Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 *
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 *
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
13 *
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
16 * operation involves:
17 *
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
19 *
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
22 *
23 * - Platform conveys its decision back to OS
24 *
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
29 *
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
32 */
33
34#define pr_fmt(fmt) "ACPI CPPC: " fmt
35
36#include <linux/delay.h>
37#include <linux/iopoll.h>
38#include <linux/ktime.h>
39#include <linux/rwsem.h>
40#include <linux/wait.h>
41#include <linux/topology.h>
42#include <linux/dmi.h>
43#include <linux/units.h>
44#include <asm/unaligned.h>
45
46#include <acpi/cppc_acpi.h>
47
48struct cppc_pcc_data {
49 struct pcc_mbox_chan *pcc_channel;
50 void __iomem *pcc_comm_addr;
51 bool pcc_channel_acquired;
52 unsigned int deadline_us;
53 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
54
55 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
56 bool platform_owns_pcc; /* Ownership of PCC subspace */
57 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
58
59 /*
60 * Lock to provide controlled access to the PCC channel.
61 *
62 * For performance critical usecases(currently cppc_set_perf)
63 * We need to take read_lock and check if channel belongs to OSPM
64 * before reading or writing to PCC subspace
65 * We need to take write_lock before transferring the channel
66 * ownership to the platform via a Doorbell
67 * This allows us to batch a number of CPPC requests if they happen
68 * to originate in about the same time
69 *
70 * For non-performance critical usecases(init)
71 * Take write_lock for all purposes which gives exclusive access
72 */
73 struct rw_semaphore pcc_lock;
74
75 /* Wait queue for CPUs whose requests were batched */
76 wait_queue_head_t pcc_write_wait_q;
77 ktime_t last_cmd_cmpl_time;
78 ktime_t last_mpar_reset;
79 int mpar_count;
80 int refcount;
81};
82
83/* Array to represent the PCC channel per subspace ID */
84static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
85/* The cpu_pcc_subspace_idx contains per CPU subspace ID */
86static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
87
88/*
89 * The cpc_desc structure contains the ACPI register details
90 * as described in the per CPU _CPC tables. The details
91 * include the type of register (e.g. PCC, System IO, FFH etc.)
92 * and destination addresses which lets us READ/WRITE CPU performance
93 * information using the appropriate I/O methods.
94 */
95static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
96
97/* pcc mapped address + header size + offset within PCC subspace */
98#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
99 0x8 + (offs))
100
101/* Check if a CPC register is in PCC */
102#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
103 (cpc)->cpc_entry.reg.space_id == \
104 ACPI_ADR_SPACE_PLATFORM_COMM)
105
106/* Check if a CPC register is in SystemMemory */
107#define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
108 (cpc)->cpc_entry.reg.space_id == \
109 ACPI_ADR_SPACE_SYSTEM_MEMORY)
110
111/* Check if a CPC register is in SystemIo */
112#define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
113 (cpc)->cpc_entry.reg.space_id == \
114 ACPI_ADR_SPACE_SYSTEM_IO)
115
116/* Evaluates to True if reg is a NULL register descriptor */
117#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
118 (reg)->address == 0 && \
119 (reg)->bit_width == 0 && \
120 (reg)->bit_offset == 0 && \
121 (reg)->access_width == 0)
122
123/* Evaluates to True if an optional cpc field is supported */
124#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
125 !!(cpc)->cpc_entry.int_value : \
126 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
127/*
128 * Arbitrary Retries in case the remote processor is slow to respond
129 * to PCC commands. Keeping it high enough to cover emulators where
130 * the processors run painfully slow.
131 */
132#define NUM_RETRIES 500ULL
133
134#define OVER_16BTS_MASK ~0xFFFFULL
135
136#define define_one_cppc_ro(_name) \
137static struct kobj_attribute _name = \
138__ATTR(_name, 0444, show_##_name, NULL)
139
140#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
141
142#define show_cppc_data(access_fn, struct_name, member_name) \
143 static ssize_t show_##member_name(struct kobject *kobj, \
144 struct kobj_attribute *attr, char *buf) \
145 { \
146 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
147 struct struct_name st_name = {0}; \
148 int ret; \
149 \
150 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
151 if (ret) \
152 return ret; \
153 \
154 return sysfs_emit(buf, "%llu\n", \
155 (u64)st_name.member_name); \
156 } \
157 define_one_cppc_ro(member_name)
158
159show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
160show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
161show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
162show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
163show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
164show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
165
166show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
167show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
168
169static ssize_t show_feedback_ctrs(struct kobject *kobj,
170 struct kobj_attribute *attr, char *buf)
171{
172 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
173 struct cppc_perf_fb_ctrs fb_ctrs = {0};
174 int ret;
175
176 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
177 if (ret)
178 return ret;
179
180 return sysfs_emit(buf, "ref:%llu del:%llu\n",
181 fb_ctrs.reference, fb_ctrs.delivered);
182}
183define_one_cppc_ro(feedback_ctrs);
184
185static struct attribute *cppc_attrs[] = {
186 &feedback_ctrs.attr,
187 &reference_perf.attr,
188 &wraparound_time.attr,
189 &highest_perf.attr,
190 &lowest_perf.attr,
191 &lowest_nonlinear_perf.attr,
192 &nominal_perf.attr,
193 &nominal_freq.attr,
194 &lowest_freq.attr,
195 NULL
196};
197ATTRIBUTE_GROUPS(cppc);
198
199static const struct kobj_type cppc_ktype = {
200 .sysfs_ops = &kobj_sysfs_ops,
201 .default_groups = cppc_groups,
202};
203
204static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
205{
206 int ret, status;
207 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
208 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
209 pcc_ss_data->pcc_comm_addr;
210
211 if (!pcc_ss_data->platform_owns_pcc)
212 return 0;
213
214 /*
215 * Poll PCC status register every 3us(delay_us) for maximum of
216 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
217 */
218 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
219 status & PCC_CMD_COMPLETE_MASK, 3,
220 pcc_ss_data->deadline_us);
221
222 if (likely(!ret)) {
223 pcc_ss_data->platform_owns_pcc = false;
224 if (chk_err_bit && (status & PCC_ERROR_MASK))
225 ret = -EIO;
226 }
227
228 if (unlikely(ret))
229 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
230 pcc_ss_id, ret);
231
232 return ret;
233}
234
235/*
236 * This function transfers the ownership of the PCC to the platform
237 * So it must be called while holding write_lock(pcc_lock)
238 */
239static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
240{
241 int ret = -EIO, i;
242 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
243 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
244 pcc_ss_data->pcc_comm_addr;
245 unsigned int time_delta;
246
247 /*
248 * For CMD_WRITE we know for a fact the caller should have checked
249 * the channel before writing to PCC space
250 */
251 if (cmd == CMD_READ) {
252 /*
253 * If there are pending cpc_writes, then we stole the channel
254 * before write completion, so first send a WRITE command to
255 * platform
256 */
257 if (pcc_ss_data->pending_pcc_write_cmd)
258 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
259
260 ret = check_pcc_chan(pcc_ss_id, false);
261 if (ret)
262 goto end;
263 } else /* CMD_WRITE */
264 pcc_ss_data->pending_pcc_write_cmd = FALSE;
265
266 /*
267 * Handle the Minimum Request Turnaround Time(MRTT)
268 * "The minimum amount of time that OSPM must wait after the completion
269 * of a command before issuing the next command, in microseconds"
270 */
271 if (pcc_ss_data->pcc_mrtt) {
272 time_delta = ktime_us_delta(ktime_get(),
273 pcc_ss_data->last_cmd_cmpl_time);
274 if (pcc_ss_data->pcc_mrtt > time_delta)
275 udelay(pcc_ss_data->pcc_mrtt - time_delta);
276 }
277
278 /*
279 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
280 * "The maximum number of periodic requests that the subspace channel can
281 * support, reported in commands per minute. 0 indicates no limitation."
282 *
283 * This parameter should be ideally zero or large enough so that it can
284 * handle maximum number of requests that all the cores in the system can
285 * collectively generate. If it is not, we will follow the spec and just
286 * not send the request to the platform after hitting the MPAR limit in
287 * any 60s window
288 */
289 if (pcc_ss_data->pcc_mpar) {
290 if (pcc_ss_data->mpar_count == 0) {
291 time_delta = ktime_ms_delta(ktime_get(),
292 pcc_ss_data->last_mpar_reset);
293 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
294 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
295 pcc_ss_id);
296 ret = -EIO;
297 goto end;
298 }
299 pcc_ss_data->last_mpar_reset = ktime_get();
300 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
301 }
302 pcc_ss_data->mpar_count--;
303 }
304
305 /* Write to the shared comm region. */
306 writew_relaxed(cmd, &generic_comm_base->command);
307
308 /* Flip CMD COMPLETE bit */
309 writew_relaxed(0, &generic_comm_base->status);
310
311 pcc_ss_data->platform_owns_pcc = true;
312
313 /* Ring doorbell */
314 ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
315 if (ret < 0) {
316 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
317 pcc_ss_id, cmd, ret);
318 goto end;
319 }
320
321 /* wait for completion and check for PCC error bit */
322 ret = check_pcc_chan(pcc_ss_id, true);
323
324 if (pcc_ss_data->pcc_mrtt)
325 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
326
327 if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
328 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
329 else
330 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
331
332end:
333 if (cmd == CMD_WRITE) {
334 if (unlikely(ret)) {
335 for_each_possible_cpu(i) {
336 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
337
338 if (!desc)
339 continue;
340
341 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
342 desc->write_cmd_status = ret;
343 }
344 }
345 pcc_ss_data->pcc_write_cnt++;
346 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
347 }
348
349 return ret;
350}
351
352static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
353{
354 if (ret < 0)
355 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
356 *(u16 *)msg, ret);
357 else
358 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
359 *(u16 *)msg, ret);
360}
361
362static struct mbox_client cppc_mbox_cl = {
363 .tx_done = cppc_chan_tx_done,
364 .knows_txdone = true,
365};
366
367static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
368{
369 int result = -EFAULT;
370 acpi_status status = AE_OK;
371 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
372 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
373 struct acpi_buffer state = {0, NULL};
374 union acpi_object *psd = NULL;
375 struct acpi_psd_package *pdomain;
376
377 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
378 &buffer, ACPI_TYPE_PACKAGE);
379 if (status == AE_NOT_FOUND) /* _PSD is optional */
380 return 0;
381 if (ACPI_FAILURE(status))
382 return -ENODEV;
383
384 psd = buffer.pointer;
385 if (!psd || psd->package.count != 1) {
386 pr_debug("Invalid _PSD data\n");
387 goto end;
388 }
389
390 pdomain = &(cpc_ptr->domain_info);
391
392 state.length = sizeof(struct acpi_psd_package);
393 state.pointer = pdomain;
394
395 status = acpi_extract_package(&(psd->package.elements[0]),
396 &format, &state);
397 if (ACPI_FAILURE(status)) {
398 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
399 goto end;
400 }
401
402 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
403 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
404 goto end;
405 }
406
407 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
408 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
409 goto end;
410 }
411
412 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
413 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
414 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
415 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
416 goto end;
417 }
418
419 result = 0;
420end:
421 kfree(buffer.pointer);
422 return result;
423}
424
425bool acpi_cpc_valid(void)
426{
427 struct cpc_desc *cpc_ptr;
428 int cpu;
429
430 if (acpi_disabled)
431 return false;
432
433 for_each_present_cpu(cpu) {
434 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
435 if (!cpc_ptr)
436 return false;
437 }
438
439 return true;
440}
441EXPORT_SYMBOL_GPL(acpi_cpc_valid);
442
443bool cppc_allow_fast_switch(void)
444{
445 struct cpc_register_resource *desired_reg;
446 struct cpc_desc *cpc_ptr;
447 int cpu;
448
449 for_each_possible_cpu(cpu) {
450 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
451 desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
452 if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
453 !CPC_IN_SYSTEM_IO(desired_reg))
454 return false;
455 }
456
457 return true;
458}
459EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
460
461/**
462 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
463 * @cpu: Find all CPUs that share a domain with cpu.
464 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
465 *
466 * Return: 0 for success or negative value for err.
