Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2
  3/* -----------------------------------------------------------------------
  4 *
  5 *   Copyright 2011 Intel Corporation; author Matt Fleming
  6 *
  7 * ----------------------------------------------------------------------- */
  8
  9#include <linux/efi.h>
 10#include <linux/pci.h>
 11#include <linux/stddef.h>
 12
 13#include <asm/efi.h>
 14#include <asm/e820/types.h>
 15#include <asm/setup.h>
 16#include <asm/desc.h>
 17#include <asm/boot.h>
 18#include <asm/kaslr.h>
 19#include <asm/sev.h>
 20
 21#include "efistub.h"
 22#include "x86-stub.h"
 
 
 23
 24const efi_system_table_t *efi_system_table;
 25const efi_dxe_services_table_t *efi_dxe_table;
 
 26static efi_loaded_image_t *image = NULL;
 27static efi_memory_attribute_protocol_t *memattr;
 28
 29typedef union sev_memory_acceptance_protocol sev_memory_acceptance_protocol_t;
 30union sev_memory_acceptance_protocol {
 31	struct {
 32		efi_status_t (__efiapi * allow_unaccepted_memory)(
 33			sev_memory_acceptance_protocol_t *);
 34	};
 35	struct {
 36		u32 allow_unaccepted_memory;
 37	} mixed_mode;
 38};
 39
 40static efi_status_t
 41preserve_pci_rom_image(efi_pci_io_protocol_t *pci, struct pci_setup_rom **__rom)
 42{
 43	struct pci_setup_rom *rom = NULL;
 44	efi_status_t status;
 45	unsigned long size;
 46	uint64_t romsize;
 47	void *romimage;
 48
 49	/*
 50	 * Some firmware images contain EFI function pointers at the place where
 51	 * the romimage and romsize fields are supposed to be. Typically the EFI
 52	 * code is mapped at high addresses, translating to an unrealistically
 53	 * large romsize. The UEFI spec limits the size of option ROMs to 16
 54	 * MiB so we reject any ROMs over 16 MiB in size to catch this.
 55	 */
 56	romimage = efi_table_attr(pci, romimage);
 57	romsize = efi_table_attr(pci, romsize);
 58	if (!romimage || !romsize || romsize > SZ_16M)
 59		return EFI_INVALID_PARAMETER;
 60
 61	size = romsize + sizeof(*rom);
 62
 63	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
 64			     (void **)&rom);
 65	if (status != EFI_SUCCESS) {
 66		efi_err("Failed to allocate memory for 'rom'\n");
 67		return status;
 68	}
 69
 70	memset(rom, 0, sizeof(*rom));
 71
 72	rom->data.type	= SETUP_PCI;
 73	rom->data.len	= size - sizeof(struct setup_data);
 74	rom->data.next	= 0;
 75	rom->pcilen	= romsize;
 76	*__rom = rom;
 77
 78	status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16,
 79				PCI_VENDOR_ID, 1, &rom->vendor);
 80
 81	if (status != EFI_SUCCESS) {
 82		efi_err("Failed to read rom->vendor\n");
 83		goto free_struct;
 84	}
 85
 86	status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16,
 87				PCI_DEVICE_ID, 1, &rom->devid);
 88
 89	if (status != EFI_SUCCESS) {
 90		efi_err("Failed to read rom->devid\n");
 91		goto free_struct;
 92	}
 93
 94	status = efi_call_proto(pci, get_location, &rom->segment, &rom->bus,
 95				&rom->device, &rom->function);
 96
 97	if (status != EFI_SUCCESS)
 98		goto free_struct;
 99
100	memcpy(rom->romdata, romimage, romsize);
101	return status;
102
103free_struct:
104	efi_bs_call(free_pool, rom);
105	return status;
106}
107
108/*
109 * There's no way to return an informative status from this function,
110 * because any analysis (and printing of error messages) needs to be
111 * done directly at the EFI function call-site.
112 *
113 * For example, EFI_INVALID_PARAMETER could indicate a bug or maybe we
114 * just didn't find any PCI devices, but there's no way to tell outside
115 * the context of the call.
116 */
117static void setup_efi_pci(struct boot_params *params)
118{
119	efi_status_t status;
120	void **pci_handle = NULL;
121	efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID;
122	unsigned long size = 0;
123	struct setup_data *data;
124	efi_handle_t h;
125	int i;
126
127	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
128			     &pci_proto, NULL, &size, pci_handle);
129
130	if (status == EFI_BUFFER_TOO_SMALL) {
131		status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
132				     (void **)&pci_handle);
133
134		if (status != EFI_SUCCESS) {
135			efi_err("Failed to allocate memory for 'pci_handle'\n");
136			return;
137		}
138
139		status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
140				     &pci_proto, NULL, &size, pci_handle);
141	}
142
143	if (status != EFI_SUCCESS)
144		goto free_handle;
145
146	data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
147
148	while (data && data->next)
149		data = (struct setup_data *)(unsigned long)data->next;
150
151	for_each_efi_handle(h, pci_handle, size, i) {
152		efi_pci_io_protocol_t *pci = NULL;
153		struct pci_setup_rom *rom;
154
155		status = efi_bs_call(handle_protocol, h, &pci_proto,
156				     (void **)&pci);
157		if (status != EFI_SUCCESS || !pci)
158			continue;
159
160		status = preserve_pci_rom_image(pci, &rom);
161		if (status != EFI_SUCCESS)
162			continue;
163
164		if (data)
165			data->next = (unsigned long)rom;
166		else
167			params->hdr.setup_data = (unsigned long)rom;
168
169		data = (struct setup_data *)rom;
170	}
171
172free_handle:
173	efi_bs_call(free_pool, pci_handle);
174}
175
176static void retrieve_apple_device_properties(struct boot_params *boot_params)
177{
178	efi_guid_t guid = APPLE_PROPERTIES_PROTOCOL_GUID;
179	struct setup_data *data, *new;
180	efi_status_t status;
181	u32 size = 0;
182	apple_properties_protocol_t *p;
183
184	status = efi_bs_call(locate_protocol, &guid, NULL, (void **)&p);
185	if (status != EFI_SUCCESS)
186		return;
187
188	if (efi_table_attr(p, version) != 0x10000) {
189		efi_err("Unsupported properties proto version\n");
190		return;
191	}
192
193	efi_call_proto(p, get_all, NULL, &size);
194	if (!size)
195		return;
196
197	do {
198		status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
199				     size + sizeof(struct setup_data),
200				     (void **)&new);
201		if (status != EFI_SUCCESS) {
202			efi_err("Failed to allocate memory for 'properties'\n");
203			return;
204		}
205
206		status = efi_call_proto(p, get_all, new->data, &size);
207
208		if (status == EFI_BUFFER_TOO_SMALL)
209			efi_bs_call(free_pool, new);
210	} while (status == EFI_BUFFER_TOO_SMALL);
211
212	new->type = SETUP_APPLE_PROPERTIES;
213	new->len  = size;
214	new->next = 0;
215
216	data = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
217	if (!data) {
218		boot_params->hdr.setup_data = (unsigned long)new;
219	} else {
220		while (data->next)
221			data = (struct setup_data *)(unsigned long)data->next;
222		data->next = (unsigned long)new;
223	}
224}
225
226efi_status_t efi_adjust_memory_range_protection(unsigned long start,
227						unsigned long size)
228{
229	efi_status_t status;
230	efi_gcd_memory_space_desc_t desc;
231	unsigned long end, next;
232	unsigned long rounded_start, rounded_end;
233	unsigned long unprotect_start, unprotect_size;
234
 
 
 
