer->write_index;
 77
 78	return next;
 79}
 80
 81/* Set the next write location for the specified ring buffer. */
 82static inline void
 83hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
 84		     u32 next_write_location)
 85{
 86	ring_info->ring_buffer->write_index = next_write_location;
 87}
 88
 89/* Get the size of the ring buffer. */
 90static inline u32
 91hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
 92{
 93	return ring_info->ring_datasize;
 94}
 95
 96/* Get the read and write indices as u64 of the specified ring buffer. */
 97static inline u64
 98hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
 99{
100	return (u64)ring_info->ring_buffer->write_index << 32;
101}
102
103/*
104 * Helper routine to copy from source to ring buffer.
105 * Assume there is enough room. Handles wrap-around in dest case only!!
106 */
107static u32 hv_copyto_ringbuffer(
108	struct hv_ring_buffer_info	*ring_info,
109	u32				start_write_offset,
110	const void			*src,
111	u32				srclen)
112{
113	void *ring_buffer = hv_get_ring_buffer(ring_info);
114	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
115
116	memcpy(ring_buffer + start_write_offset, src, srclen);
117
118	start_write_offset += srclen;
119	if (start_write_offset >= ring_buffer_size)
120		start_write_offset -= ring_buffer_size;
121
122	return start_write_offset;
123}
124
125/*
126 *
127 * hv_get_ringbuffer_availbytes()
128 *
129 * Get number of bytes available to read and to write to
130 * for the specified ring buffer
131 */
132static void
133hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
134			     u32 *read, u32 *write)
135{
136	u32 read_loc, write_loc, dsize;
137
138	/* Capture the read/write indices before they changed */
139	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
140	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
141	dsize = rbi->ring_datasize;
142
143	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
144		read_loc - write_loc;
145	*read = dsize - *write;
146}
147
148/* Get various debug metrics for the specified ring buffer. */
149int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
150				struct hv_ring_buffer_debug_info *debug_info)
151{
152	u32 bytes_avail_towrite;
153	u32 bytes_avail_toread;
154
155	mutex_lock(&ring_info->ring_buffer_mutex);
156
157	if (!ring_info->ring_buffer) {
158		mutex_unlock(&ring_info->ring_buffer_mutex);
159		return -EINVAL;
160	}
161
162	hv_get_ringbuffer_availbytes(ring_info,
163				     &bytes_avail_toread,
164				     &bytes_avail_towrite);
165	debug_info->bytes_avail_toread = bytes_avail_toread;
166	debug_info->bytes_avail_towrite = bytes_avail_towrite;
167	debug_info->current_read_index = ring_info->ring_buffer->read_index;
168	debug_info->current_write_index = ring_info->ring_buffer->write_index;
169	debug_info->current_interrupt_mask
170		= ring_info->ring_buffer->interrupt_mask;
171	mutex_unlock(&ring_info->ring_buffer_mutex);
172
173	return 0;
174}
175EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
176
177/* Initialize a channel's ring buffer info mutex locks */
178void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
179{
180	mutex_init(&channel->inbound.ring_buffer_mutex);
181	mutex_init(&channel->outbound.ring_buffer_mutex);
182}
183
184/* Initialize the ring buffer. */
185int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
186		       struct page *pages, u32 page_cnt, u32 max_pkt_size)
187{
188	struct page **pages_wraparound;
 
 
189	int i;
190
191	BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
192
193	/*
194	 * First page holds struct hv_ring_buffer, do wraparound mapping for
195	 * the rest.
196	 */
197	pages_wraparound = kcalloc(page_cnt * 2 - 1,
198				   sizeof(struct page *),
199				   GFP_KERNEL);
200	if (!pages_wraparound)
201		return -ENOMEM;
202
203	pages_wraparound[0] = pages;
204	for (i = 0; i < 2 * (page_cnt - 1); i++)
205		pages_wraparound[i + 1] =
206			&pages[i % (page_cnt - 1) + 1];
207
208	ring_info->ring_buffer = (struct hv_ring_buffer *)
209		vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP,
210			pgprot_decrypted(PAGE_KERNEL));
211
212	kfree(pages_wraparound);
213	if (!ring_info->ring_buffer)
214		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215
216	/*
217	 * Ensure the header page is zero'ed since
218	 * encryption status may have changed.
219	 */
220	memset(ring_info->ring_buffer, 0, HV_HYP_PAGE_SIZE);
221
222	ring_info->ring_buffer->read_index =
223		ring_info->ring_buffer->write_index = 0;
224
225	/* Set the feature bit for enabling flow control. */
226	ring_info->ring_buffer->feature_bits.value = 1;
227
228	ring_info->ring_size = page_cnt << PAGE_SHIFT;
229	ring_info->ring_size_div10_reciprocal =
230		reciprocal_value(ring_info->ring_size / 10);
231	ring_info->ring_datasize = ring_info->ring_size -
232		sizeof(struct hv_ring_buffer);
233	ring_info->priv_read_index = 0;
234
235	/* Initialize buffer that holds copies of incoming packets */
236	if (max_pkt_size) {
237		ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL);
238		if (!ring_info->pkt_buffer)
239			return -ENOMEM;
240		ring_info->pkt_buffer_size = max_pkt_size;
241	}
242
243	spin_lock_init(&ring_info->ring_lock);
244
245	return 0;
246}
247
248/* Cleanup the ring buffer. */
249void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
250{
251	mutex_lock(&ring_info->ring_buffer_mutex);
252	vunmap(ring_info->ring_buffer);
253	ring_info->ring_buffer = NULL;
254	mutex_unlock(&ring_info->ring_buffer_mutex);
255
256	kfree(ring_info->pkt_buffer);
257	ring_info->pkt_buffer = NULL;
258	ring_info->pkt_buffer_size = 0;
259}
260
261/*
262 * Check if the ring buffer spinlock is available to take or not; used on
263 * atomic contexts, like panic path (see the Hyper-V framebuffer driver).
