Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright 2020 Xillybus Ltd, http://xillybus.com
   4 *
   5 * Driver for the XillyUSB FPGA/host framework.
   6 *
   7 * This driver interfaces with a special IP core in an FPGA, setting up
   8 * a pipe between a hardware FIFO in the programmable logic and a device
   9 * file in the host. The number of such pipes and their attributes are
  10 * set up on the logic. This driver detects these automatically and
  11 * creates the device files accordingly.
  12 */
  13
  14#include <linux/types.h>
  15#include <linux/slab.h>
  16#include <linux/list.h>
  17#include <linux/device.h>
  18#include <linux/module.h>
  19#include <asm/byteorder.h>
  20#include <linux/io.h>
  21#include <linux/interrupt.h>
  22#include <linux/sched.h>
  23#include <linux/fs.h>
  24#include <linux/spinlock.h>
  25#include <linux/mutex.h>
  26#include <linux/workqueue.h>
  27#include <linux/crc32.h>
  28#include <linux/poll.h>
  29#include <linux/delay.h>
  30#include <linux/usb.h>
  31
  32#include "xillybus_class.h"
  33
  34MODULE_DESCRIPTION("Driver for XillyUSB FPGA IP Core");
  35MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
  36MODULE_ALIAS("xillyusb");
  37MODULE_LICENSE("GPL v2");
  38
  39#define XILLY_RX_TIMEOUT		(10 * HZ / 1000)
  40#define XILLY_RESPONSE_TIMEOUT		(500 * HZ / 1000)
  41
  42#define BUF_SIZE_ORDER			4
  43#define BUFNUM				8
  44#define LOG2_IDT_FIFO_SIZE		16
  45#define LOG2_INITIAL_FIFO_BUF_SIZE	16
  46
  47#define MSG_EP_NUM			1
  48#define IN_EP_NUM			1
  49
  50static const char xillyname[] = "xillyusb";
  51
  52static unsigned int fifo_buf_order;
  53
  54#define USB_VENDOR_ID_XILINX		0x03fd
  55#define USB_VENDOR_ID_ALTERA		0x09fb
  56
  57#define USB_PRODUCT_ID_XILLYUSB		0xebbe
  58
  59static const struct usb_device_id xillyusb_table[] = {
  60	{ USB_DEVICE(USB_VENDOR_ID_XILINX, USB_PRODUCT_ID_XILLYUSB) },
  61	{ USB_DEVICE(USB_VENDOR_ID_ALTERA, USB_PRODUCT_ID_XILLYUSB) },
  62	{ }
  63};
  64
  65MODULE_DEVICE_TABLE(usb, xillyusb_table);
  66
  67struct xillyusb_dev;
  68
  69struct xillyfifo {
  70	unsigned int bufsize; /* In bytes, always a power of 2 */
  71	unsigned int bufnum;
  72	unsigned int size; /* Lazy: Equals bufsize * bufnum */
  73	unsigned int buf_order;
  74
  75	int fill; /* Number of bytes in the FIFO */
  76	spinlock_t lock;
  77	wait_queue_head_t waitq;
  78
  79	unsigned int readpos;
  80	unsigned int readbuf;
  81	unsigned int writepos;
  82	unsigned int writebuf;
  83	char **mem;
  84};
  85
  86struct xillyusb_channel;
  87
  88struct xillyusb_endpoint {
  89	struct xillyusb_dev *xdev;
  90
  91	struct mutex ep_mutex; /* serialize operations on endpoint */
  92
  93	struct list_head buffers;
  94	struct list_head filled_buffers;
  95	spinlock_t buffers_lock; /* protect these two lists */
  96
  97	unsigned int order;
  98	unsigned int buffer_size;
  99
 100	unsigned int fill_mask;
 101
 102	int outstanding_urbs;
 103
 104	struct usb_anchor anchor;
 105
 106	struct xillyfifo fifo;
 107
 108	struct work_struct workitem;
 109
 110	bool shutting_down;
 111	bool drained;
 112	bool wake_on_drain;
 113
 114	u8 ep_num;
 115};
 116
 117struct xillyusb_channel {
 118	struct xillyusb_dev *xdev;
 119
 120	struct xillyfifo *in_fifo;
 121	struct xillyusb_endpoint *out_ep;
 122	struct mutex lock; /* protect @out_ep, @in_fifo, bit fields below */
 123
 124	struct mutex in_mutex; /* serialize fops on FPGA to host stream */
 125	struct mutex out_mutex; /* serialize fops on host to FPGA stream */
 126	wait_queue_head_t flushq;
 127
 128	int chan_idx;
 129
 130	u32 in_consumed_bytes;
 131	u32 in_current_checkpoint;
 132	u32 out_bytes;
 133
 134	unsigned int in_log2_element_size;
 135	unsigned int out_log2_element_size;
 136	unsigned int in_log2_fifo_size;
 137	unsigned int out_log2_fifo_size;
 138
 139	unsigned int read_data_ok; /* EOF not arrived (yet) */
 140	unsigned int poll_used;
 141	unsigned int flushing;
 142	unsigned int flushed;
 143	unsigned int canceled;
 144
 145	/* Bit fields protected by @lock except for initialization */
 146	unsigned readable:1;
 147	unsigned writable:1;
 148	unsigned open_for_read:1;
 149	unsigned open_for_write:1;
 150	unsigned in_synchronous:1;
 151	unsigned out_synchronous:1;
 152	unsigned in_seekable:1;
 153	unsigned out_seekable:1;
 154};
 155
 156struct xillybuffer {
 157	struct list_head entry;
 158	struct xillyusb_endpoint *ep;
 159	void *buf;
 160	unsigned int len;
 161};
 162
 163struct xillyusb_dev {
 164	struct xillyusb_channel *channels;
 165
 166	struct usb_device	*udev;
 167	struct device		*dev; /* For dev_err() and such */
 168	struct kref		kref;
 169	struct workqueue_struct	*workq;
 170
 171	int error;
 172	spinlock_t error_lock; /* protect @error */
 173	struct work_struct wakeup_workitem;
 174
 175	int num_channels;
 176
 177	struct xillyusb_endpoint *msg_ep;
 178	struct xillyusb_endpoint *in_ep;
 179
 180	struct mutex msg_mutex; /* serialize opcode transmission */
 181	int in_bytes_left;
 182	int leftover_chan_num;
 183	unsigned int in_counter;
 184	struct mutex process_in_mutex; /* synchronize wakeup_all() */
 185};
 186
 187/*
 188 * kref_mutex is used in xillyusb_open() to prevent the xillyusb_dev
 189 * struct from being freed during the gap between being found by
 190 * xillybus_find_inode() and having its reference count incremented.
 191 */
 192
 193static DEFINE_MUTEX(kref_mutex);
 194
 195/* FPGA to host opcodes */
 196enum {
 197	OPCODE_DATA = 0,
 198	OPCODE_QUIESCE_ACK = 1,
 199	OPCODE_EOF = 2,
 200	OPCODE_REACHED_CHECKPOINT = 3,
 201	OPCODE_CANCELED_CHECKPOINT = 4,
 202};
 203
 204/* Host to FPGA opcodes */
 205enum {
 206	OPCODE_QUIESCE = 0,
 207	OPCODE_REQ_IDT = 1,
 208	OPCODE_SET_CHECKPOINT = 2,
 209	OPCODE_CLOSE = 3,
 210	OPCODE_SET_PUSH = 4,
 211	OPCODE_UPDATE_PUSH = 5,
 212	OPCODE_CANCEL_CHECKPOINT = 6,
 213	OPCODE_SET_ADDR = 7,
 214};
 215
 216/*
 217 * fifo_write() and fifo_read() are NOT reentrant (i.e. concurrent multiple
 218 * calls to each on the same FIFO is not allowed) however it's OK to have
 219 * threads calling each of the two functions once on the same FIFO, and
 220 * at the same time.
 221 */
 222
 223static int fifo_write(struct xillyfifo *fifo,
 224		      const void *data, unsigned int len,
 225		      int (*copier)(void *, const void *, int))
 226{
 227	unsigned int done = 0;
 228	unsigned int todo = len;
 229	unsigned int nmax;
 230	unsigned int writepos = fifo->writepos;
 231	unsigned int writebuf = fifo->writebuf;
 232	unsigned long flags;
 233	int rc;
 234
 235	nmax = fifo->size - READ_ONCE(fifo->fill);
 236
 237	while (1) {
 238		unsigned int nrail = fifo->bufsize - writepos;
 239		unsigned int n = min(todo, nmax);
 240
 241		if (n == 0) {
 242			spin_lock_irqsave(&fifo->lock, flags);
 243			fifo->fill += done;
 244			spin_unlock_irqrestore(&fifo->lock, flags);
 245
 246			fifo->writepos = writepos;
 247			fifo->writebuf = writebuf;
 248
 249			return done;
 250		}
 251
 252		if (n > nrail)
 253			n = nrail;
 254
 255		rc = (*copier)(fifo->mem[writebuf] + writepos, data + done, n);
 256
 257		if (rc)
 258			return rc;
 259
 260		done += n;
 261		todo -= n;
 262
 263		writepos += n;
 264		nmax -= n;
 265
 266		if (writepos == fifo->bufsize) {
 267			writepos = 0;
 268			writebuf++;
 269
 270			if (writebuf == fifo->bufnum)
 271				writebuf = 0;
 272		}
 273	}
 274}
 275
 276static int fifo_read(struct xillyfifo *fifo,
 277		     void *data, unsigned int len,
 278		     int (*copier)(void *, const void *, int))
 279{
 280	unsigned int done = 0;
 281	unsigned int todo = len;
 282	unsigned int fill;
 283	unsigned int readpos = fifo->readpos;
 284	unsigned int readbuf = fifo->readbuf;
 285	unsigned long flags;
 286	int rc;
 287
 288	/*
 289	 * The spinlock here is necessary, because otherwise fifo->fill
 290	 * could have been increased by fifo_write() after writing data
 291	 * to the buffer, but this data would potentially not have been
 292	 * visible on this thread at the time the updated fifo->fill was.
 293	 * That could lead to reading invalid data.
 294	 */
 295
 296	spin_lock_irqsave(&fifo->lock, flags);
 297	fill = fifo->fill;
 298	spin_unlock_irqrestore(&fifo->lock, flags);
 299
 300	while (1) {
 301		unsigned int nrail = fifo->bufsize - readpos;
 302		unsigned int n = min(todo, fill);
 303
 304		if (n == 0) {
 305			spin_lock_irqsave(&fifo->lock, flags);
 306			fifo->fill -= done;
 307			spin_unlock_irqrestore(&fifo->lock, flags);
 308
 309			fifo->readpos = readpos;
 310			fifo->readbuf = readbuf;
 311
 312			return done;
 313		}
 314
 315		if (n > nrail)
 316			n = nrail;
 317
 318		rc = (*copier)(data + done, fifo->mem[readbuf] + readpos, n);
 319
 320		if (rc)
 321			return rc;
 322
 323		done += n;
 324		todo -= n;
 325
 326		readpos += n;
 327		fill -= n;
 328
 329		if (readpos == fifo->bufsize) {
 330			readpos = 0;
 331			readbuf++;
 332
 333			if (readbuf == fifo->bufnum)
 334				readbuf = 0;
 335		}
 336	}
 337}
 338
 339/*
 340 * These three wrapper functions are used as the @copier argument to
 341 * fifo_write() and fifo_read(), so that they can work directly with
 342 * user memory as well.
 343 */
 344
 345static int xilly_copy_from_user(void *dst, const void *src, int n)
 346{
 347	if (copy_from_user(dst, (const void __user *)src, n))
 348		return -EFAULT;
 349
 350	return 0;
 351}
 352
 353static int xilly_copy_to_user(void *dst, const void *src, int n)
 354{
 355	if (copy_to_user((void __user *)dst, src, n))
 356		return -EFAULT;
 357
 358	return 0;
 359}
 360
 361static int xilly_memcpy(void *dst, const void *src, int n)
 362{
 363	memcpy(dst, src, n);
 364
 365	return 0;
 366}
 367
 368static int fifo_init(struct xillyfifo *fifo,
 369		     unsigned int log2_size)
 370{
 371	unsigned int log2_bufnum;
 372	unsigned int buf_order;
 373	int i;
 374
 375	unsigned int log2_fifo_buf_size;
 376
 377retry:
 378	log2_fifo_buf_size = fifo_buf_order + PAGE_SHIFT;
 379
 380	if (log2_size > log2_fifo_buf_size) {
 381		log2_bufnum = log2_size - log2_fifo_buf_size;
 382		buf_order = fifo_buf_order;
 383		fifo->bufsize = 1 << log2_fifo_buf_size;
 384	} else {
 385		log2_bufnum = 0;
 386		buf_order = (log2_size > PAGE_SHIFT) ?
 387			log2_size - PAGE_SHIFT : 0;
 388		fifo->bufsize = 1 << log2_size;
 389	}
 390
 391	fifo->bufnum = 1 << log2_bufnum;
 392	fifo->size = fifo->bufnum * fifo->bufsize;
 393	fifo->buf_order = buf_order;
 394
 395	fifo->mem = kmalloc_array(fifo->bufnum, sizeof(void *), GFP_KERNEL);
 396
 397	if (!fifo->mem)
 398		return -ENOMEM;
 399
 400	for (i = 0; i < fifo->bufnum; i++) {
 401		fifo->mem[i] = (void *)
 402			__get_free_pages(GFP_KERNEL, buf_order);
 403
 404		if (!fifo->mem[i])
 405			goto memfail;
 406	}
 407
 408	fifo->fill = 0;
 409	fifo->readpos = 0;
 410	fifo->readbuf = 0;
 411	fifo->writepos = 0;
 412	fifo->writebuf = 0;
 413	spin_lock_init(&fifo->lock);
 414	init_waitqueue_head(&fifo->waitq);
 415	return 0;
 416
 417memfail:
 418	for (i--; i >= 0; i--)
 419		free_pages((unsigned long)fifo->mem[i], buf_order);
 420
 421	kfree(fifo->mem);
 422	fifo->mem = NULL;
 423
 424	if (fifo_buf_order) {
 425		fifo_buf_order--;
 426		goto retry;
 427	} else {
 428		return -ENOMEM;
 429	}
 430}
 431
 432static void fifo_mem_release(struct xillyfifo *fifo)
 433{
 434	int i;
 435
 436	if (!fifo->mem)
 437		return;
 438
 439	for (i = 0; i < fifo->bufnum; i++)
 440		free_pages((unsigned long)fifo->mem[i], fifo->buf_order);
 441
 442	kfree(fifo->mem);
 443}
 444
 445/*
 446 * When endpoint_quiesce() returns, the endpoint has no URBs submitted,
 447 * won't accept any new URB submissions, and its related work item doesn't
 448 * and won't run anymore.
 449 */
 450
 451static void endpoint_quiesce(struct xillyusb_endpoint *ep)
 452{
 453	mutex_lock(&ep->ep_mutex);
 454	ep->shutting_down = true;
 455	mutex_unlock(&ep->ep_mutex);
 456
 457	usb_kill_anchored_urbs(&ep->anchor);
 458	cancel_work_sync(&ep->workitem);
 459}
 460
 461/*
 462 * Note that endpoint_dealloc() also frees fifo memory (if allocated), even
 463 * though endpoint_alloc doesn't allocate that memory.
 464 */
 465
 466static void endpoint_dealloc(struct xillyusb_endpoint *ep)
 467{
 468	struct list_head *this, *next;
 469
 470	fifo_mem_release(&ep->fifo);
 471
 472	/* Join @filled_buffers with @buffers to free these entries too */
 473	list_splice(&ep->filled_buffers, &ep->buffers);
 474
 475	list_for_each_safe(this, next, &ep->buffers) {
 476		struct xillybuffer *xb =
 477			list_entry(this, struct xillybuffer, entry);
 478
 479		free_pages((unsigned long)xb->buf, ep->order);
 480		kfree(xb);
 481	}
 482
 483	kfree(ep);
 484}
 485
 486static struct xillyusb_endpoint
 487*endpoint_alloc(struct xillyusb_dev *xdev,
 488		u8 ep_num,
 489		void (*work)(struct work_struct *),
 490		unsigned int order,
 491		int bufnum)
 492{
 493	int i;
 494
 495	struct xillyusb_endpoint *ep;
 496
 497	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
 498
 499	if (!ep)
 500		return NULL;
 501
 502	INIT_LIST_HEAD(&ep->buffers);
 503	INIT_LIST_HEAD(&ep->filled_buffers);
 504
 505	spin_lock_init(&ep->buffers_lock);
 506	mutex_init(&ep->ep_mutex);
 507
 508	init_usb_anchor(&ep->anchor);
 509	INIT_WORK(&ep->workitem, work);
 510
 511	ep->order = order;
 512	ep->buffer_size =  1 << (PAGE_SHIFT + order);
 513	ep->outstanding_urbs = 0;
 514	ep->drained = true;
 515	ep->wake_on_drain = false;
 516	ep->xdev = xdev;
 517	ep->ep_num = ep_num;
 518	ep->shutting_down = false;
 519
 520	for (i = 0; i < bufnum; i++) {
 521		struct xillybuffer *xb;
 522		unsigned long addr;
 523
 524		xb = kzalloc(sizeof(*xb), GFP_KERNEL);
 525
 526		if (!xb) {
 527			endpoint_dealloc(ep);
 528			return NULL;
 529		}
 530
 531		addr = __get_free_pages(GFP_KERNEL, order);
 532
 533		if (!addr) {
 534			kfree(xb);
 535			endpoint_dealloc(ep);
 536			return NULL;
 537		}
 538
 539		xb->buf = (void *)addr;
 540		xb->ep = ep;
 541		list_add_tail(&xb->entry, &ep->buffers);
 542	}
 543	return ep;
 544}
 545
 546static void cleanup_dev(struct kref *kref)
 547{
 548	struct xillyusb_dev *xdev =
 549		container_of(kref, struct xillyusb_dev, kref);
 550
 551	if (xdev->in_ep)
 552		endpoint_dealloc(xdev->in_ep);
 553
 554	if (xdev->msg_ep)
 555		endpoint_dealloc(xdev->msg_ep);
 556
 557	if (xdev->workq)
 558		destroy_workqueue(xdev->workq);
 559
 560	usb_put_dev(xdev->udev);
 561	kfree(xdev->channels); /* Argument may be NULL, and that's fine */
 562	kfree(xdev);
 563}
 564
 565/*
 566 * @process_in_mutex is taken to ensure that bulk_in_work() won't call
 567 * process_bulk_in() after wakeup_all()'s execution: The latter zeroes all
 568 * @read_data_ok entries, which will make process_bulk_in() report false
 569 * errors if executed. The mechanism relies on that xdev->error is assigned
 570 * a non-zero value by report_io_error() prior to queueing wakeup_all(),
 571 * which prevents bulk_in_work() from calling process_bulk_in().
 572 *
 573 * The fact that wakeup_all() and bulk_in_work() are queued on the same
 574 * workqueue makes their concurrent execution very unlikely, however the
 575 * kernel's API doesn't seem to ensure this strictly.
 576 */
 577
 578static void wakeup_all(struct work_struct *work)
 579{
 580	int i;
 581	struct xillyusb_dev *xdev = container_of(work, struct xillyusb_dev,
 582						 wakeup_workitem);
 583
 584	mutex_lock(&xdev->process_in_mutex);
 585
 586	for (i = 0; i < xdev->num_channels; i++) {
 587		struct xillyusb_channel *chan = &xdev->channels[i];
 588
 589		mutex_lock(&chan->lock);
 590
 591		if (chan->in_fifo) {
 592			/*
 593			 * Fake an EOF: Even if such arrives, it won't be
 594			 * processed.
