Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018 Facebook */
3
4#include <uapi/linux/btf.h>
5#include <uapi/linux/bpf.h>
6#include <uapi/linux/bpf_perf_event.h>
7#include <uapi/linux/types.h>
8#include <linux/seq_file.h>
9#include <linux/compiler.h>
10#include <linux/ctype.h>
11#include <linux/errno.h>
12#include <linux/slab.h>
13#include <linux/anon_inodes.h>
14#include <linux/file.h>
15#include <linux/uaccess.h>
16#include <linux/kernel.h>
17#include <linux/idr.h>
18#include <linux/sort.h>
19#include <linux/bpf_verifier.h>
20#include <linux/btf.h>
21#include <linux/btf_ids.h>
22#include <linux/bpf_lsm.h>
23#include <linux/skmsg.h>
24#include <linux/perf_event.h>
25#include <linux/bsearch.h>
26#include <linux/kobject.h>
27#include <linux/sysfs.h>
28
29#include <net/netfilter/nf_bpf_link.h>
30
31#include <net/sock.h>
32#include <net/xdp.h>
33#include "../tools/lib/bpf/relo_core.h"
34
35/* BTF (BPF Type Format) is the meta data format which describes
36 * the data types of BPF program/map. Hence, it basically focus
37 * on the C programming language which the modern BPF is primary
38 * using.
39 *
40 * ELF Section:
41 * ~~~~~~~~~~~
42 * The BTF data is stored under the ".BTF" ELF section
43 *
44 * struct btf_type:
45 * ~~~~~~~~~~~~~~~
46 * Each 'struct btf_type' object describes a C data type.
47 * Depending on the type it is describing, a 'struct btf_type'
48 * object may be followed by more data. F.e.
49 * To describe an array, 'struct btf_type' is followed by
50 * 'struct btf_array'.
51 *
52 * 'struct btf_type' and any extra data following it are
53 * 4 bytes aligned.
54 *
55 * Type section:
56 * ~~~~~~~~~~~~~
57 * The BTF type section contains a list of 'struct btf_type' objects.
58 * Each one describes a C type. Recall from the above section
59 * that a 'struct btf_type' object could be immediately followed by extra
60 * data in order to describe some particular C types.
61 *
62 * type_id:
63 * ~~~~~~~
64 * Each btf_type object is identified by a type_id. The type_id
65 * is implicitly implied by the location of the btf_type object in
66 * the BTF type section. The first one has type_id 1. The second
67 * one has type_id 2...etc. Hence, an earlier btf_type has
68 * a smaller type_id.
69 *
70 * A btf_type object may refer to another btf_type object by using
71 * type_id (i.e. the "type" in the "struct btf_type").
72 *
73 * NOTE that we cannot assume any reference-order.
74 * A btf_type object can refer to an earlier btf_type object
75 * but it can also refer to a later btf_type object.
76 *
77 * For example, to describe "const void *". A btf_type
78 * object describing "const" may refer to another btf_type
79 * object describing "void *". This type-reference is done
80 * by specifying type_id:
81 *
82 * [1] CONST (anon) type_id=2
83 * [2] PTR (anon) type_id=0
84 *
85 * The above is the btf_verifier debug log:
86 * - Each line started with "[?]" is a btf_type object
87 * - [?] is the type_id of the btf_type object.
88 * - CONST/PTR is the BTF_KIND_XXX
89 * - "(anon)" is the name of the type. It just
90 * happens that CONST and PTR has no name.
91 * - type_id=XXX is the 'u32 type' in btf_type
92 *
93 * NOTE: "void" has type_id 0
94 *
95 * String section:
96 * ~~~~~~~~~~~~~~
97 * The BTF string section contains the names used by the type section.
98 * Each string is referred by an "offset" from the beginning of the
99 * string section.
100 *
101 * Each string is '\0' terminated.
102 *
103 * The first character in the string section must be '\0'
104 * which is used to mean 'anonymous'. Some btf_type may not
105 * have a name.
106 */
107
108/* BTF verification:
109 *
110 * To verify BTF data, two passes are needed.
111 *
112 * Pass #1
113 * ~~~~~~~
114 * The first pass is to collect all btf_type objects to
115 * an array: "btf->types".
116 *
117 * Depending on the C type that a btf_type is describing,
118 * a btf_type may be followed by extra data. We don't know
119 * how many btf_type is there, and more importantly we don't
120 * know where each btf_type is located in the type section.
121 *
122 * Without knowing the location of each type_id, most verifications
123 * cannot be done. e.g. an earlier btf_type may refer to a later
124 * btf_type (recall the "const void *" above), so we cannot
125 * check this type-reference in the first pass.
126 *
127 * In the first pass, it still does some verifications (e.g.
128 * checking the name is a valid offset to the string section).
129 *
130 * Pass #2
131 * ~~~~~~~
132 * The main focus is to resolve a btf_type that is referring
133 * to another type.
134 *
135 * We have to ensure the referring type:
136 * 1) does exist in the BTF (i.e. in btf->types[])
137 * 2) does not cause a loop:
138 * struct A {
139 * struct B b;
140 * };
141 *
142 * struct B {
143 * struct A a;
144 * };
145 *
146 * btf_type_needs_resolve() decides if a btf_type needs
147 * to be resolved.
148 *
149 * The needs_resolve type implements the "resolve()" ops which
150 * essentially does a DFS and detects backedge.
151 *
152 * During resolve (or DFS), different C types have different
153 * "RESOLVED" conditions.
154 *
155 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
156 * members because a member is always referring to another
157 * type. A struct's member can be treated as "RESOLVED" if
158 * it is referring to a BTF_KIND_PTR. Otherwise, the
159 * following valid C struct would be rejected:
160 *
161 * struct A {
162 * int m;
163 * struct A *a;
164 * };
165 *
166 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
167 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
168 * detect a pointer loop, e.g.:
169 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
170 * ^ |
171 * +-----------------------------------------+
172 *
173 */
174
175#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
176#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
177#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
178#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
179#define BITS_ROUNDUP_BYTES(bits) \
180 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
181
182#define BTF_INFO_MASK 0x9f00ffff
183#define BTF_INT_MASK 0x0fffffff
184#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
185#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
186
187/* 16MB for 64k structs and each has 16 members and
188 * a few MB spaces for the string section.
189 * The hard limit is S32_MAX.
190 */
191#define BTF_MAX_SIZE (16 * 1024 * 1024)
192
193#define for_each_member_from(i, from, struct_type, member) \
194 for (i = from, member = btf_type_member(struct_type) + from; \
195 i < btf_type_vlen(struct_type); \
196 i++, member++)
197
198#define for_each_vsi_from(i, from, struct_type, member) \
199 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
200 i < btf_type_vlen(struct_type); \
201 i++, member++)
202
203DEFINE_IDR(btf_idr);
204DEFINE_SPINLOCK(btf_idr_lock);
205
206enum btf_kfunc_hook {
207 BTF_KFUNC_HOOK_COMMON,
208 BTF_KFUNC_HOOK_XDP,
209 BTF_KFUNC_HOOK_TC,
210 BTF_KFUNC_HOOK_STRUCT_OPS,
211 BTF_KFUNC_HOOK_TRACING,
212 BTF_KFUNC_HOOK_SYSCALL,
213 BTF_KFUNC_HOOK_FMODRET,
214 BTF_KFUNC_HOOK_CGROUP_SKB,
215 BTF_KFUNC_HOOK_SCHED_ACT,
216 BTF_KFUNC_HOOK_SK_SKB,
217 BTF_KFUNC_HOOK_SOCKET_FILTER,
218 BTF_KFUNC_HOOK_LWT,
219 BTF_KFUNC_HOOK_NETFILTER,
220 BTF_KFUNC_HOOK_MAX,
221};
222
223enum {
224 BTF_KFUNC_SET_MAX_CNT = 256,
225 BTF_DTOR_KFUNC_MAX_CNT = 256,
226 BTF_KFUNC_FILTER_MAX_CNT = 16,
227};
228
229struct btf_kfunc_hook_filter {
230 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
231 u32 nr_filters;
232};
233
234struct btf_kfunc_set_tab {
235 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
236 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
237};
238
239struct btf_id_dtor_kfunc_tab {
240 u32 cnt;
241 struct btf_id_dtor_kfunc dtors[];
242};
243
244struct btf {
245 void *data;
246 struct btf_type **types;
247 u32 *resolved_ids;
248 u32 *resolved_sizes;
249 const char *strings;
250 void *nohdr_data;
251 struct btf_header hdr;
252 u32 nr_types; /* includes VOID for base BTF */
253 u32 types_size;
254 u32 data_size;
255 refcount_t refcnt;
256 u32 id;
257 struct rcu_head rcu;
258 struct btf_kfunc_set_tab *kfunc_set_tab;
259 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
260 struct btf_struct_metas *struct_meta_tab;
261
262 /* split BTF support */
263 struct btf *base_btf;
264 u32 start_id; /* first type ID in this BTF (0 for base BTF) */
265 u32 start_str_off; /* first string offset (0 for base BTF) */
266 char name[MODULE_NAME_LEN];
267 bool kernel_btf;
268};
269
270enum verifier_phase {
271 CHECK_META,
272 CHECK_TYPE,
273};
274
275struct resolve_vertex {
276 const struct btf_type *t;
277 u32 type_id;
278 u16 next_member;
279};
280
281enum visit_state {
282 NOT_VISITED,
283 VISITED,
284 RESOLVED,
285};
286
287enum resolve_mode {
288 RESOLVE_TBD, /* To Be Determined */
289 RESOLVE_PTR, /* Resolving for Pointer */
290 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
291 * or array
292 */
293};
294
295#define MAX_RESOLVE_DEPTH 32
296
297struct btf_sec_info {
298 u32 off;
299 u32 len;
300};
301
302struct btf_verifier_env {
303 struct btf *btf;
304 u8 *visit_states;
305 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
306 struct bpf_verifier_log log;
307 u32 log_type_id;
308 u32 top_stack;
309 enum verifier_phase phase;
310 enum resolve_mode resolve_mode;
311};
312
313static const char * const btf_kind_str[NR_BTF_KINDS] = {
314 [BTF_KIND_UNKN] = "UNKNOWN",
315 [BTF_KIND_INT] = "INT",
316 [BTF_KIND_PTR] = "PTR",
317 [BTF_KIND_ARRAY] = "ARRAY",
318 [BTF_KIND_STRUCT] = "STRUCT",
319 [BTF_KIND_UNION] = "UNION",
320 [BTF_KIND_ENUM] = "ENUM",
321 [BTF_KIND_FWD] = "FWD",
322 [BTF_KIND_TYPEDEF] = "TYPEDEF",
323 [BTF_KIND_VOLATILE] = "VOLATILE",
324 [BTF_KIND_CONST] = "CONST",
325 [BTF_KIND_RESTRICT] = "RESTRICT",
326 [BTF_KIND_FUNC] = "FUNC",
327 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
328 [BTF_KIND_VAR] = "VAR",
329 [BTF_KIND_DATASEC] = "DATASEC",
330 [BTF_KIND_FLOAT] = "FLOAT",
331 [BTF_KIND_DECL_TAG] = "DECL_TAG",
332 [BTF_KIND_TYPE_TAG] = "TYPE_TAG",
333 [BTF_KIND_ENUM64] = "ENUM64",
334};
335
336const char *btf_type_str(const struct btf_type *t)
337{
338 return btf_kind_str[BTF_INFO_KIND(t->info)];
339}
340
341/* Chunk size we use in safe copy of data to be shown. */
342#define BTF_SHOW_OBJ_SAFE_SIZE 32
343
344/*
345 * This is the maximum size of a base type value (equivalent to a
346 * 128-bit int); if we are at the end of our safe buffer and have
347 * less than 16 bytes space we can't be assured of being able
348 * to copy the next type safely, so in such cases we will initiate
349 * a new copy.
350 */
351#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
352
353/* Type name size */
354#define BTF_SHOW_NAME_SIZE 80
355
356/*
357 * The suffix of a type that indicates it cannot alias another type when
358 * comparing BTF IDs for kfunc invocations.
359 */
360#define NOCAST_ALIAS_SUFFIX "___init"
361
362/*
363 * Common data to all BTF show operations. Private show functions can add
364 * their own data to a structure containing a struct btf_show and consult it
365 * in the show callback. See btf_type_show() below.
366 *
367 * One challenge with showing nested data is we want to skip 0-valued
368 * data, but in order to figure out whether a nested object is all zeros
369 * we need to walk through it. As a result, we need to make two passes
370 * when handling structs, unions and arrays; the first path simply looks
371 * for nonzero data, while the second actually does the display. The first
372 * pass is signalled by show->state.depth_check being set, and if we
373 * encounter a non-zero value we set show->state.depth_to_show to
374 * the depth at which we encountered it. When we have completed the
375 * first pass, we will know if anything needs to be displayed if
376 * depth_to_show > depth. See btf_[struct,array]_show() for the
377 * implementation of this.
378 *
379 * Another problem is we want to ensure the data for display is safe to
380 * access. To support this, the anonymous "struct {} obj" tracks the data
381 * object and our safe copy of it. We copy portions of the data needed
382 * to the object "copy" buffer, but because its size is limited to
383 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
384 * traverse larger objects for display.
385 *
386 * The various data type show functions all start with a call to
387 * btf_show_start_type() which returns a pointer to the safe copy
388 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
389 * raw data itself). btf_show_obj_safe() is responsible for
390 * using copy_from_kernel_nofault() to update the safe data if necessary
391 * as we traverse the object's data. skbuff-like semantics are
392 * used:
393 *
394 * - obj.head points to the start of the toplevel object for display
395 * - obj.size is the size of the toplevel object
396 * - obj.data points to the current point in the original data at
397 * which our safe data starts. obj.data will advance as we copy
398 * portions of the data.
399 *
400 * In most cases a single copy will suffice, but larger data structures
401 * such as "struct task_struct" will require many copies. The logic in
402 * btf_show_obj_safe() handles the logic that determines if a new
403 * copy_from_kernel_nofault() is needed.
404 */
405struct btf_show {
406 u64 flags;
407 void *target; /* target of show operation (seq file, buffer) */
408 void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
409 const struct btf *btf;
410 /* below are used during iteration */
411 struct {
412 u8 depth;
413 u8 depth_to_show;
414 u8 depth_check;
415 u8 array_member:1,
416 array_terminated:1;
417 u16 array_encoding;
418 u32 type_id;
419 int status; /* non-zero for error */
420 const struct btf_type *type;
421 const struct btf_member *member;
422 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
423 } state;
424 struct {
425 u32 size;
426 void *head;
427 void *data;
428 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
429 } obj;
430};
431
432struct btf_kind_operations {
433 s32 (*check_meta)(struct btf_verifier_env *env,
434 const struct btf_type *t,
435 u32 meta_left);
436 int (*resolve)(struct btf_verifier_env *env,
437 const struct resolve_vertex *v);
438 int (*check_member)(struct btf_verifier_env *env,
439 const struct btf_type *struct_type,
440 const struct btf_member *member,
441 const struct btf_type *member_type);
442 int (*check_kflag_member)(struct btf_verifier_env *env,
443 const struct btf_type *struct_type,
444 const struct btf_member *member,
445 const struct btf_type *member_type);
446 void (*log_details)(struct btf_verifier_env *env,
447 const struct btf_type *t);
448 void (*show)(const struct btf *btf, const struct btf_type *t,
449 u32 type_id, void *data, u8 bits_offsets,
450 struct btf_show *show);
451};
452
453static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
454static struct btf_type btf_void;
455
456static int btf_resolve(struct btf_verifier_env *env,
457 const struct btf_type *t, u32 type_id);
458
459static int btf_func_check(struct btf_verifier_env *env,
460 const struct btf_type *t);
461
462static bool btf_type_is_modifier(const struct btf_type *t)
463{
464 /* Some of them is not strictly a C modifier
465 * but they are grouped into the same bucket
466 * for BTF concern:
467 * A type (t) that refers to another
468 * type through t->type AND its size cannot
469 * be determined without following the t->type.
470 *
471 * ptr does not fall into this bucket
472 * because its size is always sizeof(void *).
473 */
474 switch (BTF_INFO_KIND(t->info)) {
475 case BTF_KIND_TYPEDEF:
476 case BTF_KIND_VOLATILE:
477 case BTF_KIND_CONST:
478 case BTF_KIND_RESTRICT:
479 case BTF_KIND_TYPE_TAG:
480 return true;
481 }
482
483 return false;
484}
485
486bool btf_type_is_void(const struct btf_type *t)
487{
488 return t == &btf_void;
489}
490
491static bool btf_type_is_fwd(const struct btf_type *t)
492{
493 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
494}
495
496static bool btf_type_is_datasec(const struct btf_type *t)
497{
498 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
499}
500
501static bool btf_type_is_decl_tag(const struct btf_type *t)
502{
503 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
504}
505
506static bool btf_type_nosize(const struct btf_type *t)
507{
508 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
509 btf_type_is_func(t) || btf_type_is_func_proto(t) ||
510 btf_type_is_decl_tag(t);
511}
512
513static bool btf_type_nosize_or_null(const struct btf_type *t)
514{
515 return !t || btf_type_nosize(t);
516}
517
518static bool btf_type_is_decl_tag_target(const struct btf_type *t)
519{
520 return btf_type_is_func(t) || btf_type_is_struct(t) ||
521 btf_type_is_var(t) || btf_type_is_typedef(t);
522}
523
524u32 btf_nr_types(const struct btf *btf)
525{
526 u32 total = 0;
527
528 while (btf) {
529 total += btf->nr_types;
530 btf = btf->base_btf;
531 }
532
533 return total;
534}
535
536s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
537{
538 const struct btf_type *t;
539 const char *tname;
540 u32 i, total;
541
542 total = btf_nr_types(btf);
543 for (i = 1; i < total; i++) {
544 t = btf_type_by_id(btf, i);
545 if (BTF_INFO_KIND(t->info) != kind)
546 continue;
547
548 tname = btf_name_by_offset(btf, t->name_off);
549 if (!strcmp(tname, name))
550 return i;
551 }
552
553 return -ENOENT;
554}
555
556s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
557{
558 struct btf *btf;
559 s32 ret;
560 int id;
561
562 btf = bpf_get_btf_vmlinux();
563 if (IS_ERR(btf))
564 return PTR_ERR(btf);
565 if (!btf)
566 return -EINVAL;
567
568 ret = btf_find_by_name_kind(btf, name, kind);
569 /* ret is never zero, since btf_find_by_name_kind returns
570 * positive btf_id or negative error.
571 */
572 if (ret > 0) {
573 btf_get(btf);
574 *btf_p = btf;
575 return ret;
576 }
577
578 /* If name is not found in vmlinux's BTF then search in module's BTFs */
579 spin_lock_bh(&btf_idr_lock);
580 idr_for_each_entry(&btf_idr, btf, id) {
581 if (!btf_is_module(btf))
582 continue;
583 /* linear search could be slow hence unlock/lock
584 * the IDR to avoiding holding it for too long
585 */
586 btf_get(btf);
587 spin_unlock_bh(&btf_idr_lock);
588 ret = btf_find_by_name_kind(btf, name, kind);
589 if (ret > 0) {
590 *btf_p = btf;
591 return ret;
592 }
593 btf_put(btf);
594 spin_lock_bh(&btf_idr_lock);
595 }
596 spin_unlock_bh(&btf_idr_lock);
597 return ret;
598}
599
600const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
601 u32 id, u32 *res_id)
602{
603 const struct btf_type *t = btf_type_by_id(btf, id);
604
605 while (btf_type_is_modifier(t)) {
606 id = t->type;
607 t = btf_type_by_id(btf, t->type);
608 }
609
610 if (res_id)
611 *res_id = id;
612
613 return t;
614}
615
616const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
617 u32 id, u32 *res_id)
618{
619 const struct btf_type *t;
620
621 t = btf_type_skip_modifiers(btf, id, NULL);
622 if (!btf_type_is_ptr(t))
623 return NULL;
624
625 return btf_type_skip_modifiers(btf, t->type, res_id);
626}
627
628const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
629 u32 id, u32 *res_id)
630{
631 const struct btf_type *ptype;
632
633 ptype = btf_type_resolve_ptr(btf, id, res_id);
634 if (ptype && btf_type_is_func_proto(ptype))
635 return ptype;
636
637 return NULL;
638}
639
640/* Types that act only as a source, not sink or intermediate
641 * type when resolving.
642 */
643static bool btf_type_is_resolve_source_only(const struct btf_type *t)
644{
645 return btf_type_is_var(t) ||
646 btf_type_is_decl_tag(t) ||
647 btf_type_is_datasec(t);
648}
649
650/* What types need to be resolved?
651 *
652 * btf_type_is_modifier() is an obvious one.
653 *
654 * btf_type_is_struct() because its member refers to
655 * another type (through member->type).
656 *
657 * btf_type_is_var() because the variable refers to
658 * another type. btf_type_is_datasec() holds multiple
659 * btf_type_is_var() types that need resolving.
660 *
661 * btf_type_is_array() because its element (array->type)
662 * refers to another type. Array can be thought of a
663 * special case of struct while array just has the same
664 * member-type repeated by array->nelems of times.
665 */
666static bool btf_type_needs_resolve(const struct btf_type *t)
667{
668 return btf_type_is_modifier(t) ||
669 btf_type_is_ptr(t) ||
670 btf_type_is_struct(t) ||
671 btf_type_is_array(t) ||
672 btf_type_is_var(t) ||
673 btf_type_is_func(t) ||
674 btf_type_is_decl_tag(t) ||
675 btf_type_is_datasec(t);
676}
677
678/* t->size can be used */
679static bool btf_type_has_size(const struct btf_type *t)
680{
681 switch (BTF_INFO_KIND(t->info)) {
682 case BTF_KIND_INT:
683 case BTF_KIND_STRUCT:
684 case BTF_KIND_UNION:
685 case BTF_KIND_ENUM:
686 case BTF_KIND_DATASEC:
687 case BTF_KIND_FLOAT:
688 case BTF_KIND_ENUM64:
689 return true;
690 }
691
692 return false;
693}
694
695static const char *btf_int_encoding_str(u8 encoding)
696{
697 if (encoding == 0)
698 return "(none)";
699 else if (encoding == BTF_INT_SIGNED)
700 return "SIGNED";
701 else if (encoding == BTF_INT_CHAR)
702 return "CHAR";
703 else if (encoding == BTF_INT_BOOL)
704 return "BOOL";
705 else
706 return "UNKN";
707}
708
709static u32 btf_type_int(const struct btf_type *t)
710{
711 return *(u32 *)(t + 1);
712}
713
714static const struct btf_array *btf_type_array(const struct btf_type *t)
715{
716 return (const struct btf_array *)(t + 1);
717}
718
719static const struct btf_enum *btf_type_enum(const struct btf_type *t)
720{
721 return (const struct btf_enum *)(t + 1);
722}
723
724static const struct btf_var *btf_type_var(const struct btf_type *t)
725{
726 return (const struct btf_var *)(t + 1);
727}
728
729static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
730{
731 return (const struct btf_decl_tag *)(t + 1);
732}
733
734static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
735{
736 return (const struct btf_enum64 *)(t + 1);
737}
738
739static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
740{
741 return kind_ops[BTF_INFO_KIND(t->info)];
742}
743
744static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
745{
746 if (!BTF_STR_OFFSET_VALID(offset))
747 return false;
748
749 while (offset < btf->start_str_off)
750 btf = btf->base_btf;
751
752 offset -= btf->start_str_off;
753 return offset < btf->hdr.str_len;
754}
755
756static bool __btf_name_char_ok(char c, bool first)
757{
758 if ((first ? !isalpha(c) :
759 !isalnum(c)) &&
760 c != '_' &&
761 c != '.')
762 return false;
763 return true;
764}
765
766static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
767{
768 while (offset < btf->start_str_off)
769 btf = btf->base_btf;
770
771 offset -= btf->start_str_off;
772 if (offset < btf->hdr.str_len)
773 return &btf->strings[offset];
774
775 return NULL;
776}
777
778static bool __btf_name_valid(const struct btf *btf, u32 offset)
779{
780 /* offset must be valid */
781 const char *src = btf_str_by_offset(btf, offset);
782 const char *src_limit;
783
784 if (!__btf_name_char_ok(*src, true))
785 return false;
786
787 /* set a limit on identifier length */
788 src_limit = src + KSYM_NAME_LEN;
789 src++;
790 while (*src && src < src_limit) {
791 if (!__btf_name_char_ok(*src, false))
792 return false;
793 src++;
794 }
795
796 return !*src;
797}
798
799static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
800{
801 return __btf_name_valid(btf, offset);
802}
803
804static bool btf_name_valid_section(const struct btf *btf, u32 offset)
805{
806 return __btf_name_valid(btf, offset);
807}
808
809static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
810{
811 const char *name;
812
813 if (!offset)
814 return "(anon)";
815
816 name = btf_str_by_offset(btf, offset);
817 return name ?: "(invalid-name-offset)";
818}
819
820const char *btf_name_by_offset(const struct btf *btf, u32 offset)
821{
822 return btf_str_by_offset(btf, offset);
823}
824
825const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
826{
827 while (type_id < btf->start_id)
828 btf = btf->base_btf;
829
830 type_id -= btf->start_id;
831 if (type_id >= btf->nr_types)
832 return NULL;
833 return btf->types[type_id];
834}
835EXPORT_SYMBOL_GPL(btf_type_by_id);
836
837/*
838 * Regular int is not a bit field and it must be either
839 * u8/u16/u32/u64 or __int128.
840 */
841static bool btf_type_int_is_regular(const struct btf_type *t)
842{
843 u8 nr_bits, nr_bytes;
844 u32 int_data;
845
846 int_data = btf_type_int(t);
847 nr_bits = BTF_INT_BITS(int_data);
848 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
849 if (BITS_PER_BYTE_MASKED(nr_bits) ||
850 BTF_INT_OFFSET(int_data) ||
851 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
852 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
853 nr_bytes != (2 * sizeof(u64)))) {
854 return false;
855 }
856
857 return true;
858}
859
860/*
861 * Check that given struct member is a regular int with expected
862 * offset and size.
863 */
864bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
865 const struct btf_member *m,
866 u32 expected_offset, u32 expected_size)
867{
868 const struct btf_type *t;
869 u32 id, int_data;
870 u8 nr_bits;
871
872 id = m->type;
873 t = btf_type_id_size(btf, &id, NULL);
874 if (!t || !btf_type_is_int(t))
875 return false;
876
877 int_data = btf_type_int(t);
878 nr_bits = BTF_INT_BITS(int_data);
879 if (btf_type_kflag(s)) {
880 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
881 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
882
883 /* if kflag set, int should be a regular int and
884 * bit offset should be at byte boundary.
885 */
886 return !bitfield_size &&
887 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
888 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
889 }
890
891 if (BTF_INT_OFFSET(int_data) ||
892 BITS_PER_BYTE_MASKED(m->offset) ||
893 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
894 BITS_PER_BYTE_MASKED(nr_bits) ||
895 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
896 return false;
897
898 return true;
899}
900
901/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
902static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
903 u32 id)
904{
905 const struct btf_type *t = btf_type_by_id(btf, id);
906
907 while (btf_type_is_modifier(t) &&
908 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
909 t = btf_type_by_id(btf, t->type);
910 }
911
912 return t;
913}
914
915#define BTF_SHOW_MAX_ITER 10
916
917#define BTF_KIND_BIT(kind) (1ULL << kind)
918
919/*
920 * Populate show->state.name with type name information.
921 * Format of type name is
922 *
923 * [.member_name = ] (type_name)
924 */
925static const char *btf_show_name(struct btf_show *show)
926{
927 /* BTF_MAX_ITER array suffixes "[]" */
928 const char *array_suffixes = "[][][][][][][][][][]";
929 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
930 /* BTF_MAX_ITER pointer suffixes "*" */
931 const char *ptr_suffixes = "**********";
932 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
933 const char *name = NULL, *prefix = "", *parens = "";
934 const struct btf_member *m = show->state.member;
935 const struct btf_type *t;
936 const struct btf_array *array;
937 u32 id = show->state.type_id;
938 const char *member = NULL;
939 bool show_member = false;
940 u64 kinds = 0;
941 int i;
942
943 show->state.name[0] = '\0';
944
945 /*
946 * Don't show type name if we're showing an array member;
947 * in that case we show the array type so don't need to repeat
948 * ourselves for each member.
949 */
950 if (show->state.array_member)
951 return "";
952
953 /* Retrieve member name, if any. */
954 if (m) {
955 member = btf_name_by_offset(show->btf, m->name_off);
956 show_member = strlen(member) > 0;
957 id = m->type;
958 }
959
960 /*
961 * Start with type_id, as we have resolved the struct btf_type *
962 * via btf_modifier_show() past the parent typedef to the child
963 * struct, int etc it is defined as. In such cases, the type_id
964 * still represents the starting type while the struct btf_type *
965 * in our show->state points at the resolved type of the typedef.
966 */
967 t = btf_type_by_id(show->btf, id);
968 if (!t)
969 return "";
970
971 /*
972 * The goal here is to build up the right number of pointer and
973 * array suffixes while ensuring the type name for a typedef
974 * is represented. Along the way we accumulate a list of
975 * BTF kinds we have encountered, since these will inform later
976 * display; for example, pointer types will not require an
977 * opening "{" for struct, we will just display the pointer value.
978 *
979 * We also want to accumulate the right number of pointer or array
980 * indices in the format string while iterating until we get to
981 * the typedef/pointee/array member target type.
982 *
983 * We start by pointing at the end of pointer and array suffix
984 * strings; as we accumulate pointers and arrays we move the pointer
985 * or array string backwards so it will show the expected number of
986 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
987 * and/or arrays and typedefs are supported as a precaution.
988 *
989 * We also want to get typedef name while proceeding to resolve
990 * type it points to so that we can add parentheses if it is a
991 * "typedef struct" etc.
992 */
993 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
994
995 switch (BTF_INFO_KIND(t->info)) {
996 case BTF_KIND_TYPEDEF:
997 if (!name)
998 name = btf_name_by_offset(show->btf,
999 t->name_off);
1000 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1001 id = t->type;
1002 break;
1003 case BTF_KIND_ARRAY:
1004 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1005 parens = "[";
1006 if (!t)
1007 return "";
1008 array = btf_type_array(t);
1009 if (array_suffix > array_suffixes)
1010 array_suffix -= 2;
1011 id = array->type;
1012 break;
1013 case BTF_KIND_PTR:
1014 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1015 if (ptr_suffix > ptr_suffixes)
1016 ptr_suffix -= 1;
1017 id = t->type;
1018 break;
1019 default:
1020 id = 0;
1021 break;
1022 }
1023 if (!id)
1024 break;
1025 t = btf_type_skip_qualifiers(show->btf, id);
1026 }
1027 /* We may not be able to represent this type; bail to be safe */
1028 if (i == BTF_SHOW_MAX_ITER)
1029 return "";
1030
1031 if (!name)
1032 name = btf_name_by_offset(show->btf, t->name_off);
1033
1034 switch (BTF_INFO_KIND(t->info)) {
1035 case BTF_KIND_STRUCT:
1036 case BTF_KIND_UNION:
1037 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1038 "struct" : "union";
1039 /* if it's an array of struct/union, parens is already set */
1040 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1041 parens = "{";
1042 break;
1043 case BTF_KIND_ENUM:
1044 case BTF_KIND_ENUM64:
1045 prefix = "enum";
1046 break;
1047 default:
1048 break;
1049 }
1050
1051 /* pointer does not require parens */
1052 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1053 parens = "";
1054 /* typedef does not require struct/union/enum prefix */
1055 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1056 prefix = "";
1057
1058 if (!name)
1059 name = "";
1060
1061 /* Even if we don't want type name info, we want parentheses etc */
1062 if (show->flags & BTF_SHOW_NONAME)
1063 snprintf(show->state.name, sizeof(show->state.name), "%s",
1064 parens);
1065 else
1066 snprintf(show->state.name, sizeof(show->state.name),
1067 "%s%s%s(%s%s%s%s%s%s)%s",
1068 /* first 3 strings comprise ".member = " */
1069 show_member ? "." : "",
1070 show_member ? member : "",
1071 show_member ? " = " : "",
1072 /* ...next is our prefix (struct, enum, etc) */
1073 prefix,
1074 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1075 /* ...this is the type name itself */
1076 name,
1077 /* ...suffixed by the appropriate '*', '[]' suffixes */
1078 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1079 array_suffix, parens);
1080
1081 return show->state.name;
1082}
1083
1084static const char *__btf_show_indent(struct btf_show *show)
1085{
1086 const char *indents = " ";
1087 const char *indent = &indents[strlen(indents)];
1088
1089 if ((indent - show->state.depth) >= indents)
1090 return indent - show->state.depth;
1091 return indents;
1092}
1093
1094static const char *btf_show_indent(struct btf_show *show)
1095{
1096 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1097}
1098
1099static const char *btf_show_newline(struct btf_show *show)
1100{
1101 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1102}
1103
1104static const char *btf_show_delim(struct btf_show *show)
1105{
1106 if (show->state.depth == 0)
1107 return "";
1108
1109 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1110 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1111 return "|";
1112
1113 return ",";
1114}
1115
1116__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1117{
1118 va_list args;
1119
1120 if (!show->state.depth_check) {
1121 va_start(args, fmt);
1122 show->showfn(show, fmt, args);
1123 va_end(args);
1124 }
1125}
1126
1127/* Macros are used here as btf_show_type_value[s]() prepends and appends
1128 * format specifiers to the format specifier passed in; these do the work of
1129 * adding indentation, delimiters etc while the caller simply has to specify
1130 * the type value(s) in the format specifier + value(s).
1131 */
1132#define btf_show_type_value(show, fmt, value) \
1133 do { \
1134 if ((value) != (__typeof__(value))0 || \
1135 (show->flags & BTF_SHOW_ZERO) || \
1136 show->state.depth == 0) { \
1137 btf_show(show, "%s%s" fmt "%s%s", \
1138 btf_show_indent(show), \
1139 btf_show_name(show), \
1140 value, btf_show_delim(show), \
1141 btf_show_newline(show)); \
1142 if (show->state.depth > show->state.depth_to_show) \
1143 show->state.depth_to_show = show->state.depth; \
1144 } \
1145 } while (0)
1146
1147#define btf_show_type_values(show, fmt, ...) \
1148 do { \
1149 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
1150 btf_show_name(show), \
1151 __VA_ARGS__, btf_show_delim(show), \
1152 btf_show_newline(show)); \
1153 if (show->state.depth > show->state.depth_to_show) \
1154 show->state.depth_to_show = show->state.depth; \
1155 } while (0)
1156
1157/* How much is left to copy to safe buffer after @data? */
1158static int btf_show_obj_size_left(struct btf_show *show, void *data)
1159{
1160 return show->obj.head + show->obj.size - data;
1161}
1162
1163/* Is object pointed to by @data of @size already copied to our safe buffer? */
1164static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1165{
1166 return data >= show->obj.data &&
1167 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1168}
1169
1170/*
1171 * If object pointed to by @data of @size falls within our safe buffer, return
1172 * the equivalent pointer to the same safe data. Assumes
1173 * copy_from_kernel_nofault() has already happened and our safe buffer is
1174 * populated.
1175 */
1176static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1177{
1178 if (btf_show_obj_is_safe(show, data, size))
1179 return show->obj.safe + (data - show->obj.data);
1180 return NULL;
1181}
1182
1183/*
1184 * Return a safe-to-access version of data pointed to by @data.
1185 * We do this by copying the relevant amount of information
1186 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1187 *
1188 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1189 * safe copy is needed.
1190 *
1191 * Otherwise we need to determine if we have the required amount
1192 * of data (determined by the @data pointer and the size of the
1193 * largest base type we can encounter (represented by
1194 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1195 * that we will be able to print some of the current object,
1196 * and if more is needed a copy will be triggered.
1197 * Some objects such as structs will not fit into the buffer;
1198 * in such cases additional copies when we iterate over their
1199 * members may be needed.
1200 *
1201 * btf_show_obj_safe() is used to return a safe buffer for
1202 * btf_show_start_type(); this ensures that as we recurse into
1203 * nested types we always have safe data for the given type.
1204 * This approach is somewhat wasteful; it's possible for example
1205 * that when iterating over a large union we'll end up copying the
1206 * same data repeatedly, but the goal is safety not performance.
1207 * We use stack data as opposed to per-CPU buffers because the
1208 * iteration over a type can take some time, and preemption handling
1209 * would greatly complicate use of the safe buffer.
1210 */
1211static void *btf_show_obj_safe(struct btf_show *show,
1212 const struct btf_type *t,
1213 void *data)
1214{
1215 const struct btf_type *rt;
1216 int size_left, size;
1217 void *safe = NULL;
1218
1219 if (show->flags & BTF_SHOW_UNSAFE)
1220 return data;
1221
1222 rt = btf_resolve_size(show->btf, t, &size);
1223 if (IS_ERR(rt)) {
1224 show->state.status = PTR_ERR(rt);
1225 return NULL;
1226 }
1227
1228 /*
1229 * Is this toplevel object? If so, set total object size and
1230 * initialize pointers. Otherwise check if we still fall within
1231 * our safe object data.
1232 */
1233 if (show->state.depth == 0) {
1234 show->obj.size = size;
1235 show->obj.head = data;
1236 } else {
1237 /*
1238 * If the size of the current object is > our remaining
1239 * safe buffer we _may_ need to do a new copy. However
1240 * consider the case of a nested struct; it's size pushes
1241 * us over the safe buffer limit, but showing any individual
1242 * struct members does not. In such cases, we don't need
1243 * to initiate a fresh copy yet; however we definitely need
1244 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1245 * in our buffer, regardless of the current object size.
1246 * The logic here is that as we resolve types we will
1247 * hit a base type at some point, and we need to be sure
1248 * the next chunk of data is safely available to display
1249 * that type info safely. We cannot rely on the size of
1250 * the current object here because it may be much larger
1251 * than our current buffer (e.g. task_struct is 8k).
1252 * All we want to do here is ensure that we can print the
1253 * next basic type, which we can if either
1254 * - the current type size is within the safe buffer; or
1255 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1256 * the safe buffer.
1257 */
1258 safe = __btf_show_obj_safe(show, data,
1259 min(size,
1260 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1261 }
1262
1263 /*
1264 * We need a new copy to our safe object, either because we haven't
1265 * yet copied and are initializing safe data, or because the data
1266 * we want falls outside the boundaries of the safe object.
1267 */
1268 if (!safe) {
1269 size_left = btf_show_obj_size_left(show, data);
1270 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1271 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1272 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1273 data, size_left);
1274 if (!show->state.status) {
1275 show->obj.data = data;
1276 safe = show->obj.safe;
1277 }
1278 }
1279
1280 return safe;
1281}
1282
1283/*
1284 * Set the type we are starting to show and return a safe data pointer
1285 * to be used for showing the associated data.
1286 */
1287static void *btf_show_start_type(struct btf_show *show,
1288 const struct btf_type *t,
1289 u32 type_id, void *data)
1290{
1291 show->state.type = t;
1292 show->state.type_id = type_id;
1293 show->state.name[0] = '\0';
1294
1295 return btf_show_obj_safe(show, t, data);
1296}
1297
1298static void btf_show_end_type(struct btf_show *show)
1299{
1300 show->state.type = NULL;
1301 show->state.type_id = 0;
1302 show->state.name[0] = '\0';
1303}
1304
1305static void *btf_show_start_aggr_type(struct btf_show *show,
1306 const struct btf_type *t,
1307 u32 type_id, void *data)
1308{
1309 void *safe_data = btf_show_start_type(show, t, type_id, data);
1310
1311 if (!safe_data)
1312 return safe_data;
1313
1314 btf_show(show, "%s%s%s", btf_show_indent(show),
1315 btf_show_name(show),
1316 btf_show_newline(show));
1317 show->state.depth++;
1318 return safe_data;
1319}
1320
1321static void btf_show_end_aggr_type(struct btf_show *show,
1322 const char *suffix)
1323{
1324 show->state.depth--;
1325 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1326 btf_show_delim(show), btf_show_newline(show));
1327 btf_show_end_type(show);
1328}
1329
1330static void btf_show_start_member(struct btf_show *show,
1331 const struct btf_member *m)
1332{
1333 show->state.member = m;
1334}
1335
1336static void btf_show_start_array_member(struct btf_show *show)
1337{
1338 show->state.array_member = 1;
1339 btf_show_start_member(show, NULL);
1340}
1341
1342static void btf_show_end_member(struct btf_show *show)
1343{
1344 show->state.member = NULL;
1345}
1346
1347static void btf_show_end_array_member(struct btf_show *show)
1348{
1349 show->state.array_member = 0;
1350 btf_show_end_member(show);
1351}
1352
1353static void *btf_show_start_array_type(struct btf_show *show,
1354 const struct btf_type *t,
1355 u32 type_id,
1356 u16 array_encoding,
1357 void *data)
1358{
1359 show->state.array_encoding = array_encoding;
1360 show->state.array_terminated = 0;
1361 return btf_show_start_aggr_type(show, t, type_id, data);
1362}
1363
1364static void btf_show_end_array_type(struct btf_show *show)
1365{
1366 show->state.array_encoding = 0;
1367 show->state.array_terminated = 0;
1368 btf_show_end_aggr_type(show, "]");
1369}
1370
1371static void *btf_show_start_struct_type(struct btf_show *show,
1372 const struct btf_type *t,
1373 u32 type_id,
1374 void *data)
1375{
1376 return btf_show_start_aggr_type(show, t, type_id, data);
1377}
1378
1379static void btf_show_end_struct_type(struct btf_show *show)
1380{
1381 btf_show_end_aggr_type(show, "}");
1382}
1383
1384__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1385 const char *fmt, ...)
1386{
1387 va_list args;
1388
1389 va_start(args, fmt);
1390 bpf_verifier_vlog(log, fmt, args);
1391 va_end(args);
1392}
1393
1394__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1395 const char *fmt, ...)
1396{
1397 struct bpf_verifier_log *log = &env->log;
1398 va_list args;
1399
1400 if (!bpf_verifier_log_needed(log))
1401 return;
1402
1403 va_start(args, fmt);
1404 bpf_verifier_vlog(log, fmt, args);
1405 va_end(args);
1406}
1407
1408__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1409 const struct btf_type *t,
1410 bool log_details,
1411 const char *fmt, ...)
1412{
1413 struct bpf_verifier_log *log = &env->log;
1414 struct btf *btf = env->btf;
1415 va_list args;
1416
1417 if (!bpf_verifier_log_needed(log))
1418 return;
1419
1420 if (log->level == BPF_LOG_KERNEL) {
1421 /* btf verifier prints all types it is processing via
1422 * btf_verifier_log_type(..., fmt = NULL).
1423 * Skip those prints for in-kernel BTF verification.
1424 */
1425 if (!fmt)
1426 return;
1427
1428 /* Skip logging when loading module BTF with mismatches permitted */
1429 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1430 return;
1431 }
1432
1433 __btf_verifier_log(log, "[%u] %s %s%s",
1434 env->log_type_id,
1435 btf_type_str(t),
1436 __btf_name_by_offset(btf, t->name_off),
1437 log_details ? " " : "");
1438
1439 if (log_details)
1440 btf_type_ops(t)->log_details(env, t);
1441
1442 if (fmt && *fmt) {
1443 __btf_verifier_log(log, " ");
1444 va_start(args, fmt);
1445 bpf_verifier_vlog(log, fmt, args);
1446 va_end(args);
1447 }
1448
1449 __btf_verifier_log(log, "\n");
1450}
1451
1452#define btf_verifier_log_type(env, t, ...) \
1453 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1454#define btf_verifier_log_basic(env, t, ...) \
1455 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1456
1457__printf(4, 5)
1458static void btf_verifier_log_member(struct btf_verifier_env *env,
1459 const struct btf_type *struct_type,
1460 const struct btf_member *member,
1461 const char *fmt, ...)
1462{
1463 struct bpf_verifier_log *log = &env->log;
1464 struct btf *btf = env->btf;
1465 va_list args;
1466
1467 if (!bpf_verifier_log_needed(log))
1468 return;
1469
1470 if (log->level == BPF_LOG_KERNEL) {
1471 if (!fmt)
1472 return;
1473
1474 /* Skip logging when loading module BTF with mismatches permitted */
1475 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1476 return;
1477 }
1478
1479 /* The CHECK_META phase already did a btf dump.
1480 *
1481 * If member is logged again, it must hit an error in
1482 * parsing this member. It is useful to print out which
1483 * struct this member belongs to.
1484 */
1485 if (env->phase != CHECK_META)
1486 btf_verifier_log_type(env, struct_type, NULL);
1487
1488 if (btf_type_kflag(struct_type))
1489 __btf_verifier_log(log,
1490 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1491 __btf_name_by_offset(btf, member->name_off),
1492 member->type,
1493 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1494 BTF_MEMBER_BIT_OFFSET(member->offset));
1495 else
1496 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1497 __btf_name_by_offset(btf, member->name_off),
1498 member->type, member->offset);
1499
1500 if (fmt && *fmt) {
1501 __btf_verifier_log(log, " ");
1502 va_start(args, fmt);
1503 bpf_verifier_vlog(log, fmt, args);
1504 va_end(args);
1505 }
1506
1507 __btf_verifier_log(log, "\n");
1508}
1509
1510__printf(4, 5)
1511static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1512 const struct btf_type *datasec_type,
1513 const struct btf_var_secinfo *vsi,
1514 const char *fmt, ...)
1515{
1516 struct bpf_verifier_log *log = &env->log;
1517 va_list args;
1518
1519 if (!bpf_verifier_log_needed(log))
1520 return;
1521 if (log->level == BPF_LOG_KERNEL && !fmt)
1522 return;
1523 if (env->phase != CHECK_META)
1524 btf_verifier_log_type(env, datasec_type, NULL);
1525
1526 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1527 vsi->type, vsi->offset, vsi->size);
1528 if (fmt && *fmt) {
1529 __btf_verifier_log(log, " ");
1530 va_start(args, fmt);
1531 bpf_verifier_vlog(log, fmt, args);
1532 va_end(args);
1533 }
1534
1535 __btf_verifier_log(log, "\n");
1536}
1537
1538static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1539 u32 btf_data_size)
1540{
1541 struct bpf_verifier_log *log = &env->log;
1542 const struct btf *btf = env->btf;
1543 const struct btf_header *hdr;
1544
1545 if (!bpf_verifier_log_needed(log))
1546 return;
1547
1548 if (log->level == BPF_LOG_KERNEL)
1549 return;
1550 hdr = &btf->hdr;
1551 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1552 __btf_verifier_log(log, "version: %u\n", hdr->version);
1553 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1554 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1555 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1556 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1557 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1558 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1559 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1560}
1561
1562static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1563{
1564 struct btf *btf = env->btf;
1565
1566 if (btf->types_size == btf->nr_types) {
1567 /* Expand 'types' array */
1568
1569 struct btf_type **new_types;
1570 u32 expand_by, new_size;
1571
1572 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1573 btf_verifier_log(env, "Exceeded max num of types");
1574 return -E2BIG;
1575 }
1576
1577 expand_by = max_t(u32, btf->types_size >> 2, 16);
1578 new_size = min_t(u32, BTF_MAX_TYPE,
1579 btf->types_size + expand_by);
1580
1581 new_types = kvcalloc(new_size, sizeof(*new_types),
1582 GFP_KERNEL | __GFP_NOWARN);
1583 if (!new_types)
1584 return -ENOMEM;
1585
1586 if (btf->nr_types == 0) {
1587 if (!btf->base_btf) {
1588 /* lazily init VOID type */
1589 new_types[0] = &btf_void;
1590 btf->nr_types++;
1591 }
1592 } else {
1593 memcpy(new_types, btf->types,
1594 sizeof(*btf->types) * btf->nr_types);
1595 }
1596
1597 kvfree(btf->types);
1598 btf->types = new_types;
1599 btf->types_size = new_size;
1600 }
1601
1602 btf->types[btf->nr_types++] = t;
1603
1604 return 0;
1605}
1606
1607static int btf_alloc_id(struct btf *btf)
1608{
1609 int id;
1610
1611 idr_preload(GFP_KERNEL);
1612 spin_lock_bh(&btf_idr_lock);
1613 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1614 if (id > 0)
1615 btf->id = id;
1616 spin_unlock_bh(&btf_idr_lock);
1617 idr_preload_end();
1618
1619 if (WARN_ON_ONCE(!id))
1620 return -ENOSPC;
1621
1622 return id > 0 ? 0 : id;
1623}
1624
1625static void btf_free_id(struct btf *btf)
1626{
1627 unsigned long flags;
1628
1629 /*
1630 * In map-in-map, calling map_delete_elem() on outer
1631 * map will call bpf_map_put on the inner map.
1632 * It will then eventually call btf_free_id()
1633 * on the inner map. Some of the map_delete_elem()
1634 * implementation may have irq disabled, so
1635 * we need to use the _irqsave() version instead
1636 * of the _bh() version.
1637 */
1638 spin_lock_irqsave(&btf_idr_lock, flags);
1639 idr_remove(&btf_idr, btf->id);
1640 spin_unlock_irqrestore(&btf_idr_lock, flags);
1641}
1642
1643static void btf_free_kfunc_set_tab(struct btf *btf)
1644{
1645 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1646 int hook;
1647
1648 if (!tab)
1649 return;
1650 /* For module BTF, we directly assign the sets being registered, so
1651 * there is nothing to free except kfunc_set_tab.
1652 */
1653 if (btf_is_module(btf))
1654 goto free_tab;
1655 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1656 kfree(tab->sets[hook]);
1657free_tab:
1658 kfree(tab);
1659 btf->kfunc_set_tab = NULL;
1660}
1661
1662static void btf_free_dtor_kfunc_tab(struct btf *btf)
1663{
1664 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1665
1666 if (!tab)
1667 return;
1668 kfree(tab);
1669 btf->dtor_kfunc_tab = NULL;
1670}
1671
1672static void btf_struct_metas_free(struct btf_struct_metas *tab)
1673{
1674 int i;
1675
1676 if (!tab)
1677 return;
1678 for (i = 0; i < tab->cnt; i++)
1679 btf_record_free(tab->types[i].record);
1680 kfree(tab);
1681}
1682
1683static void btf_free_struct_meta_tab(struct btf *btf)
1684{
1685 struct btf_struct_metas *tab = btf->struct_meta_tab;
1686
1687 btf_struct_metas_free(tab);
1688 btf->struct_meta_tab = NULL;
1689}
1690
1691static void btf_free(struct btf *btf)
1692{
1693 btf_free_struct_meta_tab(btf);
1694 btf_free_dtor_kfunc_tab(btf);
1695 btf_free_kfunc_set_tab(btf);
1696 kvfree(btf->types);
1697 kvfree(btf->resolved_sizes);
1698 kvfree(btf->resolved_ids);
1699 kvfree(btf->data);
1700 kfree(btf);
1701}
1702
1703static void btf_free_rcu(struct rcu_head *rcu)
1704{
1705 struct btf *btf = container_of(rcu, struct btf, rcu);
1706
1707 btf_free(btf);
1708}
1709
1710void btf_get(struct btf *btf)
1711{
1712 refcount_inc(&btf->refcnt);
1713}
1714
1715void btf_put(struct btf *btf)
1716{
1717 if (btf && refcount_dec_and_test(&btf->refcnt)) {
1718 btf_free_id(btf);
1719 call_rcu(&btf->rcu, btf_free_rcu);
1720 }
1721}
1722
1723static int env_resolve_init(struct btf_verifier_env *env)
1724{
1725 struct btf *btf = env->btf;
1726 u32 nr_types = btf->nr_types;
1727 u32 *resolved_sizes = NULL;
1728 u32 *resolved_ids = NULL;
1729 u8 *visit_states = NULL;
1730
1731 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1732 GFP_KERNEL | __GFP_NOWARN);
1733 if (!resolved_sizes)
1734 goto nomem;
1735
1736 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1737 GFP_KERNEL | __GFP_NOWARN);
1738 if (!resolved_ids)
1739 goto nomem;
1740
1741 visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1742 GFP_KERNEL | __GFP_NOWARN);
1743 if (!visit_states)
1744 goto nomem;
1745
1746 btf->resolved_sizes = resolved_sizes;
1747 btf->resolved_ids = resolved_ids;
1748 env->visit_states = visit_states;
1749
1750 return 0;
1751
1752nomem:
1753 kvfree(resolved_sizes);
1754 kvfree(resolved_ids);
1755 kvfree(visit_states);
1756 return -ENOMEM;
1757}
1758
1759static void btf_verifier_env_free(struct btf_verifier_env *env)
1760{
1761 kvfree(env->visit_states);
1762 kfree(env);
1763}
1764
1765static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1766 const struct btf_type *next_type)
1767{
1768 switch (env->resolve_mode) {
1769 case RESOLVE_TBD:
1770 /* int, enum or void is a sink */
1771 return !btf_type_needs_resolve(next_type);
1772 case RESOLVE_PTR:
1773 /* int, enum, void, struct, array, func or func_proto is a sink
1774 * for ptr
1775 */
1776 return !btf_type_is_modifier(next_type) &&
1777 !btf_type_is_ptr(next_type);
1778 case RESOLVE_STRUCT_OR_ARRAY:
1779 /* int, enum, void, ptr, func or func_proto is a sink
1780 * for struct and array
1781 */
1782 return !btf_type_is_modifier(next_type) &&
1783 !btf_type_is_array(next_type) &&
1784 !btf_type_is_struct(next_type);
1785 default:
1786 BUG();
1787 }
1788}
1789
1790static bool env_type_is_resolved(const struct btf_verifier_env *env,
1791 u32 type_id)
1792{
1793 /* base BTF types should be resolved by now */
1794 if (type_id < env->btf->start_id)
1795 return true;
1796
1797 return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1798}
1799
1800static int env_stack_push(struct btf_verifier_env *env,
1801 const struct btf_type *t, u32 type_id)
1802{
1803 const struct btf *btf = env->btf;
1804 struct resolve_vertex *v;
1805
1806 if (env->top_stack == MAX_RESOLVE_DEPTH)
1807 return -E2BIG;
1808
1809 if (type_id < btf->start_id
1810 || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1811 return -EEXIST;
1812
1813 env->visit_states[type_id - btf->start_id] = VISITED;
1814
1815 v = &env->stack[env->top_stack++];
1816 v->t = t;
1817 v->type_id = type_id;
1818 v->next_member = 0;
1819
1820 if (env->resolve_mode == RESOLVE_TBD) {
1821 if (btf_type_is_ptr(t))
1822 env->resolve_mode = RESOLVE_PTR;
1823 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1824 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1825 }
1826
1827 return 0;
1828}
1829
1830static void env_stack_set_next_member(struct btf_verifier_env *env,
1831 u16 next_member)
1832{
1833 env->stack[env->top_stack - 1].next_member = next_member;
1834}
1835
1836static void env_stack_pop_resolved(struct btf_verifier_env *env,
1837 u32 resolved_type_id,
1838 u32 resolved_size)
1839{
1840 u32 type_id = env->stack[--(env->top_stack)].type_id;
1841 struct btf *btf = env->btf;
1842
1843 type_id -= btf->start_id; /* adjust to local type id */
1844 btf->resolved_sizes[type_id] = resolved_size;
1845 btf->resolved_ids[type_id] = resolved_type_id;
1846 env->visit_states[type_id] = RESOLVED;
1847}
1848
1849static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1850{
1851 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1852}
1853
1854/* Resolve the size of a passed-in "type"
1855 *
1856 * type: is an array (e.g. u32 array[x][y])
1857 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1858 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1859 * corresponds to the return type.
1860 * *elem_type: u32
1861 * *elem_id: id of u32
1862 * *total_nelems: (x * y). Hence, individual elem size is
1863 * (*type_size / *total_nelems)
1864 * *type_id: id of type if it's changed within the function, 0 if not
1865 *
1866 * type: is not an array (e.g. const struct X)
1867 * return type: type "struct X"
1868 * *type_size: sizeof(struct X)
1869 * *elem_type: same as return type ("struct X")
1870 * *elem_id: 0
1871 * *total_nelems: 1
1872 * *type_id: id of type if it's changed within the function, 0 if not
1873 */
1874static const struct btf_type *
1875__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1876 u32 *type_size, const struct btf_type **elem_type,
1877 u32 *elem_id, u32 *total_nelems, u32 *type_id)
1878{
1879 const struct btf_type *array_type = NULL;
1880 const struct btf_array *array = NULL;
1881 u32 i, size, nelems = 1, id = 0;
1882
1883 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1884 switch (BTF_INFO_KIND(type->info)) {
1885 /* type->size can be used */
1886 case BTF_KIND_INT:
1887 case BTF_KIND_STRUCT:
1888 case BTF_KIND_UNION:
1889 case BTF_KIND_ENUM:
1890 case BTF_KIND_FLOAT:
1891 case BTF_KIND_ENUM64:
1892 size = type->size;
1893 goto resolved;
1894
1895 case BTF_KIND_PTR:
1896 size = sizeof(void *);
1897 goto resolved;
1898
1899 /* Modifiers */
1900 case BTF_KIND_TYPEDEF:
1901 case BTF_KIND_VOLATILE:
1902 case BTF_KIND_CONST:
1903 case BTF_KIND_RESTRICT:
1904 case BTF_KIND_TYPE_TAG:
1905 id = type->type;
1906 type = btf_type_by_id(btf, type->type);
1907 break;
1908
1909 case BTF_KIND_ARRAY:
1910 if (!array_type)
1911 array_type = type;
1912 array = btf_type_array(type);
1913 if (nelems && array->nelems > U32_MAX / nelems)
1914 return ERR_PTR(-EINVAL);
1915 nelems *= array->nelems;
1916 type = btf_type_by_id(btf, array->type);
1917 break;
1918
1919 /* type without size */
1920 default:
1921 return ERR_PTR(-EINVAL);
1922 }
1923 }
1924
1925 return ERR_PTR(-EINVAL);
1926
1927resolved:
1928 if (nelems && size > U32_MAX / nelems)
1929 return ERR_PTR(-EINVAL);
1930
1931 *type_size = nelems * size;
1932 if (total_nelems)
1933 *total_nelems = nelems;
1934 if (elem_type)
1935 *elem_type = type;
1936 if (elem_id)
1937 *elem_id = array ? array->type : 0;
1938 if (type_id && id)
1939 *type_id = id;
1940
1941 return array_type ? : type;
1942}
1943
1944const struct btf_type *
1945btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1946 u32 *type_size)
1947{
1948 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1949}
1950
1951static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1952{
1953 while (type_id < btf->start_id)
1954 btf = btf->base_btf;
1955
1956 return btf->resolved_ids[type_id - btf->start_id];
1957}
1958
1959/* The input param "type_id" must point to a needs_resolve type */
1960static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1961 u32 *type_id)
1962{
1963 *type_id = btf_resolved_type_id(btf, *type_id);
1964 return btf_type_by_id(btf, *type_id);
1965}
1966
1967static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1968{
1969 while (type_id < btf->start_id)
1970 btf = btf->base_btf;
1971
1972 return btf->resolved_sizes[type_id - btf->start_id];
1973}
1974
1975const struct btf_type *btf_type_id_size(const struct btf *btf,
1976 u32 *type_id, u32 *ret_size)
1977{
1978 const struct btf_type *size_type;
1979 u32 size_type_id = *type_id;
1980 u32 size = 0;
1981
1982 size_type = btf_type_by_id(btf, size_type_id);
1983 if (btf_type_nosize_or_null(size_type))
1984 return NULL;
1985
1986 if (btf_type_has_size(size_type)) {
1987 size = size_type->size;
1988 } else if (btf_type_is_array(size_type)) {
1989 size = btf_resolved_type_size(btf, size_type_id);
1990 } else if (btf_type_is_ptr(size_type)) {
1991 size = sizeof(void *);
1992 } else {
1993 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1994 !btf_type_is_var(size_type)))
1995 return NULL;
1996
1997 size_type_id = btf_resolved_type_id(btf, size_type_id);
1998 size_type = btf_type_by_id(btf, size_type_id);
1999 if (btf_type_nosize_or_null(size_type))
2000 return NULL;
2001 else if (btf_type_has_size(size_type))
2002 size = size_type->size;
2003 else if (btf_type_is_array(size_type))
2004 size = btf_resolved_type_size(btf, size_type_id);
2005 else if (btf_type_is_ptr(size_type))
2006 size = sizeof(void *);
2007 else
2008 return NULL;
2009 }
2010
2011 *type_id = size_type_id;
2012 if (ret_size)
2013 *ret_size = size;
2014
2015 return size_type;
2016}
2017
2018static int btf_df_check_member(struct btf_verifier_env *env,
2019 const struct btf_type *struct_type,
2020 const struct btf_member *member,
2021 const struct btf_type *member_type)
2022{
2023 btf_verifier_log_basic(env, struct_type,
2024 "Unsupported check_member");
2025 return -EINVAL;
2026}
2027
2028static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2029 const struct btf_type *struct_type,
2030 const struct btf_member *member,
2031 const struct btf_type *member_type)
2032{
2033 btf_verifier_log_basic(env, struct_type,
2034 "Unsupported check_kflag_member");
2035 return -EINVAL;
2036}
2037
2038/* Used for ptr, array struct/union and float type members.
2039 * int, enum and modifier types have their specific callback functions.
2040 */
2041static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2042 const struct btf_type *struct_type,
2043 const struct btf_member *member,
2044 const struct btf_type *member_type)
2045{
2046 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2047 btf_verifier_log_member(env, struct_type, member,
2048 "Invalid member bitfield_size");
2049 return -EINVAL;
2050 }
2051
2052 /* bitfield size is 0, so member->offset represents bit offset only.
2053 * It is safe to call non kflag check_member variants.