264 */
265
266bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel)
267{
268	struct hv_ring_buffer_info *rinfo = &channel->outbound;
269
270	return spin_is_locked(&rinfo->ring_lock);
271}
272EXPORT_SYMBOL_GPL(hv_ringbuffer_spinlock_busy);
273
274/* Write to the ring buffer. */
275int hv_ringbuffer_write(struct vmbus_channel *channel,
276			const struct kvec *kv_list, u32 kv_count,
277			u64 requestid, u64 *trans_id)
278{
279	int i;
280	u32 bytes_avail_towrite;
281	u32 totalbytes_towrite = sizeof(u64);
282	u32 next_write_location;
283	u32 old_write;
284	u64 prev_indices;
285	unsigned long flags;
286	struct hv_ring_buffer_info *outring_info = &channel->outbound;
287	struct vmpacket_descriptor *desc = kv_list[0].iov_base;
288	u64 __trans_id, rqst_id = VMBUS_NO_RQSTOR;
289
290	if (channel->rescind)
291		return -ENODEV;
292
293	for (i = 0; i < kv_count; i++)
294		totalbytes_towrite += kv_list[i].iov_len;
295
296	spin_lock_irqsave(&outring_info->ring_lock, flags);
297
298	bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
299
300	/*
301	 * If there is only room for the packet, assume it is full.
302	 * Otherwise, the next time around, we think the ring buffer
303	 * is empty since the read index == write index.
304	 */
305	if (bytes_avail_towrite <= totalbytes_towrite) {
306		++channel->out_full_total;
307
308		if (!channel->out_full_flag) {
309			++channel->out_full_first;
310			channel->out_full_flag = true;
311		}
312
313		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
314		return -EAGAIN;
315	}
316
317	channel->out_full_flag = false;
318
319	/* Write to the ring buffer */
320	next_write_location = hv_get_next_write_location(outring_info);
321
322	old_write = next_write_location;
323
324	for (i = 0; i < kv_count; i++) {
325		next_write_location = hv_copyto_ringbuffer(outring_info,
326						     next_write_location,
327						     kv_list[i].iov_base,
328						     kv_list[i].iov_len);
329	}
330
331	/*
332	 * Allocate the request ID after the data has been copied into the
333	 * ring buffer.  Once this request ID is allocated, the completion
334	 * path could find the data and free it.
335	 */
336
337	if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
338		if (channel->next_request_id_callback != NULL) {
339			rqst_id = channel->next_request_id_callback(channel, requestid);
340			if (rqst_id == VMBUS_RQST_ERROR) {
341				spin_unlock_irqrestore(&outring_info->ring_lock, flags);
342				return -EAGAIN;
343			}
344		}
345	}
346	desc = hv_get_ring_buffer(outring_info) + old_write;
347	__trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
348	/*
349	 * Ensure the compiler doesn't generate code that reads the value of
350	 * the transaction ID from the ring buffer, which is shared with the
351	 * Hyper-V host and subject to being changed at any time.
352	 */
353	WRITE_ONCE(desc->trans_id, __trans_id);
354	if (trans_id)
355		*trans_id = __trans_id;
356
357	/* Set previous packet start */
358	prev_indices = hv_get_ring_bufferindices(outring_info);
359
360	next_write_location = hv_copyto_ringbuffer(outring_info,
361					     next_write_location,
362					     &prev_indices,
363					     sizeof(u64));
364
365	/* Issue a full memory barrier before updating the write index */
366	virt_mb();
367
368	/* Now, update the write location */
369	hv_set_next_write_location(outring_info, next_write_location);
370
371
372	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
373
374	hv_signal_on_write(old_write, channel);
375
376	if (channel->rescind) {
377		if (rqst_id != VMBUS_NO_RQSTOR) {
378			/* Reclaim request ID to avoid leak of IDs */
379			if (channel->request_addr_callback != NULL)
380				channel->request_addr_callback(channel, rqst_id);
381		}
382		return -ENODEV;
383	}
384
385	return 0;
386}
387
388int hv_ringbuffer_read(struct vmbus_channel *channel,
389		       void *buffer, u32 buflen, u32 *buffer_actual_len,
390		       u64 *requestid, bool raw)
391{
392	struct vmpacket_descriptor *desc;
393	u32 packetlen, offset;
394
395	if (unlikely(buflen == 0))
396		return -EINVAL;
397
398	*buffer_actual_len = 0;
399	*requestid = 0;
400
401	/* Make sure there is something to read */
402	desc = hv_pkt_iter_first(channel);
403	if (desc == NULL) {
404		/*
405		 * No error is set when there is even no header, drivers are
406		 * supposed to analyze buffer_actual_len.
