Loading...
1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2019 Intel Corporation
4 *
5 */
6
7#include "i915_drv.h"
8#include "i915_irq.h"
9#include "i915_reg.h"
10#include "intel_crtc.h"
11#include "intel_de.h"
12#include "intel_display_types.h"
13#include "intel_dsb.h"
14#include "intel_dsb_buffer.h"
15#include "intel_dsb_regs.h"
16#include "intel_vblank.h"
17#include "intel_vrr.h"
18#include "skl_watermark.h"
19
20#define CACHELINE_BYTES 64
21
22enum dsb_id {
23 INVALID_DSB = -1,
24 DSB1,
25 DSB2,
26 DSB3,
27 MAX_DSB_PER_PIPE
28};
29
30struct intel_dsb {
31 enum dsb_id id;
32
33 struct intel_dsb_buffer dsb_buf;
34 struct intel_crtc *crtc;
35
36 /*
37 * maximum number of dwords the buffer will hold.
38 */
39 unsigned int size;
40
41 /*
42 * free_pos will point the first free dword and
43 * help in calculating tail of command buffer.
44 */
45 unsigned int free_pos;
46
47 /*
48 * ins_start_offset will help to store start dword of the dsb
49 * instuction and help in identifying the batch of auto-increment
50 * register.
51 */
52 unsigned int ins_start_offset;
53
54 int dewake_scanline;
55};
56
57/**
58 * DOC: DSB
59 *
60 * A DSB (Display State Buffer) is a queue of MMIO instructions in the memory
61 * which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA
62 * engine that can be programmed to download the DSB from memory.
63 * It allows driver to batch submit display HW programming. This helps to
64 * reduce loading time and CPU activity, thereby making the context switch
65 * faster. DSB Support added from Gen12 Intel graphics based platform.
66 *
67 * DSB's can access only the pipe, plane, and transcoder Data Island Packet
68 * registers.
69 *
70 * DSB HW can support only register writes (both indexed and direct MMIO
71 * writes). There are no registers reads possible with DSB HW engine.
72 */
73
74/* DSB opcodes. */
75#define DSB_OPCODE_SHIFT 24
76#define DSB_OPCODE_NOOP 0x0
77#define DSB_OPCODE_MMIO_WRITE 0x1
78#define DSB_BYTE_EN 0xf
79#define DSB_BYTE_EN_SHIFT 20
80#define DSB_REG_VALUE_MASK 0xfffff
81#define DSB_OPCODE_WAIT_USEC 0x2
82#define DSB_OPCODE_WAIT_SCANLINE 0x3
83#define DSB_OPCODE_WAIT_VBLANKS 0x4
84#define DSB_OPCODE_WAIT_DSL_IN 0x5
85#define DSB_OPCODE_WAIT_DSL_OUT 0x6
86#define DSB_SCANLINE_UPPER_SHIFT 20
87#define DSB_SCANLINE_LOWER_SHIFT 0
88#define DSB_OPCODE_INTERRUPT 0x7
89#define DSB_OPCODE_INDEXED_WRITE 0x9
90/* see DSB_REG_VALUE_MASK */
91#define DSB_OPCODE_POLL 0xA
92/* see DSB_REG_VALUE_MASK */
93
94static bool assert_dsb_has_room(struct intel_dsb *dsb)
95{
96 struct intel_crtc *crtc = dsb->crtc;
97 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
98
99 /* each instruction is 2 dwords */
100 return !drm_WARN(&i915->drm, dsb->free_pos > dsb->size - 2,
101 "[CRTC:%d:%s] DSB %d buffer overflow\n",
102 crtc->base.base.id, crtc->base.name, dsb->id);
103}
104
105static void intel_dsb_dump(struct intel_dsb *dsb)
106{
107 struct intel_crtc *crtc = dsb->crtc;
108 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
109 int i;
110
111 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] DSB %d commands {\n",
112 crtc->base.base.id, crtc->base.name, dsb->id);