 595			 */
 596			chan->read_data_ok = 0;
 597			wake_up_interruptible(&chan->in_fifo->waitq);
 598		}
 599
 600		if (chan->out_ep)
 601			wake_up_interruptible(&chan->out_ep->fifo.waitq);
 602
 603		mutex_unlock(&chan->lock);
 604
 605		wake_up_interruptible(&chan->flushq);
 606	}
 607
 608	mutex_unlock(&xdev->process_in_mutex);
 609
 610	wake_up_interruptible(&xdev->msg_ep->fifo.waitq);
 611
 612	kref_put(&xdev->kref, cleanup_dev);
 613}
 614
 615static void report_io_error(struct xillyusb_dev *xdev,
 616			    int errcode)
 617{
 618	unsigned long flags;
 619	bool do_once = false;
 620
 621	spin_lock_irqsave(&xdev->error_lock, flags);
 622	if (!xdev->error) {
 623		xdev->error = errcode;
 624		do_once = true;
 625	}
 626	spin_unlock_irqrestore(&xdev->error_lock, flags);
 627
 628	if (do_once) {
 629		kref_get(&xdev->kref); /* xdev is used by work item */
 630		queue_work(xdev->workq, &xdev->wakeup_workitem);
 631	}
 632}
 633
 634/*
 635 * safely_assign_in_fifo() changes the value of chan->in_fifo and ensures
 636 * the previous pointer is never used after its return.
 637 */
 638
 639static void safely_assign_in_fifo(struct xillyusb_channel *chan,
 640				  struct xillyfifo *fifo)
 641{
 642	mutex_lock(&chan->lock);
 643	chan->in_fifo = fifo;
 644	mutex_unlock(&chan->lock);
 645
 646	flush_work(&chan->xdev->in_ep->workitem);
 647}
 648
 649static void bulk_in_completer(struct urb *urb)
 650{
 651	struct xillybuffer *xb = urb->context;
 652	struct xillyusb_endpoint *ep = xb->ep;
 653	unsigned long flags;
 654
 655	if (urb->status) {
 656		if (!(urb->status == -ENOENT ||
 657		      urb->status == -ECONNRESET ||
 658		      urb->status == -ESHUTDOWN))
 659			report_io_error(ep->xdev, -EIO);
 660
 661		spin_lock_irqsave(&ep->buffers_lock, flags);
 662		list_add_tail(&xb->entry, &ep->buffers);
 663		ep->outstanding_urbs--;
 664		spin_unlock_irqrestore(&ep->buffers_lock, flags);
 665
 666		return;
 667	}
 668
 669	xb->len = urb->actual_length;
 670
 671	spin_lock_irqsave(&ep->buffers_lock, flags);
 672	list_add_tail(&xb->entry, &ep->filled_buffers);
 673	spin_unlock_irqrestore(&ep->buffers_lock, flags);
 674
 675	if (!ep->shutting_down)
 676		queue_work(ep->xdev->workq, &ep->workitem);
 677}
 678
 679static void bulk_out_completer(struct urb *urb)
 680{
 681	struct xillybuffer *xb = urb->context;
 682	struct xillyusb_endpoint *ep = xb->ep;
 683	unsigned long flags;
 684
 685	if (urb->status &&
 686	    (!(urb->status == -ENOENT ||
 687	       urb->status == -ECONNRESET ||
 688	       urb->status == -ESHUTDOWN)))
 689		report_io_error(ep->xdev, -EIO);
 690
 691	spin_lock_irqsave(&ep->buffers_lock, flags);
 692	list_add_tail(&xb->entry, &ep->buffers);
 693	ep->outstanding_urbs--;
 694	spin_unlock_irqrestore(&ep->buffers_lock, flags);
 695
 696	if (!ep->shutting_down)
 697		queue_work(ep->xdev->workq, &ep->workitem);
 698}
 699
 700static void try_queue_bulk_in(struct xillyusb_endpoint *ep)
 701{
 702	struct xillyusb_dev *xdev = ep->xdev;
 703	struct xillybuffer *xb;
 704	struct urb *urb;
 705
 706	int rc;
 707	unsigned long flags;
 708	unsigned int bufsize = ep->buffer_size;
 709
 710	mutex_lock(&ep->ep_mutex);
 711
 712	if (ep->shutting_down || xdev->error)
 713		goto done;
 714
 715	while (1) {
 716		spin_lock_irqsave(&ep->buffers_lock, flags);
 717
 718		if (list_empty(&ep->buffers)) {
 719			spin_unlock_irqrestore(&ep->buffers_lock, flags);
 720			goto done;
 721		}
 722
 723		xb = list_first_entry(&ep->buffers, struct xillybuffer, entry);
 724		list_del(&xb->entry);
 725		ep->outstanding_urbs++;
 726
 727		spin_unlock_irqrestore(&ep->buffers_lock, flags);
 728
 729		urb = usb_alloc_urb(0, GFP_KERNEL);
 730		if (!urb) {
 731			report_io_error(xdev, -ENOMEM);
 732			goto relist;
 733		}
 734
 735		usb_fill_bulk_urb(urb, xdev->udev,
 736				  usb_rcvbulkpipe(xdev->udev, ep->ep_num),
 737				  xb->buf, bufsize, bulk_in_completer, xb);
 738
 739		usb_anchor_urb(urb, &ep->anchor);
 740
 741		rc = usb_submit_urb(urb, GFP_KERNEL);
 742
 743		if (rc) {
 744			report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM :
 745					-EIO);
 746			goto unanchor;
 747		}
 748
 749		usb_free_urb(urb); /* This just decrements reference count */
 750	}
 751
 752unanchor:
 753	usb_unanchor_urb(urb);
 754	usb_free_urb(urb);
 755
 756relist:
 757	spin_lock_irqsave(&ep->buffers_lock, flags);
 758	list_add_tail(&xb->entry, &ep->buffers);
 759	ep->outstanding_urbs--;
 760	spin_unlock_irqrestore(&ep->buffers_lock, flags);
 761
 762done:
 763	mutex_unlock(&ep->ep_mutex);
 764}
 765
 766static void try_queue_bulk_out(struct xillyusb_endpoint *ep)
 767{
 768	struct xillyfifo *fifo = &ep->fifo;
 769	struct xillyusb_dev *xdev = ep->xdev;
 770	struct xillybuffer *xb;
 771	struct urb *urb;
 772
 773	int rc;
 774	unsigned int fill;
 775	unsigned long flags;
 776	bool do_wake = false;
 777
 778	mutex_lock(&ep->ep_mutex);
 779
 780	if (ep->shutting_down || xdev->error)
 781		goto done;
 782
 783	fill = READ_ONCE(fifo->fill) & ep->fill_mask;
 784
 785	while (1) {
 786		int count;
 787		unsigned int max_read;
 788
 789		spin_lock_irqsave(&ep->buffers_lock, flags);
 790
 791		/*
 792		 * Race conditions might have the FIFO filled while the
 793		 * endpoint is marked as drained here. That doesn't matter,
 794		 * because the sole purpose of @drained is to ensure that
 795		 * certain data has been sent on the USB channel before
 796		 * shutting it down. Hence knowing that the FIFO appears
 797		 * to be empty with no outstanding URBs at some moment
 798		 * is good enough.
 799		 */
 800
 801		if (!fill) {
 802			ep->drained = !ep->outstanding_urbs;
 803			if (ep->drained && ep->wake_on_drain)
 804				do_wake = true;
 805
 806			spin_unlock_irqrestore(&ep->buffers_lock, flags);
 807			goto done;
 808		}
 809
 810		ep->drained = false;
 811
 812		if ((fill < ep->buffer_size && ep->outstanding_urbs) ||
 813		    list_empty(&ep->buffers)) {
 814			spin_unlock_irqrestore(&ep->buffers_lock, flags);
 815			goto done;
 816		}
 817
 818		xb = list_first_entry(&ep->buffers, struct xillybuffer, entry);
 819		list_del(&xb->entry);
 820		ep->outstanding_urbs++;
 821
 822		spin_unlock_irqrestore(&ep->buffers_lock, flags);
 823
 824		max_read = min(fill, ep->buffer_size);
 825
 826		count = fifo_read(&ep->fifo, xb->buf, max_read, xilly_memcpy);
 827
 828		/*
 829		 * xilly_memcpy always returns 0 => fifo_read can't fail =>
 830		 * count > 0
 831		 */
 832
 833		urb = usb_alloc_urb(0, GFP_KERNEL);
 834		if (!urb) {
 835			report_io_error(xdev, -ENOMEM);
 836			goto relist;
 837		}
 838
 839		usb_fill_bulk_urb(urb, xdev->udev,
 840				  usb_sndbulkpipe(xdev->udev, ep->ep_num),
 841				  xb->buf, count, bulk_out_completer, xb);
 842
 843		usb_anchor_urb(urb, &ep->anchor);
 844
 845		rc = usb_submit_urb(urb, GFP_KERNEL);
 846
 847		if (rc) {
 848			report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM :
 849					-EIO);
 850			goto unanchor;
 851		}
 852
 853		usb_free_urb(urb); /* This just decrements reference count */
 854
 855		fill -= count;
 856		do_wake = true;
 857	}
 858
 859unanchor:
 860	usb_unanchor_urb(urb);
 861	usb_free_urb(urb);
 862
 863relist:
 864	spin_lock_irqsave(&ep->buffers_lock, flags);
 865	list_add_tail(&xb->entry, &ep->buffers);
 866	ep->outstanding_urbs--;
 867	spin_unlock_irqrestore(&ep->buffers_lock, flags);
 868
 869done:
 870	mutex_unlock(&ep->ep_mutex);
 871
 872	if (do_wake)
 873		wake_up_interruptible(&fifo->waitq);
 874}
 875
 876static void bulk_out_work(struct work_struct *work)
 877{
 878	struct xillyusb_endpoint *ep = container_of(work,
 879						    struct xillyusb_endpoint,
 880						    workitem);
 881	try_queue_bulk_out(ep);
 882}
 883
 884static int process_in_opcode(struct xillyusb_dev *xdev,
 885			     int opcode,
 886			     int chan_num)
 887{
 888	struct xillyusb_channel *chan;
 889	struct device *dev = xdev->dev;
 890	int chan_idx = chan_num >> 1;
 891
 892	if (chan_idx >= xdev->num_channels) {
 893		dev_err(dev, "Received illegal channel ID %d from FPGA\n",
 894			chan_num);
 895		return -EIO;
 896	}
 897
 898	chan = &xdev->channels[chan_idx];
 899
 900	switch (opcode) {
 901	case OPCODE_EOF:
 902		if (!chan->read_data_ok) {
 903			dev_err(dev, "Received unexpected EOF for channel %d\n",
 904				chan_num);
 905			return -EIO;
 906		}
 907
 908		/*
 909		 * A write memory barrier ensures that the FIFO's fill level
 910		 * is visible before read_data_ok turns zero, so the data in
 911		 * the FIFO isn't missed by the consumer.
 912		 */
 913		smp_wmb();
 914		WRITE_ONCE(chan->read_data_ok, 0);
 915		wake_up_interruptible(&chan->in_fifo->waitq);
 916		break;
 917
 918	case OPCODE_REACHED_CHECKPOINT:
 919		chan->flushing = 0;
 920		wake_up_interruptible(&chan->flushq);
 921		break;
 922
 923	case OPCODE_CANCELED_CHECKPOINT:
 924		chan->canceled = 1;
 925		wake_up_interruptible(&chan->flushq);
 926		break;
 927
 928	default:
 929		dev_err(dev, "Received illegal opcode %d from FPGA\n",
 930			opcode);
 931		return -EIO;
 932	}
 933
 934	return 0;
 935}
 936
 937static int process_bulk_in(struct xillybuffer *xb)
 938{
 939	struct xillyusb_endpoint *ep = xb->ep;
 940	struct xillyusb_dev *xdev = ep->xdev;
 941	struct device *dev = xdev->dev;
 942	int dws = xb->len >> 2;
 943	__le32 *p = xb->buf;
 944	u32 ctrlword;
 945	struct xillyusb_channel *chan;
 946	struct xillyfifo *fifo;
 947	int chan_num = 0, opcode;
 948	int chan_idx;
 949	int bytes, count, dwconsume;
 950	int in_bytes_left = 0;
 951	int rc;
 952
 953	if ((dws << 2) != xb->len) {
 954		dev_err(dev, "Received BULK IN transfer with %d bytes, not a multiple of 4\n",
 955			xb->len);
 956		return -EIO;
 957	}
 958
 959	if (xdev->in_bytes_left) {
 960		bytes = min(xdev->in_bytes_left, dws << 2);
 961		in_bytes_left = xdev->in_bytes_left - bytes;
 962		chan_num = xdev->leftover_chan_num;
 963		goto resume_leftovers;
 964	}
 965
 966	while (dws) {
 967		ctrlword = le32_to_cpu(*p++);
 968		dws--;
 969
 970		chan_num = ctrlword & 0xfff;
 971		count = (ctrlword >> 12) & 0x3ff;
 972		opcode = (ctrlword >> 24) & 0xf;
 973
 974		if (opcode != OPCODE_DATA) {
 975			unsigned int in_counter = xdev->in_counter++ & 0x3ff;
 976
 977			if (count != in_counter) {
 978				dev_err(dev, "Expected opcode counter %d, got %d\n",
 979					in_counter, count);
 980				return -EIO;
 981			}
 982
 983			rc = process_in_opcode(xdev, opcode, chan_num);
 984
 985			if (rc)
 986				return rc;
 987
 988			continue;
 989		}
 990
 991		bytes = min(count + 1, dws << 2);
 992		in_bytes_left = count + 1 - bytes;
 993
 994resume_leftovers:
 995		chan_idx = chan_num >> 1;
 996
 997		if (!(chan_num & 1) || chan_idx >= xdev->num_channels ||
 998		    !xdev->channels[chan_idx].read_data_ok) {
 999			dev_err(dev, "Received illegal channel ID %d from FPGA\n",
1000				chan_num);
1001			return -EIO;
1002		}
1003		chan = &xdev->channels[chan_idx];
1004
1005		fifo = chan->in_fifo;
1006
1007		if (unlikely(!fifo))
1008			return -EIO; /* We got really unexpected data */
1009
1010		if (bytes != fifo_write(fifo, p, bytes, xilly_memcpy)) {
1011			dev_err(dev, "Misbehaving FPGA overflowed an upstream FIFO!\n");
1012			return -EIO;
1013		}
1014
1015		wake_up_interruptible(&fifo->waitq);
1016
1017		dwconsume = (bytes + 3) >> 2;
1018		dws -= dwconsume;
1019		p += dwconsume;
1020	}
1021
1022	xdev->in_bytes_left = in_bytes_left;
1023	xdev->leftover_chan_num = chan_num;
1024	return 0;
1025}
1026
1027static void bulk_in_work(struct work_struct *work)
1028{
1029	struct xillyusb_endpoint *ep =
1030		container_of(work, struct xillyusb_endpoint, workitem);
1031	struct xillyusb_dev *xdev = ep->xdev;
1032	unsigned long flags;
1033	struct xillybuffer *xb;
1034	bool consumed = false;
1035	int rc = 0;
1036
1037	mutex_lock(&xdev->process_in_mutex);
1038
1039	spin_lock_irqsave(&ep->buffers_lock, flags);
1040
1041	while (1) {
1042		if (rc || list_empty(&ep->filled_buffers)) {
1043			spin_unlock_irqrestore(&ep->buffers_lock, flags);
1044			mutex_unlock(&xdev->process_in_mutex);
1045
1046			if (rc)
1047				report_io_error(xdev, rc);
1048			else if (consumed)
1049				try_queue_bulk_in(ep);
1050
1051			return;
1052		}
1053
1054		xb = list_first_entry(&ep->filled_buffers, struct xillybuffer,
1055				      entry);
1056		list_del(&xb->entry);
1057
1058		spin_unlock_irqrestore(&ep->buffers_lock, flags);
1059
1060		consumed = true;
1061
1062		if (!xdev->error)
1063			rc = process_bulk_in(xb);
1064
1065		spin_lock_irqsave(&ep->buffers_lock, flags);
1066		list_add_tail(&xb->entry, &ep->buffers);
1067		ep->outstanding_urbs--;
1068	}
1069}
1070
1071static int xillyusb_send_opcode(struct xillyusb_dev *xdev,
1072				int chan_num, char opcode, u32 data)
1073{
1074	struct xillyusb_endpoint *ep = xdev->msg_ep;
1075	struct xillyfifo *fifo = &ep->fifo;
1076	__le32 msg[2];
1077
1078	int rc = 0;
1079
1080	msg[0] = cpu_to_le32((chan_num & 0xfff) |
1081			     ((opcode & 0xf) << 24));
1082	msg[1] = cpu_to_le32(data);
1083
1084	mutex_lock(&xdev->msg_mutex);
1085
1086	/*
1087	 * The wait queue is woken with the interruptible variant, so the
1088	 * wait function matches, however returning because of an interrupt
1089	 * will mess things up considerably, in particular when the caller is
1090	 * the release method. And the xdev->error part prevents being stuck
1091	 * forever in the event of a bizarre hardware bug: Pull the USB plug.
1092	 */
1093
1094	while (wait_event_interruptible(fifo->waitq,
1095					fifo->fill <= (fifo->size - 8) ||
1096					xdev->error))
1097		; /* Empty loop */
1098
1099	if (xdev->error) {
1100		rc = xdev->error;
1101		goto unlock_done;
1102	}
1103
1104	fifo_write(fifo, (void *)msg, 8, xilly_memcpy);
1105
1106	try_queue_bulk_out(ep);
1107
1108unlock_done:
1109	mutex_unlock(&xdev->msg_mutex);
1110
1111	return rc;
1112}
1113
1114/*
1115 * Note that flush_downstream() merely waits for the data to arrive to
1116 * the application logic at the FPGA -- unlike PCIe Xillybus' counterpart,
1117 * it does nothing to make it happen (and neither is it necessary).
1118 *
1119 * This function is not reentrant for the same @chan, but this is covered
1120 * by the fact that for any given @chan, it's called either by the open,
1121 * write, llseek and flush fops methods, which can't run in parallel (and the
1122 * write + flush and llseek method handlers are protected with out_mutex).
1123 *
1124 * chan->flushed is there to avoid multiple flushes at the same position,
1125 * in particular as a result of programs that close the file descriptor
1126 * e.g. after a dup2() for redirection.