467 */
468int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
469{
470 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
471 struct acpi_psd_package *match_pdomain;
472 struct acpi_psd_package *pdomain;
473 int count_target, i;
474
475 /*
476 * Now that we have _PSD data from all CPUs, let's setup P-state
477 * domain info.
478 */
479 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
480 if (!cpc_ptr)
481 return -EFAULT;
482
483 pdomain = &(cpc_ptr->domain_info);
484 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
485 if (pdomain->num_processors <= 1)
486 return 0;
487
488 /* Validate the Domain info */
489 count_target = pdomain->num_processors;
490 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
491 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
492 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
493 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
494 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
495 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
496
497 for_each_possible_cpu(i) {
498 if (i == cpu)
499 continue;
500
501 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
502 if (!match_cpc_ptr)
503 goto err_fault;
504
505 match_pdomain = &(match_cpc_ptr->domain_info);
506 if (match_pdomain->domain != pdomain->domain)
507 continue;
508
509 /* Here i and cpu are in the same domain */
510 if (match_pdomain->num_processors != count_target)
511 goto err_fault;
512
513 if (pdomain->coord_type != match_pdomain->coord_type)
514 goto err_fault;
515
516 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
517 }
518
519 return 0;
520
521err_fault:
522 /* Assume no coordination on any error parsing domain info */
523 cpumask_clear(cpu_data->shared_cpu_map);
524 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
525 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
526
527 return -EFAULT;
528}
529EXPORT_SYMBOL_GPL(acpi_get_psd_map);
530
531static int register_pcc_channel(int pcc_ss_idx)
532{
533 struct pcc_mbox_chan *pcc_chan;
534 u64 usecs_lat;
535
536 if (pcc_ss_idx >= 0) {
537 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
538
539 if (IS_ERR(pcc_chan)) {
540 pr_err("Failed to find PCC channel for subspace %d\n",
541 pcc_ss_idx);
542 return -ENODEV;
543 }
544
545 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
546 /*
547 * cppc_ss->latency is just a Nominal value. In reality
548 * the remote processor could be much slower to reply.
549 * So add an arbitrary amount of wait on top of Nominal.
550 */
551 usecs_lat = NUM_RETRIES * pcc_chan->latency;
552 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
553 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
554 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
555 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
556
557 pcc_data[pcc_ss_idx]->pcc_comm_addr =
558 acpi_os_ioremap(pcc_chan->shmem_base_addr,
559 pcc_chan->shmem_size);
560 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
561 pr_err("Failed to ioremap PCC comm region mem for %d\n",
562 pcc_ss_idx);
563 return -ENOMEM;
564 }
565
566 /* Set flag so that we don't come here for each CPU. */
567 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
568 }
569
570 return 0;
571}
572
573/**
574 * cpc_ffh_supported() - check if FFH reading supported
575 *
576 * Check if the architecture has support for functional fixed hardware
577 * read/write capability.
578 *
579 * Return: true for supported, false for not supported
580 */
581bool __weak cpc_ffh_supported(void)
582{
583 return false;
584}
585
586/**
587 * cpc_supported_by_cpu() - check if CPPC is supported by CPU
588 *
589 * Check if the architectural support for CPPC is present even
590 * if the _OSC hasn't prescribed it
591 *
592 * Return: true for supported, false for not supported
593 */
594bool __weak cpc_supported_by_cpu(void)
595{
596 return false;
597}
598
599/**
600 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
601 * @pcc_ss_id: PCC Subspace index as in the PCC client ACPI package.
602 *
603 * Check and allocate the cppc_pcc_data memory.
604 * In some processor configurations it is possible that same subspace
605 * is shared between multiple CPUs. This is seen especially in CPUs
606 * with hardware multi-threading support.
607 *
608 * Return: 0 for success, errno for failure
609 */
610static int pcc_data_alloc(int pcc_ss_id)
611{
612 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
613 return -EINVAL;
614
615 if (pcc_data[pcc_ss_id]) {
616 pcc_data[pcc_ss_id]->refcount++;
617 } else {
618 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
619 GFP_KERNEL);
620 if (!pcc_data[pcc_ss_id])
621 return -ENOMEM;
622 pcc_data[pcc_ss_id]->refcount++;
623 }
624
625 return 0;
626}
627
628/*
629 * An example CPC table looks like the following.
630 *
631 * Name (_CPC, Package() {
632 * 17, // NumEntries
633 * 1, // Revision
634 * ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)}, // Highest Performance
635 * ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)}, // Nominal Performance
636 * ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)}, // Lowest Nonlinear Performance
637 * ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)}, // Lowest Performance
638 * ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)}, // Guaranteed Performance Register
639 * ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)}, // Desired Performance Register
640 * ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
641 * ...
642 * ...
643 * ...
644 * }
645 * Each Register() encodes how to access that specific register.
646 * e.g. a sample PCC entry has the following encoding:
647 *
648 * Register (
649 * PCC, // AddressSpaceKeyword
650 * 8, // RegisterBitWidth
651 * 8, // RegisterBitOffset
652 * 0x30, // RegisterAddress
653 * 9, // AccessSize (subspace ID)
654 * )
655 */
656
657#ifndef arch_init_invariance_cppc
658static inline void arch_init_invariance_cppc(void) { }
659#endif
660
661/**
662 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
663 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
664 *
665 * Return: 0 for success or negative value for err.
666 */
667int acpi_cppc_processor_probe(struct acpi_processor *pr)
668{
669 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
670 union acpi_object *out_obj, *cpc_obj;
671 struct cpc_desc *cpc_ptr;
672 struct cpc_reg *gas_t;
673 struct device *cpu_dev;
674 acpi_handle handle = pr->handle;
675 unsigned int num_ent, i, cpc_rev;
676 int pcc_subspace_id = -1;
677 acpi_status status;
678 int ret = -ENODATA;
679
680 if (!osc_sb_cppc2_support_acked) {
681 pr_debug("CPPC v2 _OSC not acked\n");
682 if (!cpc_supported_by_cpu())
683 return -ENODEV;
684 }
685
686 /* Parse the ACPI _CPC table for this CPU. */
687 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
688 ACPI_TYPE_PACKAGE);
689 if (ACPI_FAILURE(status)) {
690 ret = -ENODEV;
691 goto out_buf_free;
692 }
693
694 out_obj = (union acpi_object *) output.pointer;
695
696 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
697 if (!cpc_ptr) {
698 ret = -ENOMEM;
699 goto out_buf_free;
700 }
701
702 /* First entry is NumEntries. */
703 cpc_obj = &out_obj->package.elements[0];
704 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
705 num_ent = cpc_obj->integer.value;
706 if (num_ent <= 1) {
707 pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
708 num_ent, pr->id);
709 goto out_free;
710 }
711 } else {
712 pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
713 cpc_obj->type, pr->id);
714 goto out_free;
715 }
716
717 /* Second entry should be revision. */
718 cpc_obj = &out_obj->package.elements[1];
719 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
720 cpc_rev = cpc_obj->integer.value;
721 } else {
722 pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
723 cpc_obj->type, pr->id);
724 goto out_free;
725 }
726
727 if (cpc_rev < CPPC_V2_REV) {
728 pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
729 pr->id);
730 goto out_free;
731 }
732
733 /*
734 * Disregard _CPC if the number of entries in the return pachage is not
735 * as expected, but support future revisions being proper supersets of
736 * the v3 and only causing more entries to be returned by _CPC.
737 */
738 if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
739 (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
740 (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
741 pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
742 num_ent, pr->id);
743 goto out_free;
744 }
745 if (cpc_rev > CPPC_V3_REV) {
746 num_ent = CPPC_V3_NUM_ENT;
747 cpc_rev = CPPC_V3_REV;
748 }
749
750 cpc_ptr->num_entries = num_ent;
751 cpc_ptr->version = cpc_rev;
752
753 /* Iterate through remaining entries in _CPC */
754 for (i = 2; i < num_ent; i++) {
755 cpc_obj = &out_obj->package.elements[i];
756
757 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
758 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
759 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
760 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
761 gas_t = (struct cpc_reg *)
762 cpc_obj->buffer.pointer;
763
764 /*
765 * The PCC Subspace index is encoded inside
766 * the CPC table entries. The same PCC index
767 * will be used for all the PCC entries,
768 * so extract it only once.
769 */
770 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
771 if (pcc_subspace_id < 0) {
772 pcc_subspace_id = gas_t->access_width;
773 if (pcc_data_alloc(pcc_subspace_id))
774 goto out_free;
775 } else if (pcc_subspace_id != gas_t->access_width) {
776 pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
777 pr->id);
778 goto out_free;
779 }
780 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
781 if (gas_t->address) {
782 void __iomem *addr;
783
784 if (!osc_cpc_flexible_adr_space_confirmed) {
785 pr_debug("Flexible address space capability not supported\n");
786 if (!cpc_supported_by_cpu())
787 goto out_free;
788 }
789
790 addr = ioremap(gas_t->address, gas_t->bit_width/8);
791 if (!addr)
792 goto out_free;
793 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
794 }
795 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
796 if (gas_t->access_width < 1 || gas_t->access_width > 3) {
797 /*
798 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
799 * SystemIO doesn't implement 64-bit
800 * registers.
801 */
802 pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
803 gas_t->access_width);
804 goto out_free;
805 }
806 if (gas_t->address & OVER_16BTS_MASK) {
807 /* SystemIO registers use 16-bit integer addresses */
808 pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
809 gas_t->address);
810 goto out_free;
811 }
812 if (!osc_cpc_flexible_adr_space_confirmed) {
813 pr_debug("Flexible address space capability not supported\n");
814 if (!cpc_supported_by_cpu())
815 goto out_free;
816 }
817 } else {
818 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
819 /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
820 pr_debug("Unsupported register type (%d) in _CPC\n",
821 gas_t->space_id);
822 goto out_free;
823 }
824 }
825
826 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
827 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
828 } else {
829 pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
830 i, pr->id);
831 goto out_free;
832 }
833 }
834 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
835
836 /*
837 * Initialize the remaining cpc_regs as unsupported.
838 * Example: In case FW exposes CPPC v2, the below loop will initialize
839 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
840 */
841 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
842 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
843 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
844 }
845
846
847 /* Store CPU Logical ID */
848 cpc_ptr->cpu_id = pr->id;
849
850 /* Parse PSD data for this CPU */
851 ret = acpi_get_psd(cpc_ptr, handle);
852 if (ret)
853 goto out_free;
854
855 /* Register PCC channel once for all PCC subspace ID. */
856 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
857 ret = register_pcc_channel(pcc_subspace_id);
858 if (ret)
859 goto out_free;
860
861 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
862 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
863 }
864
865 /* Everything looks okay */
866 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
867
868 /* Add per logical CPU nodes for reading its feedback counters. */
869 cpu_dev = get_cpu_device(pr->id);
870 if (!cpu_dev) {
871 ret = -EINVAL;
872 goto out_free;
873 }
874
875 /* Plug PSD data into this CPU's CPC descriptor. */
876 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
877
878 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
879 "acpi_cppc");
880 if (ret) {
881 per_cpu(cpc_desc_ptr, pr->id) = NULL;
882 kobject_put(&cpc_ptr->kobj);
883 goto out_free;
884 }
885
886 arch_init_invariance_cppc();
887
888 kfree(output.pointer);
889 return 0;
890
891out_free:
892 /* Free all the mapped sys mem areas for this CPU */
893 for (i = 2; i < cpc_ptr->num_entries; i++) {
894 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
895
896 if (addr)
897 iounmap(addr);
898 }
899 kfree(cpc_ptr);
900
901out_buf_free:
902 kfree(output.pointer);
903 return ret;
904}
905EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
906
907/**
908 * acpi_cppc_processor_exit - Cleanup CPC structs.