113 for (i = 0; i < ALIGN(dsb->free_pos, 64 / 4); i += 4)
114 drm_dbg_kms(&i915->drm,
115 " 0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4,
116 intel_dsb_buffer_read(&dsb->dsb_buf, i),
117 intel_dsb_buffer_read(&dsb->dsb_buf, i + 1),
118 intel_dsb_buffer_read(&dsb->dsb_buf, i + 2),
119 intel_dsb_buffer_read(&dsb->dsb_buf, i + 3));
120 drm_dbg_kms(&i915->drm, "}\n");
121}
122
123static bool is_dsb_busy(struct drm_i915_private *i915, enum pipe pipe,
124 enum dsb_id id)
125{
126 return intel_de_read_fw(i915, DSB_CTRL(pipe, id)) & DSB_STATUS_BUSY;
127}
128
129static void intel_dsb_emit(struct intel_dsb *dsb, u32 ldw, u32 udw)
130{
131 if (!assert_dsb_has_room(dsb))
132 return;
133
134 /* Every instruction should be 8 byte aligned. */
135 dsb->free_pos = ALIGN(dsb->free_pos, 2);
136
137 dsb->ins_start_offset = dsb->free_pos;
138
139 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, ldw);
140 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, udw);
141}
142
143static bool intel_dsb_prev_ins_is_write(struct intel_dsb *dsb,
144 u32 opcode, i915_reg_t reg)
145{
146 u32 prev_opcode, prev_reg;
147
148 /*
149 * Nothing emitted yet? Must check before looking
150 * at the actual data since i915_gem_object_create_internal()
151 * does *not* give you zeroed memory!
152 */
153 if (dsb->free_pos == 0)
154 return false;
155
156 prev_opcode = intel_dsb_buffer_read(&dsb->dsb_buf,
157 dsb->ins_start_offset + 1) & ~DSB_REG_VALUE_MASK;
158 prev_reg = intel_dsb_buffer_read(&dsb->dsb_buf,
159 dsb->ins_start_offset + 1) & DSB_REG_VALUE_MASK;
160
161 return prev_opcode == opcode && prev_reg == i915_mmio_reg_offset(reg);
162}
163
164static bool intel_dsb_prev_ins_is_mmio_write(struct intel_dsb *dsb, i915_reg_t reg)
165{
166 /* only full byte-enables can be converted to indexed writes */
167 return intel_dsb_prev_ins_is_write(dsb,
168 DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT |
169 DSB_BYTE_EN << DSB_BYTE_EN_SHIFT,
170 reg);
171}
172
173static bool intel_dsb_prev_ins_is_indexed_write(struct intel_dsb *dsb, i915_reg_t reg)
174{
175 return intel_dsb_prev_ins_is_write(dsb,
176 DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT,
177 reg);
178}
179
180/**
181 * intel_dsb_reg_write() - Emit register wriite to the DSB context
182 * @dsb: DSB context
183 * @reg: register address.
184 * @val: value.
185 *
186 * This function is used for writing register-value pair in command
187 * buffer of DSB.
188 */
189void intel_dsb_reg_write(struct intel_dsb *dsb,
190 i915_reg_t reg, u32 val)
191{
192 u32 old_val;
193
194 /*
195 * For example the buffer will look like below for 3 dwords for auto
196 * increment register:
197 * +--------------------------------------------------------+
198 * | size = 3 | offset &| value1 | value2 | value3 | zero |
199 * | | opcode | | | | |
200 * +--------------------------------------------------------+
201 * + + + + + + +
202 * 0 4 8 12 16 20 24
203 * Byte
204 *
205 * As every instruction is 8 byte aligned the index of dsb instruction
206 * will start always from even number while dealing with u32 array. If
207 * we are writing odd no of dwords, Zeros will be added in the end for
208 * padding.