235	rounded_start = rounddown(start, EFI_PAGE_SIZE);
236	rounded_end = roundup(start + size, EFI_PAGE_SIZE);
237
238	if (memattr != NULL) {
239		status = efi_call_proto(memattr, clear_memory_attributes,
240					rounded_start,
241					rounded_end - rounded_start,
242					EFI_MEMORY_XP);
243		if (status != EFI_SUCCESS)
244			efi_warn("Failed to clear EFI_MEMORY_XP attribute\n");
245		return status;
246	}
247
248	if (efi_dxe_table == NULL)
249		return EFI_SUCCESS;
250
251	/*
252	 * Don't modify memory region attributes, they are
253	 * already suitable, to lower the possibility to
254	 * encounter firmware bugs.
255	 */
256
257	for (end = start + size; start < end; start = next) {
258
259		status = efi_dxe_call(get_memory_space_descriptor, start, &desc);
260
261		if (status != EFI_SUCCESS)
262			break;
263
264		next = desc.base_address + desc.length;
265
266		/*
267		 * Only system memory is suitable for trampoline/kernel image placement,
268		 * so only this type of memory needs its attributes to be modified.
269		 */
270
271		if (desc.gcd_memory_type != EfiGcdMemoryTypeSystemMemory ||
272		    (desc.attributes & (EFI_MEMORY_RO | EFI_MEMORY_XP)) == 0)
273			continue;
274
275		unprotect_start = max(rounded_start, (unsigned long)desc.base_address);
276		unprotect_size = min(rounded_end, next) - unprotect_start;
277
278		status = efi_dxe_call(set_memory_space_attributes,
279				      unprotect_start, unprotect_size,
280				      EFI_MEMORY_WB);
281
282		if (status != EFI_SUCCESS) {
283			efi_warn("Unable to unprotect memory range [%08lx,%08lx]: %lx\n",
284				 unprotect_start,
285				 unprotect_start + unprotect_size,
286				 status);
287			break;
288		}
289	}
290	return EFI_SUCCESS;
291}
292
293static void setup_unaccepted_memory(void)
294{
295	efi_guid_t mem_acceptance_proto = OVMF_SEV_MEMORY_ACCEPTANCE_PROTOCOL_GUID;
296	sev_memory_acceptance_protocol_t *proto;
297	efi_status_t status;
 
 
 
298
299	if (!IS_ENABLED(CONFIG_UNACCEPTED_MEMORY))
300		return;
301
 
 
 
 
 
302	/*
303	 * Enable unaccepted memory before calling exit boot services in order
304	 * for the UEFI to not accept all memory on EBS.
 
305	 */
306	status = efi_bs_call(locate_protocol, &mem_acceptance_proto, NULL,
307			     (void **)&proto);
308	if (status != EFI_SUCCESS)
309		return;
310
311	status = efi_call_proto(proto, allow_unaccepted_memory);
312	if (status != EFI_SUCCESS)
313		efi_err("Memory acceptance protocol failed\n");
314}
315
316static efi_char16_t *efistub_fw_vendor(void)
317{
318	unsigned long vendor = efi_table_attr(efi_system_table, fw_vendor);
319
320	return (efi_char16_t *)vendor;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321}
322
323static const efi_char16_t apple[] = L"Apple";
324
325static void setup_quirks(struct boot_params *boot_params)
 
 
326{
327	if (IS_ENABLED(CONFIG_APPLE_PROPERTIES) &&
328	    !memcmp(efistub_fw_vendor(), apple, sizeof(apple)))
329		retrieve_apple_device_properties(boot_params);
 
 
 
 
 
 
 
330}
331
332/*
333 * See if we have Universal Graphics Adapter (UGA) protocol
334 */
335static efi_status_t
336setup_uga(struct screen_info *si, efi_guid_t *uga_proto, unsigned long size)
337{
338	efi_status_t status;
339	u32 width, height;
340	void **uga_handle = NULL;
341	efi_uga_draw_protocol_t *uga = NULL, *first_uga;
342	efi_handle_t handle;
343	int i;
344
345	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
346			     (void **)&uga_handle);
347	if (status != EFI_SUCCESS)
348		return status;
349
350	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
351			     uga_proto, NULL, &size, uga_handle);
352	if (status != EFI_SUCCESS)
353		goto free_handle;
354
355	height = 0;
356	width = 0;
357
358	first_uga = NULL;
359	for_each_efi_handle(handle, uga_handle, size, i) {
360		efi_guid_t pciio_proto = EFI_PCI_IO_PROTOCOL_GUID;
361		u32 w, h, depth, refresh;
362		void *pciio;
363
364		status = efi_bs_call(handle_protocol, handle, uga_proto,
365				     (void **)&uga);
366		if (status != EFI_SUCCESS)
367			continue;
368
369		pciio = NULL;
370		efi_bs_call(handle_protocol, handle, &pciio_proto, &pciio);
371
372		status = efi_call_proto(uga, get_mode, &w, &h, &depth, &refresh);
373		if (status == EFI_SUCCESS && (!first_uga || pciio)) {
374			width = w;
375			height = h;
376
377			/*
378			 * Once we've found a UGA supporting PCIIO,
379			 * don't bother looking any further.
380			 */
381			if (pciio)
382				break;
383
384			first_uga = uga;
385		}
386	}
387
388	if (!width && !height)
389		goto free_handle;
390
391	/* EFI framebuffer */
392	si->orig_video_isVGA	= VIDEO_TYPE_EFI;
393
394	si->lfb_depth		= 32;
395	si->lfb_width		= width;
396	si->lfb_height		= height;
397
398	si->red_size		= 8;
399	si->red_pos		= 16;
400	si->green_size		= 8;
401	si->green_pos		= 8;
402	si->blue_size		= 8;
403	si->blue_pos		= 0;
404	si->rsvd_size		= 8;
405	si->rsvd_pos		= 24;
406
407free_handle:
408	efi_bs_call(free_pool, uga_handle);
409
410	return status;
411}
412
413static void setup_graphics(struct boot_params *boot_params)
414{
415	efi_guid_t graphics_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
416	struct screen_info *si;
417	efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID;
418	efi_status_t status;
419	unsigned long size;
420	void **gop_handle = NULL;
421	void **uga_handle = NULL;
422
423	si = &boot_params->screen_info;
424	memset(si, 0, sizeof(*si));
425
426	size = 0;
427	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
428			     &graphics_proto, NULL, &size, gop_handle);
429	if (status == EFI_BUFFER_TOO_SMALL)
430		status = efi_setup_gop(si, &graphics_proto, size);
431
432	if (status != EFI_SUCCESS) {
433		size = 0;
434		status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
435				     &uga_proto, NULL, &size, uga_handle);
436		if (status == EFI_BUFFER_TOO_SMALL)
437			setup_uga(si, &uga_proto, size);
438	}
439}
440
441
442static void __noreturn efi_exit(efi_handle_t handle, efi_status_t status)
443{
444	efi_bs_call(exit, handle, status, 0, NULL);
445	for(;;)
446		asm("hlt");
447}
448
449void __noreturn efi_stub_entry(efi_handle_t handle,
450			       efi_system_table_t *sys_table_arg,
451			       struct boot_params *boot_params);
452
453/*
454 * Because the x86 boot code expects to be passed a boot_params we
455 * need to create one ourselves (usually the bootloader would create
456 * one for us).
457 */
458efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
459				   efi_system_table_t *sys_table_arg)
460{
461	static struct boot_params boot_params __page_aligned_bss;
462	struct setup_header *hdr = &boot_params.hdr;
 
463	efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID;
464	int options_size = 0;
465	efi_status_t status;
466	char *cmdline_ptr;
467
468	efi_system_table = sys_table_arg;
469
470	/* Check if we were booted by the EFI firmware */
471	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
472		efi_exit(handle, EFI_INVALID_PARAMETER);
473
474	status = efi_bs_call(handle_protocol, handle, &proto, (void **)&image);
475	if (status != EFI_SUCCESS) {
476		efi_err("Failed to get handle for LOADED_IMAGE_PROTOCOL\n");
477		efi_exit(handle, status);
478	}
479
480	/* Assign the setup_header fields that the kernel actually cares about */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
481	hdr->root_flags	= 1;
482	hdr->vid_mode	= 0xffff;
 
483
484	hdr->type_of_loader = 0x21;
485
486	/* Convert unicode cmdline to ascii */
487	cmdline_ptr = efi_convert_cmdline(image, &options_size);
488	if (!cmdline_ptr)
489		goto fail;
490
491	efi_set_u64_split((unsigned long)cmdline_ptr, &hdr->cmd_line_ptr,
492			  &boot_params.ext_cmd_line_ptr);
 
 
 
493
494	efi_stub_entry(handle, sys_table_arg, &boot_params);
 
 
 
 
 
 
 
495	/* not reached */
496
497fail:
 