2054 */
2055 return btf_type_ops(member_type)->check_member(env, struct_type,
2056 member,
2057 member_type);
2058}
2059
2060static int btf_df_resolve(struct btf_verifier_env *env,
2061 const struct resolve_vertex *v)
2062{
2063 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2064 return -EINVAL;
2065}
2066
2067static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2068 u32 type_id, void *data, u8 bits_offsets,
2069 struct btf_show *show)
2070{
2071 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2072}
2073
2074static int btf_int_check_member(struct btf_verifier_env *env,
2075 const struct btf_type *struct_type,
2076 const struct btf_member *member,
2077 const struct btf_type *member_type)
2078{
2079 u32 int_data = btf_type_int(member_type);
2080 u32 struct_bits_off = member->offset;
2081 u32 struct_size = struct_type->size;
2082 u32 nr_copy_bits;
2083 u32 bytes_offset;
2084
2085 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2086 btf_verifier_log_member(env, struct_type, member,
2087 "bits_offset exceeds U32_MAX");
2088 return -EINVAL;
2089 }
2090
2091 struct_bits_off += BTF_INT_OFFSET(int_data);
2092 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2093 nr_copy_bits = BTF_INT_BITS(int_data) +
2094 BITS_PER_BYTE_MASKED(struct_bits_off);
2095
2096 if (nr_copy_bits > BITS_PER_U128) {
2097 btf_verifier_log_member(env, struct_type, member,
2098 "nr_copy_bits exceeds 128");
2099 return -EINVAL;
2100 }
2101
2102 if (struct_size < bytes_offset ||
2103 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2104 btf_verifier_log_member(env, struct_type, member,
2105 "Member exceeds struct_size");
2106 return -EINVAL;
2107 }
2108
2109 return 0;
2110}
2111
2112static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2113 const struct btf_type *struct_type,
2114 const struct btf_member *member,
2115 const struct btf_type *member_type)
2116{
2117 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2118 u32 int_data = btf_type_int(member_type);
2119 u32 struct_size = struct_type->size;
2120 u32 nr_copy_bits;
2121
2122 /* a regular int type is required for the kflag int member */
2123 if (!btf_type_int_is_regular(member_type)) {
2124 btf_verifier_log_member(env, struct_type, member,
2125 "Invalid member base type");
2126 return -EINVAL;
2127 }
2128
2129 /* check sanity of bitfield size */
2130 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2131 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2132 nr_int_data_bits = BTF_INT_BITS(int_data);
2133 if (!nr_bits) {
2134 /* Not a bitfield member, member offset must be at byte
2135 * boundary.
2136 */
2137 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2138 btf_verifier_log_member(env, struct_type, member,
2139 "Invalid member offset");
2140 return -EINVAL;
2141 }
2142
2143 nr_bits = nr_int_data_bits;
2144 } else if (nr_bits > nr_int_data_bits) {
2145 btf_verifier_log_member(env, struct_type, member,
2146 "Invalid member bitfield_size");
2147 return -EINVAL;
2148 }
2149
2150 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2151 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2152 if (nr_copy_bits > BITS_PER_U128) {
2153 btf_verifier_log_member(env, struct_type, member,
2154 "nr_copy_bits exceeds 128");
2155 return -EINVAL;
2156 }
2157
2158 if (struct_size < bytes_offset ||
2159 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2160 btf_verifier_log_member(env, struct_type, member,
2161 "Member exceeds struct_size");
2162 return -EINVAL;
2163 }
2164
2165 return 0;
2166}
2167
2168static s32 btf_int_check_meta(struct btf_verifier_env *env,
2169 const struct btf_type *t,
2170 u32 meta_left)
2171{
2172 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2173 u16 encoding;
2174
2175 if (meta_left < meta_needed) {
2176 btf_verifier_log_basic(env, t,
2177 "meta_left:%u meta_needed:%u",
2178 meta_left, meta_needed);
2179 return -EINVAL;
2180 }
2181
2182 if (btf_type_vlen(t)) {
2183 btf_verifier_log_type(env, t, "vlen != 0");
2184 return -EINVAL;
2185 }
2186
2187 if (btf_type_kflag(t)) {
2188 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2189 return -EINVAL;
2190 }
2191
2192 int_data = btf_type_int(t);
2193 if (int_data & ~BTF_INT_MASK) {
2194 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2195 int_data);
2196 return -EINVAL;
2197 }
2198
2199 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2200
2201 if (nr_bits > BITS_PER_U128) {
2202 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2203 BITS_PER_U128);
2204 return -EINVAL;
2205 }
2206
2207 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2208 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2209 return -EINVAL;
2210 }
2211
2212 /*
2213 * Only one of the encoding bits is allowed and it
2214 * should be sufficient for the pretty print purpose (i.e. decoding).
2215 * Multiple bits can be allowed later if it is found
2216 * to be insufficient.
2217 */
2218 encoding = BTF_INT_ENCODING(int_data);
2219 if (encoding &&
2220 encoding != BTF_INT_SIGNED &&
2221 encoding != BTF_INT_CHAR &&
2222 encoding != BTF_INT_BOOL) {
2223 btf_verifier_log_type(env, t, "Unsupported encoding");
2224 return -ENOTSUPP;
2225 }
2226
2227 btf_verifier_log_type(env, t, NULL);
2228
2229 return meta_needed;
2230}
2231
2232static void btf_int_log(struct btf_verifier_env *env,
2233 const struct btf_type *t)
2234{
2235 int int_data = btf_type_int(t);
2236
2237 btf_verifier_log(env,
2238 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2239 t->size, BTF_INT_OFFSET(int_data),
2240 BTF_INT_BITS(int_data),
2241 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2242}
2243
2244static void btf_int128_print(struct btf_show *show, void *data)
2245{
2246 /* data points to a __int128 number.
2247 * Suppose
2248 * int128_num = *(__int128 *)data;
2249 * The below formulas shows what upper_num and lower_num represents:
2250 * upper_num = int128_num >> 64;
2251 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2252 */
2253 u64 upper_num, lower_num;
2254
2255#ifdef __BIG_ENDIAN_BITFIELD
2256 upper_num = *(u64 *)data;
2257 lower_num = *(u64 *)(data + 8);
2258#else
2259 upper_num = *(u64 *)(data + 8);
2260 lower_num = *(u64 *)data;
2261#endif
2262 if (upper_num == 0)
2263 btf_show_type_value(show, "0x%llx", lower_num);
2264 else
2265 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2266 lower_num);
2267}
2268
2269static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2270 u16 right_shift_bits)
2271{
2272 u64 upper_num, lower_num;
2273
2274#ifdef __BIG_ENDIAN_BITFIELD
2275 upper_num = print_num[0];
2276 lower_num = print_num[1];
2277#else
2278 upper_num = print_num[1];
2279 lower_num = print_num[0];
2280#endif
2281
2282 /* shake out un-needed bits by shift/or operations */
2283 if (left_shift_bits >= 64) {
2284 upper_num = lower_num << (left_shift_bits - 64);
2285 lower_num = 0;
2286 } else {
2287 upper_num = (upper_num << left_shift_bits) |
2288 (lower_num >> (64 - left_shift_bits));
2289 lower_num = lower_num << left_shift_bits;
2290 }
2291
2292 if (right_shift_bits >= 64) {
2293 lower_num = upper_num >> (right_shift_bits - 64);
2294 upper_num = 0;
2295 } else {
2296 lower_num = (lower_num >> right_shift_bits) |
2297 (upper_num << (64 - right_shift_bits));
2298 upper_num = upper_num >> right_shift_bits;
2299 }
2300
2301#ifdef __BIG_ENDIAN_BITFIELD
2302 print_num[0] = upper_num;
2303 print_num[1] = lower_num;
2304#else
2305 print_num[0] = lower_num;
2306 print_num[1] = upper_num;
2307#endif
2308}
2309
2310static void btf_bitfield_show(void *data, u8 bits_offset,
2311 u8 nr_bits, struct btf_show *show)
2312{
2313 u16 left_shift_bits, right_shift_bits;
2314 u8 nr_copy_bytes;
2315 u8 nr_copy_bits;
2316 u64 print_num[2] = {};
2317
2318 nr_copy_bits = nr_bits + bits_offset;
2319 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2320
2321 memcpy(print_num, data, nr_copy_bytes);
2322
2323#ifdef __BIG_ENDIAN_BITFIELD
2324 left_shift_bits = bits_offset;
2325#else
2326 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2327#endif
2328 right_shift_bits = BITS_PER_U128 - nr_bits;
2329
2330 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2331 btf_int128_print(show, print_num);
2332}
2333
2334
2335static void btf_int_bits_show(const struct btf *btf,
2336 const struct btf_type *t,
2337 void *data, u8 bits_offset,
2338 struct btf_show *show)
2339{
2340 u32 int_data = btf_type_int(t);
2341 u8 nr_bits = BTF_INT_BITS(int_data);
2342 u8 total_bits_offset;
2343
2344 /*
2345 * bits_offset is at most 7.
2346 * BTF_INT_OFFSET() cannot exceed 128 bits.
2347 */
2348 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2349 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2350 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2351 btf_bitfield_show(data, bits_offset, nr_bits, show);
2352}
2353
2354static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2355 u32 type_id, void *data, u8 bits_offset,
2356 struct btf_show *show)
2357{
2358 u32 int_data = btf_type_int(t);
2359 u8 encoding = BTF_INT_ENCODING(int_data);
2360 bool sign = encoding & BTF_INT_SIGNED;
2361 u8 nr_bits = BTF_INT_BITS(int_data);
2362 void *safe_data;
2363
2364 safe_data = btf_show_start_type(show, t, type_id, data);
2365 if (!safe_data)
2366 return;
2367
2368 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2369 BITS_PER_BYTE_MASKED(nr_bits)) {
2370 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2371 goto out;
2372 }
2373
2374 switch (nr_bits) {
2375 case 128:
2376 btf_int128_print(show, safe_data);
2377 break;
2378 case 64:
2379 if (sign)
2380 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2381 else
2382 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2383 break;
2384 case 32:
2385 if (sign)
2386 btf_show_type_value(show, "%d", *(s32 *)safe_data);
2387 else
2388 btf_show_type_value(show, "%u", *(u32 *)safe_data);
2389 break;
2390 case 16:
2391 if (sign)
2392 btf_show_type_value(show, "%d", *(s16 *)safe_data);
2393 else
2394 btf_show_type_value(show, "%u", *(u16 *)safe_data);
2395 break;
2396 case 8:
2397 if (show->state.array_encoding == BTF_INT_CHAR) {
2398 /* check for null terminator */
2399 if (show->state.array_terminated)
2400 break;
2401 if (*(char *)data == '\0') {
2402 show->state.array_terminated = 1;
2403 break;
2404 }
2405 if (isprint(*(char *)data)) {
2406 btf_show_type_value(show, "'%c'",
2407 *(char *)safe_data);
2408 break;
2409 }
2410 }
2411 if (sign)
2412 btf_show_type_value(show, "%d", *(s8 *)safe_data);
2413 else
2414 btf_show_type_value(show, "%u", *(u8 *)safe_data);
2415 break;
2416 default:
2417 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2418 break;
2419 }
2420out:
2421 btf_show_end_type(show);
2422}
2423
2424static const struct btf_kind_operations int_ops = {
2425 .check_meta = btf_int_check_meta,
2426 .resolve = btf_df_resolve,
2427 .check_member = btf_int_check_member,
2428 .check_kflag_member = btf_int_check_kflag_member,
2429 .log_details = btf_int_log,
2430 .show = btf_int_show,
2431};
2432
2433static int btf_modifier_check_member(struct btf_verifier_env *env,
2434 const struct btf_type *struct_type,
2435 const struct btf_member *member,
2436 const struct btf_type *member_type)
2437{
2438 const struct btf_type *resolved_type;
2439 u32 resolved_type_id = member->type;
2440 struct btf_member resolved_member;
2441 struct btf *btf = env->btf;
2442
2443 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2444 if (!resolved_type) {
2445 btf_verifier_log_member(env, struct_type, member,
2446 "Invalid member");
2447 return -EINVAL;
2448 }
2449
2450 resolved_member = *member;
2451 resolved_member.type = resolved_type_id;
2452
2453 return btf_type_ops(resolved_type)->check_member(env, struct_type,
2454 &resolved_member,
2455 resolved_type);
2456}
2457
2458static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2459 const struct btf_type *struct_type,
2460 const struct btf_member *member,
2461 const struct btf_type *member_type)
2462{
2463 const struct btf_type *resolved_type;
2464 u32 resolved_type_id = member->type;
2465 struct btf_member resolved_member;
2466 struct btf *btf = env->btf;
2467
2468 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2469 if (!resolved_type) {
2470 btf_verifier_log_member(env, struct_type, member,
2471 "Invalid member");
2472 return -EINVAL;
2473 }
2474
2475 resolved_member = *member;
2476 resolved_member.type = resolved_type_id;
2477
2478 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2479 &resolved_member,
2480 resolved_type);
2481}
2482
2483static int btf_ptr_check_member(struct btf_verifier_env *env,
2484 const struct btf_type *struct_type,
2485 const struct btf_member *member,
2486 const struct btf_type *member_type)
2487{
2488 u32 struct_size, struct_bits_off, bytes_offset;
2489
2490 struct_size = struct_type->size;
2491 struct_bits_off = member->offset;
2492 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2493
2494 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2495 btf_verifier_log_member(env, struct_type, member,
2496 "Member is not byte aligned");
2497 return -EINVAL;
2498 }
2499
2500 if (struct_size - bytes_offset < sizeof(void *)) {
2501 btf_verifier_log_member(env, struct_type, member,
2502 "Member exceeds struct_size");
2503 return -EINVAL;
2504 }
2505
2506 return 0;
2507}
2508
2509static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2510 const struct btf_type *t,
2511 u32 meta_left)
2512{
2513 const char *value;
2514
2515 if (btf_type_vlen(t)) {
2516 btf_verifier_log_type(env, t, "vlen != 0");
2517 return -EINVAL;
2518 }
2519
2520 if (btf_type_kflag(t)) {
2521 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2522 return -EINVAL;
2523 }
2524
2525 if (!BTF_TYPE_ID_VALID(t->type)) {
2526 btf_verifier_log_type(env, t, "Invalid type_id");
2527 return -EINVAL;
2528 }
2529
2530 /* typedef/type_tag type must have a valid name, and other ref types,
2531 * volatile, const, restrict, should have a null name.
2532 */
2533 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2534 if (!t->name_off ||
2535 !btf_name_valid_identifier(env->btf, t->name_off)) {
2536 btf_verifier_log_type(env, t, "Invalid name");
2537 return -EINVAL;
2538 }
2539 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2540 value = btf_name_by_offset(env->btf, t->name_off);
2541 if (!value || !value[0]) {
2542 btf_verifier_log_type(env, t, "Invalid name");
2543 return -EINVAL;
2544 }
2545 } else {
2546 if (t->name_off) {
2547 btf_verifier_log_type(env, t, "Invalid name");
2548 return -EINVAL;
2549 }
2550 }
2551
2552 btf_verifier_log_type(env, t, NULL);
2553
2554 return 0;
2555}
2556
2557static int btf_modifier_resolve(struct btf_verifier_env *env,
2558 const struct resolve_vertex *v)
2559{
2560 const struct btf_type *t = v->t;
2561 const struct btf_type *next_type;
2562 u32 next_type_id = t->type;
2563 struct btf *btf = env->btf;
2564
2565 next_type = btf_type_by_id(btf, next_type_id);
2566 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2567 btf_verifier_log_type(env, v->t, "Invalid type_id");
2568 return -EINVAL;
2569 }
2570
2571 if (!env_type_is_resolve_sink(env, next_type) &&
2572 !env_type_is_resolved(env, next_type_id))
2573 return env_stack_push(env, next_type, next_type_id);
2574
2575 /* Figure out the resolved next_type_id with size.
2576 * They will be stored in the current modifier's
2577 * resolved_ids and resolved_sizes such that it can
2578 * save us a few type-following when we use it later (e.g. in
2579 * pretty print).
2580 */
2581 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2582 if (env_type_is_resolved(env, next_type_id))
2583 next_type = btf_type_id_resolve(btf, &next_type_id);
2584
2585 /* "typedef void new_void", "const void"...etc */
2586 if (!btf_type_is_void(next_type) &&
2587 !btf_type_is_fwd(next_type) &&
2588 !btf_type_is_func_proto(next_type)) {
2589 btf_verifier_log_type(env, v->t, "Invalid type_id");
2590 return -EINVAL;
2591 }
2592 }
2593
2594 env_stack_pop_resolved(env, next_type_id, 0);
2595
2596 return 0;
2597}
2598
2599static int btf_var_resolve(struct btf_verifier_env *env,
2600 const struct resolve_vertex *v)
2601{
2602 const struct btf_type *next_type;
2603 const struct btf_type *t = v->t;
2604 u32 next_type_id = t->type;
2605 struct btf *btf = env->btf;
2606
2607 next_type = btf_type_by_id(btf, next_type_id);
2608 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2609 btf_verifier_log_type(env, v->t, "Invalid type_id");
2610 return -EINVAL;
2611 }
2612
2613 if (!env_type_is_resolve_sink(env, next_type) &&
2614 !env_type_is_resolved(env, next_type_id))
2615 return env_stack_push(env, next_type, next_type_id);
2616
2617 if (btf_type_is_modifier(next_type)) {
2618 const struct btf_type *resolved_type;
2619 u32 resolved_type_id;
2620
2621 resolved_type_id = next_type_id;
2622 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2623
2624 if (btf_type_is_ptr(resolved_type) &&
2625 !env_type_is_resolve_sink(env, resolved_type) &&
2626 !env_type_is_resolved(env, resolved_type_id))
2627 return env_stack_push(env, resolved_type,
2628 resolved_type_id);
2629 }
2630
2631 /* We must resolve to something concrete at this point, no
2632 * forward types or similar that would resolve to size of
2633 * zero is allowed.
2634 */
2635 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2636 btf_verifier_log_type(env, v->t, "Invalid type_id");
2637 return -EINVAL;
2638 }
2639
2640 env_stack_pop_resolved(env, next_type_id, 0);
2641
2642 return 0;
2643}
2644
2645static int btf_ptr_resolve(struct btf_verifier_env *env,
2646 const struct resolve_vertex *v)
2647{
2648 const struct btf_type *next_type;
2649 const struct btf_type *t = v->t;
2650 u32 next_type_id = t->type;
2651 struct btf *btf = env->btf;
2652
2653 next_type = btf_type_by_id(btf, next_type_id);
2654 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2655 btf_verifier_log_type(env, v->t, "Invalid type_id");
2656 return -EINVAL;
2657 }
2658
2659 if (!env_type_is_resolve_sink(env, next_type) &&
2660 !env_type_is_resolved(env, next_type_id))
2661 return env_stack_push(env, next_type, next_type_id);
2662
2663 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2664 * the modifier may have stopped resolving when it was resolved
2665 * to a ptr (last-resolved-ptr).
2666 *
2667 * We now need to continue from the last-resolved-ptr to
2668 * ensure the last-resolved-ptr will not referring back to
2669 * the current ptr (t).
2670 */
2671 if (btf_type_is_modifier(next_type)) {
2672 const struct btf_type *resolved_type;
2673 u32 resolved_type_id;
2674
2675 resolved_type_id = next_type_id;
2676 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2677
2678 if (btf_type_is_ptr(resolved_type) &&
2679 !env_type_is_resolve_sink(env, resolved_type) &&
2680 !env_type_is_resolved(env, resolved_type_id))
2681 return env_stack_push(env, resolved_type,
2682 resolved_type_id);
2683 }
2684
2685 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2686 if (env_type_is_resolved(env, next_type_id))
2687 next_type = btf_type_id_resolve(btf, &next_type_id);
2688
2689 if (!btf_type_is_void(next_type) &&
2690 !btf_type_is_fwd(next_type) &&
2691 !btf_type_is_func_proto(next_type)) {
2692 btf_verifier_log_type(env, v->t, "Invalid type_id");
2693 return -EINVAL;
2694 }
2695 }
2696
2697 env_stack_pop_resolved(env, next_type_id, 0);
2698
2699 return 0;
2700}
2701
2702static void btf_modifier_show(const struct btf *btf,
2703 const struct btf_type *t,
2704 u32 type_id, void *data,
2705 u8 bits_offset, struct btf_show *show)
2706{
2707 if (btf->resolved_ids)
2708 t = btf_type_id_resolve(btf, &type_id);
2709 else
2710 t = btf_type_skip_modifiers(btf, type_id, NULL);
2711
2712 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2713}
2714
2715static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2716 u32 type_id, void *data, u8 bits_offset,
2717 struct btf_show *show)
2718{
2719 t = btf_type_id_resolve(btf, &type_id);
2720
2721 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2722}
2723
2724static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2725 u32 type_id, void *data, u8 bits_offset,
2726 struct btf_show *show)
2727{
2728 void *safe_data;
2729
2730 safe_data = btf_show_start_type(show, t, type_id, data);
2731 if (!safe_data)
2732 return;
2733
2734 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2735 if (show->flags & BTF_SHOW_PTR_RAW)
2736 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2737 else
2738 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2739 btf_show_end_type(show);
2740}
2741
2742static void btf_ref_type_log(struct btf_verifier_env *env,
2743 const struct btf_type *t)
2744{
2745 btf_verifier_log(env, "type_id=%u", t->type);
2746}
2747
2748static struct btf_kind_operations modifier_ops = {
2749 .check_meta = btf_ref_type_check_meta,
2750 .resolve = btf_modifier_resolve,
2751 .check_member = btf_modifier_check_member,
2752 .check_kflag_member = btf_modifier_check_kflag_member,
2753 .log_details = btf_ref_type_log,
2754 .show = btf_modifier_show,
2755};
2756
2757static struct btf_kind_operations ptr_ops = {
2758 .check_meta = btf_ref_type_check_meta,
2759 .resolve = btf_ptr_resolve,
2760 .check_member = btf_ptr_check_member,
2761 .check_kflag_member = btf_generic_check_kflag_member,
2762 .log_details = btf_ref_type_log,
2763 .show = btf_ptr_show,
2764};
2765
2766static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2767 const struct btf_type *t,
2768 u32 meta_left)
2769{
2770 if (btf_type_vlen(t)) {
2771 btf_verifier_log_type(env, t, "vlen != 0");
2772 return -EINVAL;
2773 }
2774
2775 if (t->type) {
2776 btf_verifier_log_type(env, t, "type != 0");
2777 return -EINVAL;
2778 }
2779
2780 /* fwd type must have a valid name */
2781 if (!t->name_off ||
2782 !btf_name_valid_identifier(env->btf, t->name_off)) {
2783 btf_verifier_log_type(env, t, "Invalid name");
2784 return -EINVAL;
2785 }
2786
2787 btf_verifier_log_type(env, t, NULL);
2788
2789 return 0;
2790}
2791
2792static void btf_fwd_type_log(struct btf_verifier_env *env,
2793 const struct btf_type *t)
2794{
2795 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2796}
2797
2798static struct btf_kind_operations fwd_ops = {
2799 .check_meta = btf_fwd_check_meta,
2800 .resolve = btf_df_resolve,
2801 .check_member = btf_df_check_member,
2802 .check_kflag_member = btf_df_check_kflag_member,
2803 .log_details = btf_fwd_type_log,
2804 .show = btf_df_show,
2805};
2806
2807static int btf_array_check_member(struct btf_verifier_env *env,
2808 const struct btf_type *struct_type,
2809 const struct btf_member *member,
2810 const struct btf_type *member_type)
2811{
2812 u32 struct_bits_off = member->offset;
2813 u32 struct_size, bytes_offset;
2814 u32 array_type_id, array_size;
2815 struct btf *btf = env->btf;
2816
2817 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2818 btf_verifier_log_member(env, struct_type, member,
2819 "Member is not byte aligned");
2820 return -EINVAL;
2821 }
2822
2823 array_type_id = member->type;
2824 btf_type_id_size(btf, &array_type_id, &array_size);
2825 struct_size = struct_type->size;
2826 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2827 if (struct_size - bytes_offset < array_size) {
2828 btf_verifier_log_member(env, struct_type, member,
2829 "Member exceeds struct_size");
2830 return -EINVAL;
2831 }
2832
2833 return 0;
2834}
2835
2836static s32 btf_array_check_meta(struct btf_verifier_env *env,
2837 const struct btf_type *t,
2838 u32 meta_left)
2839{
2840 const struct btf_array *array = btf_type_array(t);
2841 u32 meta_needed = sizeof(*array);
2842
2843 if (meta_left < meta_needed) {
2844 btf_verifier_log_basic(env, t,
2845 "meta_left:%u meta_needed:%u",
2846 meta_left, meta_needed);
2847 return -EINVAL;
2848 }
2849
2850 /* array type should not have a name */
2851 if (t->name_off) {
2852 btf_verifier_log_type(env, t, "Invalid name");
2853 return -EINVAL;
2854 }
2855
2856 if (btf_type_vlen(t)) {
2857 btf_verifier_log_type(env, t, "vlen != 0");
2858 return -EINVAL;
2859 }
2860
2861 if (btf_type_kflag(t)) {
2862 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2863 return -EINVAL;
2864 }
2865
2866 if (t->size) {
2867 btf_verifier_log_type(env, t, "size != 0");
2868 return -EINVAL;
2869 }
2870
2871 /* Array elem type and index type cannot be in type void,
2872 * so !array->type and !array->index_type are not allowed.
2873 */
2874 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2875 btf_verifier_log_type(env, t, "Invalid elem");
2876 return -EINVAL;
2877 }
2878
2879 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2880 btf_verifier_log_type(env, t, "Invalid index");
2881 return -EINVAL;
2882 }
2883
2884 btf_verifier_log_type(env, t, NULL);
2885
2886 return meta_needed;
2887}
2888
2889static int btf_array_resolve(struct btf_verifier_env *env,
2890 const struct resolve_vertex *v)
2891{
2892 const struct btf_array *array = btf_type_array(v->t);
2893 const struct btf_type *elem_type, *index_type;
2894 u32 elem_type_id, index_type_id;
2895 struct btf *btf = env->btf;
2896 u32 elem_size;
2897
2898 /* Check array->index_type */
2899 index_type_id = array->index_type;
2900 index_type = btf_type_by_id(btf, index_type_id);
2901 if (btf_type_nosize_or_null(index_type) ||
2902 btf_type_is_resolve_source_only(index_type)) {
2903 btf_verifier_log_type(env, v->t, "Invalid index");
2904 return -EINVAL;
2905 }
2906
2907 if (!env_type_is_resolve_sink(env, index_type) &&
2908 !env_type_is_resolved(env, index_type_id))
2909 return env_stack_push(env, index_type, index_type_id);
2910
2911 index_type = btf_type_id_size(btf, &index_type_id, NULL);
2912 if (!index_type || !btf_type_is_int(index_type) ||
2913 !btf_type_int_is_regular(index_type)) {
2914 btf_verifier_log_type(env, v->t, "Invalid index");
2915 return -EINVAL;
2916 }
2917
2918 /* Check array->type */
2919 elem_type_id = array->type;
2920 elem_type = btf_type_by_id(btf, elem_type_id);
2921 if (btf_type_nosize_or_null(elem_type) ||
2922 btf_type_is_resolve_source_only(elem_type)) {
2923 btf_verifier_log_type(env, v->t,
2924 "Invalid elem");
2925 return -EINVAL;
2926 }
2927
2928 if (!env_type_is_resolve_sink(env, elem_type) &&
2929 !env_type_is_resolved(env, elem_type_id))
2930 return env_stack_push(env, elem_type, elem_type_id);
2931
2932 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2933 if (!elem_type) {
2934 btf_verifier_log_type(env, v->t, "Invalid elem");
2935 return -EINVAL;
2936 }
2937
2938 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2939 btf_verifier_log_type(env, v->t, "Invalid array of int");
2940 return -EINVAL;
2941 }
2942
2943 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2944 btf_verifier_log_type(env, v->t,
2945 "Array size overflows U32_MAX");
2946 return -EINVAL;
2947 }
2948
2949 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2950
2951 return 0;
2952}
2953
2954static void btf_array_log(struct btf_verifier_env *env,
2955 const struct btf_type *t)
2956{
2957 const struct btf_array *array = btf_type_array(t);
2958
2959 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2960 array->type, array->index_type, array->nelems);
2961}
2962
2963static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2964 u32 type_id, void *data, u8 bits_offset,
2965 struct btf_show *show)
2966{
2967 const struct btf_array *array = btf_type_array(t);
2968 const struct btf_kind_operations *elem_ops;
2969 const struct btf_type *elem_type;
2970 u32 i, elem_size = 0, elem_type_id;
2971 u16 encoding = 0;
2972
2973 elem_type_id = array->type;
2974 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2975 if (elem_type && btf_type_has_size(elem_type))
2976 elem_size = elem_type->size;
2977
2978 if (elem_type && btf_type_is_int(elem_type)) {
2979 u32 int_type = btf_type_int(elem_type);
2980
2981 encoding = BTF_INT_ENCODING(int_type);
2982
2983 /*
2984 * BTF_INT_CHAR encoding never seems to be set for
2985 * char arrays, so if size is 1 and element is
2986 * printable as a char, we'll do that.
2987 */
2988 if (elem_size == 1)
2989 encoding = BTF_INT_CHAR;
2990 }
2991
2992 if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2993 return;
2994
2995 if (!elem_type)
2996 goto out;
2997 elem_ops = btf_type_ops(elem_type);
2998
2999 for (i = 0; i < array->nelems; i++) {
3000
3001 btf_show_start_array_member(show);
3002
3003 elem_ops->show(btf, elem_type, elem_type_id, data,
3004 bits_offset, show);
3005 data += elem_size;
3006
3007 btf_show_end_array_member(show);
3008
3009 if (show->state.array_terminated)
3010 break;
3011 }
3012out:
3013 btf_show_end_array_type(show);
3014}
3015
3016static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3017 u32 type_id, void *data, u8 bits_offset,
3018 struct btf_show *show)
3019{
3020 const struct btf_member *m = show->state.member;
3021
3022 /*
3023 * First check if any members would be shown (are non-zero).
3024 * See comments above "struct btf_show" definition for more
3025 * details on how this works at a high-level.
3026 */
3027 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3028 if (!show->state.depth_check) {
3029 show->state.depth_check = show->state.depth + 1;
3030 show->state.depth_to_show = 0;
3031 }
3032 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3033 show->state.member = m;
3034
3035 if (show->state.depth_check != show->state.depth + 1)
3036 return;
3037 show->state.depth_check = 0;
3038
3039 if (show->state.depth_to_show <= show->state.depth)
3040 return;
3041 /*
3042 * Reaching here indicates we have recursed and found
3043 * non-zero array member(s).
3044 */
3045 }
3046 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3047}
3048
3049static struct btf_kind_operations array_ops = {
3050 .check_meta = btf_array_check_meta,
3051 .resolve = btf_array_resolve,
3052 .check_member = btf_array_check_member,
3053 .check_kflag_member = btf_generic_check_kflag_member,
3054 .log_details = btf_array_log,
3055 .show = btf_array_show,
3056};
3057
3058static int btf_struct_check_member(struct btf_verifier_env *env,
3059 const struct btf_type *struct_type,
3060 const struct btf_member *member,
3061 const struct btf_type *member_type)
3062{
3063 u32 struct_bits_off = member->offset;
3064 u32 struct_size, bytes_offset;
3065
3066 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3067 btf_verifier_log_member(env, struct_type, member,
3068 "Member is not byte aligned");
3069 return -EINVAL;
3070 }
3071
3072 struct_size = struct_type->size;
3073 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3074 if (struct_size - bytes_offset < member_type->size) {
3075 btf_verifier_log_member(env, struct_type, member,
3076 "Member exceeds struct_size");
3077 return -EINVAL;
3078 }
3079
3080 return 0;
3081}
3082
3083static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3084 const struct btf_type *t,
3085 u32 meta_left)
3086{
3087 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3088 const struct btf_member *member;
3089 u32 meta_needed, last_offset;
3090 struct btf *btf = env->btf;
3091 u32 struct_size = t->size;
3092 u32 offset;
3093 u16 i;
3094
3095 meta_needed = btf_type_vlen(t) * sizeof(*member);
3096 if (meta_left < meta_needed) {
3097 btf_verifier_log_basic(env, t,
3098 "meta_left:%u meta_needed:%u",
3099 meta_left, meta_needed);
3100 return -EINVAL;
3101 }
3102
3103 /* struct type either no name or a valid one */
3104 if (t->name_off &&
3105 !btf_name_valid_identifier(env->btf, t->name_off)) {
3106 btf_verifier_log_type(env, t, "Invalid name");
3107 return -EINVAL;
3108 }
3109
3110 btf_verifier_log_type(env, t, NULL);
3111
3112 last_offset = 0;
3113 for_each_member(i, t, member) {
3114 if (!btf_name_offset_valid(btf, member->name_off)) {
3115 btf_verifier_log_member(env, t, member,
3116 "Invalid member name_offset:%u",
3117 member->name_off);
3118 return -EINVAL;
3119 }
3120
3121 /* struct member either no name or a valid one */
3122 if (member->name_off &&
3123 !btf_name_valid_identifier(btf, member->name_off)) {
3124 btf_verifier_log_member(env, t, member, "Invalid name");
3125 return -EINVAL;
3126 }
3127 /* A member cannot be in type void */
3128 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3129 btf_verifier_log_member(env, t, member,
3130 "Invalid type_id");
3131 return -EINVAL;
3132 }
3133
3134 offset = __btf_member_bit_offset(t, member);
3135 if (is_union && offset) {
3136 btf_verifier_log_member(env, t, member,
3137 "Invalid member bits_offset");
3138 return -EINVAL;
3139 }
3140
3141 /*
3142 * ">" instead of ">=" because the last member could be
3143 * "char a[0];"
3144 */
3145 if (last_offset > offset) {
3146 btf_verifier_log_member(env, t, member,
3147 "Invalid member bits_offset");
3148 return -EINVAL;
3149 }
3150
3151 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3152 btf_verifier_log_member(env, t, member,
3153 "Member bits_offset exceeds its struct size");
3154 return -EINVAL;
3155 }
3156
3157 btf_verifier_log_member(env, t, member, NULL);
3158 last_offset = offset;
3159 }
3160
3161 return meta_needed;
3162}
3163
3164static int btf_struct_resolve(struct btf_verifier_env *env,
3165 const struct resolve_vertex *v)
3166{
3167 const struct btf_member *member;
3168 int err;
3169 u16 i;
3170
3171 /* Before continue resolving the next_member,
3172 * ensure the last member is indeed resolved to a
3173 * type with size info.
3174 */
3175 if (v->next_member) {
3176 const struct btf_type *last_member_type;
3177 const struct btf_member *last_member;
3178 u32 last_member_type_id;
3179
3180 last_member = btf_type_member(v->t) + v->next_member - 1;
3181 last_member_type_id = last_member->type;
3182 if (WARN_ON_ONCE(!env_type_is_resolved(env,
3183 last_member_type_id)))
3184 return -EINVAL;
3185
3186 last_member_type = btf_type_by_id(env->btf,
3187 last_member_type_id);
3188 if (btf_type_kflag(v->t))
3189 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3190 last_member,
3191 last_member_type);
3192 else
3193 err = btf_type_ops(last_member_type)->check_member(env, v->t,
3194 last_member,
3195 last_member_type);
3196 if (err)
3197 return err;
3198 }
3199
3200 for_each_member_from(i, v->next_member, v->t, member) {
3201 u32 member_type_id = member->type;
3202 const struct btf_type *member_type = btf_type_by_id(env->btf,
3203 member_type_id);
3204
3205 if (btf_type_nosize_or_null(member_type) ||
3206 btf_type_is_resolve_source_only(member_type)) {
3207 btf_verifier_log_member(env, v->t, member,
3208 "Invalid member");
3209 return -EINVAL;
3210 }
3211
3212 if (!env_type_is_resolve_sink(env, member_type) &&
3213 !env_type_is_resolved(env, member_type_id)) {
3214 env_stack_set_next_member(env, i + 1);
3215 return env_stack_push(env, member_type, member_type_id);
3216 }
3217
3218 if (btf_type_kflag(v->t))
3219 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3220 member,
3221 member_type);
3222 else
3223 err = btf_type_ops(member_type)->check_member(env, v->t,
3224 member,
3225 member_type);
3226 if (err)
3227 return err;
3228 }
3229
3230 env_stack_pop_resolved(env, 0, 0);
3231
3232 return 0;
3233}
3234
3235static void btf_struct_log(struct btf_verifier_env *env,
3236 const struct btf_type *t)
3237{
3238 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3239}
3240
3241enum {
3242 BTF_FIELD_IGNORE = 0,
3243 BTF_FIELD_FOUND = 1,
3244};
3245
3246struct btf_field_info {
3247 enum btf_field_type type;
3248 u32 off;
3249 union {
3250 struct {
3251 u32 type_id;
3252 } kptr;
3253 struct {
3254 const char *node_name;
3255 u32 value_btf_id;
3256 } graph_root;
3257 };
3258};
3259
3260static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3261 u32 off, int sz, enum btf_field_type field_type,
3262 struct btf_field_info *info)
3263{
3264 if (!__btf_type_is_struct(t))
3265 return BTF_FIELD_IGNORE;
3266 if (t->size != sz)
3267 return BTF_FIELD_IGNORE;
3268 info->type = field_type;
3269 info->off = off;
3270 return BTF_FIELD_FOUND;
3271}
3272
3273static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3274 u32 off, int sz, struct btf_field_info *info)
3275{
3276 enum btf_field_type type;
3277 u32 res_id;
3278
3279 /* Permit modifiers on the pointer itself */
3280 if (btf_type_is_volatile(t))
3281 t = btf_type_by_id(btf, t->type);
3282 /* For PTR, sz is always == 8 */
3283 if (!btf_type_is_ptr(t))
3284 return BTF_FIELD_IGNORE;
3285 t = btf_type_by_id(btf, t->type);
3286
3287 if (!btf_type_is_type_tag(t))
3288 return BTF_FIELD_IGNORE;
3289 /* Reject extra tags */
3290 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3291 return -EINVAL;
3292 if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3293 type = BPF_KPTR_UNREF;
3294 else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3295 type = BPF_KPTR_REF;
3296 else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off)))
3297 type = BPF_KPTR_PERCPU;
3298 else
3299 return -EINVAL;
3300
3301 /* Get the base type */
3302 t = btf_type_skip_modifiers(btf, t->type, &res_id);
3303 /* Only pointer to struct is allowed */
3304 if (!__btf_type_is_struct(t))
3305 return -EINVAL;
3306
3307 info->type = type;
3308 info->off = off;
3309 info->kptr.type_id = res_id;
3310 return BTF_FIELD_FOUND;
3311}
3312
3313const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3314 int comp_idx, const char *tag_key)
3315{
3316 const char *value = NULL;
3317 int i;
3318
3319 for (i = 1; i < btf_nr_types(btf); i++) {
3320 const struct btf_type *t = btf_type_by_id(btf, i);
3321 int len = strlen(tag_key);
3322
3323 if (!btf_type_is_decl_tag(t))
3324 continue;
3325 if (pt != btf_type_by_id(btf, t->type) ||
3326 btf_type_decl_tag(t)->component_idx != comp_idx)
3327 continue;
3328 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3329 continue;
3330 /* Prevent duplicate entries for same type */
3331 if (value)
3332 return ERR_PTR(-EEXIST);
3333 value = __btf_name_by_offset(btf, t->name_off) + len;
3334 }
3335 if (!value)
3336 return ERR_PTR(-ENOENT);
3337 return value;
3338}
3339
3340static int
3341btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3342 const struct btf_type *t, int comp_idx, u32 off,
3343 int sz, struct btf_field_info *info,
3344 enum btf_field_type head_type)
3345{
3346 const char *node_field_name;
3347 const char *value_type;
3348 s32 id;
3349
3350 if (!__btf_type_is_struct(t))
3351 return BTF_FIELD_IGNORE;
3352 if (t->size != sz)
3353 return BTF_FIELD_IGNORE;
3354 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3355 if (IS_ERR(value_type))
3356 return -EINVAL;
3357 node_field_name = strstr(value_type, ":");
3358 if (!node_field_name)
3359 return -EINVAL;
3360 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3361 if (!value_type)
3362 return -ENOMEM;
3363 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3364 kfree(value_type);
3365 if (id < 0)
3366 return id;
3367 node_field_name++;
3368 if (str_is_empty(node_field_name))
3369 return -EINVAL;
3370 info->type = head_type;
3371 info->off = off;
3372 info->graph_root.value_btf_id = id;
3373 info->graph_root.node_name = node_field_name;
3374 return BTF_FIELD_FOUND;
3375}
3376
3377#define field_mask_test_name(field_type, field_type_str) \
3378 if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3379 type = field_type; \
3380 goto end; \
3381 }
3382
3383static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3384 int *align, int *sz)
3385{
3386 int type = 0;
3387
3388 if (field_mask & BPF_SPIN_LOCK) {
3389 if (!strcmp(name, "bpf_spin_lock")) {
3390 if (*seen_mask & BPF_SPIN_LOCK)
3391 return -E2BIG;
3392 *seen_mask |= BPF_SPIN_LOCK;
3393 type = BPF_SPIN_LOCK;
3394 goto end;
3395 }
3396 }
3397 if (field_mask & BPF_TIMER) {
3398 if (!strcmp(name, "bpf_timer")) {
3399 if (*seen_mask & BPF_TIMER)
3400 return -E2BIG;
3401 *seen_mask |= BPF_TIMER;
3402 type = BPF_TIMER;
3403 goto end;
3404 }
3405 }
3406 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3407 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3408 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root");
3409 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node");
3410 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount");
3411
3412 /* Only return BPF_KPTR when all other types with matchable names fail */
3413 if (field_mask & BPF_KPTR) {
3414 type = BPF_KPTR_REF;
3415 goto end;
3416 }
3417 return 0;
3418end:
3419 *sz = btf_field_type_size(type);
3420 *align = btf_field_type_align(type);
3421 return type;
3422}
3423
3424#undef field_mask_test_name
3425
3426static int btf_find_struct_field(const struct btf *btf,
3427 const struct btf_type *t, u32 field_mask,
3428 struct btf_field_info *info, int info_cnt)
3429{
3430 int ret, idx = 0, align, sz, field_type;
3431 const struct btf_member *member;
3432 struct btf_field_info tmp;
3433 u32 i, off, seen_mask = 0;
3434
3435 for_each_member(i, t, member) {
3436 const struct btf_type *member_type = btf_type_by_id(btf,
3437 member->type);
3438
3439 field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
3440 field_mask, &seen_mask, &align, &sz);
3441 if (field_type == 0)
3442 continue;
3443 if (field_type < 0)
3444 return field_type;
3445
3446 off = __btf_member_bit_offset(t, member);
3447 if (off % 8)
3448 /* valid C code cannot generate such BTF */
3449 return -EINVAL;
3450 off /= 8;
3451 if (off % align)
3452 continue;
3453
3454 switch (field_type) {
3455 case BPF_SPIN_LOCK:
3456 case BPF_TIMER:
3457 case BPF_LIST_NODE:
3458 case BPF_RB_NODE:
3459 case BPF_REFCOUNT:
3460 ret = btf_find_struct(btf, member_type, off, sz, field_type,
3461 idx < info_cnt ? &info[idx] : &tmp);
3462 if (ret < 0)
3463 return ret;
3464 break;
3465 case BPF_KPTR_UNREF:
3466 case BPF_KPTR_REF:
3467 case BPF_KPTR_PERCPU:
3468 ret = btf_find_kptr(btf, member_type, off, sz,
3469 idx < info_cnt ? &info[idx] : &tmp);
3470 if (ret < 0)
3471 return ret;
3472 break;
3473 case BPF_LIST_HEAD:
3474 case BPF_RB_ROOT:
3475 ret = btf_find_graph_root(btf, t, member_type,
3476 i, off, sz,
3477 idx < info_cnt ? &info[idx] : &tmp,
3478 field_type);
3479 if (ret < 0)
3480 return ret;
3481 break;
3482 default:
3483 return -EFAULT;
3484 }
3485
3486 if (ret == BTF_FIELD_IGNORE)
3487 continue;
3488 if (idx >= info_cnt)
3489 return -E2BIG;
3490 ++idx;
3491 }
3492 return idx;
3493}
3494
3495static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3496 u32 field_mask, struct btf_field_info *info,
3497 int info_cnt)
3498{
3499 int ret, idx = 0, align, sz, field_type;
3500 const struct btf_var_secinfo *vsi;
3501 struct btf_field_info tmp;
3502 u32 i, off, seen_mask = 0;
3503
3504 for_each_vsi(i, t, vsi) {
3505 const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3506 const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3507
3508 field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
3509 field_mask, &seen_mask, &align, &sz);
3510 if (field_type == 0)
3511 continue;
3512 if (field_type < 0)
3513 return field_type;
3514
3515 off = vsi->offset;
3516 if (vsi->size != sz)
3517 continue;
3518 if (off % align)
3519 continue;
3520
3521 switch (field_type) {
3522 case BPF_SPIN_LOCK:
3523 case BPF_TIMER:
3524 case BPF_LIST_NODE:
3525 case BPF_RB_NODE:
3526 case BPF_REFCOUNT:
3527 ret = btf_find_struct(btf, var_type, off, sz, field_type,
3528 idx < info_cnt ? &info[idx] : &tmp);
3529 if (ret < 0)
3530 return ret;
3531 break;
3532 case BPF_KPTR_UNREF:
3533 case BPF_KPTR_REF:
3534 case BPF_KPTR_PERCPU:
3535 ret = btf_find_kptr(btf, var_type, off, sz,
3536 idx < info_cnt ? &info[idx] : &tmp);
3537 if (ret < 0)
3538 return ret;
3539 break;
3540 case BPF_LIST_HEAD:
3541 case BPF_RB_ROOT:
3542 ret = btf_find_graph_root(btf, var, var_type,
3543 -1, off, sz,
3544 idx < info_cnt ? &info[idx] : &tmp,
3545 field_type);
3546 if (ret < 0)
3547 return ret;
3548 break;
3549 default:
3550 return -EFAULT;
3551 }
3552
3553 if (ret == BTF_FIELD_IGNORE)
3554 continue;
3555 if (idx >= info_cnt)
3556 return -E2BIG;
3557 ++idx;
3558 }
3559 return idx;
3560}
3561
3562static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3563 u32 field_mask, struct btf_field_info *info,
3564 int info_cnt)
3565{
3566 if (__btf_type_is_struct(t))
3567 return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
3568 else if (btf_type_is_datasec(t))
3569 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
3570 return -EINVAL;
3571}
3572
3573static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3574 struct btf_field_info *info)
3575{
3576 struct module *mod = NULL;
3577 const struct btf_type *t;
3578 /* If a matching btf type is found in kernel or module BTFs, kptr_ref
3579 * is that BTF, otherwise it's program BTF
3580 */
3581 struct btf *kptr_btf;
3582 int ret;
3583 s32 id;
3584
3585 /* Find type in map BTF, and use it to look up the matching type
3586 * in vmlinux or module BTFs, by name and kind.
3587 */
3588 t = btf_type_by_id(btf, info->kptr.type_id);
3589 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3590 &kptr_btf);
3591 if (id == -ENOENT) {
3592 /* btf_parse_kptr should only be called w/ btf = program BTF */
3593 WARN_ON_ONCE(btf_is_kernel(btf));
3594
3595 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3596 * kptr allocated via bpf_obj_new
3597 */
3598 field->kptr.dtor = NULL;
3599 id = info->kptr.type_id;
3600 kptr_btf = (struct btf *)btf;
3601 btf_get(kptr_btf);
3602 goto found_dtor;
3603 }
3604 if (id < 0)
3605 return id;
3606
3607 /* Find and stash the function pointer for the destruction function that
3608 * needs to be eventually invoked from the map free path.
3609 */
3610 if (info->type == BPF_KPTR_REF) {
3611 const struct btf_type *dtor_func;
3612 const char *dtor_func_name;
3613 unsigned long addr;
3614 s32 dtor_btf_id;
3615
3616 /* This call also serves as a whitelist of allowed objects that
3617 * can be used as a referenced pointer and be stored in a map at
3618 * the same time.
3619 */
3620 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3621 if (dtor_btf_id < 0) {
3622 ret = dtor_btf_id;
3623 goto end_btf;
3624 }
3625
3626 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3627 if (!dtor_func) {
3628 ret = -ENOENT;
3629 goto end_btf;
3630 }
3631
3632 if (btf_is_module(kptr_btf)) {
3633 mod = btf_try_get_module(kptr_btf);
3634 if (!mod) {
3635 ret = -ENXIO;
3636 goto end_btf;
3637 }
3638 }
3639
3640 /* We already verified dtor_func to be btf_type_is_func
3641 * in register_btf_id_dtor_kfuncs.
3642 */
3643 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3644 addr = kallsyms_lookup_name(dtor_func_name);
3645 if (!addr) {
3646 ret = -EINVAL;
3647 goto end_mod;
3648 }
3649 field->kptr.dtor = (void *)addr;
3650 }
3651
3652found_dtor:
3653 field->kptr.btf_id = id;
3654 field->kptr.btf = kptr_btf;
3655 field->kptr.module = mod;
3656 return 0;
3657end_mod:
3658 module_put(mod);
3659end_btf:
3660 btf_put(kptr_btf);
3661 return ret;
3662}
3663
3664static int btf_parse_graph_root(const struct btf *btf,
3665 struct btf_field *field,
3666 struct btf_field_info *info,
3667 const char *node_type_name,
3668 size_t node_type_align)
3669{
3670 const struct btf_type *t, *n = NULL;
3671 const struct btf_member *member;
3672 u32 offset;
3673 int i;
3674
3675 t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3676 /* We've already checked that value_btf_id is a struct type. We
3677 * just need to figure out the offset of the list_node, and
3678 * verify its type.
3679 */
3680 for_each_member(i, t, member) {
3681 if (strcmp(info->graph_root.node_name,
3682 __btf_name_by_offset(btf, member->name_off)))
3683 continue;
3684 /* Invalid BTF, two members with same name */
3685 if (n)
3686 return -EINVAL;
3687 n = btf_type_by_id(btf, member->type);
3688 if (!__btf_type_is_struct(n))
3689 return -EINVAL;
3690 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3691 return -EINVAL;
3692 offset = __btf_member_bit_offset(n, member);
3693 if (offset % 8)
3694 return -EINVAL;
3695 offset /= 8;
3696 if (offset % node_type_align)
3697 return -EINVAL;
3698
3699 field->graph_root.btf = (struct btf *)btf;
3700 field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3701 field->graph_root.node_offset = offset;
3702 }
3703 if (!n)
3704 return -ENOENT;
3705 return 0;
3706}
3707
3708static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3709 struct btf_field_info *info)
3710{
3711 return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3712 __alignof__(struct bpf_list_node));
3713}
3714
3715static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3716 struct btf_field_info *info)
3717{
3718 return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3719 __alignof__(struct bpf_rb_node));
3720}
3721
3722static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3723{
3724 const struct btf_field *a = (const struct btf_field *)_a;
3725 const struct btf_field *b = (const struct btf_field *)_b;
3726
3727 if (a->offset < b->offset)
3728 return -1;
3729 else if (a->offset > b->offset)
3730 return 1;
3731 return 0;
3732}
3733
3734struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3735 u32 field_mask, u32 value_size)
3736{
3737 struct btf_field_info info_arr[BTF_FIELDS_MAX];
3738 u32 next_off = 0, field_type_size;
3739 struct btf_record *rec;
3740 int ret, i, cnt;
3741
3742 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3743 if (ret < 0)
3744 return ERR_PTR(ret);
3745 if (!ret)
3746 return NULL;
3747
3748 cnt = ret;
3749 /* This needs to be kzalloc to zero out padding and unused fields, see
3750 * comment in btf_record_equal.
3751 */
3752 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3753 if (!rec)
3754 return ERR_PTR(-ENOMEM);
3755
3756 rec->spin_lock_off = -EINVAL;
3757 rec->timer_off = -EINVAL;
3758 rec->refcount_off = -EINVAL;
3759 for (i = 0; i < cnt; i++) {
3760 field_type_size = btf_field_type_size(info_arr[i].type);
3761 if (info_arr[i].off + field_type_size > value_size) {
3762 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3763 ret = -EFAULT;
3764 goto end;
3765 }
3766 if (info_arr[i].off < next_off) {
3767 ret = -EEXIST;
3768 goto end;
3769 }
3770 next_off = info_arr[i].off + field_type_size;
3771
3772 rec->field_mask |= info_arr[i].type;
3773 rec->fields[i].offset = info_arr[i].off;
3774 rec->fields[i].type = info_arr[i].type;
3775 rec->fields[i].size = field_type_size;
3776
3777 switch (info_arr[i].type) {
3778 case BPF_SPIN_LOCK:
3779 WARN_ON_ONCE(rec->spin_lock_off >= 0);
3780 /* Cache offset for faster lookup at runtime */
3781 rec->spin_lock_off = rec->fields[i].offset;
3782 break;
3783 case BPF_TIMER:
3784 WARN_ON_ONCE(rec->timer_off >= 0);
3785 /* Cache offset for faster lookup at runtime */
3786 rec->timer_off = rec->fields[i].offset;
3787 break;
3788 case BPF_REFCOUNT:
3789 WARN_ON_ONCE(rec->refcount_off >= 0);
3790 /* Cache offset for faster lookup at runtime */
3791 rec->refcount_off = rec->fields[i].offset;
3792 break;
3793 case BPF_KPTR_UNREF:
3794 case BPF_KPTR_REF:
3795 case BPF_KPTR_PERCPU:
3796 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3797 if (ret < 0)
3798 goto end;
3799 break;
3800 case BPF_LIST_HEAD:
3801 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3802 if (ret < 0)
3803 goto end;
3804 break;
3805 case BPF_RB_ROOT:
3806 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
3807 if (ret < 0)
3808 goto end;
3809 break;
3810 case BPF_LIST_NODE:
3811 case BPF_RB_NODE:
3812 break;
3813 default:
3814 ret = -EFAULT;
3815 goto end;
3816 }
3817 rec->cnt++;
3818 }
3819
3820 /* bpf_{list_head, rb_node} require bpf_spin_lock */
3821 if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
3822 btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
3823 ret = -EINVAL;
3824 goto end;
3825 }
3826
3827 if (rec->refcount_off < 0 &&
3828 btf_record_has_field(rec, BPF_LIST_NODE) &&
3829 btf_record_has_field(rec, BPF_RB_NODE)) {
3830 ret = -EINVAL;
3831 goto end;
3832 }
3833
3834 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
3835 NULL, rec);
3836
3837 return rec;
3838end:
3839 btf_record_free(rec);
3840 return ERR_PTR(ret);
3841}
3842
3843int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3844{
3845 int i;
3846
3847 /* There are three types that signify ownership of some other type:
3848 * kptr_ref, bpf_list_head, bpf_rb_root.
3849 * kptr_ref only supports storing kernel types, which can't store
3850 * references to program allocated local types.
3851 *
3852 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
3853 * does not form cycles.
3854 */
3855 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_GRAPH_ROOT))
3856 return 0;
3857 for (i = 0; i < rec->cnt; i++) {
3858 struct btf_struct_meta *meta;
3859 u32 btf_id;
3860
3861 if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
3862 continue;
3863 btf_id = rec->fields[i].graph_root.value_btf_id;
3864 meta = btf_find_struct_meta(btf, btf_id);
3865 if (!meta)
3866 return -EFAULT;
3867 rec->fields[i].graph_root.value_rec = meta->record;
3868
3869 /* We need to set value_rec for all root types, but no need
3870 * to check ownership cycle for a type unless it's also a
3871 * node type.
3872 */
3873 if (!(rec->field_mask & BPF_GRAPH_NODE))
3874 continue;
3875
3876 /* We need to ensure ownership acyclicity among all types. The
3877 * proper way to do it would be to topologically sort all BTF
3878 * IDs based on the ownership edges, since there can be multiple
3879 * bpf_{list_head,rb_node} in a type. Instead, we use the
3880 * following resaoning:
3881 *
3882 * - A type can only be owned by another type in user BTF if it
3883 * has a bpf_{list,rb}_node. Let's call these node types.
3884 * - A type can only _own_ another type in user BTF if it has a
3885 * bpf_{list_head,rb_root}. Let's call these root types.
3886 *
3887 * We ensure that if a type is both a root and node, its
3888 * element types cannot be root types.
3889 *
3890 * To ensure acyclicity:
3891 *
3892 * When A is an root type but not a node, its ownership
3893 * chain can be:
3894 * A -> B -> C
3895 * Where:
3896 * - A is an root, e.g. has bpf_rb_root.
3897 * - B is both a root and node, e.g. has bpf_rb_node and
3898 * bpf_list_head.
3899 * - C is only an root, e.g. has bpf_list_node
3900 *
3901 * When A is both a root and node, some other type already
3902 * owns it in the BTF domain, hence it can not own
3903 * another root type through any of the ownership edges.
3904 * A -> B
3905 * Where:
3906 * - A is both an root and node.
3907 * - B is only an node.
3908 */
3909 if (meta->record->field_mask & BPF_GRAPH_ROOT)
3910 return -ELOOP;
3911 }
3912 return 0;
3913}
3914
3915static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3916 u32 type_id, void *data, u8 bits_offset,
3917 struct btf_show *show)
3918{
3919 const struct btf_member *member;
3920 void *safe_data;
3921 u32 i;
3922
3923 safe_data = btf_show_start_struct_type(show, t, type_id, data);
3924 if (!safe_data)
3925 return;
3926
3927 for_each_member(i, t, member) {
3928 const struct btf_type *member_type = btf_type_by_id(btf,
3929 member->type);
3930 const struct btf_kind_operations *ops;
3931 u32 member_offset, bitfield_size;
3932 u32 bytes_offset;
3933 u8 bits8_offset;
3934
3935 btf_show_start_member(show, member);
3936
3937 member_offset = __btf_member_bit_offset(t, member);
3938 bitfield_size = __btf_member_bitfield_size(t, member);
3939 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3940 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3941 if (bitfield_size) {
3942 safe_data = btf_show_start_type(show, member_type,
3943 member->type,
3944 data + bytes_offset);
3945 if (safe_data)
3946 btf_bitfield_show(safe_data,
3947 bits8_offset,
3948 bitfield_size, show);
3949 btf_show_end_type(show);
3950 } else {
3951 ops = btf_type_ops(member_type);
3952 ops->show(btf, member_type, member->type,
3953 data + bytes_offset, bits8_offset, show);
3954 }
3955
3956 btf_show_end_member(show);
3957 }
3958
3959 btf_show_end_struct_type(show);
3960}
3961
3962static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3963 u32 type_id, void *data, u8 bits_offset,
3964 struct btf_show *show)
3965{
3966 const struct btf_member *m = show->state.member;
3967
3968 /*
3969 * First check if any members would be shown (are non-zero).
3970 * See comments above "struct btf_show" definition for more
3971 * details on how this works at a high-level.
3972 */
3973 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3974 if (!show->state.depth_check) {
3975 show->state.depth_check = show->state.depth + 1;
3976 show->state.depth_to_show = 0;
3977 }
3978 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3979 /* Restore saved member data here */
3980 show->state.member = m;
3981 if (show->state.depth_check != show->state.depth + 1)
3982 return;
3983 show->state.depth_check = 0;
3984
3985 if (show->state.depth_to_show <= show->state.depth)
3986 return;
3987 /*
3988 * Reaching here indicates we have recursed and found
3989 * non-zero child values.