1127 */
1128
1129static int flush_downstream(struct xillyusb_channel *chan,
1130			    long timeout,
1131			    bool interruptible)
1132{
1133	struct xillyusb_dev *xdev = chan->xdev;
1134	int chan_num = chan->chan_idx << 1;
1135	long deadline, left_to_sleep;
1136	int rc;
1137
1138	if (chan->flushed)
1139		return 0;
1140
1141	deadline = jiffies + 1 + timeout;
1142
1143	if (chan->flushing) {
1144		long cancel_deadline = jiffies + 1 + XILLY_RESPONSE_TIMEOUT;
1145
1146		chan->canceled = 0;
1147		rc = xillyusb_send_opcode(xdev, chan_num,
1148					  OPCODE_CANCEL_CHECKPOINT, 0);
1149
1150		if (rc)
1151			return rc; /* Only real error, never -EINTR */
1152
1153		/* Ignoring interrupts. Cancellation must be handled */
1154		while (!chan->canceled) {
1155			left_to_sleep = cancel_deadline - ((long)jiffies);
1156
1157			if (left_to_sleep <= 0) {
1158				report_io_error(xdev, -EIO);
1159				return -EIO;
1160			}
1161
1162			rc = wait_event_interruptible_timeout(chan->flushq,
1163							      chan->canceled ||
1164							      xdev->error,
1165							      left_to_sleep);
1166
1167			if (xdev->error)
1168				return xdev->error;
1169		}
1170	}
1171
1172	chan->flushing = 1;
1173
1174	/*
1175	 * The checkpoint is given in terms of data elements, not bytes. As
1176	 * a result, if less than an element's worth of data is stored in the
1177	 * FIFO, it's not flushed, including the flush before closing, which
1178	 * means that such data is lost. This is consistent with PCIe Xillybus.
1179	 */
1180
1181	rc = xillyusb_send_opcode(xdev, chan_num,
1182				  OPCODE_SET_CHECKPOINT,
1183				  chan->out_bytes >>
1184				  chan->out_log2_element_size);
1185
1186	if (rc)
1187		return rc; /* Only real error, never -EINTR */
1188
1189	if (!timeout) {
1190		while (chan->flushing) {
1191			rc = wait_event_interruptible(chan->flushq,
1192						      !chan->flushing ||
1193						      xdev->error);
1194			if (xdev->error)
1195				return xdev->error;
1196
1197			if (interruptible && rc)
1198				return -EINTR;
1199		}
1200
1201		goto done;
1202	}
1203
1204	while (chan->flushing) {
1205		left_to_sleep = deadline - ((long)jiffies);
1206
1207		if (left_to_sleep <= 0)
1208			return -ETIMEDOUT;
1209
1210		rc = wait_event_interruptible_timeout(chan->flushq,
1211						      !chan->flushing ||
1212						      xdev->error,
1213						      left_to_sleep);
1214
1215		if (xdev->error)
1216			return xdev->error;
1217
1218		if (interruptible && rc < 0)
1219			return -EINTR;
1220	}
1221
1222done:
1223	chan->flushed = 1;
1224	return 0;
1225}
1226
1227/* request_read_anything(): Ask the FPGA for any little amount of data */
1228static int request_read_anything(struct xillyusb_channel *chan,
1229				 char opcode)
1230{
1231	struct xillyusb_dev *xdev = chan->xdev;
1232	unsigned int sh = chan->in_log2_element_size;
1233	int chan_num = (chan->chan_idx << 1) | 1;
1234	u32 mercy = chan->in_consumed_bytes + (2 << sh) - 1;
1235
1236	return xillyusb_send_opcode(xdev, chan_num, opcode, mercy >> sh);
1237}
1238
1239static int xillyusb_open(struct inode *inode, struct file *filp)
1240{
1241	struct xillyusb_dev *xdev;
1242	struct xillyusb_channel *chan;
1243	struct xillyfifo *in_fifo = NULL;
1244	struct xillyusb_endpoint *out_ep = NULL;
1245	int rc;
1246	int index;
1247
1248	mutex_lock(&kref_mutex);
1249
1250	rc = xillybus_find_inode(inode, (void **)&xdev, &index);
1251	if (rc) {
1252		mutex_unlock(&kref_mutex);
1253		return rc;
1254	}
1255
1256	kref_get(&xdev->kref);
1257	mutex_unlock(&kref_mutex);
1258
1259	chan = &xdev->channels[index];
1260	filp->private_data = chan;
1261
1262	mutex_lock(&chan->lock);
1263
1264	rc = -ENODEV;
1265
1266	if (xdev->error)
1267		goto unmutex_fail;
1268
1269	if (((filp->f_mode & FMODE_READ) && !chan->readable) ||
1270	    ((filp->f_mode & FMODE_WRITE) && !chan->writable))
1271		goto unmutex_fail;
1272
1273	if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_READ) &&
1274	    chan->in_synchronous) {
1275		dev_err(xdev->dev,
1276			"open() failed: O_NONBLOCK not allowed for read on this device\n");
1277		goto unmutex_fail;
1278	}
1279
1280	if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_WRITE) &&
1281	    chan->out_synchronous) {
1282		dev_err(xdev->dev,
1283			"open() failed: O_NONBLOCK not allowed for write on this device\n");
1284		goto unmutex_fail;
1285	}
1286
1287	rc = -EBUSY;
1288
1289	if (((filp->f_mode & FMODE_READ) && chan->open_for_read) ||
1290	    ((filp->f_mode & FMODE_WRITE) && chan->open_for_write))
1291		goto unmutex_fail;
1292
1293	if (filp->f_mode & FMODE_READ)
1294		chan->open_for_read = 1;
1295
1296	if (filp->f_mode & FMODE_WRITE)
1297		chan->open_for_write = 1;
1298
1299	mutex_unlock(&chan->lock);
1300
1301	if (filp->f_mode & FMODE_WRITE) {
1302		out_ep = endpoint_alloc(xdev,
1303					(chan->chan_idx + 2) | USB_DIR_OUT,
1304					bulk_out_work, BUF_SIZE_ORDER, BUFNUM);
1305
1306		if (!out_ep) {
1307			rc = -ENOMEM;
1308			goto unopen;
1309		}
1310
1311		rc = fifo_init(&out_ep->fifo, chan->out_log2_fifo_size);
1312
1313		if (rc)
1314			goto late_unopen;
1315
1316		out_ep->fill_mask = -(1 << chan->out_log2_element_size);
1317		chan->out_bytes = 0;
1318		chan->flushed = 0;
1319
1320		/*
1321		 * Sending a flush request to a previously closed stream
1322		 * effectively opens it, and also waits until the command is
1323		 * confirmed by the FPGA. The latter is necessary because the
1324		 * data is sent through a separate BULK OUT endpoint, and the
1325		 * xHCI controller is free to reorder transmissions.
1326		 *
1327		 * This can't go wrong unless there's a serious hardware error
1328		 * (or the computer is stuck for 500 ms?)
1329		 */
1330		rc = flush_downstream(chan, XILLY_RESPONSE_TIMEOUT, false);
1331
1332		if (rc == -ETIMEDOUT) {
1333			rc = -EIO;
1334			report_io_error(xdev, rc);
1335		}
1336
1337		if (rc)
1338			goto late_unopen;
1339	}
1340
1341	if (filp->f_mode & FMODE_READ) {
1342		in_fifo = kzalloc(sizeof(*in_fifo), GFP_KERNEL);
1343
1344		if (!in_fifo) {
1345			rc = -ENOMEM;
1346			goto late_unopen;
1347		}
1348
1349		rc = fifo_init(in_fifo, chan->in_log2_fifo_size);
1350
1351		if (rc) {
1352			kfree(in_fifo);
1353			goto late_unopen;
1354		}
1355	}
1356
1357	mutex_lock(&chan->lock);
1358	if (in_fifo) {
1359		chan->in_fifo = in_fifo;
1360		chan->read_data_ok = 1;
1361	}
1362	if (out_ep)
1363		chan->out_ep = out_ep;
1364	mutex_unlock(&chan->lock);
1365
1366	if (in_fifo) {
1367		u32 in_checkpoint = 0;
1368
1369		if (!chan->in_synchronous)
1370			in_checkpoint = in_fifo->size >>
1371				chan->in_log2_element_size;
1372
1373		chan->in_consumed_bytes = 0;
1374		chan->poll_used = 0;
1375		chan->in_current_checkpoint = in_checkpoint;
1376		rc = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1,
1377					  OPCODE_SET_CHECKPOINT,
1378					  in_checkpoint);
1379
1380		if (rc) /* Failure guarantees that opcode wasn't sent */
1381			goto unfifo;
1382
1383		/*
1384		 * In non-blocking mode, request the FPGA to send any data it
1385		 * has right away. Otherwise, the first read() will always
1386		 * return -EAGAIN, which is OK strictly speaking, but ugly.
1387		 * Checking and unrolling if this fails isn't worth the
1388		 * effort -- the error is propagated to the first read()
1389		 * anyhow.
1390		 */
1391		if (filp->f_flags & O_NONBLOCK)
1392			request_read_anything(chan, OPCODE_SET_PUSH);
1393	}
1394
1395	return 0;
1396
1397unfifo:
1398	chan->read_data_ok = 0;
1399	safely_assign_in_fifo(chan, NULL);
1400	fifo_mem_release(in_fifo);
1401	kfree(in_fifo);
1402
1403	if (out_ep) {
1404		mutex_lock(&chan->lock);
1405		chan->out_ep = NULL;
1406		mutex_unlock(&chan->lock);
1407	}
1408
1409late_unopen:
1410	if (out_ep)
1411		endpoint_dealloc(out_ep);
1412
1413unopen:
1414	mutex_lock(&chan->lock);
1415
1416	if (filp->f_mode & FMODE_READ)
1417		chan->open_for_read = 0;
1418
1419	if (filp->f_mode & FMODE_WRITE)
1420		chan->open_for_write = 0;
1421
1422	mutex_unlock(&chan->lock);
1423
1424	kref_put(&xdev->kref, cleanup_dev);
1425
1426	return rc;
1427
1428unmutex_fail:
1429	kref_put(&xdev->kref, cleanup_dev);
1430	mutex_unlock(&chan->lock);
1431	return rc;
1432}
1433
1434static ssize_t xillyusb_read(struct file *filp, char __user *userbuf,
1435			     size_t count, loff_t *f_pos)
1436{
1437	struct xillyusb_channel *chan = filp->private_data;
1438	struct xillyusb_dev *xdev = chan->xdev;
1439	struct xillyfifo *fifo = chan->in_fifo;
1440	int chan_num = (chan->chan_idx << 1) | 1;
1441
1442	long deadline, left_to_sleep;
1443	int bytes_done = 0;
1444	bool sent_set_push = false;
1445	int rc;
1446
1447	deadline = jiffies + 1 + XILLY_RX_TIMEOUT;
1448
1449	rc = mutex_lock_interruptible(&chan->in_mutex);
1450
1451	if (rc)
1452		return rc;
1453
1454	while (1) {
1455		u32 fifo_checkpoint_bytes, complete_checkpoint_bytes;
1456		u32 complete_checkpoint, fifo_checkpoint;
1457		u32 checkpoint;
1458		s32 diff, leap;
1459		unsigned int sh = chan->in_log2_element_size;
1460		bool checkpoint_for_complete;
1461
1462		rc = fifo_read(fifo, (__force void *)userbuf + bytes_done,
1463			       count - bytes_done, xilly_copy_to_user);
1464
1465		if (rc < 0)
1466			break;
1467
1468		bytes_done += rc;
1469		chan->in_consumed_bytes += rc;
1470
1471		left_to_sleep = deadline - ((long)jiffies);
1472
1473		/*
1474		 * Some 32-bit arithmetic that may wrap. Note that
1475		 * complete_checkpoint is rounded up to the closest element
1476		 * boundary, because the read() can't be completed otherwise.
1477		 * fifo_checkpoint_bytes is rounded down, because it protects
1478		 * in_fifo from overflowing.
1479		 */
1480
1481		fifo_checkpoint_bytes = chan->in_consumed_bytes + fifo->size;
1482		complete_checkpoint_bytes =
1483			chan->in_consumed_bytes + count - bytes_done;
1484
1485		fifo_checkpoint = fifo_checkpoint_bytes >> sh;
1486		complete_checkpoint =
1487			(complete_checkpoint_bytes + (1 << sh) - 1) >> sh;
1488
1489		diff = (fifo_checkpoint - complete_checkpoint) << sh;
1490
1491		if (chan->in_synchronous && diff >= 0) {
1492			checkpoint = complete_checkpoint;
1493			checkpoint_for_complete = true;
1494		} else {
1495			checkpoint = fifo_checkpoint;
1496			checkpoint_for_complete = false;
1497		}
1498
1499		leap = (checkpoint - chan->in_current_checkpoint) << sh;
1500
1501		/*
1502		 * To prevent flooding of OPCODE_SET_CHECKPOINT commands as
1503		 * data is consumed, it's issued only if it moves the
1504		 * checkpoint by at least an 8th of the FIFO's size, or if
1505		 * it's necessary to complete the number of bytes requested by
1506		 * the read() call.
1507		 *
1508		 * chan->read_data_ok is checked to spare an unnecessary
1509		 * submission after receiving EOF, however it's harmless if
1510		 * such slips away.
1511		 */
1512
1513		if (chan->read_data_ok &&
1514		    (leap > (fifo->size >> 3) ||
1515		     (checkpoint_for_complete && leap > 0))) {
1516			chan->in_current_checkpoint = checkpoint;
1517			rc = xillyusb_send_opcode(xdev, chan_num,
1518						  OPCODE_SET_CHECKPOINT,
1519						  checkpoint);
1520
1521			if (rc)
1522				break;
1523		}
1524
1525		if (bytes_done == count ||
1526		    (left_to_sleep <= 0 && bytes_done))
1527			break;
1528
1529		/*
1530		 * Reaching here means that the FIFO was empty when
1531		 * fifo_read() returned, but not necessarily right now. Error
1532		 * and EOF are checked and reported only now, so that no data
1533		 * that managed its way to the FIFO is lost.
1534		 */
1535
1536		if (!READ_ONCE(chan->read_data_ok)) { /* FPGA has sent EOF */
1537			/* Has data slipped into the FIFO since fifo_read()? */
1538			smp_rmb();
1539			if (READ_ONCE(fifo->fill))
1540				continue;
1541
1542			rc = 0;
1543			break;
1544		}
1545
1546		if (xdev->error) {
1547			rc = xdev->error;
1548			break;
1549		}
1550
1551		if (filp->f_flags & O_NONBLOCK) {
1552			rc = -EAGAIN;
1553			break;
1554		}
1555
1556		if (!sent_set_push) {
1557			rc = xillyusb_send_opcode(xdev, chan_num,
1558						  OPCODE_SET_PUSH,
1559						  complete_checkpoint);
1560
1561			if (rc)
1562				break;
1563
1564			sent_set_push = true;
1565		}
1566
1567		if (left_to_sleep > 0) {
1568			/*
1569			 * Note that when xdev->error is set (e.g. when the
1570			 * device is unplugged), read_data_ok turns zero and
1571			 * fifo->waitq is awaken.
1572			 * Therefore no special attention to xdev->error.
1573			 */
1574
1575			rc = wait_event_interruptible_timeout
1576				(fifo->waitq,
1577				 fifo->fill || !chan->read_data_ok,
1578				 left_to_sleep);
1579		} else { /* bytes_done == 0 */
1580			/* Tell FPGA to send anything it has */
1581			rc = request_read_anything(chan, OPCODE_UPDATE_PUSH);
1582
1583			if (rc)
1584				break;
1585
1586			rc = wait_event_interruptible
1587				(fifo->waitq,
1588				 fifo->fill || !chan->read_data_ok);
1589		}
1590
1591		if (rc < 0) {
1592			rc = -EINTR;
1593			break;
1594		}
1595	}
1596
1597	if (((filp->f_flags & O_NONBLOCK) || chan->poll_used) &&
1598	    !READ_ONCE(fifo->fill))
1599		request_read_anything(chan, OPCODE_SET_PUSH);
1600
1601	mutex_unlock(&chan->in_mutex);
1602
1603	if (bytes_done)
1604		return bytes_done;
1605
1606	return rc;
1607}
1608
1609static int xillyusb_flush(struct file *filp, fl_owner_t id)
1610{
1611	struct xillyusb_channel *chan = filp->private_data;
1612	int rc;
1613
1614	if (!(filp->f_mode & FMODE_WRITE))
1615		return 0;
1616
1617	rc = mutex_lock_interruptible(&chan->out_mutex);
1618
1619	if (rc)
1620		return rc;
1621
1622	/*
1623	 * One second's timeout on flushing. Interrupts are ignored, because if
1624	 * the user pressed CTRL-C, that interrupt will still be in flight by
1625	 * the time we reach here, and the opportunity to flush is lost.
1626	 */
1627	rc = flush_downstream(chan, HZ, false);
1628
1629	mutex_unlock(&chan->out_mutex);
1630
1631	if (rc == -ETIMEDOUT) {
1632		/* The things you do to use dev_warn() and not pr_warn() */
1633		struct xillyusb_dev *xdev = chan->xdev;
1634
1635		mutex_lock(&chan->lock);
1636		if (!xdev->error)
1637			dev_warn(xdev->dev,
1638				 "Timed out while flushing. Output data may be lost.\n");
1639		mutex_unlock(&chan->lock);
1640	}
1641
1642	return rc;
1643}
1644
1645static ssize_t xillyusb_write(struct file *filp, const char __user *userbuf,
1646			      size_t count, loff_t *f_pos)
1647{
1648	struct xillyusb_channel *chan = filp->private_data;
1649	struct xillyusb_dev *xdev = chan->xdev;
1650	struct xillyfifo *fifo = &chan->out_ep->fifo;
1651	int rc;
1652
1653	rc = mutex_lock_interruptible(&chan->out_mutex);
1654
1655	if (rc)
1656		return rc;
1657
1658	while (1) {
1659		if (xdev->error) {
1660			rc = xdev->error;
1661			break;
1662		}
1663
1664		if (count == 0)
1665			break;
1666
1667		rc = fifo_write(fifo, (__force void *)userbuf, count,
1668				xilly_copy_from_user);
1669
1670		if (rc != 0)
1671			break;
1672
1673		if (filp->f_flags & O_NONBLOCK) {
1674			rc = -EAGAIN;
1675			break;
1676		}
1677
1678		if (wait_event_interruptible
1679		    (fifo->waitq,
1680		     fifo->fill != fifo->size || xdev->error)) {
1681			rc = -EINTR;
1682			break;
1683		}
1684	}
1685
1686	if (rc < 0)
1687		goto done;
1688
1689	chan->out_bytes += rc;
1690
1691	if (rc) {
1692		try_queue_bulk_out(chan->out_ep);
1693		chan->flushed = 0;
1694	}
1695
1696	if (chan->out_synchronous) {
1697		int flush_rc = flush_downstream(chan, 0, true);
1698
1699		if (flush_rc && !rc)
1700			rc = flush_rc;
1701	}
1702
1703done:
1704	mutex_unlock(&chan->out_mutex);
1705
1706	return rc;
1707}
1708
1709static int xillyusb_release(struct inode *inode, struct file *filp)
1710{
1711	struct xillyusb_channel *chan = filp->private_data;
1712	struct xillyusb_dev *xdev = chan->xdev;
1713	int rc_read = 0, rc_write = 0;
1714
1715	if (filp->f_mode & FMODE_READ) {
1716		struct xillyfifo *in_fifo = chan->in_fifo;
1717
1718		rc_read = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1,
1719					       OPCODE_CLOSE, 0);
1720		/*
1721		 * If rc_read is nonzero, xdev->error indicates a global
1722		 * device error. The error is reported later, so that
1723		 * resources are freed.
1724		 *
1725		 * Looping on wait_event_interruptible() kinda breaks the idea
1726		 * of being interruptible, and this should have been
1727		 * wait_event(). Only it's being waken with
1728		 * wake_up_interruptible() for the sake of other uses. If
1729		 * there's a global device error, chan->read_data_ok is
1730		 * deasserted and the wait queue is awaken, so this is covered.