 
498	efi_exit(handle, status);
499}
500
501static void add_e820ext(struct boot_params *params,
502			struct setup_data *e820ext, u32 nr_entries)
503{
504	struct setup_data *data;
505
506	e820ext->type = SETUP_E820_EXT;
507	e820ext->len  = nr_entries * sizeof(struct boot_e820_entry);
508	e820ext->next = 0;
509
510	data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
511
512	while (data && data->next)
513		data = (struct setup_data *)(unsigned long)data->next;
514
515	if (data)
516		data->next = (unsigned long)e820ext;
517	else
518		params->hdr.setup_data = (unsigned long)e820ext;
519}
520
521static efi_status_t
522setup_e820(struct boot_params *params, struct setup_data *e820ext, u32 e820ext_size)
523{
524	struct boot_e820_entry *entry = params->e820_table;
525	struct efi_info *efi = &params->efi_info;
526	struct boot_e820_entry *prev = NULL;
527	u32 nr_entries;
528	u32 nr_desc;
529	int i;
530
531	nr_entries = 0;
532	nr_desc = efi->efi_memmap_size / efi->efi_memdesc_size;
533
534	for (i = 0; i < nr_desc; i++) {
535		efi_memory_desc_t *d;
536		unsigned int e820_type = 0;
537		unsigned long m = efi->efi_memmap;
538
539#ifdef CONFIG_X86_64
540		m |= (u64)efi->efi_memmap_hi << 32;
541#endif
542
543		d = efi_early_memdesc_ptr(m, efi->efi_memdesc_size, i);
544		switch (d->type) {
545		case EFI_RESERVED_TYPE:
546		case EFI_RUNTIME_SERVICES_CODE:
547		case EFI_RUNTIME_SERVICES_DATA:
548		case EFI_MEMORY_MAPPED_IO:
549		case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
550		case EFI_PAL_CODE:
551			e820_type = E820_TYPE_RESERVED;
552			break;
553
554		case EFI_UNUSABLE_MEMORY:
555			e820_type = E820_TYPE_UNUSABLE;
556			break;
557
558		case EFI_ACPI_RECLAIM_MEMORY:
559			e820_type = E820_TYPE_ACPI;
560			break;
561
562		case EFI_LOADER_CODE:
563		case EFI_LOADER_DATA:
564		case EFI_BOOT_SERVICES_CODE:
565		case EFI_BOOT_SERVICES_DATA:
566		case EFI_CONVENTIONAL_MEMORY:
567			if (efi_soft_reserve_enabled() &&
568			    (d->attribute & EFI_MEMORY_SP))
569				e820_type = E820_TYPE_SOFT_RESERVED;
570			else
571				e820_type = E820_TYPE_RAM;
572			break;
573
574		case EFI_ACPI_MEMORY_NVS:
575			e820_type = E820_TYPE_NVS;
576			break;
577
578		case EFI_PERSISTENT_MEMORY:
579			e820_type = E820_TYPE_PMEM;
580			break;
581
582		case EFI_UNACCEPTED_MEMORY:
583			if (!IS_ENABLED(CONFIG_UNACCEPTED_MEMORY))
584				continue;
585			e820_type = E820_TYPE_RAM;
586			process_unaccepted_memory(d->phys_addr,
587						  d->phys_addr + PAGE_SIZE * d->num_pages);
588			break;
589		default:
590			continue;
591		}
592
593		/* Merge adjacent mappings */
594		if (prev && prev->type == e820_type &&
595		    (prev->addr + prev->size) == d->phys_addr) {
596			prev->size += d->num_pages << 12;
597			continue;
598		}
599
600		if (nr_entries == ARRAY_SIZE(params->e820_table)) {
601			u32 need = (nr_desc - i) * sizeof(struct e820_entry) +
602				   sizeof(struct setup_data);
603
604			if (!e820ext || e820ext_size < need)
605				return EFI_BUFFER_TOO_SMALL;
606
607			/* boot_params map full, switch to e820 extended */
608			entry = (struct boot_e820_entry *)e820ext->data;
609		}
610
611		entry->addr = d->phys_addr;
612		entry->size = d->num_pages << PAGE_SHIFT;
613		entry->type = e820_type;
614		prev = entry++;
615		nr_entries++;
616	}
617
618	if (nr_entries > ARRAY_SIZE(params->e820_table)) {
619		u32 nr_e820ext = nr_entries - ARRAY_SIZE(params->e820_table);
620
621		add_e820ext(params, e820ext, nr_e820ext);
622		nr_entries -= nr_e820ext;
623	}
624
625	params->e820_entries = (u8)nr_entries;
626
627	return EFI_SUCCESS;
628}
629
630static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext,
631				  u32 *e820ext_size)
632{
633	efi_status_t status;
634	unsigned long size;
635
636	size = sizeof(struct setup_data) +
637		sizeof(struct e820_entry) * nr_desc;
638
639	if (*e820ext) {
640		efi_bs_call(free_pool, *e820ext);
641		*e820ext = NULL;
642		*e820ext_size = 0;
643	}
644
645	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
646			     (void **)e820ext);
647	if (status == EFI_SUCCESS)
648		*e820ext_size = size;
649
650	return status;
651}
652
653static efi_status_t allocate_e820(struct boot_params *params,
654				  struct setup_data **e820ext,
655				  u32 *e820ext_size)
656{
657	struct efi_boot_memmap *map;
658	efi_status_t status;
659	__u32 nr_desc;
660
661	status = efi_get_memory_map(&map, false);
662	if (status != EFI_SUCCESS)
663		return status;
 
 
 
664
665	nr_desc = map->map_size / map->desc_size;
666	if (nr_desc > ARRAY_SIZE(params->e820_table) - EFI_MMAP_NR_SLACK_SLOTS) {
667		u32 nr_e820ext = nr_desc - ARRAY_SIZE(params->e820_table) +
668				 EFI_MMAP_NR_SLACK_SLOTS;
669
670		status = alloc_e820ext(nr_e820ext, e820ext, e820ext_size);
 