209 */
210 if (!intel_dsb_prev_ins_is_mmio_write(dsb, reg) &&
211 !intel_dsb_prev_ins_is_indexed_write(dsb, reg)) {
212 intel_dsb_emit(dsb, val,
213 (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) |
214 (DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) |
215 i915_mmio_reg_offset(reg));
216 } else {
217 if (!assert_dsb_has_room(dsb))
218 return;
219
220 /* convert to indexed write? */
221 if (intel_dsb_prev_ins_is_mmio_write(dsb, reg)) {
222 u32 prev_val = intel_dsb_buffer_read(&dsb->dsb_buf,
223 dsb->ins_start_offset + 0);
224
225 intel_dsb_buffer_write(&dsb->dsb_buf,
226 dsb->ins_start_offset + 0, 1); /* count */
227 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 1,
228 (DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT) |
229 i915_mmio_reg_offset(reg));
230 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 2, prev_val);
231
232 dsb->free_pos++;
233 }
234
235 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, val);
236 /* Update the count */
237 old_val = intel_dsb_buffer_read(&dsb->dsb_buf, dsb->ins_start_offset);
238 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset, old_val + 1);
239
240 /* if number of data words is odd, then the last dword should be 0.*/
241 if (dsb->free_pos & 0x1)
242 intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos, 0);
243 }
244}
245
246static u32 intel_dsb_mask_to_byte_en(u32 mask)
247{
248 return (!!(mask & 0xff000000) << 3 |
249 !!(mask & 0x00ff0000) << 2 |
250 !!(mask & 0x0000ff00) << 1 |
251 !!(mask & 0x000000ff) << 0);
252}
253
254/* Note: mask implemented via byte enables! */
255void intel_dsb_reg_write_masked(struct intel_dsb *dsb,
256 i915_reg_t reg, u32 mask, u32 val)
257{
258 intel_dsb_emit(dsb, val,
259 (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) |
260 (intel_dsb_mask_to_byte_en(mask) << DSB_BYTE_EN_SHIFT) |
261 i915_mmio_reg_offset(reg));
262}
263
264void intel_dsb_noop(struct intel_dsb *dsb, int count)
265{
266 int i;
267
268 for (i = 0; i < count; i++)
269 intel_dsb_emit(dsb, 0,
270 DSB_OPCODE_NOOP << DSB_OPCODE_SHIFT);
271}
272
273void intel_dsb_nonpost_start(struct intel_dsb *dsb)
274{
275 struct intel_crtc *crtc = dsb->crtc;
276 enum pipe pipe = crtc->pipe;
277
278 intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id),
279 DSB_NON_POSTED, DSB_NON_POSTED);
280 intel_dsb_noop(dsb, 4);
281}
282
283void intel_dsb_nonpost_end(struct intel_dsb *dsb)
284{
285 struct intel_crtc *crtc = dsb->crtc;
286 enum pipe pipe = crtc->pipe;
287
288 intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id),
289 DSB_NON_POSTED, 0);
290 intel_dsb_noop(dsb, 4);
291}
292
293static void intel_dsb_align_tail(struct intel_dsb *dsb)
294{
295 u32 aligned_tail, tail;
296
297 tail = dsb->free_pos * 4;
298 aligned_tail = ALIGN(tail, CACHELINE_BYTES);
299
300 if (aligned_tail > tail)
301 intel_dsb_buffer_memset(&dsb->dsb_buf, dsb->free_pos, 0,
302 aligned_tail - tail);
303
304 dsb->free_pos = aligned_tail / 4;
305}
306
307void intel_dsb_finish(struct intel_dsb *dsb)
308{
309 struct intel_crtc *crtc = dsb->crtc;
310
311 /*
312 * DSB_FORCE_DEWAKE remains active even after DSB is
313 * disabled, so make sure to clear it (if set during
314 * intel_dsb_commit()).
