Loading...
1/*
2 * Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
3 *
4 * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
5 * Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
6 * basis. Clients can directly request any frequency that the chip can
7 * deliver using the standard clk framework. In addition, the device can
8 * be configured and activated via the devicetree.
9 *
10 * Copyright (C) 2014, Topic Embedded Products
11 * Licenced under GPL
12 */
13#include <linux/clk.h>
14#include <linux/clk-provider.h>
15#include <linux/delay.h>
16#include <linux/module.h>
17#include <linux/i2c.h>
18#include <linux/regmap.h>
19#include <linux/regulator/consumer.h>
20#include <linux/slab.h>
21#include <linux/gcd.h>
22
23/* Each chip has different number of PLLs and outputs, for example:
24 * The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
25 * Model this as 2 PLL clocks which are parents to the outputs.
26 */
27
28struct clk_cdce925_chip_info {
29 int num_plls;
30 int num_outputs;
31};
32
33#define MAX_NUMBER_OF_PLLS 4
34#define MAX_NUMBER_OF_OUTPUTS 9
35
36#define CDCE925_REG_GLOBAL1 0x01
37#define CDCE925_REG_Y1SPIPDIVH 0x02
38#define CDCE925_REG_PDIVL 0x03
39#define CDCE925_REG_XCSEL 0x05
40/* PLL parameters start at 0x10, steps of 0x10 */
41#define CDCE925_OFFSET_PLL 0x10
42/* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
43#define CDCE925_PLL_MUX_OUTPUTS 0x14
44#define CDCE925_PLL_MULDIV 0x18
45
46#define CDCE925_PLL_FREQUENCY_MIN 80000000ul
47#define CDCE925_PLL_FREQUENCY_MAX 230000000ul
48struct clk_cdce925_chip;
49
50struct clk_cdce925_output {
51 struct clk_hw hw;
52 struct clk_cdce925_chip *chip;
53 u8 index;
54 u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
55};
56#define to_clk_cdce925_output(_hw) \
57 container_of(_hw, struct clk_cdce925_output, hw)
58
59struct clk_cdce925_pll {
60 struct clk_hw hw;
61 struct clk_cdce925_chip *chip;
62 u8 index;
63 u16 m; /* 1..511 */
64 u16 n; /* 1..4095 */
65};
66#define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw)
67
68struct clk_cdce925_chip {
69 struct regmap *regmap;
70 struct i2c_client *i2c_client;
71 const struct clk_cdce925_chip_info *chip_info;
72 struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
73 struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
74};
75
76/* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
77
78static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
79 u16 n, u16 m)
80{
81 if ((!m || !n) || (m == n))
82 return parent_rate; /* In bypass mode runs at same frequency */
83 return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
84}
85
86static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
87 unsigned long parent_rate)
88{
89 /* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
90 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
91
92 return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
93}
94
95static void cdce925_pll_find_rate(unsigned long rate,
96 unsigned long parent_rate, u16 *n, u16 *m)
97{
98 unsigned long un;
99 unsigned long um;
100 unsigned long g;
101
102 if (rate <= parent_rate) {
103 /* Can always deliver parent_rate in bypass mode */
104 rate = parent_rate;
105 *n = 0;
106 *m = 0;
107 } else {
108 /* In PLL mode, need to apply min/max range */
109 if (rate < CDCE925_PLL_FREQUENCY_MIN)
110 rate = CDCE925_PLL_FREQUENCY_MIN;
111 else if (rate > CDCE925_PLL_FREQUENCY_MAX)
112 rate = CDCE925_PLL_FREQUENCY_MAX;
113
114 g = gcd(rate, parent_rate);
115 um = parent_rate / g;
116 un = rate / g;
117 /* When outside hw range, reduce to fit (rounding errors) */
118 while ((un > 4095) || (um > 511)) {
119 un >>= 1;
120 um >>= 1;
121 }
122 if (un == 0)
123 un = 1;
124 if (um == 0)
125 um = 1;
126
127 *n = un;
128 *m = um;
129 }
130}
131
132static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
133 unsigned long *parent_rate)
134{
135 u16 n, m;
136
137 cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
138 return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
139}
140
141static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
142 unsigned long parent_rate)
143{
144 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
145
146 if (!rate || (rate == parent_rate)) {
147 data->m = 0; /* Bypass mode */
148 data->n = 0;
149 return 0;
150 }
151
152 if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
153 (rate > CDCE925_PLL_FREQUENCY_MAX)) {
154 pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
155 return -EINVAL;
156 }
157
158 if (rate < parent_rate) {
159 pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
160 rate, parent_rate);
161 return -EINVAL;
162 }
163
164 cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
165 return 0;
166}
167
168
169/* calculate p = max(0, 4 - int(log2 (n/m))) */
170static u8 cdce925_pll_calc_p(u16 n, u16 m)
171{
172 u8 p;
173 u16 r = n / m;
174
175 if (r >= 16)
176 return 0;
177 p = 4;
178 while (r > 1) {
179 r >>= 1;
180 --p;
181 }
182 return p;
183}
184
185/* Returns VCO range bits for VCO1_0_RANGE */
186static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
187{
188 struct clk *parent = clk_get_parent(hw->clk);
189 unsigned long rate = clk_get_rate(parent);
190
191 rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
192 if (rate >= 175000000)
193 return 0x3;
194 if (rate >= 150000000)
195 return 0x02;
196 if (rate >= 125000000)
197 return 0x01;
198 return 0x00;
199}
200
201/* I2C clock, hence everything must happen in (un)prepare because this
202 * may sleep */
203static int cdce925_pll_prepare(struct clk_hw *hw)
204{
205 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
206 u16 n = data->n;
207 u16 m = data->m;
208 u16 r;
209 u8 q;
210 u8 p;
211 u16 nn;
212 u8 pll[4]; /* Bits are spread out over 4 byte registers */
213 u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
214 unsigned i;
215
216 if ((!m || !n) || (m == n)) {
217 /* Set PLL mux to bypass mode, leave the rest as is */
218 regmap_update_bits(data->chip->regmap,