 
671	}
672
673	if (IS_ENABLED(CONFIG_UNACCEPTED_MEMORY) && status == EFI_SUCCESS)
674		status = allocate_unaccepted_bitmap(nr_desc, map);
675
676	efi_bs_call(free_pool, map);
677	return status;
678}
679
680struct exit_boot_struct {
681	struct boot_params	*boot_params;
682	struct efi_info		*efi;
683};
684
685static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
686				   void *priv)
687{
688	const char *signature;
689	struct exit_boot_struct *p = priv;
690
691	signature = efi_is_64bit() ? EFI64_LOADER_SIGNATURE
692				   : EFI32_LOADER_SIGNATURE;
693	memcpy(&p->efi->efi_loader_signature, signature, sizeof(__u32));
694
695	efi_set_u64_split((unsigned long)efi_system_table,
696			  &p->efi->efi_systab, &p->efi->efi_systab_hi);
697	p->efi->efi_memdesc_size	= map->desc_size;
698	p->efi->efi_memdesc_version	= map->desc_ver;
699	efi_set_u64_split((unsigned long)map->map,
700			  &p->efi->efi_memmap, &p->efi->efi_memmap_hi);
701	p->efi->efi_memmap_size		= map->map_size;
702
703	return EFI_SUCCESS;
704}
705
706static efi_status_t exit_boot(struct boot_params *boot_params, void *handle)
707{
708	struct setup_data *e820ext = NULL;
709	__u32 e820ext_size = 0;
710	efi_status_t status;
711	struct exit_boot_struct priv;
712
713	priv.boot_params	= boot_params;
714	priv.efi		= &boot_params->efi_info;
715
716	status = allocate_e820(boot_params, &e820ext, &e820ext_size);
717	if (status != EFI_SUCCESS)
718		return status;
719
720	/* Might as well exit boot services now */
721	status = efi_exit_boot_services(handle, &priv, exit_boot_func);
722	if (status != EFI_SUCCESS)
723		return status;
724
725	/* Historic? */
726	boot_params->alt_mem_k	= 32 * 1024;
727
728	status = setup_e820(boot_params, e820ext, e820ext_size);
729	if (status != EFI_SUCCESS)
730		return status;
731
732	return EFI_SUCCESS;
733}
734
735static bool have_unsupported_snp_features(void)
736{
737	u64 unsupported;
738
739	unsupported = snp_get_unsupported_features(sev_get_status());
740	if (unsupported) {
741		efi_err("Unsupported SEV-SNP features detected: 0x%llx\n",
742			unsupported);
743		return true;
744	}
745	return false;
746}
747
748static void efi_get_seed(void *seed, int size)
749{
750	efi_get_random_bytes(size, seed);
751
752	/*
753	 * This only updates seed[0] when running on 32-bit, but in that case,
754	 * seed[1] is not used anyway, as there is no virtual KASLR on 32-bit.
755	 */
756	*(unsigned long *)seed ^= kaslr_get_random_long("EFI");
757}
758
759static void error(char *str)
760{
761	efi_warn("Decompression failed: %s\n", str);
762}
763
764static efi_status_t efi_decompress_kernel(unsigned long *kernel_entry)
765{
766	unsigned long virt_addr = LOAD_PHYSICAL_ADDR;
767	unsigned long addr, alloc_size, entry;
768	efi_status_t status;
769	u32 seed[2] = {};
770
771	/* determine the required size of the allocation */
772	alloc_size = ALIGN(max_t(unsigned long, output_len, kernel_total_size),
773			   MIN_KERNEL_ALIGN);
774
775	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && !efi_nokaslr) {
776		u64 range = KERNEL_IMAGE_SIZE - LOAD_PHYSICAL_ADDR - kernel_total_size;
777		static const efi_char16_t ami[] = L"American Megatrends";
778
779		efi_get_seed(seed, sizeof(seed));
780
781		virt_addr += (range * seed[1]) >> 32;
782		virt_addr &= ~(CONFIG_PHYSICAL_ALIGN - 1);
783
784		/*
785		 * Older Dell systems with AMI UEFI firmware v2.0 may hang
786		 * while decompressing the kernel if physical address
787		 * randomization is enabled.
788		 *
789		 * https://bugzilla.kernel.org/show_bug.cgi?id=218173
790		 */
791		if (efi_system_table->hdr.revision <= EFI_2_00_SYSTEM_TABLE_REVISION &&
792		    !memcmp(efistub_fw_vendor(), ami, sizeof(ami))) {
793			efi_debug("AMI firmware v2.0 or older detected - disabling physical KASLR\n");
794			seed[0] = 0;
795		}
796
797		boot_params_ptr->hdr.loadflags |= KASLR_FLAG;
798	}
799
800	status = efi_random_alloc(alloc_size, CONFIG_PHYSICAL_ALIGN, &addr,
801				  seed[0], EFI_LOADER_CODE,
802				  LOAD_PHYSICAL_ADDR,
803				  EFI_X86_KERNEL_ALLOC_LIMIT);
804	if (status != EFI_SUCCESS)
805		return status;
806
807	entry = decompress_kernel((void *)addr, virt_addr, error);
808	if (entry == ULONG_MAX) {
809		efi_free(alloc_size, addr);
810		return EFI_LOAD_ERROR;
811	}
812
813	*kernel_entry = addr + entry;
814
815	return efi_adjust_memory_range_protection(addr, kernel_total_size);
816}
817
818static void __noreturn enter_kernel(unsigned long kernel_addr,
819				    struct boot_params *boot_params)
820{
821	/* enter decompressed kernel with boot_params pointer in RSI/ESI */
822	asm("jmp *%0"::"r"(kernel_addr), "S"(boot_params));
823
824	unreachable();
825}
826
827/*
828 * On success, this routine will jump to the relocated image directly and never
829 * return.  On failure, it will exit to the firmware via efi_exit() instead of
830 * returning.
831 */
832void __noreturn efi_stub_entry(efi_handle_t handle,
833			       efi_system_table_t *sys_table_arg,
834			       struct boot_params *boot_params)
835{
836	efi_guid_t guid = EFI_MEMORY_ATTRIBUTE_PROTOCOL_GUID;
 
837	struct setup_header *hdr = &boot_params->hdr;
838	const struct linux_efi_initrd *initrd = NULL;
839	unsigned long kernel_entry;
840	efi_status_t status;
841
842	boot_params_ptr = boot_params;
843
844	efi_system_table = sys_table_arg;
845	/* Check if we were booted by the EFI firmware */
846	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
847		efi_exit(handle, EFI_INVALID_PARAMETER);
848
849	if (have_unsupported_snp_features())
850		efi_exit(handle, EFI_UNSUPPORTED);
851
852	if (IS_ENABLED(CONFIG_EFI_DXE_MEM_ATTRIBUTES)) {
853		efi_dxe_table = get_efi_config_table(EFI_DXE_SERVICES_TABLE_GUID);
854		if (efi_dxe_table &&
855		    efi_dxe_table->hdr.signature != EFI_DXE_SERVICES_TABLE_SIGNATURE) {
856			efi_warn("Ignoring DXE services table: invalid signature\n");
857			efi_dxe_table = NULL;
858		}
859	}
860
861	/* grab the memory attributes protocol if it exists */
862	efi_bs_call(locate_protocol, &guid, NULL, (void **)&memattr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
863
864	status = efi_setup_5level_paging();
865	if (status != EFI_SUCCESS) {
866		efi_err("efi_setup_5level_paging() failed!\n");
867		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
868	}
869
870#ifdef CONFIG_CMDLINE_BOOL
871	status = efi_parse_options(CONFIG_CMDLINE);
872	if (status != EFI_SUCCESS) {
873		efi_err("Failed to parse options\n");
874		goto fail;
875	}
876#endif
877	if (!IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) {
878		unsigned long cmdline_paddr = ((u64)hdr->cmd_line_ptr |
879					       ((u64)boot_params->ext_cmd_line_ptr << 32));
880		status = efi_parse_options((char *)cmdline_paddr);
881		if (status != EFI_SUCCESS) {
882			efi_err("Failed to parse options\n");
883			goto fail;
884		}
885	}
886
887	status = efi_decompress_kernel(&kernel_entry);
888	if (status != EFI_SUCCESS) {
889		efi_err("Failed to decompress kernel\n");
890		goto fail;
891	}
892
893	/*
894	 * At this point, an initrd may already have been loaded by the
895	 * bootloader and passed via bootparams. We permit an initrd loaded
896	 * from the LINUX_EFI_INITRD_MEDIA_GUID device path to supersede it.
897	 *
898	 * If the device path is not present, any command-line initrd=
899	 * arguments will be processed only if image is not NULL, which will be
900	 * the case only if we were loaded via the PE entry point.
901	 */
902	status = efi_load_initrd(image, hdr->initrd_addr_max, ULONG_MAX,
903				 &initrd);
904	if (status != EFI_SUCCESS)
905		goto fail;
906	if (initrd && initrd->size > 0) {
907		efi_set_u64_split(initrd->base, &hdr->ramdisk_image,
908				  &boot_params->ext_ramdisk_image);
909		efi_set_u64_split(initrd->size, &hdr->ramdisk_size,
910				  &boot_params->ext_ramdisk_size);
911	}
912
913
914	/*
915	 * If the boot loader gave us a value for secure_boot then we use that,
916	 * otherwise we ask the BIOS.
917	 */
918	if (boot_params->secure_boot == efi_secureboot_mode_unset)
919		boot_params->secure_boot = efi_get_secureboot();
920
921	/* Ask the firmware to clear memory on unclean shutdown */
922	efi_enable_reset_attack_mitigation();
923
924	efi_random_get_seed();
925
926	efi_retrieve_tpm2_eventlog();
927
928	setup_graphics(boot_params);
929
930	setup_efi_pci(boot_params);
931
932	setup_quirks(boot_params);
933
934	setup_unaccepted_memory();
935
936	status = exit_boot(boot_params, handle);
937	if (status != EFI_SUCCESS) {
938		efi_err("exit_boot() failed!\n");
939		goto fail;
940	}
941
942	/*
943	 * Call the SEV init code while still running with the firmware's
944	 * GDT/IDT, so #VC exceptions will be handled by EFI.
945	 */
946	sev_enable(boot_params);
947
948	efi_5level_switch();
949
950	enter_kernel(kernel_entry, boot_params);
951fail:
952	efi_err("efi_stub_entry() failed!\n");
953
954	efi_exit(handle, status);
955}
956
957#ifdef CONFIG_EFI_HANDOVER_PROTOCOL
958void efi_handover_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg,
959			struct boot_params *boot_params)
960{
961	extern char _bss[], _ebss[];
962
963	memset(_bss, 0, _ebss - _bss);
964	efi_stub_entry(handle, sys_table_arg, boot_params);
965}
966
967#ifndef CONFIG_EFI_MIXED
968extern __alias(efi_handover_entry)
969void efi32_stub_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg,
970		      struct boot_params *boot_params);
971
972extern __alias(efi_handover_entry)
973void efi64_stub_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg,
974		      struct boot_params *boot_params);
975#endif
976#endif
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2
  3/* -----------------------------------------------------------------------
  4 *
  5 *   Copyright 2011 Intel Corporation; author Matt Fleming
  6 *
  7 * ----------------------------------------------------------------------- */
  8
  9#include <linux/efi.h>
 10#include <linux/pci.h>
 11#include <linux/stddef.h>
 12
 13#include <asm/efi.h>
 14#include <asm/e820/types.h>
 15#include <asm/setup.h>
 16#include <asm/desc.h>
 17#include <asm/boot.h>
 