3990 */
3991 }
3992
3993 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3994}
3995
3996static struct btf_kind_operations struct_ops = {
3997 .check_meta = btf_struct_check_meta,
3998 .resolve = btf_struct_resolve,
3999 .check_member = btf_struct_check_member,
4000 .check_kflag_member = btf_generic_check_kflag_member,
4001 .log_details = btf_struct_log,
4002 .show = btf_struct_show,
4003};
4004
4005static int btf_enum_check_member(struct btf_verifier_env *env,
4006 const struct btf_type *struct_type,
4007 const struct btf_member *member,
4008 const struct btf_type *member_type)
4009{
4010 u32 struct_bits_off = member->offset;
4011 u32 struct_size, bytes_offset;
4012
4013 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4014 btf_verifier_log_member(env, struct_type, member,
4015 "Member is not byte aligned");
4016 return -EINVAL;
4017 }
4018
4019 struct_size = struct_type->size;
4020 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4021 if (struct_size - bytes_offset < member_type->size) {
4022 btf_verifier_log_member(env, struct_type, member,
4023 "Member exceeds struct_size");
4024 return -EINVAL;
4025 }
4026
4027 return 0;
4028}
4029
4030static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4031 const struct btf_type *struct_type,
4032 const struct btf_member *member,
4033 const struct btf_type *member_type)
4034{
4035 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4036 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4037
4038 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4039 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4040 if (!nr_bits) {
4041 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4042 btf_verifier_log_member(env, struct_type, member,
4043 "Member is not byte aligned");
4044 return -EINVAL;
4045 }
4046
4047 nr_bits = int_bitsize;
4048 } else if (nr_bits > int_bitsize) {
4049 btf_verifier_log_member(env, struct_type, member,
4050 "Invalid member bitfield_size");
4051 return -EINVAL;
4052 }
4053
4054 struct_size = struct_type->size;
4055 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4056 if (struct_size < bytes_end) {
4057 btf_verifier_log_member(env, struct_type, member,
4058 "Member exceeds struct_size");
4059 return -EINVAL;
4060 }
4061
4062 return 0;
4063}
4064
4065static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4066 const struct btf_type *t,
4067 u32 meta_left)
4068{
4069 const struct btf_enum *enums = btf_type_enum(t);
4070 struct btf *btf = env->btf;
4071 const char *fmt_str;
4072 u16 i, nr_enums;
4073 u32 meta_needed;
4074
4075 nr_enums = btf_type_vlen(t);
4076 meta_needed = nr_enums * sizeof(*enums);
4077
4078 if (meta_left < meta_needed) {
4079 btf_verifier_log_basic(env, t,
4080 "meta_left:%u meta_needed:%u",
4081 meta_left, meta_needed);
4082 return -EINVAL;
4083 }
4084
4085 if (t->size > 8 || !is_power_of_2(t->size)) {
4086 btf_verifier_log_type(env, t, "Unexpected size");
4087 return -EINVAL;
4088 }
4089
4090 /* enum type either no name or a valid one */
4091 if (t->name_off &&
4092 !btf_name_valid_identifier(env->btf, t->name_off)) {
4093 btf_verifier_log_type(env, t, "Invalid name");
4094 return -EINVAL;
4095 }
4096
4097 btf_verifier_log_type(env, t, NULL);
4098
4099 for (i = 0; i < nr_enums; i++) {
4100 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4101 btf_verifier_log(env, "\tInvalid name_offset:%u",
4102 enums[i].name_off);
4103 return -EINVAL;
4104 }
4105
4106 /* enum member must have a valid name */
4107 if (!enums[i].name_off ||
4108 !btf_name_valid_identifier(btf, enums[i].name_off)) {
4109 btf_verifier_log_type(env, t, "Invalid name");
4110 return -EINVAL;
4111 }
4112
4113 if (env->log.level == BPF_LOG_KERNEL)
4114 continue;
4115 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4116 btf_verifier_log(env, fmt_str,
4117 __btf_name_by_offset(btf, enums[i].name_off),
4118 enums[i].val);
4119 }
4120
4121 return meta_needed;
4122}
4123
4124static void btf_enum_log(struct btf_verifier_env *env,
4125 const struct btf_type *t)
4126{
4127 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4128}
4129
4130static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4131 u32 type_id, void *data, u8 bits_offset,
4132 struct btf_show *show)
4133{
4134 const struct btf_enum *enums = btf_type_enum(t);
4135 u32 i, nr_enums = btf_type_vlen(t);
4136 void *safe_data;
4137 int v;
4138
4139 safe_data = btf_show_start_type(show, t, type_id, data);
4140 if (!safe_data)
4141 return;
4142
4143 v = *(int *)safe_data;
4144
4145 for (i = 0; i < nr_enums; i++) {
4146 if (v != enums[i].val)
4147 continue;
4148
4149 btf_show_type_value(show, "%s",
4150 __btf_name_by_offset(btf,
4151 enums[i].name_off));
4152
4153 btf_show_end_type(show);
4154 return;
4155 }
4156
4157 if (btf_type_kflag(t))
4158 btf_show_type_value(show, "%d", v);
4159 else
4160 btf_show_type_value(show, "%u", v);
4161 btf_show_end_type(show);
4162}
4163
4164static struct btf_kind_operations enum_ops = {
4165 .check_meta = btf_enum_check_meta,
4166 .resolve = btf_df_resolve,
4167 .check_member = btf_enum_check_member,
4168 .check_kflag_member = btf_enum_check_kflag_member,
4169 .log_details = btf_enum_log,
4170 .show = btf_enum_show,
4171};
4172
4173static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4174 const struct btf_type *t,
4175 u32 meta_left)
4176{
4177 const struct btf_enum64 *enums = btf_type_enum64(t);
4178 struct btf *btf = env->btf;
4179 const char *fmt_str;
4180 u16 i, nr_enums;
4181 u32 meta_needed;
4182
4183 nr_enums = btf_type_vlen(t);
4184 meta_needed = nr_enums * sizeof(*enums);
4185
4186 if (meta_left < meta_needed) {
4187 btf_verifier_log_basic(env, t,
4188 "meta_left:%u meta_needed:%u",
4189 meta_left, meta_needed);
4190 return -EINVAL;
4191 }
4192
4193 if (t->size > 8 || !is_power_of_2(t->size)) {
4194 btf_verifier_log_type(env, t, "Unexpected size");
4195 return -EINVAL;
4196 }
4197
4198 /* enum type either no name or a valid one */
4199 if (t->name_off &&
4200 !btf_name_valid_identifier(env->btf, t->name_off)) {
4201 btf_verifier_log_type(env, t, "Invalid name");
4202 return -EINVAL;
4203 }
4204
4205 btf_verifier_log_type(env, t, NULL);
4206
4207 for (i = 0; i < nr_enums; i++) {
4208 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4209 btf_verifier_log(env, "\tInvalid name_offset:%u",
4210 enums[i].name_off);
4211 return -EINVAL;
4212 }
4213
4214 /* enum member must have a valid name */
4215 if (!enums[i].name_off ||
4216 !btf_name_valid_identifier(btf, enums[i].name_off)) {
4217 btf_verifier_log_type(env, t, "Invalid name");
4218 return -EINVAL;
4219 }
4220
4221 if (env->log.level == BPF_LOG_KERNEL)
4222 continue;
4223
4224 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4225 btf_verifier_log(env, fmt_str,
4226 __btf_name_by_offset(btf, enums[i].name_off),
4227 btf_enum64_value(enums + i));
4228 }
4229
4230 return meta_needed;
4231}
4232
4233static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4234 u32 type_id, void *data, u8 bits_offset,
4235 struct btf_show *show)
4236{
4237 const struct btf_enum64 *enums = btf_type_enum64(t);
4238 u32 i, nr_enums = btf_type_vlen(t);
4239 void *safe_data;
4240 s64 v;
4241
4242 safe_data = btf_show_start_type(show, t, type_id, data);
4243 if (!safe_data)
4244 return;
4245
4246 v = *(u64 *)safe_data;
4247
4248 for (i = 0; i < nr_enums; i++) {
4249 if (v != btf_enum64_value(enums + i))
4250 continue;
4251
4252 btf_show_type_value(show, "%s",
4253 __btf_name_by_offset(btf,
4254 enums[i].name_off));
4255
4256 btf_show_end_type(show);
4257 return;
4258 }
4259
4260 if (btf_type_kflag(t))
4261 btf_show_type_value(show, "%lld", v);
4262 else
4263 btf_show_type_value(show, "%llu", v);
4264 btf_show_end_type(show);
4265}
4266
4267static struct btf_kind_operations enum64_ops = {
4268 .check_meta = btf_enum64_check_meta,
4269 .resolve = btf_df_resolve,
4270 .check_member = btf_enum_check_member,
4271 .check_kflag_member = btf_enum_check_kflag_member,
4272 .log_details = btf_enum_log,
4273 .show = btf_enum64_show,
4274};
4275
4276static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4277 const struct btf_type *t,
4278 u32 meta_left)
4279{
4280 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4281
4282 if (meta_left < meta_needed) {
4283 btf_verifier_log_basic(env, t,
4284 "meta_left:%u meta_needed:%u",
4285 meta_left, meta_needed);
4286 return -EINVAL;
4287 }
4288
4289 if (t->name_off) {
4290 btf_verifier_log_type(env, t, "Invalid name");
4291 return -EINVAL;
4292 }
4293
4294 if (btf_type_kflag(t)) {
4295 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4296 return -EINVAL;
4297 }
4298
4299 btf_verifier_log_type(env, t, NULL);
4300
4301 return meta_needed;
4302}
4303
4304static void btf_func_proto_log(struct btf_verifier_env *env,
4305 const struct btf_type *t)
4306{
4307 const struct btf_param *args = (const struct btf_param *)(t + 1);
4308 u16 nr_args = btf_type_vlen(t), i;
4309
4310 btf_verifier_log(env, "return=%u args=(", t->type);
4311 if (!nr_args) {
4312 btf_verifier_log(env, "void");
4313 goto done;
4314 }
4315
4316 if (nr_args == 1 && !args[0].type) {
4317 /* Only one vararg */
4318 btf_verifier_log(env, "vararg");
4319 goto done;
4320 }
4321
4322 btf_verifier_log(env, "%u %s", args[0].type,
4323 __btf_name_by_offset(env->btf,
4324 args[0].name_off));
4325 for (i = 1; i < nr_args - 1; i++)
4326 btf_verifier_log(env, ", %u %s", args[i].type,
4327 __btf_name_by_offset(env->btf,
4328 args[i].name_off));
4329
4330 if (nr_args > 1) {
4331 const struct btf_param *last_arg = &args[nr_args - 1];
4332
4333 if (last_arg->type)
4334 btf_verifier_log(env, ", %u %s", last_arg->type,
4335 __btf_name_by_offset(env->btf,
4336 last_arg->name_off));
4337 else
4338 btf_verifier_log(env, ", vararg");
4339 }
4340
4341done:
4342 btf_verifier_log(env, ")");
4343}
4344
4345static struct btf_kind_operations func_proto_ops = {
4346 .check_meta = btf_func_proto_check_meta,
4347 .resolve = btf_df_resolve,
4348 /*
4349 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4350 * a struct's member.
4351 *
4352 * It should be a function pointer instead.
4353 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4354 *
4355 * Hence, there is no btf_func_check_member().
4356 */
4357 .check_member = btf_df_check_member,
4358 .check_kflag_member = btf_df_check_kflag_member,
4359 .log_details = btf_func_proto_log,
4360 .show = btf_df_show,
4361};
4362
4363static s32 btf_func_check_meta(struct btf_verifier_env *env,
4364 const struct btf_type *t,
4365 u32 meta_left)
4366{
4367 if (!t->name_off ||
4368 !btf_name_valid_identifier(env->btf, t->name_off)) {
4369 btf_verifier_log_type(env, t, "Invalid name");
4370 return -EINVAL;
4371 }
4372
4373 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4374 btf_verifier_log_type(env, t, "Invalid func linkage");
4375 return -EINVAL;
4376 }
4377
4378 if (btf_type_kflag(t)) {
4379 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4380 return -EINVAL;
4381 }
4382
4383 btf_verifier_log_type(env, t, NULL);
4384
4385 return 0;
4386}
4387
4388static int btf_func_resolve(struct btf_verifier_env *env,
4389 const struct resolve_vertex *v)
4390{
4391 const struct btf_type *t = v->t;
4392 u32 next_type_id = t->type;
4393 int err;
4394
4395 err = btf_func_check(env, t);
4396 if (err)
4397 return err;
4398
4399 env_stack_pop_resolved(env, next_type_id, 0);
4400 return 0;
4401}
4402
4403static struct btf_kind_operations func_ops = {
4404 .check_meta = btf_func_check_meta,
4405 .resolve = btf_func_resolve,
4406 .check_member = btf_df_check_member,
4407 .check_kflag_member = btf_df_check_kflag_member,
4408 .log_details = btf_ref_type_log,
4409 .show = btf_df_show,
4410};
4411
4412static s32 btf_var_check_meta(struct btf_verifier_env *env,
4413 const struct btf_type *t,
4414 u32 meta_left)
4415{
4416 const struct btf_var *var;
4417 u32 meta_needed = sizeof(*var);
4418
4419 if (meta_left < meta_needed) {
4420 btf_verifier_log_basic(env, t,
4421 "meta_left:%u meta_needed:%u",
4422 meta_left, meta_needed);
4423 return -EINVAL;
4424 }
4425
4426 if (btf_type_vlen(t)) {
4427 btf_verifier_log_type(env, t, "vlen != 0");
4428 return -EINVAL;
4429 }
4430
4431 if (btf_type_kflag(t)) {
4432 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4433 return -EINVAL;
4434 }
4435
4436 if (!t->name_off ||
4437 !__btf_name_valid(env->btf, t->name_off)) {
4438 btf_verifier_log_type(env, t, "Invalid name");
4439 return -EINVAL;
4440 }
4441
4442 /* A var cannot be in type void */
4443 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4444 btf_verifier_log_type(env, t, "Invalid type_id");
4445 return -EINVAL;
4446 }
4447
4448 var = btf_type_var(t);
4449 if (var->linkage != BTF_VAR_STATIC &&
4450 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4451 btf_verifier_log_type(env, t, "Linkage not supported");
4452 return -EINVAL;
4453 }
4454
4455 btf_verifier_log_type(env, t, NULL);
4456
4457 return meta_needed;
4458}
4459
4460static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4461{
4462 const struct btf_var *var = btf_type_var(t);
4463
4464 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4465}
4466
4467static const struct btf_kind_operations var_ops = {
4468 .check_meta = btf_var_check_meta,
4469 .resolve = btf_var_resolve,
4470 .check_member = btf_df_check_member,
4471 .check_kflag_member = btf_df_check_kflag_member,
4472 .log_details = btf_var_log,
4473 .show = btf_var_show,
4474};
4475
4476static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4477 const struct btf_type *t,
4478 u32 meta_left)
4479{
4480 const struct btf_var_secinfo *vsi;
4481 u64 last_vsi_end_off = 0, sum = 0;
4482 u32 i, meta_needed;
4483
4484 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4485 if (meta_left < meta_needed) {
4486 btf_verifier_log_basic(env, t,
4487 "meta_left:%u meta_needed:%u",
4488 meta_left, meta_needed);
4489 return -EINVAL;
4490 }
4491
4492 if (!t->size) {
4493 btf_verifier_log_type(env, t, "size == 0");
4494 return -EINVAL;
4495 }
4496
4497 if (btf_type_kflag(t)) {
4498 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4499 return -EINVAL;
4500 }
4501
4502 if (!t->name_off ||
4503 !btf_name_valid_section(env->btf, t->name_off)) {
4504 btf_verifier_log_type(env, t, "Invalid name");
4505 return -EINVAL;
4506 }
4507
4508 btf_verifier_log_type(env, t, NULL);
4509
4510 for_each_vsi(i, t, vsi) {
4511 /* A var cannot be in type void */
4512 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4513 btf_verifier_log_vsi(env, t, vsi,
4514 "Invalid type_id");
4515 return -EINVAL;
4516 }
4517
4518 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4519 btf_verifier_log_vsi(env, t, vsi,
4520 "Invalid offset");
4521 return -EINVAL;
4522 }
4523
4524 if (!vsi->size || vsi->size > t->size) {
4525 btf_verifier_log_vsi(env, t, vsi,
4526 "Invalid size");
4527 return -EINVAL;
4528 }
4529
4530 last_vsi_end_off = vsi->offset + vsi->size;
4531 if (last_vsi_end_off > t->size) {
4532 btf_verifier_log_vsi(env, t, vsi,
4533 "Invalid offset+size");
4534 return -EINVAL;
4535 }
4536
4537 btf_verifier_log_vsi(env, t, vsi, NULL);
4538 sum += vsi->size;
4539 }
4540
4541 if (t->size < sum) {
4542 btf_verifier_log_type(env, t, "Invalid btf_info size");
4543 return -EINVAL;
4544 }
4545
4546 return meta_needed;
4547}
4548
4549static int btf_datasec_resolve(struct btf_verifier_env *env,
4550 const struct resolve_vertex *v)
4551{
4552 const struct btf_var_secinfo *vsi;
4553 struct btf *btf = env->btf;
4554 u16 i;
4555
4556 env->resolve_mode = RESOLVE_TBD;
4557 for_each_vsi_from(i, v->next_member, v->t, vsi) {
4558 u32 var_type_id = vsi->type, type_id, type_size = 0;
4559 const struct btf_type *var_type = btf_type_by_id(env->btf,
4560 var_type_id);
4561 if (!var_type || !btf_type_is_var(var_type)) {
4562 btf_verifier_log_vsi(env, v->t, vsi,
4563 "Not a VAR kind member");
4564 return -EINVAL;
4565 }
4566
4567 if (!env_type_is_resolve_sink(env, var_type) &&
4568 !env_type_is_resolved(env, var_type_id)) {
4569 env_stack_set_next_member(env, i + 1);
4570 return env_stack_push(env, var_type, var_type_id);
4571 }
4572
4573 type_id = var_type->type;
4574 if (!btf_type_id_size(btf, &type_id, &type_size)) {
4575 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4576 return -EINVAL;
4577 }
4578
4579 if (vsi->size < type_size) {
4580 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4581 return -EINVAL;
4582 }
4583 }
4584
4585 env_stack_pop_resolved(env, 0, 0);
4586 return 0;
4587}
4588
4589static void btf_datasec_log(struct btf_verifier_env *env,
4590 const struct btf_type *t)
4591{
4592 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4593}
4594
4595static void btf_datasec_show(const struct btf *btf,
4596 const struct btf_type *t, u32 type_id,
4597 void *data, u8 bits_offset,
4598 struct btf_show *show)
4599{
4600 const struct btf_var_secinfo *vsi;
4601 const struct btf_type *var;
4602 u32 i;
4603
4604 if (!btf_show_start_type(show, t, type_id, data))
4605 return;
4606
4607 btf_show_type_value(show, "section (\"%s\") = {",
4608 __btf_name_by_offset(btf, t->name_off));
4609 for_each_vsi(i, t, vsi) {
4610 var = btf_type_by_id(btf, vsi->type);
4611 if (i)
4612 btf_show(show, ",");
4613 btf_type_ops(var)->show(btf, var, vsi->type,
4614 data + vsi->offset, bits_offset, show);
4615 }
4616 btf_show_end_type(show);
4617}
4618
4619static const struct btf_kind_operations datasec_ops = {
4620 .check_meta = btf_datasec_check_meta,
4621 .resolve = btf_datasec_resolve,
4622 .check_member = btf_df_check_member,
4623 .check_kflag_member = btf_df_check_kflag_member,
4624 .log_details = btf_datasec_log,
4625 .show = btf_datasec_show,
4626};
4627
4628static s32 btf_float_check_meta(struct btf_verifier_env *env,
4629 const struct btf_type *t,
4630 u32 meta_left)
4631{
4632 if (btf_type_vlen(t)) {
4633 btf_verifier_log_type(env, t, "vlen != 0");
4634 return -EINVAL;
4635 }
4636
4637 if (btf_type_kflag(t)) {
4638 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4639 return -EINVAL;
4640 }
4641
4642 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4643 t->size != 16) {
4644 btf_verifier_log_type(env, t, "Invalid type_size");
4645 return -EINVAL;
4646 }
4647
4648 btf_verifier_log_type(env, t, NULL);
4649
4650 return 0;
4651}
4652
4653static int btf_float_check_member(struct btf_verifier_env *env,
4654 const struct btf_type *struct_type,
4655 const struct btf_member *member,
4656 const struct btf_type *member_type)
4657{
4658 u64 start_offset_bytes;
4659 u64 end_offset_bytes;
4660 u64 misalign_bits;
4661 u64 align_bytes;
4662 u64 align_bits;
4663
4664 /* Different architectures have different alignment requirements, so
4665 * here we check only for the reasonable minimum. This way we ensure
4666 * that types after CO-RE can pass the kernel BTF verifier.
4667 */
4668 align_bytes = min_t(u64, sizeof(void *), member_type->size);
4669 align_bits = align_bytes * BITS_PER_BYTE;
4670 div64_u64_rem(member->offset, align_bits, &misalign_bits);
4671 if (misalign_bits) {
4672 btf_verifier_log_member(env, struct_type, member,
4673 "Member is not properly aligned");
4674 return -EINVAL;
4675 }
4676
4677 start_offset_bytes = member->offset / BITS_PER_BYTE;
4678 end_offset_bytes = start_offset_bytes + member_type->size;
4679 if (end_offset_bytes > struct_type->size) {
4680 btf_verifier_log_member(env, struct_type, member,
4681 "Member exceeds struct_size");
4682 return -EINVAL;
4683 }
4684
4685 return 0;
4686}
4687
4688static void btf_float_log(struct btf_verifier_env *env,
4689 const struct btf_type *t)
4690{
4691 btf_verifier_log(env, "size=%u", t->size);
4692}
4693
4694static const struct btf_kind_operations float_ops = {
4695 .check_meta = btf_float_check_meta,
4696 .resolve = btf_df_resolve,
4697 .check_member = btf_float_check_member,
4698 .check_kflag_member = btf_generic_check_kflag_member,
4699 .log_details = btf_float_log,
4700 .show = btf_df_show,
4701};
4702
4703static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4704 const struct btf_type *t,
4705 u32 meta_left)
4706{
4707 const struct btf_decl_tag *tag;
4708 u32 meta_needed = sizeof(*tag);
4709 s32 component_idx;
4710 const char *value;
4711
4712 if (meta_left < meta_needed) {
4713 btf_verifier_log_basic(env, t,
4714 "meta_left:%u meta_needed:%u",
4715 meta_left, meta_needed);
4716 return -EINVAL;
4717 }
4718
4719 value = btf_name_by_offset(env->btf, t->name_off);
4720 if (!value || !value[0]) {
4721 btf_verifier_log_type(env, t, "Invalid value");
4722 return -EINVAL;
4723 }
4724
4725 if (btf_type_vlen(t)) {
4726 btf_verifier_log_type(env, t, "vlen != 0");
4727 return -EINVAL;
4728 }
4729
4730 if (btf_type_kflag(t)) {
4731 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4732 return -EINVAL;
4733 }
4734
4735 component_idx = btf_type_decl_tag(t)->component_idx;
4736 if (component_idx < -1) {
4737 btf_verifier_log_type(env, t, "Invalid component_idx");
4738 return -EINVAL;
4739 }
4740
4741 btf_verifier_log_type(env, t, NULL);
4742
4743 return meta_needed;
4744}
4745
4746static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4747 const struct resolve_vertex *v)
4748{
4749 const struct btf_type *next_type;
4750 const struct btf_type *t = v->t;
4751 u32 next_type_id = t->type;
4752 struct btf *btf = env->btf;
4753 s32 component_idx;
4754 u32 vlen;
4755
4756 next_type = btf_type_by_id(btf, next_type_id);
4757 if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4758 btf_verifier_log_type(env, v->t, "Invalid type_id");
4759 return -EINVAL;
4760 }
4761
4762 if (!env_type_is_resolve_sink(env, next_type) &&
4763 !env_type_is_resolved(env, next_type_id))
4764 return env_stack_push(env, next_type, next_type_id);
4765
4766 component_idx = btf_type_decl_tag(t)->component_idx;
4767 if (component_idx != -1) {
4768 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4769 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4770 return -EINVAL;
4771 }
4772
4773 if (btf_type_is_struct(next_type)) {
4774 vlen = btf_type_vlen(next_type);
4775 } else {
4776 /* next_type should be a function */
4777 next_type = btf_type_by_id(btf, next_type->type);
4778 vlen = btf_type_vlen(next_type);
4779 }
4780
4781 if ((u32)component_idx >= vlen) {
4782 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4783 return -EINVAL;
4784 }
4785 }
4786
4787 env_stack_pop_resolved(env, next_type_id, 0);
4788
4789 return 0;
4790}
4791
4792static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4793{
4794 btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4795 btf_type_decl_tag(t)->component_idx);
4796}
4797
4798static const struct btf_kind_operations decl_tag_ops = {
4799 .check_meta = btf_decl_tag_check_meta,
4800 .resolve = btf_decl_tag_resolve,
4801 .check_member = btf_df_check_member,
4802 .check_kflag_member = btf_df_check_kflag_member,
4803 .log_details = btf_decl_tag_log,
4804 .show = btf_df_show,
4805};
4806
4807static int btf_func_proto_check(struct btf_verifier_env *env,
4808 const struct btf_type *t)
4809{
4810 const struct btf_type *ret_type;
4811 const struct btf_param *args;
4812 const struct btf *btf;
4813 u16 nr_args, i;
4814 int err;
4815
4816 btf = env->btf;
4817 args = (const struct btf_param *)(t + 1);
4818 nr_args = btf_type_vlen(t);
4819
4820 /* Check func return type which could be "void" (t->type == 0) */
4821 if (t->type) {
4822 u32 ret_type_id = t->type;
4823
4824 ret_type = btf_type_by_id(btf, ret_type_id);
4825 if (!ret_type) {
4826 btf_verifier_log_type(env, t, "Invalid return type");
4827 return -EINVAL;
4828 }
4829
4830 if (btf_type_is_resolve_source_only(ret_type)) {
4831 btf_verifier_log_type(env, t, "Invalid return type");
4832 return -EINVAL;
4833 }
4834
4835 if (btf_type_needs_resolve(ret_type) &&
4836 !env_type_is_resolved(env, ret_type_id)) {
4837 err = btf_resolve(env, ret_type, ret_type_id);
4838 if (err)
4839 return err;
4840 }
4841
4842 /* Ensure the return type is a type that has a size */
4843 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4844 btf_verifier_log_type(env, t, "Invalid return type");
4845 return -EINVAL;
4846 }
4847 }
4848
4849 if (!nr_args)
4850 return 0;
4851
4852 /* Last func arg type_id could be 0 if it is a vararg */
4853 if (!args[nr_args - 1].type) {
4854 if (args[nr_args - 1].name_off) {
4855 btf_verifier_log_type(env, t, "Invalid arg#%u",
4856 nr_args);
4857 return -EINVAL;
4858 }
4859 nr_args--;
4860 }
4861
4862 for (i = 0; i < nr_args; i++) {
4863 const struct btf_type *arg_type;
4864 u32 arg_type_id;
4865
4866 arg_type_id = args[i].type;
4867 arg_type = btf_type_by_id(btf, arg_type_id);
4868 if (!arg_type) {
4869 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4870 return -EINVAL;
4871 }
4872
4873 if (btf_type_is_resolve_source_only(arg_type)) {
4874 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4875 return -EINVAL;
4876 }
4877
4878 if (args[i].name_off &&
4879 (!btf_name_offset_valid(btf, args[i].name_off) ||
4880 !btf_name_valid_identifier(btf, args[i].name_off))) {
4881 btf_verifier_log_type(env, t,
4882 "Invalid arg#%u", i + 1);
4883 return -EINVAL;
4884 }
4885
4886 if (btf_type_needs_resolve(arg_type) &&
4887 !env_type_is_resolved(env, arg_type_id)) {
4888 err = btf_resolve(env, arg_type, arg_type_id);
4889 if (err)
4890 return err;
4891 }
4892
4893 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4894 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4895 return -EINVAL;
4896 }
4897 }
4898
4899 return 0;
4900}
4901
4902static int btf_func_check(struct btf_verifier_env *env,
4903 const struct btf_type *t)
4904{
4905 const struct btf_type *proto_type;
4906 const struct btf_param *args;
4907 const struct btf *btf;
4908 u16 nr_args, i;
4909
4910 btf = env->btf;
4911 proto_type = btf_type_by_id(btf, t->type);
4912
4913 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4914 btf_verifier_log_type(env, t, "Invalid type_id");
4915 return -EINVAL;
4916 }
4917
4918 args = (const struct btf_param *)(proto_type + 1);
4919 nr_args = btf_type_vlen(proto_type);
4920 for (i = 0; i < nr_args; i++) {
4921 if (!args[i].name_off && args[i].type) {
4922 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4923 return -EINVAL;
4924 }
4925 }
4926
4927 return 0;
4928}
4929
4930static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4931 [BTF_KIND_INT] = &int_ops,
4932 [BTF_KIND_PTR] = &ptr_ops,
4933 [BTF_KIND_ARRAY] = &array_ops,
4934 [BTF_KIND_STRUCT] = &struct_ops,
4935 [BTF_KIND_UNION] = &struct_ops,
4936 [BTF_KIND_ENUM] = &enum_ops,
4937 [BTF_KIND_FWD] = &fwd_ops,
4938 [BTF_KIND_TYPEDEF] = &modifier_ops,
4939 [BTF_KIND_VOLATILE] = &modifier_ops,
4940 [BTF_KIND_CONST] = &modifier_ops,
4941 [BTF_KIND_RESTRICT] = &modifier_ops,
4942 [BTF_KIND_FUNC] = &func_ops,
4943 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4944 [BTF_KIND_VAR] = &var_ops,
4945 [BTF_KIND_DATASEC] = &datasec_ops,
4946 [BTF_KIND_FLOAT] = &float_ops,
4947 [BTF_KIND_DECL_TAG] = &decl_tag_ops,
4948 [BTF_KIND_TYPE_TAG] = &modifier_ops,
4949 [BTF_KIND_ENUM64] = &enum64_ops,
4950};
4951
4952static s32 btf_check_meta(struct btf_verifier_env *env,
4953 const struct btf_type *t,
4954 u32 meta_left)
4955{
4956 u32 saved_meta_left = meta_left;
4957 s32 var_meta_size;
4958
4959 if (meta_left < sizeof(*t)) {
4960 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4961 env->log_type_id, meta_left, sizeof(*t));
4962 return -EINVAL;
4963 }
4964 meta_left -= sizeof(*t);
4965
4966 if (t->info & ~BTF_INFO_MASK) {
4967 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4968 env->log_type_id, t->info);
4969 return -EINVAL;
4970 }
4971
4972 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4973 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4974 btf_verifier_log(env, "[%u] Invalid kind:%u",
4975 env->log_type_id, BTF_INFO_KIND(t->info));
4976 return -EINVAL;
4977 }
4978
4979 if (!btf_name_offset_valid(env->btf, t->name_off)) {
4980 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
4981 env->log_type_id, t->name_off);
4982 return -EINVAL;
4983 }
4984
4985 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4986 if (var_meta_size < 0)
4987 return var_meta_size;
4988
4989 meta_left -= var_meta_size;
4990
4991 return saved_meta_left - meta_left;
4992}
4993
4994static int btf_check_all_metas(struct btf_verifier_env *env)
4995{
4996 struct btf *btf = env->btf;
4997 struct btf_header *hdr;
4998 void *cur, *end;
4999
5000 hdr = &btf->hdr;
5001 cur = btf->nohdr_data + hdr->type_off;
5002 end = cur + hdr->type_len;
5003
5004 env->log_type_id = btf->base_btf ? btf->start_id : 1;
5005 while (cur < end) {
5006 struct btf_type *t = cur;
5007 s32 meta_size;
5008
5009 meta_size = btf_check_meta(env, t, end - cur);
5010 if (meta_size < 0)
5011 return meta_size;
5012
5013 btf_add_type(env, t);
5014 cur += meta_size;
5015 env->log_type_id++;
5016 }
5017
5018 return 0;
5019}
5020
5021static bool btf_resolve_valid(struct btf_verifier_env *env,
5022 const struct btf_type *t,
5023 u32 type_id)
5024{
5025 struct btf *btf = env->btf;
5026
5027 if (!env_type_is_resolved(env, type_id))
5028 return false;
5029
5030 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5031 return !btf_resolved_type_id(btf, type_id) &&
5032 !btf_resolved_type_size(btf, type_id);
5033
5034 if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5035 return btf_resolved_type_id(btf, type_id) &&
5036 !btf_resolved_type_size(btf, type_id);
5037
5038 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5039 btf_type_is_var(t)) {
5040 t = btf_type_id_resolve(btf, &type_id);
5041 return t &&
5042 !btf_type_is_modifier(t) &&
5043 !btf_type_is_var(t) &&
5044 !btf_type_is_datasec(t);
5045 }
5046
5047 if (btf_type_is_array(t)) {
5048 const struct btf_array *array = btf_type_array(t);
5049 const struct btf_type *elem_type;
5050 u32 elem_type_id = array->type;
5051 u32 elem_size;
5052
5053 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5054 return elem_type && !btf_type_is_modifier(elem_type) &&
5055 (array->nelems * elem_size ==
5056 btf_resolved_type_size(btf, type_id));
5057 }
5058
5059 return false;
5060}
5061
5062static int btf_resolve(struct btf_verifier_env *env,
5063 const struct btf_type *t, u32 type_id)
5064{
5065 u32 save_log_type_id = env->log_type_id;
5066 const struct resolve_vertex *v;
5067 int err = 0;
5068
5069 env->resolve_mode = RESOLVE_TBD;
5070 env_stack_push(env, t, type_id);
5071 while (!err && (v = env_stack_peak(env))) {
5072 env->log_type_id = v->type_id;
5073 err = btf_type_ops(v->t)->resolve(env, v);
5074 }
5075
5076 env->log_type_id = type_id;
5077 if (err == -E2BIG) {
5078 btf_verifier_log_type(env, t,
5079 "Exceeded max resolving depth:%u",
5080 MAX_RESOLVE_DEPTH);
5081 } else if (err == -EEXIST) {
5082 btf_verifier_log_type(env, t, "Loop detected");
5083 }
5084
5085 /* Final sanity check */
5086 if (!err && !btf_resolve_valid(env, t, type_id)) {
5087 btf_verifier_log_type(env, t, "Invalid resolve state");
5088 err = -EINVAL;
5089 }
5090
5091 env->log_type_id = save_log_type_id;
5092 return err;
5093}
5094
5095static int btf_check_all_types(struct btf_verifier_env *env)
5096{
5097 struct btf *btf = env->btf;
5098 const struct btf_type *t;
5099 u32 type_id, i;
5100 int err;
5101
5102 err = env_resolve_init(env);
5103 if (err)
5104 return err;
5105
5106 env->phase++;
5107 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5108 type_id = btf->start_id + i;
5109 t = btf_type_by_id(btf, type_id);
5110
5111 env->log_type_id = type_id;
5112 if (btf_type_needs_resolve(t) &&
5113 !env_type_is_resolved(env, type_id)) {
5114 err = btf_resolve(env, t, type_id);
5115 if (err)
5116 return err;
5117 }
5118
5119 if (btf_type_is_func_proto(t)) {
5120 err = btf_func_proto_check(env, t);
5121 if (err)
5122 return err;
5123 }
5124 }
5125
5126 return 0;
5127}
5128
5129static int btf_parse_type_sec(struct btf_verifier_env *env)
5130{
5131 const struct btf_header *hdr = &env->btf->hdr;
5132 int err;
5133
5134 /* Type section must align to 4 bytes */
5135 if (hdr->type_off & (sizeof(u32) - 1)) {
5136 btf_verifier_log(env, "Unaligned type_off");
5137 return -EINVAL;
5138 }
5139
5140 if (!env->btf->base_btf && !hdr->type_len) {
5141 btf_verifier_log(env, "No type found");
5142 return -EINVAL;
5143 }
5144
5145 err = btf_check_all_metas(env);
5146 if (err)
5147 return err;
5148
5149 return btf_check_all_types(env);
5150}
5151
5152static int btf_parse_str_sec(struct btf_verifier_env *env)
5153{
5154 const struct btf_header *hdr;
5155 struct btf *btf = env->btf;
5156 const char *start, *end;
5157
5158 hdr = &btf->hdr;
5159 start = btf->nohdr_data + hdr->str_off;
5160 end = start + hdr->str_len;
5161
5162 if (end != btf->data + btf->data_size) {
5163 btf_verifier_log(env, "String section is not at the end");
5164 return -EINVAL;
5165 }
5166
5167 btf->strings = start;
5168
5169 if (btf->base_btf && !hdr->str_len)
5170 return 0;
5171 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5172 btf_verifier_log(env, "Invalid string section");
5173 return -EINVAL;
5174 }
5175 if (!btf->base_btf && start[0]) {
5176 btf_verifier_log(env, "Invalid string section");
5177 return -EINVAL;
5178 }
5179
5180 return 0;
5181}
5182
5183static const size_t btf_sec_info_offset[] = {
5184 offsetof(struct btf_header, type_off),
5185 offsetof(struct btf_header, str_off),
5186};
5187
5188static int btf_sec_info_cmp(const void *a, const void *b)
5189{
5190 const struct btf_sec_info *x = a;
5191 const struct btf_sec_info *y = b;
5192
5193 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5194}
5195
5196static int btf_check_sec_info(struct btf_verifier_env *env,
5197 u32 btf_data_size)
5198{
5199 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5200 u32 total, expected_total, i;
5201 const struct btf_header *hdr;
5202 const struct btf *btf;
5203
5204 btf = env->btf;
5205 hdr = &btf->hdr;
5206
5207 /* Populate the secs from hdr */
5208 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5209 secs[i] = *(struct btf_sec_info *)((void *)hdr +
5210 btf_sec_info_offset[i]);
5211
5212 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5213 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5214
5215 /* Check for gaps and overlap among sections */
5216 total = 0;
5217 expected_total = btf_data_size - hdr->hdr_len;
5218 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5219 if (expected_total < secs[i].off) {
5220 btf_verifier_log(env, "Invalid section offset");
5221 return -EINVAL;
5222 }
5223 if (total < secs[i].off) {
5224 /* gap */
5225 btf_verifier_log(env, "Unsupported section found");
5226 return -EINVAL;
5227 }
5228 if (total > secs[i].off) {
5229 btf_verifier_log(env, "Section overlap found");
5230 return -EINVAL;
5231 }
5232 if (expected_total - total < secs[i].len) {
5233 btf_verifier_log(env,
5234 "Total section length too long");
5235 return -EINVAL;
5236 }
5237 total += secs[i].len;
5238 }
5239
5240 /* There is data other than hdr and known sections */
5241 if (expected_total != total) {
5242 btf_verifier_log(env, "Unsupported section found");
5243 return -EINVAL;
5244 }
5245
5246 return 0;
5247}
5248
5249static int btf_parse_hdr(struct btf_verifier_env *env)
5250{
5251 u32 hdr_len, hdr_copy, btf_data_size;
5252 const struct btf_header *hdr;
5253 struct btf *btf;
5254
5255 btf = env->btf;
5256 btf_data_size = btf->data_size;
5257
5258 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5259 btf_verifier_log(env, "hdr_len not found");
5260 return -EINVAL;
5261 }
5262
5263 hdr = btf->data;
5264 hdr_len = hdr->hdr_len;
5265 if (btf_data_size < hdr_len) {
5266 btf_verifier_log(env, "btf_header not found");
5267 return -EINVAL;
5268 }
5269
5270 /* Ensure the unsupported header fields are zero */
5271 if (hdr_len > sizeof(btf->hdr)) {
5272 u8 *expected_zero = btf->data + sizeof(btf->hdr);
5273 u8 *end = btf->data + hdr_len;
5274
5275 for (; expected_zero < end; expected_zero++) {
5276 if (*expected_zero) {
5277 btf_verifier_log(env, "Unsupported btf_header");
5278 return -E2BIG;
5279 }
5280 }
5281 }
5282
5283 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5284 memcpy(&btf->hdr, btf->data, hdr_copy);
5285
5286 hdr = &btf->hdr;
5287
5288 btf_verifier_log_hdr(env, btf_data_size);
5289
5290 if (hdr->magic != BTF_MAGIC) {
5291 btf_verifier_log(env, "Invalid magic");
5292 return -EINVAL;
5293 }
5294
5295 if (hdr->version != BTF_VERSION) {
5296 btf_verifier_log(env, "Unsupported version");
5297 return -ENOTSUPP;
5298 }
5299
5300 if (hdr->flags) {
5301 btf_verifier_log(env, "Unsupported flags");
5302 return -ENOTSUPP;
5303 }
5304
5305 if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5306 btf_verifier_log(env, "No data");
5307 return -EINVAL;
5308 }
5309
5310 return btf_check_sec_info(env, btf_data_size);
5311}
5312
5313static const char *alloc_obj_fields[] = {
5314 "bpf_spin_lock",
5315 "bpf_list_head",
5316 "bpf_list_node",
5317 "bpf_rb_root",
5318 "bpf_rb_node",
5319 "bpf_refcount",
5320};
5321
5322static struct btf_struct_metas *
5323btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5324{
5325 union {
5326 struct btf_id_set set;
5327 struct {
5328 u32 _cnt;
5329 u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5330 } _arr;
5331 } aof;
5332 struct btf_struct_metas *tab = NULL;
5333 int i, n, id, ret;
5334
5335 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5336 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5337
5338 memset(&aof, 0, sizeof(aof));
5339 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5340 /* Try to find whether this special type exists in user BTF, and
5341 * if so remember its ID so we can easily find it among members
5342 * of structs that we iterate in the next loop.
5343 */
5344 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5345 if (id < 0)
5346 continue;
5347 aof.set.ids[aof.set.cnt++] = id;
5348 }
5349
5350 if (!aof.set.cnt)
5351 return NULL;
5352 sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5353
5354 n = btf_nr_types(btf);
5355 for (i = 1; i < n; i++) {
5356 struct btf_struct_metas *new_tab;
5357 const struct btf_member *member;
5358 struct btf_struct_meta *type;
5359 struct btf_record *record;
5360 const struct btf_type *t;
5361 int j, tab_cnt;
5362
5363 t = btf_type_by_id(btf, i);
5364 if (!t) {
5365 ret = -EINVAL;
5366 goto free;
5367 }
5368 if (!__btf_type_is_struct(t))
5369 continue;
5370
5371 cond_resched();
5372
5373 for_each_member(j, t, member) {
5374 if (btf_id_set_contains(&aof.set, member->type))
5375 goto parse;
5376 }
5377 continue;
5378 parse:
5379 tab_cnt = tab ? tab->cnt : 0;
5380 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5381 GFP_KERNEL | __GFP_NOWARN);
5382 if (!new_tab) {
5383 ret = -ENOMEM;
5384 goto free;
5385 }
5386 if (!tab)
5387 new_tab->cnt = 0;
5388 tab = new_tab;
5389
5390 type = &tab->types[tab->cnt];
5391 type->btf_id = i;
5392 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5393 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size);
5394 /* The record cannot be unset, treat it as an error if so */
5395 if (IS_ERR_OR_NULL(record)) {
5396 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5397 goto free;
5398 }
5399 type->record = record;
5400 tab->cnt++;
5401 }
5402 return tab;
5403free:
5404 btf_struct_metas_free(tab);
5405 return ERR_PTR(ret);
5406}
5407
5408struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5409{
5410 struct btf_struct_metas *tab;
5411
5412 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5413 tab = btf->struct_meta_tab;
5414 if (!tab)
5415 return NULL;
5416 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5417}
5418
5419static int btf_check_type_tags(struct btf_verifier_env *env,
5420 struct btf *btf, int start_id)
5421{
5422 int i, n, good_id = start_id - 1;
5423 bool in_tags;
5424
5425 n = btf_nr_types(btf);
5426 for (i = start_id; i < n; i++) {
5427 const struct btf_type *t;
5428 int chain_limit = 32;
5429 u32 cur_id = i;
5430
5431 t = btf_type_by_id(btf, i);
5432 if (!t)
5433 return -EINVAL;
5434 if (!btf_type_is_modifier(t))
5435 continue;
5436
5437 cond_resched();
5438
5439 in_tags = btf_type_is_type_tag(t);
5440 while (btf_type_is_modifier(t)) {
5441 if (!chain_limit--) {
5442 btf_verifier_log(env, "Max chain length or cycle detected");
5443 return -ELOOP;
5444 }
5445 if (btf_type_is_type_tag(t)) {
5446 if (!in_tags) {
5447 btf_verifier_log(env, "Type tags don't precede modifiers");
5448 return -EINVAL;
5449 }
5450 } else if (in_tags) {
5451 in_tags = false;
5452 }
5453 if (cur_id <= good_id)
5454 break;
5455 /* Move to next type */
5456 cur_id = t->type;
5457 t = btf_type_by_id(btf, cur_id);
5458 if (!t)
5459 return -EINVAL;
5460 }
5461 good_id = i;
5462 }
5463 return 0;
5464}
5465
5466static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5467{
5468 u32 log_true_size;
5469 int err;
5470
5471 err = bpf_vlog_finalize(log, &log_true_size);
5472
5473 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5474 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5475 &log_true_size, sizeof(log_true_size)))
5476 err = -EFAULT;
5477
5478 return err;
5479}
5480
5481static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5482{
5483 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5484 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5485 struct btf_struct_metas *struct_meta_tab;
5486 struct btf_verifier_env *env = NULL;
5487 struct btf *btf = NULL;
5488 u8 *data;
5489 int err, ret;
5490
5491 if (attr->btf_size > BTF_MAX_SIZE)
5492 return ERR_PTR(-E2BIG);
5493
5494 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5495 if (!env)
5496 return ERR_PTR(-ENOMEM);
5497
5498 /* user could have requested verbose verifier output
5499 * and supplied buffer to store the verification trace
5500 */
5501 err = bpf_vlog_init(&env->log, attr->btf_log_level,
5502 log_ubuf, attr->btf_log_size);
5503 if (err)
5504 goto errout_free;
5505
5506 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5507 if (!btf) {
5508 err = -ENOMEM;
5509 goto errout;
5510 }
5511 env->btf = btf;
5512
5513 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5514 if (!data) {
5515 err = -ENOMEM;
5516 goto errout;
5517 }
5518
5519 btf->data = data;
5520 btf->data_size = attr->btf_size;
5521
5522 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5523 err = -EFAULT;
5524 goto errout;
5525 }
5526
5527 err = btf_parse_hdr(env);
5528 if (err)
5529 goto errout;
5530
5531 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5532
5533 err = btf_parse_str_sec(env);
5534 if (err)
5535 goto errout;
5536
5537 err = btf_parse_type_sec(env);
5538 if (err)
5539 goto errout;
5540
5541 err = btf_check_type_tags(env, btf, 1);
5542 if (err)
5543 goto errout;
5544
5545 struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5546 if (IS_ERR(struct_meta_tab)) {
5547 err = PTR_ERR(struct_meta_tab);
5548 goto errout;
5549 }
5550 btf->struct_meta_tab = struct_meta_tab;
5551
5552 if (struct_meta_tab) {
5553 int i;
5554
5555 for (i = 0; i < struct_meta_tab->cnt; i++) {
5556 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5557 if (err < 0)
5558 goto errout_meta;
5559 }
5560 }
5561
5562 err = finalize_log(&env->log, uattr, uattr_size);
5563 if (err)
5564 goto errout_free;
5565
5566 btf_verifier_env_free(env);
5567 refcount_set(&btf->refcnt, 1);
5568 return btf;
5569
5570errout_meta:
5571 btf_free_struct_meta_tab(btf);
5572errout:
5573 /* overwrite err with -ENOSPC or -EFAULT */
5574 ret = finalize_log(&env->log, uattr, uattr_size);
5575 if (ret)
5576 err = ret;
5577errout_free:
5578 btf_verifier_env_free(env);
5579 if (btf)
5580 btf_free(btf);
5581 return ERR_PTR(err);
5582}
5583
5584extern char __weak __start_BTF[];
5585extern char __weak __stop_BTF[];
5586extern struct btf *btf_vmlinux;
5587
5588#define BPF_MAP_TYPE(_id, _ops)
5589#define BPF_LINK_TYPE(_id, _name)
5590static union {
5591 struct bpf_ctx_convert {
5592#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5593 prog_ctx_type _id##_prog; \
5594 kern_ctx_type _id##_kern;
5595#include <linux/bpf_types.h>
5596#undef BPF_PROG_TYPE
5597 } *__t;
5598 /* 't' is written once under lock. Read many times. */
5599 const struct btf_type *t;
5600} bpf_ctx_convert;
5601enum {
5602#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5603 __ctx_convert##_id,
5604#include <linux/bpf_types.h>
5605#undef BPF_PROG_TYPE
5606 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
5607};
5608static u8 bpf_ctx_convert_map[] = {
5609#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5610 [_id] = __ctx_convert##_id,
5611#include <linux/bpf_types.h>
5612#undef BPF_PROG_TYPE
5613 0, /* avoid empty array */
5614};
5615#undef BPF_MAP_TYPE
5616#undef BPF_LINK_TYPE
5617
5618static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)
5619{
5620 const struct btf_type *conv_struct;
5621 const struct btf_member *ctx_type;
5622
5623 conv_struct = bpf_ctx_convert.t;
5624 if (!conv_struct)
5625 return NULL;
5626 /* prog_type is valid bpf program type. No need for bounds check. */
5627 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5628 /* ctx_type is a pointer to prog_ctx_type in vmlinux.
5629 * Like 'struct __sk_buff'
5630 */
5631 return btf_type_by_id(btf_vmlinux, ctx_type->type);
5632}
5633
5634static int find_kern_ctx_type_id(enum bpf_prog_type prog_type)
5635{
5636 const struct btf_type *conv_struct;
5637 const struct btf_member *ctx_type;
5638
5639 conv_struct = bpf_ctx_convert.t;
5640 if (!conv_struct)
5641 return -EFAULT;
5642 /* prog_type is valid bpf program type. No need for bounds check. */
5643 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5644 /* ctx_type is a pointer to prog_ctx_type in vmlinux.
5645 * Like 'struct sk_buff'
5646 */
5647 return ctx_type->type;
5648}
5649
5650const struct btf_type *
5651btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5652 const struct btf_type *t, enum bpf_prog_type prog_type,
5653 int arg)
5654{
5655 const struct btf_type *ctx_type;
5656 const char *tname, *ctx_tname;
5657
5658 t = btf_type_by_id(btf, t->type);
5659 while (btf_type_is_modifier(t))
5660 t = btf_type_by_id(btf, t->type);
5661 if (!btf_type_is_struct(t)) {
5662 /* Only pointer to struct is supported for now.
5663 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5664 * is not supported yet.
5665 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5666 */
5667 return NULL;
5668 }
5669 tname = btf_name_by_offset(btf, t->name_off);
5670 if (!tname) {
5671 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5672 return NULL;
5673 }
5674
5675 ctx_type = find_canonical_prog_ctx_type(prog_type);
5676 if (!ctx_type) {
5677 bpf_log(log, "btf_vmlinux is malformed\n");
5678 /* should not happen */
5679 return NULL;
5680 }
5681again:
5682 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5683 if (!ctx_tname) {
5684 /* should not happen */
5685 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5686 return NULL;
5687 }
5688 /* only compare that prog's ctx type name is the same as
5689 * kernel expects. No need to compare field by field.
5690 * It's ok for bpf prog to do:
5691 * struct __sk_buff {};
5692 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5693 * { // no fields of skb are ever used }
5694 */
5695 if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5696 return ctx_type;
5697 if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5698 return ctx_type;
5699 if (strcmp(ctx_tname, tname)) {
5700 /* bpf_user_pt_regs_t is a typedef, so resolve it to
5701 * underlying struct and check name again
5702 */
5703 if (!btf_type_is_modifier(ctx_type))
5704 return NULL;
5705 while (btf_type_is_modifier(ctx_type))
5706 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5707 goto again;
5708 }
5709 return ctx_type;
5710}
5711
5712/* forward declarations for arch-specific underlying types of
5713 * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef
5714 * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still
5715 * works correctly with __builtin_types_compatible_p() on respective
5716 * architectures
5717 */
5718struct user_regs_struct;
5719struct user_pt_regs;
5720
5721static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5722 const struct btf_type *t, int arg,
5723 enum bpf_prog_type prog_type,
5724 enum bpf_attach_type attach_type)
5725{
5726 const struct btf_type *ctx_type;
5727 const char *tname, *ctx_tname;
5728
5729 if (!btf_is_ptr(t)) {
5730 bpf_log(log, "arg#%d type isn't a pointer\n", arg);
5731 return -EINVAL;
5732 }
5733 t = btf_type_by_id(btf, t->type);
5734
5735 /* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */
5736 if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) {
5737 while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5738 t = btf_type_by_id(btf, t->type);
5739
5740 if (btf_type_is_typedef(t)) {
5741 tname = btf_name_by_offset(btf, t->name_off);
5742 if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5743 return 0;
5744 }
5745 }
5746
5747 /* all other program types don't use typedefs for context type */
5748 while (btf_type_is_modifier(t))
5749 t = btf_type_by_id(btf, t->type);
5750
5751 /* `void *ctx __arg_ctx` is always valid */
5752 if (btf_type_is_void(t))
5753 return 0;
5754
5755 tname = btf_name_by_offset(btf, t->name_off);
5756 if (str_is_empty(tname)) {
5757 bpf_log(log, "arg#%d type doesn't have a name\n", arg);
5758 return -EINVAL;
5759 }
5760
5761 /* special cases */
5762 switch (prog_type) {
5763 case BPF_PROG_TYPE_KPROBE:
5764 if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
5765 return 0;
5766 break;
5767 case BPF_PROG_TYPE_PERF_EVENT:
5768 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
5769 __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
5770 return 0;
5771 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
5772 __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
5773 return 0;
5774 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
5775 __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
5776 return 0;
5777 break;
5778 case BPF_PROG_TYPE_RAW_TRACEPOINT:
5779 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
5780 /* allow u64* as ctx */
5781 if (btf_is_int(t) && t->size == 8)
5782 return 0;
5783 break;
5784 case BPF_PROG_TYPE_TRACING:
5785 switch (attach_type) {
5786 case BPF_TRACE_RAW_TP:
5787 /* tp_btf program is TRACING, so need special case here */
5788 if (__btf_type_is_struct(t) &&
5789 strcmp(tname, "bpf_raw_tracepoint_args") == 0)
5790 return 0;
5791 /* allow u64* as ctx */
5792 if (btf_is_int(t) && t->size == 8)
5793 return 0;
5794 break;
5795 case BPF_TRACE_ITER:
5796 /* allow struct bpf_iter__xxx types only */
5797 if (__btf_type_is_struct(t) &&
5798 strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0)
5799 return 0;
5800 break;
5801 case BPF_TRACE_FENTRY:
5802 case BPF_TRACE_FEXIT:
5803 case BPF_MODIFY_RETURN:
5804 /* allow u64* as ctx */
5805 if (btf_is_int(t) && t->size == 8)
5806 return 0;
5807 break;
5808 default:
5809 break;
5810 }
5811 break;
5812 case BPF_PROG_TYPE_LSM:
5813 case BPF_PROG_TYPE_STRUCT_OPS:
5814 /* allow u64* as ctx */
5815 if (btf_is_int(t) && t->size == 8)
5816 return 0;
5817 break;
5818 case BPF_PROG_TYPE_TRACEPOINT:
5819 case BPF_PROG_TYPE_SYSCALL:
5820 case BPF_PROG_TYPE_EXT:
5821 return 0; /* anything goes */
5822 default:
5823 break;
5824 }
5825
5826 ctx_type = find_canonical_prog_ctx_type(prog_type);
5827 if (!ctx_type) {
5828 /* should not happen */
5829 bpf_log(log, "btf_vmlinux is malformed\n");
5830 return -EINVAL;
5831 }
5832
5833 /* resolve typedefs and check that underlying structs are matching as well */
5834 while (btf_type_is_modifier(ctx_type))
5835 ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5836
5837 /* if program type doesn't have distinctly named struct type for
5838 * context, then __arg_ctx argument can only be `void *`, which we
5839 * already checked above
5840 */
5841 if (!__btf_type_is_struct(ctx_type)) {
5842 bpf_log(log, "arg#%d should be void pointer\n", arg);
5843 return -EINVAL;
5844 }
5845
5846 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5847 if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) {
5848 bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname);
5849 return -EINVAL;
5850 }
5851
5852 return 0;
5853}
5854
5855static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5856 struct btf *btf,
5857 const struct btf_type *t,
5858 enum bpf_prog_type prog_type,
5859 int arg)
5860{
5861 if (!btf_get_prog_ctx_type(log, btf, t, prog_type, arg))
5862 return -ENOENT;
5863 return find_kern_ctx_type_id(prog_type);
5864}
5865
5866int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5867{
5868 const struct btf_member *kctx_member;
5869 const struct btf_type *conv_struct;
5870 const struct btf_type *kctx_type;
5871 u32 kctx_type_id;
5872
5873 conv_struct = bpf_ctx_convert.t;
5874 /* get member for kernel ctx type */
5875 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5876 kctx_type_id = kctx_member->type;
5877 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5878 if (!btf_type_is_struct(kctx_type)) {
5879 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
5880 return -EINVAL;
5881 }
5882
5883 return kctx_type_id;
5884}
5885
5886BTF_ID_LIST(bpf_ctx_convert_btf_id)
5887BTF_ID(struct, bpf_ctx_convert)
5888
5889struct btf *btf_parse_vmlinux(void)
5890{
5891 struct btf_verifier_env *env = NULL;
5892 struct bpf_verifier_log *log;
5893 struct btf *btf = NULL;
5894 int err;
5895
5896 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5897 if (!env)
5898 return ERR_PTR(-ENOMEM);
5899
5900 log = &env->log;
5901 log->level = BPF_LOG_KERNEL;
5902
5903 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5904 if (!btf) {
5905 err = -ENOMEM;
5906 goto errout;
5907 }
5908 env->btf = btf;
5909
5910 btf->data = __start_BTF;
5911 btf->data_size = __stop_BTF - __start_BTF;
5912 btf->kernel_btf = true;
5913 snprintf(btf->name, sizeof(btf->name), "vmlinux");
5914
5915 err = btf_parse_hdr(env);
5916 if (err)
5917 goto errout;
5918
5919 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5920
5921 err = btf_parse_str_sec(env);
5922 if (err)
5923 goto errout;
5924
5925 err = btf_check_all_metas(env);
5926 if (err)
5927 goto errout;
5928
5929 err = btf_check_type_tags(env, btf, 1);
5930 if (err)
5931 goto errout;
5932
5933 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
5934 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
5935
5936 bpf_struct_ops_init(btf, log);
5937
5938 refcount_set(&btf->refcnt, 1);
5939
5940 err = btf_alloc_id(btf);
5941 if (err)
5942 goto errout;
5943
5944 btf_verifier_env_free(env);
5945 return btf;
5946
5947errout:
5948 btf_verifier_env_free(env);
5949 if (btf) {
5950 kvfree(btf->types);
5951 kfree(btf);
5952 }
5953 return ERR_PTR(err);
5954}
5955
5956#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5957
5958static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5959{
5960 struct btf_verifier_env *env = NULL;
5961 struct bpf_verifier_log *log;
5962 struct btf *btf = NULL, *base_btf;
5963 int err;
5964
5965 base_btf = bpf_get_btf_vmlinux();
5966 if (IS_ERR(base_btf))
5967 return base_btf;
5968 if (!base_btf)
5969 return ERR_PTR(-EINVAL);
5970
5971 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5972 if (!env)
5973 return ERR_PTR(-ENOMEM);
5974
5975 log = &env->log;
5976 log->level = BPF_LOG_KERNEL;
5977
5978 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5979 if (!btf) {
5980 err = -ENOMEM;
5981 goto errout;
5982 }
5983 env->btf = btf;
5984
5985 btf->base_btf = base_btf;
5986 btf->start_id = base_btf->nr_types;
5987 btf->start_str_off = base_btf->hdr.str_len;
5988 btf->kernel_btf = true;
5989 snprintf(btf->name, sizeof(btf->name), "%s", module_name);
5990
5991 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
5992 if (!btf->data) {
5993 err = -ENOMEM;
5994 goto errout;
5995 }
5996 memcpy(btf->data, data, data_size);
5997 btf->data_size = data_size;
5998
5999 err = btf_parse_hdr(env);
6000 if (err)
6001 goto errout;
6002
6003 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6004
6005 err = btf_parse_str_sec(env);
6006 if (err)
6007 goto errout;
6008
6009 err = btf_check_all_metas(env);
6010 if (err)
6011 goto errout;
6012
6013 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
6014 if (err)
6015 goto errout;
6016
6017 btf_verifier_env_free(env);
6018 refcount_set(&btf->refcnt, 1);
6019 return btf;
6020
6021errout:
6022 btf_verifier_env_free(env);
6023 if (btf) {
6024 kvfree(btf->data);
6025 kvfree(btf->types);
6026 kfree(btf);
6027 }
6028 return ERR_PTR(err);
6029}
6030
6031#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6032
6033struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
6034{
6035 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6036
6037 if (tgt_prog)
6038 return tgt_prog->aux->btf;
6039 else
6040 return prog->aux->attach_btf;
6041}
6042
6043static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
6044{
6045 /* skip modifiers */
6046 t = btf_type_skip_modifiers(btf, t->type, NULL);
6047
6048 return btf_type_is_int(t);
6049}
6050
6051static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
6052 int off)
6053{
6054 const struct btf_param *args;
6055 const struct btf_type *t;
6056 u32 offset = 0, nr_args;
6057 int i;
6058
6059 if (!func_proto)
6060 return off / 8;
6061
6062 nr_args = btf_type_vlen(func_proto);
6063 args = (const struct btf_param *)(func_proto + 1);
6064 for (i = 0; i < nr_args; i++) {
6065 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6066 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6067 if (off < offset)
6068 return i;
6069 }
6070
6071 t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
6072 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6073 if (off < offset)
6074 return nr_args;
6075
6076 return nr_args + 1;
6077}
6078
6079static bool prog_args_trusted(const struct bpf_prog *prog)
6080{
6081 enum bpf_attach_type atype = prog->expected_attach_type;
6082
6083 switch (prog->type) {
6084 case BPF_PROG_TYPE_TRACING:
6085 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
6086 case BPF_PROG_TYPE_LSM:
6087 return bpf_lsm_is_trusted(prog);
6088 case BPF_PROG_TYPE_STRUCT_OPS:
6089 return true;
6090 default:
6091 return false;
6092 }
6093}
6094
6095bool btf_ctx_access(int off, int size, enum bpf_access_type type,
6096 const struct bpf_prog *prog,
6097 struct bpf_insn_access_aux *info)
6098{
6099 const struct btf_type *t = prog->aux->attach_func_proto;
6100 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6101 struct btf *btf = bpf_prog_get_target_btf(prog);
6102 const char *tname = prog->aux->attach_func_name;
6103 struct bpf_verifier_log *log = info->log;
6104 const struct btf_param *args;
6105 const char *tag_value;
6106 u32 nr_args, arg;
6107 int i, ret;
6108
6109 if (off % 8) {
6110 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
6111 tname, off);
6112 return false;
6113 }
6114 arg = get_ctx_arg_idx(btf, t, off);
6115 args = (const struct btf_param *)(t + 1);
6116 /* if (t == NULL) Fall back to default BPF prog with
6117 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
6118 */
6119 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
6120 if (prog->aux->attach_btf_trace) {
6121 /* skip first 'void *__data' argument in btf_trace_##name typedef */
6122 args++;
6123 nr_args--;
6124 }
6125
6126 if (arg > nr_args) {
6127 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6128 tname, arg + 1);
6129 return false;
6130 }
6131
6132 if (arg == nr_args) {
6133 switch (prog->expected_attach_type) {
6134 case BPF_LSM_CGROUP:
6135 case BPF_LSM_MAC:
6136 case BPF_TRACE_FEXIT:
6137 /* When LSM programs are attached to void LSM hooks
6138 * they use FEXIT trampolines and when attached to
6139 * int LSM hooks, they use MODIFY_RETURN trampolines.
6140 *
6141 * While the LSM programs are BPF_MODIFY_RETURN-like
6142 * the check:
6143 *
6144 * if (ret_type != 'int')
6145 * return -EINVAL;
6146 *
6147 * is _not_ done here. This is still safe as LSM hooks
6148 * have only void and int return types.
6149 */
6150 if (!t)
6151 return true;
6152 t = btf_type_by_id(btf, t->type);
6153 break;
6154 case BPF_MODIFY_RETURN:
6155 /* For now the BPF_MODIFY_RETURN can only be attached to
6156 * functions that return an int.