909 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
910 *
911 * Return: Void
912 */
913void acpi_cppc_processor_exit(struct acpi_processor *pr)
914{
915 struct cpc_desc *cpc_ptr;
916 unsigned int i;
917 void __iomem *addr;
918 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
919
920 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
921 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
922 pcc_data[pcc_ss_id]->refcount--;
923 if (!pcc_data[pcc_ss_id]->refcount) {
924 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
925 kfree(pcc_data[pcc_ss_id]);
926 pcc_data[pcc_ss_id] = NULL;
927 }
928 }
929 }
930
931 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
932 if (!cpc_ptr)
933 return;
934
935 /* Free all the mapped sys mem areas for this CPU */
936 for (i = 2; i < cpc_ptr->num_entries; i++) {
937 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
938 if (addr)
939 iounmap(addr);
940 }
941
942 kobject_put(&cpc_ptr->kobj);
943 kfree(cpc_ptr);
944}
945EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
946
947/**
948 * cpc_read_ffh() - Read FFH register
949 * @cpunum: CPU number to read
950 * @reg: cppc register information
951 * @val: place holder for return value
952 *
953 * Read bit_width bits from a specified address and bit_offset
954 *
955 * Return: 0 for success and error code
956 */
957int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
958{
959 return -ENOTSUPP;
960}
961
962/**
963 * cpc_write_ffh() - Write FFH register
964 * @cpunum: CPU number to write
965 * @reg: cppc register information
966 * @val: value to write
967 *
968 * Write value of bit_width bits to a specified address and bit_offset
969 *
970 * Return: 0 for success and error code
971 */
972int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
973{
974 return -ENOTSUPP;
975}
976
977/*
978 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
979 * as fast as possible. We have already mapped the PCC subspace during init, so
980 * we can directly write to it.
981 */
982
983static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
984{
985 void __iomem *vaddr = NULL;
986 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
987 struct cpc_reg *reg = ®_res->cpc_entry.reg;
988
989 if (reg_res->type == ACPI_TYPE_INTEGER) {
990 *val = reg_res->cpc_entry.int_value;
991 return 0;
992 }
993
994 *val = 0;
995
996 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
997 u32 width = 8 << (reg->access_width - 1);
998 u32 val_u32;
999 acpi_status status;
1000
1001 status = acpi_os_read_port((acpi_io_address)reg->address,
1002 &val_u32, width);
1003 if (ACPI_FAILURE(status)) {
1004 pr_debug("Error: Failed to read SystemIO port %llx\n",
1005 reg->address);
1006 return -EFAULT;
1007 }
1008
1009 *val = val_u32;
1010 return 0;
1011 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1012 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1013 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1014 vaddr = reg_res->sys_mem_vaddr;
1015 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1016 return cpc_read_ffh(cpu, reg, val);
1017 else
1018 return acpi_os_read_memory((acpi_physical_address)reg->address,
1019 val, reg->bit_width);
1020
1021 switch (reg->bit_width) {
1022 case 8:
1023 *val = readb_relaxed(vaddr);
1024 break;
1025 case 16:
1026 *val = readw_relaxed(vaddr);
1027 break;
1028 case 32:
1029 *val = readl_relaxed(vaddr);
1030 break;
1031 case 64:
1032 *val = readq_relaxed(vaddr);
1033 break;
1034 default:
1035 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1036 reg->bit_width, pcc_ss_id);
1037 return -EFAULT;
1038 }
1039
1040 return 0;
1041}
1042
1043static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1044{
1045 int ret_val = 0;
1046 void __iomem *vaddr = NULL;
1047 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1048 struct cpc_reg *reg = ®_res->cpc_entry.reg;
1049
1050 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1051 u32 width = 8 << (reg->access_width - 1);
1052 acpi_status status;
1053
1054 status = acpi_os_write_port((acpi_io_address)reg->address,
1055 (u32)val, width);
1056 if (ACPI_FAILURE(status)) {
1057 pr_debug("Error: Failed to write SystemIO port %llx\n",
1058 reg->address);
1059 return -EFAULT;
1060 }
1061
1062 return 0;
1063 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1064 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1065 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1066 vaddr = reg_res->sys_mem_vaddr;
1067 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1068 return cpc_write_ffh(cpu, reg, val);
1069 else
1070 return acpi_os_write_memory((acpi_physical_address)reg->address,
1071 val, reg->bit_width);
1072
1073 switch (reg->bit_width) {
1074 case 8:
1075 writeb_relaxed(val, vaddr);
1076 break;
1077 case 16:
1078 writew_relaxed(val, vaddr);
1079 break;
1080 case 32:
1081 writel_relaxed(val, vaddr);
1082 break;
1083 case 64:
1084 writeq_relaxed(val, vaddr);
1085 break;
1086 default:
1087 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1088 reg->bit_width, pcc_ss_id);
1089 ret_val = -EFAULT;
1090 break;
1091 }
1092
1093 return ret_val;
1094}
1095
1096static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1097{
1098 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1099 struct cpc_register_resource *reg;
1100
1101 if (!cpc_desc) {
1102 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1103 return -ENODEV;
1104 }
1105
1106 reg = &cpc_desc->cpc_regs[reg_idx];
1107
1108 if (CPC_IN_PCC(reg)) {
1109 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1110 struct cppc_pcc_data *pcc_ss_data = NULL;
1111 int ret = 0;
1112
1113 if (pcc_ss_id < 0)
1114 return -EIO;
1115
1116 pcc_ss_data = pcc_data[pcc_ss_id];
1117
1118 down_write(&pcc_ss_data->pcc_lock);
1119
1120 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1121 cpc_read(cpunum, reg, perf);
1122 else
1123 ret = -EIO;
1124
1125 up_write(&pcc_ss_data->pcc_lock);
1126
1127 return ret;
1128 }
1129
1130 cpc_read(cpunum, reg, perf);
1131
1132 return 0;
1133}
1134
1135/**
1136 * cppc_get_desired_perf - Get the desired performance register value.
1137 * @cpunum: CPU from which to get desired performance.
1138 * @desired_perf: Return address.
1139 *
1140 * Return: 0 for success, -EIO otherwise.
1141 */
1142int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1143{
1144 return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1145}
1146EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1147
1148/**
1149 * cppc_get_nominal_perf - Get the nominal performance register value.
1150 * @cpunum: CPU from which to get nominal performance.
1151 * @nominal_perf: Return address.
1152 *
1153 * Return: 0 for success, -EIO otherwise.
1154 */
1155int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1156{
1157 return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1158}
1159
1160/**
1161 * cppc_get_epp_perf - Get the epp register value.
1162 * @cpunum: CPU from which to get epp preference value.
1163 * @epp_perf: Return address.
1164 *
1165 * Return: 0 for success, -EIO otherwise.
1166 */
1167int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
1168{
1169 return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf);
1170}
1171EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
1172
1173/**
1174 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1175 * @cpunum: CPU from which to get capabilities info.
1176 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1177 *
1178 * Return: 0 for success with perf_caps populated else -ERRNO.
1179 */
1180int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1181{
1182 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1183 struct cpc_register_resource *highest_reg, *lowest_reg,
1184 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1185 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1186 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1187 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1188 struct cppc_pcc_data *pcc_ss_data = NULL;
1189 int ret = 0, regs_in_pcc = 0;
1190
1191 if (!cpc_desc) {
1192 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1193 return -ENODEV;
1194 }
1195
1196 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1197 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1198 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1199 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1200 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1201 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1202 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1203
1204 /* Are any of the regs PCC ?*/
1205 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1206 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1207 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1208 if (pcc_ss_id < 0) {
1209 pr_debug("Invalid pcc_ss_id\n");
1210 return -ENODEV;
1211 }
1212 pcc_ss_data = pcc_data[pcc_ss_id];
1213 regs_in_pcc = 1;
1214 down_write(&pcc_ss_data->pcc_lock);
1215 /* Ring doorbell once to update PCC subspace */
1216 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1217 ret = -EIO;
1218 goto out_err;
1219 }
1220 }
1221
1222 cpc_read(cpunum, highest_reg, &high);
1223 perf_caps->highest_perf = high;
1224
1225 cpc_read(cpunum, lowest_reg, &low);
1226 perf_caps->lowest_perf = low;
1227
1228 cpc_read(cpunum, nominal_reg, &nom);
1229 perf_caps->nominal_perf = nom;
1230
1231 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1232 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1233 perf_caps->guaranteed_perf = 0;
1234 } else {
1235 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1236 perf_caps->guaranteed_perf = guaranteed;
1237 }
1238
1239 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1240 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1241
1242 if (!high || !low || !nom || !min_nonlinear)
1243 ret = -EFAULT;
1244
1245 /* Read optional lowest and nominal frequencies if present */
1246 if (CPC_SUPPORTED(low_freq_reg))
1247 cpc_read(cpunum, low_freq_reg, &low_f);
1248
1249 if (CPC_SUPPORTED(nom_freq_reg))
1250 cpc_read(cpunum, nom_freq_reg, &nom_f);
1251
1252 perf_caps->lowest_freq = low_f;
1253 perf_caps->nominal_freq = nom_f;
1254
1255
1256out_err:
1257 if (regs_in_pcc)
1258 up_write(&pcc_ss_data->pcc_lock);
1259 return ret;
1260}
1261EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1262
1263/**
1264 * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1265 *
1266 * CPPC has flexibility about how CPU performance counters are accessed.
1267 * One of the choices is PCC regions, which can have a high access latency. This
1268 * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1269 *
1270 * Return: true if any of the counters are in PCC regions, false otherwise
1271 */
1272bool cppc_perf_ctrs_in_pcc(void)
1273{
1274 int cpu;
1275
1276 for_each_present_cpu(cpu) {
1277 struct cpc_register_resource *ref_perf_reg;
1278 struct cpc_desc *cpc_desc;
1279
1280 cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1281
1282 if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1283 CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1284 CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1285 return true;
1286
1287
1288 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1289
1290 /*
1291 * If reference perf register is not supported then we should
1292 * use the nominal perf value
1293 */
1294 if (!CPC_SUPPORTED(ref_perf_reg))
1295 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1296
1297 if (CPC_IN_PCC(ref_perf_reg))
1298 return true;
1299 }
1300
1301 return false;
1302}
1303EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1304
1305/**
1306 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1307 * @cpunum: CPU from which to read counters.
1308 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1309 *
1310 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1311 */
1312int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1313{
1314 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1315 struct cpc_register_resource *delivered_reg, *reference_reg,
1316 *ref_perf_reg, *ctr_wrap_reg;
1317 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1318 struct cppc_pcc_data *pcc_ss_data = NULL;
1319 u64 delivered, reference, ref_perf, ctr_wrap_time;
1320 int ret = 0, regs_in_pcc = 0;
1321
1322 if (!cpc_desc) {
1323 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1324 return -ENODEV;
1325 }
1326
1327 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1328 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1329 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1330 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1331
1332 /*
1333 * If reference perf register is not supported then we should
1334 * use the nominal perf value
1335 */
1336 if (!CPC_SUPPORTED(ref_perf_reg))
1337 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1338
1339 /* Are any of the regs PCC ?*/
1340 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1341 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1342 if (pcc_ss_id < 0) {
1343 pr_debug("Invalid pcc_ss_id\n");
1344 return -ENODEV;
1345 }
1346 pcc_ss_data = pcc_data[pcc_ss_id];
1347 down_write(&pcc_ss_data->pcc_lock);
1348 regs_in_pcc = 1;
1349 /* Ring doorbell once to update PCC subspace */
1350 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1351 ret = -EIO;
1352 goto out_err;
1353 }
1354 }
1355
1356 cpc_read(cpunum, delivered_reg, &delivered);
1357 cpc_read(cpunum, reference_reg, &reference);
1358 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1359
1360 /*
1361 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1362 * performance counters are assumed to never wrap during the lifetime of
1363 * platform
1364 */
1365 ctr_wrap_time = (u64)(~((u64)0));
1366 if (CPC_SUPPORTED(ctr_wrap_reg))
1367 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1368
1369 if (!delivered || !reference || !ref_perf) {
1370 ret = -EFAULT;
1371 goto out_err;
1372 }
1373
1374 perf_fb_ctrs->delivered = delivered;
1375 perf_fb_ctrs->reference = reference;
1376 perf_fb_ctrs->reference_perf = ref_perf;
1377 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1378out_err:
1379 if (regs_in_pcc)
1380 up_write(&pcc_ss_data->pcc_lock);
1381 return ret;
1382}
1383EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1384
1385/*
1386 * Set Energy Performance Preference Register value through
1387 * Performance Controls Interface
1388 */
1389int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
1390{
1391 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1392 struct cpc_register_resource *epp_set_reg;
1393 struct cpc_register_resource *auto_sel_reg;
1394 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1395 struct cppc_pcc_data *pcc_ss_data = NULL;
1396 int ret;
1397
1398 if (!cpc_desc) {
1399 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1400 return -ENODEV;
1401 }
1402
1403 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1404 epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
1405
1406 if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
1407 if (pcc_ss_id < 0) {
1408 pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
1409 return -ENODEV;
1410 }
1411
1412 if (CPC_SUPPORTED(auto_sel_reg)) {
1413 ret = cpc_write(cpu, auto_sel_reg, enable);
1414 if (ret)
1415 return ret;
1416 }
1417
1418 if (CPC_SUPPORTED(epp_set_reg)) {
1419 ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
1420 if (ret)
1421 return ret;
1422 }
1423
1424 pcc_ss_data = pcc_data[pcc_ss_id];
1425
1426 down_write(&pcc_ss_data->pcc_lock);
1427 /* after writing CPC, transfer the ownership of PCC to platform */
1428 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1429 up_write(&pcc_ss_data->pcc_lock);
1430 } else {
1431 ret = -ENOTSUPP;
1432 pr_debug("_CPC in PCC is not supported\n");
1433 }
1434
1435 return ret;
1436}
1437EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
1438
1439/**
1440 * cppc_get_auto_sel_caps - Read autonomous selection register.