 
 18
 19#include "efistub.h"
 20
 21/* Maximum physical address for 64-bit kernel with 4-level paging */
 22#define MAXMEM_X86_64_4LEVEL (1ull << 46)
 23
 24const efi_system_table_t *efi_system_table;
 25const efi_dxe_services_table_t *efi_dxe_table;
 26u32 image_offset __section(".data");
 27static efi_loaded_image_t *image = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 28
 29static efi_status_t
 30preserve_pci_rom_image(efi_pci_io_protocol_t *pci, struct pci_setup_rom **__rom)
 31{
 32	struct pci_setup_rom *rom = NULL;
 33	efi_status_t status;
 34	unsigned long size;
 35	uint64_t romsize;
 36	void *romimage;
 37
 38	/*
 39	 * Some firmware images contain EFI function pointers at the place where
 40	 * the romimage and romsize fields are supposed to be. Typically the EFI
 41	 * code is mapped at high addresses, translating to an unrealistically
 42	 * large romsize. The UEFI spec limits the size of option ROMs to 16
 43	 * MiB so we reject any ROMs over 16 MiB in size to catch this.
 44	 */
 45	romimage = efi_table_attr(pci, romimage);
 46	romsize = efi_table_attr(pci, romsize);
 47	if (!romimage || !romsize || romsize > SZ_16M)
 48		return EFI_INVALID_PARAMETER;
 49
 50	size = romsize + sizeof(*rom);
 51
 52	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
 53			     (void **)&rom);
 54	if (status != EFI_SUCCESS) {
 55		efi_err("Failed to allocate memory for 'rom'\n");
 56		return status;
 57	}
 58
 59	memset(rom, 0, sizeof(*rom));
 60
 61	rom->data.type	= SETUP_PCI;
 62	rom->data.len	= size - sizeof(struct setup_data);
 63	rom->data.next	= 0;
 64	rom->pcilen	= pci->romsize;
 65	*__rom = rom;
 66
 67	status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16,
 68				PCI_VENDOR_ID, 1, &rom->vendor);
 69
 70	if (status != EFI_SUCCESS) {
 71		efi_err("Failed to read rom->vendor\n");
 72		goto free_struct;
 73	}
 74
 75	status = efi_call_proto(pci, pci.read, EfiPciIoWidthUint16,
 76				PCI_DEVICE_ID, 1, &rom->devid);
 77
 78	if (status != EFI_SUCCESS) {
 79		efi_err("Failed to read rom->devid\n");
 80		goto free_struct;
 81	}
 82
 83	status = efi_call_proto(pci, get_location, &rom->segment, &rom->bus,
 84				&rom->device, &rom->function);
 85
 86	if (status != EFI_SUCCESS)
 87		goto free_struct;
 88
 89	memcpy(rom->romdata, romimage, romsize);
 90	return status;
 91
 92free_struct:
 93	efi_bs_call(free_pool, rom);
 94	return status;
 95}
 96
 97/*
 98 * There's no way to return an informative status from this function,
 99 * because any analysis (and printing of error messages) needs to be
100 * done directly at the EFI function call-site.
101 *
102 * For example, EFI_INVALID_PARAMETER could indicate a bug or maybe we
103 * just didn't find any PCI devices, but there's no way to tell outside
104 * the context of the call.
105 */
106static void setup_efi_pci(struct boot_params *params)
107{
108	efi_status_t status;
109	void **pci_handle = NULL;
110	efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID;
111	unsigned long size = 0;
112	struct setup_data *data;
113	efi_handle_t h;
114	int i;
115
116	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
117			     &pci_proto, NULL, &size, pci_handle);
118
119	if (status == EFI_BUFFER_TOO_SMALL) {
120		status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
121				     (void **)&pci_handle);
122
123		if (status != EFI_SUCCESS) {
124			efi_err("Failed to allocate memory for 'pci_handle'\n");
125			return;
126		}
127
128		status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
129				     &pci_proto, NULL, &size, pci_handle);
130	}
131
132	if (status != EFI_SUCCESS)
133		goto free_handle;
134
135	data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
136
137	while (data && data->next)
138		data = (struct setup_data *)(unsigned long)data->next;
139
140	for_each_efi_handle(h, pci_handle, size, i) {
141		efi_pci_io_protocol_t *pci = NULL;
142		struct pci_setup_rom *rom;
143
144		status = efi_bs_call(handle_protocol, h, &pci_proto,
145				     (void **)&pci);
146		if (status != EFI_SUCCESS || !pci)
147			continue;
148
149		status = preserve_pci_rom_image(pci, &rom);
150		if (status != EFI_SUCCESS)
151			continue;
152
153		if (data)
154			data->next = (unsigned long)rom;
155		else
156			params->hdr.setup_data = (unsigned long)rom;
157
158		data = (struct setup_data *)rom;
159	}
160
161free_handle:
162	efi_bs_call(free_pool, pci_handle);
163}
164
165static void retrieve_apple_device_properties(struct boot_params *boot_params)
166{
167	efi_guid_t guid = APPLE_PROPERTIES_PROTOCOL_GUID;
168	struct setup_data *data, *new;
169	efi_status_t status;
170	u32 size = 0;
171	apple_properties_protocol_t *p;
172
173	status = efi_bs_call(locate_protocol, &guid, NULL, (void **)&p);
174	if (status != EFI_SUCCESS)
175		return;
176
177	if (efi_table_attr(p, version) != 0x10000) {
178		efi_err("Unsupported properties proto version\n");
179		return;
180	}
181
182	efi_call_proto(p, get_all, NULL, &size);
183	if (!size)
184		return;
185
186	do {
187		status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
188				     size + sizeof(struct setup_data),
189				     (void **)&new);
190		if (status != EFI_SUCCESS) {
191			efi_err("Failed to allocate memory for 'properties'\n");
192			return;
193		}
194
195		status = efi_call_proto(p, get_all, new->data, &size);
196
197		if (status == EFI_BUFFER_TOO_SMALL)
198			efi_bs_call(free_pool, new);
199	} while (status == EFI_BUFFER_TOO_SMALL);
200
201	new->type = SETUP_APPLE_PROPERTIES;
202	new->len  = size;
203	new->next = 0;
204
205	data = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
206	if (!data) {
207		boot_params->hdr.setup_data = (unsigned long)new;
208	} else {
209		while (data->next)
210			data = (struct setup_data *)(unsigned long)data->next;
211		data->next = (unsigned long)new;
212	}
213}
214
215static void
216adjust_memory_range_protection(unsigned long start, unsigned long size)
217{
218	efi_status_t status;
219	efi_gcd_memory_space_desc_t desc;
220	unsigned long end, next;
221	unsigned long rounded_start, rounded_end;
222	unsigned long unprotect_start, unprotect_size;
223
224	if (efi_dxe_table == NULL)
225		return;
226
227	rounded_start = rounddown(start, EFI_PAGE_SIZE);
228	rounded_end = roundup(start + size, EFI_PAGE_SIZE);
229
 
 
 
 
 
 
 
 
 
 
 
 
 