219 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
220 } else {
221 /* According to data sheet: */
222 /* p = max(0, 4 - int(log2 (n/m))) */
223 p = cdce925_pll_calc_p(n, m);
224 /* nn = n * 2^p */
225 nn = n * BIT(p);
226 /* q = int(nn/m) */
227 q = nn / m;
228 if ((q < 16) || (q > 63)) {
229 pr_debug("%s invalid q=%d\n", __func__, q);
230 return -EINVAL;
231 }
232 r = nn - (m*q);
233 if (r > 511) {
234 pr_debug("%s invalid r=%d\n", __func__, r);
235 return -EINVAL;
236 }
237 pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
238 n, m, p, q, r);
239 /* encode into register bits */
240 pll[0] = n >> 4;
241 pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
242 pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
243 pll[3] = ((q & 0x07) << 5) | (p << 2) |
244 cdce925_pll_calc_range_bits(hw, n, m);
245 /* Write to registers */
246 for (i = 0; i < ARRAY_SIZE(pll); ++i)
247 regmap_write(data->chip->regmap,
248 reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
249 /* Enable PLL */
250 regmap_update_bits(data->chip->regmap,
251 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
252 }
253
254 return 0;
255}
256
257static void cdce925_pll_unprepare(struct clk_hw *hw)
258{
259 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
260 u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
261
262 regmap_update_bits(data->chip->regmap,
263 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
264}
265
266static const struct clk_ops cdce925_pll_ops = {
267 .prepare = cdce925_pll_prepare,
268 .unprepare = cdce925_pll_unprepare,
269 .recalc_rate = cdce925_pll_recalc_rate,
270 .round_rate = cdce925_pll_round_rate,
271 .set_rate = cdce925_pll_set_rate,
272};
273
274
275static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
276{
277 switch (data->index) {
278 case 0:
279 regmap_update_bits(data->chip->regmap,
280 CDCE925_REG_Y1SPIPDIVH,
281 0x03, (pdiv >> 8) & 0x03);
282 regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
283 break;
284 case 1:
285 regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
286 break;
287 case 2:
288 regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
289 break;
290 case 3:
291 regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
292 break;
293 case 4:
294 regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
295 break;
296 case 5:
297 regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
298 break;
299 case 6:
300 regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
301 break;
302 case 7:
303 regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
304 break;
305 case 8:
306 regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
307 break;
308 }
309}
310
311static void cdce925_clk_activate(struct clk_cdce925_output *data)
312{
313 switch (data->index) {
314 case 0:
315 regmap_update_bits(data->chip->regmap,
316 CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
317 break;
318 case 1:
319 case 2:
320 regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
321 break;
322 case 3:
323 case 4:
324 regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
325 break;
326 case 5:
327 case 6:
328 regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
329 break;
330 case 7:
331 case 8:
332 regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
333 break;
334 }
335}
336
337static int cdce925_clk_prepare(struct clk_hw *hw)
338{
339 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
340
341 cdce925_clk_set_pdiv(data, data->pdiv);
342 cdce925_clk_activate(data);
343 return 0;
344}
345
346static void cdce925_clk_unprepare(struct clk_hw *hw)
347{
348 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
349
350 /* Disable clock by setting divider to "0" */
351 cdce925_clk_set_pdiv(data, 0);
352}
353
354static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
355 unsigned long parent_rate)
356{
357 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
358
359 if (data->pdiv)
360 return parent_rate / data->pdiv;
361 return 0;
362}
363
364static u16 cdce925_calc_divider(unsigned long rate,
365 unsigned long parent_rate)
366{
367 unsigned long divider;
368
369 if (!rate)
370 return 0;
371 if (rate >= parent_rate)
372 return 1;
373
374 divider = DIV_ROUND_CLOSEST(parent_rate, rate);
375 if (divider > 0x7F)
376 divider = 0x7F;
377
378 return (u16)divider;
379}
380
381static unsigned long cdce925_clk_best_parent_rate(
382 struct clk_hw *hw, unsigned long rate)
383{
384 struct clk *pll = clk_get_parent(hw->clk);
385 struct clk *root = clk_get_parent(pll);
386 unsigned long root_rate = clk_get_rate(root);
387 unsigned long best_rate_error = rate;
388 u16 pdiv_min;
389 u16 pdiv_max;
390 u16 pdiv_best;
391 u16 pdiv_now;
392
393 if (root_rate % rate == 0)
394 return root_rate; /* Don't need the PLL, use bypass */
395
396 pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
397 pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
398
399 if (pdiv_min > pdiv_max)
400 return 0; /* No can do? */
401
402 pdiv_best = pdiv_min;
403 for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
404 unsigned long target_rate = rate * pdiv_now;
405 long pll_rate = clk_round_rate(pll, target_rate);
406 unsigned long actual_rate;
407 unsigned long rate_error;
408
409 if (pll_rate <= 0)
410 continue;
411 actual_rate = pll_rate / pdiv_now;
412 rate_error = abs((long)actual_rate - (long)rate);
413 if (rate_error < best_rate_error) {
414 pdiv_best = pdiv_now;
415 best_rate_error = rate_error;
416 }
417 /* TODO: Consider PLL frequency based on smaller n/m values
418 * and pick the better one if the error is equal */
419 }
420
421 return rate * pdiv_best;
422}
423
424static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
425 unsigned long *parent_rate)
426{
427 unsigned long l_parent_rate = *parent_rate;
428 u16 divider = cdce925_calc_divider(rate, l_parent_rate);
429
430 if (l_parent_rate / divider != rate) {
431 l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