1441 * @cpunum : CPU from which to read register.
1442 * @perf_caps : struct where autonomous selection register value is updated.
1443 */
1444int cppc_get_auto_sel_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1445{
1446 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1447 struct cpc_register_resource *auto_sel_reg;
1448 u64 auto_sel;
1449
1450 if (!cpc_desc) {
1451 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1452 return -ENODEV;
1453 }
1454
1455 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1456
1457 if (!CPC_SUPPORTED(auto_sel_reg))
1458 pr_warn_once("Autonomous mode is not unsupported!\n");
1459
1460 if (CPC_IN_PCC(auto_sel_reg)) {
1461 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1462 struct cppc_pcc_data *pcc_ss_data = NULL;
1463 int ret = 0;
1464
1465 if (pcc_ss_id < 0)
1466 return -ENODEV;
1467
1468 pcc_ss_data = pcc_data[pcc_ss_id];
1469
1470 down_write(&pcc_ss_data->pcc_lock);
1471
1472 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0) {
1473 cpc_read(cpunum, auto_sel_reg, &auto_sel);
1474 perf_caps->auto_sel = (bool)auto_sel;
1475 } else {
1476 ret = -EIO;
1477 }
1478
1479 up_write(&pcc_ss_data->pcc_lock);
1480
1481 return ret;
1482 }
1483
1484 return 0;
1485}
1486EXPORT_SYMBOL_GPL(cppc_get_auto_sel_caps);
1487
1488/**
1489 * cppc_set_auto_sel - Write autonomous selection register.
1490 * @cpu : CPU to which to write register.
1491 * @enable : the desired value of autonomous selection resiter to be updated.
1492 */
1493int cppc_set_auto_sel(int cpu, bool enable)
1494{
1495 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1496 struct cpc_register_resource *auto_sel_reg;
1497 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1498 struct cppc_pcc_data *pcc_ss_data = NULL;
1499 int ret = -EINVAL;
1500
1501 if (!cpc_desc) {
1502 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1503 return -ENODEV;
1504 }
1505
1506 auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
1507
1508 if (CPC_IN_PCC(auto_sel_reg)) {
1509 if (pcc_ss_id < 0) {
1510 pr_debug("Invalid pcc_ss_id\n");
1511 return -ENODEV;
1512 }
1513
1514 if (CPC_SUPPORTED(auto_sel_reg)) {
1515 ret = cpc_write(cpu, auto_sel_reg, enable);
1516 if (ret)
1517 return ret;
1518 }
1519
1520 pcc_ss_data = pcc_data[pcc_ss_id];
1521
1522 down_write(&pcc_ss_data->pcc_lock);
1523 /* after writing CPC, transfer the ownership of PCC to platform */
1524 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1525 up_write(&pcc_ss_data->pcc_lock);
1526 } else {
1527 ret = -ENOTSUPP;
1528 pr_debug("_CPC in PCC is not supported\n");
1529 }
1530
1531 return ret;
1532}
1533EXPORT_SYMBOL_GPL(cppc_set_auto_sel);
1534
1535/**
1536 * cppc_set_enable - Set to enable CPPC on the processor by writing the
1537 * Continuous Performance Control package EnableRegister field.
1538 * @cpu: CPU for which to enable CPPC register.
1539 * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1540 *
1541 * Return: 0 for success, -ERRNO or -EIO otherwise.
1542 */
1543int cppc_set_enable(int cpu, bool enable)
1544{
1545 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1546 struct cpc_register_resource *enable_reg;
1547 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1548 struct cppc_pcc_data *pcc_ss_data = NULL;
1549 int ret = -EINVAL;
1550
1551 if (!cpc_desc) {
1552 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1553 return -EINVAL;
1554 }
1555
1556 enable_reg = &cpc_desc->cpc_regs[ENABLE];
1557
1558 if (CPC_IN_PCC(enable_reg)) {
1559
1560 if (pcc_ss_id < 0)
1561 return -EIO;
1562
1563 ret = cpc_write(cpu, enable_reg, enable);
1564 if (ret)
1565 return ret;
1566
1567 pcc_ss_data = pcc_data[pcc_ss_id];
1568
1569 down_write(&pcc_ss_data->pcc_lock);
1570 /* after writing CPC, transfer the ownership of PCC to platfrom */
1571 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1572 up_write(&pcc_ss_data->pcc_lock);
1573 return ret;
1574 }
1575
1576 return cpc_write(cpu, enable_reg, enable);
1577}
1578EXPORT_SYMBOL_GPL(cppc_set_enable);
1579
1580/**
1581 * cppc_set_perf - Set a CPU's performance controls.
1582 * @cpu: CPU for which to set performance controls.
1583 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1584 *
1585 * Return: 0 for success, -ERRNO otherwise.
1586 */
1587int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1588{
1589 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1590 struct cpc_register_resource *desired_reg, *min_perf_reg, *max_perf_reg;
1591 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1592 struct cppc_pcc_data *pcc_ss_data = NULL;
1593 int ret = 0;
1594
1595 if (!cpc_desc) {
1596 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1597 return -ENODEV;
1598 }
1599
1600 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1601 min_perf_reg = &cpc_desc->cpc_regs[MIN_PERF];
1602 max_perf_reg = &cpc_desc->cpc_regs[MAX_PERF];
1603
1604 /*
1605 * This is Phase-I where we want to write to CPC registers
1606 * -> We want all CPUs to be able to execute this phase in parallel
1607 *
1608 * Since read_lock can be acquired by multiple CPUs simultaneously we
1609 * achieve that goal here
1610 */
1611 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1612 if (pcc_ss_id < 0) {
1613 pr_debug("Invalid pcc_ss_id\n");
1614 return -ENODEV;
1615 }
1616 pcc_ss_data = pcc_data[pcc_ss_id];
1617 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1618 if (pcc_ss_data->platform_owns_pcc) {
1619 ret = check_pcc_chan(pcc_ss_id, false);
1620 if (ret) {
1621 up_read(&pcc_ss_data->pcc_lock);
1622 return ret;
1623 }
1624 }
1625 /*
1626 * Update the pending_write to make sure a PCC CMD_READ will not
1627 * arrive and steal the channel during the switch to write lock
1628 */
1629 pcc_ss_data->pending_pcc_write_cmd = true;
1630 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1631 cpc_desc->write_cmd_status = 0;
1632 }
1633
1634 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1635
1636 /*
1637 * Only write if min_perf and max_perf not zero. Some drivers pass zero
1638 * value to min and max perf, but they don't mean to set the zero value,
1639 * they just don't want to write to those registers.
1640 */
1641 if (perf_ctrls->min_perf)
1642 cpc_write(cpu, min_perf_reg, perf_ctrls->min_perf);
1643 if (perf_ctrls->max_perf)
1644 cpc_write(cpu, max_perf_reg, perf_ctrls->max_perf);
1645
1646 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg))
1647 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1648 /*
1649 * This is Phase-II where we transfer the ownership of PCC to Platform
1650 *
1651 * Short Summary: Basically if we think of a group of cppc_set_perf
1652 * requests that happened in short overlapping interval. The last CPU to
1653 * come out of Phase-I will enter Phase-II and ring the doorbell.
1654 *
1655 * We have the following requirements for Phase-II:
1656 * 1. We want to execute Phase-II only when there are no CPUs
1657 * currently executing in Phase-I
1658 * 2. Once we start Phase-II we want to avoid all other CPUs from
1659 * entering Phase-I.
1660 * 3. We want only one CPU among all those who went through Phase-I
1661 * to run phase-II
1662 *
1663 * If write_trylock fails to get the lock and doesn't transfer the
1664 * PCC ownership to the platform, then one of the following will be TRUE
1665 * 1. There is at-least one CPU in Phase-I which will later execute
1666 * write_trylock, so the CPUs in Phase-I will be responsible for
1667 * executing the Phase-II.
1668 * 2. Some other CPU has beaten this CPU to successfully execute the
1669 * write_trylock and has already acquired the write_lock. We know for a
1670 * fact it (other CPU acquiring the write_lock) couldn't have happened
1671 * before this CPU's Phase-I as we held the read_lock.
1672 * 3. Some other CPU executing pcc CMD_READ has stolen the
1673 * down_write, in which case, send_pcc_cmd will check for pending
1674 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1675 * So this CPU can be certain that its request will be delivered
1676 * So in all cases, this CPU knows that its request will be delivered
1677 * by another CPU and can return
1678 *
1679 * After getting the down_write we still need to check for
1680 * pending_pcc_write_cmd to take care of the following scenario
1681 * The thread running this code could be scheduled out between
1682 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1683 * could have delivered the request to Platform by triggering the
1684 * doorbell and transferred the ownership of PCC to platform. So this
1685 * avoids triggering an unnecessary doorbell and more importantly before
1686 * triggering the doorbell it makes sure that the PCC channel ownership
1687 * is still with OSPM.
1688 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1689 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1690 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1691 * case during a CMD_READ and if there are pending writes it delivers
1692 * the write command before servicing the read command
1693 */
1694 if (CPC_IN_PCC(desired_reg) || CPC_IN_PCC(min_perf_reg) || CPC_IN_PCC(max_perf_reg)) {
1695 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1696 /* Update only if there are pending write commands */
1697 if (pcc_ss_data->pending_pcc_write_cmd)
1698 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1699 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1700 } else
1701 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1702 wait_event(pcc_ss_data->pcc_write_wait_q,
1703 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1704
1705 /* send_pcc_cmd updates the status in case of failure */
1706 ret = cpc_desc->write_cmd_status;
1707 }
1708 return ret;
1709}
1710EXPORT_SYMBOL_GPL(cppc_set_perf);
1711
1712/**
1713 * cppc_get_transition_latency - returns frequency transition latency in ns
1714 * @cpu_num: CPU number for per_cpu().
1715 *
1716 * ACPI CPPC does not explicitly specify how a platform can specify the
1717 * transition latency for performance change requests. The closest we have
1718 * is the timing information from the PCCT tables which provides the info
1719 * on the number and frequency of PCC commands the platform can handle.
1720 *
1721 * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1722 * then assume there is no latency.
1723 */
1724unsigned int cppc_get_transition_latency(int cpu_num)
1725{
1726 /*
1727 * Expected transition latency is based on the PCCT timing values
1728 * Below are definition from ACPI spec:
1729 * pcc_nominal- Expected latency to process a command, in microseconds
1730 * pcc_mpar - The maximum number of periodic requests that the subspace
1731 * channel can support, reported in commands per minute. 0
1732 * indicates no limitation.
1733 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1734 * completion of a command before issuing the next command,
1735 * in microseconds.