1731		 */
1732
1733		while (wait_event_interruptible(in_fifo->waitq,
1734						!chan->read_data_ok))
1735			; /* Empty loop */
1736
1737		safely_assign_in_fifo(chan, NULL);
1738		fifo_mem_release(in_fifo);
1739		kfree(in_fifo);
1740
1741		mutex_lock(&chan->lock);
1742		chan->open_for_read = 0;
1743		mutex_unlock(&chan->lock);
1744	}
1745
1746	if (filp->f_mode & FMODE_WRITE) {
1747		struct xillyusb_endpoint *ep = chan->out_ep;
1748		/*
1749		 * chan->flushing isn't zeroed. If the pre-release flush timed
1750		 * out, a cancel request will be sent before the next
1751		 * OPCODE_SET_CHECKPOINT (i.e. when the file is opened again).
1752		 * This is despite that the FPGA forgets about the checkpoint
1753		 * request as the file closes. Still, in an exceptional race
1754		 * condition, the FPGA could send an OPCODE_REACHED_CHECKPOINT
1755		 * just before closing that would reach the host after the
1756		 * file has re-opened.
1757		 */
1758
1759		mutex_lock(&chan->lock);
1760		chan->out_ep = NULL;
1761		mutex_unlock(&chan->lock);
1762
1763		endpoint_quiesce(ep);
1764		endpoint_dealloc(ep);
1765
1766		/* See comments on rc_read above */
1767		rc_write = xillyusb_send_opcode(xdev, chan->chan_idx << 1,
1768						OPCODE_CLOSE, 0);
1769
1770		mutex_lock(&chan->lock);
1771		chan->open_for_write = 0;
1772		mutex_unlock(&chan->lock);
1773	}
1774
1775	kref_put(&xdev->kref, cleanup_dev);
1776
1777	return rc_read ? rc_read : rc_write;
1778}
1779
1780/*
1781 * Xillybus' API allows device nodes to be seekable, giving the user
1782 * application access to a RAM array on the FPGA (or logic emulating it).
1783 */
1784
1785static loff_t xillyusb_llseek(struct file *filp, loff_t offset, int whence)
1786{
1787	struct xillyusb_channel *chan = filp->private_data;
1788	struct xillyusb_dev *xdev = chan->xdev;
1789	loff_t pos = filp->f_pos;
1790	int rc = 0;
1791	unsigned int log2_element_size = chan->readable ?
1792		chan->in_log2_element_size : chan->out_log2_element_size;
1793
1794	/*
1795	 * Take both mutexes not allowing interrupts, since it seems like
1796	 * common applications don't expect an -EINTR here. Besides, multiple
1797	 * access to a single file descriptor on seekable devices is a mess
1798	 * anyhow.
1799	 */
1800
1801	mutex_lock(&chan->out_mutex);
1802	mutex_lock(&chan->in_mutex);
1803
1804	switch (whence) {
1805	case SEEK_SET:
1806		pos = offset;
1807		break;
1808	case SEEK_CUR:
1809		pos += offset;
1810		break;
1811	case SEEK_END:
1812		pos = offset; /* Going to the end => to the beginning */
1813		break;
1814	default:
1815		rc = -EINVAL;
1816		goto end;
1817	}
1818
1819	/* In any case, we must finish on an element boundary */
1820	if (pos & ((1 << log2_element_size) - 1)) {
1821		rc = -EINVAL;
1822		goto end;
1823	}
1824
1825	rc = xillyusb_send_opcode(xdev, chan->chan_idx << 1,
1826				  OPCODE_SET_ADDR,
1827				  pos >> log2_element_size);
1828
1829	if (rc)
1830		goto end;
1831
1832	if (chan->writable) {
1833		chan->flushed = 0;
1834		rc = flush_downstream(chan, HZ, false);
1835	}
1836
1837end:
1838	mutex_unlock(&chan->out_mutex);
1839	mutex_unlock(&chan->in_mutex);
1840
1841	if (rc) /* Return error after releasing mutexes */
1842		return rc;
1843
1844	filp->f_pos = pos;
1845
1846	return pos;
1847}
1848
1849static __poll_t xillyusb_poll(struct file *filp, poll_table *wait)
1850{
1851	struct xillyusb_channel *chan = filp->private_data;
1852	__poll_t mask = 0;
1853
1854	if (chan->in_fifo)
1855		poll_wait(filp, &chan->in_fifo->waitq, wait);
1856
1857	if (chan->out_ep)
1858		poll_wait(filp, &chan->out_ep->fifo.waitq, wait);
1859
1860	/*
1861	 * If this is the first time poll() is called, and the file is
1862	 * readable, set the relevant flag. Also tell the FPGA to send all it
1863	 * has, to kickstart the mechanism that ensures there's always some
1864	 * data in in_fifo unless the stream is dry end-to-end. Note that the
1865	 * first poll() may not return a EPOLLIN, even if there's data on the
1866	 * FPGA. Rather, the data will arrive soon, and trigger the relevant
1867	 * wait queue.
1868	 */
1869
1870	if (!chan->poll_used && chan->in_fifo) {
1871		chan->poll_used = 1;
1872		request_read_anything(chan, OPCODE_SET_PUSH);
1873	}
1874
1875	/*
1876	 * poll() won't play ball regarding read() channels which
1877	 * are synchronous. Allowing that will create situations where data has
1878	 * been delivered at the FPGA, and users expecting select() to wake up,
1879	 * which it may not. So make it never work.
1880	 */
1881
1882	if (chan->in_fifo && !chan->in_synchronous &&
1883	    (READ_ONCE(chan->in_fifo->fill) || !chan->read_data_ok))
1884		mask |= EPOLLIN | EPOLLRDNORM;
1885
1886	if (chan->out_ep &&
1887	    (READ_ONCE(chan->out_ep->fifo.fill) != chan->out_ep->fifo.size))
1888		mask |= EPOLLOUT | EPOLLWRNORM;
1889
1890	if (chan->xdev->error)
1891		mask |= EPOLLERR;
1892
1893	return mask;
1894}
1895
1896static const struct file_operations xillyusb_fops = {
1897	.owner      = THIS_MODULE,
1898	.read       = xillyusb_read,
1899	.write      = xillyusb_write,
1900	.open       = xillyusb_open,
1901	.flush      = xillyusb_flush,
1902	.release    = xillyusb_release,
1903	.llseek     = xillyusb_llseek,
1904	.poll       = xillyusb_poll,
1905};
1906
1907static int xillyusb_setup_base_eps(struct xillyusb_dev *xdev)
1908{
1909	xdev->msg_ep = endpoint_alloc(xdev, MSG_EP_NUM | USB_DIR_OUT,
1910				      bulk_out_work, 1, 2);
1911	if (!xdev->msg_ep)
1912		return -ENOMEM;
1913
1914	if (fifo_init(&xdev->msg_ep->fifo, 13)) /* 8 kiB */
1915		goto dealloc;
1916
1917	xdev->msg_ep->fill_mask = -8; /* 8 bytes granularity */
1918
1919	xdev->in_ep = endpoint_alloc(xdev, IN_EP_NUM | USB_DIR_IN,
1920				     bulk_in_work, BUF_SIZE_ORDER, BUFNUM);
1921	if (!xdev->in_ep)
1922		goto dealloc;
1923
1924	try_queue_bulk_in(xdev->in_ep);
1925
1926	return 0;
1927
1928dealloc:
1929	endpoint_dealloc(xdev->msg_ep); /* Also frees FIFO mem if allocated */
1930	xdev->msg_ep = NULL;
1931	return -ENOMEM;
1932}
1933
1934static int setup_channels(struct xillyusb_dev *xdev,
1935			  __le16 *chandesc,
1936			  int num_channels)
1937{
1938	struct xillyusb_channel *chan;
1939	int i;
1940
1941	chan = kcalloc(num_channels, sizeof(*chan), GFP_KERNEL);
1942	if (!chan)
1943		return -ENOMEM;
1944
1945	xdev->channels = chan;
1946
1947	for (i = 0; i < num_channels; i++, chan++) {
1948		unsigned int in_desc = le16_to_cpu(*chandesc++);
1949		unsigned int out_desc = le16_to_cpu(*chandesc++);
1950
1951		chan->xdev = xdev;
1952		mutex_init(&chan->in_mutex);
1953		mutex_init(&chan->out_mutex);
1954		mutex_init(&chan->lock);
1955		init_waitqueue_head(&chan->flushq);
1956
1957		chan->chan_idx = i;
1958
1959		if (in_desc & 0x80) { /* Entry is valid */
1960			chan->readable = 1;
1961			chan->in_synchronous = !!(in_desc & 0x40);
1962			chan->in_seekable = !!(in_desc & 0x20);
1963			chan->in_log2_element_size = in_desc & 0x0f;
1964			chan->in_log2_fifo_size = ((in_desc >> 8) & 0x1f) + 16;
1965		}
1966
1967		/*
1968		 * A downstream channel should never exist above index 13,
1969		 * as it would request a nonexistent BULK endpoint > 15.
1970		 * In the peculiar case that it does, it's ignored silently.
1971		 */
1972
1973		if ((out_desc & 0x80) && i < 14) { /* Entry is valid */
1974			chan->writable = 1;
1975			chan->out_synchronous = !!(out_desc & 0x40);
1976			chan->out_seekable = !!(out_desc & 0x20);
1977			chan->out_log2_element_size = out_desc & 0x0f;
1978			chan->out_log2_fifo_size =
1979				((out_desc >> 8) & 0x1f) + 16;
1980		}
1981	}
1982
1983	return 0;
1984}
1985
1986static int xillyusb_discovery(struct usb_interface *interface)
1987{
1988	int rc;
1989	struct xillyusb_dev *xdev = usb_get_intfdata(interface);
1990	__le16 bogus_chandesc[2];
1991	struct xillyfifo idt_fifo;
1992	struct xillyusb_channel *chan;
1993	unsigned int idt_len, names_offset;
1994	unsigned char *idt;
1995	int num_channels;
1996
1997	rc = xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0);
1998
1999	if (rc) {
2000		dev_err(&interface->dev, "Failed to send quiesce request. Aborting.\n");
2001		return rc;
2002	}
2003
2004	/* Phase I: Set up one fake upstream channel and obtain IDT */
2005
2006	/* Set up a fake IDT with one async IN stream */
2007	bogus_chandesc[0] = cpu_to_le16(0x80);
2008	bogus_chandesc[1] = cpu_to_le16(0);
2009
2010	rc = setup_channels(xdev, bogus_chandesc, 1);
2011
2012	if (rc)
2013		return rc;
2014
2015	rc = fifo_init(&idt_fifo, LOG2_IDT_FIFO_SIZE);
2016
2017	if (rc)
2018		return rc;
2019
2020	chan = xdev->channels;
2021
2022	chan->in_fifo = &idt_fifo;
2023	chan->read_data_ok = 1;
2024
2025	xdev->num_channels = 1;
2026
2027	rc = xillyusb_send_opcode(xdev, ~0, OPCODE_REQ_IDT, 0);
2028
2029	if (rc) {
2030		dev_err(&interface->dev, "Failed to send IDT request. Aborting.\n");
2031		goto unfifo;
2032	}
2033
2034	rc = wait_event_interruptible_timeout(idt_fifo.waitq,
2035					      !chan->read_data_ok,
2036					      XILLY_RESPONSE_TIMEOUT);
2037
2038	if (xdev->error) {
2039		rc = xdev->error;
2040		goto unfifo;
2041	}
2042
2043	if (rc < 0) {
2044		rc = -EINTR; /* Interrupt on probe method? Interesting. */
2045		goto unfifo;
2046	}
2047
2048	if (chan->read_data_ok) {
2049		rc = -ETIMEDOUT;
2050		dev_err(&interface->dev, "No response from FPGA. Aborting.\n");
2051		goto unfifo;
2052	}
2053
2054	idt_len = READ_ONCE(idt_fifo.fill);
2055	idt = kmalloc(idt_len, GFP_KERNEL);
2056
2057	if (!idt) {
2058		rc = -ENOMEM;
2059		goto unfifo;
2060	}
2061
2062	fifo_read(&idt_fifo, idt, idt_len, xilly_memcpy);
2063
2064	if (crc32_le(~0, idt, idt_len) != 0) {
2065		dev_err(&interface->dev, "IDT failed CRC check. Aborting.\n");
2066		rc = -ENODEV;
2067		goto unidt;
2068	}
2069
2070	if (*idt > 0x90) {
2071		dev_err(&interface->dev, "No support for IDT version 0x%02x. Maybe the xillyusb driver needs an upgrade. Aborting.\n",
2072			(int)*idt);
2073		rc = -ENODEV;
2074		goto unidt;
2075	}
2076
2077	/* Phase II: Set up the streams as defined in IDT */
2078
2079	num_channels = le16_to_cpu(*((__le16 *)(idt + 1)));
2080	names_offset = 3 + num_channels * 4;
2081	idt_len -= 4; /* Exclude CRC */
2082
2083	if (idt_len < names_offset) {
2084		dev_err(&interface->dev, "IDT too short. This is exceptionally weird, because its CRC is OK\n");
2085		rc = -ENODEV;
2086		goto unidt;
2087	}
2088
2089	rc = setup_channels(xdev, (void *)idt + 3, num_channels);
2090
2091	if (rc)
2092		goto unidt;
2093
2094	/*
2095	 * Except for wildly misbehaving hardware, or if it was disconnected
2096	 * just after responding with the IDT, there is no reason for any
2097	 * work item to be running now. To be sure that xdev->channels
2098	 * is updated on anything that might run in parallel, flush the
2099	 * workqueue, which rarely does anything.
2100	 */
2101	flush_workqueue(xdev->workq);
2102
2103	xdev->num_channels = num_channels;
2104
2105	fifo_mem_release(&idt_fifo);
2106	kfree(chan);
2107
2108	rc = xillybus_init_chrdev(&interface->dev, &xillyusb_fops,
2109				  THIS_MODULE, xdev,
2110				  idt + names_offset,
2111				  idt_len - names_offset,
2112				  num_channels,
2113				  xillyname, true);
2114
2115	kfree(idt);
2116
2117	return rc;
2118
2119unidt:
2120	kfree(idt);
2121
2122unfifo:
2123	safely_assign_in_fifo(chan, NULL);
2124	fifo_mem_release(&idt_fifo);
2125
2126	return rc;
2127}
2128
2129static int xillyusb_probe(struct usb_interface *interface,
2130			  const struct usb_device_id *id)
2131{
2132	struct xillyusb_dev *xdev;
2133	int rc;
2134
2135	xdev = kzalloc(sizeof(*xdev), GFP_KERNEL);
2136	if (!xdev)
2137		return -ENOMEM;
2138
2139	kref_init(&xdev->kref);
2140	mutex_init(&xdev->process_in_mutex);
2141	mutex_init(&xdev->msg_mutex);
2142
2143	xdev->udev = usb_get_dev(interface_to_usbdev(interface));
2144	xdev->dev = &interface->dev;
2145	xdev->error = 0;
2146	spin_lock_init(&xdev->error_lock);
2147	xdev->in_counter = 0;
2148	xdev->in_bytes_left = 0;
2149	xdev->workq = alloc_workqueue(xillyname, WQ_HIGHPRI, 0);
2150
2151	if (!xdev->workq) {
2152		dev_err(&interface->dev, "Failed to allocate work queue\n");
2153		rc = -ENOMEM;
2154		goto fail;
2155	}
2156
2157	INIT_WORK(&xdev->wakeup_workitem, wakeup_all);
2158
2159	usb_set_intfdata(interface, xdev);
2160
2161	rc = xillyusb_setup_base_eps(xdev);
2162	if (rc)
2163		goto fail;
2164
2165	rc = xillyusb_discovery(interface);
2166	if (rc)
2167		goto latefail;
2168
2169	return 0;
2170
2171latefail:
2172	endpoint_quiesce(xdev->in_ep);
2173	endpoint_quiesce(xdev->msg_ep);
2174
2175fail:
2176	usb_set_intfdata(interface, NULL);
2177	kref_put(&xdev->kref, cleanup_dev);
2178	return rc;
2179}
2180
2181static void xillyusb_disconnect(struct usb_interface *interface)
2182{
2183	struct xillyusb_dev *xdev = usb_get_intfdata(interface);
2184	struct xillyusb_endpoint *msg_ep = xdev->msg_ep;
2185	struct xillyfifo *fifo = &msg_ep->fifo;
2186	int rc;
2187	int i;
2188
2189	xillybus_cleanup_chrdev(xdev, &interface->dev);
2190
2191	/*
2192	 * Try to send OPCODE_QUIESCE, which will fail silently if the device
2193	 * was disconnected, but makes sense on module unload.
2194	 */
2195
2196	msg_ep->wake_on_drain = true;
2197	xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0);
2198
2199	/*
2200	 * If the device has been disconnected, sending the opcode causes
2201	 * a global device error with xdev->error, if such error didn't
2202	 * occur earlier. Hence timing out means that the USB link is fine,
2203	 * but somehow the message wasn't sent. Should never happen.
2204	 */
2205
2206	rc = wait_event_interruptible_timeout(fifo->waitq,
2207					      msg_ep->drained || xdev->error,
2208					      XILLY_RESPONSE_TIMEOUT);
2209
2210	if (!rc)
2211		dev_err(&interface->dev,
2212			"Weird timeout condition on sending quiesce request.\n");
2213
2214	report_io_error(xdev, -ENODEV); /* Discourage further activity */
2215
2216	/*
2217	 * This device driver is declared with soft_unbind set, or else
2218	 * sending OPCODE_QUIESCE above would always fail. The price is
2219	 * that the USB framework didn't kill outstanding URBs, so it has
2220	 * to be done explicitly before returning from this call.
2221	 */
2222
2223	for (i = 0; i < xdev->num_channels; i++) {
2224		struct xillyusb_channel *chan = &xdev->channels[i];
2225
2226		/*
2227		 * Lock taken to prevent chan->out_ep from changing. It also
2228		 * ensures xillyusb_open() and xillyusb_flush() don't access
2229		 * xdev->dev after being nullified below.
2230		 */
2231		mutex_lock(&chan->lock);
2232		if (chan->out_ep)
2233			endpoint_quiesce(chan->out_ep);
2234		mutex_unlock(&chan->lock);
2235	}
2236
2237	endpoint_quiesce(xdev->in_ep);
2238	endpoint_quiesce(xdev->msg_ep);
2239
2240	usb_set_intfdata(interface, NULL);
2241
2242	xdev->dev = NULL;
2243
2244	mutex_lock(&kref_mutex);
2245	kref_put(&xdev->kref, cleanup_dev);
2246	mutex_unlock(&kref_mutex);
2247}
2248
2249static struct usb_driver xillyusb_driver = {
2250	.name = xillyname,
2251	.id_table = xillyusb_table,
2252	.probe = xillyusb_probe,
2253	.disconnect = xillyusb_disconnect,
2254	.soft_unbind = 1,
2255};
2256
2257static int __init xillyusb_init(void)
2258{
2259	int rc = 0;
2260
2261	if (LOG2_INITIAL_FIFO_BUF_SIZE > PAGE_SHIFT)
2262		fifo_buf_order = LOG2_INITIAL_FIFO_BUF_SIZE - PAGE_SHIFT;
2263	else
2264		fifo_buf_order = 0;
2265
2266	rc = usb_register(&xillyusb_driver);
2267
2268	return rc;
2269}
2270
2271static void __exit xillyusb_exit(void)
2272{
2273	usb_deregister(&xillyusb_driver);
2274}
2275
2276module_init(xillyusb_init);
2277module_exit(xillyusb_exit);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright 2020 Xillybus Ltd, http://xillybus.com
   4 *
   5 * Driver for the XillyUSB FPGA/host framework.