432 divider = cdce925_calc_divider(rate, l_parent_rate);
433 *parent_rate = l_parent_rate;
434 }
435
436 if (divider)
437 return (long)(l_parent_rate / divider);
438 return 0;
439}
440
441static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
442 unsigned long parent_rate)
443{
444 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
445
446 data->pdiv = cdce925_calc_divider(rate, parent_rate);
447
448 return 0;
449}
450
451static const struct clk_ops cdce925_clk_ops = {
452 .prepare = cdce925_clk_prepare,
453 .unprepare = cdce925_clk_unprepare,
454 .recalc_rate = cdce925_clk_recalc_rate,
455 .round_rate = cdce925_clk_round_rate,
456 .set_rate = cdce925_clk_set_rate,
457};
458
459
460static u16 cdce925_y1_calc_divider(unsigned long rate,
461 unsigned long parent_rate)
462{
463 unsigned long divider;
464
465 if (!rate)
466 return 0;
467 if (rate >= parent_rate)
468 return 1;
469
470 divider = DIV_ROUND_CLOSEST(parent_rate, rate);
471 if (divider > 0x3FF) /* Y1 has 10-bit divider */
472 divider = 0x3FF;
473
474 return (u16)divider;
475}
476
477static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
478 unsigned long *parent_rate)
479{
480 unsigned long l_parent_rate = *parent_rate;
481 u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
482
483 if (divider)
484 return (long)(l_parent_rate / divider);
485 return 0;
486}
487
488static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
489 unsigned long parent_rate)
490{
491 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
492
493 data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
494
495 return 0;
496}
497
498static const struct clk_ops cdce925_clk_y1_ops = {
499 .prepare = cdce925_clk_prepare,
500 .unprepare = cdce925_clk_unprepare,
501 .recalc_rate = cdce925_clk_recalc_rate,
502 .round_rate = cdce925_clk_y1_round_rate,
503 .set_rate = cdce925_clk_y1_set_rate,
504};
505
506#define CDCE925_I2C_COMMAND_BLOCK_TRANSFER 0x00
507#define CDCE925_I2C_COMMAND_BYTE_TRANSFER 0x80
508
509static int cdce925_regmap_i2c_write(
510 void *context, const void *data, size_t count)
511{
512 struct device *dev = context;
513 struct i2c_client *i2c = to_i2c_client(dev);
514 int ret;
515 u8 reg_data[2];
516
517 if (count != 2)
518 return -ENOTSUPP;
519
520 /* First byte is command code */
521 reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
522 reg_data[1] = ((u8 *)data)[1];
523
524 dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
525 reg_data[0], reg_data[1]);
526
527 ret = i2c_master_send(i2c, reg_data, count);
528 if (likely(ret == count))
529 return 0;
530 else if (ret < 0)
531 return ret;
532 else
533 return -EIO;
534}
535
536static int cdce925_regmap_i2c_read(void *context,
537 const void *reg, size_t reg_size, void *val, size_t val_size)
538{
539 struct device *dev = context;
540 struct i2c_client *i2c = to_i2c_client(dev);
541 struct i2c_msg xfer[2];
542 int ret;
543 u8 reg_data[2];
544
545 if (reg_size != 1)
546 return -ENOTSUPP;
547
548 xfer[0].addr = i2c->addr;
549 xfer[0].flags = 0;
550 xfer[0].buf = reg_data;
551 if (val_size == 1) {
552 reg_data[0] =
553 CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
554 xfer[0].len = 1;
555 } else {
556 reg_data[0] =
557 CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
558 reg_data[1] = val_size;
559 xfer[0].len = 2;
560 }
561
562 xfer[1].addr = i2c->addr;
563 xfer[1].flags = I2C_M_RD;
564 xfer[1].len = val_size;
565 xfer[1].buf = val;
566
567 ret = i2c_transfer(i2c->adapter, xfer, 2);
568 if (likely(ret == 2)) {
569 dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
570 reg_size, val_size, reg_data[0], *((u8 *)val));
571 return 0;
572 } else if (ret < 0)
573 return ret;
574 else
575 return -EIO;
576}
577
578static struct clk_hw *
579of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
580{
581 struct clk_cdce925_chip *data = _data;
582 unsigned int idx = clkspec->args[0];
583
584 if (idx >= ARRAY_SIZE(data->clk)) {
585 pr_err("%s: invalid index %u\n", __func__, idx);
586 return ERR_PTR(-EINVAL);
587 }
588
589 return &data->clk[idx].hw;
590}
591
592static int cdce925_regulator_enable(struct device *dev, const char *name)
593{
594 int err;
595
596 err = devm_regulator_get_enable(dev, name);
597 if (err)
598 dev_err_probe(dev, err, "Failed to enable %s:\n", name);
599
600 return err;
601}
602
603/* The CDCE925 uses a funky way to read/write registers. Bulk mode is
604 * just weird, so just use the single byte mode exclusively. */
605static struct regmap_bus regmap_cdce925_bus = {
606 .write = cdce925_regmap_i2c_write,
607 .read = cdce925_regmap_i2c_read,
608};
609
610static int cdce925_probe(struct i2c_client *client)
611{
612 struct clk_cdce925_chip *data;
613 struct device_node *node = client->dev.of_node;
614 const char *parent_name;
615 const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
616 struct clk_init_data init;
617 u32 value;
618 int i;
619 int err;
620 struct device_node *np_output;
621 char child_name[6];
622 struct regmap_config config = {
623 .name = "configuration0",
624 .reg_bits = 8,
625 .val_bits = 8,
626 .cache_type = REGCACHE_MAPLE,
627 };
628
629 dev_dbg(&client->dev, "%s\n", __func__);
630
631 err = cdce925_regulator_enable(&client->dev, "vdd");
632 if (err)
633 return err;
634
635 err = cdce925_regulator_enable(&client->dev, "vddout");
636 if (err)
637 return err;
638
639 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
640 if (!data)
641 return -ENOMEM;
642
643 data->i2c_client = client;
644 data->chip_info = i2c_get_match_data(client);
645 config.max_register = CDCE925_OFFSET_PLL +
646 data->chip_info->num_plls * 0x10 - 1;
647 data->regmap = devm_regmap_init(&client->dev, ®map_cdce925_bus,
648 &client->dev, &config);
649 if (IS_ERR(data->regmap)) {
650 dev_err(&client->dev, "failed to allocate register map\n");
651 return PTR_ERR(data->regmap);
652 }
653 i2c_set_clientdata(client, data);
654
655 parent_name = of_clk_get_parent_name(node, 0);
656 if (!parent_name) {
657 dev_err(&client->dev, "missing parent clock\n");