6157 */
6158 if (!t)
6159 return false;
6160
6161 t = btf_type_skip_modifiers(btf, t->type, NULL);
6162 if (!btf_type_is_small_int(t)) {
6163 bpf_log(log,
6164 "ret type %s not allowed for fmod_ret\n",
6165 btf_type_str(t));
6166 return false;
6167 }
6168 break;
6169 default:
6170 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6171 tname, arg + 1);
6172 return false;
6173 }
6174 } else {
6175 if (!t)
6176 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6177 return true;
6178 t = btf_type_by_id(btf, args[arg].type);
6179 }
6180
6181 /* skip modifiers */
6182 while (btf_type_is_modifier(t))
6183 t = btf_type_by_id(btf, t->type);
6184 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6185 /* accessing a scalar */
6186 return true;
6187 if (!btf_type_is_ptr(t)) {
6188 bpf_log(log,
6189 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6190 tname, arg,
6191 __btf_name_by_offset(btf, t->name_off),
6192 btf_type_str(t));
6193 return false;
6194 }
6195
6196 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6197 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6198 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6199 u32 type, flag;
6200
6201 type = base_type(ctx_arg_info->reg_type);
6202 flag = type_flag(ctx_arg_info->reg_type);
6203 if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6204 (flag & PTR_MAYBE_NULL)) {
6205 info->reg_type = ctx_arg_info->reg_type;
6206 return true;
6207 }
6208 }
6209
6210 if (t->type == 0)
6211 /* This is a pointer to void.
6212 * It is the same as scalar from the verifier safety pov.
6213 * No further pointer walking is allowed.
6214 */
6215 return true;
6216
6217 if (is_int_ptr(btf, t))
6218 return true;
6219
6220 /* this is a pointer to another type */
6221 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6222 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6223
6224 if (ctx_arg_info->offset == off) {
6225 if (!ctx_arg_info->btf_id) {
6226 bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6227 return false;
6228 }
6229
6230 info->reg_type = ctx_arg_info->reg_type;
6231 info->btf = btf_vmlinux;
6232 info->btf_id = ctx_arg_info->btf_id;
6233 return true;
6234 }
6235 }
6236
6237 info->reg_type = PTR_TO_BTF_ID;
6238 if (prog_args_trusted(prog))
6239 info->reg_type |= PTR_TRUSTED;
6240
6241 if (tgt_prog) {
6242 enum bpf_prog_type tgt_type;
6243
6244 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6245 tgt_type = tgt_prog->aux->saved_dst_prog_type;
6246 else
6247 tgt_type = tgt_prog->type;
6248
6249 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6250 if (ret > 0) {
6251 info->btf = btf_vmlinux;
6252 info->btf_id = ret;
6253 return true;
6254 } else {
6255 return false;
6256 }
6257 }
6258
6259 info->btf = btf;
6260 info->btf_id = t->type;
6261 t = btf_type_by_id(btf, t->type);
6262
6263 if (btf_type_is_type_tag(t)) {
6264 tag_value = __btf_name_by_offset(btf, t->name_off);
6265 if (strcmp(tag_value, "user") == 0)
6266 info->reg_type |= MEM_USER;
6267 if (strcmp(tag_value, "percpu") == 0)
6268 info->reg_type |= MEM_PERCPU;
6269 }
6270
6271 /* skip modifiers */
6272 while (btf_type_is_modifier(t)) {
6273 info->btf_id = t->type;
6274 t = btf_type_by_id(btf, t->type);
6275 }
6276 if (!btf_type_is_struct(t)) {
6277 bpf_log(log,
6278 "func '%s' arg%d type %s is not a struct\n",
6279 tname, arg, btf_type_str(t));
6280 return false;
6281 }
6282 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6283 tname, arg, info->btf_id, btf_type_str(t),
6284 __btf_name_by_offset(btf, t->name_off));
6285 return true;
6286}
6287
6288enum bpf_struct_walk_result {
6289 /* < 0 error */
6290 WALK_SCALAR = 0,
6291 WALK_PTR,
6292 WALK_STRUCT,
6293};
6294
6295static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6296 const struct btf_type *t, int off, int size,
6297 u32 *next_btf_id, enum bpf_type_flag *flag,
6298 const char **field_name)
6299{
6300 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6301 const struct btf_type *mtype, *elem_type = NULL;
6302 const struct btf_member *member;
6303 const char *tname, *mname, *tag_value;
6304 u32 vlen, elem_id, mid;
6305
6306again:
6307 if (btf_type_is_modifier(t))
6308 t = btf_type_skip_modifiers(btf, t->type, NULL);
6309 tname = __btf_name_by_offset(btf, t->name_off);
6310 if (!btf_type_is_struct(t)) {
6311 bpf_log(log, "Type '%s' is not a struct\n", tname);
6312 return -EINVAL;
6313 }
6314
6315 vlen = btf_type_vlen(t);
6316 if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6317 /*
6318 * walking unions yields untrusted pointers
6319 * with exception of __bpf_md_ptr and other
6320 * unions with a single member
6321 */
6322 *flag |= PTR_UNTRUSTED;
6323
6324 if (off + size > t->size) {
6325 /* If the last element is a variable size array, we may
6326 * need to relax the rule.
6327 */
6328 struct btf_array *array_elem;
6329
6330 if (vlen == 0)
6331 goto error;
6332
6333 member = btf_type_member(t) + vlen - 1;
6334 mtype = btf_type_skip_modifiers(btf, member->type,
6335 NULL);
6336 if (!btf_type_is_array(mtype))
6337 goto error;
6338
6339 array_elem = (struct btf_array *)(mtype + 1);
6340 if (array_elem->nelems != 0)
6341 goto error;
6342
6343 moff = __btf_member_bit_offset(t, member) / 8;
6344 if (off < moff)
6345 goto error;
6346
6347 /* allow structure and integer */
6348 t = btf_type_skip_modifiers(btf, array_elem->type,
6349 NULL);
6350
6351 if (btf_type_is_int(t))
6352 return WALK_SCALAR;
6353
6354 if (!btf_type_is_struct(t))
6355 goto error;
6356
6357 off = (off - moff) % t->size;
6358 goto again;
6359
6360error:
6361 bpf_log(log, "access beyond struct %s at off %u size %u\n",
6362 tname, off, size);
6363 return -EACCES;
6364 }
6365
6366 for_each_member(i, t, member) {
6367 /* offset of the field in bytes */
6368 moff = __btf_member_bit_offset(t, member) / 8;
6369 if (off + size <= moff)
6370 /* won't find anything, field is already too far */
6371 break;
6372
6373 if (__btf_member_bitfield_size(t, member)) {
6374 u32 end_bit = __btf_member_bit_offset(t, member) +
6375 __btf_member_bitfield_size(t, member);
6376
6377 /* off <= moff instead of off == moff because clang
6378 * does not generate a BTF member for anonymous
6379 * bitfield like the ":16" here:
6380 * struct {
6381 * int :16;
6382 * int x:8;
6383 * };
6384 */
6385 if (off <= moff &&
6386 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6387 return WALK_SCALAR;
6388
6389 /* off may be accessing a following member
6390 *
6391 * or
6392 *
6393 * Doing partial access at either end of this
6394 * bitfield. Continue on this case also to
6395 * treat it as not accessing this bitfield
6396 * and eventually error out as field not
6397 * found to keep it simple.
6398 * It could be relaxed if there was a legit
6399 * partial access case later.
6400 */
6401 continue;
6402 }
6403
6404 /* In case of "off" is pointing to holes of a struct */
6405 if (off < moff)
6406 break;
6407
6408 /* type of the field */
6409 mid = member->type;
6410 mtype = btf_type_by_id(btf, member->type);
6411 mname = __btf_name_by_offset(btf, member->name_off);
6412
6413 mtype = __btf_resolve_size(btf, mtype, &msize,
6414 &elem_type, &elem_id, &total_nelems,
6415 &mid);
6416 if (IS_ERR(mtype)) {
6417 bpf_log(log, "field %s doesn't have size\n", mname);
6418 return -EFAULT;
6419 }
6420
6421 mtrue_end = moff + msize;
6422 if (off >= mtrue_end)
6423 /* no overlap with member, keep iterating */
6424 continue;
6425
6426 if (btf_type_is_array(mtype)) {
6427 u32 elem_idx;
6428
6429 /* __btf_resolve_size() above helps to
6430 * linearize a multi-dimensional array.
6431 *
6432 * The logic here is treating an array
6433 * in a struct as the following way:
6434 *
6435 * struct outer {
6436 * struct inner array[2][2];
6437 * };
6438 *
6439 * looks like:
6440 *
6441 * struct outer {
6442 * struct inner array_elem0;
6443 * struct inner array_elem1;
6444 * struct inner array_elem2;
6445 * struct inner array_elem3;
6446 * };
6447 *
6448 * When accessing outer->array[1][0], it moves
6449 * moff to "array_elem2", set mtype to
6450 * "struct inner", and msize also becomes
6451 * sizeof(struct inner). Then most of the
6452 * remaining logic will fall through without
6453 * caring the current member is an array or
6454 * not.
6455 *
6456 * Unlike mtype/msize/moff, mtrue_end does not
6457 * change. The naming difference ("_true") tells
6458 * that it is not always corresponding to
6459 * the current mtype/msize/moff.
6460 * It is the true end of the current
6461 * member (i.e. array in this case). That
6462 * will allow an int array to be accessed like
6463 * a scratch space,
6464 * i.e. allow access beyond the size of
6465 * the array's element as long as it is
6466 * within the mtrue_end boundary.
6467 */
6468
6469 /* skip empty array */
6470 if (moff == mtrue_end)
6471 continue;
6472
6473 msize /= total_nelems;
6474 elem_idx = (off - moff) / msize;
6475 moff += elem_idx * msize;
6476 mtype = elem_type;
6477 mid = elem_id;
6478 }
6479
6480 /* the 'off' we're looking for is either equal to start
6481 * of this field or inside of this struct
6482 */
6483 if (btf_type_is_struct(mtype)) {
6484 /* our field must be inside that union or struct */
6485 t = mtype;
6486
6487 /* return if the offset matches the member offset */
6488 if (off == moff) {
6489 *next_btf_id = mid;
6490 return WALK_STRUCT;
6491 }
6492
6493 /* adjust offset we're looking for */
6494 off -= moff;
6495 goto again;
6496 }
6497
6498 if (btf_type_is_ptr(mtype)) {
6499 const struct btf_type *stype, *t;
6500 enum bpf_type_flag tmp_flag = 0;
6501 u32 id;
6502
6503 if (msize != size || off != moff) {
6504 bpf_log(log,
6505 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6506 mname, moff, tname, off, size);
6507 return -EACCES;
6508 }
6509
6510 /* check type tag */
6511 t = btf_type_by_id(btf, mtype->type);
6512 if (btf_type_is_type_tag(t)) {
6513 tag_value = __btf_name_by_offset(btf, t->name_off);
6514 /* check __user tag */
6515 if (strcmp(tag_value, "user") == 0)
6516 tmp_flag = MEM_USER;
6517 /* check __percpu tag */
6518 if (strcmp(tag_value, "percpu") == 0)
6519 tmp_flag = MEM_PERCPU;
6520 /* check __rcu tag */
6521 if (strcmp(tag_value, "rcu") == 0)
6522 tmp_flag = MEM_RCU;
6523 }
6524
6525 stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6526 if (btf_type_is_struct(stype)) {
6527 *next_btf_id = id;
6528 *flag |= tmp_flag;
6529 if (field_name)
6530 *field_name = mname;
6531 return WALK_PTR;
6532 }
6533 }
6534
6535 /* Allow more flexible access within an int as long as
6536 * it is within mtrue_end.
6537 * Since mtrue_end could be the end of an array,
6538 * that also allows using an array of int as a scratch
6539 * space. e.g. skb->cb[].
6540 */
6541 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
6542 bpf_log(log,
6543 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6544 mname, mtrue_end, tname, off, size);
6545 return -EACCES;
6546 }
6547
6548 return WALK_SCALAR;
6549 }
6550 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6551 return -EINVAL;
6552}
6553
6554int btf_struct_access(struct bpf_verifier_log *log,
6555 const struct bpf_reg_state *reg,
6556 int off, int size, enum bpf_access_type atype __maybe_unused,
6557 u32 *next_btf_id, enum bpf_type_flag *flag,
6558 const char **field_name)
6559{
6560 const struct btf *btf = reg->btf;
6561 enum bpf_type_flag tmp_flag = 0;
6562 const struct btf_type *t;
6563 u32 id = reg->btf_id;
6564 int err;
6565
6566 while (type_is_alloc(reg->type)) {
6567 struct btf_struct_meta *meta;
6568 struct btf_record *rec;
6569 int i;
6570
6571 meta = btf_find_struct_meta(btf, id);
6572 if (!meta)
6573 break;
6574 rec = meta->record;
6575 for (i = 0; i < rec->cnt; i++) {
6576 struct btf_field *field = &rec->fields[i];
6577 u32 offset = field->offset;
6578 if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
6579 bpf_log(log,
6580 "direct access to %s is disallowed\n",
6581 btf_field_type_name(field->type));
6582 return -EACCES;
6583 }
6584 }
6585 break;
6586 }
6587
6588 t = btf_type_by_id(btf, id);
6589 do {
6590 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
6591
6592 switch (err) {
6593 case WALK_PTR:
6594 /* For local types, the destination register cannot
6595 * become a pointer again.
6596 */
6597 if (type_is_alloc(reg->type))
6598 return SCALAR_VALUE;
6599 /* If we found the pointer or scalar on t+off,
6600 * we're done.
6601 */
6602 *next_btf_id = id;
6603 *flag = tmp_flag;
6604 return PTR_TO_BTF_ID;
6605 case WALK_SCALAR:
6606 return SCALAR_VALUE;
6607 case WALK_STRUCT:
6608 /* We found nested struct, so continue the search
6609 * by diving in it. At this point the offset is
6610 * aligned with the new type, so set it to 0.
6611 */
6612 t = btf_type_by_id(btf, id);
6613 off = 0;
6614 break;
6615 default:
6616 /* It's either error or unknown return value..
6617 * scream and leave.
6618 */
6619 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6620 return -EINVAL;
6621 return err;
6622 }
6623 } while (t);
6624
6625 return -EINVAL;
6626}
6627
6628/* Check that two BTF types, each specified as an BTF object + id, are exactly
6629 * the same. Trivial ID check is not enough due to module BTFs, because we can
6630 * end up with two different module BTFs, but IDs point to the common type in
6631 * vmlinux BTF.
6632 */
6633bool btf_types_are_same(const struct btf *btf1, u32 id1,
6634 const struct btf *btf2, u32 id2)
6635{
6636 if (id1 != id2)
6637 return false;
6638 if (btf1 == btf2)
6639 return true;
6640 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6641}
6642
6643bool btf_struct_ids_match(struct bpf_verifier_log *log,
6644 const struct btf *btf, u32 id, int off,
6645 const struct btf *need_btf, u32 need_type_id,
6646 bool strict)
6647{
6648 const struct btf_type *type;
6649 enum bpf_type_flag flag = 0;
6650 int err;
6651
6652 /* Are we already done? */
6653 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
6654 return true;
6655 /* In case of strict type match, we do not walk struct, the top level
6656 * type match must succeed. When strict is true, off should have already
6657 * been 0.
6658 */
6659 if (strict)
6660 return false;
6661again:
6662 type = btf_type_by_id(btf, id);
6663 if (!type)
6664 return false;
6665 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
6666 if (err != WALK_STRUCT)
6667 return false;
6668
6669 /* We found nested struct object. If it matches
6670 * the requested ID, we're done. Otherwise let's
6671 * continue the search with offset 0 in the new
6672 * type.
6673 */
6674 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
6675 off = 0;
6676 goto again;
6677 }
6678
6679 return true;
6680}
6681
6682static int __get_type_size(struct btf *btf, u32 btf_id,
6683 const struct btf_type **ret_type)
6684{
6685 const struct btf_type *t;
6686
6687 *ret_type = btf_type_by_id(btf, 0);
6688 if (!btf_id)
6689 /* void */
6690 return 0;
6691 t = btf_type_by_id(btf, btf_id);
6692 while (t && btf_type_is_modifier(t))
6693 t = btf_type_by_id(btf, t->type);
6694 if (!t)
6695 return -EINVAL;
6696 *ret_type = t;
6697 if (btf_type_is_ptr(t))
6698 /* kernel size of pointer. Not BPF's size of pointer*/
6699 return sizeof(void *);
6700 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6701 return t->size;
6702 return -EINVAL;
6703}
6704
6705static u8 __get_type_fmodel_flags(const struct btf_type *t)
6706{
6707 u8 flags = 0;
6708
6709 if (__btf_type_is_struct(t))
6710 flags |= BTF_FMODEL_STRUCT_ARG;
6711 if (btf_type_is_signed_int(t))
6712 flags |= BTF_FMODEL_SIGNED_ARG;
6713
6714 return flags;
6715}
6716
6717int btf_distill_func_proto(struct bpf_verifier_log *log,
6718 struct btf *btf,
6719 const struct btf_type *func,
6720 const char *tname,
6721 struct btf_func_model *m)
6722{
6723 const struct btf_param *args;
6724 const struct btf_type *t;
6725 u32 i, nargs;
6726 int ret;
6727
6728 if (!func) {
6729 /* BTF function prototype doesn't match the verifier types.
6730 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
6731 */
6732 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6733 m->arg_size[i] = 8;
6734 m->arg_flags[i] = 0;
6735 }
6736 m->ret_size = 8;
6737 m->ret_flags = 0;
6738 m->nr_args = MAX_BPF_FUNC_REG_ARGS;
6739 return 0;
6740 }
6741 args = (const struct btf_param *)(func + 1);
6742 nargs = btf_type_vlen(func);
6743 if (nargs > MAX_BPF_FUNC_ARGS) {
6744 bpf_log(log,
6745 "The function %s has %d arguments. Too many.\n",
6746 tname, nargs);
6747 return -EINVAL;
6748 }
6749 ret = __get_type_size(btf, func->type, &t);
6750 if (ret < 0 || __btf_type_is_struct(t)) {
6751 bpf_log(log,
6752 "The function %s return type %s is unsupported.\n",
6753 tname, btf_type_str(t));
6754 return -EINVAL;
6755 }
6756 m->ret_size = ret;
6757 m->ret_flags = __get_type_fmodel_flags(t);
6758
6759 for (i = 0; i < nargs; i++) {
6760 if (i == nargs - 1 && args[i].type == 0) {
6761 bpf_log(log,
6762 "The function %s with variable args is unsupported.\n",
6763 tname);
6764 return -EINVAL;
6765 }
6766 ret = __get_type_size(btf, args[i].type, &t);
6767
6768 /* No support of struct argument size greater than 16 bytes */
6769 if (ret < 0 || ret > 16) {
6770 bpf_log(log,
6771 "The function %s arg%d type %s is unsupported.\n",
6772 tname, i, btf_type_str(t));
6773 return -EINVAL;
6774 }
6775 if (ret == 0) {
6776 bpf_log(log,
6777 "The function %s has malformed void argument.\n",
6778 tname);
6779 return -EINVAL;
6780 }
6781 m->arg_size[i] = ret;
6782 m->arg_flags[i] = __get_type_fmodel_flags(t);
6783 }
6784 m->nr_args = nargs;
6785 return 0;
6786}
6787
6788/* Compare BTFs of two functions assuming only scalars and pointers to context.
6789 * t1 points to BTF_KIND_FUNC in btf1
6790 * t2 points to BTF_KIND_FUNC in btf2
6791 * Returns:
6792 * EINVAL - function prototype mismatch
6793 * EFAULT - verifier bug
6794 * 0 - 99% match. The last 1% is validated by the verifier.
6795 */
6796static int btf_check_func_type_match(struct bpf_verifier_log *log,
6797 struct btf *btf1, const struct btf_type *t1,
6798 struct btf *btf2, const struct btf_type *t2)
6799{
6800 const struct btf_param *args1, *args2;
6801 const char *fn1, *fn2, *s1, *s2;
6802 u32 nargs1, nargs2, i;
6803
6804 fn1 = btf_name_by_offset(btf1, t1->name_off);
6805 fn2 = btf_name_by_offset(btf2, t2->name_off);
6806
6807 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6808 bpf_log(log, "%s() is not a global function\n", fn1);
6809 return -EINVAL;
6810 }
6811 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6812 bpf_log(log, "%s() is not a global function\n", fn2);
6813 return -EINVAL;
6814 }
6815
6816 t1 = btf_type_by_id(btf1, t1->type);
6817 if (!t1 || !btf_type_is_func_proto(t1))
6818 return -EFAULT;
6819 t2 = btf_type_by_id(btf2, t2->type);
6820 if (!t2 || !btf_type_is_func_proto(t2))
6821 return -EFAULT;
6822
6823 args1 = (const struct btf_param *)(t1 + 1);
6824 nargs1 = btf_type_vlen(t1);
6825 args2 = (const struct btf_param *)(t2 + 1);
6826 nargs2 = btf_type_vlen(t2);
6827
6828 if (nargs1 != nargs2) {
6829 bpf_log(log, "%s() has %d args while %s() has %d args\n",
6830 fn1, nargs1, fn2, nargs2);
6831 return -EINVAL;
6832 }
6833
6834 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6835 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6836 if (t1->info != t2->info) {
6837 bpf_log(log,
6838 "Return type %s of %s() doesn't match type %s of %s()\n",
6839 btf_type_str(t1), fn1,
6840 btf_type_str(t2), fn2);
6841 return -EINVAL;
6842 }
6843
6844 for (i = 0; i < nargs1; i++) {
6845 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6846 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6847
6848 if (t1->info != t2->info) {
6849 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6850 i, fn1, btf_type_str(t1),
6851 fn2, btf_type_str(t2));
6852 return -EINVAL;
6853 }
6854 if (btf_type_has_size(t1) && t1->size != t2->size) {
6855 bpf_log(log,
6856 "arg%d in %s() has size %d while %s() has %d\n",
6857 i, fn1, t1->size,
6858 fn2, t2->size);
6859 return -EINVAL;
6860 }
6861
6862 /* global functions are validated with scalars and pointers
6863 * to context only. And only global functions can be replaced.
6864 * Hence type check only those types.
6865 */
6866 if (btf_type_is_int(t1) || btf_is_any_enum(t1))
6867 continue;
6868 if (!btf_type_is_ptr(t1)) {
6869 bpf_log(log,
6870 "arg%d in %s() has unrecognized type\n",
6871 i, fn1);
6872 return -EINVAL;
6873 }
6874 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6875 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6876 if (!btf_type_is_struct(t1)) {
6877 bpf_log(log,
6878 "arg%d in %s() is not a pointer to context\n",
6879 i, fn1);
6880 return -EINVAL;
6881 }
6882 if (!btf_type_is_struct(t2)) {
6883 bpf_log(log,
6884 "arg%d in %s() is not a pointer to context\n",
6885 i, fn2);
6886 return -EINVAL;
6887 }
6888 /* This is an optional check to make program writing easier.
6889 * Compare names of structs and report an error to the user.
6890 * btf_prepare_func_args() already checked that t2 struct
6891 * is a context type. btf_prepare_func_args() will check
6892 * later that t1 struct is a context type as well.
6893 */
6894 s1 = btf_name_by_offset(btf1, t1->name_off);
6895 s2 = btf_name_by_offset(btf2, t2->name_off);
6896 if (strcmp(s1, s2)) {
6897 bpf_log(log,
6898 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6899 i, fn1, s1, fn2, s2);
6900 return -EINVAL;
6901 }
6902 }
6903 return 0;
6904}
6905
6906/* Compare BTFs of given program with BTF of target program */
6907int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
6908 struct btf *btf2, const struct btf_type *t2)
6909{
6910 struct btf *btf1 = prog->aux->btf;
6911 const struct btf_type *t1;
6912 u32 btf_id = 0;
6913
6914 if (!prog->aux->func_info) {
6915 bpf_log(log, "Program extension requires BTF\n");
6916 return -EINVAL;
6917 }
6918
6919 btf_id = prog->aux->func_info[0].type_id;
6920 if (!btf_id)
6921 return -EFAULT;
6922
6923 t1 = btf_type_by_id(btf1, btf_id);
6924 if (!t1 || !btf_type_is_func(t1))
6925 return -EFAULT;
6926
6927 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
6928}
6929
6930static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t)
6931{
6932 const char *name;
6933
6934 t = btf_type_by_id(btf, t->type); /* skip PTR */
6935
6936 while (btf_type_is_modifier(t))
6937 t = btf_type_by_id(btf, t->type);
6938
6939 /* allow either struct or struct forward declaration */
6940 if (btf_type_is_struct(t) ||
6941 (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) {
6942 name = btf_str_by_offset(btf, t->name_off);
6943 return name && strcmp(name, "bpf_dynptr") == 0;
6944 }
6945
6946 return false;
6947}
6948
6949/* Process BTF of a function to produce high-level expectation of function
6950 * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information
6951 * is cached in subprog info for reuse.
6952 * Returns:
6953 * EFAULT - there is a verifier bug. Abort verification.
6954 * EINVAL - cannot convert BTF.
6955 * 0 - Successfully processed BTF and constructed argument expectations.
6956 */
6957int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog)
6958{
6959 bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL;
6960 struct bpf_subprog_info *sub = subprog_info(env, subprog);
6961 struct bpf_verifier_log *log = &env->log;
6962 struct bpf_prog *prog = env->prog;
6963 enum bpf_prog_type prog_type = prog->type;
6964 struct btf *btf = prog->aux->btf;
6965 const struct btf_param *args;
6966 const struct btf_type *t, *ref_t, *fn_t;
6967 u32 i, nargs, btf_id;
6968 const char *tname;
6969
6970 if (sub->args_cached)
6971 return 0;
6972
6973 if (!prog->aux->func_info) {
6974 bpf_log(log, "Verifier bug\n");
6975 return -EFAULT;
6976 }
6977
6978 btf_id = prog->aux->func_info[subprog].type_id;
6979 if (!btf_id) {
6980 if (!is_global) /* not fatal for static funcs */
6981 return -EINVAL;
6982 bpf_log(log, "Global functions need valid BTF\n");
6983 return -EFAULT;
6984 }
6985
6986 fn_t = btf_type_by_id(btf, btf_id);
6987 if (!fn_t || !btf_type_is_func(fn_t)) {
6988 /* These checks were already done by the verifier while loading
6989 * struct bpf_func_info
6990 */
6991 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
6992 subprog);
6993 return -EFAULT;
6994 }
6995 tname = btf_name_by_offset(btf, fn_t->name_off);
6996
6997 if (prog->aux->func_info_aux[subprog].unreliable) {
6998 bpf_log(log, "Verifier bug in function %s()\n", tname);
6999 return -EFAULT;
7000 }
7001 if (prog_type == BPF_PROG_TYPE_EXT)
7002 prog_type = prog->aux->dst_prog->type;
7003
7004 t = btf_type_by_id(btf, fn_t->type);
7005 if (!t || !btf_type_is_func_proto(t)) {
7006 bpf_log(log, "Invalid type of function %s()\n", tname);
7007 return -EFAULT;
7008 }
7009 args = (const struct btf_param *)(t + 1);
7010 nargs = btf_type_vlen(t);
7011 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7012 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7013 tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7014 return -EINVAL;
7015 }
7016 /* check that function returns int, exception cb also requires this */
7017 t = btf_type_by_id(btf, t->type);
7018 while (btf_type_is_modifier(t))
7019 t = btf_type_by_id(btf, t->type);
7020 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7021 bpf_log(log,
7022 "Global function %s() doesn't return scalar. Only those are supported.\n",
7023 tname);
7024 return -EINVAL;
7025 }
7026 /* Convert BTF function arguments into verifier types.
7027 * Only PTR_TO_CTX and SCALAR are supported atm.
7028 */
7029 for (i = 0; i < nargs; i++) {
7030 bool is_nonnull = false;
7031 const char *tag;
7032
7033 t = btf_type_by_id(btf, args[i].type);
7034
7035 tag = btf_find_decl_tag_value(btf, fn_t, i, "arg:");
7036 if (IS_ERR(tag) && PTR_ERR(tag) == -ENOENT) {
7037 tag = NULL;
7038 } else if (IS_ERR(tag)) {
7039 bpf_log(log, "arg#%d type's tag fetching failure: %ld\n", i, PTR_ERR(tag));
7040 return PTR_ERR(tag);
7041 }
7042 /* 'arg:<tag>' decl_tag takes precedence over derivation of
7043 * register type from BTF type itself
7044 */
7045 if (tag) {
7046 /* disallow arg tags in static subprogs */
7047 if (!is_global) {
7048 bpf_log(log, "arg#%d type tag is not supported in static functions\n", i);
7049 return -EOPNOTSUPP;
7050 }
7051 if (strcmp(tag, "ctx") == 0) {
7052 sub->args[i].arg_type = ARG_PTR_TO_CTX;
7053 continue;
7054 }
7055 if (strcmp(tag, "nonnull") == 0)
7056 is_nonnull = true;
7057 }
7058
7059 while (btf_type_is_modifier(t))
7060 t = btf_type_by_id(btf, t->type);
7061 if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7062 sub->args[i].arg_type = ARG_ANYTHING;
7063 continue;
7064 }
7065 if (btf_type_is_ptr(t) && btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
7066 sub->args[i].arg_type = ARG_PTR_TO_CTX;
7067 continue;
7068 }
7069 if (btf_type_is_ptr(t) && btf_is_dynptr_ptr(btf, t)) {
7070 sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY;
7071 continue;
7072 }
7073 if (is_global && btf_type_is_ptr(t)) {
7074 u32 mem_size;
7075
7076 t = btf_type_skip_modifiers(btf, t->type, NULL);
7077 ref_t = btf_resolve_size(btf, t, &mem_size);
7078 if (IS_ERR(ref_t)) {
7079 bpf_log(log,
7080 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7081 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7082 PTR_ERR(ref_t));
7083 return -EINVAL;
7084 }
7085
7086 sub->args[i].arg_type = is_nonnull ? ARG_PTR_TO_MEM : ARG_PTR_TO_MEM_OR_NULL;
7087 sub->args[i].mem_size = mem_size;
7088 continue;
7089 }
7090 if (is_nonnull) {
7091 bpf_log(log, "arg#%d marked as non-null, but is not a pointer type\n", i);
7092 return -EINVAL;
7093 }
7094 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7095 i, btf_type_str(t), tname);
7096 return -EINVAL;
7097 }
7098
7099 for (i = 0; i < nargs; i++) {
7100 const char *tag;
7101
7102 if (sub->args[i].arg_type != ARG_PTR_TO_CTX)
7103 continue;
7104
7105 /* check if arg has "arg:ctx" tag */
7106 t = btf_type_by_id(btf, args[i].type);
7107 tag = btf_find_decl_tag_value(btf, fn_t, i, "arg:");
7108 if (IS_ERR_OR_NULL(tag) || strcmp(tag, "ctx") != 0)
7109 continue;
7110
7111 if (btf_validate_prog_ctx_type(log, btf, t, i, prog_type,
7112 prog->expected_attach_type))
7113 return -EINVAL;
7114 }
7115
7116 sub->arg_cnt = nargs;
7117 sub->args_cached = true;
7118
7119 return 0;
7120}
7121
7122static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7123 struct btf_show *show)
7124{
7125 const struct btf_type *t = btf_type_by_id(btf, type_id);
7126
7127 show->btf = btf;
7128 memset(&show->state, 0, sizeof(show->state));
7129 memset(&show->obj, 0, sizeof(show->obj));
7130
7131 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7132}
7133
7134static void btf_seq_show(struct btf_show *show, const char *fmt,
7135 va_list args)
7136{
7137 seq_vprintf((struct seq_file *)show->target, fmt, args);
7138}
7139
7140int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7141 void *obj, struct seq_file *m, u64 flags)
7142{
7143 struct btf_show sseq;
7144
7145 sseq.target = m;
7146 sseq.showfn = btf_seq_show;
7147 sseq.flags = flags;
7148
7149 btf_type_show(btf, type_id, obj, &sseq);
7150
7151 return sseq.state.status;
7152}
7153
7154void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7155 struct seq_file *m)
7156{
7157 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
7158 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7159 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7160}
7161
7162struct btf_show_snprintf {
7163 struct btf_show show;
7164 int len_left; /* space left in string */
7165 int len; /* length we would have written */
7166};
7167
7168static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7169 va_list args)
7170{
7171 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7172 int len;
7173
7174 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7175
7176 if (len < 0) {
7177 ssnprintf->len_left = 0;
7178 ssnprintf->len = len;
7179 } else if (len >= ssnprintf->len_left) {
7180 /* no space, drive on to get length we would have written */
7181 ssnprintf->len_left = 0;
7182 ssnprintf->len += len;
7183 } else {
7184 ssnprintf->len_left -= len;
7185 ssnprintf->len += len;
7186 show->target += len;
7187 }
7188}
7189
7190int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7191 char *buf, int len, u64 flags)
7192{
7193 struct btf_show_snprintf ssnprintf;
7194
7195 ssnprintf.show.target = buf;
7196 ssnprintf.show.flags = flags;
7197 ssnprintf.show.showfn = btf_snprintf_show;
7198 ssnprintf.len_left = len;
7199 ssnprintf.len = 0;
7200
7201 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7202
7203 /* If we encountered an error, return it. */
7204 if (ssnprintf.show.state.status)
7205 return ssnprintf.show.state.status;
7206
7207 /* Otherwise return length we would have written */
7208 return ssnprintf.len;
7209}
7210
7211#ifdef CONFIG_PROC_FS
7212static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7213{
7214 const struct btf *btf = filp->private_data;
7215
7216 seq_printf(m, "btf_id:\t%u\n", btf->id);
7217}
7218#endif
7219
7220static int btf_release(struct inode *inode, struct file *filp)
7221{
7222 btf_put(filp->private_data);
7223 return 0;
7224}
7225
7226const struct file_operations btf_fops = {
7227#ifdef CONFIG_PROC_FS
7228 .show_fdinfo = bpf_btf_show_fdinfo,
7229#endif
7230 .release = btf_release,
7231};
7232
7233static int __btf_new_fd(struct btf *btf)
7234{
7235 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7236}
7237
7238int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7239{
7240 struct btf *btf;
7241 int ret;
7242
7243 btf = btf_parse(attr, uattr, uattr_size);
7244 if (IS_ERR(btf))
7245 return PTR_ERR(btf);
7246
7247 ret = btf_alloc_id(btf);
7248 if (ret) {
7249 btf_free(btf);
7250 return ret;
7251 }
7252
7253 /*
7254 * The BTF ID is published to the userspace.
7255 * All BTF free must go through call_rcu() from
7256 * now on (i.e. free by calling btf_put()).
7257 */
7258
7259 ret = __btf_new_fd(btf);
7260 if (ret < 0)
7261 btf_put(btf);
7262
7263 return ret;
7264}
7265
7266struct btf *btf_get_by_fd(int fd)
7267{
7268 struct btf *btf;
7269 struct fd f;
7270
7271 f = fdget(fd);
7272
7273 if (!f.file)
7274 return ERR_PTR(-EBADF);
7275
7276 if (f.file->f_op != &btf_fops) {
7277 fdput(f);
7278 return ERR_PTR(-EINVAL);
7279 }
7280
7281 btf = f.file->private_data;
7282 refcount_inc(&btf->refcnt);
7283 fdput(f);
7284
7285 return btf;
7286}
7287
7288int btf_get_info_by_fd(const struct btf *btf,
7289 const union bpf_attr *attr,
7290 union bpf_attr __user *uattr)
7291{
7292 struct bpf_btf_info __user *uinfo;
7293 struct bpf_btf_info info;
7294 u32 info_copy, btf_copy;
7295 void __user *ubtf;
7296 char __user *uname;
7297 u32 uinfo_len, uname_len, name_len;
7298 int ret = 0;
7299
7300 uinfo = u64_to_user_ptr(attr->info.info);
7301 uinfo_len = attr->info.info_len;
7302
7303 info_copy = min_t(u32, uinfo_len, sizeof(info));
7304 memset(&info, 0, sizeof(info));
7305 if (copy_from_user(&info, uinfo, info_copy))
7306 return -EFAULT;
7307
7308 info.id = btf->id;
7309 ubtf = u64_to_user_ptr(info.btf);
7310 btf_copy = min_t(u32, btf->data_size, info.btf_size);
7311 if (copy_to_user(ubtf, btf->data, btf_copy))
7312 return -EFAULT;
7313 info.btf_size = btf->data_size;
7314
7315 info.kernel_btf = btf->kernel_btf;
7316
7317 uname = u64_to_user_ptr(info.name);
7318 uname_len = info.name_len;
7319 if (!uname ^ !uname_len)
7320 return -EINVAL;
7321
7322 name_len = strlen(btf->name);
7323 info.name_len = name_len;
7324
7325 if (uname) {
7326 if (uname_len >= name_len + 1) {
7327 if (copy_to_user(uname, btf->name, name_len + 1))
7328 return -EFAULT;
7329 } else {
7330 char zero = '\0';
7331
7332 if (copy_to_user(uname, btf->name, uname_len - 1))
7333 return -EFAULT;
7334 if (put_user(zero, uname + uname_len - 1))
7335 return -EFAULT;
7336 /* let user-space know about too short buffer */
7337 ret = -ENOSPC;
7338 }
7339 }
7340
7341 if (copy_to_user(uinfo, &info, info_copy) ||
7342 put_user(info_copy, &uattr->info.info_len))
7343 return -EFAULT;
7344
7345 return ret;
7346}
7347
7348int btf_get_fd_by_id(u32 id)
7349{
7350 struct btf *btf;
7351 int fd;
7352
7353 rcu_read_lock();
7354 btf = idr_find(&btf_idr, id);
7355 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7356 btf = ERR_PTR(-ENOENT);
7357 rcu_read_unlock();
7358
7359 if (IS_ERR(btf))
7360 return PTR_ERR(btf);
7361
7362 fd = __btf_new_fd(btf);
7363 if (fd < 0)
7364 btf_put(btf);
7365
7366 return fd;
7367}
7368
7369u32 btf_obj_id(const struct btf *btf)
7370{
7371 return btf->id;
7372}
7373
7374bool btf_is_kernel(const struct btf *btf)
7375{
7376 return btf->kernel_btf;
7377}
7378
7379bool btf_is_module(const struct btf *btf)
7380{
7381 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7382}
7383
7384enum {
7385 BTF_MODULE_F_LIVE = (1 << 0),
7386};
7387
7388#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7389struct btf_module {
7390 struct list_head list;
7391 struct module *module;
7392 struct btf *btf;
7393 struct bin_attribute *sysfs_attr;
7394 int flags;
7395};
7396
7397static LIST_HEAD(btf_modules);
7398static DEFINE_MUTEX(btf_module_mutex);
7399
7400static ssize_t
7401btf_module_read(struct file *file, struct kobject *kobj,
7402 struct bin_attribute *bin_attr,
7403 char *buf, loff_t off, size_t len)
7404{
7405 const struct btf *btf = bin_attr->private;
7406
7407 memcpy(buf, btf->data + off, len);
7408 return len;
7409}
7410
7411static void purge_cand_cache(struct btf *btf);
7412
7413static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7414 void *module)
7415{
7416 struct btf_module *btf_mod, *tmp;
7417 struct module *mod = module;
7418 struct btf *btf;
7419 int err = 0;
7420
7421 if (mod->btf_data_size == 0 ||
7422 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7423 op != MODULE_STATE_GOING))
7424 goto out;
7425
7426 switch (op) {
7427 case MODULE_STATE_COMING:
7428 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7429 if (!btf_mod) {
7430 err = -ENOMEM;
7431 goto out;
7432 }
7433 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7434 if (IS_ERR(btf)) {
7435 kfree(btf_mod);
7436 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7437 pr_warn("failed to validate module [%s] BTF: %ld\n",
7438 mod->name, PTR_ERR(btf));
7439 err = PTR_ERR(btf);
7440 } else {
7441 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7442 }
7443 goto out;
7444 }
7445 err = btf_alloc_id(btf);
7446 if (err) {
7447 btf_free(btf);
7448 kfree(btf_mod);
7449 goto out;
7450 }
7451
7452 purge_cand_cache(NULL);
7453 mutex_lock(&btf_module_mutex);
7454 btf_mod->module = module;
7455 btf_mod->btf = btf;
7456 list_add(&btf_mod->list, &btf_modules);
7457 mutex_unlock(&btf_module_mutex);
7458
7459 if (IS_ENABLED(CONFIG_SYSFS)) {
7460 struct bin_attribute *attr;
7461
7462 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7463 if (!attr)
7464 goto out;
7465
7466 sysfs_bin_attr_init(attr);
7467 attr->attr.name = btf->name;
7468 attr->attr.mode = 0444;
7469 attr->size = btf->data_size;
7470 attr->private = btf;
7471 attr->read = btf_module_read;
7472
7473 err = sysfs_create_bin_file(btf_kobj, attr);
7474 if (err) {
7475 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7476 mod->name, err);
7477 kfree(attr);
7478 err = 0;
7479 goto out;
7480 }
7481
7482 btf_mod->sysfs_attr = attr;
7483 }
7484
7485 break;
7486 case MODULE_STATE_LIVE:
7487 mutex_lock(&btf_module_mutex);
7488 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7489 if (btf_mod->module != module)
7490 continue;
7491
7492 btf_mod->flags |= BTF_MODULE_F_LIVE;
7493 break;
7494 }
7495 mutex_unlock(&btf_module_mutex);
7496 break;
7497 case MODULE_STATE_GOING:
7498 mutex_lock(&btf_module_mutex);
7499 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7500 if (btf_mod->module != module)
7501 continue;
7502
7503 list_del(&btf_mod->list);
7504 if (btf_mod->sysfs_attr)
7505 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7506 purge_cand_cache(btf_mod->btf);
7507 btf_put(btf_mod->btf);
7508 kfree(btf_mod->sysfs_attr);
7509 kfree(btf_mod);
7510 break;
7511 }
7512 mutex_unlock(&btf_module_mutex);
7513 break;
7514 }
7515out:
7516 return notifier_from_errno(err);
7517}
7518
7519static struct notifier_block btf_module_nb = {
7520 .notifier_call = btf_module_notify,
7521};
7522
7523static int __init btf_module_init(void)
7524{
7525 register_module_notifier(&btf_module_nb);
7526 return 0;
7527}
7528
7529fs_initcall(btf_module_init);
7530#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7531
7532struct module *btf_try_get_module(const struct btf *btf)
7533{
7534 struct module *res = NULL;
7535#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7536 struct btf_module *btf_mod, *tmp;
7537
7538 mutex_lock(&btf_module_mutex);
7539 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7540 if (btf_mod->btf != btf)
7541 continue;
7542
7543 /* We must only consider module whose __init routine has
7544 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7545 * which is set from the notifier callback for
7546 * MODULE_STATE_LIVE.
7547 */
7548 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7549 res = btf_mod->module;
7550
7551 break;
7552 }
7553 mutex_unlock(&btf_module_mutex);
7554#endif
7555
7556 return res;
7557}
7558
7559/* Returns struct btf corresponding to the struct module.
7560 * This function can return NULL or ERR_PTR.
7561 */
7562static struct btf *btf_get_module_btf(const struct module *module)
7563{
7564#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7565 struct btf_module *btf_mod, *tmp;
7566#endif
7567 struct btf *btf = NULL;
7568
7569 if (!module) {
7570 btf = bpf_get_btf_vmlinux();
7571 if (!IS_ERR_OR_NULL(btf))
7572 btf_get(btf);
7573 return btf;
7574 }
7575
7576#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7577 mutex_lock(&btf_module_mutex);
7578 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7579 if (btf_mod->module != module)
7580 continue;
7581
7582 btf_get(btf_mod->btf);
7583 btf = btf_mod->btf;
7584 break;
7585 }
7586 mutex_unlock(&btf_module_mutex);
7587#endif
7588
7589 return btf;
7590}
7591
7592BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7593{
7594 struct btf *btf = NULL;
7595 int btf_obj_fd = 0;
7596 long ret;
7597
7598 if (flags)
7599 return -EINVAL;
7600
7601 if (name_sz <= 1 || name[name_sz - 1])
7602 return -EINVAL;
7603
7604 ret = bpf_find_btf_id(name, kind, &btf);
7605 if (ret > 0 && btf_is_module(btf)) {
7606 btf_obj_fd = __btf_new_fd(btf);
7607 if (btf_obj_fd < 0) {
7608 btf_put(btf);
7609 return btf_obj_fd;
7610 }
7611 return ret | (((u64)btf_obj_fd) << 32);
7612 }
7613 if (ret > 0)
7614 btf_put(btf);
7615 return ret;
7616}
7617
7618const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7619 .func = bpf_btf_find_by_name_kind,
7620 .gpl_only = false,
7621 .ret_type = RET_INTEGER,
7622 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7623 .arg2_type = ARG_CONST_SIZE,
7624 .arg3_type = ARG_ANYTHING,
7625 .arg4_type = ARG_ANYTHING,
7626};
7627
7628BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7629#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7630BTF_TRACING_TYPE_xxx
7631#undef BTF_TRACING_TYPE
7632
7633static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
7634 const struct btf_type *func, u32 func_flags)
7635{
7636 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7637 const char *name, *sfx, *iter_name;
7638 const struct btf_param *arg;
7639 const struct btf_type *t;
7640 char exp_name[128];
7641 u32 nr_args;
7642
7643 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
7644 if (!flags || (flags & (flags - 1)))
7645 return -EINVAL;
7646
7647 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
7648 nr_args = btf_type_vlen(func);
7649 if (nr_args < 1)
7650 return -EINVAL;
7651
7652 arg = &btf_params(func)[0];
7653 t = btf_type_skip_modifiers(btf, arg->type, NULL);
7654 if (!t || !btf_type_is_ptr(t))
7655 return -EINVAL;
7656 t = btf_type_skip_modifiers(btf, t->type, NULL);
7657 if (!t || !__btf_type_is_struct(t))
7658 return -EINVAL;
7659
7660 name = btf_name_by_offset(btf, t->name_off);
7661 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
7662 return -EINVAL;
7663
7664 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
7665 * fit nicely in stack slots
7666 */
7667 if (t->size == 0 || (t->size % 8))
7668 return -EINVAL;
7669
7670 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
7671 * naming pattern
7672 */
7673 iter_name = name + sizeof(ITER_PREFIX) - 1;
7674 if (flags & KF_ITER_NEW)
7675 sfx = "new";
7676 else if (flags & KF_ITER_NEXT)
7677 sfx = "next";
7678 else /* (flags & KF_ITER_DESTROY) */
7679 sfx = "destroy";
7680
7681 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
7682 if (strcmp(func_name, exp_name))
7683 return -EINVAL;
7684
7685 /* only iter constructor should have extra arguments */
7686 if (!(flags & KF_ITER_NEW) && nr_args != 1)
7687 return -EINVAL;
7688
7689 if (flags & KF_ITER_NEXT) {
7690 /* bpf_iter_<type>_next() should return pointer */
7691 t = btf_type_skip_modifiers(btf, func->type, NULL);
7692 if (!t || !btf_type_is_ptr(t))
7693 return -EINVAL;
7694 }
7695
7696 if (flags & KF_ITER_DESTROY) {
7697 /* bpf_iter_<type>_destroy() should return void */
7698 t = btf_type_by_id(btf, func->type);
7699 if (!t || !btf_type_is_void(t))
7700 return -EINVAL;
7701 }
7702
7703 return 0;
7704}
7705
7706static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
7707{
7708 const struct btf_type *func;
7709 const char *func_name;
7710 int err;
7711
7712 /* any kfunc should be FUNC -> FUNC_PROTO */
7713 func = btf_type_by_id(btf, func_id);
7714 if (!func || !btf_type_is_func(func))
7715 return -EINVAL;
7716
7717 /* sanity check kfunc name */
7718 func_name = btf_name_by_offset(btf, func->name_off);
7719 if (!func_name || !func_name[0])
7720 return -EINVAL;
7721
7722 func = btf_type_by_id(btf, func->type);
7723 if (!func || !btf_type_is_func_proto(func))
7724 return -EINVAL;
7725
7726 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
7727 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
7728 if (err)
7729 return err;
7730 }
7731
7732 return 0;
7733}
7734
7735/* Kernel Function (kfunc) BTF ID set registration API */
7736
7737static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7738 const struct btf_kfunc_id_set *kset)
7739{
7740 struct btf_kfunc_hook_filter *hook_filter;
7741 struct btf_id_set8 *add_set = kset->set;
7742 bool vmlinux_set = !btf_is_module(btf);
7743 bool add_filter = !!kset->filter;
7744 struct btf_kfunc_set_tab *tab;
7745 struct btf_id_set8 *set;
7746 u32 set_cnt;
7747 int ret;
7748
7749 if (hook >= BTF_KFUNC_HOOK_MAX) {
7750 ret = -EINVAL;
7751 goto end;
7752 }
7753
7754 if (!add_set->cnt)
7755 return 0;
7756
7757 tab = btf->kfunc_set_tab;
7758
7759 if (tab && add_filter) {
7760 u32 i;
7761
7762 hook_filter = &tab->hook_filters[hook];
7763 for (i = 0; i < hook_filter->nr_filters; i++) {
7764 if (hook_filter->filters[i] == kset->filter) {
7765 add_filter = false;
7766 break;
7767 }
7768 }
7769
7770 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
7771 ret = -E2BIG;
7772 goto end;
7773 }
7774 }
7775
7776 if (!tab) {
7777 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7778 if (!tab)
7779 return -ENOMEM;
7780 btf->kfunc_set_tab = tab;
7781 }
7782
7783 set = tab->sets[hook];
7784 /* Warn when register_btf_kfunc_id_set is called twice for the same hook
7785 * for module sets.
7786 */
7787 if (WARN_ON_ONCE(set && !vmlinux_set)) {
7788 ret = -EINVAL;
7789 goto end;
7790 }
7791
7792 /* We don't need to allocate, concatenate, and sort module sets, because
7793 * only one is allowed per hook. Hence, we can directly assign the
7794 * pointer and return.
7795 */
7796 if (!vmlinux_set) {
7797 tab->sets[hook] = add_set;
7798 goto do_add_filter;
7799 }
7800
7801 /* In case of vmlinux sets, there may be more than one set being
7802 * registered per hook. To create a unified set, we allocate a new set
7803 * and concatenate all individual sets being registered. While each set
7804 * is individually sorted, they may become unsorted when concatenated,
7805 * hence re-sorting the final set again is required to make binary
7806 * searching the set using btf_id_set8_contains function work.
7807 */
7808 set_cnt = set ? set->cnt : 0;
7809
7810 if (set_cnt > U32_MAX - add_set->cnt) {
7811 ret = -EOVERFLOW;
7812 goto end;
7813 }
7814
7815 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7816 ret = -E2BIG;
7817 goto end;
7818 }
7819
7820 /* Grow set */
7821 set = krealloc(tab->sets[hook],
7822 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
7823 GFP_KERNEL | __GFP_NOWARN);
7824 if (!set) {
7825 ret = -ENOMEM;
7826 goto end;
7827 }
7828
7829 /* For newly allocated set, initialize set->cnt to 0 */
7830 if (!tab->sets[hook])
7831 set->cnt = 0;
7832 tab->sets[hook] = set;
7833
7834 /* Concatenate the two sets */
7835 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
7836 set->cnt += add_set->cnt;
7837
7838 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
7839
7840do_add_filter:
7841 if (add_filter) {
7842 hook_filter = &tab->hook_filters[hook];
7843 hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
7844 }
7845 return 0;
7846end:
7847 btf_free_kfunc_set_tab(btf);
7848 return ret;
7849}
7850
7851static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
7852 enum btf_kfunc_hook hook,
7853 u32 kfunc_btf_id,
7854 const struct bpf_prog *prog)
7855{
7856 struct btf_kfunc_hook_filter *hook_filter;
7857 struct btf_id_set8 *set;
7858 u32 *id, i;
7859
7860 if (hook >= BTF_KFUNC_HOOK_MAX)
7861 return NULL;
7862 if (!btf->kfunc_set_tab)
7863 return NULL;
7864 hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
7865 for (i = 0; i < hook_filter->nr_filters; i++) {
7866 if (hook_filter->filters[i](prog, kfunc_btf_id))
7867 return NULL;
7868 }
7869 set = btf->kfunc_set_tab->sets[hook];
7870 if (!set)
7871 return NULL;
7872 id = btf_id_set8_contains(set, kfunc_btf_id);
7873 if (!id)
7874 return NULL;
7875 /* The flags for BTF ID are located next to it */
7876 return id + 1;
7877}
7878
7879static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7880{
7881 switch (prog_type) {
7882 case BPF_PROG_TYPE_UNSPEC:
7883 return BTF_KFUNC_HOOK_COMMON;
7884 case BPF_PROG_TYPE_XDP:
7885 return BTF_KFUNC_HOOK_XDP;
7886 case BPF_PROG_TYPE_SCHED_CLS:
7887 return BTF_KFUNC_HOOK_TC;
7888 case BPF_PROG_TYPE_STRUCT_OPS:
7889 return BTF_KFUNC_HOOK_STRUCT_OPS;
7890 case BPF_PROG_TYPE_TRACING:
7891 case BPF_PROG_TYPE_LSM:
7892 return BTF_KFUNC_HOOK_TRACING;
7893 case BPF_PROG_TYPE_SYSCALL:
7894 return BTF_KFUNC_HOOK_SYSCALL;
7895 case BPF_PROG_TYPE_CGROUP_SKB:
7896 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7897 return BTF_KFUNC_HOOK_CGROUP_SKB;
7898 case BPF_PROG_TYPE_SCHED_ACT:
7899 return BTF_KFUNC_HOOK_SCHED_ACT;
7900 case BPF_PROG_TYPE_SK_SKB:
7901 return BTF_KFUNC_HOOK_SK_SKB;
7902 case BPF_PROG_TYPE_SOCKET_FILTER:
7903 return BTF_KFUNC_HOOK_SOCKET_FILTER;
7904 case BPF_PROG_TYPE_LWT_OUT:
7905 case BPF_PROG_TYPE_LWT_IN:
7906 case BPF_PROG_TYPE_LWT_XMIT:
7907 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
7908 return BTF_KFUNC_HOOK_LWT;
7909 case BPF_PROG_TYPE_NETFILTER:
7910 return BTF_KFUNC_HOOK_NETFILTER;
7911 default:
7912 return BTF_KFUNC_HOOK_MAX;
7913 }
7914}
7915
7916/* Caution:
7917 * Reference to the module (obtained using btf_try_get_module) corresponding to
7918 * the struct btf *MUST* be held when calling this function from verifier
7919 * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7920 * keeping the reference for the duration of the call provides the necessary
7921 * protection for looking up a well-formed btf->kfunc_set_tab.
7922 */
7923u32 *btf_kfunc_id_set_contains(const struct btf *btf,
7924 u32 kfunc_btf_id,
7925 const struct bpf_prog *prog)
7926{
7927 enum bpf_prog_type prog_type = resolve_prog_type(prog);
7928 enum btf_kfunc_hook hook;
7929 u32 *kfunc_flags;
7930
7931 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
7932 if (kfunc_flags)
7933 return kfunc_flags;
7934
7935 hook = bpf_prog_type_to_kfunc_hook(prog_type);
7936 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
7937}
7938
7939u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
7940 const struct bpf_prog *prog)
7941{
7942 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
7943}
7944
7945static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
7946 const struct btf_kfunc_id_set *kset)
7947{
7948 struct btf *btf;
7949 int ret, i;
7950
7951 btf = btf_get_module_btf(kset->owner);
7952 if (!btf) {
7953 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7954 pr_err("missing vmlinux BTF, cannot register kfuncs\n");
7955 return -ENOENT;
7956 }
7957 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
7958 pr_warn("missing module BTF, cannot register kfuncs\n");
7959 return 0;
7960 }
7961 if (IS_ERR(btf))
7962 return PTR_ERR(btf);
7963
7964 for (i = 0; i < kset->set->cnt; i++) {
7965 ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id,
7966 kset->set->pairs[i].flags);
7967 if (ret)
7968 goto err_out;
7969 }
7970
7971 ret = btf_populate_kfunc_set(btf, hook, kset);
7972
7973err_out:
7974 btf_put(btf);
7975 return ret;
7976}
7977
7978/* This function must be invoked only from initcalls/module init functions */
7979int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
7980 const struct btf_kfunc_id_set *kset)
7981{
7982 enum btf_kfunc_hook hook;
7983
7984 hook = bpf_prog_type_to_kfunc_hook(prog_type);
7985 return __register_btf_kfunc_id_set(hook, kset);
7986}
7987EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
7988
7989/* This function must be invoked only from initcalls/module init functions */
7990int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
7991{
7992 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
7993}
7994EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
7995
7996s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
7997{
7998 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
7999 struct btf_id_dtor_kfunc *dtor;
8000
8001 if (!tab)
8002 return -ENOENT;
8003 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
8004 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
8005 */
8006 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
8007 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
8008 if (!dtor)
8009 return -ENOENT;
8010 return dtor->kfunc_btf_id;
8011}
8012
8013static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
8014{
8015 const struct btf_type *dtor_func, *dtor_func_proto, *t;
8016 const struct btf_param *args;
8017 s32 dtor_btf_id;
8018 u32 nr_args, i;
8019
8020 for (i = 0; i < cnt; i++) {
8021 dtor_btf_id = dtors[i].kfunc_btf_id;
8022
8023 dtor_func = btf_type_by_id(btf, dtor_btf_id);
8024 if (!dtor_func || !btf_type_is_func(dtor_func))
8025 return -EINVAL;
8026
8027 dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
8028 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
8029 return -EINVAL;
8030
8031 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
8032 t = btf_type_by_id(btf, dtor_func_proto->type);
8033 if (!t || !btf_type_is_void(t))
8034 return -EINVAL;
8035
8036 nr_args = btf_type_vlen(dtor_func_proto);
8037 if (nr_args != 1)
8038 return -EINVAL;
8039 args = btf_params(dtor_func_proto);
8040 t = btf_type_by_id(btf, args[0].type);
8041 /* Allow any pointer type, as width on targets Linux supports
8042 * will be same for all pointer types (i.e. sizeof(void *))
8043 */
8044 if (!t || !btf_type_is_ptr(t))
8045 return -EINVAL;
8046 }
8047 return 0;
8048}
8049
8050/* This function must be invoked only from initcalls/module init functions */
8051int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
8052 struct module *owner)
8053{
8054 struct btf_id_dtor_kfunc_tab *tab;
8055 struct btf *btf;
8056 u32 tab_cnt;
8057 int ret;
8058
8059 btf = btf_get_module_btf(owner);
8060 if (!btf) {
8061 if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8062 pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
8063 return -ENOENT;
8064 }
8065 if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
8066 pr_err("missing module BTF, cannot register dtor kfuncs\n");
8067 return -ENOENT;
8068 }
8069 return 0;
8070 }
8071 if (IS_ERR(btf))
8072 return PTR_ERR(btf);
8073
8074 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8075 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8076 ret = -E2BIG;
8077 goto end;
8078 }
8079
8080 /* Ensure that the prototype of dtor kfuncs being registered is sane */
8081 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8082 if (ret < 0)
8083 goto end;
8084
8085 tab = btf->dtor_kfunc_tab;
8086 /* Only one call allowed for modules */
8087 if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8088 ret = -EINVAL;
8089 goto end;
8090 }
8091
8092 tab_cnt = tab ? tab->cnt : 0;
8093 if (tab_cnt > U32_MAX - add_cnt) {
8094 ret = -EOVERFLOW;
8095 goto end;
8096 }
8097 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8098 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8099 ret = -E2BIG;
8100 goto end;
8101 }
8102
8103 tab = krealloc(btf->dtor_kfunc_tab,
8104 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8105 GFP_KERNEL | __GFP_NOWARN);
8106 if (!tab) {
8107 ret = -ENOMEM;
8108 goto end;
8109 }
8110
8111 if (!btf->dtor_kfunc_tab)
8112 tab->cnt = 0;
8113 btf->dtor_kfunc_tab = tab;
8114
8115 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8116 tab->cnt += add_cnt;
8117
8118 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8119
8120end:
8121 if (ret)
8122 btf_free_dtor_kfunc_tab(btf);
8123 btf_put(btf);
8124 return ret;
8125}
8126EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8127
8128#define MAX_TYPES_ARE_COMPAT_DEPTH 2
8129
8130/* Check local and target types for compatibility. This check is used for
8131 * type-based CO-RE relocations and follow slightly different rules than
8132 * field-based relocations. This function assumes that root types were already
8133 * checked for name match. Beyond that initial root-level name check, names
8134 * are completely ignored. Compatibility rules are as follows:
8135 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8136 * kind should match for local and target types (i.e., STRUCT is not
8137 * compatible with UNION);
8138 * - for ENUMs/ENUM64s, the size is ignored;
8139 * - for INT, size and signedness are ignored;
8140 * - for ARRAY, dimensionality is ignored, element types are checked for
8141 * compatibility recursively;
8142 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
8143 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8144 * - FUNC_PROTOs are compatible if they have compatible signature: same
8145 * number of input args and compatible return and argument types.
8146 * These rules are not set in stone and probably will be adjusted as we get
8147 * more experience with using BPF CO-RE relocations.