1736 */
1737 unsigned int latency_ns = 0;
1738 struct cpc_desc *cpc_desc;
1739 struct cpc_register_resource *desired_reg;
1740 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1741 struct cppc_pcc_data *pcc_ss_data;
1742
1743 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1744 if (!cpc_desc)
1745 return CPUFREQ_ETERNAL;
1746
1747 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1748 if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1749 return 0;
1750 else if (!CPC_IN_PCC(desired_reg))
1751 return CPUFREQ_ETERNAL;
1752
1753 if (pcc_ss_id < 0)
1754 return CPUFREQ_ETERNAL;
1755
1756 pcc_ss_data = pcc_data[pcc_ss_id];
1757 if (pcc_ss_data->pcc_mpar)
1758 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1759
1760 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1761 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1762
1763 return latency_ns;
1764}
1765EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1766
1767/* Minimum struct length needed for the DMI processor entry we want */
1768#define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48
1769
1770/* Offset in the DMI processor structure for the max frequency */
1771#define DMI_PROCESSOR_MAX_SPEED 0x14
1772
1773/* Callback function used to retrieve the max frequency from DMI */
1774static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
1775{
1776 const u8 *dmi_data = (const u8 *)dm;
1777 u16 *mhz = (u16 *)private;
1778
1779 if (dm->type == DMI_ENTRY_PROCESSOR &&
1780 dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
1781 u16 val = (u16)get_unaligned((const u16 *)
1782 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
1783 *mhz = val > *mhz ? val : *mhz;
1784 }
1785}
1786
1787/* Look up the max frequency in DMI */
1788static u64 cppc_get_dmi_max_khz(void)
1789{
1790 u16 mhz = 0;
1791
1792 dmi_walk(cppc_find_dmi_mhz, &mhz);
1793
1794 /*
1795 * Real stupid fallback value, just in case there is no
1796 * actual value set.
1797 */
1798 mhz = mhz ? mhz : 1;
1799
1800 return KHZ_PER_MHZ * mhz;
1801}
1802
1803/*
1804 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
1805 * use them to convert perf to freq and vice versa. The conversion is
1806 * extrapolated as an affine function passing by the 2 points:
1807 * - (Low perf, Low freq)
1808 * - (Nominal perf, Nominal freq)
1809 */
1810unsigned int cppc_perf_to_khz(struct cppc_perf_caps *caps, unsigned int perf)
1811{
1812 s64 retval, offset = 0;
1813 static u64 max_khz;
1814 u64 mul, div;
1815
1816 if (caps->lowest_freq && caps->nominal_freq) {
1817 mul = caps->nominal_freq - caps->lowest_freq;
1818 mul *= KHZ_PER_MHZ;
1819 div = caps->nominal_perf - caps->lowest_perf;
1820 offset = caps->nominal_freq * KHZ_PER_MHZ -
1821 div64_u64(caps->nominal_perf * mul, div);
1822 } else {
1823 if (!max_khz)
1824 max_khz = cppc_get_dmi_max_khz();
1825 mul = max_khz;
1826 div = caps->highest_perf;
1827 }
1828
1829 retval = offset + div64_u64(perf * mul, div);
1830 if (retval >= 0)
1831 return retval;
1832 return 0;
1833}
1834EXPORT_SYMBOL_GPL(cppc_perf_to_khz);
1835
1836unsigned int cppc_khz_to_perf(struct cppc_perf_caps *caps, unsigned int freq)
1837{
1838 s64 retval, offset = 0;
1839 static u64 max_khz;
1840 u64 mul, div;
1841
1842 if (caps->lowest_freq && caps->nominal_freq) {
1843 mul = caps->nominal_perf - caps->lowest_perf;
1844 div = caps->nominal_freq - caps->lowest_freq;
1845 /*
1846 * We don't need to convert to kHz for computing offset and can
1847 * directly use nominal_freq and lowest_freq as the div64_u64
1848 * will remove the frequency unit.
1849 */
1850 offset = caps->nominal_perf -
1851 div64_u64(caps->nominal_freq * mul, div);
1852 /* But we need it for computing the perf level. */
1853 div *= KHZ_PER_MHZ;
1854 } else {
1855 if (!max_khz)
1856 max_khz = cppc_get_dmi_max_khz();
1857 mul = caps->highest_perf;
1858 div = max_khz;
1859 }
1860
1861 retval = offset + div64_u64(freq * mul, div);
1862 if (retval >= 0)
1863 return retval;
1864 return 0;
1865}
1866EXPORT_SYMBOL_GPL(cppc_khz_to_perf);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 *
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 *
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
13 *
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
16 * operation involves:
17 *
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
19 *
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
22 *
23 * - Platform conveys its decision back to OS
24 *
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
29 *
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
32 */
33
34#define pr_fmt(fmt) "ACPI CPPC: " fmt
35
36#include <linux/delay.h>
37#include <linux/iopoll.h>
38#include <linux/ktime.h>
39#include <linux/rwsem.h>
40#include <linux/wait.h>
41#include <linux/topology.h>
42
43#include <acpi/cppc_acpi.h>
44
45struct cppc_pcc_data {
46 struct pcc_mbox_chan *pcc_channel;
47 void __iomem *pcc_comm_addr;
48 bool pcc_channel_acquired;
49 unsigned int deadline_us;
50 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51
52 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
53 bool platform_owns_pcc; /* Ownership of PCC subspace */
54 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
55
56 /*
57 * Lock to provide controlled access to the PCC channel.
58 *
59 * For performance critical usecases(currently cppc_set_perf)
60 * We need to take read_lock and check if channel belongs to OSPM
61 * before reading or writing to PCC subspace
62 * We need to take write_lock before transferring the channel
63 * ownership to the platform via a Doorbell
64 * This allows us to batch a number of CPPC requests if they happen
65 * to originate in about the same time
66 *
67 * For non-performance critical usecases(init)
68 * Take write_lock for all purposes which gives exclusive access
69 */
70 struct rw_semaphore pcc_lock;
71
72 /* Wait queue for CPUs whose requests were batched */
73 wait_queue_head_t pcc_write_wait_q;
74 ktime_t last_cmd_cmpl_time;
75 ktime_t last_mpar_reset;
76 int mpar_count;
77 int refcount;
78};
79
80/* Array to represent the PCC channel per subspace ID */
81static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82/* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84
85/*
86 * The cpc_desc structure contains the ACPI register details
87 * as described in the per CPU _CPC tables. The details
88 * include the type of register (e.g. PCC, System IO, FFH etc.)
89 * and destination addresses which lets us READ/WRITE CPU performance
90 * information using the appropriate I/O methods.
91 */
92static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93
94/* pcc mapped address + header size + offset within PCC subspace */
95#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96 0x8 + (offs))
97
98/* Check if a CPC register is in PCC */
99#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103/* Check if a CPC register is in SystemMemory */
104#define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
105 (cpc)->cpc_entry.reg.space_id == \
106 ACPI_ADR_SPACE_SYSTEM_MEMORY)
107
108/* Check if a CPC register is in SystemIo */
109#define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
110 (cpc)->cpc_entry.reg.space_id == \
111 ACPI_ADR_SPACE_SYSTEM_IO)
112
113/* Evaluates to True if reg is a NULL register descriptor */
114#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
115 (reg)->address == 0 && \
116 (reg)->bit_width == 0 && \
117 (reg)->bit_offset == 0 && \
118 (reg)->access_width == 0)
119
120/* Evaluates to True if an optional cpc field is supported */
121#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
122 !!(cpc)->cpc_entry.int_value : \
123 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
124/*
125 * Arbitrary Retries in case the remote processor is slow to respond
126 * to PCC commands. Keeping it high enough to cover emulators where
127 * the processors run painfully slow.
128 */
129#define NUM_RETRIES 500ULL
130
131#define OVER_16BTS_MASK ~0xFFFFULL
132
133#define define_one_cppc_ro(_name) \
134static struct kobj_attribute _name = \
135__ATTR(_name, 0444, show_##_name, NULL)
136
137#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
138
139#define show_cppc_data(access_fn, struct_name, member_name) \
140 static ssize_t show_##member_name(struct kobject *kobj, \
141 struct kobj_attribute *attr, char *buf) \
142 { \
143 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
144 struct struct_name st_name = {0}; \
145 int ret; \
146 \
147 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
148 if (ret) \
149 return ret; \
150 \
151 return sysfs_emit(buf, "%llu\n", \
152 (u64)st_name.member_name); \
153 } \
154 define_one_cppc_ro(member_name)
155
156show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
157show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
158show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
159show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
160show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
161show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
162
163show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
164show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
165
166static ssize_t show_feedback_ctrs(struct kobject *kobj,
167 struct kobj_attribute *attr, char *buf)
168{
169 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
170 struct cppc_perf_fb_ctrs fb_ctrs = {0};
171 int ret;
172
173 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
174 if (ret)
175 return ret;
176
177 return sysfs_emit(buf, "ref:%llu del:%llu\n",
178 fb_ctrs.reference, fb_ctrs.delivered);
179}
180define_one_cppc_ro(feedback_ctrs);
181
182static struct attribute *cppc_attrs[] = {
183 &feedback_ctrs.attr,
184 &reference_perf.attr,
185 &wraparound_time.attr,
186 &highest_perf.attr,
187 &lowest_perf.attr,
188 &lowest_nonlinear_perf.attr,
189 &nominal_perf.attr,
190 &nominal_freq.attr,
191 &lowest_freq.attr,
192 NULL
193};
194ATTRIBUTE_GROUPS(cppc);
195
196static struct kobj_type cppc_ktype = {
197 .sysfs_ops = &kobj_sysfs_ops,
198 .default_groups = cppc_groups,
199};
200
201static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
202{
203 int ret, status;
204 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
205 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
206 pcc_ss_data->pcc_comm_addr;
207
208 if (!pcc_ss_data->platform_owns_pcc)
209 return 0;
210
211 /*
212 * Poll PCC status register every 3us(delay_us) for maximum of
213 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
214 */
215 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
216 status & PCC_CMD_COMPLETE_MASK, 3,
217 pcc_ss_data->deadline_us);
218
219 if (likely(!ret)) {
220 pcc_ss_data->platform_owns_pcc = false;
221 if (chk_err_bit && (status & PCC_ERROR_MASK))
222 ret = -EIO;
223 }
224
225 if (unlikely(ret))
226 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
227 pcc_ss_id, ret);
228
229 return ret;
230}
231
232/*
233 * This function transfers the ownership of the PCC to the platform
234 * So it must be called while holding write_lock(pcc_lock)
235 */
236static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
237{
238 int ret = -EIO, i;
239 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
240 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
241 pcc_ss_data->pcc_comm_addr;
242 unsigned int time_delta;
243
244 /*
245 * For CMD_WRITE we know for a fact the caller should have checked
246 * the channel before writing to PCC space
247 */
248 if (cmd == CMD_READ) {
249 /*
250 * If there are pending cpc_writes, then we stole the channel
251 * before write completion, so first send a WRITE command to
252 * platform
253 */
254 if (pcc_ss_data->pending_pcc_write_cmd)
255 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
256
257 ret = check_pcc_chan(pcc_ss_id, false);
258 if (ret)
259 goto end;
260 } else /* CMD_WRITE */
261 pcc_ss_data->pending_pcc_write_cmd = FALSE;
262
263 /*
264 * Handle the Minimum Request Turnaround Time(MRTT)
265 * "The minimum amount of time that OSPM must wait after the completion
266 * of a command before issuing the next command, in microseconds"
267 */
268 if (pcc_ss_data->pcc_mrtt) {
269 time_delta = ktime_us_delta(ktime_get(),
270 pcc_ss_data->last_cmd_cmpl_time);
271 if (pcc_ss_data->pcc_mrtt > time_delta)
272 udelay(pcc_ss_data->pcc_mrtt - time_delta);
273 }
274
275 /*
276 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
277 * "The maximum number of periodic requests that the subspace channel can
278 * support, reported in commands per minute. 0 indicates no limitation."