658 return -ENODEV;
659 }
660 dev_dbg(&client->dev, "parent is: %s\n", parent_name);
661
662 if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
663 regmap_write(data->regmap,
664 CDCE925_REG_XCSEL, (value << 3) & 0xF8);
665 /* PWDN bit */
666 regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
667
668 /* Set input source for Y1 to be the XTAL */
669 regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
670
671 init.ops = &cdce925_pll_ops;
672 init.flags = 0;
673 init.parent_names = &parent_name;
674 init.num_parents = 1;
675
676 /* Register PLL clocks */
677 for (i = 0; i < data->chip_info->num_plls; ++i) {
678 pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d",
679 client->dev.of_node, i);
680 if (!pll_clk_name[i]) {
681 err = -ENOMEM;
682 goto error;
683 }
684 init.name = pll_clk_name[i];
685 data->pll[i].chip = data;
686 data->pll[i].hw.init = &init;
687 data->pll[i].index = i;
688 err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
689 if (err) {
690 dev_err(&client->dev, "Failed register PLL %d\n", i);
691 goto error;
692 }
693 sprintf(child_name, "PLL%d", i+1);
694 np_output = of_get_child_by_name(node, child_name);
695 if (!np_output)
696 continue;
697 if (!of_property_read_u32(np_output,
698 "clock-frequency", &value)) {
699 err = clk_set_rate(data->pll[i].hw.clk, value);
700 if (err)
701 dev_err(&client->dev,
702 "unable to set PLL frequency %ud\n",
703 value);
704 }
705 if (!of_property_read_u32(np_output,
706 "spread-spectrum", &value)) {
707 u8 flag = of_property_read_bool(np_output,
708 "spread-spectrum-center") ? 0x80 : 0x00;
709 regmap_update_bits(data->regmap,
710 0x16 + (i*CDCE925_OFFSET_PLL),
711 0x80, flag);
712 regmap_update_bits(data->regmap,
713 0x12 + (i*CDCE925_OFFSET_PLL),
714 0x07, value & 0x07);
715 }
716 of_node_put(np_output);
717 }
718
719 /* Register output clock Y1 */
720 init.ops = &cdce925_clk_y1_ops;
721 init.flags = 0;
722 init.num_parents = 1;
723 init.parent_names = &parent_name; /* Mux Y1 to input */
724 init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node);
725 if (!init.name) {
726 err = -ENOMEM;
727 goto error;
728 }
729 data->clk[0].chip = data;
730 data->clk[0].hw.init = &init;
731 data->clk[0].index = 0;
732 data->clk[0].pdiv = 1;
733 err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
734 kfree(init.name); /* clock framework made a copy of the name */
735 if (err) {
736 dev_err(&client->dev, "clock registration Y1 failed\n");
737 goto error;
738 }
739
740 /* Register output clocks Y2 .. Y5*/
741 init.ops = &cdce925_clk_ops;
742 init.flags = CLK_SET_RATE_PARENT;
743 init.num_parents = 1;
744 for (i = 1; i < data->chip_info->num_outputs; ++i) {
745 init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d",
746 client->dev.of_node, i+1);
747 if (!init.name) {
748 err = -ENOMEM;
749 goto error;
750 }
751 data->clk[i].chip = data;
752 data->clk[i].hw.init = &init;
753 data->clk[i].index = i;
754 data->clk[i].pdiv = 1;
755 switch (i) {
756 case 1:
757 case 2:
758 /* Mux Y2/3 to PLL1 */
759 init.parent_names = &pll_clk_name[0];
760 break;
761 case 3:
762 case 4:
763 /* Mux Y4/5 to PLL2 */
764 init.parent_names = &pll_clk_name[1];
765 break;
766 case 5:
767 case 6:
768 /* Mux Y6/7 to PLL3 */
769 init.parent_names = &pll_clk_name[2];
770 break;
771 case 7:
772 case 8:
773 /* Mux Y8/9 to PLL4 */
774 init.parent_names = &pll_clk_name[3];
775 break;
776 }
777 err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
778 kfree(init.name); /* clock framework made a copy of the name */
779 if (err) {
780 dev_err(&client->dev, "clock registration failed\n");
781 goto error;
782 }
783 }
784
785 /* Register the output clocks */
786 err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
787 data);
788 if (err)
789 dev_err(&client->dev, "unable to add OF clock provider\n");
790
791 err = 0;
792
793error:
794 for (i = 0; i < data->chip_info->num_plls; ++i)
795 /* clock framework made a copy of the name */
796 kfree(pll_clk_name[i]);
797
798 return err;
799}
800
801static const struct clk_cdce925_chip_info clk_cdce913_info = {
802 .num_plls = 1,
803 .num_outputs = 3,
804};
805
806static const struct clk_cdce925_chip_info clk_cdce925_info = {
807 .num_plls = 2,
808 .num_outputs = 5,
809};
810
811static const struct clk_cdce925_chip_info clk_cdce937_info = {
812 .num_plls = 3,
813 .num_outputs = 7,
814};
815
816static const struct clk_cdce925_chip_info clk_cdce949_info = {
817 .num_plls = 4,
818 .num_outputs = 9,
819};
820
821static const struct i2c_device_id cdce925_id[] = {
822 { "cdce913", (kernel_ulong_t)&clk_cdce913_info },
823 { "cdce925", (kernel_ulong_t)&clk_cdce925_info },
824 { "cdce937", (kernel_ulong_t)&clk_cdce937_info },
825 { "cdce949", (kernel_ulong_t)&clk_cdce949_info },
826 { }
827};
828MODULE_DEVICE_TABLE(i2c, cdce925_id);
829
830static const struct of_device_id clk_cdce925_of_match[] = {
831 { .compatible = "ti,cdce913", .data = &clk_cdce913_info },
832 { .compatible = "ti,cdce925", .data = &clk_cdce925_info },
833 { .compatible = "ti,cdce937", .data = &clk_cdce937_info },
834 { .compatible = "ti,cdce949", .data = &clk_cdce949_info },
835 { }
836};
837MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
838
839static struct i2c_driver cdce925_driver = {
840 .driver = {
841 .name = "cdce925",
842 .of_match_table = clk_cdce925_of_match,
843 },
844 .probe = cdce925_probe,
845 .id_table = cdce925_id,
846};
847module_i2c_driver(cdce925_driver);
848
849MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
850MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
851MODULE_LICENSE("GPL");
1/*
2 * Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
3 *
4 * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
5 * Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
6 * basis. Clients can directly request any frequency that the chip can
7 * deliver using the standard clk framework. In addition, the device can
8 * be configured and activated via the devicetree.