8148 */
8149int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8150 const struct btf *targ_btf, __u32 targ_id)
8151{
8152 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8153 MAX_TYPES_ARE_COMPAT_DEPTH);
8154}
8155
8156#define MAX_TYPES_MATCH_DEPTH 2
8157
8158int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8159 const struct btf *targ_btf, u32 targ_id)
8160{
8161 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8162 MAX_TYPES_MATCH_DEPTH);
8163}
8164
8165static bool bpf_core_is_flavor_sep(const char *s)
8166{
8167 /* check X___Y name pattern, where X and Y are not underscores */
8168 return s[0] != '_' && /* X */
8169 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
8170 s[4] != '_'; /* Y */
8171}
8172
8173size_t bpf_core_essential_name_len(const char *name)
8174{
8175 size_t n = strlen(name);
8176 int i;
8177
8178 for (i = n - 5; i >= 0; i--) {
8179 if (bpf_core_is_flavor_sep(name + i))
8180 return i + 1;
8181 }
8182 return n;
8183}
8184
8185struct bpf_cand_cache {
8186 const char *name;
8187 u32 name_len;
8188 u16 kind;
8189 u16 cnt;
8190 struct {
8191 const struct btf *btf;
8192 u32 id;
8193 } cands[];
8194};
8195
8196static void bpf_free_cands(struct bpf_cand_cache *cands)
8197{
8198 if (!cands->cnt)
8199 /* empty candidate array was allocated on stack */
8200 return;
8201 kfree(cands);
8202}
8203
8204static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8205{
8206 kfree(cands->name);
8207 kfree(cands);
8208}
8209
8210#define VMLINUX_CAND_CACHE_SIZE 31
8211static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8212
8213#define MODULE_CAND_CACHE_SIZE 31
8214static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8215
8216static DEFINE_MUTEX(cand_cache_mutex);
8217
8218static void __print_cand_cache(struct bpf_verifier_log *log,
8219 struct bpf_cand_cache **cache,
8220 int cache_size)
8221{
8222 struct bpf_cand_cache *cc;
8223 int i, j;
8224
8225 for (i = 0; i < cache_size; i++) {
8226 cc = cache[i];
8227 if (!cc)
8228 continue;
8229 bpf_log(log, "[%d]%s(", i, cc->name);
8230 for (j = 0; j < cc->cnt; j++) {
8231 bpf_log(log, "%d", cc->cands[j].id);
8232 if (j < cc->cnt - 1)
8233 bpf_log(log, " ");
8234 }
8235 bpf_log(log, "), ");
8236 }
8237}
8238
8239static void print_cand_cache(struct bpf_verifier_log *log)
8240{
8241 mutex_lock(&cand_cache_mutex);
8242 bpf_log(log, "vmlinux_cand_cache:");
8243 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8244 bpf_log(log, "\nmodule_cand_cache:");
8245 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8246 bpf_log(log, "\n");
8247 mutex_unlock(&cand_cache_mutex);
8248}
8249
8250static u32 hash_cands(struct bpf_cand_cache *cands)
8251{
8252 return jhash(cands->name, cands->name_len, 0);
8253}
8254
8255static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8256 struct bpf_cand_cache **cache,
8257 int cache_size)
8258{
8259 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8260
8261 if (cc && cc->name_len == cands->name_len &&
8262 !strncmp(cc->name, cands->name, cands->name_len))
8263 return cc;
8264 return NULL;
8265}
8266
8267static size_t sizeof_cands(int cnt)
8268{
8269 return offsetof(struct bpf_cand_cache, cands[cnt]);
8270}
8271
8272static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8273 struct bpf_cand_cache **cache,
8274 int cache_size)
8275{
8276 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8277
8278 if (*cc) {
8279 bpf_free_cands_from_cache(*cc);
8280 *cc = NULL;
8281 }
8282 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8283 if (!new_cands) {
8284 bpf_free_cands(cands);
8285 return ERR_PTR(-ENOMEM);
8286 }
8287 /* strdup the name, since it will stay in cache.
8288 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8289 */
8290 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8291 bpf_free_cands(cands);
8292 if (!new_cands->name) {
8293 kfree(new_cands);
8294 return ERR_PTR(-ENOMEM);
8295 }
8296 *cc = new_cands;
8297 return new_cands;
8298}
8299
8300#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8301static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8302 int cache_size)
8303{
8304 struct bpf_cand_cache *cc;
8305 int i, j;
8306
8307 for (i = 0; i < cache_size; i++) {
8308 cc = cache[i];
8309 if (!cc)
8310 continue;
8311 if (!btf) {
8312 /* when new module is loaded purge all of module_cand_cache,
8313 * since new module might have candidates with the name
8314 * that matches cached cands.
8315 */
8316 bpf_free_cands_from_cache(cc);
8317 cache[i] = NULL;
8318 continue;
8319 }
8320 /* when module is unloaded purge cache entries
8321 * that match module's btf
8322 */
8323 for (j = 0; j < cc->cnt; j++)
8324 if (cc->cands[j].btf == btf) {
8325 bpf_free_cands_from_cache(cc);
8326 cache[i] = NULL;
8327 break;
8328 }
8329 }
8330
8331}
8332
8333static void purge_cand_cache(struct btf *btf)
8334{
8335 mutex_lock(&cand_cache_mutex);
8336 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8337 mutex_unlock(&cand_cache_mutex);
8338}
8339#endif
8340
8341static struct bpf_cand_cache *
8342bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8343 int targ_start_id)
8344{
8345 struct bpf_cand_cache *new_cands;
8346 const struct btf_type *t;
8347 const char *targ_name;
8348 size_t targ_essent_len;
8349 int n, i;
8350
8351 n = btf_nr_types(targ_btf);
8352 for (i = targ_start_id; i < n; i++) {
8353 t = btf_type_by_id(targ_btf, i);
8354 if (btf_kind(t) != cands->kind)
8355 continue;
8356
8357 targ_name = btf_name_by_offset(targ_btf, t->name_off);
8358 if (!targ_name)
8359 continue;
8360
8361 /* the resched point is before strncmp to make sure that search
8362 * for non-existing name will have a chance to schedule().
8363 */
8364 cond_resched();
8365
8366 if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8367 continue;
8368
8369 targ_essent_len = bpf_core_essential_name_len(targ_name);
8370 if (targ_essent_len != cands->name_len)
8371 continue;
8372
8373 /* most of the time there is only one candidate for a given kind+name pair */
8374 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8375 if (!new_cands) {
8376 bpf_free_cands(cands);
8377 return ERR_PTR(-ENOMEM);
8378 }
8379
8380 memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8381 bpf_free_cands(cands);
8382 cands = new_cands;
8383 cands->cands[cands->cnt].btf = targ_btf;
8384 cands->cands[cands->cnt].id = i;
8385 cands->cnt++;
8386 }
8387 return cands;
8388}
8389
8390static struct bpf_cand_cache *
8391bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8392{
8393 struct bpf_cand_cache *cands, *cc, local_cand = {};
8394 const struct btf *local_btf = ctx->btf;
8395 const struct btf_type *local_type;
8396 const struct btf *main_btf;
8397 size_t local_essent_len;
8398 struct btf *mod_btf;
8399 const char *name;
8400 int id;
8401
8402 main_btf = bpf_get_btf_vmlinux();
8403 if (IS_ERR(main_btf))
8404 return ERR_CAST(main_btf);
8405 if (!main_btf)
8406 return ERR_PTR(-EINVAL);
8407
8408 local_type = btf_type_by_id(local_btf, local_type_id);
8409 if (!local_type)
8410 return ERR_PTR(-EINVAL);
8411
8412 name = btf_name_by_offset(local_btf, local_type->name_off);
8413 if (str_is_empty(name))
8414 return ERR_PTR(-EINVAL);
8415 local_essent_len = bpf_core_essential_name_len(name);
8416
8417 cands = &local_cand;
8418 cands->name = name;
8419 cands->kind = btf_kind(local_type);
8420 cands->name_len = local_essent_len;
8421
8422 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8423 /* cands is a pointer to stack here */
8424 if (cc) {
8425 if (cc->cnt)
8426 return cc;
8427 goto check_modules;
8428 }
8429
8430 /* Attempt to find target candidates in vmlinux BTF first */
8431 cands = bpf_core_add_cands(cands, main_btf, 1);
8432 if (IS_ERR(cands))
8433 return ERR_CAST(cands);
8434
8435 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8436
8437 /* populate cache even when cands->cnt == 0 */
8438 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8439 if (IS_ERR(cc))
8440 return ERR_CAST(cc);
8441
8442 /* if vmlinux BTF has any candidate, don't go for module BTFs */
8443 if (cc->cnt)
8444 return cc;
8445
8446check_modules:
8447 /* cands is a pointer to stack here and cands->cnt == 0 */
8448 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8449 if (cc)
8450 /* if cache has it return it even if cc->cnt == 0 */
8451 return cc;
8452
8453 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8454 spin_lock_bh(&btf_idr_lock);
8455 idr_for_each_entry(&btf_idr, mod_btf, id) {
8456 if (!btf_is_module(mod_btf))
8457 continue;
8458 /* linear search could be slow hence unlock/lock
8459 * the IDR to avoiding holding it for too long
8460 */
8461 btf_get(mod_btf);
8462 spin_unlock_bh(&btf_idr_lock);
8463 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8464 btf_put(mod_btf);
8465 if (IS_ERR(cands))
8466 return ERR_CAST(cands);
8467 spin_lock_bh(&btf_idr_lock);
8468 }
8469 spin_unlock_bh(&btf_idr_lock);
8470 /* cands is a pointer to kmalloced memory here if cands->cnt > 0
8471 * or pointer to stack if cands->cnd == 0.
8472 * Copy it into the cache even when cands->cnt == 0 and
8473 * return the result.
8474 */
8475 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8476}
8477
8478int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8479 int relo_idx, void *insn)
8480{
8481 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8482 struct bpf_core_cand_list cands = {};
8483 struct bpf_core_relo_res targ_res;
8484 struct bpf_core_spec *specs;
8485 int err;
8486
8487 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8488 * into arrays of btf_ids of struct fields and array indices.
8489 */
8490 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8491 if (!specs)
8492 return -ENOMEM;
8493
8494 if (need_cands) {
8495 struct bpf_cand_cache *cc;
8496 int i;
8497
8498 mutex_lock(&cand_cache_mutex);
8499 cc = bpf_core_find_cands(ctx, relo->type_id);
8500 if (IS_ERR(cc)) {
8501 bpf_log(ctx->log, "target candidate search failed for %d\n",
8502 relo->type_id);
8503 err = PTR_ERR(cc);
8504 goto out;
8505 }
8506 if (cc->cnt) {
8507 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8508 if (!cands.cands) {
8509 err = -ENOMEM;
8510 goto out;
8511 }
8512 }
8513 for (i = 0; i < cc->cnt; i++) {
8514 bpf_log(ctx->log,
8515 "CO-RE relocating %s %s: found target candidate [%d]\n",
8516 btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8517 cands.cands[i].btf = cc->cands[i].btf;
8518 cands.cands[i].id = cc->cands[i].id;
8519 }
8520 cands.len = cc->cnt;
8521 /* cand_cache_mutex needs to span the cache lookup and
8522 * copy of btf pointer into bpf_core_cand_list,
8523 * since module can be unloaded while bpf_core_calc_relo_insn
8524 * is working with module's btf.
8525 */
8526 }
8527
8528 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8529 &targ_res);
8530 if (err)
8531 goto out;
8532
8533 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8534 &targ_res);
8535
8536out:
8537 kfree(specs);
8538 if (need_cands) {
8539 kfree(cands.cands);
8540 mutex_unlock(&cand_cache_mutex);
8541 if (ctx->log->level & BPF_LOG_LEVEL2)
8542 print_cand_cache(ctx->log);
8543 }
8544 return err;
8545}
8546
8547bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
8548 const struct bpf_reg_state *reg,
8549 const char *field_name, u32 btf_id, const char *suffix)
8550{
8551 struct btf *btf = reg->btf;
8552 const struct btf_type *walk_type, *safe_type;
8553 const char *tname;
8554 char safe_tname[64];
8555 long ret, safe_id;
8556 const struct btf_member *member;
8557 u32 i;
8558
8559 walk_type = btf_type_by_id(btf, reg->btf_id);
8560 if (!walk_type)
8561 return false;
8562
8563 tname = btf_name_by_offset(btf, walk_type->name_off);
8564
8565 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
8566 if (ret >= sizeof(safe_tname))
8567 return false;
8568
8569 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
8570 if (safe_id < 0)
8571 return false;
8572
8573 safe_type = btf_type_by_id(btf, safe_id);
8574 if (!safe_type)
8575 return false;
8576
8577 for_each_member(i, safe_type, member) {
8578 const char *m_name = __btf_name_by_offset(btf, member->name_off);
8579 const struct btf_type *mtype = btf_type_by_id(btf, member->type);
8580 u32 id;
8581
8582 if (!btf_type_is_ptr(mtype))
8583 continue;
8584
8585 btf_type_skip_modifiers(btf, mtype->type, &id);
8586 /* If we match on both type and name, the field is considered trusted. */
8587 if (btf_id == id && !strcmp(field_name, m_name))
8588 return true;
8589 }
8590
8591 return false;
8592}
8593
8594bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
8595 const struct btf *reg_btf, u32 reg_id,
8596 const struct btf *arg_btf, u32 arg_id)
8597{
8598 const char *reg_name, *arg_name, *search_needle;
8599 const struct btf_type *reg_type, *arg_type;
8600 int reg_len, arg_len, cmp_len;
8601 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
8602
8603 reg_type = btf_type_by_id(reg_btf, reg_id);
8604 if (!reg_type)
8605 return false;
8606
8607 arg_type = btf_type_by_id(arg_btf, arg_id);
8608 if (!arg_type)
8609 return false;
8610
8611 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
8612 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
8613
8614 reg_len = strlen(reg_name);
8615 arg_len = strlen(arg_name);
8616
8617 /* Exactly one of the two type names may be suffixed with ___init, so
8618 * if the strings are the same size, they can't possibly be no-cast
8619 * aliases of one another. If you have two of the same type names, e.g.
8620 * they're both nf_conn___init, it would be improper to return true
8621 * because they are _not_ no-cast aliases, they are the same type.
8622 */
8623 if (reg_len == arg_len)
8624 return false;
8625
8626 /* Either of the two names must be the other name, suffixed with ___init. */
8627 if ((reg_len != arg_len + pattern_len) &&
8628 (arg_len != reg_len + pattern_len))
8629 return false;
8630
8631 if (reg_len < arg_len) {
8632 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
8633 cmp_len = reg_len;
8634 } else {
8635 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
8636 cmp_len = arg_len;
8637 }
8638
8639 if (!search_needle)
8640 return false;
8641
8642 /* ___init suffix must come at the end of the name */
8643 if (*(search_needle + pattern_len) != '\0')
8644 return false;
8645
8646 return !strncmp(reg_name, arg_name, cmp_len);
8647}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018 Facebook */
3
4#include <uapi/linux/btf.h>
5#include <uapi/linux/bpf.h>
6#include <uapi/linux/bpf_perf_event.h>
7#include <uapi/linux/types.h>
8#include <linux/seq_file.h>
9#include <linux/compiler.h>
10#include <linux/ctype.h>
11#include <linux/errno.h>
12#include <linux/slab.h>
13#include <linux/anon_inodes.h>
14#include <linux/file.h>
15#include <linux/uaccess.h>
16#include <linux/kernel.h>
17#include <linux/idr.h>
18#include <linux/sort.h>
19#include <linux/bpf_verifier.h>
20#include <linux/btf.h>
21#include <linux/btf_ids.h>
22#include <linux/bpf_lsm.h>
23#include <linux/skmsg.h>
24#include <linux/perf_event.h>
25#include <linux/bsearch.h>
26#include <linux/kobject.h>
27#include <linux/sysfs.h>
28#include <net/sock.h>
29#include "../tools/lib/bpf/relo_core.h"
30
31/* BTF (BPF Type Format) is the meta data format which describes
32 * the data types of BPF program/map. Hence, it basically focus
33 * on the C programming language which the modern BPF is primary
34 * using.
35 *
36 * ELF Section:
37 * ~~~~~~~~~~~
38 * The BTF data is stored under the ".BTF" ELF section
39 *
40 * struct btf_type:
41 * ~~~~~~~~~~~~~~~
42 * Each 'struct btf_type' object describes a C data type.
43 * Depending on the type it is describing, a 'struct btf_type'
44 * object may be followed by more data. F.e.
45 * To describe an array, 'struct btf_type' is followed by
46 * 'struct btf_array'.
47 *
48 * 'struct btf_type' and any extra data following it are
49 * 4 bytes aligned.
50 *
51 * Type section:
52 * ~~~~~~~~~~~~~
53 * The BTF type section contains a list of 'struct btf_type' objects.
54 * Each one describes a C type. Recall from the above section
55 * that a 'struct btf_type' object could be immediately followed by extra
56 * data in order to describe some particular C types.
57 *
58 * type_id:
59 * ~~~~~~~
60 * Each btf_type object is identified by a type_id. The type_id
61 * is implicitly implied by the location of the btf_type object in
62 * the BTF type section. The first one has type_id 1. The second
63 * one has type_id 2...etc. Hence, an earlier btf_type has
64 * a smaller type_id.
65 *
66 * A btf_type object may refer to another btf_type object by using
67 * type_id (i.e. the "type" in the "struct btf_type").
68 *
69 * NOTE that we cannot assume any reference-order.
70 * A btf_type object can refer to an earlier btf_type object
71 * but it can also refer to a later btf_type object.
72 *
73 * For example, to describe "const void *". A btf_type
74 * object describing "const" may refer to another btf_type
75 * object describing "void *". This type-reference is done
76 * by specifying type_id:
77 *
78 * [1] CONST (anon) type_id=2
79 * [2] PTR (anon) type_id=0
80 *
81 * The above is the btf_verifier debug log:
82 * - Each line started with "[?]" is a btf_type object
83 * - [?] is the type_id of the btf_type object.
84 * - CONST/PTR is the BTF_KIND_XXX
85 * - "(anon)" is the name of the type. It just
86 * happens that CONST and PTR has no name.
87 * - type_id=XXX is the 'u32 type' in btf_type
88 *
89 * NOTE: "void" has type_id 0
90 *
91 * String section:
92 * ~~~~~~~~~~~~~~
93 * The BTF string section contains the names used by the type section.
94 * Each string is referred by an "offset" from the beginning of the
95 * string section.
96 *
97 * Each string is '\0' terminated.
98 *
99 * The first character in the string section must be '\0'
100 * which is used to mean 'anonymous'. Some btf_type may not
101 * have a name.
102 */
103
104/* BTF verification:
105 *
106 * To verify BTF data, two passes are needed.
107 *
108 * Pass #1
109 * ~~~~~~~
110 * The first pass is to collect all btf_type objects to
111 * an array: "btf->types".
112 *
113 * Depending on the C type that a btf_type is describing,
114 * a btf_type may be followed by extra data. We don't know
115 * how many btf_type is there, and more importantly we don't
116 * know where each btf_type is located in the type section.
117 *
118 * Without knowing the location of each type_id, most verifications
119 * cannot be done. e.g. an earlier btf_type may refer to a later
120 * btf_type (recall the "const void *" above), so we cannot
121 * check this type-reference in the first pass.
122 *
123 * In the first pass, it still does some verifications (e.g.
124 * checking the name is a valid offset to the string section).
125 *
126 * Pass #2
127 * ~~~~~~~
128 * The main focus is to resolve a btf_type that is referring
129 * to another type.
130 *
131 * We have to ensure the referring type:
132 * 1) does exist in the BTF (i.e. in btf->types[])
133 * 2) does not cause a loop:
134 * struct A {
135 * struct B b;
136 * };
137 *
138 * struct B {
139 * struct A a;
140 * };
141 *
142 * btf_type_needs_resolve() decides if a btf_type needs
143 * to be resolved.
144 *
145 * The needs_resolve type implements the "resolve()" ops which
146 * essentially does a DFS and detects backedge.
147 *
148 * During resolve (or DFS), different C types have different
149 * "RESOLVED" conditions.
150 *
151 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
152 * members because a member is always referring to another
153 * type. A struct's member can be treated as "RESOLVED" if
154 * it is referring to a BTF_KIND_PTR. Otherwise, the
155 * following valid C struct would be rejected:
156 *
157 * struct A {
158 * int m;
159 * struct A *a;
160 * };
161 *
162 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
163 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
164 * detect a pointer loop, e.g.:
165 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
166 * ^ |
167 * +-----------------------------------------+
168 *
169 */
170
171#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
172#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
173#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
174#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
175#define BITS_ROUNDUP_BYTES(bits) \
176 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
177
178#define BTF_INFO_MASK 0x9f00ffff
179#define BTF_INT_MASK 0x0fffffff
180#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
181#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
182
183/* 16MB for 64k structs and each has 16 members and
184 * a few MB spaces for the string section.
185 * The hard limit is S32_MAX.
186 */
187#define BTF_MAX_SIZE (16 * 1024 * 1024)
188
189#define for_each_member_from(i, from, struct_type, member) \
190 for (i = from, member = btf_type_member(struct_type) + from; \
191 i < btf_type_vlen(struct_type); \
192 i++, member++)
193
194#define for_each_vsi_from(i, from, struct_type, member) \
195 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
196 i < btf_type_vlen(struct_type); \
197 i++, member++)
198
199DEFINE_IDR(btf_idr);
200DEFINE_SPINLOCK(btf_idr_lock);
201
202enum btf_kfunc_hook {
203 BTF_KFUNC_HOOK_COMMON,
204 BTF_KFUNC_HOOK_XDP,
205 BTF_KFUNC_HOOK_TC,
206 BTF_KFUNC_HOOK_STRUCT_OPS,
207 BTF_KFUNC_HOOK_TRACING,
208 BTF_KFUNC_HOOK_SYSCALL,
209 BTF_KFUNC_HOOK_FMODRET,
210 BTF_KFUNC_HOOK_MAX,
211};
212
213enum {
214 BTF_KFUNC_SET_MAX_CNT = 256,
215 BTF_DTOR_KFUNC_MAX_CNT = 256,
216};
217
218struct btf_kfunc_set_tab {
219 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
220};
221
222struct btf_id_dtor_kfunc_tab {
223 u32 cnt;
224 struct btf_id_dtor_kfunc dtors[];
225};
226
227struct btf {
228 void *data;
229 struct btf_type **types;
230 u32 *resolved_ids;
231 u32 *resolved_sizes;
232 const char *strings;
233 void *nohdr_data;
234 struct btf_header hdr;
235 u32 nr_types; /* includes VOID for base BTF */
236 u32 types_size;
237 u32 data_size;
238 refcount_t refcnt;
239 u32 id;
240 struct rcu_head rcu;
241 struct btf_kfunc_set_tab *kfunc_set_tab;
242 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
243 struct btf_struct_metas *struct_meta_tab;
244
245 /* split BTF support */
246 struct btf *base_btf;
247 u32 start_id; /* first type ID in this BTF (0 for base BTF) */
248 u32 start_str_off; /* first string offset (0 for base BTF) */
249 char name[MODULE_NAME_LEN];
250 bool kernel_btf;
251};
252
253enum verifier_phase {
254 CHECK_META,
255 CHECK_TYPE,
256};
257
258struct resolve_vertex {
259 const struct btf_type *t;
260 u32 type_id;
261 u16 next_member;
262};
263
264enum visit_state {
265 NOT_VISITED,
266 VISITED,
267 RESOLVED,
268};
269
270enum resolve_mode {
271 RESOLVE_TBD, /* To Be Determined */
272 RESOLVE_PTR, /* Resolving for Pointer */
273 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
274 * or array
275 */
276};
277
278#define MAX_RESOLVE_DEPTH 32
279
280struct btf_sec_info {
281 u32 off;
282 u32 len;
283};
284
285struct btf_verifier_env {
286 struct btf *btf;
287 u8 *visit_states;
288 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
289 struct bpf_verifier_log log;
290 u32 log_type_id;
291 u32 top_stack;
292 enum verifier_phase phase;
293 enum resolve_mode resolve_mode;
294};
295
296static const char * const btf_kind_str[NR_BTF_KINDS] = {
297 [BTF_KIND_UNKN] = "UNKNOWN",
298 [BTF_KIND_INT] = "INT",
299 [BTF_KIND_PTR] = "PTR",
300 [BTF_KIND_ARRAY] = "ARRAY",
301 [BTF_KIND_STRUCT] = "STRUCT",
302 [BTF_KIND_UNION] = "UNION",
303 [BTF_KIND_ENUM] = "ENUM",
304 [BTF_KIND_FWD] = "FWD",
305 [BTF_KIND_TYPEDEF] = "TYPEDEF",
306 [BTF_KIND_VOLATILE] = "VOLATILE",
307 [BTF_KIND_CONST] = "CONST",
308 [BTF_KIND_RESTRICT] = "RESTRICT",
309 [BTF_KIND_FUNC] = "FUNC",
310 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
311 [BTF_KIND_VAR] = "VAR",
312 [BTF_KIND_DATASEC] = "DATASEC",
313 [BTF_KIND_FLOAT] = "FLOAT",
314 [BTF_KIND_DECL_TAG] = "DECL_TAG",
315 [BTF_KIND_TYPE_TAG] = "TYPE_TAG",
316 [BTF_KIND_ENUM64] = "ENUM64",
317};
318
319const char *btf_type_str(const struct btf_type *t)
320{
321 return btf_kind_str[BTF_INFO_KIND(t->info)];
322}
323
324/* Chunk size we use in safe copy of data to be shown. */
325#define BTF_SHOW_OBJ_SAFE_SIZE 32
326
327/*
328 * This is the maximum size of a base type value (equivalent to a
329 * 128-bit int); if we are at the end of our safe buffer and have
330 * less than 16 bytes space we can't be assured of being able
331 * to copy the next type safely, so in such cases we will initiate
332 * a new copy.
333 */
334#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
335
336/* Type name size */
337#define BTF_SHOW_NAME_SIZE 80
338
339/*
340 * Common data to all BTF show operations. Private show functions can add
341 * their own data to a structure containing a struct btf_show and consult it
342 * in the show callback. See btf_type_show() below.
343 *
344 * One challenge with showing nested data is we want to skip 0-valued
345 * data, but in order to figure out whether a nested object is all zeros
346 * we need to walk through it. As a result, we need to make two passes
347 * when handling structs, unions and arrays; the first path simply looks
348 * for nonzero data, while the second actually does the display. The first
349 * pass is signalled by show->state.depth_check being set, and if we
350 * encounter a non-zero value we set show->state.depth_to_show to
351 * the depth at which we encountered it. When we have completed the
352 * first pass, we will know if anything needs to be displayed if
353 * depth_to_show > depth. See btf_[struct,array]_show() for the
354 * implementation of this.
355 *
356 * Another problem is we want to ensure the data for display is safe to
357 * access. To support this, the anonymous "struct {} obj" tracks the data
358 * object and our safe copy of it. We copy portions of the data needed
359 * to the object "copy" buffer, but because its size is limited to
360 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
361 * traverse larger objects for display.
362 *
363 * The various data type show functions all start with a call to
364 * btf_show_start_type() which returns a pointer to the safe copy
365 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
366 * raw data itself). btf_show_obj_safe() is responsible for
367 * using copy_from_kernel_nofault() to update the safe data if necessary
368 * as we traverse the object's data. skbuff-like semantics are
369 * used:
370 *
371 * - obj.head points to the start of the toplevel object for display
372 * - obj.size is the size of the toplevel object
373 * - obj.data points to the current point in the original data at
374 * which our safe data starts. obj.data will advance as we copy
375 * portions of the data.
376 *
377 * In most cases a single copy will suffice, but larger data structures
378 * such as "struct task_struct" will require many copies. The logic in
379 * btf_show_obj_safe() handles the logic that determines if a new
380 * copy_from_kernel_nofault() is needed.
381 */
382struct btf_show {
383 u64 flags;
384 void *target; /* target of show operation (seq file, buffer) */
385 void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
386 const struct btf *btf;
387 /* below are used during iteration */
388 struct {
389 u8 depth;
390 u8 depth_to_show;
391 u8 depth_check;
392 u8 array_member:1,
393 array_terminated:1;
394 u16 array_encoding;
395 u32 type_id;
396 int status; /* non-zero for error */
397 const struct btf_type *type;
398 const struct btf_member *member;
399 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
400 } state;
401 struct {
402 u32 size;
403 void *head;
404 void *data;
405 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
406 } obj;
407};
408
409struct btf_kind_operations {
410 s32 (*check_meta)(struct btf_verifier_env *env,
411 const struct btf_type *t,
412 u32 meta_left);
413 int (*resolve)(struct btf_verifier_env *env,
414 const struct resolve_vertex *v);
415 int (*check_member)(struct btf_verifier_env *env,
416 const struct btf_type *struct_type,
417 const struct btf_member *member,
418 const struct btf_type *member_type);
419 int (*check_kflag_member)(struct btf_verifier_env *env,
420 const struct btf_type *struct_type,
421 const struct btf_member *member,
422 const struct btf_type *member_type);
423 void (*log_details)(struct btf_verifier_env *env,
424 const struct btf_type *t);
425 void (*show)(const struct btf *btf, const struct btf_type *t,
426 u32 type_id, void *data, u8 bits_offsets,
427 struct btf_show *show);
428};
429
430static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
431static struct btf_type btf_void;
432
433static int btf_resolve(struct btf_verifier_env *env,
434 const struct btf_type *t, u32 type_id);
435
436static int btf_func_check(struct btf_verifier_env *env,
437 const struct btf_type *t);
438
439static bool btf_type_is_modifier(const struct btf_type *t)
440{
441 /* Some of them is not strictly a C modifier
442 * but they are grouped into the same bucket
443 * for BTF concern:
444 * A type (t) that refers to another
445 * type through t->type AND its size cannot
446 * be determined without following the t->type.
447 *
448 * ptr does not fall into this bucket
449 * because its size is always sizeof(void *).
450 */
451 switch (BTF_INFO_KIND(t->info)) {
452 case BTF_KIND_TYPEDEF:
453 case BTF_KIND_VOLATILE:
454 case BTF_KIND_CONST:
455 case BTF_KIND_RESTRICT:
456 case BTF_KIND_TYPE_TAG:
457 return true;
458 }
459
460 return false;
461}
462
463bool btf_type_is_void(const struct btf_type *t)
464{
465 return t == &btf_void;
466}
467
468static bool btf_type_is_fwd(const struct btf_type *t)
469{
470 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
471}
472
473static bool btf_type_nosize(const struct btf_type *t)
474{
475 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
476 btf_type_is_func(t) || btf_type_is_func_proto(t);
477}
478
479static bool btf_type_nosize_or_null(const struct btf_type *t)
480{
481 return !t || btf_type_nosize(t);
482}
483
484static bool btf_type_is_datasec(const struct btf_type *t)
485{
486 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
487}
488
489static bool btf_type_is_decl_tag(const struct btf_type *t)
490{
491 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
492}
493
494static bool btf_type_is_decl_tag_target(const struct btf_type *t)
495{
496 return btf_type_is_func(t) || btf_type_is_struct(t) ||
497 btf_type_is_var(t) || btf_type_is_typedef(t);
498}
499
500u32 btf_nr_types(const struct btf *btf)
501{
502 u32 total = 0;
503
504 while (btf) {
505 total += btf->nr_types;
506 btf = btf->base_btf;
507 }
508
509 return total;
510}
511
512s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
513{
514 const struct btf_type *t;
515 const char *tname;
516 u32 i, total;
517
518 total = btf_nr_types(btf);
519 for (i = 1; i < total; i++) {
520 t = btf_type_by_id(btf, i);
521 if (BTF_INFO_KIND(t->info) != kind)
522 continue;
523
524 tname = btf_name_by_offset(btf, t->name_off);
525 if (!strcmp(tname, name))
526 return i;
527 }
528
529 return -ENOENT;
530}
531
532static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
533{
534 struct btf *btf;
535 s32 ret;
536 int id;
537
538 btf = bpf_get_btf_vmlinux();
539 if (IS_ERR(btf))
540 return PTR_ERR(btf);
541 if (!btf)
542 return -EINVAL;
543
544 ret = btf_find_by_name_kind(btf, name, kind);
545 /* ret is never zero, since btf_find_by_name_kind returns
546 * positive btf_id or negative error.
547 */
548 if (ret > 0) {
549 btf_get(btf);
550 *btf_p = btf;
551 return ret;
552 }
553
554 /* If name is not found in vmlinux's BTF then search in module's BTFs */
555 spin_lock_bh(&btf_idr_lock);
556 idr_for_each_entry(&btf_idr, btf, id) {
557 if (!btf_is_module(btf))
558 continue;
559 /* linear search could be slow hence unlock/lock
560 * the IDR to avoiding holding it for too long
561 */
562 btf_get(btf);
563 spin_unlock_bh(&btf_idr_lock);
564 ret = btf_find_by_name_kind(btf, name, kind);
565 if (ret > 0) {
566 *btf_p = btf;
567 return ret;
568 }
569 spin_lock_bh(&btf_idr_lock);
570 btf_put(btf);
571 }
572 spin_unlock_bh(&btf_idr_lock);
573 return ret;
574}
575
576const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
577 u32 id, u32 *res_id)
578{
579 const struct btf_type *t = btf_type_by_id(btf, id);
580
581 while (btf_type_is_modifier(t)) {
582 id = t->type;
583 t = btf_type_by_id(btf, t->type);
584 }
585
586 if (res_id)
587 *res_id = id;
588
589 return t;
590}
591
592const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
593 u32 id, u32 *res_id)
594{
595 const struct btf_type *t;
596
597 t = btf_type_skip_modifiers(btf, id, NULL);
598 if (!btf_type_is_ptr(t))
599 return NULL;
600
601 return btf_type_skip_modifiers(btf, t->type, res_id);
602}
603
604const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
605 u32 id, u32 *res_id)
606{
607 const struct btf_type *ptype;
608
609 ptype = btf_type_resolve_ptr(btf, id, res_id);
610 if (ptype && btf_type_is_func_proto(ptype))
611 return ptype;
612
613 return NULL;
614}
615
616/* Types that act only as a source, not sink or intermediate
617 * type when resolving.
618 */
619static bool btf_type_is_resolve_source_only(const struct btf_type *t)
620{
621 return btf_type_is_var(t) ||
622 btf_type_is_decl_tag(t) ||
623 btf_type_is_datasec(t);
624}
625
626/* What types need to be resolved?
627 *
628 * btf_type_is_modifier() is an obvious one.
629 *
630 * btf_type_is_struct() because its member refers to
631 * another type (through member->type).
632 *
633 * btf_type_is_var() because the variable refers to
634 * another type. btf_type_is_datasec() holds multiple
635 * btf_type_is_var() types that need resolving.
636 *
637 * btf_type_is_array() because its element (array->type)
638 * refers to another type. Array can be thought of a
639 * special case of struct while array just has the same
640 * member-type repeated by array->nelems of times.
641 */
642static bool btf_type_needs_resolve(const struct btf_type *t)
643{
644 return btf_type_is_modifier(t) ||
645 btf_type_is_ptr(t) ||
646 btf_type_is_struct(t) ||
647 btf_type_is_array(t) ||
648 btf_type_is_var(t) ||
649 btf_type_is_func(t) ||
650 btf_type_is_decl_tag(t) ||
651 btf_type_is_datasec(t);
652}
653
654/* t->size can be used */
655static bool btf_type_has_size(const struct btf_type *t)
656{
657 switch (BTF_INFO_KIND(t->info)) {
658 case BTF_KIND_INT:
659 case BTF_KIND_STRUCT:
660 case BTF_KIND_UNION:
661 case BTF_KIND_ENUM:
662 case BTF_KIND_DATASEC:
663 case BTF_KIND_FLOAT:
664 case BTF_KIND_ENUM64:
665 return true;
666 }
667
668 return false;
669}
670
671static const char *btf_int_encoding_str(u8 encoding)
672{
673 if (encoding == 0)
674 return "(none)";
675 else if (encoding == BTF_INT_SIGNED)
676 return "SIGNED";
677 else if (encoding == BTF_INT_CHAR)
678 return "CHAR";
679 else if (encoding == BTF_INT_BOOL)
680 return "BOOL";
681 else
682 return "UNKN";
683}
684
685static u32 btf_type_int(const struct btf_type *t)
686{
687 return *(u32 *)(t + 1);
688}
689
690static const struct btf_array *btf_type_array(const struct btf_type *t)
691{
692 return (const struct btf_array *)(t + 1);
693}
694
695static const struct btf_enum *btf_type_enum(const struct btf_type *t)
696{
697 return (const struct btf_enum *)(t + 1);
698}
699
700static const struct btf_var *btf_type_var(const struct btf_type *t)
701{
702 return (const struct btf_var *)(t + 1);
703}
704
705static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
706{
707 return (const struct btf_decl_tag *)(t + 1);
708}
709
710static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
711{
712 return (const struct btf_enum64 *)(t + 1);
713}
714
715static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
716{
717 return kind_ops[BTF_INFO_KIND(t->info)];
718}
719
720static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
721{
722 if (!BTF_STR_OFFSET_VALID(offset))
723 return false;
724
725 while (offset < btf->start_str_off)
726 btf = btf->base_btf;
727
728 offset -= btf->start_str_off;
729 return offset < btf->hdr.str_len;
730}
731
732static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
733{
734 if ((first ? !isalpha(c) :
735 !isalnum(c)) &&
736 c != '_' &&
737 ((c == '.' && !dot_ok) ||
738 c != '.'))
739 return false;
740 return true;
741}
742
743static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
744{
745 while (offset < btf->start_str_off)
746 btf = btf->base_btf;
747
748 offset -= btf->start_str_off;
749 if (offset < btf->hdr.str_len)
750 return &btf->strings[offset];
751
752 return NULL;
753}
754
755static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
756{
757 /* offset must be valid */
758 const char *src = btf_str_by_offset(btf, offset);
759 const char *src_limit;
760
761 if (!__btf_name_char_ok(*src, true, dot_ok))
762 return false;
763
764 /* set a limit on identifier length */
765 src_limit = src + KSYM_NAME_LEN;
766 src++;
767 while (*src && src < src_limit) {
768 if (!__btf_name_char_ok(*src, false, dot_ok))
769 return false;
770 src++;
771 }
772
773 return !*src;
774}
775
776/* Only C-style identifier is permitted. This can be relaxed if
777 * necessary.
778 */
779static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
780{
781 return __btf_name_valid(btf, offset, false);
782}
783
784static bool btf_name_valid_section(const struct btf *btf, u32 offset)
785{
786 return __btf_name_valid(btf, offset, true);
787}
788
789static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
790{
791 const char *name;
792
793 if (!offset)
794 return "(anon)";
795
796 name = btf_str_by_offset(btf, offset);
797 return name ?: "(invalid-name-offset)";
798}
799
800const char *btf_name_by_offset(const struct btf *btf, u32 offset)
801{
802 return btf_str_by_offset(btf, offset);
803}
804
805const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
806{
807 while (type_id < btf->start_id)
808 btf = btf->base_btf;
809
810 type_id -= btf->start_id;
811 if (type_id >= btf->nr_types)
812 return NULL;
813 return btf->types[type_id];
814}
815EXPORT_SYMBOL_GPL(btf_type_by_id);
816
817/*
818 * Regular int is not a bit field and it must be either
819 * u8/u16/u32/u64 or __int128.
820 */
821static bool btf_type_int_is_regular(const struct btf_type *t)
822{
823 u8 nr_bits, nr_bytes;
824 u32 int_data;
825
826 int_data = btf_type_int(t);
827 nr_bits = BTF_INT_BITS(int_data);
828 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
829 if (BITS_PER_BYTE_MASKED(nr_bits) ||
830 BTF_INT_OFFSET(int_data) ||
831 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
832 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
833 nr_bytes != (2 * sizeof(u64)))) {
834 return false;
835 }
836
837 return true;
838}
839
840/*
841 * Check that given struct member is a regular int with expected
842 * offset and size.
843 */
844bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
845 const struct btf_member *m,
846 u32 expected_offset, u32 expected_size)
847{
848 const struct btf_type *t;
849 u32 id, int_data;
850 u8 nr_bits;
851
852 id = m->type;
853 t = btf_type_id_size(btf, &id, NULL);
854 if (!t || !btf_type_is_int(t))
855 return false;
856
857 int_data = btf_type_int(t);
858 nr_bits = BTF_INT_BITS(int_data);
859 if (btf_type_kflag(s)) {
860 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
861 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
862
863 /* if kflag set, int should be a regular int and
864 * bit offset should be at byte boundary.
865 */
866 return !bitfield_size &&
867 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
868 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
869 }
870
871 if (BTF_INT_OFFSET(int_data) ||
872 BITS_PER_BYTE_MASKED(m->offset) ||
873 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
874 BITS_PER_BYTE_MASKED(nr_bits) ||
875 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
876 return false;
877
878 return true;
879}
880
881/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
882static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
883 u32 id)
884{
885 const struct btf_type *t = btf_type_by_id(btf, id);
886
887 while (btf_type_is_modifier(t) &&
888 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
889 t = btf_type_by_id(btf, t->type);
890 }
891
892 return t;
893}
894
895#define BTF_SHOW_MAX_ITER 10
896
897#define BTF_KIND_BIT(kind) (1ULL << kind)
898
899/*
900 * Populate show->state.name with type name information.
901 * Format of type name is
902 *
903 * [.member_name = ] (type_name)
904 */
905static const char *btf_show_name(struct btf_show *show)
906{
907 /* BTF_MAX_ITER array suffixes "[]" */
908 const char *array_suffixes = "[][][][][][][][][][]";
909 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
910 /* BTF_MAX_ITER pointer suffixes "*" */
911 const char *ptr_suffixes = "**********";
912 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
913 const char *name = NULL, *prefix = "", *parens = "";
914 const struct btf_member *m = show->state.member;
915 const struct btf_type *t;
916 const struct btf_array *array;
917 u32 id = show->state.type_id;
918 const char *member = NULL;
919 bool show_member = false;
920 u64 kinds = 0;
921 int i;
922
923 show->state.name[0] = '\0';
924
925 /*
926 * Don't show type name if we're showing an array member;
927 * in that case we show the array type so don't need to repeat
928 * ourselves for each member.
929 */
930 if (show->state.array_member)
931 return "";
932
933 /* Retrieve member name, if any. */
934 if (m) {
935 member = btf_name_by_offset(show->btf, m->name_off);
936 show_member = strlen(member) > 0;
937 id = m->type;
938 }
939
940 /*
941 * Start with type_id, as we have resolved the struct btf_type *
942 * via btf_modifier_show() past the parent typedef to the child
943 * struct, int etc it is defined as. In such cases, the type_id
944 * still represents the starting type while the struct btf_type *
945 * in our show->state points at the resolved type of the typedef.
946 */
947 t = btf_type_by_id(show->btf, id);
948 if (!t)
949 return "";
950
951 /*
952 * The goal here is to build up the right number of pointer and
953 * array suffixes while ensuring the type name for a typedef
954 * is represented. Along the way we accumulate a list of
955 * BTF kinds we have encountered, since these will inform later
956 * display; for example, pointer types will not require an
957 * opening "{" for struct, we will just display the pointer value.
958 *
959 * We also want to accumulate the right number of pointer or array
960 * indices in the format string while iterating until we get to
961 * the typedef/pointee/array member target type.
962 *
963 * We start by pointing at the end of pointer and array suffix
964 * strings; as we accumulate pointers and arrays we move the pointer
965 * or array string backwards so it will show the expected number of
966 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
967 * and/or arrays and typedefs are supported as a precaution.
968 *
969 * We also want to get typedef name while proceeding to resolve
970 * type it points to so that we can add parentheses if it is a
971 * "typedef struct" etc.
972 */
973 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
974
975 switch (BTF_INFO_KIND(t->info)) {
976 case BTF_KIND_TYPEDEF:
977 if (!name)
978 name = btf_name_by_offset(show->btf,
979 t->name_off);
980 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
981 id = t->type;
982 break;
983 case BTF_KIND_ARRAY:
984 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
985 parens = "[";
986 if (!t)
987 return "";
988 array = btf_type_array(t);
989 if (array_suffix > array_suffixes)
990 array_suffix -= 2;
991 id = array->type;
992 break;
993 case BTF_KIND_PTR:
994 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
995 if (ptr_suffix > ptr_suffixes)
996 ptr_suffix -= 1;
997 id = t->type;
998 break;
999 default:
1000 id = 0;
1001 break;
1002 }
1003 if (!id)
1004 break;
1005 t = btf_type_skip_qualifiers(show->btf, id);
1006 }
1007 /* We may not be able to represent this type; bail to be safe */
1008 if (i == BTF_SHOW_MAX_ITER)
1009 return "";
1010
1011 if (!name)
1012 name = btf_name_by_offset(show->btf, t->name_off);
1013
1014 switch (BTF_INFO_KIND(t->info)) {
1015 case BTF_KIND_STRUCT:
1016 case BTF_KIND_UNION:
1017 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1018 "struct" : "union";
1019 /* if it's an array of struct/union, parens is already set */
1020 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1021 parens = "{";
1022 break;
1023 case BTF_KIND_ENUM:
1024 case BTF_KIND_ENUM64:
1025 prefix = "enum";
1026 break;
1027 default:
1028 break;
1029 }
1030
1031 /* pointer does not require parens */
1032 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1033 parens = "";
1034 /* typedef does not require struct/union/enum prefix */
1035 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1036 prefix = "";
1037
1038 if (!name)
1039 name = "";
1040
1041 /* Even if we don't want type name info, we want parentheses etc */
1042 if (show->flags & BTF_SHOW_NONAME)
1043 snprintf(show->state.name, sizeof(show->state.name), "%s",
1044 parens);
1045 else
1046 snprintf(show->state.name, sizeof(show->state.name),
1047 "%s%s%s(%s%s%s%s%s%s)%s",
1048 /* first 3 strings comprise ".member = " */
1049 show_member ? "." : "",
1050 show_member ? member : "",
1051 show_member ? " = " : "",
1052 /* ...next is our prefix (struct, enum, etc) */
1053 prefix,
1054 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1055 /* ...this is the type name itself */
1056 name,
1057 /* ...suffixed by the appropriate '*', '[]' suffixes */
1058 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1059 array_suffix, parens);
1060
1061 return show->state.name;
1062}
1063
1064static const char *__btf_show_indent(struct btf_show *show)
1065{
1066 const char *indents = " ";
1067 const char *indent = &indents[strlen(indents)];
1068
1069 if ((indent - show->state.depth) >= indents)
1070 return indent - show->state.depth;
1071 return indents;
1072}
1073
1074static const char *btf_show_indent(struct btf_show *show)
1075{
1076 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1077}
1078
1079static const char *btf_show_newline(struct btf_show *show)
1080{
1081 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1082}
1083
1084static const char *btf_show_delim(struct btf_show *show)
1085{
1086 if (show->state.depth == 0)
1087 return "";
1088
1089 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1090 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1091 return "|";
1092
1093 return ",";
1094}
1095
1096__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1097{
1098 va_list args;
1099
1100 if (!show->state.depth_check) {
1101 va_start(args, fmt);
1102 show->showfn(show, fmt, args);
1103 va_end(args);
1104 }
1105}
1106
1107/* Macros are used here as btf_show_type_value[s]() prepends and appends
1108 * format specifiers to the format specifier passed in; these do the work of
1109 * adding indentation, delimiters etc while the caller simply has to specify
1110 * the type value(s) in the format specifier + value(s).
1111 */
1112#define btf_show_type_value(show, fmt, value) \
1113 do { \
1114 if ((value) != (__typeof__(value))0 || \
1115 (show->flags & BTF_SHOW_ZERO) || \
1116 show->state.depth == 0) { \
1117 btf_show(show, "%s%s" fmt "%s%s", \
1118 btf_show_indent(show), \
1119 btf_show_name(show), \
1120 value, btf_show_delim(show), \
1121 btf_show_newline(show)); \
1122 if (show->state.depth > show->state.depth_to_show) \
1123 show->state.depth_to_show = show->state.depth; \
1124 } \
1125 } while (0)
1126
1127#define btf_show_type_values(show, fmt, ...) \
1128 do { \
1129 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
1130 btf_show_name(show), \
1131 __VA_ARGS__, btf_show_delim(show), \
1132 btf_show_newline(show)); \
1133 if (show->state.depth > show->state.depth_to_show) \
1134 show->state.depth_to_show = show->state.depth; \
1135 } while (0)
1136
1137/* How much is left to copy to safe buffer after @data? */
1138static int btf_show_obj_size_left(struct btf_show *show, void *data)
1139{
1140 return show->obj.head + show->obj.size - data;
1141}
1142
1143/* Is object pointed to by @data of @size already copied to our safe buffer? */
1144static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1145{
1146 return data >= show->obj.data &&
1147 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1148}
1149
1150/*
1151 * If object pointed to by @data of @size falls within our safe buffer, return
1152 * the equivalent pointer to the same safe data. Assumes
1153 * copy_from_kernel_nofault() has already happened and our safe buffer is
1154 * populated.
1155 */
1156static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1157{
1158 if (btf_show_obj_is_safe(show, data, size))
1159 return show->obj.safe + (data - show->obj.data);
1160 return NULL;
1161}
1162
1163/*
1164 * Return a safe-to-access version of data pointed to by @data.
1165 * We do this by copying the relevant amount of information
1166 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1167 *
1168 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1169 * safe copy is needed.
1170 *
1171 * Otherwise we need to determine if we have the required amount
1172 * of data (determined by the @data pointer and the size of the
1173 * largest base type we can encounter (represented by
1174 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1175 * that we will be able to print some of the current object,
1176 * and if more is needed a copy will be triggered.
1177 * Some objects such as structs will not fit into the buffer;
1178 * in such cases additional copies when we iterate over their
1179 * members may be needed.
1180 *
1181 * btf_show_obj_safe() is used to return a safe buffer for
1182 * btf_show_start_type(); this ensures that as we recurse into
1183 * nested types we always have safe data for the given type.
1184 * This approach is somewhat wasteful; it's possible for example
1185 * that when iterating over a large union we'll end up copying the
1186 * same data repeatedly, but the goal is safety not performance.
1187 * We use stack data as opposed to per-CPU buffers because the
1188 * iteration over a type can take some time, and preemption handling
1189 * would greatly complicate use of the safe buffer.
1190 */
1191static void *btf_show_obj_safe(struct btf_show *show,
1192 const struct btf_type *t,
1193 void *data)
1194{
1195 const struct btf_type *rt;
1196 int size_left, size;
1197 void *safe = NULL;
1198
1199 if (show->flags & BTF_SHOW_UNSAFE)
1200 return data;
1201
1202 rt = btf_resolve_size(show->btf, t, &size);
1203 if (IS_ERR(rt)) {
1204 show->state.status = PTR_ERR(rt);
1205 return NULL;
1206 }
1207
1208 /*
1209 * Is this toplevel object? If so, set total object size and
1210 * initialize pointers. Otherwise check if we still fall within
1211 * our safe object data.
1212 */
1213 if (show->state.depth == 0) {
1214 show->obj.size = size;
1215 show->obj.head = data;
1216 } else {
1217 /*
1218 * If the size of the current object is > our remaining
1219 * safe buffer we _may_ need to do a new copy. However
1220 * consider the case of a nested struct; it's size pushes
1221 * us over the safe buffer limit, but showing any individual
1222 * struct members does not. In such cases, we don't need
1223 * to initiate a fresh copy yet; however we definitely need
1224 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1225 * in our buffer, regardless of the current object size.
1226 * The logic here is that as we resolve types we will
1227 * hit a base type at some point, and we need to be sure
1228 * the next chunk of data is safely available to display
1229 * that type info safely. We cannot rely on the size of
1230 * the current object here because it may be much larger
1231 * than our current buffer (e.g. task_struct is 8k).
1232 * All we want to do here is ensure that we can print the
1233 * next basic type, which we can if either
1234 * - the current type size is within the safe buffer; or
1235 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1236 * the safe buffer.
1237 */
1238 safe = __btf_show_obj_safe(show, data,
1239 min(size,
1240 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1241 }
1242
1243 /*
1244 * We need a new copy to our safe object, either because we haven't
1245 * yet copied and are initializing safe data, or because the data
1246 * we want falls outside the boundaries of the safe object.
1247 */
1248 if (!safe) {
1249 size_left = btf_show_obj_size_left(show, data);
1250 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1251 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1252 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1253 data, size_left);
1254 if (!show->state.status) {
1255 show->obj.data = data;
1256 safe = show->obj.safe;
1257 }
1258 }
1259
1260 return safe;
1261}
1262
1263/*
1264 * Set the type we are starting to show and return a safe data pointer
1265 * to be used for showing the associated data.
1266 */
1267static void *btf_show_start_type(struct btf_show *show,
1268 const struct btf_type *t,
1269 u32 type_id, void *data)
1270{
1271 show->state.type = t;
1272 show->state.type_id = type_id;
1273 show->state.name[0] = '\0';
1274
1275 return btf_show_obj_safe(show, t, data);
1276}
1277
1278static void btf_show_end_type(struct btf_show *show)
1279{
1280 show->state.type = NULL;
1281 show->state.type_id = 0;
1282 show->state.name[0] = '\0';
1283}
1284
1285static void *btf_show_start_aggr_type(struct btf_show *show,
1286 const struct btf_type *t,
1287 u32 type_id, void *data)
1288{
1289 void *safe_data = btf_show_start_type(show, t, type_id, data);
1290
1291 if (!safe_data)
1292 return safe_data;
1293
1294 btf_show(show, "%s%s%s", btf_show_indent(show),
1295 btf_show_name(show),
1296 btf_show_newline(show));
1297 show->state.depth++;
1298 return safe_data;
1299}
1300
1301static void btf_show_end_aggr_type(struct btf_show *show,
1302 const char *suffix)
1303{
1304 show->state.depth--;
1305 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1306 btf_show_delim(show), btf_show_newline(show));
1307 btf_show_end_type(show);
1308}
1309
1310static void btf_show_start_member(struct btf_show *show,
1311 const struct btf_member *m)
1312{
1313 show->state.member = m;
1314}
1315
1316static void btf_show_start_array_member(struct btf_show *show)
1317{
1318 show->state.array_member = 1;
1319 btf_show_start_member(show, NULL);
1320}
1321
1322static void btf_show_end_member(struct btf_show *show)
1323{
1324 show->state.member = NULL;
1325}
1326
1327static void btf_show_end_array_member(struct btf_show *show)
1328{
1329 show->state.array_member = 0;
1330 btf_show_end_member(show);
1331}
1332
1333static void *btf_show_start_array_type(struct btf_show *show,
1334 const struct btf_type *t,
1335 u32 type_id,
1336 u16 array_encoding,
1337 void *data)
1338{
1339 show->state.array_encoding = array_encoding;
1340 show->state.array_terminated = 0;
1341 return btf_show_start_aggr_type(show, t, type_id, data);
1342}
1343
1344static void btf_show_end_array_type(struct btf_show *show)
1345{
1346 show->state.array_encoding = 0;
1347 show->state.array_terminated = 0;
1348 btf_show_end_aggr_type(show, "]");
1349}
1350
1351static void *btf_show_start_struct_type(struct btf_show *show,
1352 const struct btf_type *t,
1353 u32 type_id,
1354 void *data)
1355{
1356 return btf_show_start_aggr_type(show, t, type_id, data);
1357}
1358
1359static void btf_show_end_struct_type(struct btf_show *show)
1360{
1361 btf_show_end_aggr_type(show, "}");
1362}
1363
1364__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1365 const char *fmt, ...)
1366{
1367 va_list args;
1368
1369 va_start(args, fmt);
1370 bpf_verifier_vlog(log, fmt, args);
1371 va_end(args);
1372}
1373
1374__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1375 const char *fmt, ...)
1376{
1377 struct bpf_verifier_log *log = &env->log;
1378 va_list args;
1379
1380 if (!bpf_verifier_log_needed(log))
1381 return;
1382
1383 va_start(args, fmt);
1384 bpf_verifier_vlog(log, fmt, args);
1385 va_end(args);
1386}
1387
1388__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1389 const struct btf_type *t,
1390 bool log_details,
1391 const char *fmt, ...)
1392{
1393 struct bpf_verifier_log *log = &env->log;
1394 struct btf *btf = env->btf;
1395 va_list args;
1396
1397 if (!bpf_verifier_log_needed(log))
1398 return;
1399
1400 /* btf verifier prints all types it is processing via
1401 * btf_verifier_log_type(..., fmt = NULL).
1402 * Skip those prints for in-kernel BTF verification.
1403 */
1404 if (log->level == BPF_LOG_KERNEL && !fmt)
1405 return;
1406
1407 __btf_verifier_log(log, "[%u] %s %s%s",
1408 env->log_type_id,
1409 btf_type_str(t),
1410 __btf_name_by_offset(btf, t->name_off),
1411 log_details ? " " : "");
1412
1413 if (log_details)
1414 btf_type_ops(t)->log_details(env, t);
1415
1416 if (fmt && *fmt) {
1417 __btf_verifier_log(log, " ");
1418 va_start(args, fmt);
1419 bpf_verifier_vlog(log, fmt, args);
1420 va_end(args);
1421 }
1422
1423 __btf_verifier_log(log, "\n");
1424}
1425
1426#define btf_verifier_log_type(env, t, ...) \
1427 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1428#define btf_verifier_log_basic(env, t, ...) \
1429 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1430
1431__printf(4, 5)
1432static void btf_verifier_log_member(struct btf_verifier_env *env,
1433 const struct btf_type *struct_type,
1434 const struct btf_member *member,
1435 const char *fmt, ...)
1436{
1437 struct bpf_verifier_log *log = &env->log;
1438 struct btf *btf = env->btf;
1439 va_list args;
1440
1441 if (!bpf_verifier_log_needed(log))
1442 return;
1443
1444 if (log->level == BPF_LOG_KERNEL && !fmt)
1445 return;
1446 /* The CHECK_META phase already did a btf dump.
1447 *
1448 * If member is logged again, it must hit an error in
1449 * parsing this member. It is useful to print out which
1450 * struct this member belongs to.
1451 */
1452 if (env->phase != CHECK_META)
1453 btf_verifier_log_type(env, struct_type, NULL);
1454
1455 if (btf_type_kflag(struct_type))
1456 __btf_verifier_log(log,
1457 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1458 __btf_name_by_offset(btf, member->name_off),
1459 member->type,
1460 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1461 BTF_MEMBER_BIT_OFFSET(member->offset));
1462 else
1463 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1464 __btf_name_by_offset(btf, member->name_off),
1465 member->type, member->offset);
1466
1467 if (fmt && *fmt) {
1468 __btf_verifier_log(log, " ");
1469 va_start(args, fmt);
1470 bpf_verifier_vlog(log, fmt, args);
1471 va_end(args);
1472 }
1473
1474 __btf_verifier_log(log, "\n");
1475}
1476
1477__printf(4, 5)
1478static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1479 const struct btf_type *datasec_type,
1480 const struct btf_var_secinfo *vsi,
1481 const char *fmt, ...)
1482{
1483 struct bpf_verifier_log *log = &env->log;
1484 va_list args;
1485
1486 if (!bpf_verifier_log_needed(log))
1487 return;
1488 if (log->level == BPF_LOG_KERNEL && !fmt)
1489 return;
1490 if (env->phase != CHECK_META)
1491 btf_verifier_log_type(env, datasec_type, NULL);
1492
1493 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1494 vsi->type, vsi->offset, vsi->size);
1495 if (fmt && *fmt) {
1496 __btf_verifier_log(log, " ");
1497 va_start(args, fmt);
1498 bpf_verifier_vlog(log, fmt, args);
1499 va_end(args);
1500 }
1501
1502 __btf_verifier_log(log, "\n");
1503}
1504
1505static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1506 u32 btf_data_size)
1507{
1508 struct bpf_verifier_log *log = &env->log;
1509 const struct btf *btf = env->btf;
1510 const struct btf_header *hdr;
1511
1512 if (!bpf_verifier_log_needed(log))
1513 return;
1514
1515 if (log->level == BPF_LOG_KERNEL)
1516 return;
1517 hdr = &btf->hdr;
1518 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1519 __btf_verifier_log(log, "version: %u\n", hdr->version);
1520 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1521 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1522 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1523 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1524 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1525 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1526 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1527}
1528
1529static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1530{
1531 struct btf *btf = env->btf;
1532
1533 if (btf->types_size == btf->nr_types) {
1534 /* Expand 'types' array */
1535
1536 struct btf_type **new_types;
1537 u32 expand_by, new_size;
1538
1539 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1540 btf_verifier_log(env, "Exceeded max num of types");
1541 return -E2BIG;
1542 }
1543
1544 expand_by = max_t(u32, btf->types_size >> 2, 16);
1545 new_size = min_t(u32, BTF_MAX_TYPE,
1546 btf->types_size + expand_by);
1547
1548 new_types = kvcalloc(new_size, sizeof(*new_types),
1549 GFP_KERNEL | __GFP_NOWARN);
1550 if (!new_types)
1551 return -ENOMEM;
1552
1553 if (btf->nr_types == 0) {
1554 if (!btf->base_btf) {
1555 /* lazily init VOID type */
1556 new_types[0] = &btf_void;
1557 btf->nr_types++;
1558 }
1559 } else {
1560 memcpy(new_types, btf->types,
1561 sizeof(*btf->types) * btf->nr_types);
1562 }
1563
1564 kvfree(btf->types);
1565 btf->types = new_types;
1566 btf->types_size = new_size;
1567 }
1568
1569 btf->types[btf->nr_types++] = t;
1570
1571 return 0;
1572}
1573
1574static int btf_alloc_id(struct btf *btf)
1575{
1576 int id;
1577
1578 idr_preload(GFP_KERNEL);
1579 spin_lock_bh(&btf_idr_lock);
1580 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1581 if (id > 0)
1582 btf->id = id;
1583 spin_unlock_bh(&btf_idr_lock);
1584 idr_preload_end();
1585
1586 if (WARN_ON_ONCE(!id))
1587 return -ENOSPC;
1588
1589 return id > 0 ? 0 : id;
1590}
1591
1592static void btf_free_id(struct btf *btf)
1593{
1594 unsigned long flags;
1595
1596 /*
1597 * In map-in-map, calling map_delete_elem() on outer
1598 * map will call bpf_map_put on the inner map.
1599 * It will then eventually call btf_free_id()
1600 * on the inner map. Some of the map_delete_elem()
1601 * implementation may have irq disabled, so
1602 * we need to use the _irqsave() version instead
1603 * of the _bh() version.
1604 */
1605 spin_lock_irqsave(&btf_idr_lock, flags);
1606 idr_remove(&btf_idr, btf->id);
1607 spin_unlock_irqrestore(&btf_idr_lock, flags);
1608}
1609
1610static void btf_free_kfunc_set_tab(struct btf *btf)
1611{
1612 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1613 int hook;
1614
1615 if (!tab)
1616 return;
1617 /* For module BTF, we directly assign the sets being registered, so
1618 * there is nothing to free except kfunc_set_tab.