407		 */
408		return 0;
409	}
410
411	offset = raw ? 0 : (desc->offset8 << 3);
412	packetlen = (desc->len8 << 3) - offset;
413	*buffer_actual_len = packetlen;
414	*requestid = desc->trans_id;
415
416	if (unlikely(packetlen > buflen))
417		return -ENOBUFS;
418
419	/* since ring is double mapped, only one copy is necessary */
420	memcpy(buffer, (const char *)desc + offset, packetlen);
421
422	/* Advance ring index to next packet descriptor */
423	__hv_pkt_iter_next(channel, desc);
424
425	/* Notify host of update */
426	hv_pkt_iter_close(channel);
427
428	return 0;
429}
430
431/*
432 * Determine number of bytes available in ring buffer after
433 * the current iterator (priv_read_index) location.
434 *
435 * This is similar to hv_get_bytes_to_read but with private
436 * read index instead.
437 */
438static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
439{
440	u32 priv_read_loc = rbi->priv_read_index;
441	u32 write_loc;
442
443	/*
444	 * The Hyper-V host writes the packet data, then uses
445	 * store_release() to update the write_index.  Use load_acquire()
446	 * here to prevent loads of the packet data from being re-ordered
447	 * before the read of the write_index and potentially getting
448	 * stale data.
449	 */
450	write_loc = virt_load_acquire(&rbi->ring_buffer->write_index);
451
452	if (write_loc >= priv_read_loc)
453		return write_loc - priv_read_loc;
454	else
455		return (rbi->ring_datasize - priv_read_loc) + write_loc;
456}
457
458/*
459 * Get first vmbus packet from ring buffer after read_index
460 *
461 * If ring buffer is empty, returns NULL and no other action needed.
462 */
463struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
464{
465	struct hv_ring_buffer_info *rbi = &channel->inbound;
466	struct vmpacket_descriptor *desc, *desc_copy;
467	u32 bytes_avail, pkt_len, pkt_offset;
468
469	hv_debug_delay_test(channel, MESSAGE_DELAY);
470
471	bytes_avail = hv_pkt_iter_avail(rbi);
472	if (bytes_avail < sizeof(struct vmpacket_descriptor))
473		return NULL;
474	bytes_avail = min(rbi->pkt_buffer_size, bytes_avail);
475
476	desc = (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
477
478	/*
479	 * Ensure the compiler does not use references to incoming Hyper-V values (which
480	 * could change at any moment) when reading local variables later in the code
481	 */
482	pkt_len = READ_ONCE(desc->len8) << 3;
483	pkt_offset = READ_ONCE(desc->offset8) << 3;
484
485	/*
486	 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and
487	 * rbi->pkt_buffer_size
488	 */
489	if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail)
490		pkt_len = bytes_avail;
491
492	/*
493	 * If pkt_offset is invalid, arbitrarily set it to
494	 * the size of vmpacket_descriptor
495	 */
496	if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len)
497		pkt_offset = sizeof(struct vmpacket_descriptor);
498
499	/* Copy the Hyper-V packet out of the ring buffer */
500	desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer;
501	memcpy(desc_copy, desc, pkt_len);
502
503	/*
504	 * Hyper-V could still change len8 and offset8 after the earlier read.
505	 * Ensure that desc_copy has legal values for len8 and offset8 that
506	 * are consistent with the copy we just made
507	 */
508	desc_copy->len8 = pkt_len >> 3;
509	desc_copy->offset8 = pkt_offset >> 3;
510
511	return desc_copy;
512}
513EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
514
515/*
516 * Get next vmbus packet from ring buffer.
517 *
518 * Advances the current location (priv_read_index) and checks for more
519 * data. If the end of the ring buffer is reached, then return NULL.
520 */
521struct vmpacket_descriptor *
522__hv_pkt_iter_next(struct vmbus_channel *channel,
523		   const struct vmpacket_descriptor *desc)
524{
525	struct hv_ring_buffer_info *rbi = &channel->inbound;
526	u32 packetlen = desc->len8 << 3;
527	u32 dsize = rbi->ring_datasize;
528
529	hv_debug_delay_test(channel, MESSAGE_DELAY);
530	/* bump offset to next potential packet */
531	rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
532	if (rbi->priv_read_index >= dsize)
533		rbi->priv_read_index -= dsize;
534
535	/* more data? */
536	return hv_pkt_iter_first(channel);
537}
538EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
539
540/* How many bytes were read in this iterator cycle */
541static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
542					u32 start_read_index)
543{
544	if (rbi->priv_read_index >= start_read_index)
545		return rbi->priv_read_index - start_read_index;
546	else
547		return rbi->ring_datasize - start_read_index +
548			rbi->priv_read_index;
549}
550
551/*
552 * Update host ring buffer after iterating over packets. If the host has
553 * stopped queuing new entries because it found the ring buffer full, and
554 * sufficient space is being freed up, signal the host. But be careful to
555 * only signal the host when necessary, both for performance reasons and
556 * because Hyper-V protects itself by throttling guests that signal
557 * inappropriately.