279 *
280 * This parameter should be ideally zero or large enough so that it can
281 * handle maximum number of requests that all the cores in the system can
282 * collectively generate. If it is not, we will follow the spec and just
283 * not send the request to the platform after hitting the MPAR limit in
284 * any 60s window
285 */
286 if (pcc_ss_data->pcc_mpar) {
287 if (pcc_ss_data->mpar_count == 0) {
288 time_delta = ktime_ms_delta(ktime_get(),
289 pcc_ss_data->last_mpar_reset);
290 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
291 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
292 pcc_ss_id);
293 ret = -EIO;
294 goto end;
295 }
296 pcc_ss_data->last_mpar_reset = ktime_get();
297 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
298 }
299 pcc_ss_data->mpar_count--;
300 }
301
302 /* Write to the shared comm region. */
303 writew_relaxed(cmd, &generic_comm_base->command);
304
305 /* Flip CMD COMPLETE bit */
306 writew_relaxed(0, &generic_comm_base->status);
307
308 pcc_ss_data->platform_owns_pcc = true;
309
310 /* Ring doorbell */
311 ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
312 if (ret < 0) {
313 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
314 pcc_ss_id, cmd, ret);
315 goto end;
316 }
317
318 /* wait for completion and check for PCC error bit */
319 ret = check_pcc_chan(pcc_ss_id, true);
320
321 if (pcc_ss_data->pcc_mrtt)
322 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
323
324 if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
325 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
326 else
327 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
328
329end:
330 if (cmd == CMD_WRITE) {
331 if (unlikely(ret)) {
332 for_each_possible_cpu(i) {
333 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
334
335 if (!desc)
336 continue;
337
338 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
339 desc->write_cmd_status = ret;
340 }
341 }
342 pcc_ss_data->pcc_write_cnt++;
343 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
344 }
345
346 return ret;
347}
348
349static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
350{
351 if (ret < 0)
352 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
353 *(u16 *)msg, ret);
354 else
355 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
356 *(u16 *)msg, ret);
357}
358
359static struct mbox_client cppc_mbox_cl = {
360 .tx_done = cppc_chan_tx_done,
361 .knows_txdone = true,
362};
363
364static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
365{
366 int result = -EFAULT;
367 acpi_status status = AE_OK;
368 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
369 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
370 struct acpi_buffer state = {0, NULL};
371 union acpi_object *psd = NULL;
372 struct acpi_psd_package *pdomain;
373
374 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
375 &buffer, ACPI_TYPE_PACKAGE);
376 if (status == AE_NOT_FOUND) /* _PSD is optional */
377 return 0;
378 if (ACPI_FAILURE(status))
379 return -ENODEV;
380
381 psd = buffer.pointer;
382 if (!psd || psd->package.count != 1) {
383 pr_debug("Invalid _PSD data\n");
384 goto end;
385 }
386
387 pdomain = &(cpc_ptr->domain_info);
388
389 state.length = sizeof(struct acpi_psd_package);
390 state.pointer = pdomain;
391
392 status = acpi_extract_package(&(psd->package.elements[0]),
393 &format, &state);
394 if (ACPI_FAILURE(status)) {
395 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
396 goto end;
397 }
398
399 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
400 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
401 goto end;
402 }
403
404 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
405 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
406 goto end;
407 }
408
409 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
410 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
411 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
412 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
413 goto end;
414 }
415
416 result = 0;
417end:
418 kfree(buffer.pointer);
419 return result;
420}
421
422bool acpi_cpc_valid(void)
423{
424 struct cpc_desc *cpc_ptr;
425 int cpu;
426
427 if (acpi_disabled)
428 return false;
429
430 for_each_present_cpu(cpu) {
431 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
432 if (!cpc_ptr)
433 return false;
434 }
435
436 return true;
437}
438EXPORT_SYMBOL_GPL(acpi_cpc_valid);
439
440bool cppc_allow_fast_switch(void)
441{
442 struct cpc_register_resource *desired_reg;
443 struct cpc_desc *cpc_ptr;
444 int cpu;
445
446 for_each_possible_cpu(cpu) {
447 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
448 desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
449 if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
450 !CPC_IN_SYSTEM_IO(desired_reg))
451 return false;
452 }
453
454 return true;
455}
456EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
457
458/**
459 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
460 * @cpu: Find all CPUs that share a domain with cpu.
461 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
462 *
463 * Return: 0 for success or negative value for err.
464 */
465int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
466{
467 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
468 struct acpi_psd_package *match_pdomain;
469 struct acpi_psd_package *pdomain;
470 int count_target, i;
471
472 /*
473 * Now that we have _PSD data from all CPUs, let's setup P-state
474 * domain info.
475 */
476 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
477 if (!cpc_ptr)
478 return -EFAULT;
479
480 pdomain = &(cpc_ptr->domain_info);
481 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
482 if (pdomain->num_processors <= 1)
483 return 0;
484
485 /* Validate the Domain info */
486 count_target = pdomain->num_processors;
487 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
488 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
489 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
490 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
491 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
492 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
493
494 for_each_possible_cpu(i) {
495 if (i == cpu)
496 continue;
497
498 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
499 if (!match_cpc_ptr)
500 goto err_fault;
501
502 match_pdomain = &(match_cpc_ptr->domain_info);
503 if (match_pdomain->domain != pdomain->domain)
504 continue;
505
506 /* Here i and cpu are in the same domain */
507 if (match_pdomain->num_processors != count_target)
508 goto err_fault;
509
510 if (pdomain->coord_type != match_pdomain->coord_type)
511 goto err_fault;
512
513 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
514 }
515
516 return 0;
517
518err_fault:
519 /* Assume no coordination on any error parsing domain info */
520 cpumask_clear(cpu_data->shared_cpu_map);
521 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
522 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
523
524 return -EFAULT;
525}
526EXPORT_SYMBOL_GPL(acpi_get_psd_map);
527
528static int register_pcc_channel(int pcc_ss_idx)
529{
530 struct pcc_mbox_chan *pcc_chan;
531 u64 usecs_lat;
532
533 if (pcc_ss_idx >= 0) {
534 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
535
536 if (IS_ERR(pcc_chan)) {
537 pr_err("Failed to find PCC channel for subspace %d\n",
538 pcc_ss_idx);
539 return -ENODEV;
540 }
541
542 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
543 /*
544 * cppc_ss->latency is just a Nominal value. In reality
545 * the remote processor could be much slower to reply.
546 * So add an arbitrary amount of wait on top of Nominal.
547 */
548 usecs_lat = NUM_RETRIES * pcc_chan->latency;
549 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
550 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
551 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
552 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
553
554 pcc_data[pcc_ss_idx]->pcc_comm_addr =
555 acpi_os_ioremap(pcc_chan->shmem_base_addr,
556 pcc_chan->shmem_size);
557 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
558 pr_err("Failed to ioremap PCC comm region mem for %d\n",
559 pcc_ss_idx);
560 return -ENOMEM;
561 }
562
563 /* Set flag so that we don't come here for each CPU. */
564 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
565 }
566
567 return 0;
568}
569
570/**
571 * cpc_ffh_supported() - check if FFH reading supported
572 *
573 * Check if the architecture has support for functional fixed hardware
574 * read/write capability.
575 *
576 * Return: true for supported, false for not supported
577 */
578bool __weak cpc_ffh_supported(void)
579{
580 return false;
581}
582
583/**
584 * cpc_supported_by_cpu() - check if CPPC is supported by CPU
585 *
586 * Check if the architectural support for CPPC is present even
587 * if the _OSC hasn't prescribed it
588 *
589 * Return: true for supported, false for not supported
590 */
591bool __weak cpc_supported_by_cpu(void)
592{
593 return false;
594}
595
596/**
597 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
598 *
599 * Check and allocate the cppc_pcc_data memory.
600 * In some processor configurations it is possible that same subspace
601 * is shared between multiple CPUs. This is seen especially in CPUs
602 * with hardware multi-threading support.
603 *
604 * Return: 0 for success, errno for failure
605 */
606static int pcc_data_alloc(int pcc_ss_id)
607{
608 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
609 return -EINVAL;
610
611 if (pcc_data[pcc_ss_id]) {
612 pcc_data[pcc_ss_id]->refcount++;
613 } else {
614 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
615 GFP_KERNEL);
616 if (!pcc_data[pcc_ss_id])
617 return -ENOMEM;
618 pcc_data[pcc_ss_id]->refcount++;
619 }
620
621 return 0;
622}
623
624/*
625 * An example CPC table looks like the following.
626 *
627 * Name (_CPC, Package() {
628 * 17, // NumEntries
629 * 1, // Revision
630 * ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)}, // Highest Performance
631 * ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)}, // Nominal Performance
632 * ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)}, // Lowest Nonlinear Performance
633 * ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)}, // Lowest Performance
634 * ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)}, // Guaranteed Performance Register
635 * ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)}, // Desired Performance Register
636 * ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
637 * ...
638 * ...
639 * ...
640 * }
641 * Each Register() encodes how to access that specific register.
642 * e.g. a sample PCC entry has the following encoding:
643 *
644 * Register (
645 * PCC, // AddressSpaceKeyword
646 * 8, // RegisterBitWidth
647 * 8, // RegisterBitOffset
648 * 0x30, // RegisterAddress
649 * 9, // AccessSize (subspace ID)
650 * )
651 */
652
653#ifndef arch_init_invariance_cppc
654static inline void arch_init_invariance_cppc(void) { }
655#endif
656
657/**
658 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
659 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
660 *
661 * Return: 0 for success or negative value for err.
662 */
663int acpi_cppc_processor_probe(struct acpi_processor *pr)
664{
665 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
666 union acpi_object *out_obj, *cpc_obj;
667 struct cpc_desc *cpc_ptr;
668 struct cpc_reg *gas_t;
669 struct device *cpu_dev;
670 acpi_handle handle = pr->handle;
671 unsigned int num_ent, i, cpc_rev;
672 int pcc_subspace_id = -1;
673 acpi_status status;
674 int ret = -ENODATA;
675
676 if (!osc_sb_cppc2_support_acked) {
677 pr_debug("CPPC v2 _OSC not acked\n");
678 if (!cpc_supported_by_cpu())
679 return -ENODEV;
680 }
681
682 /* Parse the ACPI _CPC table for this CPU. */
683 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
684 ACPI_TYPE_PACKAGE);
685 if (ACPI_FAILURE(status)) {
686 ret = -ENODEV;
687 goto out_buf_free;
688 }
689
690 out_obj = (union acpi_object *) output.pointer;
691
692 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
693 if (!cpc_ptr) {
694 ret = -ENOMEM;
695 goto out_buf_free;
696 }
697
698 /* First entry is NumEntries. */
699 cpc_obj = &out_obj->package.elements[0];
700 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
701 num_ent = cpc_obj->integer.value;
702 if (num_ent <= 1) {
703 pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
704 num_ent, pr->id);
705 goto out_free;
706 }
707 } else {
708 pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
709 cpc_obj->type, pr->id);
710 goto out_free;
711 }
712
713 /* Second entry should be revision. */
714 cpc_obj = &out_obj->package.elements[1];
715 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
716 cpc_rev = cpc_obj->integer.value;
717 } else {
718 pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
719 cpc_obj->type, pr->id);
720 goto out_free;
721 }
722
723 if (cpc_rev < CPPC_V2_REV) {
724 pr_debug("Unsupported _CPC Revision (%d) for CPU:%d\n", cpc_rev,
725 pr->id);
726 goto out_free;
727 }
728
729 /*
730 * Disregard _CPC if the number of entries in the return pachage is not
731 * as expected, but support future revisions being proper supersets of
732 * the v3 and only causing more entries to be returned by _CPC.
733 */
734 if ((cpc_rev == CPPC_V2_REV && num_ent != CPPC_V2_NUM_ENT) ||
735 (cpc_rev == CPPC_V3_REV && num_ent != CPPC_V3_NUM_ENT) ||
736 (cpc_rev > CPPC_V3_REV && num_ent <= CPPC_V3_NUM_ENT)) {
737 pr_debug("Unexpected number of _CPC return package entries (%d) for CPU:%d\n",
738 num_ent, pr->id);
739 goto out_free;
740 }
741 if (cpc_rev > CPPC_V3_REV) {
742 num_ent = CPPC_V3_NUM_ENT;
743 cpc_rev = CPPC_V3_REV;
744 }
745
746 cpc_ptr->num_entries = num_ent;
747 cpc_ptr->version = cpc_rev;
748
749 /* Iterate through remaining entries in _CPC */
750 for (i = 2; i < num_ent; i++) {
751 cpc_obj = &out_obj->package.elements[i];
752
753 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
754 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
755 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
756 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
757 gas_t = (struct cpc_reg *)
758 cpc_obj->buffer.pointer;
759
760 /*
761 * The PCC Subspace index is encoded inside
762 * the CPC table entries. The same PCC index
763 * will be used for all the PCC entries,
764 * so extract it only once.