9 *
10 * Copyright (C) 2014, Topic Embedded Products
11 * Licenced under GPL
12 */
13#include <linux/clk.h>
14#include <linux/clk-provider.h>
15#include <linux/delay.h>
16#include <linux/module.h>
17#include <linux/i2c.h>
18#include <linux/regmap.h>
19#include <linux/regulator/consumer.h>
20#include <linux/slab.h>
21#include <linux/gcd.h>
22
23/* Each chip has different number of PLLs and outputs, for example:
24 * The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
25 * Model this as 2 PLL clocks which are parents to the outputs.
26 */
27
28enum {
29 CDCE913,
30 CDCE925,
31 CDCE937,
32 CDCE949,
33};
34
35struct clk_cdce925_chip_info {
36 int num_plls;
37 int num_outputs;
38};
39
40static const struct clk_cdce925_chip_info clk_cdce925_chip_info_tbl[] = {
41 [CDCE913] = { .num_plls = 1, .num_outputs = 3 },
42 [CDCE925] = { .num_plls = 2, .num_outputs = 5 },
43 [CDCE937] = { .num_plls = 3, .num_outputs = 7 },
44 [CDCE949] = { .num_plls = 4, .num_outputs = 9 },
45};
46
47#define MAX_NUMBER_OF_PLLS 4
48#define MAX_NUMBER_OF_OUTPUTS 9
49
50#define CDCE925_REG_GLOBAL1 0x01
51#define CDCE925_REG_Y1SPIPDIVH 0x02
52#define CDCE925_REG_PDIVL 0x03
53#define CDCE925_REG_XCSEL 0x05
54/* PLL parameters start at 0x10, steps of 0x10 */
55#define CDCE925_OFFSET_PLL 0x10
56/* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
57#define CDCE925_PLL_MUX_OUTPUTS 0x14
58#define CDCE925_PLL_MULDIV 0x18
59
60#define CDCE925_PLL_FREQUENCY_MIN 80000000ul
61#define CDCE925_PLL_FREQUENCY_MAX 230000000ul
62struct clk_cdce925_chip;
63
64struct clk_cdce925_output {
65 struct clk_hw hw;
66 struct clk_cdce925_chip *chip;
67 u8 index;
68 u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
69};
70#define to_clk_cdce925_output(_hw) \
71 container_of(_hw, struct clk_cdce925_output, hw)
72
73struct clk_cdce925_pll {
74 struct clk_hw hw;
75 struct clk_cdce925_chip *chip;
76 u8 index;
77 u16 m; /* 1..511 */
78 u16 n; /* 1..4095 */
79};
80#define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw)
81
82struct clk_cdce925_chip {
83 struct regmap *regmap;
84 struct i2c_client *i2c_client;
85 const struct clk_cdce925_chip_info *chip_info;
86 struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
87 struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
88};
89
90/* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
91
92static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
93 u16 n, u16 m)
94{
95 if ((!m || !n) || (m == n))
96 return parent_rate; /* In bypass mode runs at same frequency */
97 return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
98}
99
100static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
101 unsigned long parent_rate)
102{
103 /* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
104 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
105
106 return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
107}
108
109static void cdce925_pll_find_rate(unsigned long rate,
110 unsigned long parent_rate, u16 *n, u16 *m)
111{
112 unsigned long un;
113 unsigned long um;
114 unsigned long g;
115
116 if (rate <= parent_rate) {
117 /* Can always deliver parent_rate in bypass mode */
118 rate = parent_rate;
119 *n = 0;
120 *m = 0;
121 } else {
122 /* In PLL mode, need to apply min/max range */
123 if (rate < CDCE925_PLL_FREQUENCY_MIN)
124 rate = CDCE925_PLL_FREQUENCY_MIN;
125 else if (rate > CDCE925_PLL_FREQUENCY_MAX)
126 rate = CDCE925_PLL_FREQUENCY_MAX;
127
128 g = gcd(rate, parent_rate);
129 um = parent_rate / g;
130 un = rate / g;
131 /* When outside hw range, reduce to fit (rounding errors) */
132 while ((un > 4095) || (um > 511)) {
133 un >>= 1;
134 um >>= 1;
135 }
136 if (un == 0)
137 un = 1;
138 if (um == 0)
139 um = 1;
140
141 *n = un;
142 *m = um;
143 }
144}
145
146static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
147 unsigned long *parent_rate)
148{
149 u16 n, m;
150
151 cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
152 return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
153}
154
155static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
156 unsigned long parent_rate)
157{
158 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
159
160 if (!rate || (rate == parent_rate)) {
161 data->m = 0; /* Bypass mode */
162 data->n = 0;
163 return 0;
164 }
165
166 if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
167 (rate > CDCE925_PLL_FREQUENCY_MAX)) {
168 pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
169 return -EINVAL;
170 }
171
172 if (rate < parent_rate) {
173 pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
174 rate, parent_rate);
175 return -EINVAL;
176 }
177
178 cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
179 return 0;
180}
181
182
183/* calculate p = max(0, 4 - int(log2 (n/m))) */
184static u8 cdce925_pll_calc_p(u16 n, u16 m)
185{
186 u8 p;
187 u16 r = n / m;
188
189 if (r >= 16)
190 return 0;
191 p = 4;
192 while (r > 1) {
193 r >>= 1;
194 --p;
195 }
196 return p;
197}
198
199/* Returns VCO range bits for VCO1_0_RANGE */
200static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
201{
202 struct clk *parent = clk_get_parent(hw->clk);
203 unsigned long rate = clk_get_rate(parent);
204
205 rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
206 if (rate >= 175000000)
207 return 0x3;
208 if (rate >= 150000000)
209 return 0x02;
210 if (rate >= 125000000)
211 return 0x01;
212 return 0x00;
213}
214
215/* I2C clock, hence everything must happen in (un)prepare because this
216 * may sleep */
217static int cdce925_pll_prepare(struct clk_hw *hw)
218{
219 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
220 u16 n = data->n;
221 u16 m = data->m;
222 u16 r;
223 u8 q;
224 u8 p;