558 *
559 * Determining when to signal is tricky. There are three key data inputs
560 * that must be handled in this order to avoid race conditions:
561 *
562 * 1. Update the read_index
563 * 2. Read the pending_send_sz
564 * 3. Read the current write_index
565 *
566 * The interrupt_mask is not used to determine when to signal. The
567 * interrupt_mask is used only on the guest->host ring buffer when
568 * sending requests to the host. The host does not use it on the host->
569 * guest ring buffer to indicate whether it should be signaled.
570 */
571void hv_pkt_iter_close(struct vmbus_channel *channel)
572{
573	struct hv_ring_buffer_info *rbi = &channel->inbound;
574	u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
575
576	/*
577	 * Make sure all reads are done before we update the read index since
578	 * the writer may start writing to the read area once the read index
579	 * is updated.
580	 */
581	virt_rmb();
582	start_read_index = rbi->ring_buffer->read_index;
583	rbi->ring_buffer->read_index = rbi->priv_read_index;
584
585	/*
586	 * Older versions of Hyper-V (before WS2102 and Win8) do not
587	 * implement pending_send_sz and simply poll if the host->guest
588	 * ring buffer is full.  No signaling is needed or expected.
589	 */
590	if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
591		return;
592
593	/*
594	 * Issue a full memory barrier before making the signaling decision.
595	 * If reading pending_send_sz were to be reordered and happen
596	 * before we commit the new read_index, a race could occur.  If the
597	 * host were to set the pending_send_sz after we have sampled
598	 * pending_send_sz, and the ring buffer blocks before we commit the
599	 * read index, we could miss sending the interrupt. Issue a full
600	 * memory barrier to address this.
601	 */
602	virt_mb();
603
604	/*
605	 * If the pending_send_sz is zero, then the ring buffer is not
606	 * blocked and there is no need to signal.  This is far by the
607	 * most common case, so exit quickly for best performance.
608	 */
609	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
610	if (!pending_sz)
611		return;
612
613	/*
614	 * Ensure the read of write_index in hv_get_bytes_to_write()
615	 * happens after the read of pending_send_sz.
616	 */
617	virt_rmb();
618	curr_write_sz = hv_get_bytes_to_write(rbi);
619	bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
620
621	/*
622	 * We want to signal the host only if we're transitioning
623	 * from a "not enough free space" state to a "enough free
624	 * space" state.  For example, it's possible that this function
625	 * could run and free up enough space to signal the host, and then
626	 * run again and free up additional space before the host has a
627	 * chance to clear the pending_send_sz.  The 2nd invocation would
628	 * be a null transition from "enough free space" to "enough free
629	 * space", which doesn't warrant a signal.
630	 *
631	 * Exactly filling the ring buffer is treated as "not enough
632	 * space". The ring buffer always must have at least one byte
633	 * empty so the empty and full conditions are distinguishable.
634	 * hv_get_bytes_to_write() doesn't fully tell the truth in
635	 * this regard.
636	 *
637	 * So first check if we were in the "enough free space" state
638	 * before we began the iteration. If so, the host was not
639	 * blocked, and there's no need to signal.
640	 */
641	if (curr_write_sz - bytes_read > pending_sz)
642		return;
643
644	/*
645	 * Similarly, if the new state is "not enough space", then
646	 * there's no need to signal.
647	 */
648	if (curr_write_sz <= pending_sz)
649		return;
650
651	++channel->intr_in_full;
652	vmbus_setevent(channel);
653}
654EXPORT_SYMBOL_GPL(hv_pkt_iter_close);
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *
  4 * Copyright (c) 2009, Microsoft Corporation.
  5 *
  6 * Authors:
  7 *   Haiyang Zhang <haiyangz@microsoft.com>
  8 *   Hank Janssen  <hjanssen@microsoft.com>
  9 *   K. Y. Srinivasan <kys@microsoft.com>
 10 */
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/kernel.h>
 14#include <linux/mm.h>
 15#include <linux/hyperv.h>
 16#include <linux/uio.h>
 17#include <linux/vmalloc.h>
 18#include <linux/slab.h>
 19#include <linux/prefetch.h>
 20#include <linux/io.h>
 21#include <asm/mshyperv.h>
 22
 23#include "hyperv_vmbus.h"
 24
 25#define VMBUS_PKT_TRAILER	8
 26
 27/*
 28 * When we write to the ring buffer, check if the host needs to
 29 * be signaled. Here is the details of this protocol:
 30 *
 31 *	1. The host guarantees that while it is draining the
 32 *	   ring buffer, it will set the interrupt_mask to
 33 *	   indicate it does not need to be interrupted when
 34 *	   new data is placed.
 35 *
 36 *	2. The host guarantees that it will completely drain
 37 *	   the ring buffer before exiting the read loop. Further,
 38 *	   once the ring buffer is empty, it will clear the
 39 *	   interrupt_mask and re-check to see if new data has
 40 *	   arrived.
 41 *
 42 * KYS: Oct. 30, 2016:
 43 * It looks like Windows hosts have logic to deal with DOS attacks that
 44 * can be triggered if it receives interrupts when it is not expecting
 45 * the interrupt. The host expects interrupts only when the ring
 46 * transitions from empty to non-empty (or full to non full on the guest
 47 * to host ring).