1619 */
1620 if (btf_is_module(btf))
1621 goto free_tab;
1622 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1623 kfree(tab->sets[hook]);
1624free_tab:
1625 kfree(tab);
1626 btf->kfunc_set_tab = NULL;
1627}
1628
1629static void btf_free_dtor_kfunc_tab(struct btf *btf)
1630{
1631 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1632
1633 if (!tab)
1634 return;
1635 kfree(tab);
1636 btf->dtor_kfunc_tab = NULL;
1637}
1638
1639static void btf_struct_metas_free(struct btf_struct_metas *tab)
1640{
1641 int i;
1642
1643 if (!tab)
1644 return;
1645 for (i = 0; i < tab->cnt; i++) {
1646 btf_record_free(tab->types[i].record);
1647 kfree(tab->types[i].field_offs);
1648 }
1649 kfree(tab);
1650}
1651
1652static void btf_free_struct_meta_tab(struct btf *btf)
1653{
1654 struct btf_struct_metas *tab = btf->struct_meta_tab;
1655
1656 btf_struct_metas_free(tab);
1657 btf->struct_meta_tab = NULL;
1658}
1659
1660static void btf_free(struct btf *btf)
1661{
1662 btf_free_struct_meta_tab(btf);
1663 btf_free_dtor_kfunc_tab(btf);
1664 btf_free_kfunc_set_tab(btf);
1665 kvfree(btf->types);
1666 kvfree(btf->resolved_sizes);
1667 kvfree(btf->resolved_ids);
1668 kvfree(btf->data);
1669 kfree(btf);
1670}
1671
1672static void btf_free_rcu(struct rcu_head *rcu)
1673{
1674 struct btf *btf = container_of(rcu, struct btf, rcu);
1675
1676 btf_free(btf);
1677}
1678
1679void btf_get(struct btf *btf)
1680{
1681 refcount_inc(&btf->refcnt);
1682}
1683
1684void btf_put(struct btf *btf)
1685{
1686 if (btf && refcount_dec_and_test(&btf->refcnt)) {
1687 btf_free_id(btf);
1688 call_rcu(&btf->rcu, btf_free_rcu);
1689 }
1690}
1691
1692static int env_resolve_init(struct btf_verifier_env *env)
1693{
1694 struct btf *btf = env->btf;
1695 u32 nr_types = btf->nr_types;
1696 u32 *resolved_sizes = NULL;
1697 u32 *resolved_ids = NULL;
1698 u8 *visit_states = NULL;
1699
1700 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1701 GFP_KERNEL | __GFP_NOWARN);
1702 if (!resolved_sizes)
1703 goto nomem;
1704
1705 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1706 GFP_KERNEL | __GFP_NOWARN);
1707 if (!resolved_ids)
1708 goto nomem;
1709
1710 visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1711 GFP_KERNEL | __GFP_NOWARN);
1712 if (!visit_states)
1713 goto nomem;
1714
1715 btf->resolved_sizes = resolved_sizes;
1716 btf->resolved_ids = resolved_ids;
1717 env->visit_states = visit_states;
1718
1719 return 0;
1720
1721nomem:
1722 kvfree(resolved_sizes);
1723 kvfree(resolved_ids);
1724 kvfree(visit_states);
1725 return -ENOMEM;
1726}
1727
1728static void btf_verifier_env_free(struct btf_verifier_env *env)
1729{
1730 kvfree(env->visit_states);
1731 kfree(env);
1732}
1733
1734static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1735 const struct btf_type *next_type)
1736{
1737 switch (env->resolve_mode) {
1738 case RESOLVE_TBD:
1739 /* int, enum or void is a sink */
1740 return !btf_type_needs_resolve(next_type);
1741 case RESOLVE_PTR:
1742 /* int, enum, void, struct, array, func or func_proto is a sink
1743 * for ptr
1744 */
1745 return !btf_type_is_modifier(next_type) &&
1746 !btf_type_is_ptr(next_type);
1747 case RESOLVE_STRUCT_OR_ARRAY:
1748 /* int, enum, void, ptr, func or func_proto is a sink
1749 * for struct and array
1750 */
1751 return !btf_type_is_modifier(next_type) &&
1752 !btf_type_is_array(next_type) &&
1753 !btf_type_is_struct(next_type);
1754 default:
1755 BUG();
1756 }
1757}
1758
1759static bool env_type_is_resolved(const struct btf_verifier_env *env,
1760 u32 type_id)
1761{
1762 /* base BTF types should be resolved by now */
1763 if (type_id < env->btf->start_id)
1764 return true;
1765
1766 return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1767}
1768
1769static int env_stack_push(struct btf_verifier_env *env,
1770 const struct btf_type *t, u32 type_id)
1771{
1772 const struct btf *btf = env->btf;
1773 struct resolve_vertex *v;
1774
1775 if (env->top_stack == MAX_RESOLVE_DEPTH)
1776 return -E2BIG;
1777
1778 if (type_id < btf->start_id
1779 || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1780 return -EEXIST;
1781
1782 env->visit_states[type_id - btf->start_id] = VISITED;
1783
1784 v = &env->stack[env->top_stack++];
1785 v->t = t;
1786 v->type_id = type_id;
1787 v->next_member = 0;
1788
1789 if (env->resolve_mode == RESOLVE_TBD) {
1790 if (btf_type_is_ptr(t))
1791 env->resolve_mode = RESOLVE_PTR;
1792 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1793 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1794 }
1795
1796 return 0;
1797}
1798
1799static void env_stack_set_next_member(struct btf_verifier_env *env,
1800 u16 next_member)
1801{
1802 env->stack[env->top_stack - 1].next_member = next_member;
1803}
1804
1805static void env_stack_pop_resolved(struct btf_verifier_env *env,
1806 u32 resolved_type_id,
1807 u32 resolved_size)
1808{
1809 u32 type_id = env->stack[--(env->top_stack)].type_id;
1810 struct btf *btf = env->btf;
1811
1812 type_id -= btf->start_id; /* adjust to local type id */
1813 btf->resolved_sizes[type_id] = resolved_size;
1814 btf->resolved_ids[type_id] = resolved_type_id;
1815 env->visit_states[type_id] = RESOLVED;
1816}
1817
1818static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1819{
1820 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1821}
1822
1823/* Resolve the size of a passed-in "type"
1824 *
1825 * type: is an array (e.g. u32 array[x][y])
1826 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1827 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1828 * corresponds to the return type.
1829 * *elem_type: u32
1830 * *elem_id: id of u32
1831 * *total_nelems: (x * y). Hence, individual elem size is
1832 * (*type_size / *total_nelems)
1833 * *type_id: id of type if it's changed within the function, 0 if not
1834 *
1835 * type: is not an array (e.g. const struct X)
1836 * return type: type "struct X"
1837 * *type_size: sizeof(struct X)
1838 * *elem_type: same as return type ("struct X")
1839 * *elem_id: 0
1840 * *total_nelems: 1
1841 * *type_id: id of type if it's changed within the function, 0 if not
1842 */
1843static const struct btf_type *
1844__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1845 u32 *type_size, const struct btf_type **elem_type,
1846 u32 *elem_id, u32 *total_nelems, u32 *type_id)
1847{
1848 const struct btf_type *array_type = NULL;
1849 const struct btf_array *array = NULL;
1850 u32 i, size, nelems = 1, id = 0;
1851
1852 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1853 switch (BTF_INFO_KIND(type->info)) {
1854 /* type->size can be used */
1855 case BTF_KIND_INT:
1856 case BTF_KIND_STRUCT:
1857 case BTF_KIND_UNION:
1858 case BTF_KIND_ENUM:
1859 case BTF_KIND_FLOAT:
1860 case BTF_KIND_ENUM64:
1861 size = type->size;
1862 goto resolved;
1863
1864 case BTF_KIND_PTR:
1865 size = sizeof(void *);
1866 goto resolved;
1867
1868 /* Modifiers */
1869 case BTF_KIND_TYPEDEF:
1870 case BTF_KIND_VOLATILE:
1871 case BTF_KIND_CONST:
1872 case BTF_KIND_RESTRICT:
1873 case BTF_KIND_TYPE_TAG:
1874 id = type->type;
1875 type = btf_type_by_id(btf, type->type);
1876 break;
1877
1878 case BTF_KIND_ARRAY:
1879 if (!array_type)
1880 array_type = type;
1881 array = btf_type_array(type);
1882 if (nelems && array->nelems > U32_MAX / nelems)
1883 return ERR_PTR(-EINVAL);
1884 nelems *= array->nelems;
1885 type = btf_type_by_id(btf, array->type);
1886 break;
1887
1888 /* type without size */
1889 default:
1890 return ERR_PTR(-EINVAL);
1891 }
1892 }
1893
1894 return ERR_PTR(-EINVAL);
1895
1896resolved:
1897 if (nelems && size > U32_MAX / nelems)
1898 return ERR_PTR(-EINVAL);
1899
1900 *type_size = nelems * size;
1901 if (total_nelems)
1902 *total_nelems = nelems;
1903 if (elem_type)
1904 *elem_type = type;
1905 if (elem_id)
1906 *elem_id = array ? array->type : 0;
1907 if (type_id && id)
1908 *type_id = id;
1909
1910 return array_type ? : type;
1911}
1912
1913const struct btf_type *
1914btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1915 u32 *type_size)
1916{
1917 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1918}
1919
1920static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1921{
1922 while (type_id < btf->start_id)
1923 btf = btf->base_btf;
1924
1925 return btf->resolved_ids[type_id - btf->start_id];
1926}
1927
1928/* The input param "type_id" must point to a needs_resolve type */
1929static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1930 u32 *type_id)
1931{
1932 *type_id = btf_resolved_type_id(btf, *type_id);
1933 return btf_type_by_id(btf, *type_id);
1934}
1935
1936static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1937{
1938 while (type_id < btf->start_id)
1939 btf = btf->base_btf;
1940
1941 return btf->resolved_sizes[type_id - btf->start_id];
1942}
1943
1944const struct btf_type *btf_type_id_size(const struct btf *btf,
1945 u32 *type_id, u32 *ret_size)
1946{
1947 const struct btf_type *size_type;
1948 u32 size_type_id = *type_id;
1949 u32 size = 0;
1950
1951 size_type = btf_type_by_id(btf, size_type_id);
1952 if (btf_type_nosize_or_null(size_type))
1953 return NULL;
1954
1955 if (btf_type_has_size(size_type)) {
1956 size = size_type->size;
1957 } else if (btf_type_is_array(size_type)) {
1958 size = btf_resolved_type_size(btf, size_type_id);
1959 } else if (btf_type_is_ptr(size_type)) {
1960 size = sizeof(void *);
1961 } else {
1962 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1963 !btf_type_is_var(size_type)))
1964 return NULL;
1965
1966 size_type_id = btf_resolved_type_id(btf, size_type_id);
1967 size_type = btf_type_by_id(btf, size_type_id);
1968 if (btf_type_nosize_or_null(size_type))
1969 return NULL;
1970 else if (btf_type_has_size(size_type))
1971 size = size_type->size;
1972 else if (btf_type_is_array(size_type))
1973 size = btf_resolved_type_size(btf, size_type_id);
1974 else if (btf_type_is_ptr(size_type))
1975 size = sizeof(void *);
1976 else
1977 return NULL;
1978 }
1979
1980 *type_id = size_type_id;
1981 if (ret_size)
1982 *ret_size = size;
1983
1984 return size_type;
1985}
1986
1987static int btf_df_check_member(struct btf_verifier_env *env,
1988 const struct btf_type *struct_type,
1989 const struct btf_member *member,
1990 const struct btf_type *member_type)
1991{
1992 btf_verifier_log_basic(env, struct_type,
1993 "Unsupported check_member");
1994 return -EINVAL;
1995}
1996
1997static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1998 const struct btf_type *struct_type,
1999 const struct btf_member *member,
2000 const struct btf_type *member_type)
2001{
2002 btf_verifier_log_basic(env, struct_type,
2003 "Unsupported check_kflag_member");
2004 return -EINVAL;
2005}
2006
2007/* Used for ptr, array struct/union and float type members.
2008 * int, enum and modifier types have their specific callback functions.
2009 */
2010static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2011 const struct btf_type *struct_type,
2012 const struct btf_member *member,
2013 const struct btf_type *member_type)
2014{
2015 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2016 btf_verifier_log_member(env, struct_type, member,
2017 "Invalid member bitfield_size");
2018 return -EINVAL;
2019 }
2020
2021 /* bitfield size is 0, so member->offset represents bit offset only.
2022 * It is safe to call non kflag check_member variants.
2023 */
2024 return btf_type_ops(member_type)->check_member(env, struct_type,
2025 member,
2026 member_type);
2027}
2028
2029static int btf_df_resolve(struct btf_verifier_env *env,
2030 const struct resolve_vertex *v)
2031{
2032 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2033 return -EINVAL;
2034}
2035
2036static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2037 u32 type_id, void *data, u8 bits_offsets,
2038 struct btf_show *show)
2039{
2040 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2041}
2042
2043static int btf_int_check_member(struct btf_verifier_env *env,
2044 const struct btf_type *struct_type,
2045 const struct btf_member *member,
2046 const struct btf_type *member_type)
2047{
2048 u32 int_data = btf_type_int(member_type);
2049 u32 struct_bits_off = member->offset;
2050 u32 struct_size = struct_type->size;
2051 u32 nr_copy_bits;
2052 u32 bytes_offset;
2053
2054 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2055 btf_verifier_log_member(env, struct_type, member,
2056 "bits_offset exceeds U32_MAX");
2057 return -EINVAL;
2058 }
2059
2060 struct_bits_off += BTF_INT_OFFSET(int_data);
2061 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2062 nr_copy_bits = BTF_INT_BITS(int_data) +
2063 BITS_PER_BYTE_MASKED(struct_bits_off);
2064
2065 if (nr_copy_bits > BITS_PER_U128) {
2066 btf_verifier_log_member(env, struct_type, member,
2067 "nr_copy_bits exceeds 128");
2068 return -EINVAL;
2069 }
2070
2071 if (struct_size < bytes_offset ||
2072 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2073 btf_verifier_log_member(env, struct_type, member,
2074 "Member exceeds struct_size");
2075 return -EINVAL;
2076 }
2077
2078 return 0;
2079}
2080
2081static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2082 const struct btf_type *struct_type,
2083 const struct btf_member *member,
2084 const struct btf_type *member_type)
2085{
2086 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2087 u32 int_data = btf_type_int(member_type);
2088 u32 struct_size = struct_type->size;
2089 u32 nr_copy_bits;
2090
2091 /* a regular int type is required for the kflag int member */
2092 if (!btf_type_int_is_regular(member_type)) {
2093 btf_verifier_log_member(env, struct_type, member,
2094 "Invalid member base type");
2095 return -EINVAL;
2096 }
2097
2098 /* check sanity of bitfield size */
2099 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2100 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2101 nr_int_data_bits = BTF_INT_BITS(int_data);
2102 if (!nr_bits) {
2103 /* Not a bitfield member, member offset must be at byte
2104 * boundary.
2105 */
2106 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2107 btf_verifier_log_member(env, struct_type, member,
2108 "Invalid member offset");
2109 return -EINVAL;
2110 }
2111
2112 nr_bits = nr_int_data_bits;
2113 } else if (nr_bits > nr_int_data_bits) {
2114 btf_verifier_log_member(env, struct_type, member,
2115 "Invalid member bitfield_size");
2116 return -EINVAL;
2117 }
2118
2119 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2120 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2121 if (nr_copy_bits > BITS_PER_U128) {
2122 btf_verifier_log_member(env, struct_type, member,
2123 "nr_copy_bits exceeds 128");
2124 return -EINVAL;
2125 }
2126
2127 if (struct_size < bytes_offset ||
2128 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2129 btf_verifier_log_member(env, struct_type, member,
2130 "Member exceeds struct_size");
2131 return -EINVAL;
2132 }
2133
2134 return 0;
2135}
2136
2137static s32 btf_int_check_meta(struct btf_verifier_env *env,
2138 const struct btf_type *t,
2139 u32 meta_left)
2140{
2141 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2142 u16 encoding;
2143
2144 if (meta_left < meta_needed) {
2145 btf_verifier_log_basic(env, t,
2146 "meta_left:%u meta_needed:%u",
2147 meta_left, meta_needed);
2148 return -EINVAL;
2149 }
2150
2151 if (btf_type_vlen(t)) {
2152 btf_verifier_log_type(env, t, "vlen != 0");
2153 return -EINVAL;
2154 }
2155
2156 if (btf_type_kflag(t)) {
2157 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2158 return -EINVAL;
2159 }
2160
2161 int_data = btf_type_int(t);
2162 if (int_data & ~BTF_INT_MASK) {
2163 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2164 int_data);
2165 return -EINVAL;
2166 }
2167
2168 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2169
2170 if (nr_bits > BITS_PER_U128) {
2171 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2172 BITS_PER_U128);
2173 return -EINVAL;
2174 }
2175
2176 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2177 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2178 return -EINVAL;
2179 }
2180
2181 /*
2182 * Only one of the encoding bits is allowed and it
2183 * should be sufficient for the pretty print purpose (i.e. decoding).
2184 * Multiple bits can be allowed later if it is found
2185 * to be insufficient.
2186 */
2187 encoding = BTF_INT_ENCODING(int_data);
2188 if (encoding &&
2189 encoding != BTF_INT_SIGNED &&
2190 encoding != BTF_INT_CHAR &&
2191 encoding != BTF_INT_BOOL) {
2192 btf_verifier_log_type(env, t, "Unsupported encoding");
2193 return -ENOTSUPP;
2194 }
2195
2196 btf_verifier_log_type(env, t, NULL);
2197
2198 return meta_needed;
2199}
2200
2201static void btf_int_log(struct btf_verifier_env *env,
2202 const struct btf_type *t)
2203{
2204 int int_data = btf_type_int(t);
2205
2206 btf_verifier_log(env,
2207 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2208 t->size, BTF_INT_OFFSET(int_data),
2209 BTF_INT_BITS(int_data),
2210 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2211}
2212
2213static void btf_int128_print(struct btf_show *show, void *data)
2214{
2215 /* data points to a __int128 number.
2216 * Suppose
2217 * int128_num = *(__int128 *)data;
2218 * The below formulas shows what upper_num and lower_num represents:
2219 * upper_num = int128_num >> 64;
2220 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2221 */
2222 u64 upper_num, lower_num;
2223
2224#ifdef __BIG_ENDIAN_BITFIELD
2225 upper_num = *(u64 *)data;
2226 lower_num = *(u64 *)(data + 8);
2227#else
2228 upper_num = *(u64 *)(data + 8);
2229 lower_num = *(u64 *)data;
2230#endif
2231 if (upper_num == 0)
2232 btf_show_type_value(show, "0x%llx", lower_num);
2233 else
2234 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2235 lower_num);
2236}
2237
2238static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2239 u16 right_shift_bits)
2240{
2241 u64 upper_num, lower_num;
2242
2243#ifdef __BIG_ENDIAN_BITFIELD
2244 upper_num = print_num[0];
2245 lower_num = print_num[1];
2246#else
2247 upper_num = print_num[1];
2248 lower_num = print_num[0];
2249#endif
2250
2251 /* shake out un-needed bits by shift/or operations */
2252 if (left_shift_bits >= 64) {
2253 upper_num = lower_num << (left_shift_bits - 64);
2254 lower_num = 0;
2255 } else {
2256 upper_num = (upper_num << left_shift_bits) |
2257 (lower_num >> (64 - left_shift_bits));
2258 lower_num = lower_num << left_shift_bits;
2259 }
2260
2261 if (right_shift_bits >= 64) {
2262 lower_num = upper_num >> (right_shift_bits - 64);
2263 upper_num = 0;
2264 } else {
2265 lower_num = (lower_num >> right_shift_bits) |
2266 (upper_num << (64 - right_shift_bits));
2267 upper_num = upper_num >> right_shift_bits;
2268 }
2269
2270#ifdef __BIG_ENDIAN_BITFIELD
2271 print_num[0] = upper_num;
2272 print_num[1] = lower_num;
2273#else
2274 print_num[0] = lower_num;
2275 print_num[1] = upper_num;
2276#endif
2277}
2278
2279static void btf_bitfield_show(void *data, u8 bits_offset,
2280 u8 nr_bits, struct btf_show *show)
2281{
2282 u16 left_shift_bits, right_shift_bits;
2283 u8 nr_copy_bytes;
2284 u8 nr_copy_bits;
2285 u64 print_num[2] = {};
2286
2287 nr_copy_bits = nr_bits + bits_offset;
2288 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2289
2290 memcpy(print_num, data, nr_copy_bytes);
2291
2292#ifdef __BIG_ENDIAN_BITFIELD
2293 left_shift_bits = bits_offset;
2294#else
2295 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2296#endif
2297 right_shift_bits = BITS_PER_U128 - nr_bits;
2298
2299 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2300 btf_int128_print(show, print_num);
2301}
2302
2303
2304static void btf_int_bits_show(const struct btf *btf,
2305 const struct btf_type *t,
2306 void *data, u8 bits_offset,
2307 struct btf_show *show)
2308{
2309 u32 int_data = btf_type_int(t);
2310 u8 nr_bits = BTF_INT_BITS(int_data);
2311 u8 total_bits_offset;
2312
2313 /*
2314 * bits_offset is at most 7.
2315 * BTF_INT_OFFSET() cannot exceed 128 bits.
2316 */
2317 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2318 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2319 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2320 btf_bitfield_show(data, bits_offset, nr_bits, show);
2321}
2322
2323static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2324 u32 type_id, void *data, u8 bits_offset,
2325 struct btf_show *show)
2326{
2327 u32 int_data = btf_type_int(t);
2328 u8 encoding = BTF_INT_ENCODING(int_data);
2329 bool sign = encoding & BTF_INT_SIGNED;
2330 u8 nr_bits = BTF_INT_BITS(int_data);
2331 void *safe_data;
2332
2333 safe_data = btf_show_start_type(show, t, type_id, data);
2334 if (!safe_data)
2335 return;
2336
2337 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2338 BITS_PER_BYTE_MASKED(nr_bits)) {
2339 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2340 goto out;
2341 }
2342
2343 switch (nr_bits) {
2344 case 128:
2345 btf_int128_print(show, safe_data);
2346 break;
2347 case 64:
2348 if (sign)
2349 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2350 else
2351 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2352 break;
2353 case 32:
2354 if (sign)
2355 btf_show_type_value(show, "%d", *(s32 *)safe_data);
2356 else
2357 btf_show_type_value(show, "%u", *(u32 *)safe_data);
2358 break;
2359 case 16:
2360 if (sign)
2361 btf_show_type_value(show, "%d", *(s16 *)safe_data);
2362 else
2363 btf_show_type_value(show, "%u", *(u16 *)safe_data);
2364 break;
2365 case 8:
2366 if (show->state.array_encoding == BTF_INT_CHAR) {
2367 /* check for null terminator */
2368 if (show->state.array_terminated)
2369 break;
2370 if (*(char *)data == '\0') {
2371 show->state.array_terminated = 1;
2372 break;
2373 }
2374 if (isprint(*(char *)data)) {
2375 btf_show_type_value(show, "'%c'",
2376 *(char *)safe_data);
2377 break;
2378 }
2379 }
2380 if (sign)
2381 btf_show_type_value(show, "%d", *(s8 *)safe_data);
2382 else
2383 btf_show_type_value(show, "%u", *(u8 *)safe_data);
2384 break;
2385 default:
2386 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2387 break;
2388 }
2389out:
2390 btf_show_end_type(show);
2391}
2392
2393static const struct btf_kind_operations int_ops = {
2394 .check_meta = btf_int_check_meta,
2395 .resolve = btf_df_resolve,
2396 .check_member = btf_int_check_member,
2397 .check_kflag_member = btf_int_check_kflag_member,
2398 .log_details = btf_int_log,
2399 .show = btf_int_show,
2400};
2401
2402static int btf_modifier_check_member(struct btf_verifier_env *env,
2403 const struct btf_type *struct_type,
2404 const struct btf_member *member,
2405 const struct btf_type *member_type)
2406{
2407 const struct btf_type *resolved_type;
2408 u32 resolved_type_id = member->type;
2409 struct btf_member resolved_member;
2410 struct btf *btf = env->btf;
2411
2412 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2413 if (!resolved_type) {
2414 btf_verifier_log_member(env, struct_type, member,
2415 "Invalid member");
2416 return -EINVAL;
2417 }
2418
2419 resolved_member = *member;
2420 resolved_member.type = resolved_type_id;
2421
2422 return btf_type_ops(resolved_type)->check_member(env, struct_type,
2423 &resolved_member,
2424 resolved_type);
2425}
2426
2427static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2428 const struct btf_type *struct_type,
2429 const struct btf_member *member,
2430 const struct btf_type *member_type)
2431{
2432 const struct btf_type *resolved_type;
2433 u32 resolved_type_id = member->type;
2434 struct btf_member resolved_member;
2435 struct btf *btf = env->btf;
2436
2437 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2438 if (!resolved_type) {
2439 btf_verifier_log_member(env, struct_type, member,
2440 "Invalid member");
2441 return -EINVAL;
2442 }
2443
2444 resolved_member = *member;
2445 resolved_member.type = resolved_type_id;
2446
2447 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2448 &resolved_member,
2449 resolved_type);
2450}
2451
2452static int btf_ptr_check_member(struct btf_verifier_env *env,
2453 const struct btf_type *struct_type,
2454 const struct btf_member *member,
2455 const struct btf_type *member_type)
2456{
2457 u32 struct_size, struct_bits_off, bytes_offset;
2458
2459 struct_size = struct_type->size;
2460 struct_bits_off = member->offset;
2461 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2462
2463 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2464 btf_verifier_log_member(env, struct_type, member,
2465 "Member is not byte aligned");
2466 return -EINVAL;
2467 }
2468
2469 if (struct_size - bytes_offset < sizeof(void *)) {
2470 btf_verifier_log_member(env, struct_type, member,
2471 "Member exceeds struct_size");
2472 return -EINVAL;
2473 }
2474
2475 return 0;
2476}
2477
2478static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2479 const struct btf_type *t,
2480 u32 meta_left)
2481{
2482 const char *value;
2483
2484 if (btf_type_vlen(t)) {
2485 btf_verifier_log_type(env, t, "vlen != 0");
2486 return -EINVAL;
2487 }
2488
2489 if (btf_type_kflag(t)) {
2490 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2491 return -EINVAL;
2492 }
2493
2494 if (!BTF_TYPE_ID_VALID(t->type)) {
2495 btf_verifier_log_type(env, t, "Invalid type_id");
2496 return -EINVAL;
2497 }
2498
2499 /* typedef/type_tag type must have a valid name, and other ref types,
2500 * volatile, const, restrict, should have a null name.
2501 */
2502 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2503 if (!t->name_off ||
2504 !btf_name_valid_identifier(env->btf, t->name_off)) {
2505 btf_verifier_log_type(env, t, "Invalid name");
2506 return -EINVAL;
2507 }
2508 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2509 value = btf_name_by_offset(env->btf, t->name_off);
2510 if (!value || !value[0]) {
2511 btf_verifier_log_type(env, t, "Invalid name");
2512 return -EINVAL;
2513 }
2514 } else {
2515 if (t->name_off) {
2516 btf_verifier_log_type(env, t, "Invalid name");
2517 return -EINVAL;
2518 }
2519 }
2520
2521 btf_verifier_log_type(env, t, NULL);
2522
2523 return 0;
2524}
2525
2526static int btf_modifier_resolve(struct btf_verifier_env *env,
2527 const struct resolve_vertex *v)
2528{
2529 const struct btf_type *t = v->t;
2530 const struct btf_type *next_type;
2531 u32 next_type_id = t->type;
2532 struct btf *btf = env->btf;
2533
2534 next_type = btf_type_by_id(btf, next_type_id);
2535 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2536 btf_verifier_log_type(env, v->t, "Invalid type_id");
2537 return -EINVAL;
2538 }
2539
2540 if (!env_type_is_resolve_sink(env, next_type) &&
2541 !env_type_is_resolved(env, next_type_id))
2542 return env_stack_push(env, next_type, next_type_id);
2543
2544 /* Figure out the resolved next_type_id with size.
2545 * They will be stored in the current modifier's
2546 * resolved_ids and resolved_sizes such that it can
2547 * save us a few type-following when we use it later (e.g. in
2548 * pretty print).
2549 */
2550 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2551 if (env_type_is_resolved(env, next_type_id))
2552 next_type = btf_type_id_resolve(btf, &next_type_id);
2553
2554 /* "typedef void new_void", "const void"...etc */
2555 if (!btf_type_is_void(next_type) &&
2556 !btf_type_is_fwd(next_type) &&
2557 !btf_type_is_func_proto(next_type)) {
2558 btf_verifier_log_type(env, v->t, "Invalid type_id");
2559 return -EINVAL;
2560 }
2561 }
2562
2563 env_stack_pop_resolved(env, next_type_id, 0);
2564
2565 return 0;
2566}
2567
2568static int btf_var_resolve(struct btf_verifier_env *env,
2569 const struct resolve_vertex *v)
2570{
2571 const struct btf_type *next_type;
2572 const struct btf_type *t = v->t;
2573 u32 next_type_id = t->type;
2574 struct btf *btf = env->btf;
2575
2576 next_type = btf_type_by_id(btf, next_type_id);
2577 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2578 btf_verifier_log_type(env, v->t, "Invalid type_id");
2579 return -EINVAL;
2580 }
2581
2582 if (!env_type_is_resolve_sink(env, next_type) &&
2583 !env_type_is_resolved(env, next_type_id))
2584 return env_stack_push(env, next_type, next_type_id);
2585
2586 if (btf_type_is_modifier(next_type)) {
2587 const struct btf_type *resolved_type;
2588 u32 resolved_type_id;
2589
2590 resolved_type_id = next_type_id;
2591 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2592
2593 if (btf_type_is_ptr(resolved_type) &&
2594 !env_type_is_resolve_sink(env, resolved_type) &&
2595 !env_type_is_resolved(env, resolved_type_id))
2596 return env_stack_push(env, resolved_type,
2597 resolved_type_id);
2598 }
2599
2600 /* We must resolve to something concrete at this point, no
2601 * forward types or similar that would resolve to size of
2602 * zero is allowed.
2603 */
2604 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2605 btf_verifier_log_type(env, v->t, "Invalid type_id");
2606 return -EINVAL;
2607 }
2608
2609 env_stack_pop_resolved(env, next_type_id, 0);
2610
2611 return 0;
2612}
2613
2614static int btf_ptr_resolve(struct btf_verifier_env *env,
2615 const struct resolve_vertex *v)
2616{
2617 const struct btf_type *next_type;
2618 const struct btf_type *t = v->t;
2619 u32 next_type_id = t->type;
2620 struct btf *btf = env->btf;
2621
2622 next_type = btf_type_by_id(btf, next_type_id);
2623 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2624 btf_verifier_log_type(env, v->t, "Invalid type_id");
2625 return -EINVAL;
2626 }
2627
2628 if (!env_type_is_resolve_sink(env, next_type) &&
2629 !env_type_is_resolved(env, next_type_id))
2630 return env_stack_push(env, next_type, next_type_id);
2631
2632 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2633 * the modifier may have stopped resolving when it was resolved
2634 * to a ptr (last-resolved-ptr).
2635 *
2636 * We now need to continue from the last-resolved-ptr to
2637 * ensure the last-resolved-ptr will not referring back to
2638 * the current ptr (t).
2639 */
2640 if (btf_type_is_modifier(next_type)) {
2641 const struct btf_type *resolved_type;
2642 u32 resolved_type_id;
2643
2644 resolved_type_id = next_type_id;
2645 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2646
2647 if (btf_type_is_ptr(resolved_type) &&
2648 !env_type_is_resolve_sink(env, resolved_type) &&
2649 !env_type_is_resolved(env, resolved_type_id))
2650 return env_stack_push(env, resolved_type,
2651 resolved_type_id);
2652 }
2653
2654 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2655 if (env_type_is_resolved(env, next_type_id))
2656 next_type = btf_type_id_resolve(btf, &next_type_id);
2657
2658 if (!btf_type_is_void(next_type) &&
2659 !btf_type_is_fwd(next_type) &&
2660 !btf_type_is_func_proto(next_type)) {
2661 btf_verifier_log_type(env, v->t, "Invalid type_id");
2662 return -EINVAL;
2663 }
2664 }
2665
2666 env_stack_pop_resolved(env, next_type_id, 0);
2667
2668 return 0;
2669}
2670
2671static void btf_modifier_show(const struct btf *btf,
2672 const struct btf_type *t,
2673 u32 type_id, void *data,
2674 u8 bits_offset, struct btf_show *show)
2675{
2676 if (btf->resolved_ids)
2677 t = btf_type_id_resolve(btf, &type_id);
2678 else
2679 t = btf_type_skip_modifiers(btf, type_id, NULL);
2680
2681 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2682}
2683
2684static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2685 u32 type_id, void *data, u8 bits_offset,
2686 struct btf_show *show)
2687{
2688 t = btf_type_id_resolve(btf, &type_id);
2689
2690 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2691}
2692
2693static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2694 u32 type_id, void *data, u8 bits_offset,
2695 struct btf_show *show)
2696{
2697 void *safe_data;
2698
2699 safe_data = btf_show_start_type(show, t, type_id, data);
2700 if (!safe_data)
2701 return;
2702
2703 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2704 if (show->flags & BTF_SHOW_PTR_RAW)
2705 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2706 else
2707 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2708 btf_show_end_type(show);
2709}
2710
2711static void btf_ref_type_log(struct btf_verifier_env *env,
2712 const struct btf_type *t)
2713{
2714 btf_verifier_log(env, "type_id=%u", t->type);
2715}
2716
2717static struct btf_kind_operations modifier_ops = {
2718 .check_meta = btf_ref_type_check_meta,
2719 .resolve = btf_modifier_resolve,
2720 .check_member = btf_modifier_check_member,
2721 .check_kflag_member = btf_modifier_check_kflag_member,
2722 .log_details = btf_ref_type_log,
2723 .show = btf_modifier_show,
2724};
2725
2726static struct btf_kind_operations ptr_ops = {
2727 .check_meta = btf_ref_type_check_meta,
2728 .resolve = btf_ptr_resolve,
2729 .check_member = btf_ptr_check_member,
2730 .check_kflag_member = btf_generic_check_kflag_member,
2731 .log_details = btf_ref_type_log,
2732 .show = btf_ptr_show,
2733};
2734
2735static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2736 const struct btf_type *t,
2737 u32 meta_left)
2738{
2739 if (btf_type_vlen(t)) {
2740 btf_verifier_log_type(env, t, "vlen != 0");
2741 return -EINVAL;
2742 }
2743
2744 if (t->type) {
2745 btf_verifier_log_type(env, t, "type != 0");
2746 return -EINVAL;
2747 }
2748
2749 /* fwd type must have a valid name */
2750 if (!t->name_off ||
2751 !btf_name_valid_identifier(env->btf, t->name_off)) {
2752 btf_verifier_log_type(env, t, "Invalid name");
2753 return -EINVAL;
2754 }
2755
2756 btf_verifier_log_type(env, t, NULL);
2757
2758 return 0;
2759}
2760
2761static void btf_fwd_type_log(struct btf_verifier_env *env,
2762 const struct btf_type *t)
2763{
2764 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2765}
2766
2767static struct btf_kind_operations fwd_ops = {
2768 .check_meta = btf_fwd_check_meta,
2769 .resolve = btf_df_resolve,
2770 .check_member = btf_df_check_member,
2771 .check_kflag_member = btf_df_check_kflag_member,
2772 .log_details = btf_fwd_type_log,
2773 .show = btf_df_show,
2774};
2775
2776static int btf_array_check_member(struct btf_verifier_env *env,
2777 const struct btf_type *struct_type,
2778 const struct btf_member *member,
2779 const struct btf_type *member_type)
2780{
2781 u32 struct_bits_off = member->offset;
2782 u32 struct_size, bytes_offset;
2783 u32 array_type_id, array_size;
2784 struct btf *btf = env->btf;
2785
2786 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2787 btf_verifier_log_member(env, struct_type, member,
2788 "Member is not byte aligned");
2789 return -EINVAL;
2790 }
2791
2792 array_type_id = member->type;
2793 btf_type_id_size(btf, &array_type_id, &array_size);
2794 struct_size = struct_type->size;
2795 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2796 if (struct_size - bytes_offset < array_size) {
2797 btf_verifier_log_member(env, struct_type, member,
2798 "Member exceeds struct_size");
2799 return -EINVAL;
2800 }
2801
2802 return 0;
2803}
2804
2805static s32 btf_array_check_meta(struct btf_verifier_env *env,
2806 const struct btf_type *t,
2807 u32 meta_left)
2808{
2809 const struct btf_array *array = btf_type_array(t);
2810 u32 meta_needed = sizeof(*array);
2811
2812 if (meta_left < meta_needed) {
2813 btf_verifier_log_basic(env, t,
2814 "meta_left:%u meta_needed:%u",
2815 meta_left, meta_needed);
2816 return -EINVAL;
2817 }
2818
2819 /* array type should not have a name */
2820 if (t->name_off) {
2821 btf_verifier_log_type(env, t, "Invalid name");
2822 return -EINVAL;
2823 }
2824
2825 if (btf_type_vlen(t)) {
2826 btf_verifier_log_type(env, t, "vlen != 0");
2827 return -EINVAL;
2828 }
2829
2830 if (btf_type_kflag(t)) {
2831 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2832 return -EINVAL;
2833 }
2834
2835 if (t->size) {
2836 btf_verifier_log_type(env, t, "size != 0");
2837 return -EINVAL;
2838 }
2839
2840 /* Array elem type and index type cannot be in type void,
2841 * so !array->type and !array->index_type are not allowed.
2842 */
2843 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2844 btf_verifier_log_type(env, t, "Invalid elem");
2845 return -EINVAL;
2846 }
2847
2848 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2849 btf_verifier_log_type(env, t, "Invalid index");
2850 return -EINVAL;
2851 }
2852
2853 btf_verifier_log_type(env, t, NULL);
2854
2855 return meta_needed;
2856}
2857
2858static int btf_array_resolve(struct btf_verifier_env *env,
2859 const struct resolve_vertex *v)
2860{
2861 const struct btf_array *array = btf_type_array(v->t);
2862 const struct btf_type *elem_type, *index_type;
2863 u32 elem_type_id, index_type_id;
2864 struct btf *btf = env->btf;
2865 u32 elem_size;
2866
2867 /* Check array->index_type */
2868 index_type_id = array->index_type;
2869 index_type = btf_type_by_id(btf, index_type_id);
2870 if (btf_type_nosize_or_null(index_type) ||
2871 btf_type_is_resolve_source_only(index_type)) {
2872 btf_verifier_log_type(env, v->t, "Invalid index");
2873 return -EINVAL;
2874 }
2875
2876 if (!env_type_is_resolve_sink(env, index_type) &&
2877 !env_type_is_resolved(env, index_type_id))
2878 return env_stack_push(env, index_type, index_type_id);
2879
2880 index_type = btf_type_id_size(btf, &index_type_id, NULL);
2881 if (!index_type || !btf_type_is_int(index_type) ||
2882 !btf_type_int_is_regular(index_type)) {
2883 btf_verifier_log_type(env, v->t, "Invalid index");
2884 return -EINVAL;
2885 }
2886
2887 /* Check array->type */
2888 elem_type_id = array->type;
2889 elem_type = btf_type_by_id(btf, elem_type_id);
2890 if (btf_type_nosize_or_null(elem_type) ||
2891 btf_type_is_resolve_source_only(elem_type)) {
2892 btf_verifier_log_type(env, v->t,
2893 "Invalid elem");
2894 return -EINVAL;
2895 }
2896
2897 if (!env_type_is_resolve_sink(env, elem_type) &&
2898 !env_type_is_resolved(env, elem_type_id))
2899 return env_stack_push(env, elem_type, elem_type_id);
2900
2901 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2902 if (!elem_type) {
2903 btf_verifier_log_type(env, v->t, "Invalid elem");
2904 return -EINVAL;
2905 }
2906
2907 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2908 btf_verifier_log_type(env, v->t, "Invalid array of int");
2909 return -EINVAL;
2910 }
2911
2912 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2913 btf_verifier_log_type(env, v->t,
2914 "Array size overflows U32_MAX");
2915 return -EINVAL;
2916 }
2917
2918 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2919
2920 return 0;
2921}
2922
2923static void btf_array_log(struct btf_verifier_env *env,
2924 const struct btf_type *t)
2925{
2926 const struct btf_array *array = btf_type_array(t);
2927
2928 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2929 array->type, array->index_type, array->nelems);
2930}
2931
2932static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2933 u32 type_id, void *data, u8 bits_offset,
2934 struct btf_show *show)
2935{
2936 const struct btf_array *array = btf_type_array(t);
2937 const struct btf_kind_operations *elem_ops;
2938 const struct btf_type *elem_type;
2939 u32 i, elem_size = 0, elem_type_id;
2940 u16 encoding = 0;
2941
2942 elem_type_id = array->type;
2943 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2944 if (elem_type && btf_type_has_size(elem_type))
2945 elem_size = elem_type->size;
2946
2947 if (elem_type && btf_type_is_int(elem_type)) {
2948 u32 int_type = btf_type_int(elem_type);
2949
2950 encoding = BTF_INT_ENCODING(int_type);
2951
2952 /*
2953 * BTF_INT_CHAR encoding never seems to be set for
2954 * char arrays, so if size is 1 and element is
2955 * printable as a char, we'll do that.
2956 */
2957 if (elem_size == 1)
2958 encoding = BTF_INT_CHAR;
2959 }
2960
2961 if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2962 return;
2963
2964 if (!elem_type)
2965 goto out;
2966 elem_ops = btf_type_ops(elem_type);
2967
2968 for (i = 0; i < array->nelems; i++) {
2969
2970 btf_show_start_array_member(show);
2971
2972 elem_ops->show(btf, elem_type, elem_type_id, data,
2973 bits_offset, show);
2974 data += elem_size;
2975
2976 btf_show_end_array_member(show);
2977
2978 if (show->state.array_terminated)
2979 break;
2980 }
2981out:
2982 btf_show_end_array_type(show);
2983}
2984
2985static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2986 u32 type_id, void *data, u8 bits_offset,
2987 struct btf_show *show)
2988{
2989 const struct btf_member *m = show->state.member;
2990
2991 /*
2992 * First check if any members would be shown (are non-zero).
2993 * See comments above "struct btf_show" definition for more
2994 * details on how this works at a high-level.
2995 */
2996 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2997 if (!show->state.depth_check) {
2998 show->state.depth_check = show->state.depth + 1;
2999 show->state.depth_to_show = 0;
3000 }
3001 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3002 show->state.member = m;
3003
3004 if (show->state.depth_check != show->state.depth + 1)
3005 return;
3006 show->state.depth_check = 0;
3007
3008 if (show->state.depth_to_show <= show->state.depth)
3009 return;
3010 /*
3011 * Reaching here indicates we have recursed and found
3012 * non-zero array member(s).
3013 */
3014 }
3015 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3016}
3017
3018static struct btf_kind_operations array_ops = {
3019 .check_meta = btf_array_check_meta,
3020 .resolve = btf_array_resolve,
3021 .check_member = btf_array_check_member,
3022 .check_kflag_member = btf_generic_check_kflag_member,
3023 .log_details = btf_array_log,
3024 .show = btf_array_show,
3025};
3026
3027static int btf_struct_check_member(struct btf_verifier_env *env,
3028 const struct btf_type *struct_type,
3029 const struct btf_member *member,
3030 const struct btf_type *member_type)
3031{
3032 u32 struct_bits_off = member->offset;
3033 u32 struct_size, bytes_offset;
3034
3035 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3036 btf_verifier_log_member(env, struct_type, member,
3037 "Member is not byte aligned");
3038 return -EINVAL;
3039 }
3040
3041 struct_size = struct_type->size;
3042 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3043 if (struct_size - bytes_offset < member_type->size) {
3044 btf_verifier_log_member(env, struct_type, member,
3045 "Member exceeds struct_size");
3046 return -EINVAL;
3047 }
3048
3049 return 0;
3050}
3051
3052static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3053 const struct btf_type *t,
3054 u32 meta_left)
3055{
3056 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3057 const struct btf_member *member;
3058 u32 meta_needed, last_offset;
3059 struct btf *btf = env->btf;
3060 u32 struct_size = t->size;
3061 u32 offset;
3062 u16 i;
3063
3064 meta_needed = btf_type_vlen(t) * sizeof(*member);
3065 if (meta_left < meta_needed) {
3066 btf_verifier_log_basic(env, t,
3067 "meta_left:%u meta_needed:%u",
3068 meta_left, meta_needed);
3069 return -EINVAL;
3070 }
3071
3072 /* struct type either no name or a valid one */
3073 if (t->name_off &&
3074 !btf_name_valid_identifier(env->btf, t->name_off)) {
3075 btf_verifier_log_type(env, t, "Invalid name");
3076 return -EINVAL;
3077 }
3078
3079 btf_verifier_log_type(env, t, NULL);
3080
3081 last_offset = 0;
3082 for_each_member(i, t, member) {
3083 if (!btf_name_offset_valid(btf, member->name_off)) {
3084 btf_verifier_log_member(env, t, member,
3085 "Invalid member name_offset:%u",
3086 member->name_off);
3087 return -EINVAL;
3088 }
3089
3090 /* struct member either no name or a valid one */
3091 if (member->name_off &&
3092 !btf_name_valid_identifier(btf, member->name_off)) {
3093 btf_verifier_log_member(env, t, member, "Invalid name");
3094 return -EINVAL;
3095 }
3096 /* A member cannot be in type void */
3097 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3098 btf_verifier_log_member(env, t, member,
3099 "Invalid type_id");
3100 return -EINVAL;
3101 }
3102
3103 offset = __btf_member_bit_offset(t, member);
3104 if (is_union && offset) {
3105 btf_verifier_log_member(env, t, member,
3106 "Invalid member bits_offset");
3107 return -EINVAL;
3108 }
3109
3110 /*
3111 * ">" instead of ">=" because the last member could be
3112 * "char a[0];"
3113 */
3114 if (last_offset > offset) {
3115 btf_verifier_log_member(env, t, member,
3116 "Invalid member bits_offset");
3117 return -EINVAL;
3118 }
3119
3120 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3121 btf_verifier_log_member(env, t, member,
3122 "Member bits_offset exceeds its struct size");
3123 return -EINVAL;
3124 }
3125
3126 btf_verifier_log_member(env, t, member, NULL);
3127 last_offset = offset;
3128 }
3129
3130 return meta_needed;
3131}
3132
3133static int btf_struct_resolve(struct btf_verifier_env *env,
3134 const struct resolve_vertex *v)
3135{
3136 const struct btf_member *member;
3137 int err;
3138 u16 i;
3139
3140 /* Before continue resolving the next_member,
3141 * ensure the last member is indeed resolved to a
3142 * type with size info.
3143 */
3144 if (v->next_member) {
3145 const struct btf_type *last_member_type;
3146 const struct btf_member *last_member;
3147 u32 last_member_type_id;
3148
3149 last_member = btf_type_member(v->t) + v->next_member - 1;
3150 last_member_type_id = last_member->type;
3151 if (WARN_ON_ONCE(!env_type_is_resolved(env,
3152 last_member_type_id)))
3153 return -EINVAL;
3154
3155 last_member_type = btf_type_by_id(env->btf,
3156 last_member_type_id);
3157 if (btf_type_kflag(v->t))
3158 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3159 last_member,
3160 last_member_type);
3161 else
3162 err = btf_type_ops(last_member_type)->check_member(env, v->t,
3163 last_member,
3164 last_member_type);
3165 if (err)
3166 return err;
3167 }
3168
3169 for_each_member_from(i, v->next_member, v->t, member) {
3170 u32 member_type_id = member->type;
3171 const struct btf_type *member_type = btf_type_by_id(env->btf,
3172 member_type_id);
3173
3174 if (btf_type_nosize_or_null(member_type) ||
3175 btf_type_is_resolve_source_only(member_type)) {
3176 btf_verifier_log_member(env, v->t, member,
3177 "Invalid member");
3178 return -EINVAL;
3179 }
3180
3181 if (!env_type_is_resolve_sink(env, member_type) &&
3182 !env_type_is_resolved(env, member_type_id)) {
3183 env_stack_set_next_member(env, i + 1);
3184 return env_stack_push(env, member_type, member_type_id);
3185 }
3186
3187 if (btf_type_kflag(v->t))
3188 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3189 member,
3190 member_type);
3191 else
3192 err = btf_type_ops(member_type)->check_member(env, v->t,
3193 member,
3194 member_type);
3195 if (err)
3196 return err;
3197 }
3198
3199 env_stack_pop_resolved(env, 0, 0);
3200
3201 return 0;
3202}
3203
3204static void btf_struct_log(struct btf_verifier_env *env,
3205 const struct btf_type *t)
3206{
3207 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3208}
3209
3210enum btf_field_info_type {
3211 BTF_FIELD_SPIN_LOCK,
3212 BTF_FIELD_TIMER,
3213 BTF_FIELD_KPTR,
3214};
3215
3216enum {
3217 BTF_FIELD_IGNORE = 0,
3218 BTF_FIELD_FOUND = 1,
3219};
3220
3221struct btf_field_info {
3222 enum btf_field_type type;
3223 u32 off;
3224 union {
3225 struct {
3226 u32 type_id;
3227 } kptr;
3228 struct {
3229 const char *node_name;
3230 u32 value_btf_id;
3231 } list_head;
3232 };
3233};
3234
3235static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3236 u32 off, int sz, enum btf_field_type field_type,
3237 struct btf_field_info *info)
3238{
3239 if (!__btf_type_is_struct(t))
3240 return BTF_FIELD_IGNORE;
3241 if (t->size != sz)
3242 return BTF_FIELD_IGNORE;
3243 info->type = field_type;
3244 info->off = off;
3245 return BTF_FIELD_FOUND;
3246}
3247
3248static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3249 u32 off, int sz, struct btf_field_info *info)
3250{
3251 enum btf_field_type type;
3252 u32 res_id;
3253
3254 /* Permit modifiers on the pointer itself */
3255 if (btf_type_is_volatile(t))
3256 t = btf_type_by_id(btf, t->type);
3257 /* For PTR, sz is always == 8 */
3258 if (!btf_type_is_ptr(t))
3259 return BTF_FIELD_IGNORE;
3260 t = btf_type_by_id(btf, t->type);
3261
3262 if (!btf_type_is_type_tag(t))
3263 return BTF_FIELD_IGNORE;
3264 /* Reject extra tags */
3265 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3266 return -EINVAL;
3267 if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3268 type = BPF_KPTR_UNREF;
3269 else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off)))
3270 type = BPF_KPTR_REF;
3271 else
3272 return -EINVAL;
3273
3274 /* Get the base type */
3275 t = btf_type_skip_modifiers(btf, t->type, &res_id);
3276 /* Only pointer to struct is allowed */
3277 if (!__btf_type_is_struct(t))
3278 return -EINVAL;
3279
3280 info->type = type;
3281 info->off = off;
3282 info->kptr.type_id = res_id;
3283 return BTF_FIELD_FOUND;
3284}
3285
3286static const char *btf_find_decl_tag_value(const struct btf *btf,
3287 const struct btf_type *pt,
3288 int comp_idx, const char *tag_key)
3289{
3290 int i;
3291
3292 for (i = 1; i < btf_nr_types(btf); i++) {
3293 const struct btf_type *t = btf_type_by_id(btf, i);
3294 int len = strlen(tag_key);
3295
3296 if (!btf_type_is_decl_tag(t))
3297 continue;
3298 if (pt != btf_type_by_id(btf, t->type) ||
3299 btf_type_decl_tag(t)->component_idx != comp_idx)
3300 continue;
3301 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3302 continue;
3303 return __btf_name_by_offset(btf, t->name_off) + len;
3304 }
3305 return NULL;
3306}
3307
3308static int btf_find_list_head(const struct btf *btf, const struct btf_type *pt,
3309 const struct btf_type *t, int comp_idx,
3310 u32 off, int sz, struct btf_field_info *info)
3311{
3312 const char *value_type;
3313 const char *list_node;
3314 s32 id;
3315
3316 if (!__btf_type_is_struct(t))
3317 return BTF_FIELD_IGNORE;
3318 if (t->size != sz)
3319 return BTF_FIELD_IGNORE;
3320 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3321 if (!value_type)
3322 return -EINVAL;
3323 list_node = strstr(value_type, ":");
3324 if (!list_node)
3325 return -EINVAL;
3326 value_type = kstrndup(value_type, list_node - value_type, GFP_KERNEL | __GFP_NOWARN);
3327 if (!value_type)
3328 return -ENOMEM;
3329 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3330 kfree(value_type);
3331 if (id < 0)
3332 return id;
3333 list_node++;
3334 if (str_is_empty(list_node))
3335 return -EINVAL;
3336 info->type = BPF_LIST_HEAD;
3337 info->off = off;
3338 info->list_head.value_btf_id = id;
3339 info->list_head.node_name = list_node;
3340 return BTF_FIELD_FOUND;
3341}
3342
3343static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3344 int *align, int *sz)
3345{
3346 int type = 0;
3347
3348 if (field_mask & BPF_SPIN_LOCK) {
3349 if (!strcmp(name, "bpf_spin_lock")) {
3350 if (*seen_mask & BPF_SPIN_LOCK)
3351 return -E2BIG;
3352 *seen_mask |= BPF_SPIN_LOCK;
3353 type = BPF_SPIN_LOCK;
3354 goto end;
3355 }
3356 }
3357 if (field_mask & BPF_TIMER) {
3358 if (!strcmp(name, "bpf_timer")) {
3359 if (*seen_mask & BPF_TIMER)
3360 return -E2BIG;
3361 *seen_mask |= BPF_TIMER;
3362 type = BPF_TIMER;
3363 goto end;
3364 }
3365 }
3366 if (field_mask & BPF_LIST_HEAD) {
3367 if (!strcmp(name, "bpf_list_head")) {
3368 type = BPF_LIST_HEAD;
3369 goto end;
3370 }
3371 }
3372 if (field_mask & BPF_LIST_NODE) {
3373 if (!strcmp(name, "bpf_list_node")) {
3374 type = BPF_LIST_NODE;
3375 goto end;
3376 }
3377 }
3378 /* Only return BPF_KPTR when all other types with matchable names fail */
3379 if (field_mask & BPF_KPTR) {
3380 type = BPF_KPTR_REF;
3381 goto end;
3382 }
3383 return 0;
3384end:
3385 *sz = btf_field_type_size(type);
3386 *align = btf_field_type_align(type);
3387 return type;
3388}
3389
3390static int btf_find_struct_field(const struct btf *btf,
3391 const struct btf_type *t, u32 field_mask,
3392 struct btf_field_info *info, int info_cnt)
3393{
3394 int ret, idx = 0, align, sz, field_type;
3395 const struct btf_member *member;
3396 struct btf_field_info tmp;
3397 u32 i, off, seen_mask = 0;
3398
3399 for_each_member(i, t, member) {
3400 const struct btf_type *member_type = btf_type_by_id(btf,
3401 member->type);
3402
3403 field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
3404 field_mask, &seen_mask, &align, &sz);
3405 if (field_type == 0)
3406 continue;
3407 if (field_type < 0)
3408 return field_type;
3409
3410 off = __btf_member_bit_offset(t, member);
3411 if (off % 8)
3412 /* valid C code cannot generate such BTF */
3413 return -EINVAL;
3414 off /= 8;
3415 if (off % align)
3416 continue;
3417
3418 switch (field_type) {
3419 case BPF_SPIN_LOCK:
3420 case BPF_TIMER:
3421 case BPF_LIST_NODE:
3422 ret = btf_find_struct(btf, member_type, off, sz, field_type,
3423 idx < info_cnt ? &info[idx] : &tmp);
3424 if (ret < 0)
3425 return ret;
3426 break;
3427 case BPF_KPTR_UNREF:
3428 case BPF_KPTR_REF:
3429 ret = btf_find_kptr(btf, member_type, off, sz,
3430 idx < info_cnt ? &info[idx] : &tmp);
3431 if (ret < 0)
3432 return ret;
3433 break;
3434 case BPF_LIST_HEAD:
3435 ret = btf_find_list_head(btf, t, member_type, i, off, sz,
3436 idx < info_cnt ? &info[idx] : &tmp);
3437 if (ret < 0)
3438 return ret;
3439 break;
3440 default:
3441 return -EFAULT;
3442 }
3443
3444 if (ret == BTF_FIELD_IGNORE)
3445 continue;
3446 if (idx >= info_cnt)
3447 return -E2BIG;
3448 ++idx;
3449 }
3450 return idx;
3451}
3452
3453static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3454 u32 field_mask, struct btf_field_info *info,
3455 int info_cnt)
3456{
3457 int ret, idx = 0, align, sz, field_type;
3458 const struct btf_var_secinfo *vsi;
3459 struct btf_field_info tmp;
3460 u32 i, off, seen_mask = 0;
3461
3462 for_each_vsi(i, t, vsi) {
3463 const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3464 const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3465
3466 field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
3467 field_mask, &seen_mask, &align, &sz);
3468 if (field_type == 0)
3469 continue;
3470 if (field_type < 0)
3471 return field_type;
3472
3473 off = vsi->offset;
3474 if (vsi->size != sz)
3475 continue;
3476 if (off % align)
3477 continue;
3478
3479 switch (field_type) {
3480 case BPF_SPIN_LOCK:
3481 case BPF_TIMER:
3482 case BPF_LIST_NODE:
3483 ret = btf_find_struct(btf, var_type, off, sz, field_type,
3484 idx < info_cnt ? &info[idx] : &tmp);
3485 if (ret < 0)
3486 return ret;
3487 break;
3488 case BPF_KPTR_UNREF:
3489 case BPF_KPTR_REF:
3490 ret = btf_find_kptr(btf, var_type, off, sz,
3491 idx < info_cnt ? &info[idx] : &tmp);
3492 if (ret < 0)
3493 return ret;
3494 break;
3495 case BPF_LIST_HEAD:
3496 ret = btf_find_list_head(btf, var, var_type, -1, off, sz,
3497 idx < info_cnt ? &info[idx] : &tmp);
3498 if (ret < 0)
3499 return ret;
3500 break;
3501 default:
3502 return -EFAULT;
3503 }
3504
3505 if (ret == BTF_FIELD_IGNORE)
3506 continue;
3507 if (idx >= info_cnt)
3508 return -E2BIG;
3509 ++idx;
3510 }
3511 return idx;
3512}
3513
3514static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3515 u32 field_mask, struct btf_field_info *info,
3516 int info_cnt)
3517{
3518 if (__btf_type_is_struct(t))
3519 return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
3520 else if (btf_type_is_datasec(t))
3521 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
3522 return -EINVAL;
3523}
3524
3525static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3526 struct btf_field_info *info)
3527{
3528 struct module *mod = NULL;
3529 const struct btf_type *t;
3530 struct btf *kernel_btf;
3531 int ret;
3532 s32 id;
3533
3534 /* Find type in map BTF, and use it to look up the matching type
3535 * in vmlinux or module BTFs, by name and kind.
3536 */
3537 t = btf_type_by_id(btf, info->kptr.type_id);
3538 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3539 &kernel_btf);
3540 if (id < 0)
3541 return id;
3542
3543 /* Find and stash the function pointer for the destruction function that
3544 * needs to be eventually invoked from the map free path.
3545 */
3546 if (info->type == BPF_KPTR_REF) {
3547 const struct btf_type *dtor_func;
3548 const char *dtor_func_name;
3549 unsigned long addr;
3550 s32 dtor_btf_id;
3551
3552 /* This call also serves as a whitelist of allowed objects that
3553 * can be used as a referenced pointer and be stored in a map at
3554 * the same time.
3555 */
3556 dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id);
3557 if (dtor_btf_id < 0) {
3558 ret = dtor_btf_id;
3559 goto end_btf;
3560 }
3561
3562 dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id);
3563 if (!dtor_func) {
3564 ret = -ENOENT;
3565 goto end_btf;
3566 }
3567
3568 if (btf_is_module(kernel_btf)) {
3569 mod = btf_try_get_module(kernel_btf);
3570 if (!mod) {
3571 ret = -ENXIO;
3572 goto end_btf;
3573 }
3574 }
3575
3576 /* We already verified dtor_func to be btf_type_is_func
3577 * in register_btf_id_dtor_kfuncs.
3578 */
3579 dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off);
3580 addr = kallsyms_lookup_name(dtor_func_name);
3581 if (!addr) {
3582 ret = -EINVAL;
3583 goto end_mod;
3584 }
3585 field->kptr.dtor = (void *)addr;
3586 }
3587
3588 field->kptr.btf_id = id;
3589 field->kptr.btf = kernel_btf;
3590 field->kptr.module = mod;
3591 return 0;
3592end_mod:
3593 module_put(mod);
3594end_btf:
3595 btf_put(kernel_btf);
3596 return ret;
3597}
3598
3599static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3600 struct btf_field_info *info)
3601{
3602 const struct btf_type *t, *n = NULL;
3603 const struct btf_member *member;
3604 u32 offset;
3605 int i;
3606
3607 t = btf_type_by_id(btf, info->list_head.value_btf_id);
3608 /* We've already checked that value_btf_id is a struct type. We
3609 * just need to figure out the offset of the list_node, and
3610 * verify its type.
3611 */
3612 for_each_member(i, t, member) {
3613 if (strcmp(info->list_head.node_name, __btf_name_by_offset(btf, member->name_off)))
3614 continue;
3615 /* Invalid BTF, two members with same name */
3616 if (n)
3617 return -EINVAL;
3618 n = btf_type_by_id(btf, member->type);
3619 if (!__btf_type_is_struct(n))
3620 return -EINVAL;
3621 if (strcmp("bpf_list_node", __btf_name_by_offset(btf, n->name_off)))
3622 return -EINVAL;
3623 offset = __btf_member_bit_offset(n, member);
3624 if (offset % 8)
3625 return -EINVAL;
3626 offset /= 8;
3627 if (offset % __alignof__(struct bpf_list_node))
3628 return -EINVAL;
3629
3630 field->list_head.btf = (struct btf *)btf;
3631 field->list_head.value_btf_id = info->list_head.value_btf_id;
3632 field->list_head.node_offset = offset;
3633 }
3634 if (!n)
3635 return -ENOENT;
3636 return 0;
3637}
3638
3639struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3640 u32 field_mask, u32 value_size)
3641{
3642 struct btf_field_info info_arr[BTF_FIELDS_MAX];
3643 struct btf_record *rec;
3644 u32 next_off = 0;
3645 int ret, i, cnt;
3646
3647 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3648 if (ret < 0)
3649 return ERR_PTR(ret);
3650 if (!ret)
3651 return NULL;
3652
3653 cnt = ret;
3654 /* This needs to be kzalloc to zero out padding and unused fields, see
3655 * comment in btf_record_equal.