230	/*
231	 * Don't modify memory region attributes, they are
232	 * already suitable, to lower the possibility to
233	 * encounter firmware bugs.
234	 */
235
236	for (end = start + size; start < end; start = next) {
237
238		status = efi_dxe_call(get_memory_space_descriptor, start, &desc);
239
240		if (status != EFI_SUCCESS)
241			return;
242
243		next = desc.base_address + desc.length;
244
245		/*
246		 * Only system memory is suitable for trampoline/kernel image placement,
247		 * so only this type of memory needs its attributes to be modified.
248		 */
249
250		if (desc.gcd_memory_type != EfiGcdMemoryTypeSystemMemory ||
251		    (desc.attributes & (EFI_MEMORY_RO | EFI_MEMORY_XP)) == 0)
252			continue;
253
254		unprotect_start = max(rounded_start, (unsigned long)desc.base_address);
255		unprotect_size = min(rounded_end, next) - unprotect_start;
256
257		status = efi_dxe_call(set_memory_space_attributes,
258				      unprotect_start, unprotect_size,
259				      EFI_MEMORY_WB);
260
261		if (status != EFI_SUCCESS) {
262			efi_warn("Unable to unprotect memory range [%08lx,%08lx]: %lx\n",
263				 unprotect_start,
264				 unprotect_start + unprotect_size,
265				 status);
 
266		}
267	}
 
268}
269
270/*
271 * Trampoline takes 2 pages and can be loaded in first megabyte of memory
272 * with its end placed between 128k and 640k where BIOS might start.
273 * (see arch/x86/boot/compressed/pgtable_64.c)
274 *
275 * We cannot find exact trampoline placement since memory map
276 * can be modified by UEFI, and it can alter the computed address.
277 */
278
279#define TRAMPOLINE_PLACEMENT_BASE ((128 - 8)*1024)
280#define TRAMPOLINE_PLACEMENT_SIZE (640*1024 - (128 - 8)*1024)
281
282void startup_32(struct boot_params *boot_params);
283
284static void
285setup_memory_protection(unsigned long image_base, unsigned long image_size)
286{
287	/*
288	 * Allow execution of possible trampoline used
289	 * for switching between 4- and 5-level page tables
290	 * and relocated kernel image.
291	 */
 
 
 
 
292
293	adjust_memory_range_protection(TRAMPOLINE_PLACEMENT_BASE,
294				       TRAMPOLINE_PLACEMENT_SIZE);
 
 
 
 
 
 
295
296#ifdef CONFIG_64BIT
297	if (image_base != (unsigned long)startup_32)
298		adjust_memory_range_protection(image_base, image_size);
299#else
300	/*
301	 * Clear protection flags on a whole range of possible
302	 * addresses used for KASLR. We don't need to do that
303	 * on x86_64, since KASLR/extraction is performed after
304	 * dedicated identity page tables are built and we only
305	 * need to remove possible protection on relocated image
306	 * itself disregarding further relocations.
307	 */
308	adjust_memory_range_protection(LOAD_PHYSICAL_ADDR,
309				       KERNEL_IMAGE_SIZE - LOAD_PHYSICAL_ADDR);
310#endif
311}
312
313static const efi_char16_t apple[] = L"Apple";
314
315static void setup_quirks(struct boot_params *boot_params,
316			 unsigned long image_base,
317			 unsigned long image_size)
318{
319	efi_char16_t *fw_vendor = (efi_char16_t *)(unsigned long)
320		efi_table_attr(efi_system_table, fw_vendor);
321
322	if (!memcmp(fw_vendor, apple, sizeof(apple))) {
323		if (IS_ENABLED(CONFIG_APPLE_PROPERTIES))
324			retrieve_apple_device_properties(boot_params);
325	}
326
327	if (IS_ENABLED(CONFIG_EFI_DXE_MEM_ATTRIBUTES))
328		setup_memory_protection(image_base, image_size);
329}
330
331/*
332 * See if we have Universal Graphics Adapter (UGA) protocol
333 */
334static efi_status_t
335setup_uga(struct screen_info *si, efi_guid_t *uga_proto, unsigned long size)
336{
337	efi_status_t status;
338	u32 width, height;
339	void **uga_handle = NULL;
340	efi_uga_draw_protocol_t *uga = NULL, *first_uga;
341	efi_handle_t handle;
342	int i;
343
344	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
345			     (void **)&uga_handle);
346	if (status != EFI_SUCCESS)
347		return status;
348
349	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
350			     uga_proto, NULL, &size, uga_handle);
351	if (status != EFI_SUCCESS)
352		goto free_handle;
353
354	height = 0;
355	width = 0;
356
357	first_uga = NULL;
358	for_each_efi_handle(handle, uga_handle, size, i) {
359		efi_guid_t pciio_proto = EFI_PCI_IO_PROTOCOL_GUID;
360		u32 w, h, depth, refresh;
361		void *pciio;
362
363		status = efi_bs_call(handle_protocol, handle, uga_proto,
364				     (void **)&uga);
365		if (status != EFI_SUCCESS)
366			continue;
367
368		pciio = NULL;
369		efi_bs_call(handle_protocol, handle, &pciio_proto, &pciio);
370
371		status = efi_call_proto(uga, get_mode, &w, &h, &depth, &refresh);
372		if (status == EFI_SUCCESS && (!first_uga || pciio)) {
373			width = w;
374			height = h;
375
376			/*
377			 * Once we've found a UGA supporting PCIIO,
378			 * don't bother looking any further.
379			 */
380			if (pciio)
381				break;
382
383			first_uga = uga;
384		}
385	}
386
387	if (!width && !height)
388		goto free_handle;
389
390	/* EFI framebuffer */
391	si->orig_video_isVGA	= VIDEO_TYPE_EFI;
392
393	si->lfb_depth		= 32;
394	si->lfb_width		= width;
395	si->lfb_height		= height;
396
397	si->red_size		= 8;
398	si->red_pos		= 16;
399	si->green_size		= 8;
400	si->green_pos		= 8;
401	si->blue_size		= 8;
402	si->blue_pos		= 0;
403	si->rsvd_size		= 8;
404	si->rsvd_pos		= 24;
405
406free_handle:
407	efi_bs_call(free_pool, uga_handle);
408
409	return status;
410}
411
412static void setup_graphics(struct boot_params *boot_params)
413{
414	efi_guid_t graphics_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
415	struct screen_info *si;
416	efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID;
417	efi_status_t status;
418	unsigned long size;
419	void **gop_handle = NULL;
420	void **uga_handle = NULL;
421
422	si = &boot_params->screen_info;
423	memset(si, 0, sizeof(*si));
424
425	size = 0;
426	status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
427			     &graphics_proto, NULL, &size, gop_handle);
428	if (status == EFI_BUFFER_TOO_SMALL)
429		status = efi_setup_gop(si, &graphics_proto, size);
430
431	if (status != EFI_SUCCESS) {
432		size = 0;
433		status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
434				     &uga_proto, NULL, &size, uga_handle);
435		if (status == EFI_BUFFER_TOO_SMALL)
436			setup_uga(si, &uga_proto, size);
437	}
438}
439
440
441static void __noreturn efi_exit(efi_handle_t handle, efi_status_t status)
442{
443	efi_bs_call(exit, handle, status, 0, NULL);
444	for(;;)
445		asm("hlt");
446}
447
448void __noreturn efi_stub_entry(efi_handle_t handle,
449			       efi_system_table_t *sys_table_arg,
450			       struct boot_params *boot_params);
451
452/*
453 * Because the x86 boot code expects to be passed a boot_params we
454 * need to create one ourselves (usually the bootloader would create
455 * one for us).
456 */
457efi_status_t __efiapi efi_pe_entry(efi_handle_t handle,
458				   efi_system_table_t *sys_table_arg)
459{
460	struct boot_params *boot_params;
461	struct setup_header *hdr;
462	void *image_base;
463	efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID;
464	int options_size = 0;
465	efi_status_t status;
466	char *cmdline_ptr;
467
468	efi_system_table = sys_table_arg;
469
470	/* Check if we were booted by the EFI firmware */
471	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
472		efi_exit(handle, EFI_INVALID_PARAMETER);
473
474	status = efi_bs_call(handle_protocol, handle, &proto, (void **)&image);
475	if (status != EFI_SUCCESS) {
476		efi_err("Failed to get handle for LOADED_IMAGE_PROTOCOL\n");
477		efi_exit(handle, status);
478	}
479
480	image_base = efi_table_attr(image, image_base);
481	image_offset = (void *)startup_32 - image_base;
482
483	status = efi_allocate_pages(sizeof(struct boot_params),
484				    (unsigned long *)&boot_params, ULONG_MAX);
485	if (status != EFI_SUCCESS) {
486		efi_err("Failed to allocate lowmem for boot params\n");
487		efi_exit(handle, status);
488	}
489
490	memset(boot_params, 0x0, sizeof(struct boot_params));
491
492	hdr = &boot_params->hdr;
493
494	/* Copy the setup header from the second sector to boot_params */
495	memcpy(&hdr->jump, image_base + 512,
496	       sizeof(struct setup_header) - offsetof(struct setup_header, jump));
497
498	/*
499	 * Fill out some of the header fields ourselves because the
500	 * EFI firmware loader doesn't load the first sector.
501	 */
502	hdr->root_flags	= 1;
503	hdr->vid_mode	= 0xffff;
504	hdr->boot_flag	= 0xAA55;
505
506	hdr->type_of_loader = 0x21;
507
508	/* Convert unicode cmdline to ascii */
509	cmdline_ptr = efi_convert_cmdline(image, &options_size);
510	if (!cmdline_ptr)
511		goto fail;
512
513	efi_set_u64_split((unsigned long)cmdline_ptr,
514			  &hdr->cmd_line_ptr, &boot_params->ext_cmd_line_ptr);
515
516	hdr->ramdisk_image = 0;
517	hdr->ramdisk_size = 0;
518
519	/*
520	 * Disregard any setup data that was provided by the bootloader:
521	 * setup_data could be pointing anywhere, and we have no way of
522	 * authenticating or validating the payload.
523	 */
524	hdr->setup_data = 0;
525
526	efi_stub_entry(handle, sys_table_arg, boot_params);
527	/* not reached */
528
529fail:
530	efi_free(sizeof(struct boot_params), (unsigned long)boot_params);
531
532	efi_exit(handle, status);
533}
534
535static void add_e820ext(struct boot_params *params,
536			struct setup_data *e820ext, u32 nr_entries)
537{
538	struct setup_data *data;
539
540	e820ext->type = SETUP_E820_EXT;
541	e820ext->len  = nr_entries * sizeof(struct boot_e820_entry);
542	e820ext->next = 0;
543
544	data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
545
546	while (data && data->next)
547		data = (struct setup_data *)(unsigned long)data->next;
548
549	if (data)
550		data->next = (unsigned long)e820ext;
551	else
552		params->hdr.setup_data = (unsigned long)e820ext;
553}
554
555static efi_status_t
556setup_e820(struct boot_params *params, struct setup_data *e820ext, u32 e820ext_size)
557{
558	struct boot_e820_entry *entry = params->e820_table;
559	struct efi_info *efi = &params->efi_info;
560	struct boot_e820_entry *prev = NULL;
561	u32 nr_entries;
562	u32 nr_desc;
563	int i;
564
565	nr_entries = 0;
566	nr_desc = efi->efi_memmap_size / efi->efi_memdesc_size;
567
568	for (i = 0; i < nr_desc; i++) {
569		efi_memory_desc_t *d;
570		unsigned int e820_type = 0;
571		unsigned long m = efi->efi_memmap;
572
573#ifdef CONFIG_X86_64
574		m |= (u64)efi->efi_memmap_hi << 32;
575#endif
576
577		d = efi_early_memdesc_ptr(m, efi->efi_memdesc_size, i);
578		switch (d->type) {
579		case EFI_RESERVED_TYPE:
580		case EFI_RUNTIME_SERVICES_CODE:
581		case EFI_RUNTIME_SERVICES_DATA:
582		case EFI_MEMORY_MAPPED_IO:
583		case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
584		case EFI_PAL_CODE:
585			e820_type = E820_TYPE_RESERVED;
586			break;
587
588		case EFI_UNUSABLE_MEMORY:
589			e820_type = E820_TYPE_UNUSABLE;
590			break;
591
592		case EFI_ACPI_RECLAIM_MEMORY:
593			e820_type = E820_TYPE_ACPI;
594			break;
595
596		case EFI_LOADER_CODE:
597		case EFI_LOADER_DATA:
598		case EFI_BOOT_SERVICES_CODE:
599		case EFI_BOOT_SERVICES_DATA:
600		case EFI_CONVENTIONAL_MEMORY:
601			if (efi_soft_reserve_enabled() &&
602			    (d->attribute & EFI_MEMORY_SP))
603				e820_type = E820_TYPE_SOFT_RESERVED;
604			else
605				e820_type = E820_TYPE_RAM;
606			break;
607
608		case EFI_ACPI_MEMORY_NVS:
609			e820_type = E820_TYPE_NVS;
610			break;
611
612		case EFI_PERSISTENT_MEMORY:
613			e820_type = E820_TYPE_PMEM;
614			break;
615
 