315 */
316 intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(crtc->pipe, dsb->id),
317 DSB_FORCE_DEWAKE, 0);
318
319 intel_dsb_align_tail(dsb);
320
321 intel_dsb_buffer_flush_map(&dsb->dsb_buf);
322}
323
324static int intel_dsb_dewake_scanline(const struct intel_crtc_state *crtc_state)
325{
326 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
327 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
328 unsigned int latency = skl_watermark_max_latency(i915);
329 int vblank_start;
330
331 if (crtc_state->vrr.enable) {
332 vblank_start = intel_vrr_vmin_vblank_start(crtc_state);
333 } else {
334 vblank_start = adjusted_mode->crtc_vblank_start;
335
336 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
337 vblank_start = DIV_ROUND_UP(vblank_start, 2);
338 }
339
340 return max(0, vblank_start - intel_usecs_to_scanlines(adjusted_mode, latency));
341}
342
343static void _intel_dsb_commit(struct intel_dsb *dsb, u32 ctrl,
344 int dewake_scanline)
345{
346 struct intel_crtc *crtc = dsb->crtc;
347 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
348 enum pipe pipe = crtc->pipe;
349 u32 tail;
350
351 tail = dsb->free_pos * 4;
352 if (drm_WARN_ON(&dev_priv->drm, !IS_ALIGNED(tail, CACHELINE_BYTES)))
353 return;
354
355 if (is_dsb_busy(dev_priv, pipe, dsb->id)) {
356 drm_err(&dev_priv->drm, "[CRTC:%d:%s] DSB %d is busy\n",
357 crtc->base.base.id, crtc->base.name, dsb->id);
358 return;
359 }
360
361 intel_de_write_fw(dev_priv, DSB_CTRL(pipe, dsb->id),
362 ctrl | DSB_ENABLE);
363
364 intel_de_write_fw(dev_priv, DSB_HEAD(pipe, dsb->id),
365 intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf));
366
367 if (dewake_scanline >= 0) {
368 int diff, hw_dewake_scanline;
369
370 hw_dewake_scanline = intel_crtc_scanline_to_hw(crtc, dewake_scanline);
371
372 intel_de_write_fw(dev_priv, DSB_PMCTRL(pipe, dsb->id),
373 DSB_ENABLE_DEWAKE |
374 DSB_SCANLINE_FOR_DEWAKE(hw_dewake_scanline));
375
376 /*
377 * Force DEwake immediately if we're already past
378 * or close to racing past the target scanline.
379 */
380 diff = dewake_scanline - intel_get_crtc_scanline(crtc);
381 intel_de_write_fw(dev_priv, DSB_PMCTRL_2(pipe, dsb->id),
382 (diff >= 0 && diff < 5 ? DSB_FORCE_DEWAKE : 0) |
383 DSB_BLOCK_DEWAKE_EXTENSION);
384 }
385
386 intel_de_write_fw(dev_priv, DSB_TAIL(pipe, dsb->id),
387 intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf) + tail);
388}
389
390/**
391 * intel_dsb_commit() - Trigger workload execution of DSB.
392 * @dsb: DSB context
393 * @wait_for_vblank: wait for vblank before executing
394 *
395 * This function is used to do actual write to hardware using DSB.
396 */
397void intel_dsb_commit(struct intel_dsb *dsb,
398 bool wait_for_vblank)
399{
400 _intel_dsb_commit(dsb,
401 wait_for_vblank ? DSB_WAIT_FOR_VBLANK : 0,
402 wait_for_vblank ? dsb->dewake_scanline : -1);
403}
404
405void intel_dsb_wait(struct intel_dsb *dsb)
406{
407 struct intel_crtc *crtc = dsb->crtc;
408 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
409 enum pipe pipe = crtc->pipe;
410
411 if (wait_for(!is_dsb_busy(dev_priv, pipe, dsb->id), 1)) {
412 u32 offset = intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf);
413
414 intel_de_write_fw(dev_priv, DSB_CTRL(pipe, dsb->id),
415 DSB_ENABLE | DSB_HALT);
416
417 drm_err(&dev_priv->drm,
418 "[CRTC:%d:%s] DSB %d timed out waiting for idle (current head=0x%x, head=0x%x, tail=0x%x)\n",
419 crtc->base.base.id, crtc->base.name, dsb->id,
420 intel_de_read_fw(dev_priv, DSB_CURRENT_HEAD(pipe, dsb->id)) - offset,
421 intel_de_read_fw(dev_priv, DSB_HEAD(pipe, dsb->id)) - offset,
422 intel_de_read_fw(dev_priv, DSB_TAIL(pipe, dsb->id)) - offset);
423
424 intel_dsb_dump(dsb);
425 }
426
427 /* Attempt to reset it */
428 dsb->free_pos = 0;
429 dsb->ins_start_offset = 0;
430 intel_de_write_fw(dev_priv, DSB_CTRL(pipe, dsb->id), 0);
431}
432
433/**
434 * intel_dsb_prepare() - Allocate, pin and map the DSB command buffer.