225 u16 nn;
226 u8 pll[4]; /* Bits are spread out over 4 byte registers */
227 u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
228 unsigned i;
229
230 if ((!m || !n) || (m == n)) {
231 /* Set PLL mux to bypass mode, leave the rest as is */
232 regmap_update_bits(data->chip->regmap,
233 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
234 } else {
235 /* According to data sheet: */
236 /* p = max(0, 4 - int(log2 (n/m))) */
237 p = cdce925_pll_calc_p(n, m);
238 /* nn = n * 2^p */
239 nn = n * BIT(p);
240 /* q = int(nn/m) */
241 q = nn / m;
242 if ((q < 16) || (q > 63)) {
243 pr_debug("%s invalid q=%d\n", __func__, q);
244 return -EINVAL;
245 }
246 r = nn - (m*q);
247 if (r > 511) {
248 pr_debug("%s invalid r=%d\n", __func__, r);
249 return -EINVAL;
250 }
251 pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
252 n, m, p, q, r);
253 /* encode into register bits */
254 pll[0] = n >> 4;
255 pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
256 pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
257 pll[3] = ((q & 0x07) << 5) | (p << 2) |
258 cdce925_pll_calc_range_bits(hw, n, m);
259 /* Write to registers */
260 for (i = 0; i < ARRAY_SIZE(pll); ++i)
261 regmap_write(data->chip->regmap,
262 reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
263 /* Enable PLL */
264 regmap_update_bits(data->chip->regmap,
265 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
266 }
267
268 return 0;
269}
270
271static void cdce925_pll_unprepare(struct clk_hw *hw)
272{
273 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
274 u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
275
276 regmap_update_bits(data->chip->regmap,
277 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
278}
279
280static const struct clk_ops cdce925_pll_ops = {
281 .prepare = cdce925_pll_prepare,
282 .unprepare = cdce925_pll_unprepare,
283 .recalc_rate = cdce925_pll_recalc_rate,
284 .round_rate = cdce925_pll_round_rate,
285 .set_rate = cdce925_pll_set_rate,
286};
287
288
289static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
290{
291 switch (data->index) {
292 case 0:
293 regmap_update_bits(data->chip->regmap,
294 CDCE925_REG_Y1SPIPDIVH,
295 0x03, (pdiv >> 8) & 0x03);
296 regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
297 break;
298 case 1:
299 regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
300 break;
301 case 2:
302 regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
303 break;
304 case 3:
305 regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
306 break;
307 case 4:
308 regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
309 break;
310 case 5:
311 regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
312 break;
313 case 6:
314 regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
315 break;
316 case 7:
317 regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
318 break;
319 case 8:
320 regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
321 break;
322 }
323}
324
325static void cdce925_clk_activate(struct clk_cdce925_output *data)
326{
327 switch (data->index) {
328 case 0:
329 regmap_update_bits(data->chip->regmap,
330 CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
331 break;
332 case 1:
333 case 2:
334 regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
335 break;
336 case 3:
337 case 4:
338 regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
339 break;
340 case 5:
341 case 6:
342 regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
343 break;
344 case 7:
345 case 8:
346 regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
347 break;
348 }
349}
350
351static int cdce925_clk_prepare(struct clk_hw *hw)
352{
353 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
354
355 cdce925_clk_set_pdiv(data, data->pdiv);
356 cdce925_clk_activate(data);
357 return 0;
358}
359
360static void cdce925_clk_unprepare(struct clk_hw *hw)
361{
362 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
363
364 /* Disable clock by setting divider to "0" */
365 cdce925_clk_set_pdiv(data, 0);
366}
367
368static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
369 unsigned long parent_rate)
370{
371 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
372
373 if (data->pdiv)
374 return parent_rate / data->pdiv;
375 return 0;
376}
377
378static u16 cdce925_calc_divider(unsigned long rate,
379 unsigned long parent_rate)
380{
381 unsigned long divider;
382
383 if (!rate)
384 return 0;
385 if (rate >= parent_rate)
386 return 1;
387
388 divider = DIV_ROUND_CLOSEST(parent_rate, rate);
389 if (divider > 0x7F)
390 divider = 0x7F;
391
392 return (u16)divider;
393}
394
395static unsigned long cdce925_clk_best_parent_rate(
396 struct clk_hw *hw, unsigned long rate)
397{
398 struct clk *pll = clk_get_parent(hw->clk);
399 struct clk *root = clk_get_parent(pll);
400 unsigned long root_rate = clk_get_rate(root);
401 unsigned long best_rate_error = rate;
402 u16 pdiv_min;
403 u16 pdiv_max;
404 u16 pdiv_best;
405 u16 pdiv_now;
406
407 if (root_rate % rate == 0)
408 return root_rate; /* Don't need the PLL, use bypass */
409
410 pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
411 pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
412
413 if (pdiv_min > pdiv_max)
414 return 0; /* No can do? */
415
416 pdiv_best = pdiv_min;
417 for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
418 unsigned long target_rate = rate * pdiv_now;
419 long pll_rate = clk_round_rate(pll, target_rate);
420 unsigned long actual_rate;
421 unsigned long rate_error;
422
423 if (pll_rate <= 0)
424 continue;
425 actual_rate = pll_rate / pdiv_now;
426 rate_error = abs((long)actual_rate - (long)rate);
427 if (rate_error < best_rate_error) {