 
 
 
 
 
 
616		default:
617			continue;
618		}
619
620		/* Merge adjacent mappings */
621		if (prev && prev->type == e820_type &&
622		    (prev->addr + prev->size) == d->phys_addr) {
623			prev->size += d->num_pages << 12;
624			continue;
625		}
626
627		if (nr_entries == ARRAY_SIZE(params->e820_table)) {
628			u32 need = (nr_desc - i) * sizeof(struct e820_entry) +
629				   sizeof(struct setup_data);
630
631			if (!e820ext || e820ext_size < need)
632				return EFI_BUFFER_TOO_SMALL;
633
634			/* boot_params map full, switch to e820 extended */
635			entry = (struct boot_e820_entry *)e820ext->data;
636		}
637
638		entry->addr = d->phys_addr;
639		entry->size = d->num_pages << PAGE_SHIFT;
640		entry->type = e820_type;
641		prev = entry++;
642		nr_entries++;
643	}
644
645	if (nr_entries > ARRAY_SIZE(params->e820_table)) {
646		u32 nr_e820ext = nr_entries - ARRAY_SIZE(params->e820_table);
647
648		add_e820ext(params, e820ext, nr_e820ext);
649		nr_entries -= nr_e820ext;
650	}
651
652	params->e820_entries = (u8)nr_entries;
653
654	return EFI_SUCCESS;
655}
656
657static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext,
658				  u32 *e820ext_size)
659{
660	efi_status_t status;
661	unsigned long size;
662
663	size = sizeof(struct setup_data) +
664		sizeof(struct e820_entry) * nr_desc;
665
666	if (*e820ext) {
667		efi_bs_call(free_pool, *e820ext);
668		*e820ext = NULL;
669		*e820ext_size = 0;
670	}
671
672	status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size,
673			     (void **)e820ext);
674	if (status == EFI_SUCCESS)
675		*e820ext_size = size;
676
677	return status;
678}
679
680static efi_status_t allocate_e820(struct boot_params *params,
681				  struct setup_data **e820ext,
682				  u32 *e820ext_size)
683{
684	unsigned long map_size, desc_size, map_key;
685	efi_status_t status;
686	__u32 nr_desc, desc_version;
687
688	/* Only need the size of the mem map and size of each mem descriptor */
689	map_size = 0;
690	status = efi_bs_call(get_memory_map, &map_size, NULL, &map_key,
691			     &desc_size, &desc_version);
692	if (status != EFI_BUFFER_TOO_SMALL)
693		return (status != EFI_SUCCESS) ? status : EFI_UNSUPPORTED;
694
695	nr_desc = map_size / desc_size + EFI_MMAP_NR_SLACK_SLOTS;
696
697	if (nr_desc > ARRAY_SIZE(params->e820_table)) {
698		u32 nr_e820ext = nr_desc - ARRAY_SIZE(params->e820_table);
699
700		status = alloc_e820ext(nr_e820ext, e820ext, e820ext_size);
701		if (status != EFI_SUCCESS)
702			return status;
703	}
704
705	return EFI_SUCCESS;
 
 
 