   6 *
   7 * This driver interfaces with a special IP core in an FPGA, setting up
   8 * a pipe between a hardware FIFO in the programmable logic and a device
   9 * file in the host. The number of such pipes and their attributes are
  10 * set up on the logic. This driver detects these automatically and
  11 * creates the device files accordingly.
  12 */
  13
  14#include <linux/types.h>
  15#include <linux/slab.h>
  16#include <linux/list.h>
  17#include <linux/device.h>
  18#include <linux/module.h>
  19#include <asm/byteorder.h>
  20#include <linux/io.h>
  21#include <linux/interrupt.h>
  22#include <linux/sched.h>
  23#include <linux/fs.h>
  24#include <linux/spinlock.h>
  25#include <linux/mutex.h>
  26#include <linux/workqueue.h>
  27#include <linux/crc32.h>
  28#include <linux/poll.h>
  29#include <linux/delay.h>
  30#include <linux/usb.h>
  31
  32#include "xillybus_class.h"
  33
  34MODULE_DESCRIPTION("Driver for XillyUSB FPGA IP Core");
  35MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
  36MODULE_ALIAS("xillyusb");
  37MODULE_LICENSE("GPL v2");
  38
  39#define XILLY_RX_TIMEOUT		(10 * HZ / 1000)
  40#define XILLY_RESPONSE_TIMEOUT		(500 * HZ / 1000)
  41
  42#define BUF_SIZE_ORDER			4
  43#define BUFNUM				8
  44#define LOG2_IDT_FIFO_SIZE		16
  45#define LOG2_INITIAL_FIFO_BUF_SIZE	16
  46
  47#define MSG_EP_NUM			1
  48#define IN_EP_NUM			1
  49
  50static const char xillyname[] = "xillyusb";
  51
  52static unsigned int fifo_buf_order;
  53
  54#define USB_VENDOR_ID_XILINX		0x03fd
  55#define USB_VENDOR_ID_ALTERA		0x09fb
  56
  57#define USB_PRODUCT_ID_XILLYUSB		0xebbe
  58
  59static const struct usb_device_id xillyusb_table[] = {
  60	{ USB_DEVICE(USB_VENDOR_ID_XILINX, USB_PRODUCT_ID_XILLYUSB) },
  61	{ USB_DEVICE(USB_VENDOR_ID_ALTERA, USB_PRODUCT_ID_XILLYUSB) },
  62	{ }
  63};
  64
  65MODULE_DEVICE_TABLE(usb, xillyusb_table);
  66
  67struct xillyusb_dev;
  68
  69struct xillyfifo {
  70	unsigned int bufsize; /* In bytes, always a power of 2 */
  71	unsigned int bufnum;
  72	unsigned int size; /* Lazy: Equals bufsize * bufnum */
  73	unsigned int buf_order;
  74
  75	int fill; /* Number of bytes in the FIFO */
  76	spinlock_t lock;
  77	wait_queue_head_t waitq;
  78
  79	unsigned int readpos;
  80	unsigned int readbuf;
  81	unsigned int writepos;
  82	unsigned int writebuf;
  83	char **mem;
  84};
  85
  86struct xillyusb_channel;
  87
  88struct xillyusb_endpoint {
  89	struct xillyusb_dev *xdev;
  90
  91	struct mutex ep_mutex; /* serialize operations on endpoint */
  92
  93	struct list_head buffers;
  94	struct list_head filled_buffers;
  95	spinlock_t buffers_lock; /* protect these two lists */
  96
  97	unsigned int order;
  98	unsigned int buffer_size;
  99
 100	unsigned int fill_mask;
 101
 102	int outstanding_urbs;
 103
 104	struct usb_anchor anchor;
 105
 106	struct xillyfifo fifo;
 107
 108	struct work_struct workitem;
 109
 110	bool shutting_down;
 111	bool drained;
 112	bool wake_on_drain;
 113
 114	u8 ep_num;
 115};
 116
 117struct xillyusb_channel {
 118	struct xillyusb_dev *xdev;
 119
 120	struct xillyfifo *in_fifo;
 121	struct xillyusb_endpoint *out_ep;
 122	struct mutex lock; /* protect @out_ep, @in_fifo, bit fields below */
 123
 124	struct mutex in_mutex; /* serialize fops on FPGA to host stream */
 125	struct mutex out_mutex; /* serialize fops on host to FPGA stream */
 126	wait_queue_head_t flushq;
 127
 128	int chan_idx;
 129
 130	u32 in_consumed_bytes;
 131	u32 in_current_checkpoint;
 132	u32 out_bytes;
 133
 134	unsigned int in_log2_element_size;
 135	unsigned int out_log2_element_size;
 136	unsigned int in_log2_fifo_size;
 137	unsigned int out_log2_fifo_size;
 138
 139	unsigned int read_data_ok; /* EOF not arrived (yet) */
 140	unsigned int poll_used;
 141	unsigned int flushing;
 142	unsigned int flushed;
 143	unsigned int canceled;
 144
 145	/* Bit fields protected by @lock except for initialization */
 146	unsigned readable:1;
 147	unsigned writable:1;
 148	unsigned open_for_read:1;
 149	unsigned open_for_write:1;
 150	unsigned in_synchronous:1;
 151	unsigned out_synchronous:1;
 152	unsigned in_seekable:1;
 153	unsigned out_seekable:1;
 154};
 155
 156struct xillybuffer {
 157	struct list_head entry;
 158	struct xillyusb_endpoint *ep;
 159	void *buf;
 160	unsigned int len;
 161};
 162
 163struct xillyusb_dev {
 164	struct xillyusb_channel *channels;
 165
 166	struct usb_device	*udev;
 167	struct device		*dev; /* For dev_err() and such */
 168	struct kref		kref;
 169	struct workqueue_struct	*workq;
 170
 171	int error;
 172	spinlock_t error_lock; /* protect @error */
 173	struct work_struct wakeup_workitem;
 174
 175	int num_channels;
 176
 177	struct xillyusb_endpoint *msg_ep;
 178	struct xillyusb_endpoint *in_ep;
 179
 180	struct mutex msg_mutex; /* serialize opcode transmission */
 181	int in_bytes_left;
 182	int leftover_chan_num;
 183	unsigned int in_counter;
 184	struct mutex process_in_mutex; /* synchronize wakeup_all() */
 185};
 186
 187/*
 188 * kref_mutex is used in xillyusb_open() to prevent the xillyusb_dev
 189 * struct from being freed during the gap between being found by
 190 * xillybus_find_inode() and having its reference count incremented.
 191 */
 192
 193static DEFINE_MUTEX(kref_mutex);
 194
 195/* FPGA to host opcodes */
 196enum {
 197	OPCODE_DATA = 0,
 198	OPCODE_QUIESCE_ACK = 1,
 199	OPCODE_EOF = 2,
 200	OPCODE_REACHED_CHECKPOINT = 3,
 201	OPCODE_CANCELED_CHECKPOINT = 4,
 202};
 203
 204/* Host to FPGA opcodes */
 205enum {
 206	OPCODE_QUIESCE = 0,
 207	OPCODE_REQ_IDT = 1,
 208	OPCODE_SET_CHECKPOINT = 2,
 209	OPCODE_CLOSE = 3,
 210	OPCODE_SET_PUSH = 4,
 211	OPCODE_UPDATE_PUSH = 5,
 212	OPCODE_CANCEL_CHECKPOINT = 6,
 213	OPCODE_SET_ADDR = 7,
 214};
 215
 216/*
 217 * fifo_write() and fifo_read() are NOT reentrant (i.e. concurrent multiple
 218 * calls to each on the same FIFO is not allowed) however it's OK to have
 219 * threads calling each of the two functions once on the same FIFO, and
 220 * at the same time.
 221 */
 222
 223static int fifo_write(struct xillyfifo *fifo,
 224		      const void *data, unsigned int len,
 225		      int (*copier)(void *, const void *, int))
 226{
 227	unsigned int done = 0;
 228	unsigned int todo = len;
 229	unsigned int nmax;
 230	unsigned int writepos = fifo->writepos;
 231	unsigned int writebuf = fifo->writebuf;
 232	unsigned long flags;
 233	int rc;
 234
 235	nmax = fifo->size - READ_ONCE(fifo->fill);
 236
 237	while (1) {
 238		unsigned int nrail = fifo->bufsize - writepos;
 239		unsigned int n = min(todo, nmax);
 240
 241		if (n == 0) {
 242			spin_lock_irqsave(&fifo->lock, flags);
 243			fifo->fill += done;
 244			spin_unlock_irqrestore(&fifo->lock, flags);
 245
 246			fifo->writepos = writepos;
 247			fifo->writebuf = writebuf;
 248
 249			return done;
 250		}
 251
 252		if (n > nrail)
 253			n = nrail;
 254
 255		rc = (*copier)(fifo->mem[writebuf] + writepos, data + done, n);
 256
 257		if (rc)
 258			return rc;
 259
 260		done += n;
 261		todo -= n;
 262
 263		writepos += n;
 264		nmax -= n;
 265
 266		if (writepos == fifo->bufsize) {
 267			writepos = 0;
 268			writebuf++;
 269
 270			if (writebuf == fifo->bufnum)
 271				writebuf = 0;
 272		}
 273	}
 274}
 275
 276static int fifo_read(struct xillyfifo *fifo,
 277		     void *data, unsigned int len,
 278		     int (*copier)(void *, const void *, int))
 279{
 280	unsigned int done = 0;
 281	unsigned int todo = len;
 282	unsigned int fill;
 283	unsigned int readpos = fifo->readpos;
 284	unsigned int readbuf = fifo->readbuf;
 285	unsigned long flags;
 286	int rc;
 287
 288	/*
 289	 * The spinlock here is necessary, because otherwise fifo->fill
 290	 * could have been increased by fifo_write() after writing data
 291	 * to the buffer, but this data would potentially not have been
 292	 * visible on this thread at the time the updated fifo->fill was.
 293	 * That could lead to reading invalid data.
 294	 */
 295
 296	spin_lock_irqsave(&fifo->lock, flags);
 297	fill = fifo->fill;
 298	spin_unlock_irqrestore(&fifo->lock, flags);
 299
 300	while (1) {
 301		unsigned int nrail = fifo->bufsize - readpos;
 302		unsigned int n = min(todo, fill);
 303
 304		if (n == 0) {
 305			spin_lock_irqsave(&fifo->lock, flags);
 306			fifo->fill -= done;
 307			spin_unlock_irqrestore(&fifo->lock, flags);
 308
 309			fifo->readpos = readpos;
 310			fifo->readbuf = readbuf;
 311
 312			return done;
 313		}
 314
 315		if (n > nrail)
 316			n = nrail;
 317
 318		rc = (*copier)(data + done, fifo->mem[readbuf] + readpos, n);
 319
 320		if (rc)
 321			return rc;
 322
 323		done += n;
 324		todo -= n;
 325
 326		readpos += n;
 327		fill -= n;
 328
 329		if (readpos == fifo->bufsize) {
 330			readpos = 0;
 331			readbuf++;
 332
 333			if (readbuf == fifo->bufnum)
 334				readbuf = 0;
 335		}
 336	}
 337}
 338
 339/*
 340 * These three wrapper functions are used as the @copier argument to
 341 * fifo_write() and fifo_read(), so that they can work directly with
 342 * user memory as well.
 343 */
 344
 345static int xilly_copy_from_user(void *dst, const void *src, int n)
 346{
 347	if (copy_from_user(dst, (const void __user *)src, n))
 348		return -EFAULT;
 349
 350	return 0;
 351}
 352
 353static int xilly_copy_to_user(void *dst, const void *src, int n)
 354{
 355	if (copy_to_user((void __user *)dst, src, n))
 356		return -EFAULT;
 357
 358	return 0;
 359}
 360
 361static int xilly_memcpy(void *dst, const void *src, int n)
 362{
 363	memcpy(dst, src, n);
 364
 365	return 0;
 366}
 367
 368static int fifo_init(struct xillyfifo *fifo,
 369		     unsigned int log2_size)
 370{
 371	unsigned int log2_bufnum;
 372	unsigned int buf_order;
 373	int i;
 374
 375	unsigned int log2_fifo_buf_size;
 376
 377retry:
 378	log2_fifo_buf_size = fifo_buf_order + PAGE_SHIFT;
 379
 380	if (log2_size > log2_fifo_buf_size) {
 381		log2_bufnum = log2_size - log2_fifo_buf_size;
 382		buf_order = fifo_buf_order;
 383		fifo->bufsize = 1 << log2_fifo_buf_size;
 384	} else {
 385		log2_bufnum = 0;
 386		buf_order = (log2_size > PAGE_SHIFT) ?
 387			log2_size - PAGE_SHIFT : 0;
 388		fifo->bufsize = 1 << log2_size;
 389	}
 390
 391	fifo->bufnum = 1 << log2_bufnum;
 392	fifo->size = fifo->bufnum * fifo->bufsize;
 393	fifo->buf_order = buf_order;
 394
 395	fifo->mem = kmalloc_array(fifo->bufnum, sizeof(void *), GFP_KERNEL);
 396
 397	if (!fifo->mem)
 398		return -ENOMEM;
 399
 400	for (i = 0; i < fifo->bufnum; i++) {
 401		fifo->mem[i] = (void *)
 402			__get_free_pages(GFP_KERNEL, buf_order);
 403
 404		if (!fifo->mem[i])
 405			goto memfail;
 406	}
 407
 408	fifo->fill = 0;
 409	fifo->readpos = 0;
 410	fifo->readbuf = 0;
 411	fifo->writepos = 0;
 412	fifo->writebuf = 0;
 413	spin_lock_init(&fifo->lock);
 414	init_waitqueue_head(&fifo->waitq);
 415	return 0;
 416
 417memfail:
 418	for (i--; i >= 0; i--)
 419		free_pages((unsigned long)fifo->mem[i], buf_order);
 420
 421	kfree(fifo->mem);
 422	fifo->mem = NULL;
 423
 424	if (fifo_buf_order) {
 425		fifo_buf_order--;
 426		goto retry;
 427	} else {
 428		return -ENOMEM;
 429	}
 430}
 431
 432static void fifo_mem_release(struct xillyfifo *fifo)
 433{
 434	int i;
 435
 436	if (!fifo->mem)
 437		return;
 438
 439	for (i = 0; i < fifo->bufnum; i++)
 440		free_pages((unsigned long)fifo->mem[i], fifo->buf_order);
 441
 442	kfree(fifo->mem);
 443}
 444
 445/*
 446 * When endpoint_quiesce() returns, the endpoint has no URBs submitted,
 447 * won't accept any new URB submissions, and its related work item doesn't
 448 * and won't run anymore.
 449 */
 450
 451static void endpoint_quiesce(struct xillyusb_endpoint *ep)
 452{
 453	mutex_lock(&ep->ep_mutex);
 454	ep->shutting_down = true;
 455	mutex_unlock(&ep->ep_mutex);
 456
 457	usb_kill_anchored_urbs(&ep->anchor);
 458	cancel_work_sync(&ep->workitem);
 459}
 460
 461/*
 462 * Note that endpoint_dealloc() also frees fifo memory (if allocated), even
 463 * though endpoint_alloc doesn't allocate that memory.
 464 */
 465
 466static void endpoint_dealloc(struct xillyusb_endpoint *ep)
 467{
 468	struct list_head *this, *next;
 469
 470	fifo_mem_release(&ep->fifo);
 471
 472	/* Join @filled_buffers with @buffers to free these entries too */
 473	list_splice(&ep->filled_buffers, &ep->buffers);
 474
 475	list_for_each_safe(this, next, &ep->buffers) {
 476		struct xillybuffer *xb =
 477			list_entry(this, struct xillybuffer, entry);
 478
 479		free_pages((unsigned long)xb->buf, ep->order);
 480		kfree(xb);
 481	}
 482
 483	kfree(ep);
 484}
 485
 486static struct xillyusb_endpoint
 487*endpoint_alloc(struct xillyusb_dev *xdev,
 488		u8 ep_num,
 489		void (*work)(struct work_struct *),
 490		unsigned int order,
 491		int bufnum)
 492{
 493	int i;
 494
 495	struct xillyusb_endpoint *ep;
 496
 497	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
 498
 499	if (!ep)
 500		return NULL;
 501
 502	INIT_LIST_HEAD(&ep->buffers);
 503	INIT_LIST_HEAD(&ep->filled_buffers);
 504
 505	spin_lock_init(&ep->buffers_lock);
 506	mutex_init(&ep->ep_mutex);
 507
 508	init_usb_anchor(&ep->anchor);
 509	INIT_WORK(&ep->workitem, work);
 510
 511	ep->order = order;
 512	ep->buffer_size =  1 << (PAGE_SHIFT + order);
 513	ep->outstanding_urbs = 0;
 514	ep->drained = true;
 515	ep->wake_on_drain = false;
 516	ep->xdev = xdev;
 517	ep->ep_num = ep_num;
 518	ep->shutting_down = false;
 519
 520	for (i = 0; i < bufnum; i++) {
 521		struct xillybuffer *xb;
 522		unsigned long addr;
 523
 524		xb = kzalloc(sizeof(*xb), GFP_KERNEL);
 525
 526		if (!xb) {
 527			endpoint_dealloc(ep);
 528			return NULL;
 529		}
 530
 531		addr = __get_free_pages(GFP_KERNEL, order);
 532
 533		if (!addr) {
 534			kfree(xb);
 535			endpoint_dealloc(ep);
 536			return NULL;
 537		}
 538
 539		xb->buf = (void *)addr;
 540		xb->ep = ep;
 541		list_add_tail(&xb->entry, &ep->buffers);
 542	}
 543	return ep;
 544}
 545
 546static void cleanup_dev(struct kref *kref)
 547{
 548	struct xillyusb_dev *xdev =
 549		container_of(kref, struct xillyusb_dev, kref);
 550
 551	if (xdev->in_ep)
 552		endpoint_dealloc(xdev->in_ep);
 553
 554	if (xdev->msg_ep)
 555		endpoint_dealloc(xdev->msg_ep);
 556
 557	if (xdev->workq)
 558		destroy_workqueue(xdev->workq);
 559
 560	usb_put_dev(xdev->udev);
 561	kfree(xdev->channels); /* Argument may be NULL, and that's fine */
 562	kfree(xdev);
 563}
 564
 565/*
 566 * @process_in_mutex is taken to ensure that bulk_in_work() won't call
 567 * process_bulk_in() after wakeup_all()'s execution: The latter zeroes all
 568 * @read_data_ok entries, which will make process_bulk_in() report false
 569 * errors if executed. The mechanism relies on that xdev->error is assigned
 570 * a non-zero value by report_io_error() prior to queueing wakeup_all(),
 571 * which prevents bulk_in_work() from calling process_bulk_in().
 572 *
 573 * The fact that wakeup_all() and bulk_in_work() are queued on the same
 574 * workqueue makes their concurrent execution very unlikely, however the
 575 * kernel's API doesn't seem to ensure this strictly.
 576 */
 577
 578static void wakeup_all(struct work_struct *work)
 579{
 580	int i;
 581	struct xillyusb_dev *xdev = container_of(work, struct xillyusb_dev,
 582						 wakeup_workitem);
 583
 584	mutex_lock(&xdev->process_in_mutex);
 585
 586	for (i = 0; i < xdev->num_channels; i++) {
 587		struct xillyusb_channel *chan = &xdev->channels[i];
 588
 589		mutex_lock(&chan->lock);
 590
 591		if (chan->in_fifo) {
 592			/*
 593			 * Fake an EOF: Even if such arrives, it won't be
 594			 * processed.