428 pdiv_best = pdiv_now;
429 best_rate_error = rate_error;
430 }
431 /* TODO: Consider PLL frequency based on smaller n/m values
432 * and pick the better one if the error is equal */
433 }
434
435 return rate * pdiv_best;
436}
437
438static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
439 unsigned long *parent_rate)
440{
441 unsigned long l_parent_rate = *parent_rate;
442 u16 divider = cdce925_calc_divider(rate, l_parent_rate);
443
444 if (l_parent_rate / divider != rate) {
445 l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
446 divider = cdce925_calc_divider(rate, l_parent_rate);
447 *parent_rate = l_parent_rate;
448 }
449
450 if (divider)
451 return (long)(l_parent_rate / divider);
452 return 0;
453}
454
455static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
456 unsigned long parent_rate)
457{
458 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
459
460 data->pdiv = cdce925_calc_divider(rate, parent_rate);
461
462 return 0;
463}
464
465static const struct clk_ops cdce925_clk_ops = {
466 .prepare = cdce925_clk_prepare,
467 .unprepare = cdce925_clk_unprepare,
468 .recalc_rate = cdce925_clk_recalc_rate,
469 .round_rate = cdce925_clk_round_rate,
470 .set_rate = cdce925_clk_set_rate,
471};
472
473
474static u16 cdce925_y1_calc_divider(unsigned long rate,
475 unsigned long parent_rate)
476{
477 unsigned long divider;
478
479 if (!rate)
480 return 0;
481 if (rate >= parent_rate)
482 return 1;
483
484 divider = DIV_ROUND_CLOSEST(parent_rate, rate);
485 if (divider > 0x3FF) /* Y1 has 10-bit divider */
486 divider = 0x3FF;
487
488 return (u16)divider;
489}
490
491static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
492 unsigned long *parent_rate)
493{
494 unsigned long l_parent_rate = *parent_rate;
495 u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
496
497 if (divider)
498 return (long)(l_parent_rate / divider);
499 return 0;
500}
501
502static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
503 unsigned long parent_rate)
504{
505 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
506
507 data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
508
509 return 0;
510}
511
512static const struct clk_ops cdce925_clk_y1_ops = {
513 .prepare = cdce925_clk_prepare,
514 .unprepare = cdce925_clk_unprepare,
515 .recalc_rate = cdce925_clk_recalc_rate,
516 .round_rate = cdce925_clk_y1_round_rate,
517 .set_rate = cdce925_clk_y1_set_rate,
518};
519
520#define CDCE925_I2C_COMMAND_BLOCK_TRANSFER 0x00
521#define CDCE925_I2C_COMMAND_BYTE_TRANSFER 0x80
522
523static int cdce925_regmap_i2c_write(
524 void *context, const void *data, size_t count)
525{
526 struct device *dev = context;
527 struct i2c_client *i2c = to_i2c_client(dev);
528 int ret;
529 u8 reg_data[2];
530
531 if (count != 2)
532 return -ENOTSUPP;
533
534 /* First byte is command code */
535 reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
536 reg_data[1] = ((u8 *)data)[1];
537
538 dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
539 reg_data[0], reg_data[1]);
540
541 ret = i2c_master_send(i2c, reg_data, count);
542 if (likely(ret == count))
543 return 0;
544 else if (ret < 0)
545 return ret;
546 else
547 return -EIO;
548}
549
550static int cdce925_regmap_i2c_read(void *context,
551 const void *reg, size_t reg_size, void *val, size_t val_size)
552{
553 struct device *dev = context;
554 struct i2c_client *i2c = to_i2c_client(dev);
555 struct i2c_msg xfer[2];
556 int ret;
557 u8 reg_data[2];
558
559 if (reg_size != 1)
560 return -ENOTSUPP;
561
562 xfer[0].addr = i2c->addr;
563 xfer[0].flags = 0;
564 xfer[0].buf = reg_data;
565 if (val_size == 1) {
566 reg_data[0] =
567 CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
568 xfer[0].len = 1;
569 } else {
570 reg_data[0] =
571 CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
572 reg_data[1] = val_size;
573 xfer[0].len = 2;
574 }
575
576 xfer[1].addr = i2c->addr;
577 xfer[1].flags = I2C_M_RD;
578 xfer[1].len = val_size;
579 xfer[1].buf = val;
580
581 ret = i2c_transfer(i2c->adapter, xfer, 2);
582 if (likely(ret == 2)) {
583 dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
584 reg_size, val_size, reg_data[0], *((u8 *)val));
585 return 0;
586 } else if (ret < 0)
587 return ret;
588 else
589 return -EIO;
590}
591
592static struct clk_hw *
593of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
594{
595 struct clk_cdce925_chip *data = _data;
596 unsigned int idx = clkspec->args[0];
597
598 if (idx >= ARRAY_SIZE(data->clk)) {
599 pr_err("%s: invalid index %u\n", __func__, idx);
600 return ERR_PTR(-EINVAL);
601 }
602
603 return &data->clk[idx].hw;
604}
605
606static int cdce925_regulator_enable(struct device *dev, const char *name)
607{
608 int err;
609
610 err = devm_regulator_get_enable(dev, name);
611 if (err)
612 dev_err_probe(dev, err, "Failed to enable %s:\n", name);
613
614 return err;
615}
616
617/* The CDCE925 uses a funky way to read/write registers. Bulk mode is
618 * just weird, so just use the single byte mode exclusively. */
619static struct regmap_bus regmap_cdce925_bus = {
620 .write = cdce925_regmap_i2c_write,
621 .read = cdce925_regmap_i2c_read,
622};
623
624static const struct i2c_device_id cdce925_id[] = {
625 { "cdce913", CDCE913 },
626 { "cdce925", CDCE925 },
627 { "cdce937", CDCE937 },
628 { "cdce949", CDCE949 },
629 { }
630};
631MODULE_DEVICE_TABLE(i2c, cdce925_id);
632
633static int cdce925_probe(struct i2c_client *client)
634{
635 struct clk_cdce925_chip *data;
636 struct device_node *node = client->dev.of_node;
637 const struct i2c_device_id *id = i2c_match_id(cdce925_id, client);
638 const char *parent_name;
639 const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