 48 * So, base the signaling decision solely on the ring state until the
 49 * host logic is fixed.
 50 */
 51
 52static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
 53{
 54	struct hv_ring_buffer_info *rbi = &channel->outbound;
 55
 56	virt_mb();
 57	if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
 58		return;
 59
 60	/* check interrupt_mask before read_index */
 61	virt_rmb();
 62	/*
 63	 * This is the only case we need to signal when the
 64	 * ring transitions from being empty to non-empty.
 65	 */
 66	if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
 67		++channel->intr_out_empty;
 68		vmbus_setevent(channel);
 69	}
 70}
 71
 72/* Get the next write location for the specified ring buffer. */
 73static inline u32
 74hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
 75{
 76	u32 next = ring_info->ring_buffer->write_index;
 77
 78	return next;
 79}
 80
 81/* Set the next write location for the specified ring buffer. */
 82static inline void
 83hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
 84		     u32 next_write_location)
 85{
 86	ring_info->ring_buffer->write_index = next_write_location;
 87}
 88
 89/* Get the size of the ring buffer. */
 90static inline u32
 91hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
 92{
 93	return ring_info->ring_datasize;
 94}
 95
 96/* Get the read and write indices as u64 of the specified ring buffer. */
 97static inline u64
 98hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
 99{
100	return (u64)ring_info->ring_buffer->write_index << 32;
101}
102
103/*
104 * Helper routine to copy from source to ring buffer.
105 * Assume there is enough room. Handles wrap-around in dest case only!!
106 */
107static u32 hv_copyto_ringbuffer(
108	struct hv_ring_buffer_info	*ring_info,
109	u32				start_write_offset,
110	const void			*src,
111	u32				srclen)
112{
113	void *ring_buffer = hv_get_ring_buffer(ring_info);
114	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
115
116	memcpy(ring_buffer + start_write_offset, src, srclen);
117
118	start_write_offset += srclen;
119	if (start_write_offset >= ring_buffer_size)
120		start_write_offset -= ring_buffer_size;
121
122	return start_write_offset;
123}
124
125/*
126 *
127 * hv_get_ringbuffer_availbytes()
128 *
129 * Get number of bytes available to read and to write to
130 * for the specified ring buffer
131 */
132static void
133hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
134			     u32 *read, u32 *write)
135{
136	u32 read_loc, write_loc, dsize;
137
138	/* Capture the read/write indices before they changed */
139	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
140	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
141	dsize = rbi->ring_datasize;
142
143	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
144		read_loc - write_loc;
145	*read = dsize - *write;
146}
147
148/* Get various debug metrics for the specified ring buffer. */
149int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
150				struct hv_ring_buffer_debug_info *debug_info)
151{
152	u32 bytes_avail_towrite;
153	u32 bytes_avail_toread;
154
155	mutex_lock(&ring_info->ring_buffer_mutex);
156
157	if (!ring_info->ring_buffer) {
158		mutex_unlock(&ring_info->ring_buffer_mutex);
159		return -EINVAL;
160	}
161
162	hv_get_ringbuffer_availbytes(ring_info,
163				     &bytes_avail_toread,
164				     &bytes_avail_towrite);
165	debug_info->bytes_avail_toread = bytes_avail_toread;
166	debug_info->bytes_avail_towrite = bytes_avail_towrite;
167	debug_info->current_read_index = ring_info->ring_buffer->read_index;
168	debug_info->current_write_index = ring_info->ring_buffer->write_index;
169	debug_info->current_interrupt_mask
170		= ring_info->ring_buffer->interrupt_mask;
171	mutex_unlock(&ring_info->ring_buffer_mutex);
172
173	return 0;
174}
175EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
176
177/* Initialize a channel's ring buffer info mutex locks */
178void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
179{
180	mutex_init(&channel->inbound.ring_buffer_mutex);
181	mutex_init(&channel->outbound.ring_buffer_mutex);
182}
183
184/* Initialize the ring buffer. */
185int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
186		       struct page *pages, u32 page_cnt, u32 max_pkt_size)
187{
188	struct page **pages_wraparound;
189	unsigned long *pfns_wraparound;
190	u64 pfn;
191	int i;
192
193	BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
194
195	/*
196	 * First page holds struct hv_ring_buffer, do wraparound mapping for
197	 * the rest.