3656 */
3657 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3658 if (!rec)
3659 return ERR_PTR(-ENOMEM);
3660
3661 rec->spin_lock_off = -EINVAL;
3662 rec->timer_off = -EINVAL;
3663 for (i = 0; i < cnt; i++) {
3664 if (info_arr[i].off + btf_field_type_size(info_arr[i].type) > value_size) {
3665 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3666 ret = -EFAULT;
3667 goto end;
3668 }
3669 if (info_arr[i].off < next_off) {
3670 ret = -EEXIST;
3671 goto end;
3672 }
3673 next_off = info_arr[i].off + btf_field_type_size(info_arr[i].type);
3674
3675 rec->field_mask |= info_arr[i].type;
3676 rec->fields[i].offset = info_arr[i].off;
3677 rec->fields[i].type = info_arr[i].type;
3678
3679 switch (info_arr[i].type) {
3680 case BPF_SPIN_LOCK:
3681 WARN_ON_ONCE(rec->spin_lock_off >= 0);
3682 /* Cache offset for faster lookup at runtime */
3683 rec->spin_lock_off = rec->fields[i].offset;
3684 break;
3685 case BPF_TIMER:
3686 WARN_ON_ONCE(rec->timer_off >= 0);
3687 /* Cache offset for faster lookup at runtime */
3688 rec->timer_off = rec->fields[i].offset;
3689 break;
3690 case BPF_KPTR_UNREF:
3691 case BPF_KPTR_REF:
3692 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3693 if (ret < 0)
3694 goto end;
3695 break;
3696 case BPF_LIST_HEAD:
3697 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3698 if (ret < 0)
3699 goto end;
3700 break;
3701 case BPF_LIST_NODE:
3702 break;
3703 default:
3704 ret = -EFAULT;
3705 goto end;
3706 }
3707 rec->cnt++;
3708 }
3709
3710 /* bpf_list_head requires bpf_spin_lock */
3711 if (btf_record_has_field(rec, BPF_LIST_HEAD) && rec->spin_lock_off < 0) {
3712 ret = -EINVAL;
3713 goto end;
3714 }
3715
3716 return rec;
3717end:
3718 btf_record_free(rec);
3719 return ERR_PTR(ret);
3720}
3721
3722int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3723{
3724 int i;
3725
3726 /* There are two owning types, kptr_ref and bpf_list_head. The former
3727 * only supports storing kernel types, which can never store references
3728 * to program allocated local types, atleast not yet. Hence we only need
3729 * to ensure that bpf_list_head ownership does not form cycles.
3730 */
3731 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_LIST_HEAD))
3732 return 0;
3733 for (i = 0; i < rec->cnt; i++) {
3734 struct btf_struct_meta *meta;
3735 u32 btf_id;
3736
3737 if (!(rec->fields[i].type & BPF_LIST_HEAD))
3738 continue;
3739 btf_id = rec->fields[i].list_head.value_btf_id;
3740 meta = btf_find_struct_meta(btf, btf_id);
3741 if (!meta)
3742 return -EFAULT;
3743 rec->fields[i].list_head.value_rec = meta->record;
3744
3745 if (!(rec->field_mask & BPF_LIST_NODE))
3746 continue;
3747
3748 /* We need to ensure ownership acyclicity among all types. The
3749 * proper way to do it would be to topologically sort all BTF
3750 * IDs based on the ownership edges, since there can be multiple
3751 * bpf_list_head in a type. Instead, we use the following
3752 * reasoning:
3753 *
3754 * - A type can only be owned by another type in user BTF if it
3755 * has a bpf_list_node.
3756 * - A type can only _own_ another type in user BTF if it has a
3757 * bpf_list_head.
3758 *
3759 * We ensure that if a type has both bpf_list_head and
3760 * bpf_list_node, its element types cannot be owning types.
3761 *
3762 * To ensure acyclicity:
3763 *
3764 * When A only has bpf_list_head, ownership chain can be:
3765 * A -> B -> C
3766 * Where:
3767 * - B has both bpf_list_head and bpf_list_node.
3768 * - C only has bpf_list_node.
3769 *
3770 * When A has both bpf_list_head and bpf_list_node, some other
3771 * type already owns it in the BTF domain, hence it can not own
3772 * another owning type through any of the bpf_list_head edges.
3773 * A -> B
3774 * Where:
3775 * - B only has bpf_list_node.
3776 */
3777 if (meta->record->field_mask & BPF_LIST_HEAD)
3778 return -ELOOP;
3779 }
3780 return 0;
3781}
3782
3783static int btf_field_offs_cmp(const void *_a, const void *_b, const void *priv)
3784{
3785 const u32 a = *(const u32 *)_a;
3786 const u32 b = *(const u32 *)_b;
3787
3788 if (a < b)
3789 return -1;
3790 else if (a > b)
3791 return 1;
3792 return 0;
3793}
3794
3795static void btf_field_offs_swap(void *_a, void *_b, int size, const void *priv)
3796{
3797 struct btf_field_offs *foffs = (void *)priv;
3798 u32 *off_base = foffs->field_off;
3799 u32 *a = _a, *b = _b;
3800 u8 *sz_a, *sz_b;
3801
3802 sz_a = foffs->field_sz + (a - off_base);
3803 sz_b = foffs->field_sz + (b - off_base);
3804
3805 swap(*a, *b);
3806 swap(*sz_a, *sz_b);
3807}
3808
3809struct btf_field_offs *btf_parse_field_offs(struct btf_record *rec)
3810{
3811 struct btf_field_offs *foffs;
3812 u32 i, *off;
3813 u8 *sz;
3814
3815 BUILD_BUG_ON(ARRAY_SIZE(foffs->field_off) != ARRAY_SIZE(foffs->field_sz));
3816 if (IS_ERR_OR_NULL(rec))
3817 return NULL;
3818
3819 foffs = kzalloc(sizeof(*foffs), GFP_KERNEL | __GFP_NOWARN);
3820 if (!foffs)
3821 return ERR_PTR(-ENOMEM);
3822
3823 off = foffs->field_off;
3824 sz = foffs->field_sz;
3825 for (i = 0; i < rec->cnt; i++) {
3826 off[i] = rec->fields[i].offset;
3827 sz[i] = btf_field_type_size(rec->fields[i].type);
3828 }
3829 foffs->cnt = rec->cnt;
3830
3831 if (foffs->cnt == 1)
3832 return foffs;
3833 sort_r(foffs->field_off, foffs->cnt, sizeof(foffs->field_off[0]),
3834 btf_field_offs_cmp, btf_field_offs_swap, foffs);
3835 return foffs;
3836}
3837
3838static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3839 u32 type_id, void *data, u8 bits_offset,
3840 struct btf_show *show)
3841{
3842 const struct btf_member *member;
3843 void *safe_data;
3844 u32 i;
3845
3846 safe_data = btf_show_start_struct_type(show, t, type_id, data);
3847 if (!safe_data)
3848 return;
3849
3850 for_each_member(i, t, member) {
3851 const struct btf_type *member_type = btf_type_by_id(btf,
3852 member->type);
3853 const struct btf_kind_operations *ops;
3854 u32 member_offset, bitfield_size;
3855 u32 bytes_offset;
3856 u8 bits8_offset;
3857
3858 btf_show_start_member(show, member);
3859
3860 member_offset = __btf_member_bit_offset(t, member);
3861 bitfield_size = __btf_member_bitfield_size(t, member);
3862 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3863 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3864 if (bitfield_size) {
3865 safe_data = btf_show_start_type(show, member_type,
3866 member->type,
3867 data + bytes_offset);
3868 if (safe_data)
3869 btf_bitfield_show(safe_data,
3870 bits8_offset,
3871 bitfield_size, show);
3872 btf_show_end_type(show);
3873 } else {
3874 ops = btf_type_ops(member_type);
3875 ops->show(btf, member_type, member->type,
3876 data + bytes_offset, bits8_offset, show);
3877 }
3878
3879 btf_show_end_member(show);
3880 }
3881
3882 btf_show_end_struct_type(show);
3883}
3884
3885static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3886 u32 type_id, void *data, u8 bits_offset,
3887 struct btf_show *show)
3888{
3889 const struct btf_member *m = show->state.member;
3890
3891 /*
3892 * First check if any members would be shown (are non-zero).
3893 * See comments above "struct btf_show" definition for more
3894 * details on how this works at a high-level.
3895 */
3896 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3897 if (!show->state.depth_check) {
3898 show->state.depth_check = show->state.depth + 1;
3899 show->state.depth_to_show = 0;
3900 }
3901 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3902 /* Restore saved member data here */
3903 show->state.member = m;
3904 if (show->state.depth_check != show->state.depth + 1)
3905 return;
3906 show->state.depth_check = 0;
3907
3908 if (show->state.depth_to_show <= show->state.depth)
3909 return;
3910 /*
3911 * Reaching here indicates we have recursed and found
3912 * non-zero child values.
3913 */
3914 }
3915
3916 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3917}
3918
3919static struct btf_kind_operations struct_ops = {
3920 .check_meta = btf_struct_check_meta,
3921 .resolve = btf_struct_resolve,
3922 .check_member = btf_struct_check_member,
3923 .check_kflag_member = btf_generic_check_kflag_member,
3924 .log_details = btf_struct_log,
3925 .show = btf_struct_show,
3926};
3927
3928static int btf_enum_check_member(struct btf_verifier_env *env,
3929 const struct btf_type *struct_type,
3930 const struct btf_member *member,
3931 const struct btf_type *member_type)
3932{
3933 u32 struct_bits_off = member->offset;
3934 u32 struct_size, bytes_offset;
3935
3936 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3937 btf_verifier_log_member(env, struct_type, member,
3938 "Member is not byte aligned");
3939 return -EINVAL;
3940 }
3941
3942 struct_size = struct_type->size;
3943 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3944 if (struct_size - bytes_offset < member_type->size) {
3945 btf_verifier_log_member(env, struct_type, member,
3946 "Member exceeds struct_size");
3947 return -EINVAL;
3948 }
3949
3950 return 0;
3951}
3952
3953static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3954 const struct btf_type *struct_type,
3955 const struct btf_member *member,
3956 const struct btf_type *member_type)
3957{
3958 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3959 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3960
3961 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3962 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3963 if (!nr_bits) {
3964 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3965 btf_verifier_log_member(env, struct_type, member,
3966 "Member is not byte aligned");
3967 return -EINVAL;
3968 }
3969
3970 nr_bits = int_bitsize;
3971 } else if (nr_bits > int_bitsize) {
3972 btf_verifier_log_member(env, struct_type, member,
3973 "Invalid member bitfield_size");
3974 return -EINVAL;
3975 }
3976
3977 struct_size = struct_type->size;
3978 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3979 if (struct_size < bytes_end) {
3980 btf_verifier_log_member(env, struct_type, member,
3981 "Member exceeds struct_size");
3982 return -EINVAL;
3983 }
3984
3985 return 0;
3986}
3987
3988static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3989 const struct btf_type *t,
3990 u32 meta_left)
3991{
3992 const struct btf_enum *enums = btf_type_enum(t);
3993 struct btf *btf = env->btf;
3994 const char *fmt_str;
3995 u16 i, nr_enums;
3996 u32 meta_needed;
3997
3998 nr_enums = btf_type_vlen(t);
3999 meta_needed = nr_enums * sizeof(*enums);
4000
4001 if (meta_left < meta_needed) {
4002 btf_verifier_log_basic(env, t,
4003 "meta_left:%u meta_needed:%u",
4004 meta_left, meta_needed);
4005 return -EINVAL;
4006 }
4007
4008 if (t->size > 8 || !is_power_of_2(t->size)) {
4009 btf_verifier_log_type(env, t, "Unexpected size");
4010 return -EINVAL;
4011 }
4012
4013 /* enum type either no name or a valid one */
4014 if (t->name_off &&
4015 !btf_name_valid_identifier(env->btf, t->name_off)) {
4016 btf_verifier_log_type(env, t, "Invalid name");
4017 return -EINVAL;
4018 }
4019
4020 btf_verifier_log_type(env, t, NULL);
4021
4022 for (i = 0; i < nr_enums; i++) {
4023 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4024 btf_verifier_log(env, "\tInvalid name_offset:%u",
4025 enums[i].name_off);
4026 return -EINVAL;
4027 }
4028
4029 /* enum member must have a valid name */
4030 if (!enums[i].name_off ||
4031 !btf_name_valid_identifier(btf, enums[i].name_off)) {
4032 btf_verifier_log_type(env, t, "Invalid name");
4033 return -EINVAL;
4034 }
4035
4036 if (env->log.level == BPF_LOG_KERNEL)
4037 continue;
4038 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4039 btf_verifier_log(env, fmt_str,
4040 __btf_name_by_offset(btf, enums[i].name_off),
4041 enums[i].val);
4042 }
4043
4044 return meta_needed;
4045}
4046
4047static void btf_enum_log(struct btf_verifier_env *env,
4048 const struct btf_type *t)
4049{
4050 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4051}
4052
4053static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4054 u32 type_id, void *data, u8 bits_offset,
4055 struct btf_show *show)
4056{
4057 const struct btf_enum *enums = btf_type_enum(t);
4058 u32 i, nr_enums = btf_type_vlen(t);
4059 void *safe_data;
4060 int v;
4061
4062 safe_data = btf_show_start_type(show, t, type_id, data);
4063 if (!safe_data)
4064 return;
4065
4066 v = *(int *)safe_data;
4067
4068 for (i = 0; i < nr_enums; i++) {
4069 if (v != enums[i].val)
4070 continue;
4071
4072 btf_show_type_value(show, "%s",
4073 __btf_name_by_offset(btf,
4074 enums[i].name_off));
4075
4076 btf_show_end_type(show);
4077 return;
4078 }
4079
4080 if (btf_type_kflag(t))
4081 btf_show_type_value(show, "%d", v);
4082 else
4083 btf_show_type_value(show, "%u", v);
4084 btf_show_end_type(show);
4085}
4086
4087static struct btf_kind_operations enum_ops = {
4088 .check_meta = btf_enum_check_meta,
4089 .resolve = btf_df_resolve,
4090 .check_member = btf_enum_check_member,
4091 .check_kflag_member = btf_enum_check_kflag_member,
4092 .log_details = btf_enum_log,
4093 .show = btf_enum_show,
4094};
4095
4096static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4097 const struct btf_type *t,
4098 u32 meta_left)
4099{
4100 const struct btf_enum64 *enums = btf_type_enum64(t);
4101 struct btf *btf = env->btf;
4102 const char *fmt_str;
4103 u16 i, nr_enums;
4104 u32 meta_needed;
4105
4106 nr_enums = btf_type_vlen(t);
4107 meta_needed = nr_enums * sizeof(*enums);
4108
4109 if (meta_left < meta_needed) {
4110 btf_verifier_log_basic(env, t,
4111 "meta_left:%u meta_needed:%u",
4112 meta_left, meta_needed);
4113 return -EINVAL;
4114 }
4115
4116 if (t->size > 8 || !is_power_of_2(t->size)) {
4117 btf_verifier_log_type(env, t, "Unexpected size");
4118 return -EINVAL;
4119 }
4120
4121 /* enum type either no name or a valid one */
4122 if (t->name_off &&
4123 !btf_name_valid_identifier(env->btf, t->name_off)) {
4124 btf_verifier_log_type(env, t, "Invalid name");
4125 return -EINVAL;
4126 }
4127
4128 btf_verifier_log_type(env, t, NULL);
4129
4130 for (i = 0; i < nr_enums; i++) {
4131 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4132 btf_verifier_log(env, "\tInvalid name_offset:%u",
4133 enums[i].name_off);
4134 return -EINVAL;
4135 }
4136
4137 /* enum member must have a valid name */
4138 if (!enums[i].name_off ||
4139 !btf_name_valid_identifier(btf, enums[i].name_off)) {
4140 btf_verifier_log_type(env, t, "Invalid name");
4141 return -EINVAL;
4142 }
4143
4144 if (env->log.level == BPF_LOG_KERNEL)
4145 continue;
4146
4147 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4148 btf_verifier_log(env, fmt_str,
4149 __btf_name_by_offset(btf, enums[i].name_off),
4150 btf_enum64_value(enums + i));
4151 }
4152
4153 return meta_needed;
4154}
4155
4156static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4157 u32 type_id, void *data, u8 bits_offset,
4158 struct btf_show *show)
4159{
4160 const struct btf_enum64 *enums = btf_type_enum64(t);
4161 u32 i, nr_enums = btf_type_vlen(t);
4162 void *safe_data;
4163 s64 v;
4164
4165 safe_data = btf_show_start_type(show, t, type_id, data);
4166 if (!safe_data)
4167 return;
4168
4169 v = *(u64 *)safe_data;
4170
4171 for (i = 0; i < nr_enums; i++) {
4172 if (v != btf_enum64_value(enums + i))
4173 continue;
4174
4175 btf_show_type_value(show, "%s",
4176 __btf_name_by_offset(btf,
4177 enums[i].name_off));
4178
4179 btf_show_end_type(show);
4180 return;
4181 }
4182
4183 if (btf_type_kflag(t))
4184 btf_show_type_value(show, "%lld", v);
4185 else
4186 btf_show_type_value(show, "%llu", v);
4187 btf_show_end_type(show);
4188}
4189
4190static struct btf_kind_operations enum64_ops = {
4191 .check_meta = btf_enum64_check_meta,
4192 .resolve = btf_df_resolve,
4193 .check_member = btf_enum_check_member,
4194 .check_kflag_member = btf_enum_check_kflag_member,
4195 .log_details = btf_enum_log,
4196 .show = btf_enum64_show,
4197};
4198
4199static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4200 const struct btf_type *t,
4201 u32 meta_left)
4202{
4203 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4204
4205 if (meta_left < meta_needed) {
4206 btf_verifier_log_basic(env, t,
4207 "meta_left:%u meta_needed:%u",
4208 meta_left, meta_needed);
4209 return -EINVAL;
4210 }
4211
4212 if (t->name_off) {
4213 btf_verifier_log_type(env, t, "Invalid name");
4214 return -EINVAL;
4215 }
4216
4217 if (btf_type_kflag(t)) {
4218 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4219 return -EINVAL;
4220 }
4221
4222 btf_verifier_log_type(env, t, NULL);
4223
4224 return meta_needed;
4225}
4226
4227static void btf_func_proto_log(struct btf_verifier_env *env,
4228 const struct btf_type *t)
4229{
4230 const struct btf_param *args = (const struct btf_param *)(t + 1);
4231 u16 nr_args = btf_type_vlen(t), i;
4232
4233 btf_verifier_log(env, "return=%u args=(", t->type);
4234 if (!nr_args) {
4235 btf_verifier_log(env, "void");
4236 goto done;
4237 }
4238
4239 if (nr_args == 1 && !args[0].type) {
4240 /* Only one vararg */
4241 btf_verifier_log(env, "vararg");
4242 goto done;
4243 }
4244
4245 btf_verifier_log(env, "%u %s", args[0].type,
4246 __btf_name_by_offset(env->btf,
4247 args[0].name_off));
4248 for (i = 1; i < nr_args - 1; i++)
4249 btf_verifier_log(env, ", %u %s", args[i].type,
4250 __btf_name_by_offset(env->btf,
4251 args[i].name_off));
4252
4253 if (nr_args > 1) {
4254 const struct btf_param *last_arg = &args[nr_args - 1];
4255
4256 if (last_arg->type)
4257 btf_verifier_log(env, ", %u %s", last_arg->type,
4258 __btf_name_by_offset(env->btf,
4259 last_arg->name_off));
4260 else
4261 btf_verifier_log(env, ", vararg");
4262 }
4263
4264done:
4265 btf_verifier_log(env, ")");
4266}
4267
4268static struct btf_kind_operations func_proto_ops = {
4269 .check_meta = btf_func_proto_check_meta,
4270 .resolve = btf_df_resolve,
4271 /*
4272 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4273 * a struct's member.
4274 *
4275 * It should be a function pointer instead.
4276 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4277 *
4278 * Hence, there is no btf_func_check_member().
4279 */
4280 .check_member = btf_df_check_member,
4281 .check_kflag_member = btf_df_check_kflag_member,
4282 .log_details = btf_func_proto_log,
4283 .show = btf_df_show,
4284};
4285
4286static s32 btf_func_check_meta(struct btf_verifier_env *env,
4287 const struct btf_type *t,
4288 u32 meta_left)
4289{
4290 if (!t->name_off ||
4291 !btf_name_valid_identifier(env->btf, t->name_off)) {
4292 btf_verifier_log_type(env, t, "Invalid name");
4293 return -EINVAL;
4294 }
4295
4296 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4297 btf_verifier_log_type(env, t, "Invalid func linkage");
4298 return -EINVAL;
4299 }
4300
4301 if (btf_type_kflag(t)) {
4302 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4303 return -EINVAL;
4304 }
4305
4306 btf_verifier_log_type(env, t, NULL);
4307
4308 return 0;
4309}
4310
4311static int btf_func_resolve(struct btf_verifier_env *env,
4312 const struct resolve_vertex *v)
4313{
4314 const struct btf_type *t = v->t;
4315 u32 next_type_id = t->type;
4316 int err;
4317
4318 err = btf_func_check(env, t);
4319 if (err)
4320 return err;
4321
4322 env_stack_pop_resolved(env, next_type_id, 0);
4323 return 0;
4324}
4325
4326static struct btf_kind_operations func_ops = {
4327 .check_meta = btf_func_check_meta,
4328 .resolve = btf_func_resolve,
4329 .check_member = btf_df_check_member,
4330 .check_kflag_member = btf_df_check_kflag_member,
4331 .log_details = btf_ref_type_log,
4332 .show = btf_df_show,
4333};
4334
4335static s32 btf_var_check_meta(struct btf_verifier_env *env,
4336 const struct btf_type *t,
4337 u32 meta_left)
4338{
4339 const struct btf_var *var;
4340 u32 meta_needed = sizeof(*var);
4341
4342 if (meta_left < meta_needed) {
4343 btf_verifier_log_basic(env, t,
4344 "meta_left:%u meta_needed:%u",
4345 meta_left, meta_needed);
4346 return -EINVAL;
4347 }
4348
4349 if (btf_type_vlen(t)) {
4350 btf_verifier_log_type(env, t, "vlen != 0");
4351 return -EINVAL;
4352 }
4353
4354 if (btf_type_kflag(t)) {
4355 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4356 return -EINVAL;
4357 }
4358
4359 if (!t->name_off ||
4360 !__btf_name_valid(env->btf, t->name_off, true)) {
4361 btf_verifier_log_type(env, t, "Invalid name");
4362 return -EINVAL;
4363 }
4364
4365 /* A var cannot be in type void */
4366 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4367 btf_verifier_log_type(env, t, "Invalid type_id");
4368 return -EINVAL;
4369 }
4370
4371 var = btf_type_var(t);
4372 if (var->linkage != BTF_VAR_STATIC &&
4373 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4374 btf_verifier_log_type(env, t, "Linkage not supported");
4375 return -EINVAL;
4376 }
4377
4378 btf_verifier_log_type(env, t, NULL);
4379
4380 return meta_needed;
4381}
4382
4383static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4384{
4385 const struct btf_var *var = btf_type_var(t);
4386
4387 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4388}
4389
4390static const struct btf_kind_operations var_ops = {
4391 .check_meta = btf_var_check_meta,
4392 .resolve = btf_var_resolve,
4393 .check_member = btf_df_check_member,
4394 .check_kflag_member = btf_df_check_kflag_member,
4395 .log_details = btf_var_log,
4396 .show = btf_var_show,
4397};
4398
4399static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4400 const struct btf_type *t,
4401 u32 meta_left)
4402{
4403 const struct btf_var_secinfo *vsi;
4404 u64 last_vsi_end_off = 0, sum = 0;
4405 u32 i, meta_needed;
4406
4407 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4408 if (meta_left < meta_needed) {
4409 btf_verifier_log_basic(env, t,
4410 "meta_left:%u meta_needed:%u",
4411 meta_left, meta_needed);
4412 return -EINVAL;
4413 }
4414
4415 if (!t->size) {
4416 btf_verifier_log_type(env, t, "size == 0");
4417 return -EINVAL;
4418 }
4419
4420 if (btf_type_kflag(t)) {
4421 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4422 return -EINVAL;
4423 }
4424
4425 if (!t->name_off ||
4426 !btf_name_valid_section(env->btf, t->name_off)) {
4427 btf_verifier_log_type(env, t, "Invalid name");
4428 return -EINVAL;
4429 }
4430
4431 btf_verifier_log_type(env, t, NULL);
4432
4433 for_each_vsi(i, t, vsi) {
4434 /* A var cannot be in type void */
4435 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4436 btf_verifier_log_vsi(env, t, vsi,
4437 "Invalid type_id");
4438 return -EINVAL;
4439 }
4440
4441 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4442 btf_verifier_log_vsi(env, t, vsi,
4443 "Invalid offset");
4444 return -EINVAL;
4445 }
4446
4447 if (!vsi->size || vsi->size > t->size) {
4448 btf_verifier_log_vsi(env, t, vsi,
4449 "Invalid size");
4450 return -EINVAL;
4451 }
4452
4453 last_vsi_end_off = vsi->offset + vsi->size;
4454 if (last_vsi_end_off > t->size) {
4455 btf_verifier_log_vsi(env, t, vsi,
4456 "Invalid offset+size");
4457 return -EINVAL;
4458 }
4459
4460 btf_verifier_log_vsi(env, t, vsi, NULL);
4461 sum += vsi->size;
4462 }
4463
4464 if (t->size < sum) {
4465 btf_verifier_log_type(env, t, "Invalid btf_info size");
4466 return -EINVAL;
4467 }
4468
4469 return meta_needed;
4470}
4471
4472static int btf_datasec_resolve(struct btf_verifier_env *env,
4473 const struct resolve_vertex *v)
4474{
4475 const struct btf_var_secinfo *vsi;
4476 struct btf *btf = env->btf;
4477 u16 i;
4478
4479 for_each_vsi_from(i, v->next_member, v->t, vsi) {
4480 u32 var_type_id = vsi->type, type_id, type_size = 0;
4481 const struct btf_type *var_type = btf_type_by_id(env->btf,
4482 var_type_id);
4483 if (!var_type || !btf_type_is_var(var_type)) {
4484 btf_verifier_log_vsi(env, v->t, vsi,
4485 "Not a VAR kind member");
4486 return -EINVAL;
4487 }
4488
4489 if (!env_type_is_resolve_sink(env, var_type) &&
4490 !env_type_is_resolved(env, var_type_id)) {
4491 env_stack_set_next_member(env, i + 1);
4492 return env_stack_push(env, var_type, var_type_id);
4493 }
4494
4495 type_id = var_type->type;
4496 if (!btf_type_id_size(btf, &type_id, &type_size)) {
4497 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4498 return -EINVAL;
4499 }
4500
4501 if (vsi->size < type_size) {
4502 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4503 return -EINVAL;
4504 }
4505 }
4506
4507 env_stack_pop_resolved(env, 0, 0);
4508 return 0;
4509}
4510
4511static void btf_datasec_log(struct btf_verifier_env *env,
4512 const struct btf_type *t)
4513{
4514 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4515}
4516
4517static void btf_datasec_show(const struct btf *btf,
4518 const struct btf_type *t, u32 type_id,
4519 void *data, u8 bits_offset,
4520 struct btf_show *show)
4521{
4522 const struct btf_var_secinfo *vsi;
4523 const struct btf_type *var;
4524 u32 i;
4525
4526 if (!btf_show_start_type(show, t, type_id, data))
4527 return;
4528
4529 btf_show_type_value(show, "section (\"%s\") = {",
4530 __btf_name_by_offset(btf, t->name_off));
4531 for_each_vsi(i, t, vsi) {
4532 var = btf_type_by_id(btf, vsi->type);
4533 if (i)
4534 btf_show(show, ",");
4535 btf_type_ops(var)->show(btf, var, vsi->type,
4536 data + vsi->offset, bits_offset, show);
4537 }
4538 btf_show_end_type(show);
4539}
4540
4541static const struct btf_kind_operations datasec_ops = {
4542 .check_meta = btf_datasec_check_meta,
4543 .resolve = btf_datasec_resolve,
4544 .check_member = btf_df_check_member,
4545 .check_kflag_member = btf_df_check_kflag_member,
4546 .log_details = btf_datasec_log,
4547 .show = btf_datasec_show,
4548};
4549
4550static s32 btf_float_check_meta(struct btf_verifier_env *env,
4551 const struct btf_type *t,
4552 u32 meta_left)
4553{
4554 if (btf_type_vlen(t)) {
4555 btf_verifier_log_type(env, t, "vlen != 0");
4556 return -EINVAL;
4557 }
4558
4559 if (btf_type_kflag(t)) {
4560 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4561 return -EINVAL;
4562 }
4563
4564 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4565 t->size != 16) {
4566 btf_verifier_log_type(env, t, "Invalid type_size");
4567 return -EINVAL;
4568 }
4569
4570 btf_verifier_log_type(env, t, NULL);
4571
4572 return 0;
4573}
4574
4575static int btf_float_check_member(struct btf_verifier_env *env,
4576 const struct btf_type *struct_type,
4577 const struct btf_member *member,
4578 const struct btf_type *member_type)
4579{
4580 u64 start_offset_bytes;
4581 u64 end_offset_bytes;
4582 u64 misalign_bits;
4583 u64 align_bytes;
4584 u64 align_bits;
4585
4586 /* Different architectures have different alignment requirements, so
4587 * here we check only for the reasonable minimum. This way we ensure
4588 * that types after CO-RE can pass the kernel BTF verifier.
4589 */
4590 align_bytes = min_t(u64, sizeof(void *), member_type->size);
4591 align_bits = align_bytes * BITS_PER_BYTE;
4592 div64_u64_rem(member->offset, align_bits, &misalign_bits);
4593 if (misalign_bits) {
4594 btf_verifier_log_member(env, struct_type, member,
4595 "Member is not properly aligned");
4596 return -EINVAL;
4597 }
4598
4599 start_offset_bytes = member->offset / BITS_PER_BYTE;
4600 end_offset_bytes = start_offset_bytes + member_type->size;
4601 if (end_offset_bytes > struct_type->size) {
4602 btf_verifier_log_member(env, struct_type, member,
4603 "Member exceeds struct_size");
4604 return -EINVAL;
4605 }
4606
4607 return 0;
4608}
4609
4610static void btf_float_log(struct btf_verifier_env *env,
4611 const struct btf_type *t)
4612{
4613 btf_verifier_log(env, "size=%u", t->size);
4614}
4615
4616static const struct btf_kind_operations float_ops = {
4617 .check_meta = btf_float_check_meta,
4618 .resolve = btf_df_resolve,
4619 .check_member = btf_float_check_member,
4620 .check_kflag_member = btf_generic_check_kflag_member,
4621 .log_details = btf_float_log,
4622 .show = btf_df_show,
4623};
4624
4625static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4626 const struct btf_type *t,
4627 u32 meta_left)
4628{
4629 const struct btf_decl_tag *tag;
4630 u32 meta_needed = sizeof(*tag);
4631 s32 component_idx;
4632 const char *value;
4633
4634 if (meta_left < meta_needed) {
4635 btf_verifier_log_basic(env, t,
4636 "meta_left:%u meta_needed:%u",
4637 meta_left, meta_needed);
4638 return -EINVAL;
4639 }
4640
4641 value = btf_name_by_offset(env->btf, t->name_off);
4642 if (!value || !value[0]) {
4643 btf_verifier_log_type(env, t, "Invalid value");
4644 return -EINVAL;
4645 }
4646
4647 if (btf_type_vlen(t)) {
4648 btf_verifier_log_type(env, t, "vlen != 0");
4649 return -EINVAL;
4650 }
4651
4652 if (btf_type_kflag(t)) {
4653 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4654 return -EINVAL;
4655 }
4656
4657 component_idx = btf_type_decl_tag(t)->component_idx;
4658 if (component_idx < -1) {
4659 btf_verifier_log_type(env, t, "Invalid component_idx");
4660 return -EINVAL;
4661 }
4662
4663 btf_verifier_log_type(env, t, NULL);
4664
4665 return meta_needed;
4666}
4667
4668static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4669 const struct resolve_vertex *v)
4670{
4671 const struct btf_type *next_type;
4672 const struct btf_type *t = v->t;
4673 u32 next_type_id = t->type;
4674 struct btf *btf = env->btf;
4675 s32 component_idx;
4676 u32 vlen;
4677
4678 next_type = btf_type_by_id(btf, next_type_id);
4679 if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4680 btf_verifier_log_type(env, v->t, "Invalid type_id");
4681 return -EINVAL;
4682 }
4683
4684 if (!env_type_is_resolve_sink(env, next_type) &&
4685 !env_type_is_resolved(env, next_type_id))
4686 return env_stack_push(env, next_type, next_type_id);
4687
4688 component_idx = btf_type_decl_tag(t)->component_idx;
4689 if (component_idx != -1) {
4690 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4691 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4692 return -EINVAL;
4693 }
4694
4695 if (btf_type_is_struct(next_type)) {
4696 vlen = btf_type_vlen(next_type);
4697 } else {
4698 /* next_type should be a function */
4699 next_type = btf_type_by_id(btf, next_type->type);
4700 vlen = btf_type_vlen(next_type);
4701 }
4702
4703 if ((u32)component_idx >= vlen) {
4704 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4705 return -EINVAL;
4706 }
4707 }
4708
4709 env_stack_pop_resolved(env, next_type_id, 0);
4710
4711 return 0;
4712}
4713
4714static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4715{
4716 btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4717 btf_type_decl_tag(t)->component_idx);
4718}
4719
4720static const struct btf_kind_operations decl_tag_ops = {
4721 .check_meta = btf_decl_tag_check_meta,
4722 .resolve = btf_decl_tag_resolve,
4723 .check_member = btf_df_check_member,
4724 .check_kflag_member = btf_df_check_kflag_member,
4725 .log_details = btf_decl_tag_log,
4726 .show = btf_df_show,
4727};
4728
4729static int btf_func_proto_check(struct btf_verifier_env *env,
4730 const struct btf_type *t)
4731{
4732 const struct btf_type *ret_type;
4733 const struct btf_param *args;
4734 const struct btf *btf;
4735 u16 nr_args, i;
4736 int err;
4737
4738 btf = env->btf;
4739 args = (const struct btf_param *)(t + 1);
4740 nr_args = btf_type_vlen(t);
4741
4742 /* Check func return type which could be "void" (t->type == 0) */
4743 if (t->type) {
4744 u32 ret_type_id = t->type;
4745
4746 ret_type = btf_type_by_id(btf, ret_type_id);
4747 if (!ret_type) {
4748 btf_verifier_log_type(env, t, "Invalid return type");
4749 return -EINVAL;
4750 }
4751
4752 if (btf_type_is_resolve_source_only(ret_type)) {
4753 btf_verifier_log_type(env, t, "Invalid return type");
4754 return -EINVAL;
4755 }
4756
4757 if (btf_type_needs_resolve(ret_type) &&
4758 !env_type_is_resolved(env, ret_type_id)) {
4759 err = btf_resolve(env, ret_type, ret_type_id);
4760 if (err)
4761 return err;
4762 }
4763
4764 /* Ensure the return type is a type that has a size */
4765 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4766 btf_verifier_log_type(env, t, "Invalid return type");
4767 return -EINVAL;
4768 }
4769 }
4770
4771 if (!nr_args)
4772 return 0;
4773
4774 /* Last func arg type_id could be 0 if it is a vararg */
4775 if (!args[nr_args - 1].type) {
4776 if (args[nr_args - 1].name_off) {
4777 btf_verifier_log_type(env, t, "Invalid arg#%u",
4778 nr_args);
4779 return -EINVAL;
4780 }
4781 nr_args--;
4782 }
4783
4784 for (i = 0; i < nr_args; i++) {
4785 const struct btf_type *arg_type;
4786 u32 arg_type_id;
4787
4788 arg_type_id = args[i].type;
4789 arg_type = btf_type_by_id(btf, arg_type_id);
4790 if (!arg_type) {
4791 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4792 return -EINVAL;
4793 }
4794
4795 if (btf_type_is_resolve_source_only(arg_type)) {
4796 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4797 return -EINVAL;
4798 }
4799
4800 if (args[i].name_off &&
4801 (!btf_name_offset_valid(btf, args[i].name_off) ||
4802 !btf_name_valid_identifier(btf, args[i].name_off))) {
4803 btf_verifier_log_type(env, t,
4804 "Invalid arg#%u", i + 1);
4805 return -EINVAL;
4806 }
4807
4808 if (btf_type_needs_resolve(arg_type) &&
4809 !env_type_is_resolved(env, arg_type_id)) {
4810 err = btf_resolve(env, arg_type, arg_type_id);
4811 if (err)
4812 return err;
4813 }
4814
4815 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4816 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4817 return -EINVAL;
4818 }
4819 }
4820
4821 return 0;
4822}
4823
4824static int btf_func_check(struct btf_verifier_env *env,
4825 const struct btf_type *t)
4826{
4827 const struct btf_type *proto_type;
4828 const struct btf_param *args;
4829 const struct btf *btf;
4830 u16 nr_args, i;
4831
4832 btf = env->btf;
4833 proto_type = btf_type_by_id(btf, t->type);
4834
4835 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4836 btf_verifier_log_type(env, t, "Invalid type_id");
4837 return -EINVAL;
4838 }
4839
4840 args = (const struct btf_param *)(proto_type + 1);
4841 nr_args = btf_type_vlen(proto_type);
4842 for (i = 0; i < nr_args; i++) {
4843 if (!args[i].name_off && args[i].type) {
4844 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4845 return -EINVAL;
4846 }
4847 }
4848
4849 return 0;
4850}
4851
4852static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4853 [BTF_KIND_INT] = &int_ops,
4854 [BTF_KIND_PTR] = &ptr_ops,
4855 [BTF_KIND_ARRAY] = &array_ops,
4856 [BTF_KIND_STRUCT] = &struct_ops,
4857 [BTF_KIND_UNION] = &struct_ops,
4858 [BTF_KIND_ENUM] = &enum_ops,
4859 [BTF_KIND_FWD] = &fwd_ops,
4860 [BTF_KIND_TYPEDEF] = &modifier_ops,
4861 [BTF_KIND_VOLATILE] = &modifier_ops,
4862 [BTF_KIND_CONST] = &modifier_ops,
4863 [BTF_KIND_RESTRICT] = &modifier_ops,
4864 [BTF_KIND_FUNC] = &func_ops,
4865 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4866 [BTF_KIND_VAR] = &var_ops,
4867 [BTF_KIND_DATASEC] = &datasec_ops,
4868 [BTF_KIND_FLOAT] = &float_ops,
4869 [BTF_KIND_DECL_TAG] = &decl_tag_ops,
4870 [BTF_KIND_TYPE_TAG] = &modifier_ops,
4871 [BTF_KIND_ENUM64] = &enum64_ops,
4872};
4873
4874static s32 btf_check_meta(struct btf_verifier_env *env,
4875 const struct btf_type *t,
4876 u32 meta_left)
4877{
4878 u32 saved_meta_left = meta_left;
4879 s32 var_meta_size;
4880
4881 if (meta_left < sizeof(*t)) {
4882 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4883 env->log_type_id, meta_left, sizeof(*t));
4884 return -EINVAL;
4885 }
4886 meta_left -= sizeof(*t);
4887
4888 if (t->info & ~BTF_INFO_MASK) {
4889 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4890 env->log_type_id, t->info);
4891 return -EINVAL;
4892 }
4893
4894 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4895 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4896 btf_verifier_log(env, "[%u] Invalid kind:%u",
4897 env->log_type_id, BTF_INFO_KIND(t->info));
4898 return -EINVAL;
4899 }
4900
4901 if (!btf_name_offset_valid(env->btf, t->name_off)) {
4902 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
4903 env->log_type_id, t->name_off);
4904 return -EINVAL;
4905 }
4906
4907 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4908 if (var_meta_size < 0)
4909 return var_meta_size;
4910
4911 meta_left -= var_meta_size;
4912
4913 return saved_meta_left - meta_left;
4914}
4915
4916static int btf_check_all_metas(struct btf_verifier_env *env)
4917{
4918 struct btf *btf = env->btf;
4919 struct btf_header *hdr;
4920 void *cur, *end;
4921
4922 hdr = &btf->hdr;
4923 cur = btf->nohdr_data + hdr->type_off;
4924 end = cur + hdr->type_len;
4925
4926 env->log_type_id = btf->base_btf ? btf->start_id : 1;
4927 while (cur < end) {
4928 struct btf_type *t = cur;
4929 s32 meta_size;
4930
4931 meta_size = btf_check_meta(env, t, end - cur);
4932 if (meta_size < 0)
4933 return meta_size;
4934
4935 btf_add_type(env, t);
4936 cur += meta_size;
4937 env->log_type_id++;
4938 }
4939
4940 return 0;
4941}
4942
4943static bool btf_resolve_valid(struct btf_verifier_env *env,
4944 const struct btf_type *t,
4945 u32 type_id)
4946{
4947 struct btf *btf = env->btf;
4948
4949 if (!env_type_is_resolved(env, type_id))
4950 return false;
4951
4952 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
4953 return !btf_resolved_type_id(btf, type_id) &&
4954 !btf_resolved_type_size(btf, type_id);
4955
4956 if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
4957 return btf_resolved_type_id(btf, type_id) &&
4958 !btf_resolved_type_size(btf, type_id);
4959
4960 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
4961 btf_type_is_var(t)) {
4962 t = btf_type_id_resolve(btf, &type_id);
4963 return t &&
4964 !btf_type_is_modifier(t) &&
4965 !btf_type_is_var(t) &&
4966 !btf_type_is_datasec(t);
4967 }
4968
4969 if (btf_type_is_array(t)) {
4970 const struct btf_array *array = btf_type_array(t);
4971 const struct btf_type *elem_type;
4972 u32 elem_type_id = array->type;
4973 u32 elem_size;
4974
4975 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
4976 return elem_type && !btf_type_is_modifier(elem_type) &&
4977 (array->nelems * elem_size ==
4978 btf_resolved_type_size(btf, type_id));
4979 }
4980
4981 return false;
4982}
4983
4984static int btf_resolve(struct btf_verifier_env *env,
4985 const struct btf_type *t, u32 type_id)
4986{
4987 u32 save_log_type_id = env->log_type_id;
4988 const struct resolve_vertex *v;
4989 int err = 0;
4990
4991 env->resolve_mode = RESOLVE_TBD;
4992 env_stack_push(env, t, type_id);
4993 while (!err && (v = env_stack_peak(env))) {
4994 env->log_type_id = v->type_id;
4995 err = btf_type_ops(v->t)->resolve(env, v);
4996 }
4997
4998 env->log_type_id = type_id;
4999 if (err == -E2BIG) {
5000 btf_verifier_log_type(env, t,
5001 "Exceeded max resolving depth:%u",
5002 MAX_RESOLVE_DEPTH);
5003 } else if (err == -EEXIST) {
5004 btf_verifier_log_type(env, t, "Loop detected");
5005 }
5006
5007 /* Final sanity check */
5008 if (!err && !btf_resolve_valid(env, t, type_id)) {
5009 btf_verifier_log_type(env, t, "Invalid resolve state");
5010 err = -EINVAL;
5011 }
5012
5013 env->log_type_id = save_log_type_id;
5014 return err;
5015}
5016
5017static int btf_check_all_types(struct btf_verifier_env *env)
5018{
5019 struct btf *btf = env->btf;
5020 const struct btf_type *t;
5021 u32 type_id, i;
5022 int err;
5023
5024 err = env_resolve_init(env);
5025 if (err)
5026 return err;
5027
5028 env->phase++;
5029 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5030 type_id = btf->start_id + i;
5031 t = btf_type_by_id(btf, type_id);
5032
5033 env->log_type_id = type_id;
5034 if (btf_type_needs_resolve(t) &&
5035 !env_type_is_resolved(env, type_id)) {
5036 err = btf_resolve(env, t, type_id);
5037 if (err)
5038 return err;
5039 }
5040
5041 if (btf_type_is_func_proto(t)) {
5042 err = btf_func_proto_check(env, t);
5043 if (err)
5044 return err;
5045 }
5046 }
5047
5048 return 0;
5049}
5050
5051static int btf_parse_type_sec(struct btf_verifier_env *env)
5052{
5053 const struct btf_header *hdr = &env->btf->hdr;
5054 int err;
5055
5056 /* Type section must align to 4 bytes */
5057 if (hdr->type_off & (sizeof(u32) - 1)) {
5058 btf_verifier_log(env, "Unaligned type_off");
5059 return -EINVAL;
5060 }
5061
5062 if (!env->btf->base_btf && !hdr->type_len) {
5063 btf_verifier_log(env, "No type found");
5064 return -EINVAL;
5065 }
5066
5067 err = btf_check_all_metas(env);
5068 if (err)
5069 return err;
5070
5071 return btf_check_all_types(env);
5072}
5073
5074static int btf_parse_str_sec(struct btf_verifier_env *env)
5075{
5076 const struct btf_header *hdr;
5077 struct btf *btf = env->btf;
5078 const char *start, *end;
5079
5080 hdr = &btf->hdr;
5081 start = btf->nohdr_data + hdr->str_off;
5082 end = start + hdr->str_len;
5083
5084 if (end != btf->data + btf->data_size) {
5085 btf_verifier_log(env, "String section is not at the end");
5086 return -EINVAL;
5087 }
5088
5089 btf->strings = start;
5090
5091 if (btf->base_btf && !hdr->str_len)
5092 return 0;
5093 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5094 btf_verifier_log(env, "Invalid string section");
5095 return -EINVAL;
5096 }
5097 if (!btf->base_btf && start[0]) {
5098 btf_verifier_log(env, "Invalid string section");
5099 return -EINVAL;
5100 }
5101
5102 return 0;
5103}
5104
5105static const size_t btf_sec_info_offset[] = {
5106 offsetof(struct btf_header, type_off),
5107 offsetof(struct btf_header, str_off),
5108};
5109
5110static int btf_sec_info_cmp(const void *a, const void *b)
5111{
5112 const struct btf_sec_info *x = a;
5113 const struct btf_sec_info *y = b;
5114
5115 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5116}
5117
5118static int btf_check_sec_info(struct btf_verifier_env *env,
5119 u32 btf_data_size)
5120{
5121 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5122 u32 total, expected_total, i;
5123 const struct btf_header *hdr;
5124 const struct btf *btf;
5125
5126 btf = env->btf;
5127 hdr = &btf->hdr;
5128
5129 /* Populate the secs from hdr */
5130 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5131 secs[i] = *(struct btf_sec_info *)((void *)hdr +
5132 btf_sec_info_offset[i]);
5133
5134 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5135 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5136
5137 /* Check for gaps and overlap among sections */
5138 total = 0;
5139 expected_total = btf_data_size - hdr->hdr_len;
5140 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5141 if (expected_total < secs[i].off) {
5142 btf_verifier_log(env, "Invalid section offset");
5143 return -EINVAL;
5144 }
5145 if (total < secs[i].off) {
5146 /* gap */
5147 btf_verifier_log(env, "Unsupported section found");
5148 return -EINVAL;
5149 }
5150 if (total > secs[i].off) {
5151 btf_verifier_log(env, "Section overlap found");
5152 return -EINVAL;
5153 }
5154 if (expected_total - total < secs[i].len) {
5155 btf_verifier_log(env,
5156 "Total section length too long");
5157 return -EINVAL;
5158 }
5159 total += secs[i].len;
5160 }
5161
5162 /* There is data other than hdr and known sections */
5163 if (expected_total != total) {
5164 btf_verifier_log(env, "Unsupported section found");
5165 return -EINVAL;
5166 }
5167
5168 return 0;
5169}
5170
5171static int btf_parse_hdr(struct btf_verifier_env *env)
5172{
5173 u32 hdr_len, hdr_copy, btf_data_size;
5174 const struct btf_header *hdr;
5175 struct btf *btf;
5176
5177 btf = env->btf;
5178 btf_data_size = btf->data_size;
5179
5180 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5181 btf_verifier_log(env, "hdr_len not found");
5182 return -EINVAL;
5183 }
5184
5185 hdr = btf->data;
5186 hdr_len = hdr->hdr_len;
5187 if (btf_data_size < hdr_len) {
5188 btf_verifier_log(env, "btf_header not found");
5189 return -EINVAL;
5190 }
5191
5192 /* Ensure the unsupported header fields are zero */
5193 if (hdr_len > sizeof(btf->hdr)) {
5194 u8 *expected_zero = btf->data + sizeof(btf->hdr);
5195 u8 *end = btf->data + hdr_len;
5196
5197 for (; expected_zero < end; expected_zero++) {
5198 if (*expected_zero) {
5199 btf_verifier_log(env, "Unsupported btf_header");
5200 return -E2BIG;
5201 }
5202 }
5203 }
5204
5205 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5206 memcpy(&btf->hdr, btf->data, hdr_copy);
5207
5208 hdr = &btf->hdr;
5209
5210 btf_verifier_log_hdr(env, btf_data_size);
5211
5212 if (hdr->magic != BTF_MAGIC) {
5213 btf_verifier_log(env, "Invalid magic");
5214 return -EINVAL;
5215 }
5216
5217 if (hdr->version != BTF_VERSION) {
5218 btf_verifier_log(env, "Unsupported version");
5219 return -ENOTSUPP;
5220 }
5221
5222 if (hdr->flags) {
5223 btf_verifier_log(env, "Unsupported flags");
5224 return -ENOTSUPP;
5225 }
5226
5227 if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5228 btf_verifier_log(env, "No data");
5229 return -EINVAL;
5230 }
5231
5232 return btf_check_sec_info(env, btf_data_size);
5233}
5234
5235static const char *alloc_obj_fields[] = {
5236 "bpf_spin_lock",
5237 "bpf_list_head",
5238 "bpf_list_node",
5239};
5240
5241static struct btf_struct_metas *
5242btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5243{
5244 union {
5245 struct btf_id_set set;
5246 struct {
5247 u32 _cnt;
5248 u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5249 } _arr;
5250 } aof;
5251 struct btf_struct_metas *tab = NULL;
5252 int i, n, id, ret;
5253
5254 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5255 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5256
5257 memset(&aof, 0, sizeof(aof));
5258 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5259 /* Try to find whether this special type exists in user BTF, and
5260 * if so remember its ID so we can easily find it among members
5261 * of structs that we iterate in the next loop.
5262 */
5263 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5264 if (id < 0)
5265 continue;
5266 aof.set.ids[aof.set.cnt++] = id;
5267 }
5268
5269 if (!aof.set.cnt)
5270 return NULL;
5271 sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5272
5273 n = btf_nr_types(btf);
5274 for (i = 1; i < n; i++) {
5275 struct btf_struct_metas *new_tab;
5276 const struct btf_member *member;
5277 struct btf_field_offs *foffs;
5278 struct btf_struct_meta *type;
5279 struct btf_record *record;
5280 const struct btf_type *t;
5281 int j, tab_cnt;
5282
5283 t = btf_type_by_id(btf, i);
5284 if (!t) {
5285 ret = -EINVAL;
5286 goto free;
5287 }
5288 if (!__btf_type_is_struct(t))
5289 continue;
5290
5291 cond_resched();
5292
5293 for_each_member(j, t, member) {
5294 if (btf_id_set_contains(&aof.set, member->type))
5295 goto parse;
5296 }
5297 continue;
5298 parse:
5299 tab_cnt = tab ? tab->cnt : 0;
5300 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5301 GFP_KERNEL | __GFP_NOWARN);
5302 if (!new_tab) {
5303 ret = -ENOMEM;
5304 goto free;
5305 }
5306 if (!tab)
5307 new_tab->cnt = 0;
5308 tab = new_tab;
5309
5310 type = &tab->types[tab->cnt];
5311 type->btf_id = i;
5312 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE, t->size);
5313 /* The record cannot be unset, treat it as an error if so */
5314 if (IS_ERR_OR_NULL(record)) {
5315 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5316 goto free;
5317 }
5318 foffs = btf_parse_field_offs(record);
5319 /* We need the field_offs to be valid for a valid record,
5320 * either both should be set or both should be unset.
5321 */
5322 if (IS_ERR_OR_NULL(foffs)) {
5323 btf_record_free(record);
5324 ret = -EFAULT;
5325 goto free;
5326 }
5327 type->record = record;
5328 type->field_offs = foffs;
5329 tab->cnt++;
5330 }
5331 return tab;
5332free:
5333 btf_struct_metas_free(tab);
5334 return ERR_PTR(ret);
5335}
5336
5337struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5338{
5339 struct btf_struct_metas *tab;
5340
5341 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5342 tab = btf->struct_meta_tab;
5343 if (!tab)
5344 return NULL;
5345 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5346}
5347
5348static int btf_check_type_tags(struct btf_verifier_env *env,
5349 struct btf *btf, int start_id)
5350{
5351 int i, n, good_id = start_id - 1;
5352 bool in_tags;
5353
5354 n = btf_nr_types(btf);
5355 for (i = start_id; i < n; i++) {
5356 const struct btf_type *t;
5357 int chain_limit = 32;
5358 u32 cur_id = i;
5359
5360 t = btf_type_by_id(btf, i);
5361 if (!t)
5362 return -EINVAL;
5363 if (!btf_type_is_modifier(t))
5364 continue;
5365
5366 cond_resched();
5367
5368 in_tags = btf_type_is_type_tag(t);
5369 while (btf_type_is_modifier(t)) {
5370 if (!chain_limit--) {
5371 btf_verifier_log(env, "Max chain length or cycle detected");
5372 return -ELOOP;
5373 }
5374 if (btf_type_is_type_tag(t)) {
5375 if (!in_tags) {
5376 btf_verifier_log(env, "Type tags don't precede modifiers");
5377 return -EINVAL;
5378 }
5379 } else if (in_tags) {
5380 in_tags = false;
5381 }
5382 if (cur_id <= good_id)
5383 break;
5384 /* Move to next type */
5385 cur_id = t->type;
5386 t = btf_type_by_id(btf, cur_id);
5387 if (!t)
5388 return -EINVAL;
5389 }
5390 good_id = i;
5391 }
5392 return 0;
5393}
5394
5395static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
5396 u32 log_level, char __user *log_ubuf, u32 log_size)
5397{
5398 struct btf_struct_metas *struct_meta_tab;
5399 struct btf_verifier_env *env = NULL;
5400 struct bpf_verifier_log *log;
5401 struct btf *btf = NULL;
5402 u8 *data;
5403 int err;
5404
5405 if (btf_data_size > BTF_MAX_SIZE)
5406 return ERR_PTR(-E2BIG);
5407
5408 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5409 if (!env)
5410 return ERR_PTR(-ENOMEM);
5411
5412 log = &env->log;
5413 if (log_level || log_ubuf || log_size) {
5414 /* user requested verbose verifier output
5415 * and supplied buffer to store the verification trace
5416 */
5417 log->level = log_level;
5418 log->ubuf = log_ubuf;
5419 log->len_total = log_size;
5420
5421 /* log attributes have to be sane */
5422 if (!bpf_verifier_log_attr_valid(log)) {
5423 err = -EINVAL;
5424 goto errout;
5425 }
5426 }
5427
5428 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5429 if (!btf) {
5430 err = -ENOMEM;
5431 goto errout;
5432 }
5433 env->btf = btf;
5434
5435 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
5436 if (!data) {
5437 err = -ENOMEM;
5438 goto errout;
5439 }
5440
5441 btf->data = data;
5442 btf->data_size = btf_data_size;
5443
5444 if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
5445 err = -EFAULT;
5446 goto errout;
5447 }
5448
5449 err = btf_parse_hdr(env);
5450 if (err)
5451 goto errout;
5452
5453 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5454
5455 err = btf_parse_str_sec(env);
5456 if (err)
5457 goto errout;
5458
5459 err = btf_parse_type_sec(env);
5460 if (err)
5461 goto errout;
5462
5463 err = btf_check_type_tags(env, btf, 1);
5464 if (err)
5465 goto errout;
5466
5467 struct_meta_tab = btf_parse_struct_metas(log, btf);
5468 if (IS_ERR(struct_meta_tab)) {
5469 err = PTR_ERR(struct_meta_tab);
5470 goto errout;
5471 }
5472 btf->struct_meta_tab = struct_meta_tab;
5473
5474 if (struct_meta_tab) {
5475 int i;
5476
5477 for (i = 0; i < struct_meta_tab->cnt; i++) {
5478 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5479 if (err < 0)
5480 goto errout_meta;
5481 }
5482 }
5483
5484 if (log->level && bpf_verifier_log_full(log)) {
5485 err = -ENOSPC;
5486 goto errout_meta;
5487 }
5488
5489 btf_verifier_env_free(env);
5490 refcount_set(&btf->refcnt, 1);
5491 return btf;
5492
5493errout_meta:
5494 btf_free_struct_meta_tab(btf);
5495errout:
5496 btf_verifier_env_free(env);
5497 if (btf)
5498 btf_free(btf);
5499 return ERR_PTR(err);
5500}
5501
5502extern char __weak __start_BTF[];
5503extern char __weak __stop_BTF[];
5504extern struct btf *btf_vmlinux;
5505
5506#define BPF_MAP_TYPE(_id, _ops)
5507#define BPF_LINK_TYPE(_id, _name)
5508static union {
5509 struct bpf_ctx_convert {
5510#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5511 prog_ctx_type _id##_prog; \
5512 kern_ctx_type _id##_kern;
5513#include <linux/bpf_types.h>
5514#undef BPF_PROG_TYPE
5515 } *__t;
5516 /* 't' is written once under lock. Read many times. */
5517 const struct btf_type *t;
5518} bpf_ctx_convert;
5519enum {
5520#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5521 __ctx_convert##_id,
5522#include <linux/bpf_types.h>
5523#undef BPF_PROG_TYPE
5524 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
5525};
5526static u8 bpf_ctx_convert_map[] = {
5527#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5528 [_id] = __ctx_convert##_id,
5529#include <linux/bpf_types.h>
5530#undef BPF_PROG_TYPE
5531 0, /* avoid empty array */
5532};
5533#undef BPF_MAP_TYPE
5534#undef BPF_LINK_TYPE
5535
5536const struct btf_member *
5537btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5538 const struct btf_type *t, enum bpf_prog_type prog_type,
5539 int arg)
5540{
5541 const struct btf_type *conv_struct;
5542 const struct btf_type *ctx_struct;
5543 const struct btf_member *ctx_type;
5544 const char *tname, *ctx_tname;
5545
5546 conv_struct = bpf_ctx_convert.t;
5547 if (!conv_struct) {
5548 bpf_log(log, "btf_vmlinux is malformed\n");
5549 return NULL;
5550 }
5551 t = btf_type_by_id(btf, t->type);
5552 while (btf_type_is_modifier(t))
5553 t = btf_type_by_id(btf, t->type);
5554 if (!btf_type_is_struct(t)) {
5555 /* Only pointer to struct is supported for now.
5556 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5557 * is not supported yet.
5558 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5559 */
5560 return NULL;
5561 }
5562 tname = btf_name_by_offset(btf, t->name_off);
5563 if (!tname) {
5564 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5565 return NULL;
5566 }
5567 /* prog_type is valid bpf program type. No need for bounds check. */
5568 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5569 /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
5570 * Like 'struct __sk_buff'
5571 */
5572 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
5573 if (!ctx_struct)
5574 /* should not happen */
5575 return NULL;
5576 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
5577 if (!ctx_tname) {
5578 /* should not happen */
5579 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5580 return NULL;
5581 }
5582 /* only compare that prog's ctx type name is the same as
5583 * kernel expects. No need to compare field by field.