435 * @crtc_state: the CRTC state
436 * @max_cmds: number of commands we need to fit into command buffer
437 *
438 * This function prepare the command buffer which is used to store dsb
439 * instructions with data.
440 *
441 * Returns:
442 * DSB context, NULL on failure
443 */
444struct intel_dsb *intel_dsb_prepare(const struct intel_crtc_state *crtc_state,
445 unsigned int max_cmds)
446{
447 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
448 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
449 intel_wakeref_t wakeref;
450 struct intel_dsb *dsb;
451 unsigned int size;
452
453 if (!HAS_DSB(i915))
454 return NULL;
455
456 dsb = kzalloc(sizeof(*dsb), GFP_KERNEL);
457 if (!dsb)
458 goto out;
459
460 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
461
462 /* ~1 qword per instruction, full cachelines */
463 size = ALIGN(max_cmds * 8, CACHELINE_BYTES);
464
465 if (!intel_dsb_buffer_create(crtc, &dsb->dsb_buf, size))
466 goto out_put_rpm;
467
468 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
469
470 dsb->id = DSB1;
471 dsb->crtc = crtc;
472 dsb->size = size / 4; /* in dwords */
473 dsb->free_pos = 0;
474 dsb->ins_start_offset = 0;
475 dsb->dewake_scanline = intel_dsb_dewake_scanline(crtc_state);
476
477 return dsb;
478
479out_put_rpm:
480 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
481 kfree(dsb);
482out:
483 drm_info_once(&i915->drm,
484 "[CRTC:%d:%s] DSB %d queue setup failed, will fallback to MMIO for display HW programming\n",
485 crtc->base.base.id, crtc->base.name, DSB1);
486
487 return NULL;
488}
489
490/**
491 * intel_dsb_cleanup() - To cleanup DSB context.
492 * @dsb: DSB context
493 *
494 * This function cleanup the DSB context by unpinning and releasing
495 * the VMA object associated with it.
496 */
497void intel_dsb_cleanup(struct intel_dsb *dsb)
498{
499 intel_dsb_buffer_cleanup(&dsb->dsb_buf);
500 kfree(dsb);
501}
1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2019 Intel Corporation
4 *
5 */
6
7#include "gem/i915_gem_internal.h"
8
9#include "i915_drv.h"
10#include "i915_reg.h"
11#include "intel_de.h"
12#include "intel_display_types.h"
13#include "intel_dsb.h"
14
15struct i915_vma;
16
17enum dsb_id {
18 INVALID_DSB = -1,
19 DSB1,
20 DSB2,
21 DSB3,
22 MAX_DSB_PER_PIPE
23};
24
25struct intel_dsb {
26 enum dsb_id id;
27 u32 *cmd_buf;
28 struct i915_vma *vma;
29
30 /*
31 * free_pos will point the first free entry position
32 * and help in calculating tail of command buffer.
33 */
34 int free_pos;
35
36 /*
37 * ins_start_offset will help to store start address of the dsb
38 * instuction and help in identifying the batch of auto-increment
39 * register.
40 */
41 u32 ins_start_offset;
42};
43
44#define DSB_BUF_SIZE (2 * PAGE_SIZE)
45
46/**
47 * DOC: DSB
48 *
49 * A DSB (Display State Buffer) is a queue of MMIO instructions in the memory
50 * which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA
51 * engine that can be programmed to download the DSB from memory.