198	 */
199	if (hv_isolation_type_snp()) {
200		pfn = page_to_pfn(pages) +
201			PFN_DOWN(ms_hyperv.shared_gpa_boundary);
202
203		pfns_wraparound = kcalloc(page_cnt * 2 - 1,
204			sizeof(unsigned long), GFP_KERNEL);
205		if (!pfns_wraparound)
206			return -ENOMEM;
207
208		pfns_wraparound[0] = pfn;
209		for (i = 0; i < 2 * (page_cnt - 1); i++)
210			pfns_wraparound[i + 1] = pfn + i % (page_cnt - 1) + 1;
211
212		ring_info->ring_buffer = (struct hv_ring_buffer *)
213			vmap_pfn(pfns_wraparound, page_cnt * 2 - 1,
214				 PAGE_KERNEL);
215		kfree(pfns_wraparound);
216
217		if (!ring_info->ring_buffer)
218			return -ENOMEM;
219
220		/* Zero ring buffer after setting memory host visibility. */
221		memset(ring_info->ring_buffer, 0x00, PAGE_SIZE * page_cnt);
222	} else {
223		pages_wraparound = kcalloc(page_cnt * 2 - 1,
224					   sizeof(struct page *),
225					   GFP_KERNEL);
226		if (!pages_wraparound)
227			return -ENOMEM;
228
229		pages_wraparound[0] = pages;
230		for (i = 0; i < 2 * (page_cnt - 1); i++)
231			pages_wraparound[i + 1] =
232				&pages[i % (page_cnt - 1) + 1];
233
234		ring_info->ring_buffer = (struct hv_ring_buffer *)
235			vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP,
236				PAGE_KERNEL);
237
238		kfree(pages_wraparound);
239		if (!ring_info->ring_buffer)
240			return -ENOMEM;
241	}
242
 
 
 
 
 
243
244	ring_info->ring_buffer->read_index =
245		ring_info->ring_buffer->write_index = 0;
246
247	/* Set the feature bit for enabling flow control. */
248	ring_info->ring_buffer->feature_bits.value = 1;
249
250	ring_info->ring_size = page_cnt << PAGE_SHIFT;
251	ring_info->ring_size_div10_reciprocal =
252		reciprocal_value(ring_info->ring_size / 10);
253	ring_info->ring_datasize = ring_info->ring_size -
254		sizeof(struct hv_ring_buffer);
255	ring_info->priv_read_index = 0;
256
257	/* Initialize buffer that holds copies of incoming packets */
258	if (max_pkt_size) {
259		ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL);
260		if (!ring_info->pkt_buffer)
261			return -ENOMEM;
262		ring_info->pkt_buffer_size = max_pkt_size;
263	}
264
265	spin_lock_init(&ring_info->ring_lock);
266
267	return 0;
268}
269
270/* Cleanup the ring buffer. */
271void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
272{
273	mutex_lock(&ring_info->ring_buffer_mutex);
274	vunmap(ring_info->ring_buffer);
275	ring_info->ring_buffer = NULL;
276	mutex_unlock(&ring_info->ring_buffer_mutex);
277
278	kfree(ring_info->pkt_buffer);
279	ring_info->pkt_buffer = NULL;
280	ring_info->pkt_buffer_size = 0;
281}
282
283/*
284 * Check if the ring buffer spinlock is available to take or not; used on
285 * atomic contexts, like panic path (see the Hyper-V framebuffer driver).
286 */
287
288bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel)
289{
290	struct hv_ring_buffer_info *rinfo = &channel->outbound;
291
292	return spin_is_locked(&rinfo->ring_lock);
293}
294EXPORT_SYMBOL_GPL(hv_ringbuffer_spinlock_busy);
295
296/* Write to the ring buffer. */
297int hv_ringbuffer_write(struct vmbus_channel *channel,
298			const struct kvec *kv_list, u32 kv_count,
299			u64 requestid, u64 *trans_id)
300{
301	int i;
302	u32 bytes_avail_towrite;
303	u32 totalbytes_towrite = sizeof(u64);
304	u32 next_write_location;
305	u32 old_write;
306	u64 prev_indices;
307	unsigned long flags;
308	struct hv_ring_buffer_info *outring_info = &channel->outbound;
309	struct vmpacket_descriptor *desc = kv_list[0].iov_base;
310	u64 __trans_id, rqst_id = VMBUS_NO_RQSTOR;
311
312	if (channel->rescind)
313		return -ENODEV;
314
315	for (i = 0; i < kv_count; i++)
316		totalbytes_towrite += kv_list[i].iov_len;
317
318	spin_lock_irqsave(&outring_info->ring_lock, flags);
319
320	bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
321
322	/*
323	 * If there is only room for the packet, assume it is full.
324	 * Otherwise, the next time around, we think the ring buffer
325	 * is empty since the read index == write index.
326	 */
327	if (bytes_avail_towrite <= totalbytes_towrite) {
328		++channel->out_full_total;
329
330		if (!channel->out_full_flag) {
331			++channel->out_full_first;
332			channel->out_full_flag = true;
333		}
334
335		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
336		return -EAGAIN;
337	}
338
339	channel->out_full_flag = false;
340
341	/* Write to the ring buffer */
342	next_write_location = hv_get_next_write_location(outring_info);
343
344	old_write = next_write_location;
345
346	for (i = 0; i < kv_count; i++) {
347		next_write_location = hv_copyto_ringbuffer(outring_info,
348						     next_write_location,
349						     kv_list[i].iov_base,
350						     kv_list[i].iov_len);
351	}
352
353	/*
354	 * Allocate the request ID after the data has been copied into the
355	 * ring buffer.  Once this request ID is allocated, the completion
356	 * path could find the data and free it.
357	 */
358
359	if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
360		if (channel->next_request_id_callback != NULL) {
361			rqst_id = channel->next_request_id_callback(channel, requestid);
362			if (rqst_id == VMBUS_RQST_ERROR) {
363				spin_unlock_irqrestore(&outring_info->ring_lock, flags);
364				return -EAGAIN;
365			}
366		}
367	}
368	desc = hv_get_ring_buffer(outring_info) + old_write;
369	__trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
370	/*
371	 * Ensure the compiler doesn't generate code that reads the value of
372	 * the transaction ID from the ring buffer, which is shared with the
373	 * Hyper-V host and subject to being changed at any time.