765 */
766 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
767 if (pcc_subspace_id < 0) {
768 pcc_subspace_id = gas_t->access_width;
769 if (pcc_data_alloc(pcc_subspace_id))
770 goto out_free;
771 } else if (pcc_subspace_id != gas_t->access_width) {
772 pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
773 pr->id);
774 goto out_free;
775 }
776 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
777 if (gas_t->address) {
778 void __iomem *addr;
779
780 if (!osc_cpc_flexible_adr_space_confirmed) {
781 pr_debug("Flexible address space capability not supported\n");
782 if (!cpc_supported_by_cpu())
783 goto out_free;
784 }
785
786 addr = ioremap(gas_t->address, gas_t->bit_width/8);
787 if (!addr)
788 goto out_free;
789 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
790 }
791 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
792 if (gas_t->access_width < 1 || gas_t->access_width > 3) {
793 /*
794 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
795 * SystemIO doesn't implement 64-bit
796 * registers.
797 */
798 pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
799 gas_t->access_width);
800 goto out_free;
801 }
802 if (gas_t->address & OVER_16BTS_MASK) {
803 /* SystemIO registers use 16-bit integer addresses */
804 pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
805 gas_t->address);
806 goto out_free;
807 }
808 if (!osc_cpc_flexible_adr_space_confirmed) {
809 pr_debug("Flexible address space capability not supported\n");
810 if (!cpc_supported_by_cpu())
811 goto out_free;
812 }
813 } else {
814 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
815 /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
816 pr_debug("Unsupported register type (%d) in _CPC\n",
817 gas_t->space_id);
818 goto out_free;
819 }
820 }
821
822 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
823 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
824 } else {
825 pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
826 i, pr->id);
827 goto out_free;
828 }
829 }
830 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
831
832 /*
833 * Initialize the remaining cpc_regs as unsupported.
834 * Example: In case FW exposes CPPC v2, the below loop will initialize
835 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
836 */
837 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
838 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
839 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
840 }
841
842
843 /* Store CPU Logical ID */
844 cpc_ptr->cpu_id = pr->id;
845
846 /* Parse PSD data for this CPU */
847 ret = acpi_get_psd(cpc_ptr, handle);
848 if (ret)
849 goto out_free;
850
851 /* Register PCC channel once for all PCC subspace ID. */
852 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
853 ret = register_pcc_channel(pcc_subspace_id);
854 if (ret)
855 goto out_free;
856
857 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
858 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
859 }
860
861 /* Everything looks okay */
862 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
863
864 /* Add per logical CPU nodes for reading its feedback counters. */
865 cpu_dev = get_cpu_device(pr->id);
866 if (!cpu_dev) {
867 ret = -EINVAL;
868 goto out_free;
869 }
870
871 /* Plug PSD data into this CPU's CPC descriptor. */
872 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
873
874 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
875 "acpi_cppc");
876 if (ret) {
877 per_cpu(cpc_desc_ptr, pr->id) = NULL;
878 kobject_put(&cpc_ptr->kobj);
879 goto out_free;
880 }
881
882 arch_init_invariance_cppc();
883
884 kfree(output.pointer);
885 return 0;
886
887out_free:
888 /* Free all the mapped sys mem areas for this CPU */
889 for (i = 2; i < cpc_ptr->num_entries; i++) {
890 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
891
892 if (addr)
893 iounmap(addr);
894 }
895 kfree(cpc_ptr);
896
897out_buf_free:
898 kfree(output.pointer);
899 return ret;
900}
901EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
902
903/**
904 * acpi_cppc_processor_exit - Cleanup CPC structs.
905 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
906 *
907 * Return: Void
908 */
909void acpi_cppc_processor_exit(struct acpi_processor *pr)
910{
911 struct cpc_desc *cpc_ptr;
912 unsigned int i;
913 void __iomem *addr;
914 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
915
916 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
917 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
918 pcc_data[pcc_ss_id]->refcount--;
919 if (!pcc_data[pcc_ss_id]->refcount) {
920 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
921 kfree(pcc_data[pcc_ss_id]);
922 pcc_data[pcc_ss_id] = NULL;
923 }
924 }
925 }
926
927 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
928 if (!cpc_ptr)
929 return;
930
931 /* Free all the mapped sys mem areas for this CPU */
932 for (i = 2; i < cpc_ptr->num_entries; i++) {
933 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
934 if (addr)
935 iounmap(addr);
936 }
937
938 kobject_put(&cpc_ptr->kobj);
939 kfree(cpc_ptr);
940}
941EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
942
943/**
944 * cpc_read_ffh() - Read FFH register
945 * @cpunum: CPU number to read
946 * @reg: cppc register information
947 * @val: place holder for return value
948 *
949 * Read bit_width bits from a specified address and bit_offset
950 *
951 * Return: 0 for success and error code
952 */
953int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
954{
955 return -ENOTSUPP;
956}
957
958/**
959 * cpc_write_ffh() - Write FFH register
960 * @cpunum: CPU number to write
961 * @reg: cppc register information
962 * @val: value to write
963 *
964 * Write value of bit_width bits to a specified address and bit_offset
965 *
966 * Return: 0 for success and error code
967 */
968int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
969{
970 return -ENOTSUPP;
971}
972
973/*
974 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
975 * as fast as possible. We have already mapped the PCC subspace during init, so
976 * we can directly write to it.
977 */
978
979static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
980{
981 void __iomem *vaddr = NULL;
982 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
983 struct cpc_reg *reg = ®_res->cpc_entry.reg;
984
985 if (reg_res->type == ACPI_TYPE_INTEGER) {
986 *val = reg_res->cpc_entry.int_value;
987 return 0;
988 }
989
990 *val = 0;
991
992 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
993 u32 width = 8 << (reg->access_width - 1);
994 u32 val_u32;
995 acpi_status status;
996
997 status = acpi_os_read_port((acpi_io_address)reg->address,
998 &val_u32, width);
999 if (ACPI_FAILURE(status)) {
1000 pr_debug("Error: Failed to read SystemIO port %llx\n",
1001 reg->address);
1002 return -EFAULT;
1003 }
1004
1005 *val = val_u32;
1006 return 0;
1007 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1008 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1009 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1010 vaddr = reg_res->sys_mem_vaddr;
1011 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1012 return cpc_read_ffh(cpu, reg, val);
1013 else
1014 return acpi_os_read_memory((acpi_physical_address)reg->address,
1015 val, reg->bit_width);
1016
1017 switch (reg->bit_width) {
1018 case 8:
1019 *val = readb_relaxed(vaddr);
1020 break;
1021 case 16:
1022 *val = readw_relaxed(vaddr);
1023 break;
1024 case 32:
1025 *val = readl_relaxed(vaddr);
1026 break;
1027 case 64:
1028 *val = readq_relaxed(vaddr);
1029 break;
1030 default:
1031 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1032 reg->bit_width, pcc_ss_id);
1033 return -EFAULT;
1034 }
1035
1036 return 0;
1037}
1038
1039static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1040{
1041 int ret_val = 0;
1042 void __iomem *vaddr = NULL;
1043 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1044 struct cpc_reg *reg = ®_res->cpc_entry.reg;
1045
1046 if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1047 u32 width = 8 << (reg->access_width - 1);
1048 acpi_status status;
1049
1050 status = acpi_os_write_port((acpi_io_address)reg->address,
1051 (u32)val, width);
1052 if (ACPI_FAILURE(status)) {
1053 pr_debug("Error: Failed to write SystemIO port %llx\n",
1054 reg->address);
1055 return -EFAULT;
1056 }
1057
1058 return 0;
1059 } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1060 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1061 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1062 vaddr = reg_res->sys_mem_vaddr;
1063 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1064 return cpc_write_ffh(cpu, reg, val);
1065 else
1066 return acpi_os_write_memory((acpi_physical_address)reg->address,
1067 val, reg->bit_width);
1068
1069 switch (reg->bit_width) {
1070 case 8:
1071 writeb_relaxed(val, vaddr);
1072 break;
1073 case 16:
1074 writew_relaxed(val, vaddr);
1075 break;
1076 case 32:
1077 writel_relaxed(val, vaddr);
1078 break;
1079 case 64:
1080 writeq_relaxed(val, vaddr);
1081 break;
1082 default:
1083 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1084 reg->bit_width, pcc_ss_id);
1085 ret_val = -EFAULT;
1086 break;
1087 }
1088
1089 return ret_val;
1090}
1091
1092static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1093{
1094 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1095 struct cpc_register_resource *reg;
1096
1097 if (!cpc_desc) {
1098 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1099 return -ENODEV;
1100 }
1101
1102 reg = &cpc_desc->cpc_regs[reg_idx];
1103
1104 if (CPC_IN_PCC(reg)) {
1105 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1106 struct cppc_pcc_data *pcc_ss_data = NULL;
1107 int ret = 0;
1108
1109 if (pcc_ss_id < 0)
1110 return -EIO;
1111
1112 pcc_ss_data = pcc_data[pcc_ss_id];
1113
1114 down_write(&pcc_ss_data->pcc_lock);
1115
1116 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1117 cpc_read(cpunum, reg, perf);
1118 else
1119 ret = -EIO;
1120
1121 up_write(&pcc_ss_data->pcc_lock);
1122
1123 return ret;
1124 }
1125
1126 cpc_read(cpunum, reg, perf);
1127
1128 return 0;
1129}
1130
1131/**
1132 * cppc_get_desired_perf - Get the desired performance register value.
1133 * @cpunum: CPU from which to get desired performance.
1134 * @desired_perf: Return address.
1135 *
1136 * Return: 0 for success, -EIO otherwise.
1137 */
1138int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1139{
1140 return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1141}
1142EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1143
1144/**
1145 * cppc_get_nominal_perf - Get the nominal performance register value.
1146 * @cpunum: CPU from which to get nominal performance.
1147 * @nominal_perf: Return address.
1148 *
1149 * Return: 0 for success, -EIO otherwise.
1150 */
1151int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1152{
1153 return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1154}
1155
1156/**
1157 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1158 * @cpunum: CPU from which to get capabilities info.
1159 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1160 *
1161 * Return: 0 for success with perf_caps populated else -ERRNO.
1162 */
1163int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1164{
1165 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1166 struct cpc_register_resource *highest_reg, *lowest_reg,
1167 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1168 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1169 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1170 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1171 struct cppc_pcc_data *pcc_ss_data = NULL;
1172 int ret = 0, regs_in_pcc = 0;
1173
1174 if (!cpc_desc) {
1175 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1176 return -ENODEV;
1177 }
1178
1179 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1180 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1181 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1182 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1183 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1184 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1185 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1186
1187 /* Are any of the regs PCC ?*/
1188 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1189 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1190 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1191 if (pcc_ss_id < 0) {
1192 pr_debug("Invalid pcc_ss_id\n");
1193 return -ENODEV;
1194 }
1195 pcc_ss_data = pcc_data[pcc_ss_id];
1196 regs_in_pcc = 1;
1197 down_write(&pcc_ss_data->pcc_lock);
1198 /* Ring doorbell once to update PCC subspace */
1199 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1200 ret = -EIO;
1201 goto out_err;
1202 }
1203 }
1204
1205 cpc_read(cpunum, highest_reg, &high);
1206 perf_caps->highest_perf = high;
1207
1208 cpc_read(cpunum, lowest_reg, &low);
1209 perf_caps->lowest_perf = low;
1210
1211 cpc_read(cpunum, nominal_reg, &nom);
1212 perf_caps->nominal_perf = nom;
1213
1214 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1215 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1216 perf_caps->guaranteed_perf = 0;
1217 } else {
1218 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1219 perf_caps->guaranteed_perf = guaranteed;
1220 }
1221
1222 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1223 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1224
1225 if (!high || !low || !nom || !min_nonlinear)
1226 ret = -EFAULT;
1227
1228 /* Read optional lowest and nominal frequencies if present */
1229 if (CPC_SUPPORTED(low_freq_reg))
1230 cpc_read(cpunum, low_freq_reg, &low_f);
1231
1232 if (CPC_SUPPORTED(nom_freq_reg))
1233 cpc_read(cpunum, nom_freq_reg, &nom_f);
1234
1235 perf_caps->lowest_freq = low_f;
1236 perf_caps->nominal_freq = nom_f;
1237
1238
1239out_err:
1240 if (regs_in_pcc)
1241 up_write(&pcc_ss_data->pcc_lock);
1242 return ret;
1243}
1244EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1245
1246/**
1247 * cppc_perf_ctrs_in_pcc - Check if any perf counters are in a PCC region.