 
706}
707
708struct exit_boot_struct {
709	struct boot_params	*boot_params;
710	struct efi_info		*efi;
711};
712
713static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
714				   void *priv)
715{
716	const char *signature;
717	struct exit_boot_struct *p = priv;
718
719	signature = efi_is_64bit() ? EFI64_LOADER_SIGNATURE
720				   : EFI32_LOADER_SIGNATURE;
721	memcpy(&p->efi->efi_loader_signature, signature, sizeof(__u32));
722
723	efi_set_u64_split((unsigned long)efi_system_table,
724			  &p->efi->efi_systab, &p->efi->efi_systab_hi);
725	p->efi->efi_memdesc_size	= map->desc_size;
726	p->efi->efi_memdesc_version	= map->desc_ver;
727	efi_set_u64_split((unsigned long)map->map,
728			  &p->efi->efi_memmap, &p->efi->efi_memmap_hi);
729	p->efi->efi_memmap_size		= map->map_size;
730
731	return EFI_SUCCESS;
732}
733
734static efi_status_t exit_boot(struct boot_params *boot_params, void *handle)
735{
736	struct setup_data *e820ext = NULL;
737	__u32 e820ext_size = 0;
738	efi_status_t status;
739	struct exit_boot_struct priv;
740
741	priv.boot_params	= boot_params;
742	priv.efi		= &boot_params->efi_info;
743
744	status = allocate_e820(boot_params, &e820ext, &e820ext_size);
745	if (status != EFI_SUCCESS)
746		return status;
747
748	/* Might as well exit boot services now */
749	status = efi_exit_boot_services(handle, &priv, exit_boot_func);
750	if (status != EFI_SUCCESS)
751		return status;
752
753	/* Historic? */
754	boot_params->alt_mem_k	= 32 * 1024;
755
756	status = setup_e820(boot_params, e820ext, e820ext_size);
757	if (status != EFI_SUCCESS)
758		return status;
759
760	return EFI_SUCCESS;
761}
762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
763/*
764 * On success, we return the address of startup_32, which has potentially been
765 * relocated by efi_relocate_kernel.
766 * On failure, we exit to the firmware via efi_exit instead of returning.
767 */
768asmlinkage unsigned long efi_main(efi_handle_t handle,
769				  efi_system_table_t *sys_table_arg,
770				  struct boot_params *boot_params)
771{
772	unsigned long bzimage_addr = (unsigned long)startup_32;
773	unsigned long buffer_start, buffer_end;
774	struct setup_header *hdr = &boot_params->hdr;
775	const struct linux_efi_initrd *initrd = NULL;
 
776	efi_status_t status;
777
 
 
778	efi_system_table = sys_table_arg;
779	/* Check if we were booted by the EFI firmware */
780	if (efi_system_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
781		efi_exit(handle, EFI_INVALID_PARAMETER);
782
783	efi_dxe_table = get_efi_config_table(EFI_DXE_SERVICES_TABLE_GUID);
784	if (efi_dxe_table &&
785	    efi_dxe_table->hdr.signature != EFI_DXE_SERVICES_TABLE_SIGNATURE) {
786		efi_warn("Ignoring DXE services table: invalid signature\n");
787		efi_dxe_table = NULL;
 
 
 
 
 
788	}
789
790	/*
791	 * If the kernel isn't already loaded at a suitable address,
792	 * relocate it.
793	 *
794	 * It must be loaded above LOAD_PHYSICAL_ADDR.
795	 *
796	 * The maximum address for 64-bit is 1 << 46 for 4-level paging. This
797	 * is defined as the macro MAXMEM, but unfortunately that is not a
798	 * compile-time constant if 5-level paging is configured, so we instead
799	 * define our own macro for use here.
800	 *
801	 * For 32-bit, the maximum address is complicated to figure out, for
802	 * now use KERNEL_IMAGE_SIZE, which will be 512MiB, the same as what
803	 * KASLR uses.
804	 *
805	 * Also relocate it if image_offset is zero, i.e. the kernel wasn't
806	 * loaded by LoadImage, but rather by a bootloader that called the
807	 * handover entry. The reason we must always relocate in this case is
808	 * to handle the case of systemd-boot booting a unified kernel image,
809	 * which is a PE executable that contains the bzImage and an initrd as
810	 * COFF sections. The initrd section is placed after the bzImage
811	 * without ensuring that there are at least init_size bytes available
812	 * for the bzImage, and thus the compressed kernel's startup code may
813	 * overwrite the initrd unless it is moved out of the way.
814	 */
815
816	buffer_start = ALIGN(bzimage_addr - image_offset,
817			     hdr->kernel_alignment);
818	buffer_end = buffer_start + hdr->init_size;
819
820	if ((buffer_start < LOAD_PHYSICAL_ADDR)				     ||
821	    (IS_ENABLED(CONFIG_X86_32) && buffer_end > KERNEL_IMAGE_SIZE)    ||
822	    (IS_ENABLED(CONFIG_X86_64) && buffer_end > MAXMEM_X86_64_4LEVEL) ||
823	    (image_offset == 0)) {
824		extern char _bss[];
825
826		status = efi_relocate_kernel(&bzimage_addr,
827					     (unsigned long)_bss - bzimage_addr,
828					     hdr->init_size,
829					     hdr->pref_address,
830					     hdr->kernel_alignment,
831					     LOAD_PHYSICAL_ADDR);
832		if (status != EFI_SUCCESS) {
833			efi_err("efi_relocate_kernel() failed!\n");
834			goto fail;
835		}
836		/*
837		 * Now that we've copied the kernel elsewhere, we no longer
838		 * have a set up block before startup_32(), so reset image_offset
839		 * to zero in case it was set earlier.
840		 */
841		image_offset = 0;
842	}
843
844#ifdef CONFIG_CMDLINE_BOOL
845	status = efi_parse_options(CONFIG_CMDLINE);
846	if (status != EFI_SUCCESS) {
847		efi_err("Failed to parse options\n");
848		goto fail;
849	}
850#endif
851	if (!IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) {
852		unsigned long cmdline_paddr = ((u64)hdr->cmd_line_ptr |
853					       ((u64)boot_params->ext_cmd_line_ptr << 32));
854		status = efi_parse_options((char *)cmdline_paddr);
855		if (status != EFI_SUCCESS) {
856			efi_err("Failed to parse options\n");
857			goto fail;
858		}
859	}
860
 
 
 
 
 
 
861	/*
862	 * At this point, an initrd may already have been loaded by the
863	 * bootloader and passed via bootparams. We permit an initrd loaded
864	 * from the LINUX_EFI_INITRD_MEDIA_GUID device path to supersede it.
865	 *
866	 * If the device path is not present, any command-line initrd=
867	 * arguments will be processed only if image is not NULL, which will be
868	 * the case only if we were loaded via the PE entry point.
869	 */
870	status = efi_load_initrd(image, hdr->initrd_addr_max, ULONG_MAX,
871				 &initrd);
872	if (status != EFI_SUCCESS)
873		goto fail;
874	if (initrd && initrd->size > 0) {
875		efi_set_u64_split(initrd->base, &hdr->ramdisk_image,
876				  &boot_params->ext_ramdisk_image);
877		efi_set_u64_split(initrd->size, &hdr->ramdisk_size,
878				  &boot_params->ext_ramdisk_size);
879	}
880
881
882	/*
883	 * If the boot loader gave us a value for secure_boot then we use that,
884	 * otherwise we ask the BIOS.
885	 */
886	if (boot_params->secure_boot == efi_secureboot_mode_unset)
887		boot_params->secure_boot = efi_get_secureboot();
888
889	/* Ask the firmware to clear memory on unclean shutdown */
890	efi_enable_reset_attack_mitigation();
891
892	efi_random_get_seed();
893
894	efi_retrieve_tpm2_eventlog();
895
896	setup_graphics(boot_params);
897
898	setup_efi_pci(boot_params);
899
900	setup_quirks(boot_params, bzimage_addr, buffer_end - buffer_start);
 
 
901
902	status = exit_boot(boot_params, handle);
903	if (status != EFI_SUCCESS) {
904		efi_err("exit_boot() failed!\n");
905		goto fail;
906	}
907
908	return bzimage_addr;
 
 
 
 
 
 
 
 
909fail:
910	efi_err("efi_main() failed!\n");
911
912	efi_exit(handle, status);
913}