 595			 */
 596			chan->read_data_ok = 0;
 597			wake_up_interruptible(&chan->in_fifo->waitq);
 598		}
 599
 600		if (chan->out_ep)
 601			wake_up_interruptible(&chan->out_ep->fifo.waitq);
 602
 603		mutex_unlock(&chan->lock);
 604
 605		wake_up_interruptible(&chan->flushq);
 606	}
 607
 608	mutex_unlock(&xdev->process_in_mutex);
 609
 610	wake_up_interruptible(&xdev->msg_ep->fifo.waitq);
 611
 612	kref_put(&xdev->kref, cleanup_dev);
 613}
 614
 615static void report_io_error(struct xillyusb_dev *xdev,
 616			    int errcode)
 617{
 618	unsigned long flags;
 619	bool do_once = false;
 620
 621	spin_lock_irqsave(&xdev->error_lock, flags);
 622	if (!xdev->error) {
 623		xdev->error = errcode;
 624		do_once = true;
 625	}
 626	spin_unlock_irqrestore(&xdev->error_lock, flags);
 627
 628	if (do_once) {
 629		kref_get(&xdev->kref); /* xdev is used by work item */
 630		queue_work(xdev->workq, &xdev->wakeup_workitem);
 631	}
 632}
 633
 634/*
 635 * safely_assign_in_fifo() changes the value of chan->in_fifo and ensures
 636 * the previous pointer is never used after its return.
 637 */
 638
 639static void safely_assign_in_fifo(struct xillyusb_channel *chan,
 640				  struct xillyfifo *fifo)
 641{
 642	mutex_lock(&chan->lock);
 643	chan->in_fifo = fifo;
 644	mutex_unlock(&chan->lock);
 645
 646	flush_work(&chan->xdev->in_ep->workitem);
 647}
 648
 649static void bulk_in_completer(struct urb *urb)
 650{
 651	struct xillybuffer *xb = urb->context;
 652	struct xillyusb_endpoint *ep = xb->ep;
 653	unsigned long flags;
 654
 655	if (urb->status) {
 656		if (!(urb->status == -ENOENT ||
 657		      urb->status == -ECONNRESET ||
 658		      urb->status == -ESHUTDOWN))
 659			report_io_error(ep->xdev, -EIO);
 660
 661		spin_lock_irqsave(&ep->buffers_lock, flags);
 662		list_add_tail(&xb->entry, &ep->buffers);
 663		ep->outstanding_urbs--;
 664		spin_unlock_irqrestore(&ep->buffers_lock, flags);
 665
 666		return;
 667	}
 668
 669	xb->len = urb->actual_length;
 670
 671	spin_lock_irqsave(&ep->buffers_lock, flags);
 672	list_add_tail(&xb->entry, &ep->filled_buffers);
 673	spin_unlock_irqrestore(&ep->buffers_lock, flags);
 674
 675	if (!ep->shutting_down)
 676		queue_work(ep->xdev->workq, &ep->workitem);
 677}
 678
 679static void bulk_out_completer(struct urb *urb)
 680{
 681	struct xillybuffer *xb = urb->context;
 682	struct xillyusb_endpoint *ep = xb->ep;
 683	unsigned long flags;
 684
 685	if (urb->status &&
 686	    (!(urb->status == -ENOENT ||
 687	       urb->status == -ECONNRESET ||
 688	       urb->status == -ESHUTDOWN)))
 689		report_io_error(ep->xdev, -EIO);
 690
 691	spin_lock_irqsave(&ep->buffers_lock, flags);
 692	list_add_tail(&xb->entry, &ep->buffers);
 693	ep->outstanding_urbs--;
 694	spin_unlock_irqrestore(&ep->buffers_lock, flags);
 695
 696	if (!ep->shutting_down)
 697		queue_work(ep->xdev->workq, &ep->workitem);
 698}
 699
 700static void try_queue_bulk_in(struct xillyusb_endpoint *ep)
 701{
 702	struct xillyusb_dev *xdev = ep->xdev;
 703	struct xillybuffer *xb;
 704	struct urb *urb;
 705
 706	int rc;
 707	unsigned long flags;
 708	unsigned int bufsize = ep->buffer_size;
 709
 710	mutex_lock(&ep->ep_mutex);
 711
 712	if (ep->shutting_down || xdev->error)
 713		goto done;
 714
 715	while (1) {
 716		spin_lock_irqsave(&ep->buffers_lock, flags);
 717
 718		if (list_empty(&ep->buffers)) {
 719			spin_unlock_irqrestore(&ep->buffers_lock, flags);
 720			goto done;
 721		}
 722
 723		xb = list_first_entry(&ep->buffers, struct xillybuffer, entry);
 724		list_del(&xb->entry);
 725		ep->outstanding_urbs++;
 726
 727		spin_unlock_irqrestore(&ep->buffers_lock, flags);
 728
 729		urb = usb_alloc_urb(0, GFP_KERNEL);
 730		if (!urb) {
 731			report_io_error(xdev, -ENOMEM);
 732			goto relist;
 733		}
 734
 735		usb_fill_bulk_urb(urb, xdev->udev,
 736				  usb_rcvbulkpipe(xdev->udev, ep->ep_num),
 737				  xb->buf, bufsize, bulk_in_completer, xb);
 738
 739		usb_anchor_urb(urb, &ep->anchor);
 740
 741		rc = usb_submit_urb(urb, GFP_KERNEL);
 742
 743		if (rc) {
 744			report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM :
 745					-EIO);
 746			goto unanchor;
 747		}
 748
 749		usb_free_urb(urb); /* This just decrements reference count */
 750	}
 751
 752unanchor:
 753	usb_unanchor_urb(urb);
 754	usb_free_urb(urb);
 755
 756relist:
 757	spin_lock_irqsave(&ep->buffers_lock, flags);
 758	list_add_tail(&xb->entry, &ep->buffers);
 759	ep->outstanding_urbs--;
 760	spin_unlock_irqrestore(&ep->buffers_lock, flags);
 761
 762done:
 763	mutex_unlock(&ep->ep_mutex);
 764}
 765
 766static void try_queue_bulk_out(struct xillyusb_endpoint *ep)
 767{
 768	struct xillyfifo *fifo = &ep->fifo;
 769	struct xillyusb_dev *xdev = ep->xdev;
 770	struct xillybuffer *xb;
 771	struct urb *urb;
 772
 773	int rc;
 774	unsigned int fill;
 775	unsigned long flags;
 776	bool do_wake = false;
 777
 778	mutex_lock(&ep->ep_mutex);
 779
 780	if (ep->shutting_down || xdev->error)
 781		goto done;
 782
 783	fill = READ_ONCE(fifo->fill) & ep->fill_mask;
 784
 785	while (1) {
 786		int count;
 787		unsigned int max_read;
 788
 789		spin_lock_irqsave(&ep->buffers_lock, flags);
 790
 791		/*
 792		 * Race conditions might have the FIFO filled while the
 793		 * endpoint is marked as drained here. That doesn't matter,
 794		 * because the sole purpose of @drained is to ensure that
 795		 * certain data has been sent on the USB channel before
 796		 * shutting it down. Hence knowing that the FIFO appears
 797		 * to be empty with no outstanding URBs at some moment
 798		 * is good enough.
 799		 */
 800
 801		if (!fill) {
 802			ep->drained = !ep->outstanding_urbs;
 803			if (ep->drained && ep->wake_on_drain)
 804				do_wake = true;
 805
 806			spin_unlock_irqrestore(&ep->buffers_lock, flags);
 807			goto done;
 808		}
 809
 810		ep->drained = false;
 811
 812		if ((fill < ep->buffer_size && ep->outstanding_urbs) ||
 813		    list_empty(&ep->buffers)) {
 814			spin_unlock_irqrestore(&ep->buffers_lock, flags);
 815			goto done;
 816		}
 817
 818		xb = list_first_entry(&ep->buffers, struct xillybuffer, entry);
 819		list_del(&xb->entry);
 820		ep->outstanding_urbs++;
 821
 822		spin_unlock_irqrestore(&ep->buffers_lock, flags);
 823
 824		max_read = min(fill, ep->buffer_size);
 825
 826		count = fifo_read(&ep->fifo, xb->buf, max_read, xilly_memcpy);
 827
 828		/*
 829		 * xilly_memcpy always returns 0 => fifo_read can't fail =>
 830		 * count > 0
 831		 */
 832
 833		urb = usb_alloc_urb(0, GFP_KERNEL);
 834		if (!urb) {
 835			report_io_error(xdev, -ENOMEM);
 836			goto relist;
 837		}
 838
 839		usb_fill_bulk_urb(urb, xdev->udev,
 840				  usb_sndbulkpipe(xdev->udev, ep->ep_num),
 841				  xb->buf, count, bulk_out_completer, xb);
 842
 843		usb_anchor_urb(urb, &ep->anchor);
 844
 845		rc = usb_submit_urb(urb, GFP_KERNEL);
 846
 847		if (rc) {
 848			report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM :
 849					-EIO);
 850			goto unanchor;
 851		}
 852
 853		usb_free_urb(urb); /* This just decrements reference count */
 854
 855		fill -= count;
 856		do_wake = true;
 857	}
 858
 859unanchor:
 860	usb_unanchor_urb(urb);
 861	usb_free_urb(urb);
 862
 863relist:
 864	spin_lock_irqsave(&ep->buffers_lock, flags);
 865	list_add_tail(&xb->entry, &ep->buffers);
 866	ep->outstanding_urbs--;
 867	spin_unlock_irqrestore(&ep->buffers_lock, flags);
 868
 869done:
 870	mutex_unlock(&ep->ep_mutex);
 871
 872	if (do_wake)
 873		wake_up_interruptible(&fifo->waitq);
 874}
 875
 876static void bulk_out_work(struct work_struct *work)
 877{
 878	struct xillyusb_endpoint *ep = container_of(work,
 879						    struct xillyusb_endpoint,
 880						    workitem);
 881	try_queue_bulk_out(ep);
 882}
 883
 884static int process_in_opcode(struct xillyusb_dev *xdev,
 885			     int opcode,
 886			     int chan_num)
 887{
 888	struct xillyusb_channel *chan;
 889	struct device *dev = xdev->dev;
 890	int chan_idx = chan_num >> 1;
 891
 892	if (chan_idx >= xdev->num_channels) {
 893		dev_err(dev, "Received illegal channel ID %d from FPGA\n",
 894			chan_num);
 895		return -EIO;
 896	}
 897
 898	chan = &xdev->channels[chan_idx];
 899
 900	switch (opcode) {
 901	case OPCODE_EOF:
 902		if (!chan->read_data_ok) {
 903			dev_err(dev, "Received unexpected EOF for channel %d\n",
 904				chan_num);
 905			return -EIO;
 906		}
 907
 908		/*
 909		 * A write memory barrier ensures that the FIFO's fill level
 910		 * is visible before read_data_ok turns zero, so the data in
 911		 * the FIFO isn't missed by the consumer.
 912		 */
 913		smp_wmb();
 914		WRITE_ONCE(chan->read_data_ok, 0);
 915		wake_up_interruptible(&chan->in_fifo->waitq);
 916		break;
 917
 918	case OPCODE_REACHED_CHECKPOINT:
 919		chan->flushing = 0;
 920		wake_up_interruptible(&chan->flushq);
 921		break;
 922
 923	case OPCODE_CANCELED_CHECKPOINT:
 924		chan->canceled = 1;
 925		wake_up_interruptible(&chan->flushq);
 926		break;
 927
 928	default:
 929		dev_err(dev, "Received illegal opcode %d from FPGA\n",
 930			opcode);
 931		return -EIO;
 932	}
 933
 934	return 0;
 935}
 936
 937static int process_bulk_in(struct xillybuffer *xb)
 938{
 939	struct xillyusb_endpoint *ep = xb->ep;
 940	struct xillyusb_dev *xdev = ep->xdev;
 941	struct device *dev = xdev->dev;
 942	int dws = xb->len >> 2;
 943	__le32 *p = xb->buf;
 944	u32 ctrlword;
 945	struct xillyusb_channel *chan;
 946	struct xillyfifo *fifo;
 947	int chan_num = 0, opcode;
 948	int chan_idx;
 949	int bytes, count, dwconsume;
 950	int in_bytes_left = 0;
 951	int rc;
 952
 953	if ((dws << 2) != xb->len) {
 954		dev_err(dev, "Received BULK IN transfer with %d bytes, not a multiple of 4\n",
 955			xb->len);
 956		return -EIO;
 957	}
 958
 959	if (xdev->in_bytes_left) {
 960		bytes = min(xdev->in_bytes_left, dws << 2);
 961		in_bytes_left = xdev->in_bytes_left - bytes;
 962		chan_num = xdev->leftover_chan_num;
 963		goto resume_leftovers;
 964	}
 965
 966	while (dws) {
 967		ctrlword = le32_to_cpu(*p++);
 968		dws--;
 969
 970		chan_num = ctrlword & 0xfff;
 971		count = (ctrlword >> 12) & 0x3ff;
 972		opcode = (ctrlword >> 24) & 0xf;
 973
 974		if (opcode != OPCODE_DATA) {
 975			unsigned int in_counter = xdev->in_counter++ & 0x3ff;
 976
 977			if (count != in_counter) {
 978				dev_err(dev, "Expected opcode counter %d, got %d\n",
 979					in_counter, count);
 980				return -EIO;
 981			}
 982
 983			rc = process_in_opcode(xdev, opcode, chan_num);
 984
 985			if (rc)
 986				return rc;
 987
 988			continue;
 989		}
 990
 991		bytes = min(count + 1, dws << 2);
 992		in_bytes_left = count + 1 - bytes;
 993
 994resume_leftovers:
 995		chan_idx = chan_num >> 1;
 996
 997		if (!(chan_num & 1) || chan_idx >= xdev->num_channels ||
 998		    !xdev->channels[chan_idx].read_data_ok) {
 999			dev_err(dev, "Received illegal channel ID %d from FPGA\n",
1000				chan_num);
1001			return -EIO;
1002		}
1003		chan = &xdev->channels[chan_idx];
1004
1005		fifo = chan->in_fifo;
1006
1007		if (unlikely(!fifo))
1008			return -EIO; /* We got really unexpected data */
1009
1010		if (bytes != fifo_write(fifo, p, bytes, xilly_memcpy)) {
1011			dev_err(dev, "Misbehaving FPGA overflowed an upstream FIFO!\n");
1012			return -EIO;
1013		}
1014
1015		wake_up_interruptible(&fifo->waitq);
1016
1017		dwconsume = (bytes + 3) >> 2;
1018		dws -= dwconsume;
1019		p += dwconsume;
1020	}
1021
1022	xdev->in_bytes_left = in_bytes_left;
1023	xdev->leftover_chan_num = chan_num;
1024	return 0;
1025}
1026
1027static void bulk_in_work(struct work_struct *work)
1028{
1029	struct xillyusb_endpoint *ep =
1030		container_of(work, struct xillyusb_endpoint, workitem);
1031	struct xillyusb_dev *xdev = ep->xdev;
1032	unsigned long flags;
1033	struct xillybuffer *xb;
1034	bool consumed = false;
1035	int rc = 0;
1036
1037	mutex_lock(&xdev->process_in_mutex);
1038
1039	spin_lock_irqsave(&ep->buffers_lock, flags);
1040
1041	while (1) {
1042		if (rc || list_empty(&ep->filled_buffers)) {
1043			spin_unlock_irqrestore(&ep->buffers_lock, flags);
1044			mutex_unlock(&xdev->process_in_mutex);
1045
1046			if (rc)
1047				report_io_error(xdev, rc);
1048			else if (consumed)
1049				try_queue_bulk_in(ep);
1050
1051			return;
1052		}
1053
1054		xb = list_first_entry(&ep->filled_buffers, struct xillybuffer,
1055				      entry);
1056		list_del(&xb->entry);
1057
1058		spin_unlock_irqrestore(&ep->buffers_lock, flags);
1059
1060		consumed = true;
1061
1062		if (!xdev->error)
1063			rc = process_bulk_in(xb);
1064
1065		spin_lock_irqsave(&ep->buffers_lock, flags);
1066		list_add_tail(&xb->entry, &ep->buffers);
1067		ep->outstanding_urbs--;
1068	}
1069}
1070
1071static int xillyusb_send_opcode(struct xillyusb_dev *xdev,
1072				int chan_num, char opcode, u32 data)
1073{
1074	struct xillyusb_endpoint *ep = xdev->msg_ep;
1075	struct xillyfifo *fifo = &ep->fifo;
1076	__le32 msg[2];
1077
1078	int rc = 0;
1079
1080	msg[0] = cpu_to_le32((chan_num & 0xfff) |
1081			     ((opcode & 0xf) << 24));
1082	msg[1] = cpu_to_le32(data);
1083
1084	mutex_lock(&xdev->msg_mutex);
1085
1086	/*
1087	 * The wait queue is woken with the interruptible variant, so the
1088	 * wait function matches, however returning because of an interrupt
1089	 * will mess things up considerably, in particular when the caller is
1090	 * the release method. And the xdev->error part prevents being stuck
1091	 * forever in the event of a bizarre hardware bug: Pull the USB plug.
1092	 */
1093
1094	while (wait_event_interruptible(fifo->waitq,
1095					fifo->fill <= (fifo->size - 8) ||
1096					xdev->error))
1097		; /* Empty loop */
1098
1099	if (xdev->error) {
1100		rc = xdev->error;
1101		goto unlock_done;
1102	}
1103
1104	fifo_write(fifo, (void *)msg, 8, xilly_memcpy);
1105
1106	try_queue_bulk_out(ep);
1107
1108unlock_done:
1109	mutex_unlock(&xdev->msg_mutex);
1110
1111	return rc;
1112}
1113
1114/*
1115 * Note that flush_downstream() merely waits for the data to arrive to
1116 * the application logic at the FPGA -- unlike PCIe Xillybus' counterpart,
1117 * it does nothing to make it happen (and neither is it necessary).
1118 *
1119 * This function is not reentrant for the same @chan, but this is covered
1120 * by the fact that for any given @chan, it's called either by the open,
1121 * write, llseek and flush fops methods, which can't run in parallel (and the
1122 * write + flush and llseek method handlers are protected with out_mutex).
1123 *
1124 * chan->flushed is there to avoid multiple flushes at the same position,
1125 * in particular as a result of programs that close the file descriptor
1126 * e.g. after a dup2() for redirection.