52 * It allows driver to batch submit display HW programming. This helps to
53 * reduce loading time and CPU activity, thereby making the context switch
54 * faster. DSB Support added from Gen12 Intel graphics based platform.
55 *
56 * DSB's can access only the pipe, plane, and transcoder Data Island Packet
57 * registers.
58 *
59 * DSB HW can support only register writes (both indexed and direct MMIO
60 * writes). There are no registers reads possible with DSB HW engine.
61 */
62
63/* DSB opcodes. */
64#define DSB_OPCODE_SHIFT 24
65#define DSB_OPCODE_MMIO_WRITE 0x1
66#define DSB_OPCODE_INDEXED_WRITE 0x9
67#define DSB_BYTE_EN 0xF
68#define DSB_BYTE_EN_SHIFT 20
69#define DSB_REG_VALUE_MASK 0xfffff
70
71static bool is_dsb_busy(struct drm_i915_private *i915, enum pipe pipe,
72 enum dsb_id id)
73{
74 return DSB_STATUS & intel_de_read(i915, DSB_CTRL(pipe, id));
75}
76
77static bool intel_dsb_enable_engine(struct drm_i915_private *i915,
78 enum pipe pipe, enum dsb_id id)
79{
80 u32 dsb_ctrl;
81
82 dsb_ctrl = intel_de_read(i915, DSB_CTRL(pipe, id));
83 if (DSB_STATUS & dsb_ctrl) {
84 drm_dbg_kms(&i915->drm, "DSB engine is busy.\n");
85 return false;
86 }
87
88 dsb_ctrl |= DSB_ENABLE;
89 intel_de_write(i915, DSB_CTRL(pipe, id), dsb_ctrl);
90
91 intel_de_posting_read(i915, DSB_CTRL(pipe, id));
92 return true;
93}
94
95static bool intel_dsb_disable_engine(struct drm_i915_private *i915,
96 enum pipe pipe, enum dsb_id id)
97{
98 u32 dsb_ctrl;
99
100 dsb_ctrl = intel_de_read(i915, DSB_CTRL(pipe, id));
101 if (DSB_STATUS & dsb_ctrl) {
102 drm_dbg_kms(&i915->drm, "DSB engine is busy.\n");
103 return false;
104 }
105
106 dsb_ctrl &= ~DSB_ENABLE;
107 intel_de_write(i915, DSB_CTRL(pipe, id), dsb_ctrl);
108
109 intel_de_posting_read(i915, DSB_CTRL(pipe, id));
110 return true;
111}
112
113/**
114 * intel_dsb_indexed_reg_write() -Write to the DSB context for auto
115 * increment register.
116 * @crtc_state: intel_crtc_state structure
117 * @reg: register address.
118 * @val: value.
119 *
120 * This function is used for writing register-value pair in command
121 * buffer of DSB for auto-increment register. During command buffer overflow,
122 * a warning is thrown and rest all erroneous condition register programming
123 * is done through mmio write.
124 */
125
126void intel_dsb_indexed_reg_write(const struct intel_crtc_state *crtc_state,
127 i915_reg_t reg, u32 val)
128{
129 struct intel_dsb *dsb = crtc_state->dsb;
130 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
131 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
132 u32 *buf;
133 u32 reg_val;
134
135 if (!dsb) {
136 intel_de_write_fw(dev_priv, reg, val);
137 return;
138 }
139 buf = dsb->cmd_buf;
140 if (drm_WARN_ON(&dev_priv->drm, dsb->free_pos >= DSB_BUF_SIZE)) {
141 drm_dbg_kms(&dev_priv->drm, "DSB buffer overflow\n");
142 return;
143 }
144
145 /*
146 * For example the buffer will look like below for 3 dwords for auto
147 * increment register:
148 * +--------------------------------------------------------+
149 * | size = 3 | offset &| value1 | value2 | value3 | zero |
150 * | | opcode | | | | |
151 * +--------------------------------------------------------+
152 * + + + + + + +
153 * 0 4 8 12 16 20 24
154 * Byte
155 *
156 * As every instruction is 8 byte aligned the index of dsb instruction
157 * will start always from even number while dealing with u32 array. If
158 * we are writing odd no of dwords, Zeros will be added in the end for
159 * padding.