374	 */
375	WRITE_ONCE(desc->trans_id, __trans_id);
376	if (trans_id)
377		*trans_id = __trans_id;
378
379	/* Set previous packet start */
380	prev_indices = hv_get_ring_bufferindices(outring_info);
381
382	next_write_location = hv_copyto_ringbuffer(outring_info,
383					     next_write_location,
384					     &prev_indices,
385					     sizeof(u64));
386
387	/* Issue a full memory barrier before updating the write index */
388	virt_mb();
389
390	/* Now, update the write location */
391	hv_set_next_write_location(outring_info, next_write_location);
392
393
394	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
395
396	hv_signal_on_write(old_write, channel);
397
398	if (channel->rescind) {
399		if (rqst_id != VMBUS_NO_RQSTOR) {
400			/* Reclaim request ID to avoid leak of IDs */
401			if (channel->request_addr_callback != NULL)
402				channel->request_addr_callback(channel, rqst_id);
403		}
404		return -ENODEV;
405	}
406
407	return 0;
408}
409
410int hv_ringbuffer_read(struct vmbus_channel *channel,
411		       void *buffer, u32 buflen, u32 *buffer_actual_len,
412		       u64 *requestid, bool raw)
413{
414	struct vmpacket_descriptor *desc;
415	u32 packetlen, offset;
416
417	if (unlikely(buflen == 0))
418		return -EINVAL;
419
420	*buffer_actual_len = 0;
421	*requestid = 0;
422
423	/* Make sure there is something to read */
424	desc = hv_pkt_iter_first(channel);
425	if (desc == NULL) {
426		/*
427		 * No error is set when there is even no header, drivers are
428		 * supposed to analyze buffer_actual_len.
429		 */
430		return 0;
431	}
432
433	offset = raw ? 0 : (desc->offset8 << 3);
434	packetlen = (desc->len8 << 3) - offset;
435	*buffer_actual_len = packetlen;
436	*requestid = desc->trans_id;
437
438	if (unlikely(packetlen > buflen))
439		return -ENOBUFS;
440
441	/* since ring is double mapped, only one copy is necessary */
442	memcpy(buffer, (const char *)desc + offset, packetlen);
443
444	/* Advance ring index to next packet descriptor */
445	__hv_pkt_iter_next(channel, desc);
446
447	/* Notify host of update */
448	hv_pkt_iter_close(channel);
449
450	return 0;
451}
452
453/*
454 * Determine number of bytes available in ring buffer after
455 * the current iterator (priv_read_index) location.
456 *
457 * This is similar to hv_get_bytes_to_read but with private
458 * read index instead.
459 */
460static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
461{
462	u32 priv_read_loc = rbi->priv_read_index;
463	u32 write_loc;
464
465	/*
466	 * The Hyper-V host writes the packet data, then uses
467	 * store_release() to update the write_index.  Use load_acquire()
468	 * here to prevent loads of the packet data from being re-ordered
469	 * before the read of the write_index and potentially getting
470	 * stale data.
471	 */
472	write_loc = virt_load_acquire(&rbi->ring_buffer->write_index);
473
474	if (write_loc >= priv_read_loc)
475		return write_loc - priv_read_loc;
476	else
477		return (rbi->ring_datasize - priv_read_loc) + write_loc;
478}
479
480/*
481 * Get first vmbus packet from ring buffer after read_index
482 *
483 * If ring buffer is empty, returns NULL and no other action needed.
484 */
485struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
486{
487	struct hv_ring_buffer_info *rbi = &channel->inbound;
488	struct vmpacket_descriptor *desc, *desc_copy;
489	u32 bytes_avail, pkt_len, pkt_offset;
490
491	hv_debug_delay_test(channel, MESSAGE_DELAY);
492
493	bytes_avail = hv_pkt_iter_avail(rbi);
494	if (bytes_avail < sizeof(struct vmpacket_descriptor))
495		return NULL;
496	bytes_avail = min(rbi->pkt_buffer_size, bytes_avail);
497
498	desc = (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
499
500	/*
501	 * Ensure the compiler does not use references to incoming Hyper-V values (which
502	 * could change at any moment) when reading local variables later in the code
503	 */
504	pkt_len = READ_ONCE(desc->len8) << 3;
505	pkt_offset = READ_ONCE(desc->offset8) << 3;
506
507	/*
508	 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and
509	 * rbi->pkt_buffer_size
510	 */
511	if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail)
512		pkt_len = bytes_avail;
513
514	/*
515	 * If pkt_offset is invalid, arbitrarily set it to
516	 * the size of vmpacket_descriptor
517	 */
518	if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len)
519		pkt_offset = sizeof(struct vmpacket_descriptor);
520
521	/* Copy the Hyper-V packet out of the ring buffer */
522	desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer;
523	memcpy(desc_copy, desc, pkt_len);
524
525	/*
526	 * Hyper-V could still change len8 and offset8 after the earlier read.