1127 */
1128
1129static int flush_downstream(struct xillyusb_channel *chan,
1130			    long timeout,
1131			    bool interruptible)
1132{
1133	struct xillyusb_dev *xdev = chan->xdev;
1134	int chan_num = chan->chan_idx << 1;
1135	long deadline, left_to_sleep;
1136	int rc;
1137
1138	if (chan->flushed)
1139		return 0;
1140
1141	deadline = jiffies + 1 + timeout;
1142
1143	if (chan->flushing) {
1144		long cancel_deadline = jiffies + 1 + XILLY_RESPONSE_TIMEOUT;
1145
1146		chan->canceled = 0;
1147		rc = xillyusb_send_opcode(xdev, chan_num,
1148					  OPCODE_CANCEL_CHECKPOINT, 0);
1149
1150		if (rc)
1151			return rc; /* Only real error, never -EINTR */
1152
1153		/* Ignoring interrupts. Cancellation must be handled */
1154		while (!chan->canceled) {
1155			left_to_sleep = cancel_deadline - ((long)jiffies);
1156
1157			if (left_to_sleep <= 0) {
1158				report_io_error(xdev, -EIO);
1159				return -EIO;
1160			}
1161
1162			rc = wait_event_interruptible_timeout(chan->flushq,
1163							      chan->canceled ||
1164							      xdev->error,
1165							      left_to_sleep);
1166
1167			if (xdev->error)
1168				return xdev->error;
1169		}
1170	}
1171
1172	chan->flushing = 1;
1173
1174	/*
1175	 * The checkpoint is given in terms of data elements, not bytes. As
1176	 * a result, if less than an element's worth of data is stored in the
1177	 * FIFO, it's not flushed, including the flush before closing, which
1178	 * means that such data is lost. This is consistent with PCIe Xillybus.
1179	 */
1180
1181	rc = xillyusb_send_opcode(xdev, chan_num,
1182				  OPCODE_SET_CHECKPOINT,
1183				  chan->out_bytes >>
1184				  chan->out_log2_element_size);
1185
1186	if (rc)
1187		return rc; /* Only real error, never -EINTR */
1188
1189	if (!timeout) {
1190		while (chan->flushing) {
1191			rc = wait_event_interruptible(chan->flushq,
1192						      !chan->flushing ||
1193						      xdev->error);
1194			if (xdev->error)
1195				return xdev->error;
1196
1197			if (interruptible && rc)
1198				return -EINTR;
1199		}
1200
1201		goto done;
1202	}
1203
1204	while (chan->flushing) {
1205		left_to_sleep = deadline - ((long)jiffies);
1206
1207		if (left_to_sleep <= 0)
1208			return -ETIMEDOUT;
1209
1210		rc = wait_event_interruptible_timeout(chan->flushq,
1211						      !chan->flushing ||
1212						      xdev->error,
1213						      left_to_sleep);
1214
1215		if (xdev->error)
1216			return xdev->error;
1217
1218		if (interruptible && rc < 0)
1219			return -EINTR;
1220	}
1221
1222done:
1223	chan->flushed = 1;
1224	return 0;
1225}
1226
1227/* request_read_anything(): Ask the FPGA for any little amount of data */
1228static int request_read_anything(struct xillyusb_channel *chan,
1229				 char opcode)
1230{
1231	struct xillyusb_dev *xdev = chan->xdev;
1232	unsigned int sh = chan->in_log2_element_size;
1233	int chan_num = (chan->chan_idx << 1) | 1;
1234	u32 mercy = chan->in_consumed_bytes + (2 << sh) - 1;
1235
1236	return xillyusb_send_opcode(xdev, chan_num, opcode, mercy >> sh);
1237}
1238
1239static int xillyusb_open(struct inode *inode, struct file *filp)
1240{
1241	struct xillyusb_dev *xdev;
1242	struct xillyusb_channel *chan;
1243	struct xillyfifo *in_fifo = NULL;
1244	struct xillyusb_endpoint *out_ep = NULL;
1245	int rc;
1246	int index;
1247
1248	mutex_lock(&kref_mutex);
1249
1250	rc = xillybus_find_inode(inode, (void **)&xdev, &index);
1251	if (rc) {
1252		mutex_unlock(&kref_mutex);
1253		return rc;
1254	}
1255
1256	kref_get(&xdev->kref);
1257	mutex_unlock(&kref_mutex);
1258
1259	chan = &xdev->channels[index];
1260	filp->private_data = chan;
1261
1262	mutex_lock(&chan->lock);
1263
1264	rc = -ENODEV;
1265
1266	if (xdev->error)
1267		goto unmutex_fail;
1268
1269	if (((filp->f_mode & FMODE_READ) && !chan->readable) ||
1270	    ((filp->f_mode & FMODE_WRITE) && !chan->writable))
1271		goto unmutex_fail;
1272
1273	if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_READ) &&
1274	    chan->in_synchronous) {
1275		dev_err(xdev->dev,
1276			"open() failed: O_NONBLOCK not allowed for read on this device\n");
1277		goto unmutex_fail;
1278	}
1279
1280	if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_WRITE) &&
1281	    chan->out_synchronous) {
1282		dev_err(xdev->dev,
1283			"open() failed: O_NONBLOCK not allowed for write on this device\n");
1284		goto unmutex_fail;
1285	}
1286
1287	rc = -EBUSY;
1288
1289	if (((filp->f_mode & FMODE_READ) && chan->open_for_read) ||
1290	    ((filp->f_mode & FMODE_WRITE) && chan->open_for_write))
1291		goto unmutex_fail;
1292
1293	if (filp->f_mode & FMODE_READ)
1294		chan->open_for_read = 1;
1295
1296	if (filp->f_mode & FMODE_WRITE)
1297		chan->open_for_write = 1;
1298
1299	mutex_unlock(&chan->lock);
1300
1301	if (filp->f_mode & FMODE_WRITE) {
1302		out_ep = endpoint_alloc(xdev,
1303					(chan->chan_idx + 2) | USB_DIR_OUT,
1304					bulk_out_work, BUF_SIZE_ORDER, BUFNUM);
1305
1306		if (!out_ep) {
1307			rc = -ENOMEM;
1308			goto unopen;
1309		}
1310
1311		rc = fifo_init(&out_ep->fifo, chan->out_log2_fifo_size);
1312
1313		if (rc)
1314			goto late_unopen;
1315
1316		out_ep->fill_mask = -(1 << chan->out_log2_element_size);
1317		chan->out_bytes = 0;
1318		chan->flushed = 0;
1319
1320		/*
1321		 * Sending a flush request to a previously closed stream
1322		 * effectively opens it, and also waits until the command is
1323		 * confirmed by the FPGA. The latter is necessary because the
1324		 * data is sent through a separate BULK OUT endpoint, and the
1325		 * xHCI controller is free to reorder transmissions.
1326		 *
1327		 * This can't go wrong unless there's a serious hardware error
1328		 * (or the computer is stuck for 500 ms?)
1329		 */
1330		rc = flush_downstream(chan, XILLY_RESPONSE_TIMEOUT, false);
1331
1332		if (rc == -ETIMEDOUT) {
1333			rc = -EIO;
1334			report_io_error(xdev, rc);
1335		}
1336
1337		if (rc)
1338			goto late_unopen;
1339	}
1340
1341	if (filp->f_mode & FMODE_READ) {
1342		in_fifo = kzalloc(sizeof(*in_fifo), GFP_KERNEL);
1343
1344		if (!in_fifo) {
1345			rc = -ENOMEM;
1346			goto late_unopen;
1347		}
1348
1349		rc = fifo_init(in_fifo, chan->in_log2_fifo_size);
1350
1351		if (rc) {
1352			kfree(in_fifo);
1353			goto late_unopen;
1354		}
1355	}
1356
1357	mutex_lock(&chan->lock);
1358	if (in_fifo) {
1359		chan->in_fifo = in_fifo;
1360		chan->read_data_ok = 1;
1361	}
1362	if (out_ep)
1363		chan->out_ep = out_ep;
1364	mutex_unlock(&chan->lock);
1365
1366	if (in_fifo) {
1367		u32 in_checkpoint = 0;
1368
1369		if (!chan->in_synchronous)
1370			in_checkpoint = in_fifo->size >>
1371				chan->in_log2_element_size;
1372
1373		chan->in_consumed_bytes = 0;
1374		chan->poll_used = 0;
1375		chan->in_current_checkpoint = in_checkpoint;
1376		rc = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1,
1377					  OPCODE_SET_CHECKPOINT,
1378					  in_checkpoint);
1379
1380		if (rc) /* Failure guarantees that opcode wasn't sent */
1381			goto unfifo;
1382
1383		/*
1384		 * In non-blocking mode, request the FPGA to send any data it
1385		 * has right away. Otherwise, the first read() will always
1386		 * return -EAGAIN, which is OK strictly speaking, but ugly.
1387		 * Checking and unrolling if this fails isn't worth the
1388		 * effort -- the error is propagated to the first read()
1389		 * anyhow.
1390		 */
1391		if (filp->f_flags & O_NONBLOCK)
1392			request_read_anything(chan, OPCODE_SET_PUSH);
1393	}
1394
1395	return 0;
1396
1397unfifo:
1398	chan->read_data_ok = 0;
1399	safely_assign_in_fifo(chan, NULL);
1400	fifo_mem_release(in_fifo);
1401	kfree(in_fifo);
1402
1403	if (out_ep) {
1404		mutex_lock(&chan->lock);
1405		chan->out_ep = NULL;
1406		mutex_unlock(&chan->lock);
1407	}
1408
1409late_unopen:
1410	if (out_ep)
1411		endpoint_dealloc(out_ep);
1412
1413unopen:
1414	mutex_lock(&chan->lock);
1415
1416	if (filp->f_mode & FMODE_READ)
1417		chan->open_for_read = 0;
1418
1419	if (filp->f_mode & FMODE_WRITE)
1420		chan->open_for_write = 0;
1421
1422	mutex_unlock(&chan->lock);
1423
1424	kref_put(&xdev->kref, cleanup_dev);
1425
1426	return rc;
1427
1428unmutex_fail:
1429	kref_put(&xdev->kref, cleanup_dev);
1430	mutex_unlock(&chan->lock);
1431	return rc;
1432}
1433
1434static ssize_t xillyusb_read(struct file *filp, char __user *userbuf,
1435			     size_t count, loff_t *f_pos)
1436{
1437	struct xillyusb_channel *chan = filp->private_data;
1438	struct xillyusb_dev *xdev = chan->xdev;
1439	struct xillyfifo *fifo = chan->in_fifo;
1440	int chan_num = (chan->chan_idx << 1) | 1;
1441
1442	long deadline, left_to_sleep;
1443	int bytes_done = 0;
1444	bool sent_set_push = false;
1445	int rc;
1446
1447	deadline = jiffies + 1 + XILLY_RX_TIMEOUT;
1448
1449	rc = mutex_lock_interruptible(&chan->in_mutex);
1450
1451	if (rc)
1452		return rc;
1453
1454	while (1) {
1455		u32 fifo_checkpoint_bytes, complete_checkpoint_bytes;
1456		u32 complete_checkpoint, fifo_checkpoint;
1457		u32 checkpoint;
1458		s32 diff, leap;
1459		unsigned int sh = chan->in_log2_element_size;
1460		bool checkpoint_for_complete;
1461
1462		rc = fifo_read(fifo, (__force void *)userbuf + bytes_done,
1463			       count - bytes_done, xilly_copy_to_user);
1464
1465		if (rc < 0)
1466			break;
1467
1468		bytes_done += rc;
1469		chan->in_consumed_bytes += rc;
1470
1471		left_to_sleep = deadline - ((long)jiffies);
1472
1473		/*
1474		 * Some 32-bit arithmetic that may wrap. Note that
1475		 * complete_checkpoint is rounded up to the closest element
1476		 * boundary, because the read() can't be completed otherwise.
1477		 * fifo_checkpoint_bytes is rounded down, because it protects
1478		 * in_fifo from overflowing.
1479		 */
1480
1481		fifo_checkpoint_bytes = chan->in_consumed_bytes + fifo->size;
1482		complete_checkpoint_bytes =
1483			chan->in_consumed_bytes + count - bytes_done;
1484
1485		fifo_checkpoint = fifo_checkpoint_bytes >> sh;
1486		complete_checkpoint =
1487			(complete_checkpoint_bytes + (1 << sh) - 1) >> sh;
1488
1489		diff = (fifo_checkpoint - complete_checkpoint) << sh;
1490
1491		if (chan->in_synchronous && diff >= 0) {
1492			checkpoint = complete_checkpoint;
1493			checkpoint_for_complete = true;
1494		} else {
1495			checkpoint = fifo_checkpoint;
1496			checkpoint_for_complete = false;
1497		}
1498
1499		leap = (checkpoint - chan->in_current_checkpoint) << sh;
1500
1501		/*
1502		 * To prevent flooding of OPCODE_SET_CHECKPOINT commands as
1503		 * data is consumed, it's issued only if it moves the
1504		 * checkpoint by at least an 8th of the FIFO's size, or if
1505		 * it's necessary to complete the number of bytes requested by
1506		 * the read() call.
1507		 *
1508		 * chan->read_data_ok is checked to spare an unnecessary
1509		 * submission after receiving EOF, however it's harmless if
1510		 * such slips away.
1511		 */
1512
1513		if (chan->read_data_ok &&
1514		    (leap > (fifo->size >> 3) ||
1515		     (checkpoint_for_complete && leap > 0))) {
1516			chan->in_current_checkpoint = checkpoint;
1517			rc = xillyusb_send_opcode(xdev, chan_num,
1518						  OPCODE_SET_CHECKPOINT,
1519						  checkpoint);
1520
1521			if (rc)
1522				break;
1523		}
1524
1525		if (bytes_done == count ||
1526		    (left_to_sleep <= 0 && bytes_done))
1527			break;
1528
1529		/*
1530		 * Reaching here means that the FIFO was empty when
1531		 * fifo_read() returned, but not necessarily right now. Error
1532		 * and EOF are checked and reported only now, so that no data
1533		 * that managed its way to the FIFO is lost.
1534		 */
1535
1536		if (!READ_ONCE(chan->read_data_ok)) { /* FPGA has sent EOF */
1537			/* Has data slipped into the FIFO since fifo_read()? */
1538			smp_rmb();
1539			if (READ_ONCE(fifo->fill))
1540				continue;
1541
1542			rc = 0;
1543			break;
1544		}
1545
1546		if (xdev->error) {
1547			rc = xdev->error;
1548			break;
1549		}
1550
1551		if (filp->f_flags & O_NONBLOCK) {
1552			rc = -EAGAIN;
1553			break;
1554		}
1555
1556		if (!sent_set_push) {
1557			rc = xillyusb_send_opcode(xdev, chan_num,
1558						  OPCODE_SET_PUSH,
1559						  complete_checkpoint);
1560
1561			if (rc)
1562				break;
1563
1564			sent_set_push = true;
1565		}
1566
1567		if (left_to_sleep > 0) {
1568			/*
1569			 * Note that when xdev->error is set (e.g. when the
1570			 * device is unplugged), read_data_ok turns zero and
1571			 * fifo->waitq is awaken.
1572			 * Therefore no special attention to xdev->error.
1573			 */
1574
1575			rc = wait_event_interruptible_timeout
1576				(fifo->waitq,
1577				 fifo->fill || !chan->read_data_ok,
1578				 left_to_sleep);
1579		} else { /* bytes_done == 0 */
1580			/* Tell FPGA to send anything it has */
1581			rc = request_read_anything(chan, OPCODE_UPDATE_PUSH);
1582
1583			if (rc)
1584				break;
1585
1586			rc = wait_event_interruptible
1587				(fifo->waitq,
1588				 fifo->fill || !chan->read_data_ok);
1589		}
1590
1591		if (rc < 0) {
1592			rc = -EINTR;
1593			break;
1594		}
1595	}
1596
1597	if (((filp->f_flags & O_NONBLOCK) || chan->poll_used) &&
1598	    !READ_ONCE(fifo->fill))
1599		request_read_anything(chan, OPCODE_SET_PUSH);
1600
1601	mutex_unlock(&chan->in_mutex);
1602
1603	if (bytes_done)
1604		return bytes_done;
1605
1606	return rc;
1607}
1608
1609static int xillyusb_flush(struct file *filp, fl_owner_t id)
1610{
1611	struct xillyusb_channel *chan = filp->private_data;
1612	int rc;
1613
1614	if (!(filp->f_mode & FMODE_WRITE))
1615		return 0;
1616
1617	rc = mutex_lock_interruptible(&chan->out_mutex);
1618
1619	if (rc)
1620		return rc;
1621
1622	/*
1623	 * One second's timeout on flushing. Interrupts are ignored, because if
1624	 * the user pressed CTRL-C, that interrupt will still be in flight by
1625	 * the time we reach here, and the opportunity to flush is lost.
1626	 */
1627	rc = flush_downstream(chan, HZ, false);
1628
1629	mutex_unlock(&chan->out_mutex);
1630
1631	if (rc == -ETIMEDOUT) {
1632		/* The things you do to use dev_warn() and not pr_warn() */
1633		struct xillyusb_dev *xdev = chan->xdev;
1634
1635		mutex_lock(&chan->lock);
1636		if (!xdev->error)
1637			dev_warn(xdev->dev,
1638				 "Timed out while flushing. Output data may be lost.\n");
1639		mutex_unlock(&chan->lock);
1640	}
1641
1642	return rc;
1643}
1644
1645static ssize_t xillyusb_write(struct file *filp, const char __user *userbuf,
1646			      size_t count, loff_t *f_pos)
1647{
1648	struct xillyusb_channel *chan = filp->private_data;
1649	struct xillyusb_dev *xdev = chan->xdev;
1650	struct xillyfifo *fifo = &chan->out_ep->fifo;
1651	int rc;
1652
1653	rc = mutex_lock_interruptible(&chan->out_mutex);
1654
1655	if (rc)
1656		return rc;
1657
1658	while (1) {
1659		if (xdev->error) {
1660			rc = xdev->error;
1661			break;
1662		}
1663
1664		if (count == 0)
1665			break;
1666
1667		rc = fifo_write(fifo, (__force void *)userbuf, count,
1668				xilly_copy_from_user);
1669
1670		if (rc != 0)
1671			break;
1672
1673		if (filp->f_flags & O_NONBLOCK) {
1674			rc = -EAGAIN;
1675			break;
1676		}
1677
1678		if (wait_event_interruptible
1679		    (fifo->waitq,
1680		     fifo->fill != fifo->size || xdev->error)) {
1681			rc = -EINTR;
1682			break;
1683		}
1684	}
1685
1686	if (rc < 0)
1687		goto done;
1688
1689	chan->out_bytes += rc;
1690
1691	if (rc) {
1692		try_queue_bulk_out(chan->out_ep);
1693		chan->flushed = 0;
1694	}
1695
1696	if (chan->out_synchronous) {
1697		int flush_rc = flush_downstream(chan, 0, true);
1698
1699		if (flush_rc && !rc)
1700			rc = flush_rc;
1701	}
1702
1703done:
1704	mutex_unlock(&chan->out_mutex);
1705
1706	return rc;
1707}
1708
1709static int xillyusb_release(struct inode *inode, struct file *filp)
1710{
1711	struct xillyusb_channel *chan = filp->private_data;
1712	struct xillyusb_dev *xdev = chan->xdev;
1713	int rc_read = 0, rc_write = 0;
1714
1715	if (filp->f_mode & FMODE_READ) {
1716		struct xillyfifo *in_fifo = chan->in_fifo;
1717
1718		rc_read = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1,
1719					       OPCODE_CLOSE, 0);
1720		/*
1721		 * If rc_read is nonzero, xdev->error indicates a global
1722		 * device error. The error is reported later, so that
1723		 * resources are freed.
1724		 *
1725		 * Looping on wait_event_interruptible() kinda breaks the idea
1726		 * of being interruptible, and this should have been
1727		 * wait_event(). Only it's being waken with
1728		 * wake_up_interruptible() for the sake of other uses. If
1729		 * there's a global device error, chan->read_data_ok is
1730		 * deasserted and the wait queue is awaken, so this is covered.