160 */
161 reg_val = buf[dsb->ins_start_offset + 1] & DSB_REG_VALUE_MASK;
162 if (reg_val != i915_mmio_reg_offset(reg)) {
163 /* Every instruction should be 8 byte aligned. */
164 dsb->free_pos = ALIGN(dsb->free_pos, 2);
165
166 dsb->ins_start_offset = dsb->free_pos;
167
168 /* Update the size. */
169 buf[dsb->free_pos++] = 1;
170
171 /* Update the opcode and reg. */
172 buf[dsb->free_pos++] = (DSB_OPCODE_INDEXED_WRITE <<
173 DSB_OPCODE_SHIFT) |
174 i915_mmio_reg_offset(reg);
175
176 /* Update the value. */
177 buf[dsb->free_pos++] = val;
178 } else {
179 /* Update the new value. */
180 buf[dsb->free_pos++] = val;
181
182 /* Update the size. */
183 buf[dsb->ins_start_offset]++;
184 }
185
186 /* if number of data words is odd, then the last dword should be 0.*/
187 if (dsb->free_pos & 0x1)
188 buf[dsb->free_pos] = 0;
189}
190
191/**
192 * intel_dsb_reg_write() -Write to the DSB context for normal
193 * register.
194 * @crtc_state: intel_crtc_state structure
195 * @reg: register address.
196 * @val: value.
197 *
198 * This function is used for writing register-value pair in command
199 * buffer of DSB. During command buffer overflow, a warning is thrown
200 * and rest all erroneous condition register programming is done
201 * through mmio write.
202 */
203void intel_dsb_reg_write(const struct intel_crtc_state *crtc_state,
204 i915_reg_t reg, u32 val)
205{
206 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
207 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
208 struct intel_dsb *dsb;
209 u32 *buf;
210
211 dsb = crtc_state->dsb;
212 if (!dsb) {
213 intel_de_write_fw(dev_priv, reg, val);
214 return;
215 }
216
217 buf = dsb->cmd_buf;
218 if (drm_WARN_ON(&dev_priv->drm, dsb->free_pos >= DSB_BUF_SIZE)) {
219 drm_dbg_kms(&dev_priv->drm, "DSB buffer overflow\n");
220 return;
221 }
222
223 dsb->ins_start_offset = dsb->free_pos;
224 buf[dsb->free_pos++] = val;
225 buf[dsb->free_pos++] = (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) |
226 (DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) |
227 i915_mmio_reg_offset(reg);
228}
229
230/**
231 * intel_dsb_commit() - Trigger workload execution of DSB.
232 * @crtc_state: intel_crtc_state structure
233 *
234 * This function is used to do actual write to hardware using DSB.
235 * On errors, fall back to MMIO. Also this function help to reset the context.