1248 *
1249 * CPPC has flexibility about how CPU performance counters are accessed.
1250 * One of the choices is PCC regions, which can have a high access latency. This
1251 * routine allows callers of cppc_get_perf_ctrs() to know this ahead of time.
1252 *
1253 * Return: true if any of the counters are in PCC regions, false otherwise
1254 */
1255bool cppc_perf_ctrs_in_pcc(void)
1256{
1257 int cpu;
1258
1259 for_each_present_cpu(cpu) {
1260 struct cpc_register_resource *ref_perf_reg;
1261 struct cpc_desc *cpc_desc;
1262
1263 cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1264
1265 if (CPC_IN_PCC(&cpc_desc->cpc_regs[DELIVERED_CTR]) ||
1266 CPC_IN_PCC(&cpc_desc->cpc_regs[REFERENCE_CTR]) ||
1267 CPC_IN_PCC(&cpc_desc->cpc_regs[CTR_WRAP_TIME]))
1268 return true;
1269
1270
1271 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1272
1273 /*
1274 * If reference perf register is not supported then we should
1275 * use the nominal perf value
1276 */
1277 if (!CPC_SUPPORTED(ref_perf_reg))
1278 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1279
1280 if (CPC_IN_PCC(ref_perf_reg))
1281 return true;
1282 }
1283
1284 return false;
1285}
1286EXPORT_SYMBOL_GPL(cppc_perf_ctrs_in_pcc);
1287
1288/**
1289 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1290 * @cpunum: CPU from which to read counters.
1291 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1292 *
1293 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1294 */
1295int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1296{
1297 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1298 struct cpc_register_resource *delivered_reg, *reference_reg,
1299 *ref_perf_reg, *ctr_wrap_reg;
1300 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1301 struct cppc_pcc_data *pcc_ss_data = NULL;
1302 u64 delivered, reference, ref_perf, ctr_wrap_time;
1303 int ret = 0, regs_in_pcc = 0;
1304
1305 if (!cpc_desc) {
1306 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1307 return -ENODEV;
1308 }
1309
1310 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1311 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1312 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1313 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1314
1315 /*
1316 * If reference perf register is not supported then we should
1317 * use the nominal perf value
1318 */
1319 if (!CPC_SUPPORTED(ref_perf_reg))
1320 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1321
1322 /* Are any of the regs PCC ?*/
1323 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1324 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1325 if (pcc_ss_id < 0) {
1326 pr_debug("Invalid pcc_ss_id\n");
1327 return -ENODEV;
1328 }
1329 pcc_ss_data = pcc_data[pcc_ss_id];
1330 down_write(&pcc_ss_data->pcc_lock);
1331 regs_in_pcc = 1;
1332 /* Ring doorbell once to update PCC subspace */
1333 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1334 ret = -EIO;
1335 goto out_err;
1336 }
1337 }
1338
1339 cpc_read(cpunum, delivered_reg, &delivered);
1340 cpc_read(cpunum, reference_reg, &reference);
1341 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1342
1343 /*
1344 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1345 * performance counters are assumed to never wrap during the lifetime of
1346 * platform
1347 */
1348 ctr_wrap_time = (u64)(~((u64)0));
1349 if (CPC_SUPPORTED(ctr_wrap_reg))
1350 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1351
1352 if (!delivered || !reference || !ref_perf) {
1353 ret = -EFAULT;
1354 goto out_err;
1355 }
1356
1357 perf_fb_ctrs->delivered = delivered;
1358 perf_fb_ctrs->reference = reference;
1359 perf_fb_ctrs->reference_perf = ref_perf;
1360 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1361out_err:
1362 if (regs_in_pcc)
1363 up_write(&pcc_ss_data->pcc_lock);
1364 return ret;
1365}
1366EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1367
1368/**
1369 * cppc_set_enable - Set to enable CPPC on the processor by writing the
1370 * Continuous Performance Control package EnableRegister field.
1371 * @cpu: CPU for which to enable CPPC register.
1372 * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1373 *
1374 * Return: 0 for success, -ERRNO or -EIO otherwise.
1375 */
1376int cppc_set_enable(int cpu, bool enable)
1377{
1378 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1379 struct cpc_register_resource *enable_reg;
1380 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1381 struct cppc_pcc_data *pcc_ss_data = NULL;
1382 int ret = -EINVAL;
1383
1384 if (!cpc_desc) {
1385 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1386 return -EINVAL;
1387 }
1388
1389 enable_reg = &cpc_desc->cpc_regs[ENABLE];
1390
1391 if (CPC_IN_PCC(enable_reg)) {
1392
1393 if (pcc_ss_id < 0)
1394 return -EIO;
1395
1396 ret = cpc_write(cpu, enable_reg, enable);
1397 if (ret)
1398 return ret;
1399
1400 pcc_ss_data = pcc_data[pcc_ss_id];
1401
1402 down_write(&pcc_ss_data->pcc_lock);
1403 /* after writing CPC, transfer the ownership of PCC to platfrom */
1404 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1405 up_write(&pcc_ss_data->pcc_lock);
1406 return ret;
1407 }
1408
1409 return cpc_write(cpu, enable_reg, enable);
1410}
1411EXPORT_SYMBOL_GPL(cppc_set_enable);
1412
1413/**
1414 * cppc_set_perf - Set a CPU's performance controls.
1415 * @cpu: CPU for which to set performance controls.
1416 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1417 *
1418 * Return: 0 for success, -ERRNO otherwise.
1419 */
1420int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1421{
1422 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1423 struct cpc_register_resource *desired_reg;
1424 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1425 struct cppc_pcc_data *pcc_ss_data = NULL;
1426 int ret = 0;
1427
1428 if (!cpc_desc) {
1429 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1430 return -ENODEV;
1431 }
1432
1433 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1434
1435 /*
1436 * This is Phase-I where we want to write to CPC registers
1437 * -> We want all CPUs to be able to execute this phase in parallel
1438 *
1439 * Since read_lock can be acquired by multiple CPUs simultaneously we
1440 * achieve that goal here
1441 */
1442 if (CPC_IN_PCC(desired_reg)) {
1443 if (pcc_ss_id < 0) {
1444 pr_debug("Invalid pcc_ss_id\n");
1445 return -ENODEV;
1446 }
1447 pcc_ss_data = pcc_data[pcc_ss_id];
1448 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1449 if (pcc_ss_data->platform_owns_pcc) {
1450 ret = check_pcc_chan(pcc_ss_id, false);
1451 if (ret) {
1452 up_read(&pcc_ss_data->pcc_lock);
1453 return ret;
1454 }
1455 }
1456 /*
1457 * Update the pending_write to make sure a PCC CMD_READ will not
1458 * arrive and steal the channel during the switch to write lock
1459 */
1460 pcc_ss_data->pending_pcc_write_cmd = true;
1461 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1462 cpc_desc->write_cmd_status = 0;
1463 }
1464
1465 /*
1466 * Skip writing MIN/MAX until Linux knows how to come up with
1467 * useful values.
1468 */
1469 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1470
1471 if (CPC_IN_PCC(desired_reg))
1472 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1473 /*
1474 * This is Phase-II where we transfer the ownership of PCC to Platform
1475 *
1476 * Short Summary: Basically if we think of a group of cppc_set_perf
1477 * requests that happened in short overlapping interval. The last CPU to
1478 * come out of Phase-I will enter Phase-II and ring the doorbell.
1479 *
1480 * We have the following requirements for Phase-II:
1481 * 1. We want to execute Phase-II only when there are no CPUs
1482 * currently executing in Phase-I
1483 * 2. Once we start Phase-II we want to avoid all other CPUs from
1484 * entering Phase-I.
1485 * 3. We want only one CPU among all those who went through Phase-I
1486 * to run phase-II
1487 *
1488 * If write_trylock fails to get the lock and doesn't transfer the
1489 * PCC ownership to the platform, then one of the following will be TRUE
1490 * 1. There is at-least one CPU in Phase-I which will later execute
1491 * write_trylock, so the CPUs in Phase-I will be responsible for
1492 * executing the Phase-II.
1493 * 2. Some other CPU has beaten this CPU to successfully execute the
1494 * write_trylock and has already acquired the write_lock. We know for a
1495 * fact it (other CPU acquiring the write_lock) couldn't have happened
1496 * before this CPU's Phase-I as we held the read_lock.
1497 * 3. Some other CPU executing pcc CMD_READ has stolen the
1498 * down_write, in which case, send_pcc_cmd will check for pending
1499 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1500 * So this CPU can be certain that its request will be delivered
1501 * So in all cases, this CPU knows that its request will be delivered
1502 * by another CPU and can return
1503 *
1504 * After getting the down_write we still need to check for
1505 * pending_pcc_write_cmd to take care of the following scenario
1506 * The thread running this code could be scheduled out between
1507 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1508 * could have delivered the request to Platform by triggering the
1509 * doorbell and transferred the ownership of PCC to platform. So this
1510 * avoids triggering an unnecessary doorbell and more importantly before
1511 * triggering the doorbell it makes sure that the PCC channel ownership
1512 * is still with OSPM.
1513 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1514 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1515 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1516 * case during a CMD_READ and if there are pending writes it delivers
1517 * the write command before servicing the read command
1518 */
1519 if (CPC_IN_PCC(desired_reg)) {
1520 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1521 /* Update only if there are pending write commands */
1522 if (pcc_ss_data->pending_pcc_write_cmd)
1523 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1524 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1525 } else
1526 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1527 wait_event(pcc_ss_data->pcc_write_wait_q,
1528 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1529
1530 /* send_pcc_cmd updates the status in case of failure */
1531 ret = cpc_desc->write_cmd_status;
1532 }
1533 return ret;
1534}
1535EXPORT_SYMBOL_GPL(cppc_set_perf);
1536
1537/**
1538 * cppc_get_transition_latency - returns frequency transition latency in ns
1539 *
1540 * ACPI CPPC does not explicitly specify how a platform can specify the
1541 * transition latency for performance change requests. The closest we have
1542 * is the timing information from the PCCT tables which provides the info
1543 * on the number and frequency of PCC commands the platform can handle.
1544 *
1545 * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
1546 * then assume there is no latency.
1547 */
1548unsigned int cppc_get_transition_latency(int cpu_num)
1549{
1550 /*
1551 * Expected transition latency is based on the PCCT timing values
1552 * Below are definition from ACPI spec:
1553 * pcc_nominal- Expected latency to process a command, in microseconds
1554 * pcc_mpar - The maximum number of periodic requests that the subspace
1555 * channel can support, reported in commands per minute. 0
1556 * indicates no limitation.
1557 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1558 * completion of a command before issuing the next command,
1559 * in microseconds.
1560 */
1561 unsigned int latency_ns = 0;
1562 struct cpc_desc *cpc_desc;
1563 struct cpc_register_resource *desired_reg;
1564 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1565 struct cppc_pcc_data *pcc_ss_data;
1566
1567 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1568 if (!cpc_desc)
1569 return CPUFREQ_ETERNAL;
1570
1571 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1572 if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
1573 return 0;
1574 else if (!CPC_IN_PCC(desired_reg))
1575 return CPUFREQ_ETERNAL;
1576
1577 if (pcc_ss_id < 0)
1578 return CPUFREQ_ETERNAL;
1579
1580 pcc_ss_data = pcc_data[pcc_ss_id];
1581 if (pcc_ss_data->pcc_mpar)
1582 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1583
1584 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1585 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1586
1587 return latency_ns;
1588}
1589EXPORT_SYMBOL_GPL(cppc_get_transition_latency);