527	 * Ensure that desc_copy has legal values for len8 and offset8 that
528	 * are consistent with the copy we just made
529	 */
530	desc_copy->len8 = pkt_len >> 3;
531	desc_copy->offset8 = pkt_offset >> 3;
532
533	return desc_copy;
534}
535EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
536
537/*
538 * Get next vmbus packet from ring buffer.
539 *
540 * Advances the current location (priv_read_index) and checks for more
541 * data. If the end of the ring buffer is reached, then return NULL.
542 */
543struct vmpacket_descriptor *
544__hv_pkt_iter_next(struct vmbus_channel *channel,
545		   const struct vmpacket_descriptor *desc)
546{
547	struct hv_ring_buffer_info *rbi = &channel->inbound;
548	u32 packetlen = desc->len8 << 3;
549	u32 dsize = rbi->ring_datasize;
550
551	hv_debug_delay_test(channel, MESSAGE_DELAY);
552	/* bump offset to next potential packet */
553	rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
554	if (rbi->priv_read_index >= dsize)
555		rbi->priv_read_index -= dsize;
556
557	/* more data? */
558	return hv_pkt_iter_first(channel);
559}
560EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
561
562/* How many bytes were read in this iterator cycle */
563static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
564					u32 start_read_index)
565{
566	if (rbi->priv_read_index >= start_read_index)
567		return rbi->priv_read_index - start_read_index;
568	else
569		return rbi->ring_datasize - start_read_index +
570			rbi->priv_read_index;
571}
572
573/*
574 * Update host ring buffer after iterating over packets. If the host has
575 * stopped queuing new entries because it found the ring buffer full, and
576 * sufficient space is being freed up, signal the host. But be careful to
577 * only signal the host when necessary, both for performance reasons and
578 * because Hyper-V protects itself by throttling guests that signal
579 * inappropriately.
580 *
581 * Determining when to signal is tricky. There are three key data inputs
582 * that must be handled in this order to avoid race conditions:
583 *
584 * 1. Update the read_index
585 * 2. Read the pending_send_sz
586 * 3. Read the current write_index
587 *
588 * The interrupt_mask is not used to determine when to signal. The
589 * interrupt_mask is used only on the guest->host ring buffer when
590 * sending requests to the host. The host does not use it on the host->
591 * guest ring buffer to indicate whether it should be signaled.
592 */
593void hv_pkt_iter_close(struct vmbus_channel *channel)
594{
595	struct hv_ring_buffer_info *rbi = &channel->inbound;
596	u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
597
598	/*
599	 * Make sure all reads are done before we update the read index since
600	 * the writer may start writing to the read area once the read index
601	 * is updated.
602	 */
603	virt_rmb();
604	start_read_index = rbi->ring_buffer->read_index;
605	rbi->ring_buffer->read_index = rbi->priv_read_index;
606
607	/*
608	 * Older versions of Hyper-V (before WS2102 and Win8) do not
609	 * implement pending_send_sz and simply poll if the host->guest
610	 * ring buffer is full.  No signaling is needed or expected.
611	 */
612	if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
613		return;
614
615	/*
616	 * Issue a full memory barrier before making the signaling decision.
617	 * If reading pending_send_sz were to be reordered and happen
618	 * before we commit the new read_index, a race could occur.  If the
619	 * host were to set the pending_send_sz after we have sampled
620	 * pending_send_sz, and the ring buffer blocks before we commit the
621	 * read index, we could miss sending the interrupt. Issue a full
622	 * memory barrier to address this.
623	 */
624	virt_mb();
625
626	/*
627	 * If the pending_send_sz is zero, then the ring buffer is not
628	 * blocked and there is no need to signal.  This is far by the
629	 * most common case, so exit quickly for best performance.
630	 */
631	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
632	if (!pending_sz)
633		return;
634
635	/*
636	 * Ensure the read of write_index in hv_get_bytes_to_write()
637	 * happens after the read of pending_send_sz.
638	 */
639	virt_rmb();
640	curr_write_sz = hv_get_bytes_to_write(rbi);
641	bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
642
643	/*
644	 * We want to signal the host only if we're transitioning
645	 * from a "not enough free space" state to a "enough free
646	 * space" state.  For example, it's possible that this function
647	 * could run and free up enough space to signal the host, and then
648	 * run again and free up additional space before the host has a
649	 * chance to clear the pending_send_sz.  The 2nd invocation would
650	 * be a null transition from "enough free space" to "enough free
651	 * space", which doesn't warrant a signal.
652	 *
653	 * Exactly filling the ring buffer is treated as "not enough
654	 * space". The ring buffer always must have at least one byte
655	 * empty so the empty and full conditions are distinguishable.
656	 * hv_get_bytes_to_write() doesn't fully tell the truth in
657	 * this regard.
658	 *
659	 * So first check if we were in the "enough free space" state
660	 * before we began the iteration. If so, the host was not
661	 * blocked, and there's no need to signal.
662	 */
663	if (curr_write_sz - bytes_read > pending_sz)
664		return;
665
666	/*
667	 * Similarly, if the new state is "not enough space", then
668	 * there's no need to signal.
669	 */
670	if (curr_write_sz <= pending_sz)
671		return;
672
673	++channel->intr_in_full;
674	vmbus_setevent(channel);
675}
676EXPORT_SYMBOL_GPL(hv_pkt_iter_close);