236 */
237void intel_dsb_commit(const struct intel_crtc_state *crtc_state)
238{
239 struct intel_dsb *dsb = crtc_state->dsb;
240 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
241 struct drm_device *dev = crtc->base.dev;
242 struct drm_i915_private *dev_priv = to_i915(dev);
243 enum pipe pipe = crtc->pipe;
244 u32 tail;
245
246 if (!(dsb && dsb->free_pos))
247 return;
248
249 if (!intel_dsb_enable_engine(dev_priv, pipe, dsb->id))
250 goto reset;
251
252 if (is_dsb_busy(dev_priv, pipe, dsb->id)) {
253 drm_err(&dev_priv->drm,
254 "HEAD_PTR write failed - dsb engine is busy.\n");
255 goto reset;
256 }
257 intel_de_write(dev_priv, DSB_HEAD(pipe, dsb->id),
258 i915_ggtt_offset(dsb->vma));
259
260 tail = ALIGN(dsb->free_pos * 4, CACHELINE_BYTES);
261 if (tail > dsb->free_pos * 4)
262 memset(&dsb->cmd_buf[dsb->free_pos], 0,
263 (tail - dsb->free_pos * 4));
264
265 if (is_dsb_busy(dev_priv, pipe, dsb->id)) {
266 drm_err(&dev_priv->drm,
267 "TAIL_PTR write failed - dsb engine is busy.\n");
268 goto reset;
269 }
270 drm_dbg_kms(&dev_priv->drm,
271 "DSB execution started - head 0x%x, tail 0x%x\n",
272 i915_ggtt_offset(dsb->vma), tail);
273 intel_de_write(dev_priv, DSB_TAIL(pipe, dsb->id),
274 i915_ggtt_offset(dsb->vma) + tail);
275 if (wait_for(!is_dsb_busy(dev_priv, pipe, dsb->id), 1)) {
276 drm_err(&dev_priv->drm,
277 "Timed out waiting for DSB workload completion.\n");
278 goto reset;
279 }
280
281reset:
282 dsb->free_pos = 0;
283 dsb->ins_start_offset = 0;
284 intel_dsb_disable_engine(dev_priv, pipe, dsb->id);
285}
286
287/**
288 * intel_dsb_prepare() - Allocate, pin and map the DSB command buffer.
289 * @crtc_state: intel_crtc_state structure to prepare associated dsb instance.
290 *
291 * This function prepare the command buffer which is used to store dsb
292 * instructions with data.
293 */
294void intel_dsb_prepare(struct intel_crtc_state *crtc_state)
295{
296 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
297 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
298 struct intel_dsb *dsb;
299 struct drm_i915_gem_object *obj;
300 struct i915_vma *vma;
301 u32 *buf;
302 intel_wakeref_t wakeref;
303
304 if (!HAS_DSB(i915))
305 return;
306
307 dsb = kmalloc(sizeof(*dsb), GFP_KERNEL);
308 if (!dsb) {
309 drm_err(&i915->drm, "DSB object creation failed\n");
310 return;
311 }
312
313 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
314
315 obj = i915_gem_object_create_internal(i915, DSB_BUF_SIZE);
316 if (IS_ERR(obj)) {
317 kfree(dsb);
318 goto out;
319 }
320
321 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
322 if (IS_ERR(vma)) {
323 i915_gem_object_put(obj);
324 kfree(dsb);
325 goto out;
326 }
327
328 buf = i915_gem_object_pin_map_unlocked(vma->obj, I915_MAP_WC);
329 if (IS_ERR(buf)) {
330 i915_vma_unpin_and_release(&vma, I915_VMA_RELEASE_MAP);
331 kfree(dsb);
332 goto out;
333 }
334
335 dsb->id = DSB1;
336 dsb->vma = vma;
337 dsb->cmd_buf = buf;
338 dsb->free_pos = 0;
339 dsb->ins_start_offset = 0;
340 crtc_state->dsb = dsb;
341out:
342 if (!crtc_state->dsb)
343 drm_info(&i915->drm,
344 "DSB queue setup failed, will fallback to MMIO for display HW programming\n");
345
346 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
347}
348
349/**
350 * intel_dsb_cleanup() - To cleanup DSB context.
351 * @crtc_state: intel_crtc_state structure to cleanup associated dsb instance.
352 *
353 * This function cleanup the DSB context by unpinning and releasing
354 * the VMA object associated with it.
355 */
356void intel_dsb_cleanup(struct intel_crtc_state *crtc_state)
357{
358 if (!crtc_state->dsb)
359 return;
360
361 i915_vma_unpin_and_release(&crtc_state->dsb->vma, I915_VMA_RELEASE_MAP);
362 kfree(crtc_state->dsb);
363 crtc_state->dsb = NULL;
364}