1731		 */
1732
1733		while (wait_event_interruptible(in_fifo->waitq,
1734						!chan->read_data_ok))
1735			; /* Empty loop */
1736
1737		safely_assign_in_fifo(chan, NULL);
1738		fifo_mem_release(in_fifo);
1739		kfree(in_fifo);
1740
1741		mutex_lock(&chan->lock);
1742		chan->open_for_read = 0;
1743		mutex_unlock(&chan->lock);
1744	}
1745
1746	if (filp->f_mode & FMODE_WRITE) {
1747		struct xillyusb_endpoint *ep = chan->out_ep;
1748		/*
1749		 * chan->flushing isn't zeroed. If the pre-release flush timed
1750		 * out, a cancel request will be sent before the next
1751		 * OPCODE_SET_CHECKPOINT (i.e. when the file is opened again).
1752		 * This is despite that the FPGA forgets about the checkpoint
1753		 * request as the file closes. Still, in an exceptional race
1754		 * condition, the FPGA could send an OPCODE_REACHED_CHECKPOINT
1755		 * just before closing that would reach the host after the
1756		 * file has re-opened.
1757		 */
1758
1759		mutex_lock(&chan->lock);
1760		chan->out_ep = NULL;
1761		mutex_unlock(&chan->lock);
1762
1763		endpoint_quiesce(ep);
1764		endpoint_dealloc(ep);
1765
1766		/* See comments on rc_read above */
1767		rc_write = xillyusb_send_opcode(xdev, chan->chan_idx << 1,
1768						OPCODE_CLOSE, 0);
1769
1770		mutex_lock(&chan->lock);
1771		chan->open_for_write = 0;
1772		mutex_unlock(&chan->lock);
1773	}
1774
1775	kref_put(&xdev->kref, cleanup_dev);
1776
1777	return rc_read ? rc_read : rc_write;
1778}
1779
1780/*
1781 * Xillybus' API allows device nodes to be seekable, giving the user
1782 * application access to a RAM array on the FPGA (or logic emulating it).
1783 */
1784
1785static loff_t xillyusb_llseek(struct file *filp, loff_t offset, int whence)
1786{
1787	struct xillyusb_channel *chan = filp->private_data;
1788	struct xillyusb_dev *xdev = chan->xdev;
1789	loff_t pos = filp->f_pos;
1790	int rc = 0;
1791	unsigned int log2_element_size = chan->readable ?
1792		chan->in_log2_element_size : chan->out_log2_element_size;
1793
1794	/*
1795	 * Take both mutexes not allowing interrupts, since it seems like
1796	 * common applications don't expect an -EINTR here. Besides, multiple
1797	 * access to a single file descriptor on seekable devices is a mess
1798	 * anyhow.
1799	 */
1800
1801	mutex_lock(&chan->out_mutex);
1802	mutex_lock(&chan->in_mutex);
1803
1804	switch (whence) {
1805	case SEEK_SET:
1806		pos = offset;
1807		break;
1808	case SEEK_CUR:
1809		pos += offset;
1810		break;
1811	case SEEK_END:
1812		pos = offset; /* Going to the end => to the beginning */
1813		break;
1814	default:
1815		rc = -EINVAL;
1816		goto end;
1817	}
1818
1819	/* In any case, we must finish on an element boundary */
1820	if (pos & ((1 << log2_element_size) - 1)) {
1821		rc = -EINVAL;
1822		goto end;
1823	}
1824
1825	rc = xillyusb_send_opcode(xdev, chan->chan_idx << 1,
1826				  OPCODE_SET_ADDR,
1827				  pos >> log2_element_size);
1828
1829	if (rc)
1830		goto end;
1831
1832	if (chan->writable) {
1833		chan->flushed = 0;
1834		rc = flush_downstream(chan, HZ, false);
1835	}
1836
1837end:
1838	mutex_unlock(&chan->out_mutex);
1839	mutex_unlock(&chan->in_mutex);
1840
1841	if (rc) /* Return error after releasing mutexes */
1842		return rc;
1843
1844	filp->f_pos = pos;
1845
1846	return pos;
1847}
1848
1849static __poll_t xillyusb_poll(struct file *filp, poll_table *wait)
1850{
1851	struct xillyusb_channel *chan = filp->private_data;
1852	__poll_t mask = 0;
1853
1854	if (chan->in_fifo)
1855		poll_wait(filp, &chan->in_fifo->waitq, wait);
1856
1857	if (chan->out_ep)
1858		poll_wait(filp, &chan->out_ep->fifo.waitq, wait);
1859
1860	/*
1861	 * If this is the first time poll() is called, and the file is
1862	 * readable, set the relevant flag. Also tell the FPGA to send all it
1863	 * has, to kickstart the mechanism that ensures there's always some
1864	 * data in in_fifo unless the stream is dry end-to-end. Note that the
1865	 * first poll() may not return a EPOLLIN, even if there's data on the
1866	 * FPGA. Rather, the data will arrive soon, and trigger the relevant
1867	 * wait queue.
1868	 */
1869
1870	if (!chan->poll_used && chan->in_fifo) {
1871		chan->poll_used = 1;
1872		request_read_anything(chan, OPCODE_SET_PUSH);
1873	}
1874
1875	/*
1876	 * poll() won't play ball regarding read() channels which
1877	 * are synchronous. Allowing that will create situations where data has
1878	 * been delivered at the FPGA, and users expecting select() to wake up,
1879	 * which it may not. So make it never work.
1880	 */
1881
1882	if (chan->in_fifo && !chan->in_synchronous &&
1883	    (READ_ONCE(chan->in_fifo->fill) || !chan->read_data_ok))
1884		mask |= EPOLLIN | EPOLLRDNORM;
1885
1886	if (chan->out_ep &&
1887	    (READ_ONCE(chan->out_ep->fifo.fill) != chan->out_ep->fifo.size))
1888		mask |= EPOLLOUT | EPOLLWRNORM;
1889
1890	if (chan->xdev->error)
1891		mask |= EPOLLERR;
1892
1893	return mask;
1894}
1895
1896static const struct file_operations xillyusb_fops = {
1897	.owner      = THIS_MODULE,
1898	.read       = xillyusb_read,
1899	.write      = xillyusb_write,
1900	.open       = xillyusb_open,
1901	.flush      = xillyusb_flush,
1902	.release    = xillyusb_release,
1903	.llseek     = xillyusb_llseek,
1904	.poll       = xillyusb_poll,
1905};
1906
1907static int xillyusb_setup_base_eps(struct xillyusb_dev *xdev)
1908{
1909	xdev->msg_ep = endpoint_alloc(xdev, MSG_EP_NUM | USB_DIR_OUT,
1910				      bulk_out_work, 1, 2);
1911	if (!xdev->msg_ep)
1912		return -ENOMEM;
1913
1914	if (fifo_init(&xdev->msg_ep->fifo, 13)) /* 8 kiB */
1915		goto dealloc;
1916
1917	xdev->msg_ep->fill_mask = -8; /* 8 bytes granularity */
1918
1919	xdev->in_ep = endpoint_alloc(xdev, IN_EP_NUM | USB_DIR_IN,
1920				     bulk_in_work, BUF_SIZE_ORDER, BUFNUM);
1921	if (!xdev->in_ep)
1922		goto dealloc;
1923
1924	try_queue_bulk_in(xdev->in_ep);
1925
1926	return 0;
1927
1928dealloc:
1929	endpoint_dealloc(xdev->msg_ep); /* Also frees FIFO mem if allocated */
1930	xdev->msg_ep = NULL;
1931	return -ENOMEM;
1932}
1933
1934static int setup_channels(struct xillyusb_dev *xdev,
1935			  __le16 *chandesc,
1936			  int num_channels)
1937{
1938	struct xillyusb_channel *chan;
1939	int i;
1940
1941	chan = kcalloc(num_channels, sizeof(*chan), GFP_KERNEL);
1942	if (!chan)
1943		return -ENOMEM;
1944
1945	xdev->channels = chan;
1946
1947	for (i = 0; i < num_channels; i++, chan++) {
1948		unsigned int in_desc = le16_to_cpu(*chandesc++);
1949		unsigned int out_desc = le16_to_cpu(*chandesc++);
1950
1951		chan->xdev = xdev;
1952		mutex_init(&chan->in_mutex);
1953		mutex_init(&chan->out_mutex);
1954		mutex_init(&chan->lock);
1955		init_waitqueue_head(&chan->flushq);
1956
1957		chan->chan_idx = i;
1958
1959		if (in_desc & 0x80) { /* Entry is valid */
1960			chan->readable = 1;
1961			chan->in_synchronous = !!(in_desc & 0x40);
1962			chan->in_seekable = !!(in_desc & 0x20);
1963			chan->in_log2_element_size = in_desc & 0x0f;
1964			chan->in_log2_fifo_size = ((in_desc >> 8) & 0x1f) + 16;
1965		}
1966
1967		/*
1968		 * A downstream channel should never exist above index 13,
1969		 * as it would request a nonexistent BULK endpoint > 15.
1970		 * In the peculiar case that it does, it's ignored silently.
1971		 */
1972
1973		if ((out_desc & 0x80) && i < 14) { /* Entry is valid */
1974			chan->writable = 1;
1975			chan->out_synchronous = !!(out_desc & 0x40);
1976			chan->out_seekable = !!(out_desc & 0x20);
1977			chan->out_log2_element_size = out_desc & 0x0f;
1978			chan->out_log2_fifo_size =
1979				((out_desc >> 8) & 0x1f) + 16;
1980		}
1981	}
1982
1983	return 0;
1984}
1985
1986static int xillyusb_discovery(struct usb_interface *interface)
1987{
1988	int rc;
1989	struct xillyusb_dev *xdev = usb_get_intfdata(interface);
1990	__le16 bogus_chandesc[2];
1991	struct xillyfifo idt_fifo;
1992	struct xillyusb_channel *chan;
1993	unsigned int idt_len, names_offset;
1994	unsigned char *idt;
1995	int num_channels;
1996
1997	rc = xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0);
1998
1999	if (rc) {
2000		dev_err(&interface->dev, "Failed to send quiesce request. Aborting.\n");
2001		return rc;
2002	}
2003
2004	/* Phase I: Set up one fake upstream channel and obtain IDT */
2005
2006	/* Set up a fake IDT with one async IN stream */
2007	bogus_chandesc[0] = cpu_to_le16(0x80);
2008	bogus_chandesc[1] = cpu_to_le16(0);
2009
2010	rc = setup_channels(xdev, bogus_chandesc, 1);
2011
2012	if (rc)
2013		return rc;
2014
2015	rc = fifo_init(&idt_fifo, LOG2_IDT_FIFO_SIZE);
2016
2017	if (rc)
2018		return rc;
2019
2020	chan = xdev->channels;
2021
2022	chan->in_fifo = &idt_fifo;
2023	chan->read_data_ok = 1;
2024
2025	xdev->num_channels = 1;
2026
2027	rc = xillyusb_send_opcode(xdev, ~0, OPCODE_REQ_IDT, 0);
2028
2029	if (rc) {
2030		dev_err(&interface->dev, "Failed to send IDT request. Aborting.\n");
2031		goto unfifo;
2032	}
2033
2034	rc = wait_event_interruptible_timeout(idt_fifo.waitq,
2035					      !chan->read_data_ok,
2036					      XILLY_RESPONSE_TIMEOUT);
2037
2038	if (xdev->error) {
2039		rc = xdev->error;
2040		goto unfifo;
2041	}
2042
2043	if (rc < 0) {
2044		rc = -EINTR; /* Interrupt on probe method? Interesting. */
2045		goto unfifo;
2046	}
2047
2048	if (chan->read_data_ok) {
2049		rc = -ETIMEDOUT;
2050		dev_err(&interface->dev, "No response from FPGA. Aborting.\n");
2051		goto unfifo;
2052	}
2053
2054	idt_len = READ_ONCE(idt_fifo.fill);
2055	idt = kmalloc(idt_len, GFP_KERNEL);
2056
2057	if (!idt) {
2058		rc = -ENOMEM;
2059		goto unfifo;
2060	}
2061
2062	fifo_read(&idt_fifo, idt, idt_len, xilly_memcpy);
2063
2064	if (crc32_le(~0, idt, idt_len) != 0) {
2065		dev_err(&interface->dev, "IDT failed CRC check. Aborting.\n");
2066		rc = -ENODEV;
2067		goto unidt;
2068	}
2069
2070	if (*idt > 0x90) {
2071		dev_err(&interface->dev, "No support for IDT version 0x%02x. Maybe the xillyusb driver needs an upgrade. Aborting.\n",
2072			(int)*idt);
2073		rc = -ENODEV;
2074		goto unidt;
2075	}
2076
2077	/* Phase II: Set up the streams as defined in IDT */
2078
2079	num_channels = le16_to_cpu(*((__le16 *)(idt + 1)));
2080	names_offset = 3 + num_channels * 4;
2081	idt_len -= 4; /* Exclude CRC */
2082
2083	if (idt_len < names_offset) {
2084		dev_err(&interface->dev, "IDT too short. This is exceptionally weird, because its CRC is OK\n");
2085		rc = -ENODEV;
2086		goto unidt;
2087	}
2088
2089	rc = setup_channels(xdev, (void *)idt + 3, num_channels);
2090
2091	if (rc)
2092		goto unidt;
2093
2094	/*
2095	 * Except for wildly misbehaving hardware, or if it was disconnected
2096	 * just after responding with the IDT, there is no reason for any
2097	 * work item to be running now. To be sure that xdev->channels
2098	 * is updated on anything that might run in parallel, flush the
2099	 * workqueue, which rarely does anything.
2100	 */
2101	flush_workqueue(xdev->workq);
2102
2103	xdev->num_channels = num_channels;
2104
2105	fifo_mem_release(&idt_fifo);
2106	kfree(chan);
2107
2108	rc = xillybus_init_chrdev(&interface->dev, &xillyusb_fops,
2109				  THIS_MODULE, xdev,
2110				  idt + names_offset,
2111				  idt_len - names_offset,
2112				  num_channels,
2113				  xillyname, true);
2114
2115	kfree(idt);
2116
2117	return rc;
2118
2119unidt:
2120	kfree(idt);
2121
2122unfifo:
2123	safely_assign_in_fifo(chan, NULL);
2124	fifo_mem_release(&idt_fifo);
2125
2126	return rc;
2127}
2128
2129static int xillyusb_probe(struct usb_interface *interface,
2130			  const struct usb_device_id *id)
2131{
2132	struct xillyusb_dev *xdev;
2133	int rc;
2134
2135	xdev = kzalloc(sizeof(*xdev), GFP_KERNEL);
2136	if (!xdev)
2137		return -ENOMEM;
2138
2139	kref_init(&xdev->kref);
2140	mutex_init(&xdev->process_in_mutex);
2141	mutex_init(&xdev->msg_mutex);
2142
2143	xdev->udev = usb_get_dev(interface_to_usbdev(interface));
2144	xdev->dev = &interface->dev;
2145	xdev->error = 0;
2146	spin_lock_init(&xdev->error_lock);
2147	xdev->in_counter = 0;
2148	xdev->in_bytes_left = 0;
2149	xdev->workq = alloc_workqueue(xillyname, WQ_HIGHPRI, 0);
2150
2151	if (!xdev->workq) {
2152		dev_err(&interface->dev, "Failed to allocate work queue\n");
2153		rc = -ENOMEM;
2154		goto fail;
2155	}
2156
2157	INIT_WORK(&xdev->wakeup_workitem, wakeup_all);
2158
2159	usb_set_intfdata(interface, xdev);
2160
2161	rc = xillyusb_setup_base_eps(xdev);
2162	if (rc)
2163		goto fail;
2164
2165	rc = xillyusb_discovery(interface);
2166	if (rc)
2167		goto latefail;
2168
2169	return 0;
2170
2171latefail:
2172	endpoint_quiesce(xdev->in_ep);
2173	endpoint_quiesce(xdev->msg_ep);
2174
2175fail:
2176	usb_set_intfdata(interface, NULL);
2177	kref_put(&xdev->kref, cleanup_dev);
2178	return rc;
2179}
2180
2181static void xillyusb_disconnect(struct usb_interface *interface)
2182{
2183	struct xillyusb_dev *xdev = usb_get_intfdata(interface);
2184	struct xillyusb_endpoint *msg_ep = xdev->msg_ep;
2185	struct xillyfifo *fifo = &msg_ep->fifo;
2186	int rc;
2187	int i;
2188
2189	xillybus_cleanup_chrdev(xdev, &interface->dev);
2190
2191	/*
2192	 * Try to send OPCODE_QUIESCE, which will fail silently if the device
2193	 * was disconnected, but makes sense on module unload.
2194	 */
2195
2196	msg_ep->wake_on_drain = true;
2197	xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0);
2198
2199	/*
2200	 * If the device has been disconnected, sending the opcode causes
2201	 * a global device error with xdev->error, if such error didn't
2202	 * occur earlier. Hence timing out means that the USB link is fine,
2203	 * but somehow the message wasn't sent. Should never happen.
2204	 */
2205
2206	rc = wait_event_interruptible_timeout(fifo->waitq,
2207					      msg_ep->drained || xdev->error,
2208					      XILLY_RESPONSE_TIMEOUT);
2209
2210	if (!rc)
2211		dev_err(&interface->dev,
2212			"Weird timeout condition on sending quiesce request.\n");
2213
2214	report_io_error(xdev, -ENODEV); /* Discourage further activity */
2215
2216	/*
2217	 * This device driver is declared with soft_unbind set, or else
2218	 * sending OPCODE_QUIESCE above would always fail. The price is
2219	 * that the USB framework didn't kill outstanding URBs, so it has
2220	 * to be done explicitly before returning from this call.
2221	 */
2222
2223	for (i = 0; i < xdev->num_channels; i++) {
2224		struct xillyusb_channel *chan = &xdev->channels[i];
2225
2226		/*
2227		 * Lock taken to prevent chan->out_ep from changing. It also
2228		 * ensures xillyusb_open() and xillyusb_flush() don't access
2229		 * xdev->dev after being nullified below.
2230		 */
2231		mutex_lock(&chan->lock);
2232		if (chan->out_ep)
2233			endpoint_quiesce(chan->out_ep);
2234		mutex_unlock(&chan->lock);
2235	}
2236
2237	endpoint_quiesce(xdev->in_ep);
2238	endpoint_quiesce(xdev->msg_ep);
2239
2240	usb_set_intfdata(interface, NULL);
2241
2242	xdev->dev = NULL;
2243
2244	mutex_lock(&kref_mutex);
2245	kref_put(&xdev->kref, cleanup_dev);
2246	mutex_unlock(&kref_mutex);
2247}
2248
2249static struct usb_driver xillyusb_driver = {
2250	.name = xillyname,
2251	.id_table = xillyusb_table,
2252	.probe = xillyusb_probe,
2253	.disconnect = xillyusb_disconnect,
2254	.soft_unbind = 1,
2255};
2256
2257static int __init xillyusb_init(void)
2258{
2259	int rc = 0;
2260
2261	if (LOG2_INITIAL_FIFO_BUF_SIZE > PAGE_SHIFT)
2262		fifo_buf_order = LOG2_INITIAL_FIFO_BUF_SIZE - PAGE_SHIFT;
2263	else
2264		fifo_buf_order = 0;
2265
2266	rc = usb_register(&xillyusb_driver);
2267
2268	return rc;
2269}
2270
2271static void __exit xillyusb_exit(void)
2272{
2273	usb_deregister(&xillyusb_driver);
2274}
2275
2276module_init(xillyusb_init);
2277module_exit(xillyusb_exit);