640 struct clk_init_data init;
641 u32 value;
642 int i;
643 int err;
644 struct device_node *np_output;
645 char child_name[6];
646 struct regmap_config config = {
647 .name = "configuration0",
648 .reg_bits = 8,
649 .val_bits = 8,
650 .cache_type = REGCACHE_RBTREE,
651 };
652
653 dev_dbg(&client->dev, "%s\n", __func__);
654
655 err = cdce925_regulator_enable(&client->dev, "vdd");
656 if (err)
657 return err;
658
659 err = cdce925_regulator_enable(&client->dev, "vddout");
660 if (err)
661 return err;
662
663 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
664 if (!data)
665 return -ENOMEM;
666
667 data->i2c_client = client;
668 data->chip_info = &clk_cdce925_chip_info_tbl[id->driver_data];
669 config.max_register = CDCE925_OFFSET_PLL +
670 data->chip_info->num_plls * 0x10 - 1;
671 data->regmap = devm_regmap_init(&client->dev, ®map_cdce925_bus,
672 &client->dev, &config);
673 if (IS_ERR(data->regmap)) {
674 dev_err(&client->dev, "failed to allocate register map\n");
675 return PTR_ERR(data->regmap);
676 }
677 i2c_set_clientdata(client, data);
678
679 parent_name = of_clk_get_parent_name(node, 0);
680 if (!parent_name) {
681 dev_err(&client->dev, "missing parent clock\n");
682 return -ENODEV;
683 }
684 dev_dbg(&client->dev, "parent is: %s\n", parent_name);
685
686 if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
687 regmap_write(data->regmap,
688 CDCE925_REG_XCSEL, (value << 3) & 0xF8);
689 /* PWDN bit */
690 regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
691
692 /* Set input source for Y1 to be the XTAL */
693 regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
694
695 init.ops = &cdce925_pll_ops;
696 init.flags = 0;
697 init.parent_names = &parent_name;
698 init.num_parents = 1;
699
700 /* Register PLL clocks */
701 for (i = 0; i < data->chip_info->num_plls; ++i) {
702 pll_clk_name[i] = kasprintf(GFP_KERNEL, "%pOFn.pll%d",
703 client->dev.of_node, i);
704 init.name = pll_clk_name[i];
705 data->pll[i].chip = data;
706 data->pll[i].hw.init = &init;
707 data->pll[i].index = i;
708 err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
709 if (err) {
710 dev_err(&client->dev, "Failed register PLL %d\n", i);
711 goto error;
712 }
713 sprintf(child_name, "PLL%d", i+1);
714 np_output = of_get_child_by_name(node, child_name);
715 if (!np_output)
716 continue;
717 if (!of_property_read_u32(np_output,
718 "clock-frequency", &value)) {
719 err = clk_set_rate(data->pll[i].hw.clk, value);
720 if (err)
721 dev_err(&client->dev,
722 "unable to set PLL frequency %ud\n",
723 value);
724 }
725 if (!of_property_read_u32(np_output,
726 "spread-spectrum", &value)) {
727 u8 flag = of_property_read_bool(np_output,
728 "spread-spectrum-center") ? 0x80 : 0x00;
729 regmap_update_bits(data->regmap,
730 0x16 + (i*CDCE925_OFFSET_PLL),
731 0x80, flag);
732 regmap_update_bits(data->regmap,
733 0x12 + (i*CDCE925_OFFSET_PLL),
734 0x07, value & 0x07);
735 }
736 of_node_put(np_output);
737 }
738
739 /* Register output clock Y1 */
740 init.ops = &cdce925_clk_y1_ops;
741 init.flags = 0;
742 init.num_parents = 1;
743 init.parent_names = &parent_name; /* Mux Y1 to input */
744 init.name = kasprintf(GFP_KERNEL, "%pOFn.Y1", client->dev.of_node);
745 data->clk[0].chip = data;
746 data->clk[0].hw.init = &init;
747 data->clk[0].index = 0;
748 data->clk[0].pdiv = 1;
749 err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
750 kfree(init.name); /* clock framework made a copy of the name */
751 if (err) {
752 dev_err(&client->dev, "clock registration Y1 failed\n");
753 goto error;
754 }
755
756 /* Register output clocks Y2 .. Y5*/
757 init.ops = &cdce925_clk_ops;
758 init.flags = CLK_SET_RATE_PARENT;
759 init.num_parents = 1;
760 for (i = 1; i < data->chip_info->num_outputs; ++i) {
761 init.name = kasprintf(GFP_KERNEL, "%pOFn.Y%d",
762 client->dev.of_node, i+1);
763 data->clk[i].chip = data;
764 data->clk[i].hw.init = &init;
765 data->clk[i].index = i;
766 data->clk[i].pdiv = 1;
767 switch (i) {
768 case 1:
769 case 2:
770 /* Mux Y2/3 to PLL1 */
771 init.parent_names = &pll_clk_name[0];
772 break;
773 case 3:
774 case 4:
775 /* Mux Y4/5 to PLL2 */
776 init.parent_names = &pll_clk_name[1];
777 break;
778 case 5:
779 case 6:
780 /* Mux Y6/7 to PLL3 */
781 init.parent_names = &pll_clk_name[2];
782 break;
783 case 7:
784 case 8:
785 /* Mux Y8/9 to PLL4 */
786 init.parent_names = &pll_clk_name[3];
787 break;
788 }
789 err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
790 kfree(init.name); /* clock framework made a copy of the name */
791 if (err) {
792 dev_err(&client->dev, "clock registration failed\n");
793 goto error;
794 }
795 }
796
797 /* Register the output clocks */
798 err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
799 data);
800 if (err)
801 dev_err(&client->dev, "unable to add OF clock provider\n");
802
803 err = 0;
804
805error:
806 for (i = 0; i < data->chip_info->num_plls; ++i)
807 /* clock framework made a copy of the name */
808 kfree(pll_clk_name[i]);
809
810 return err;
811}
812
813static const struct of_device_id clk_cdce925_of_match[] = {
814 { .compatible = "ti,cdce913" },
815 { .compatible = "ti,cdce925" },
816 { .compatible = "ti,cdce937" },
817 { .compatible = "ti,cdce949" },
818 { },
819};
820MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
821
822static struct i2c_driver cdce925_driver = {
823 .driver = {
824 .name = "cdce925",
825 .of_match_table = of_match_ptr(clk_cdce925_of_match),
826 },
827 .probe_new = cdce925_probe,
828 .id_table = cdce925_id,
829};
830module_i2c_driver(cdce925_driver);
831
832MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
833MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
834MODULE_LICENSE("GPL");