5584 * It's ok for bpf prog to do:
5585 * struct __sk_buff {};
5586 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5587 * { // no fields of skb are ever used }
5588 */
5589 if (strcmp(ctx_tname, tname))
5590 return NULL;
5591 return ctx_type;
5592}
5593
5594static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5595 struct btf *btf,
5596 const struct btf_type *t,
5597 enum bpf_prog_type prog_type,
5598 int arg)
5599{
5600 const struct btf_member *prog_ctx_type, *kern_ctx_type;
5601
5602 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5603 if (!prog_ctx_type)
5604 return -ENOENT;
5605 kern_ctx_type = prog_ctx_type + 1;
5606 return kern_ctx_type->type;
5607}
5608
5609int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5610{
5611 const struct btf_member *kctx_member;
5612 const struct btf_type *conv_struct;
5613 const struct btf_type *kctx_type;
5614 u32 kctx_type_id;
5615
5616 conv_struct = bpf_ctx_convert.t;
5617 /* get member for kernel ctx type */
5618 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5619 kctx_type_id = kctx_member->type;
5620 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5621 if (!btf_type_is_struct(kctx_type)) {
5622 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
5623 return -EINVAL;
5624 }
5625
5626 return kctx_type_id;
5627}
5628
5629BTF_ID_LIST(bpf_ctx_convert_btf_id)
5630BTF_ID(struct, bpf_ctx_convert)
5631
5632struct btf *btf_parse_vmlinux(void)
5633{
5634 struct btf_verifier_env *env = NULL;
5635 struct bpf_verifier_log *log;
5636 struct btf *btf = NULL;
5637 int err;
5638
5639 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5640 if (!env)
5641 return ERR_PTR(-ENOMEM);
5642
5643 log = &env->log;
5644 log->level = BPF_LOG_KERNEL;
5645
5646 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5647 if (!btf) {
5648 err = -ENOMEM;
5649 goto errout;
5650 }
5651 env->btf = btf;
5652
5653 btf->data = __start_BTF;
5654 btf->data_size = __stop_BTF - __start_BTF;
5655 btf->kernel_btf = true;
5656 snprintf(btf->name, sizeof(btf->name), "vmlinux");
5657
5658 err = btf_parse_hdr(env);
5659 if (err)
5660 goto errout;
5661
5662 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5663
5664 err = btf_parse_str_sec(env);
5665 if (err)
5666 goto errout;
5667
5668 err = btf_check_all_metas(env);
5669 if (err)
5670 goto errout;
5671
5672 err = btf_check_type_tags(env, btf, 1);
5673 if (err)
5674 goto errout;
5675
5676 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
5677 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
5678
5679 bpf_struct_ops_init(btf, log);
5680
5681 refcount_set(&btf->refcnt, 1);
5682
5683 err = btf_alloc_id(btf);
5684 if (err)
5685 goto errout;
5686
5687 btf_verifier_env_free(env);
5688 return btf;
5689
5690errout:
5691 btf_verifier_env_free(env);
5692 if (btf) {
5693 kvfree(btf->types);
5694 kfree(btf);
5695 }
5696 return ERR_PTR(err);
5697}
5698
5699#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5700
5701static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5702{
5703 struct btf_verifier_env *env = NULL;
5704 struct bpf_verifier_log *log;
5705 struct btf *btf = NULL, *base_btf;
5706 int err;
5707
5708 base_btf = bpf_get_btf_vmlinux();
5709 if (IS_ERR(base_btf))
5710 return base_btf;
5711 if (!base_btf)
5712 return ERR_PTR(-EINVAL);
5713
5714 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5715 if (!env)
5716 return ERR_PTR(-ENOMEM);
5717
5718 log = &env->log;
5719 log->level = BPF_LOG_KERNEL;
5720
5721 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5722 if (!btf) {
5723 err = -ENOMEM;
5724 goto errout;
5725 }
5726 env->btf = btf;
5727
5728 btf->base_btf = base_btf;
5729 btf->start_id = base_btf->nr_types;
5730 btf->start_str_off = base_btf->hdr.str_len;
5731 btf->kernel_btf = true;
5732 snprintf(btf->name, sizeof(btf->name), "%s", module_name);
5733
5734 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
5735 if (!btf->data) {
5736 err = -ENOMEM;
5737 goto errout;
5738 }
5739 memcpy(btf->data, data, data_size);
5740 btf->data_size = data_size;
5741
5742 err = btf_parse_hdr(env);
5743 if (err)
5744 goto errout;
5745
5746 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5747
5748 err = btf_parse_str_sec(env);
5749 if (err)
5750 goto errout;
5751
5752 err = btf_check_all_metas(env);
5753 if (err)
5754 goto errout;
5755
5756 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
5757 if (err)
5758 goto errout;
5759
5760 btf_verifier_env_free(env);
5761 refcount_set(&btf->refcnt, 1);
5762 return btf;
5763
5764errout:
5765 btf_verifier_env_free(env);
5766 if (btf) {
5767 kvfree(btf->data);
5768 kvfree(btf->types);
5769 kfree(btf);
5770 }
5771 return ERR_PTR(err);
5772}
5773
5774#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5775
5776struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
5777{
5778 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5779
5780 if (tgt_prog)
5781 return tgt_prog->aux->btf;
5782 else
5783 return prog->aux->attach_btf;
5784}
5785
5786static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
5787{
5788 /* t comes in already as a pointer */
5789 t = btf_type_by_id(btf, t->type);
5790
5791 /* allow const */
5792 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
5793 t = btf_type_by_id(btf, t->type);
5794
5795 return btf_type_is_int(t);
5796}
5797
5798static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
5799 int off)
5800{
5801 const struct btf_param *args;
5802 const struct btf_type *t;
5803 u32 offset = 0, nr_args;
5804 int i;
5805
5806 if (!func_proto)
5807 return off / 8;
5808
5809 nr_args = btf_type_vlen(func_proto);
5810 args = (const struct btf_param *)(func_proto + 1);
5811 for (i = 0; i < nr_args; i++) {
5812 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5813 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5814 if (off < offset)
5815 return i;
5816 }
5817
5818 t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
5819 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5820 if (off < offset)
5821 return nr_args;
5822
5823 return nr_args + 1;
5824}
5825
5826static bool prog_args_trusted(const struct bpf_prog *prog)
5827{
5828 enum bpf_attach_type atype = prog->expected_attach_type;
5829
5830 switch (prog->type) {
5831 case BPF_PROG_TYPE_TRACING:
5832 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
5833 case BPF_PROG_TYPE_LSM:
5834 return bpf_lsm_is_trusted(prog);
5835 case BPF_PROG_TYPE_STRUCT_OPS:
5836 return true;
5837 default:
5838 return false;
5839 }
5840}
5841
5842bool btf_ctx_access(int off, int size, enum bpf_access_type type,
5843 const struct bpf_prog *prog,
5844 struct bpf_insn_access_aux *info)
5845{
5846 const struct btf_type *t = prog->aux->attach_func_proto;
5847 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5848 struct btf *btf = bpf_prog_get_target_btf(prog);
5849 const char *tname = prog->aux->attach_func_name;
5850 struct bpf_verifier_log *log = info->log;
5851 const struct btf_param *args;
5852 const char *tag_value;
5853 u32 nr_args, arg;
5854 int i, ret;
5855
5856 if (off % 8) {
5857 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
5858 tname, off);
5859 return false;
5860 }
5861 arg = get_ctx_arg_idx(btf, t, off);
5862 args = (const struct btf_param *)(t + 1);
5863 /* if (t == NULL) Fall back to default BPF prog with
5864 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
5865 */
5866 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
5867 if (prog->aux->attach_btf_trace) {
5868 /* skip first 'void *__data' argument in btf_trace_##name typedef */
5869 args++;
5870 nr_args--;
5871 }
5872
5873 if (arg > nr_args) {
5874 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5875 tname, arg + 1);
5876 return false;
5877 }
5878
5879 if (arg == nr_args) {
5880 switch (prog->expected_attach_type) {
5881 case BPF_LSM_CGROUP:
5882 case BPF_LSM_MAC:
5883 case BPF_TRACE_FEXIT:
5884 /* When LSM programs are attached to void LSM hooks
5885 * they use FEXIT trampolines and when attached to
5886 * int LSM hooks, they use MODIFY_RETURN trampolines.
5887 *
5888 * While the LSM programs are BPF_MODIFY_RETURN-like
5889 * the check:
5890 *
5891 * if (ret_type != 'int')
5892 * return -EINVAL;
5893 *
5894 * is _not_ done here. This is still safe as LSM hooks
5895 * have only void and int return types.
5896 */
5897 if (!t)
5898 return true;
5899 t = btf_type_by_id(btf, t->type);
5900 break;
5901 case BPF_MODIFY_RETURN:
5902 /* For now the BPF_MODIFY_RETURN can only be attached to
5903 * functions that return an int.
5904 */
5905 if (!t)
5906 return false;
5907
5908 t = btf_type_skip_modifiers(btf, t->type, NULL);
5909 if (!btf_type_is_small_int(t)) {
5910 bpf_log(log,
5911 "ret type %s not allowed for fmod_ret\n",
5912 btf_type_str(t));
5913 return false;
5914 }
5915 break;
5916 default:
5917 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5918 tname, arg + 1);
5919 return false;
5920 }
5921 } else {
5922 if (!t)
5923 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
5924 return true;
5925 t = btf_type_by_id(btf, args[arg].type);
5926 }
5927
5928 /* skip modifiers */
5929 while (btf_type_is_modifier(t))
5930 t = btf_type_by_id(btf, t->type);
5931 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
5932 /* accessing a scalar */
5933 return true;
5934 if (!btf_type_is_ptr(t)) {
5935 bpf_log(log,
5936 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
5937 tname, arg,
5938 __btf_name_by_offset(btf, t->name_off),
5939 btf_type_str(t));
5940 return false;
5941 }
5942
5943 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
5944 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5945 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
5946 u32 type, flag;
5947
5948 type = base_type(ctx_arg_info->reg_type);
5949 flag = type_flag(ctx_arg_info->reg_type);
5950 if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
5951 (flag & PTR_MAYBE_NULL)) {
5952 info->reg_type = ctx_arg_info->reg_type;
5953 return true;
5954 }
5955 }
5956
5957 if (t->type == 0)
5958 /* This is a pointer to void.
5959 * It is the same as scalar from the verifier safety pov.
5960 * No further pointer walking is allowed.
5961 */
5962 return true;
5963
5964 if (is_int_ptr(btf, t))
5965 return true;
5966
5967 /* this is a pointer to another type */
5968 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5969 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
5970
5971 if (ctx_arg_info->offset == off) {
5972 if (!ctx_arg_info->btf_id) {
5973 bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
5974 return false;
5975 }
5976
5977 info->reg_type = ctx_arg_info->reg_type;
5978 info->btf = btf_vmlinux;
5979 info->btf_id = ctx_arg_info->btf_id;
5980 return true;
5981 }
5982 }
5983
5984 info->reg_type = PTR_TO_BTF_ID;
5985 if (prog_args_trusted(prog))
5986 info->reg_type |= PTR_TRUSTED;
5987
5988 if (tgt_prog) {
5989 enum bpf_prog_type tgt_type;
5990
5991 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
5992 tgt_type = tgt_prog->aux->saved_dst_prog_type;
5993 else
5994 tgt_type = tgt_prog->type;
5995
5996 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
5997 if (ret > 0) {
5998 info->btf = btf_vmlinux;
5999 info->btf_id = ret;
6000 return true;
6001 } else {
6002 return false;
6003 }
6004 }
6005
6006 info->btf = btf;
6007 info->btf_id = t->type;
6008 t = btf_type_by_id(btf, t->type);
6009
6010 if (btf_type_is_type_tag(t)) {
6011 tag_value = __btf_name_by_offset(btf, t->name_off);
6012 if (strcmp(tag_value, "user") == 0)
6013 info->reg_type |= MEM_USER;
6014 if (strcmp(tag_value, "percpu") == 0)
6015 info->reg_type |= MEM_PERCPU;
6016 }
6017
6018 /* skip modifiers */
6019 while (btf_type_is_modifier(t)) {
6020 info->btf_id = t->type;
6021 t = btf_type_by_id(btf, t->type);
6022 }
6023 if (!btf_type_is_struct(t)) {
6024 bpf_log(log,
6025 "func '%s' arg%d type %s is not a struct\n",
6026 tname, arg, btf_type_str(t));
6027 return false;
6028 }
6029 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6030 tname, arg, info->btf_id, btf_type_str(t),
6031 __btf_name_by_offset(btf, t->name_off));
6032 return true;
6033}
6034
6035enum bpf_struct_walk_result {
6036 /* < 0 error */
6037 WALK_SCALAR = 0,
6038 WALK_PTR,
6039 WALK_STRUCT,
6040};
6041
6042static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6043 const struct btf_type *t, int off, int size,
6044 u32 *next_btf_id, enum bpf_type_flag *flag)
6045{
6046 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6047 const struct btf_type *mtype, *elem_type = NULL;
6048 const struct btf_member *member;
6049 const char *tname, *mname, *tag_value;
6050 u32 vlen, elem_id, mid;
6051
6052again:
6053 tname = __btf_name_by_offset(btf, t->name_off);
6054 if (!btf_type_is_struct(t)) {
6055 bpf_log(log, "Type '%s' is not a struct\n", tname);
6056 return -EINVAL;
6057 }
6058
6059 vlen = btf_type_vlen(t);
6060 if (off + size > t->size) {
6061 /* If the last element is a variable size array, we may
6062 * need to relax the rule.
6063 */
6064 struct btf_array *array_elem;
6065
6066 if (vlen == 0)
6067 goto error;
6068
6069 member = btf_type_member(t) + vlen - 1;
6070 mtype = btf_type_skip_modifiers(btf, member->type,
6071 NULL);
6072 if (!btf_type_is_array(mtype))
6073 goto error;
6074
6075 array_elem = (struct btf_array *)(mtype + 1);
6076 if (array_elem->nelems != 0)
6077 goto error;
6078
6079 moff = __btf_member_bit_offset(t, member) / 8;
6080 if (off < moff)
6081 goto error;
6082
6083 /* Only allow structure for now, can be relaxed for
6084 * other types later.
6085 */
6086 t = btf_type_skip_modifiers(btf, array_elem->type,
6087 NULL);
6088 if (!btf_type_is_struct(t))
6089 goto error;
6090
6091 off = (off - moff) % t->size;
6092 goto again;
6093
6094error:
6095 bpf_log(log, "access beyond struct %s at off %u size %u\n",
6096 tname, off, size);
6097 return -EACCES;
6098 }
6099
6100 for_each_member(i, t, member) {
6101 /* offset of the field in bytes */
6102 moff = __btf_member_bit_offset(t, member) / 8;
6103 if (off + size <= moff)
6104 /* won't find anything, field is already too far */
6105 break;
6106
6107 if (__btf_member_bitfield_size(t, member)) {
6108 u32 end_bit = __btf_member_bit_offset(t, member) +
6109 __btf_member_bitfield_size(t, member);
6110
6111 /* off <= moff instead of off == moff because clang
6112 * does not generate a BTF member for anonymous
6113 * bitfield like the ":16" here:
6114 * struct {
6115 * int :16;
6116 * int x:8;
6117 * };
6118 */
6119 if (off <= moff &&
6120 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6121 return WALK_SCALAR;
6122
6123 /* off may be accessing a following member
6124 *
6125 * or
6126 *
6127 * Doing partial access at either end of this
6128 * bitfield. Continue on this case also to
6129 * treat it as not accessing this bitfield
6130 * and eventually error out as field not
6131 * found to keep it simple.
6132 * It could be relaxed if there was a legit
6133 * partial access case later.
6134 */
6135 continue;
6136 }
6137
6138 /* In case of "off" is pointing to holes of a struct */
6139 if (off < moff)
6140 break;
6141
6142 /* type of the field */
6143 mid = member->type;
6144 mtype = btf_type_by_id(btf, member->type);
6145 mname = __btf_name_by_offset(btf, member->name_off);
6146
6147 mtype = __btf_resolve_size(btf, mtype, &msize,
6148 &elem_type, &elem_id, &total_nelems,
6149 &mid);
6150 if (IS_ERR(mtype)) {
6151 bpf_log(log, "field %s doesn't have size\n", mname);
6152 return -EFAULT;
6153 }
6154
6155 mtrue_end = moff + msize;
6156 if (off >= mtrue_end)
6157 /* no overlap with member, keep iterating */
6158 continue;
6159
6160 if (btf_type_is_array(mtype)) {
6161 u32 elem_idx;
6162
6163 /* __btf_resolve_size() above helps to
6164 * linearize a multi-dimensional array.
6165 *
6166 * The logic here is treating an array
6167 * in a struct as the following way:
6168 *
6169 * struct outer {
6170 * struct inner array[2][2];
6171 * };
6172 *
6173 * looks like:
6174 *
6175 * struct outer {
6176 * struct inner array_elem0;
6177 * struct inner array_elem1;
6178 * struct inner array_elem2;
6179 * struct inner array_elem3;
6180 * };
6181 *
6182 * When accessing outer->array[1][0], it moves
6183 * moff to "array_elem2", set mtype to
6184 * "struct inner", and msize also becomes
6185 * sizeof(struct inner). Then most of the
6186 * remaining logic will fall through without
6187 * caring the current member is an array or
6188 * not.
6189 *
6190 * Unlike mtype/msize/moff, mtrue_end does not
6191 * change. The naming difference ("_true") tells
6192 * that it is not always corresponding to
6193 * the current mtype/msize/moff.
6194 * It is the true end of the current
6195 * member (i.e. array in this case). That
6196 * will allow an int array to be accessed like
6197 * a scratch space,
6198 * i.e. allow access beyond the size of
6199 * the array's element as long as it is
6200 * within the mtrue_end boundary.
6201 */
6202
6203 /* skip empty array */
6204 if (moff == mtrue_end)
6205 continue;
6206
6207 msize /= total_nelems;
6208 elem_idx = (off - moff) / msize;
6209 moff += elem_idx * msize;
6210 mtype = elem_type;
6211 mid = elem_id;
6212 }
6213
6214 /* the 'off' we're looking for is either equal to start
6215 * of this field or inside of this struct
6216 */
6217 if (btf_type_is_struct(mtype)) {
6218 /* our field must be inside that union or struct */
6219 t = mtype;
6220
6221 /* return if the offset matches the member offset */
6222 if (off == moff) {
6223 *next_btf_id = mid;
6224 return WALK_STRUCT;
6225 }
6226
6227 /* adjust offset we're looking for */
6228 off -= moff;
6229 goto again;
6230 }
6231
6232 if (btf_type_is_ptr(mtype)) {
6233 const struct btf_type *stype, *t;
6234 enum bpf_type_flag tmp_flag = 0;
6235 u32 id;
6236
6237 if (msize != size || off != moff) {
6238 bpf_log(log,
6239 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6240 mname, moff, tname, off, size);
6241 return -EACCES;
6242 }
6243
6244 /* check type tag */
6245 t = btf_type_by_id(btf, mtype->type);
6246 if (btf_type_is_type_tag(t)) {
6247 tag_value = __btf_name_by_offset(btf, t->name_off);
6248 /* check __user tag */
6249 if (strcmp(tag_value, "user") == 0)
6250 tmp_flag = MEM_USER;
6251 /* check __percpu tag */
6252 if (strcmp(tag_value, "percpu") == 0)
6253 tmp_flag = MEM_PERCPU;
6254 /* check __rcu tag */
6255 if (strcmp(tag_value, "rcu") == 0)
6256 tmp_flag = MEM_RCU;
6257 }
6258
6259 stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6260 if (btf_type_is_struct(stype)) {
6261 *next_btf_id = id;
6262 *flag = tmp_flag;
6263 return WALK_PTR;
6264 }
6265 }
6266
6267 /* Allow more flexible access within an int as long as
6268 * it is within mtrue_end.
6269 * Since mtrue_end could be the end of an array,
6270 * that also allows using an array of int as a scratch
6271 * space. e.g. skb->cb[].
6272 */
6273 if (off + size > mtrue_end) {
6274 bpf_log(log,
6275 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6276 mname, mtrue_end, tname, off, size);
6277 return -EACCES;
6278 }
6279
6280 return WALK_SCALAR;
6281 }
6282 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6283 return -EINVAL;
6284}
6285
6286int btf_struct_access(struct bpf_verifier_log *log,
6287 const struct bpf_reg_state *reg,
6288 int off, int size, enum bpf_access_type atype __maybe_unused,
6289 u32 *next_btf_id, enum bpf_type_flag *flag)
6290{
6291 const struct btf *btf = reg->btf;
6292 enum bpf_type_flag tmp_flag = 0;
6293 const struct btf_type *t;
6294 u32 id = reg->btf_id;
6295 int err;
6296
6297 while (type_is_alloc(reg->type)) {
6298 struct btf_struct_meta *meta;
6299 struct btf_record *rec;
6300 int i;
6301
6302 meta = btf_find_struct_meta(btf, id);
6303 if (!meta)
6304 break;
6305 rec = meta->record;
6306 for (i = 0; i < rec->cnt; i++) {
6307 struct btf_field *field = &rec->fields[i];
6308 u32 offset = field->offset;
6309 if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
6310 bpf_log(log,
6311 "direct access to %s is disallowed\n",
6312 btf_field_type_name(field->type));
6313 return -EACCES;
6314 }
6315 }
6316 break;
6317 }
6318
6319 t = btf_type_by_id(btf, id);
6320 do {
6321 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag);
6322
6323 switch (err) {
6324 case WALK_PTR:
6325 /* For local types, the destination register cannot
6326 * become a pointer again.
6327 */
6328 if (type_is_alloc(reg->type))
6329 return SCALAR_VALUE;
6330 /* If we found the pointer or scalar on t+off,
6331 * we're done.
6332 */
6333 *next_btf_id = id;
6334 *flag = tmp_flag;
6335 return PTR_TO_BTF_ID;
6336 case WALK_SCALAR:
6337 return SCALAR_VALUE;
6338 case WALK_STRUCT:
6339 /* We found nested struct, so continue the search
6340 * by diving in it. At this point the offset is
6341 * aligned with the new type, so set it to 0.
6342 */
6343 t = btf_type_by_id(btf, id);
6344 off = 0;
6345 break;
6346 default:
6347 /* It's either error or unknown return value..
6348 * scream and leave.
6349 */
6350 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6351 return -EINVAL;
6352 return err;
6353 }
6354 } while (t);
6355
6356 return -EINVAL;
6357}
6358
6359/* Check that two BTF types, each specified as an BTF object + id, are exactly
6360 * the same. Trivial ID check is not enough due to module BTFs, because we can
6361 * end up with two different module BTFs, but IDs point to the common type in
6362 * vmlinux BTF.
6363 */
6364bool btf_types_are_same(const struct btf *btf1, u32 id1,
6365 const struct btf *btf2, u32 id2)
6366{
6367 if (id1 != id2)
6368 return false;
6369 if (btf1 == btf2)
6370 return true;
6371 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6372}
6373
6374bool btf_struct_ids_match(struct bpf_verifier_log *log,
6375 const struct btf *btf, u32 id, int off,
6376 const struct btf *need_btf, u32 need_type_id,
6377 bool strict)
6378{
6379 const struct btf_type *type;
6380 enum bpf_type_flag flag;
6381 int err;
6382
6383 /* Are we already done? */
6384 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
6385 return true;
6386 /* In case of strict type match, we do not walk struct, the top level
6387 * type match must succeed. When strict is true, off should have already
6388 * been 0.
6389 */
6390 if (strict)
6391 return false;
6392again:
6393 type = btf_type_by_id(btf, id);
6394 if (!type)
6395 return false;
6396 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag);
6397 if (err != WALK_STRUCT)
6398 return false;
6399
6400 /* We found nested struct object. If it matches
6401 * the requested ID, we're done. Otherwise let's
6402 * continue the search with offset 0 in the new
6403 * type.
6404 */
6405 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
6406 off = 0;
6407 goto again;
6408 }
6409
6410 return true;
6411}
6412
6413static int __get_type_size(struct btf *btf, u32 btf_id,
6414 const struct btf_type **ret_type)
6415{
6416 const struct btf_type *t;
6417
6418 *ret_type = btf_type_by_id(btf, 0);
6419 if (!btf_id)
6420 /* void */
6421 return 0;
6422 t = btf_type_by_id(btf, btf_id);
6423 while (t && btf_type_is_modifier(t))
6424 t = btf_type_by_id(btf, t->type);
6425 if (!t)
6426 return -EINVAL;
6427 *ret_type = t;
6428 if (btf_type_is_ptr(t))
6429 /* kernel size of pointer. Not BPF's size of pointer*/
6430 return sizeof(void *);
6431 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6432 return t->size;
6433 return -EINVAL;
6434}
6435
6436int btf_distill_func_proto(struct bpf_verifier_log *log,
6437 struct btf *btf,
6438 const struct btf_type *func,
6439 const char *tname,
6440 struct btf_func_model *m)
6441{
6442 const struct btf_param *args;
6443 const struct btf_type *t;
6444 u32 i, nargs;
6445 int ret;
6446
6447 if (!func) {
6448 /* BTF function prototype doesn't match the verifier types.
6449 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
6450 */
6451 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6452 m->arg_size[i] = 8;
6453 m->arg_flags[i] = 0;
6454 }
6455 m->ret_size = 8;
6456 m->nr_args = MAX_BPF_FUNC_REG_ARGS;
6457 return 0;
6458 }
6459 args = (const struct btf_param *)(func + 1);
6460 nargs = btf_type_vlen(func);
6461 if (nargs > MAX_BPF_FUNC_ARGS) {
6462 bpf_log(log,
6463 "The function %s has %d arguments. Too many.\n",
6464 tname, nargs);
6465 return -EINVAL;
6466 }
6467 ret = __get_type_size(btf, func->type, &t);
6468 if (ret < 0 || __btf_type_is_struct(t)) {
6469 bpf_log(log,
6470 "The function %s return type %s is unsupported.\n",
6471 tname, btf_type_str(t));
6472 return -EINVAL;
6473 }
6474 m->ret_size = ret;
6475
6476 for (i = 0; i < nargs; i++) {
6477 if (i == nargs - 1 && args[i].type == 0) {
6478 bpf_log(log,
6479 "The function %s with variable args is unsupported.\n",
6480 tname);
6481 return -EINVAL;
6482 }
6483 ret = __get_type_size(btf, args[i].type, &t);
6484
6485 /* No support of struct argument size greater than 16 bytes */
6486 if (ret < 0 || ret > 16) {
6487 bpf_log(log,
6488 "The function %s arg%d type %s is unsupported.\n",
6489 tname, i, btf_type_str(t));
6490 return -EINVAL;
6491 }
6492 if (ret == 0) {
6493 bpf_log(log,
6494 "The function %s has malformed void argument.\n",
6495 tname);
6496 return -EINVAL;
6497 }
6498 m->arg_size[i] = ret;
6499 m->arg_flags[i] = __btf_type_is_struct(t) ? BTF_FMODEL_STRUCT_ARG : 0;
6500 }
6501 m->nr_args = nargs;
6502 return 0;
6503}
6504
6505/* Compare BTFs of two functions assuming only scalars and pointers to context.
6506 * t1 points to BTF_KIND_FUNC in btf1
6507 * t2 points to BTF_KIND_FUNC in btf2
6508 * Returns:
6509 * EINVAL - function prototype mismatch
6510 * EFAULT - verifier bug
6511 * 0 - 99% match. The last 1% is validated by the verifier.
6512 */
6513static int btf_check_func_type_match(struct bpf_verifier_log *log,
6514 struct btf *btf1, const struct btf_type *t1,
6515 struct btf *btf2, const struct btf_type *t2)
6516{
6517 const struct btf_param *args1, *args2;
6518 const char *fn1, *fn2, *s1, *s2;
6519 u32 nargs1, nargs2, i;
6520
6521 fn1 = btf_name_by_offset(btf1, t1->name_off);
6522 fn2 = btf_name_by_offset(btf2, t2->name_off);
6523
6524 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6525 bpf_log(log, "%s() is not a global function\n", fn1);
6526 return -EINVAL;
6527 }
6528 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6529 bpf_log(log, "%s() is not a global function\n", fn2);
6530 return -EINVAL;
6531 }
6532
6533 t1 = btf_type_by_id(btf1, t1->type);
6534 if (!t1 || !btf_type_is_func_proto(t1))
6535 return -EFAULT;
6536 t2 = btf_type_by_id(btf2, t2->type);
6537 if (!t2 || !btf_type_is_func_proto(t2))
6538 return -EFAULT;
6539
6540 args1 = (const struct btf_param *)(t1 + 1);
6541 nargs1 = btf_type_vlen(t1);
6542 args2 = (const struct btf_param *)(t2 + 1);
6543 nargs2 = btf_type_vlen(t2);
6544
6545 if (nargs1 != nargs2) {
6546 bpf_log(log, "%s() has %d args while %s() has %d args\n",
6547 fn1, nargs1, fn2, nargs2);
6548 return -EINVAL;
6549 }
6550
6551 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6552 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6553 if (t1->info != t2->info) {
6554 bpf_log(log,
6555 "Return type %s of %s() doesn't match type %s of %s()\n",
6556 btf_type_str(t1), fn1,
6557 btf_type_str(t2), fn2);
6558 return -EINVAL;
6559 }
6560
6561 for (i = 0; i < nargs1; i++) {
6562 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6563 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6564
6565 if (t1->info != t2->info) {
6566 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6567 i, fn1, btf_type_str(t1),
6568 fn2, btf_type_str(t2));
6569 return -EINVAL;
6570 }
6571 if (btf_type_has_size(t1) && t1->size != t2->size) {
6572 bpf_log(log,
6573 "arg%d in %s() has size %d while %s() has %d\n",
6574 i, fn1, t1->size,
6575 fn2, t2->size);
6576 return -EINVAL;
6577 }
6578
6579 /* global functions are validated with scalars and pointers
6580 * to context only. And only global functions can be replaced.
6581 * Hence type check only those types.
6582 */
6583 if (btf_type_is_int(t1) || btf_is_any_enum(t1))
6584 continue;
6585 if (!btf_type_is_ptr(t1)) {
6586 bpf_log(log,
6587 "arg%d in %s() has unrecognized type\n",
6588 i, fn1);
6589 return -EINVAL;
6590 }
6591 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6592 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6593 if (!btf_type_is_struct(t1)) {
6594 bpf_log(log,
6595 "arg%d in %s() is not a pointer to context\n",
6596 i, fn1);
6597 return -EINVAL;
6598 }
6599 if (!btf_type_is_struct(t2)) {
6600 bpf_log(log,
6601 "arg%d in %s() is not a pointer to context\n",
6602 i, fn2);
6603 return -EINVAL;
6604 }
6605 /* This is an optional check to make program writing easier.
6606 * Compare names of structs and report an error to the user.
6607 * btf_prepare_func_args() already checked that t2 struct
6608 * is a context type. btf_prepare_func_args() will check
6609 * later that t1 struct is a context type as well.
6610 */
6611 s1 = btf_name_by_offset(btf1, t1->name_off);
6612 s2 = btf_name_by_offset(btf2, t2->name_off);
6613 if (strcmp(s1, s2)) {
6614 bpf_log(log,
6615 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6616 i, fn1, s1, fn2, s2);
6617 return -EINVAL;
6618 }
6619 }
6620 return 0;
6621}
6622
6623/* Compare BTFs of given program with BTF of target program */
6624int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
6625 struct btf *btf2, const struct btf_type *t2)
6626{
6627 struct btf *btf1 = prog->aux->btf;
6628 const struct btf_type *t1;
6629 u32 btf_id = 0;
6630
6631 if (!prog->aux->func_info) {
6632 bpf_log(log, "Program extension requires BTF\n");
6633 return -EINVAL;
6634 }
6635
6636 btf_id = prog->aux->func_info[0].type_id;
6637 if (!btf_id)
6638 return -EFAULT;
6639
6640 t1 = btf_type_by_id(btf1, btf_id);
6641 if (!t1 || !btf_type_is_func(t1))
6642 return -EFAULT;
6643
6644 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
6645}
6646
6647static int btf_check_func_arg_match(struct bpf_verifier_env *env,
6648 const struct btf *btf, u32 func_id,
6649 struct bpf_reg_state *regs,
6650 bool ptr_to_mem_ok,
6651 bool processing_call)
6652{
6653 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
6654 struct bpf_verifier_log *log = &env->log;
6655 const char *func_name, *ref_tname;
6656 const struct btf_type *t, *ref_t;
6657 const struct btf_param *args;
6658 u32 i, nargs, ref_id;
6659 int ret;
6660
6661 t = btf_type_by_id(btf, func_id);
6662 if (!t || !btf_type_is_func(t)) {
6663 /* These checks were already done by the verifier while loading
6664 * struct bpf_func_info or in add_kfunc_call().
6665 */
6666 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
6667 func_id);
6668 return -EFAULT;
6669 }
6670 func_name = btf_name_by_offset(btf, t->name_off);
6671
6672 t = btf_type_by_id(btf, t->type);
6673 if (!t || !btf_type_is_func_proto(t)) {
6674 bpf_log(log, "Invalid BTF of func %s\n", func_name);
6675 return -EFAULT;
6676 }
6677 args = (const struct btf_param *)(t + 1);
6678 nargs = btf_type_vlen(t);
6679 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6680 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
6681 MAX_BPF_FUNC_REG_ARGS);
6682 return -EINVAL;
6683 }
6684
6685 /* check that BTF function arguments match actual types that the
6686 * verifier sees.
6687 */
6688 for (i = 0; i < nargs; i++) {
6689 enum bpf_arg_type arg_type = ARG_DONTCARE;
6690 u32 regno = i + 1;
6691 struct bpf_reg_state *reg = ®s[regno];
6692
6693 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6694 if (btf_type_is_scalar(t)) {
6695 if (reg->type == SCALAR_VALUE)
6696 continue;
6697 bpf_log(log, "R%d is not a scalar\n", regno);
6698 return -EINVAL;
6699 }
6700
6701 if (!btf_type_is_ptr(t)) {
6702 bpf_log(log, "Unrecognized arg#%d type %s\n",
6703 i, btf_type_str(t));
6704 return -EINVAL;
6705 }
6706
6707 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
6708 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
6709
6710 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
6711 if (ret < 0)
6712 return ret;
6713
6714 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6715 /* If function expects ctx type in BTF check that caller
6716 * is passing PTR_TO_CTX.
6717 */
6718 if (reg->type != PTR_TO_CTX) {
6719 bpf_log(log,
6720 "arg#%d expected pointer to ctx, but got %s\n",
6721 i, btf_type_str(t));
6722 return -EINVAL;
6723 }
6724 } else if (ptr_to_mem_ok && processing_call) {
6725 const struct btf_type *resolve_ret;
6726 u32 type_size;
6727
6728 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
6729 if (IS_ERR(resolve_ret)) {
6730 bpf_log(log,
6731 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6732 i, btf_type_str(ref_t), ref_tname,
6733 PTR_ERR(resolve_ret));
6734 return -EINVAL;
6735 }
6736
6737 if (check_mem_reg(env, reg, regno, type_size))
6738 return -EINVAL;
6739 } else {
6740 bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i,
6741 func_name, func_id);
6742 return -EINVAL;
6743 }
6744 }
6745
6746 return 0;
6747}
6748
6749/* Compare BTF of a function declaration with given bpf_reg_state.
6750 * Returns:
6751 * EFAULT - there is a verifier bug. Abort verification.
6752 * EINVAL - there is a type mismatch or BTF is not available.
6753 * 0 - BTF matches with what bpf_reg_state expects.
6754 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6755 */
6756int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
6757 struct bpf_reg_state *regs)
6758{
6759 struct bpf_prog *prog = env->prog;
6760 struct btf *btf = prog->aux->btf;
6761 bool is_global;
6762 u32 btf_id;
6763 int err;
6764
6765 if (!prog->aux->func_info)
6766 return -EINVAL;
6767
6768 btf_id = prog->aux->func_info[subprog].type_id;
6769 if (!btf_id)
6770 return -EFAULT;
6771
6772 if (prog->aux->func_info_aux[subprog].unreliable)
6773 return -EINVAL;
6774
6775 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6776 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false);
6777
6778 /* Compiler optimizations can remove arguments from static functions
6779 * or mismatched type can be passed into a global function.
6780 * In such cases mark the function as unreliable from BTF point of view.
6781 */
6782 if (err)
6783 prog->aux->func_info_aux[subprog].unreliable = true;
6784 return err;
6785}
6786
6787/* Compare BTF of a function call with given bpf_reg_state.
6788 * Returns:
6789 * EFAULT - there is a verifier bug. Abort verification.
6790 * EINVAL - there is a type mismatch or BTF is not available.
6791 * 0 - BTF matches with what bpf_reg_state expects.
6792 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6793 *
6794 * NOTE: the code is duplicated from btf_check_subprog_arg_match()
6795 * because btf_check_func_arg_match() is still doing both. Once that
6796 * function is split in 2, we can call from here btf_check_subprog_arg_match()
6797 * first, and then treat the calling part in a new code path.
6798 */
6799int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
6800 struct bpf_reg_state *regs)
6801{
6802 struct bpf_prog *prog = env->prog;
6803 struct btf *btf = prog->aux->btf;
6804 bool is_global;
6805 u32 btf_id;
6806 int err;
6807
6808 if (!prog->aux->func_info)
6809 return -EINVAL;
6810
6811 btf_id = prog->aux->func_info[subprog].type_id;
6812 if (!btf_id)
6813 return -EFAULT;
6814
6815 if (prog->aux->func_info_aux[subprog].unreliable)
6816 return -EINVAL;
6817
6818 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6819 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true);
6820
6821 /* Compiler optimizations can remove arguments from static functions
6822 * or mismatched type can be passed into a global function.
6823 * In such cases mark the function as unreliable from BTF point of view.
6824 */
6825 if (err)
6826 prog->aux->func_info_aux[subprog].unreliable = true;
6827 return err;
6828}
6829
6830/* Convert BTF of a function into bpf_reg_state if possible
6831 * Returns:
6832 * EFAULT - there is a verifier bug. Abort verification.
6833 * EINVAL - cannot convert BTF.
6834 * 0 - Successfully converted BTF into bpf_reg_state
6835 * (either PTR_TO_CTX or SCALAR_VALUE).
6836 */
6837int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
6838 struct bpf_reg_state *regs)
6839{
6840 struct bpf_verifier_log *log = &env->log;
6841 struct bpf_prog *prog = env->prog;
6842 enum bpf_prog_type prog_type = prog->type;
6843 struct btf *btf = prog->aux->btf;
6844 const struct btf_param *args;
6845 const struct btf_type *t, *ref_t;
6846 u32 i, nargs, btf_id;
6847 const char *tname;
6848
6849 if (!prog->aux->func_info ||
6850 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
6851 bpf_log(log, "Verifier bug\n");
6852 return -EFAULT;
6853 }
6854
6855 btf_id = prog->aux->func_info[subprog].type_id;
6856 if (!btf_id) {
6857 bpf_log(log, "Global functions need valid BTF\n");
6858 return -EFAULT;
6859 }
6860
6861 t = btf_type_by_id(btf, btf_id);
6862 if (!t || !btf_type_is_func(t)) {
6863 /* These checks were already done by the verifier while loading
6864 * struct bpf_func_info
6865 */
6866 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
6867 subprog);
6868 return -EFAULT;
6869 }
6870 tname = btf_name_by_offset(btf, t->name_off);
6871
6872 if (log->level & BPF_LOG_LEVEL)
6873 bpf_log(log, "Validating %s() func#%d...\n",
6874 tname, subprog);
6875
6876 if (prog->aux->func_info_aux[subprog].unreliable) {
6877 bpf_log(log, "Verifier bug in function %s()\n", tname);
6878 return -EFAULT;
6879 }
6880 if (prog_type == BPF_PROG_TYPE_EXT)
6881 prog_type = prog->aux->dst_prog->type;
6882
6883 t = btf_type_by_id(btf, t->type);
6884 if (!t || !btf_type_is_func_proto(t)) {
6885 bpf_log(log, "Invalid type of function %s()\n", tname);
6886 return -EFAULT;
6887 }
6888 args = (const struct btf_param *)(t + 1);
6889 nargs = btf_type_vlen(t);
6890 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6891 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
6892 tname, nargs, MAX_BPF_FUNC_REG_ARGS);
6893 return -EINVAL;
6894 }
6895 /* check that function returns int */
6896 t = btf_type_by_id(btf, t->type);
6897 while (btf_type_is_modifier(t))
6898 t = btf_type_by_id(btf, t->type);
6899 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
6900 bpf_log(log,
6901 "Global function %s() doesn't return scalar. Only those are supported.\n",
6902 tname);
6903 return -EINVAL;
6904 }
6905 /* Convert BTF function arguments into verifier types.
6906 * Only PTR_TO_CTX and SCALAR are supported atm.
6907 */
6908 for (i = 0; i < nargs; i++) {
6909 struct bpf_reg_state *reg = ®s[i + 1];
6910
6911 t = btf_type_by_id(btf, args[i].type);
6912 while (btf_type_is_modifier(t))
6913 t = btf_type_by_id(btf, t->type);
6914 if (btf_type_is_int(t) || btf_is_any_enum(t)) {
6915 reg->type = SCALAR_VALUE;
6916 continue;
6917 }
6918 if (btf_type_is_ptr(t)) {
6919 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6920 reg->type = PTR_TO_CTX;
6921 continue;
6922 }
6923
6924 t = btf_type_skip_modifiers(btf, t->type, NULL);
6925
6926 ref_t = btf_resolve_size(btf, t, ®->mem_size);
6927 if (IS_ERR(ref_t)) {
6928 bpf_log(log,
6929 "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6930 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
6931 PTR_ERR(ref_t));
6932 return -EINVAL;
6933 }
6934
6935 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
6936 reg->id = ++env->id_gen;
6937
6938 continue;
6939 }
6940 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
6941 i, btf_type_str(t), tname);
6942 return -EINVAL;
6943 }
6944 return 0;
6945}
6946
6947static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
6948 struct btf_show *show)
6949{
6950 const struct btf_type *t = btf_type_by_id(btf, type_id);
6951
6952 show->btf = btf;
6953 memset(&show->state, 0, sizeof(show->state));
6954 memset(&show->obj, 0, sizeof(show->obj));
6955
6956 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
6957}
6958
6959static void btf_seq_show(struct btf_show *show, const char *fmt,
6960 va_list args)
6961{
6962 seq_vprintf((struct seq_file *)show->target, fmt, args);
6963}
6964
6965int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
6966 void *obj, struct seq_file *m, u64 flags)
6967{
6968 struct btf_show sseq;
6969
6970 sseq.target = m;
6971 sseq.showfn = btf_seq_show;
6972 sseq.flags = flags;
6973
6974 btf_type_show(btf, type_id, obj, &sseq);
6975
6976 return sseq.state.status;
6977}
6978
6979void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
6980 struct seq_file *m)
6981{
6982 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
6983 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
6984 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
6985}
6986
6987struct btf_show_snprintf {
6988 struct btf_show show;
6989 int len_left; /* space left in string */
6990 int len; /* length we would have written */
6991};
6992
6993static void btf_snprintf_show(struct btf_show *show, const char *fmt,
6994 va_list args)
6995{
6996 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
6997 int len;
6998
6999 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7000
7001 if (len < 0) {
7002 ssnprintf->len_left = 0;
7003 ssnprintf->len = len;
7004 } else if (len >= ssnprintf->len_left) {
7005 /* no space, drive on to get length we would have written */
7006 ssnprintf->len_left = 0;
7007 ssnprintf->len += len;
7008 } else {
7009 ssnprintf->len_left -= len;
7010 ssnprintf->len += len;
7011 show->target += len;
7012 }
7013}
7014
7015int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7016 char *buf, int len, u64 flags)
7017{
7018 struct btf_show_snprintf ssnprintf;
7019
7020 ssnprintf.show.target = buf;
7021 ssnprintf.show.flags = flags;
7022 ssnprintf.show.showfn = btf_snprintf_show;
7023 ssnprintf.len_left = len;
7024 ssnprintf.len = 0;
7025
7026 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7027
7028 /* If we encountered an error, return it. */
7029 if (ssnprintf.show.state.status)
7030 return ssnprintf.show.state.status;
7031
7032 /* Otherwise return length we would have written */
7033 return ssnprintf.len;
7034}
7035
7036#ifdef CONFIG_PROC_FS
7037static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7038{
7039 const struct btf *btf = filp->private_data;
7040
7041 seq_printf(m, "btf_id:\t%u\n", btf->id);
7042}
7043#endif
7044
7045static int btf_release(struct inode *inode, struct file *filp)
7046{
7047 btf_put(filp->private_data);
7048 return 0;
7049}
7050
7051const struct file_operations btf_fops = {
7052#ifdef CONFIG_PROC_FS
7053 .show_fdinfo = bpf_btf_show_fdinfo,
7054#endif
7055 .release = btf_release,
7056};
7057
7058static int __btf_new_fd(struct btf *btf)
7059{
7060 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7061}
7062
7063int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
7064{
7065 struct btf *btf;
7066 int ret;
7067
7068 btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
7069 attr->btf_size, attr->btf_log_level,
7070 u64_to_user_ptr(attr->btf_log_buf),
7071 attr->btf_log_size);
7072 if (IS_ERR(btf))
7073 return PTR_ERR(btf);
7074
7075 ret = btf_alloc_id(btf);
7076 if (ret) {
7077 btf_free(btf);
7078 return ret;
7079 }
7080
7081 /*
7082 * The BTF ID is published to the userspace.
7083 * All BTF free must go through call_rcu() from
7084 * now on (i.e. free by calling btf_put()).
7085 */
7086
7087 ret = __btf_new_fd(btf);
7088 if (ret < 0)
7089 btf_put(btf);
7090
7091 return ret;
7092}
7093
7094struct btf *btf_get_by_fd(int fd)
7095{
7096 struct btf *btf;
7097 struct fd f;
7098
7099 f = fdget(fd);
7100
7101 if (!f.file)
7102 return ERR_PTR(-EBADF);
7103
7104 if (f.file->f_op != &btf_fops) {
7105 fdput(f);
7106 return ERR_PTR(-EINVAL);
7107 }
7108
7109 btf = f.file->private_data;
7110 refcount_inc(&btf->refcnt);
7111 fdput(f);
7112
7113 return btf;
7114}
7115
7116int btf_get_info_by_fd(const struct btf *btf,
7117 const union bpf_attr *attr,
7118 union bpf_attr __user *uattr)
7119{
7120 struct bpf_btf_info __user *uinfo;
7121 struct bpf_btf_info info;
7122 u32 info_copy, btf_copy;
7123 void __user *ubtf;
7124 char __user *uname;
7125 u32 uinfo_len, uname_len, name_len;
7126 int ret = 0;
7127
7128 uinfo = u64_to_user_ptr(attr->info.info);
7129 uinfo_len = attr->info.info_len;
7130
7131 info_copy = min_t(u32, uinfo_len, sizeof(info));
7132 memset(&info, 0, sizeof(info));
7133 if (copy_from_user(&info, uinfo, info_copy))
7134 return -EFAULT;
7135
7136 info.id = btf->id;
7137 ubtf = u64_to_user_ptr(info.btf);
7138 btf_copy = min_t(u32, btf->data_size, info.btf_size);
7139 if (copy_to_user(ubtf, btf->data, btf_copy))
7140 return -EFAULT;
7141 info.btf_size = btf->data_size;
7142
7143 info.kernel_btf = btf->kernel_btf;
7144
7145 uname = u64_to_user_ptr(info.name);
7146 uname_len = info.name_len;
7147 if (!uname ^ !uname_len)
7148 return -EINVAL;
7149
7150 name_len = strlen(btf->name);
7151 info.name_len = name_len;
7152
7153 if (uname) {
7154 if (uname_len >= name_len + 1) {
7155 if (copy_to_user(uname, btf->name, name_len + 1))
7156 return -EFAULT;
7157 } else {
7158 char zero = '\0';
7159
7160 if (copy_to_user(uname, btf->name, uname_len - 1))
7161 return -EFAULT;
7162 if (put_user(zero, uname + uname_len - 1))
7163 return -EFAULT;
7164 /* let user-space know about too short buffer */
7165 ret = -ENOSPC;
7166 }
7167 }
7168
7169 if (copy_to_user(uinfo, &info, info_copy) ||
7170 put_user(info_copy, &uattr->info.info_len))
7171 return -EFAULT;
7172
7173 return ret;
7174}
7175
7176int btf_get_fd_by_id(u32 id)
7177{
7178 struct btf *btf;
7179 int fd;
7180
7181 rcu_read_lock();
7182 btf = idr_find(&btf_idr, id);
7183 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7184 btf = ERR_PTR(-ENOENT);
7185 rcu_read_unlock();
7186
7187 if (IS_ERR(btf))
7188 return PTR_ERR(btf);
7189
7190 fd = __btf_new_fd(btf);
7191 if (fd < 0)
7192 btf_put(btf);
7193
7194 return fd;
7195}
7196
7197u32 btf_obj_id(const struct btf *btf)
7198{
7199 return btf->id;
7200}
7201
7202bool btf_is_kernel(const struct btf *btf)
7203{
7204 return btf->kernel_btf;
7205}
7206
7207bool btf_is_module(const struct btf *btf)
7208{
7209 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7210}
7211
7212enum {
7213 BTF_MODULE_F_LIVE = (1 << 0),
7214};
7215
7216#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7217struct btf_module {
7218 struct list_head list;
7219 struct module *module;
7220 struct btf *btf;
7221 struct bin_attribute *sysfs_attr;
7222 int flags;
7223};
7224
7225static LIST_HEAD(btf_modules);
7226static DEFINE_MUTEX(btf_module_mutex);
7227
7228static ssize_t
7229btf_module_read(struct file *file, struct kobject *kobj,
7230 struct bin_attribute *bin_attr,
7231 char *buf, loff_t off, size_t len)
7232{
7233 const struct btf *btf = bin_attr->private;
7234
7235 memcpy(buf, btf->data + off, len);
7236 return len;
7237}
7238
7239static void purge_cand_cache(struct btf *btf);
7240
7241static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7242 void *module)
7243{
7244 struct btf_module *btf_mod, *tmp;
7245 struct module *mod = module;
7246 struct btf *btf;
7247 int err = 0;
7248
7249 if (mod->btf_data_size == 0 ||
7250 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7251 op != MODULE_STATE_GOING))
7252 goto out;
7253
7254 switch (op) {
7255 case MODULE_STATE_COMING:
7256 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7257 if (!btf_mod) {
7258 err = -ENOMEM;
7259 goto out;
7260 }
7261 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7262 if (IS_ERR(btf)) {
7263 pr_warn("failed to validate module [%s] BTF: %ld\n",
7264 mod->name, PTR_ERR(btf));
7265 kfree(btf_mod);
7266 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
7267 err = PTR_ERR(btf);
7268 goto out;
7269 }
7270 err = btf_alloc_id(btf);
7271 if (err) {
7272 btf_free(btf);
7273 kfree(btf_mod);
7274 goto out;
7275 }
7276
7277 purge_cand_cache(NULL);
7278 mutex_lock(&btf_module_mutex);
7279 btf_mod->module = module;
7280 btf_mod->btf = btf;
7281 list_add(&btf_mod->list, &btf_modules);
7282 mutex_unlock(&btf_module_mutex);
7283
7284 if (IS_ENABLED(CONFIG_SYSFS)) {
7285 struct bin_attribute *attr;
7286
7287 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7288 if (!attr)
7289 goto out;
7290
7291 sysfs_bin_attr_init(attr);
7292 attr->attr.name = btf->name;
7293 attr->attr.mode = 0444;
7294 attr->size = btf->data_size;
7295 attr->private = btf;
7296 attr->read = btf_module_read;
7297
7298 err = sysfs_create_bin_file(btf_kobj, attr);
7299 if (err) {
7300 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7301 mod->name, err);
7302 kfree(attr);
7303 err = 0;
7304 goto out;
7305 }
7306
7307 btf_mod->sysfs_attr = attr;
7308 }
7309
7310 break;
7311 case MODULE_STATE_LIVE:
7312 mutex_lock(&btf_module_mutex);
7313 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7314 if (btf_mod->module != module)
7315 continue;
7316
7317 btf_mod->flags |= BTF_MODULE_F_LIVE;
7318 break;
7319 }
7320 mutex_unlock(&btf_module_mutex);
7321 break;
7322 case MODULE_STATE_GOING:
7323 mutex_lock(&btf_module_mutex);
7324 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7325 if (btf_mod->module != module)
7326 continue;
7327
7328 list_del(&btf_mod->list);
7329 if (btf_mod->sysfs_attr)
7330 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7331 purge_cand_cache(btf_mod->btf);
7332 btf_put(btf_mod->btf);
7333 kfree(btf_mod->sysfs_attr);
7334 kfree(btf_mod);
7335 break;
7336 }
7337 mutex_unlock(&btf_module_mutex);
7338 break;
7339 }
7340out:
7341 return notifier_from_errno(err);
7342}
7343
7344static struct notifier_block btf_module_nb = {
7345 .notifier_call = btf_module_notify,
7346};
7347
7348static int __init btf_module_init(void)
7349{
7350 register_module_notifier(&btf_module_nb);
7351 return 0;
7352}
7353
7354fs_initcall(btf_module_init);
7355#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7356
7357struct module *btf_try_get_module(const struct btf *btf)
7358{
7359 struct module *res = NULL;
7360#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7361 struct btf_module *btf_mod, *tmp;
7362
7363 mutex_lock(&btf_module_mutex);
7364 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7365 if (btf_mod->btf != btf)
7366 continue;
7367
7368 /* We must only consider module whose __init routine has
7369 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7370 * which is set from the notifier callback for
7371 * MODULE_STATE_LIVE.
7372 */
7373 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7374 res = btf_mod->module;
7375
7376 break;
7377 }
7378 mutex_unlock(&btf_module_mutex);
7379#endif
7380
7381 return res;
7382}
7383
7384/* Returns struct btf corresponding to the struct module.
7385 * This function can return NULL or ERR_PTR.
7386 */
7387static struct btf *btf_get_module_btf(const struct module *module)
7388{
7389#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7390 struct btf_module *btf_mod, *tmp;
7391#endif
7392 struct btf *btf = NULL;
7393
7394 if (!module) {
7395 btf = bpf_get_btf_vmlinux();
7396 if (!IS_ERR_OR_NULL(btf))
7397 btf_get(btf);
7398 return btf;
7399 }
7400
7401#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7402 mutex_lock(&btf_module_mutex);
7403 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7404 if (btf_mod->module != module)
7405 continue;
7406
7407 btf_get(btf_mod->btf);
7408 btf = btf_mod->btf;
7409 break;
7410 }
7411 mutex_unlock(&btf_module_mutex);
7412#endif
7413
7414 return btf;
7415}
7416
7417BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7418{
7419 struct btf *btf = NULL;
7420 int btf_obj_fd = 0;
7421 long ret;
7422
7423 if (flags)
7424 return -EINVAL;
7425
7426 if (name_sz <= 1 || name[name_sz - 1])
7427 return -EINVAL;
7428
7429 ret = bpf_find_btf_id(name, kind, &btf);
7430 if (ret > 0 && btf_is_module(btf)) {
7431 btf_obj_fd = __btf_new_fd(btf);
7432 if (btf_obj_fd < 0) {
7433 btf_put(btf);
7434 return btf_obj_fd;
7435 }
7436 return ret | (((u64)btf_obj_fd) << 32);
7437 }
7438 if (ret > 0)
7439 btf_put(btf);
7440 return ret;
7441}
7442
7443const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7444 .func = bpf_btf_find_by_name_kind,
7445 .gpl_only = false,
7446 .ret_type = RET_INTEGER,
7447 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7448 .arg2_type = ARG_CONST_SIZE,
7449 .arg3_type = ARG_ANYTHING,
7450 .arg4_type = ARG_ANYTHING,
7451};
7452
7453BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7454#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7455BTF_TRACING_TYPE_xxx
7456#undef BTF_TRACING_TYPE
7457
7458/* Kernel Function (kfunc) BTF ID set registration API */
7459
7460static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7461 struct btf_id_set8 *add_set)
7462{
7463 bool vmlinux_set = !btf_is_module(btf);
7464 struct btf_kfunc_set_tab *tab;
7465 struct btf_id_set8 *set;
7466 u32 set_cnt;
7467 int ret;
7468
7469 if (hook >= BTF_KFUNC_HOOK_MAX) {
7470 ret = -EINVAL;
7471 goto end;
7472 }
7473
7474 if (!add_set->cnt)
7475 return 0;
7476
7477 tab = btf->kfunc_set_tab;
7478 if (!tab) {
7479 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7480 if (!tab)
7481 return -ENOMEM;
7482 btf->kfunc_set_tab = tab;
7483 }
7484
7485 set = tab->sets[hook];
7486 /* Warn when register_btf_kfunc_id_set is called twice for the same hook
7487 * for module sets.
7488 */
7489 if (WARN_ON_ONCE(set && !vmlinux_set)) {
7490 ret = -EINVAL;
7491 goto end;
7492 }
7493
7494 /* We don't need to allocate, concatenate, and sort module sets, because
7495 * only one is allowed per hook. Hence, we can directly assign the
7496 * pointer and return.
7497 */
7498 if (!vmlinux_set) {
7499 tab->sets[hook] = add_set;
7500 return 0;
7501 }
7502
7503 /* In case of vmlinux sets, there may be more than one set being
7504 * registered per hook. To create a unified set, we allocate a new set
7505 * and concatenate all individual sets being registered. While each set
7506 * is individually sorted, they may become unsorted when concatenated,
7507 * hence re-sorting the final set again is required to make binary
7508 * searching the set using btf_id_set8_contains function work.
7509 */
7510 set_cnt = set ? set->cnt : 0;
7511
7512 if (set_cnt > U32_MAX - add_set->cnt) {
7513 ret = -EOVERFLOW;
7514 goto end;
7515 }
7516
7517 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7518 ret = -E2BIG;
7519 goto end;
7520 }
7521
7522 /* Grow set */
7523 set = krealloc(tab->sets[hook],
7524 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
7525 GFP_KERNEL | __GFP_NOWARN);
7526 if (!set) {
7527 ret = -ENOMEM;
7528 goto end;
7529 }
7530
7531 /* For newly allocated set, initialize set->cnt to 0 */
7532 if (!tab->sets[hook])
7533 set->cnt = 0;
7534 tab->sets[hook] = set;
7535
7536 /* Concatenate the two sets */
7537 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
7538 set->cnt += add_set->cnt;
7539
7540 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
7541
7542 return 0;
7543end:
7544 btf_free_kfunc_set_tab(btf);
7545 return ret;
7546}
7547
7548static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
7549 enum btf_kfunc_hook hook,
7550 u32 kfunc_btf_id)
7551{
7552 struct btf_id_set8 *set;
7553 u32 *id;
7554
7555 if (hook >= BTF_KFUNC_HOOK_MAX)
7556 return NULL;
7557 if (!btf->kfunc_set_tab)
7558 return NULL;
7559 set = btf->kfunc_set_tab->sets[hook];
7560 if (!set)
7561 return NULL;
7562 id = btf_id_set8_contains(set, kfunc_btf_id);
7563 if (!id)
7564 return NULL;
7565 /* The flags for BTF ID are located next to it */
7566 return id + 1;
7567}
7568
7569static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7570{
7571 switch (prog_type) {
7572 case BPF_PROG_TYPE_UNSPEC:
7573 return BTF_KFUNC_HOOK_COMMON;
7574 case BPF_PROG_TYPE_XDP:
7575 return BTF_KFUNC_HOOK_XDP;
7576 case BPF_PROG_TYPE_SCHED_CLS:
7577 return BTF_KFUNC_HOOK_TC;
7578 case BPF_PROG_TYPE_STRUCT_OPS:
7579 return BTF_KFUNC_HOOK_STRUCT_OPS;
7580 case BPF_PROG_TYPE_TRACING:
7581 case BPF_PROG_TYPE_LSM:
7582 return BTF_KFUNC_HOOK_TRACING;
7583 case BPF_PROG_TYPE_SYSCALL:
7584 return BTF_KFUNC_HOOK_SYSCALL;
7585 default:
7586 return BTF_KFUNC_HOOK_MAX;
7587 }
7588}
7589
7590/* Caution:
7591 * Reference to the module (obtained using btf_try_get_module) corresponding to
7592 * the struct btf *MUST* be held when calling this function from verifier
7593 * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7594 * keeping the reference for the duration of the call provides the necessary
7595 * protection for looking up a well-formed btf->kfunc_set_tab.
7596 */
7597u32 *btf_kfunc_id_set_contains(const struct btf *btf,
7598 enum bpf_prog_type prog_type,
7599 u32 kfunc_btf_id)
7600{
7601 enum btf_kfunc_hook hook;
7602 u32 *kfunc_flags;
7603
7604 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id);
7605 if (kfunc_flags)
7606 return kfunc_flags;
7607
7608 hook = bpf_prog_type_to_kfunc_hook(prog_type);
7609 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id);
7610}
7611
7612u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id)
7613{
7614 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id);
7615}
7616
7617static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
7618 const struct btf_kfunc_id_set *kset)
7619{
7620 struct btf *btf;
7621 int ret;
7622
7623 btf = btf_get_module_btf(kset->owner);
7624 if (!btf) {
7625 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7626 pr_err("missing vmlinux BTF, cannot register kfuncs\n");
7627 return -ENOENT;
7628 }
7629 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7630 pr_err("missing module BTF, cannot register kfuncs\n");
7631 return -ENOENT;
7632 }
7633 return 0;
7634 }
7635 if (IS_ERR(btf))
7636 return PTR_ERR(btf);
7637
7638 ret = btf_populate_kfunc_set(btf, hook, kset->set);
7639 btf_put(btf);
7640 return ret;
7641}
7642
7643/* This function must be invoked only from initcalls/module init functions */
7644int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
7645 const struct btf_kfunc_id_set *kset)
7646{
7647 enum btf_kfunc_hook hook;
7648
7649 hook = bpf_prog_type_to_kfunc_hook(prog_type);
7650 return __register_btf_kfunc_id_set(hook, kset);
7651}
7652EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
7653
7654/* This function must be invoked only from initcalls/module init functions */
7655int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
7656{
7657 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
7658}
7659EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
7660
7661s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
7662{
7663 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
7664 struct btf_id_dtor_kfunc *dtor;
7665
7666 if (!tab)
7667 return -ENOENT;
7668 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
7669 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
7670 */
7671 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
7672 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
7673 if (!dtor)
7674 return -ENOENT;
7675 return dtor->kfunc_btf_id;
7676}
7677
7678static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
7679{
7680 const struct btf_type *dtor_func, *dtor_func_proto, *t;
7681 const struct btf_param *args;
7682 s32 dtor_btf_id;
7683 u32 nr_args, i;
7684
7685 for (i = 0; i < cnt; i++) {
7686 dtor_btf_id = dtors[i].kfunc_btf_id;
7687
7688 dtor_func = btf_type_by_id(btf, dtor_btf_id);
7689 if (!dtor_func || !btf_type_is_func(dtor_func))
7690 return -EINVAL;
7691
7692 dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
7693 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
7694 return -EINVAL;
7695
7696 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
7697 t = btf_type_by_id(btf, dtor_func_proto->type);
7698 if (!t || !btf_type_is_void(t))
7699 return -EINVAL;
7700
7701 nr_args = btf_type_vlen(dtor_func_proto);
7702 if (nr_args != 1)
7703 return -EINVAL;
7704 args = btf_params(dtor_func_proto);
7705 t = btf_type_by_id(btf, args[0].type);
7706 /* Allow any pointer type, as width on targets Linux supports
7707 * will be same for all pointer types (i.e. sizeof(void *))
7708 */
7709 if (!t || !btf_type_is_ptr(t))
7710 return -EINVAL;
7711 }
7712 return 0;
7713}
7714
7715/* This function must be invoked only from initcalls/module init functions */
7716int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
7717 struct module *owner)
7718{
7719 struct btf_id_dtor_kfunc_tab *tab;
7720 struct btf *btf;
7721 u32 tab_cnt;
7722 int ret;
7723
7724 btf = btf_get_module_btf(owner);
7725 if (!btf) {
7726 if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7727 pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
7728 return -ENOENT;
7729 }
7730 if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7731 pr_err("missing module BTF, cannot register dtor kfuncs\n");
7732 return -ENOENT;
7733 }
7734 return 0;
7735 }
7736 if (IS_ERR(btf))
7737 return PTR_ERR(btf);
7738
7739 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7740 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7741 ret = -E2BIG;
7742 goto end;
7743 }
7744
7745 /* Ensure that the prototype of dtor kfuncs being registered is sane */
7746 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
7747 if (ret < 0)
7748 goto end;
7749
7750 tab = btf->dtor_kfunc_tab;
7751 /* Only one call allowed for modules */
7752 if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
7753 ret = -EINVAL;
7754 goto end;
7755 }
7756
7757 tab_cnt = tab ? tab->cnt : 0;
7758 if (tab_cnt > U32_MAX - add_cnt) {
7759 ret = -EOVERFLOW;
7760 goto end;
7761 }
7762 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7763 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7764 ret = -E2BIG;
7765 goto end;
7766 }
7767
7768 tab = krealloc(btf->dtor_kfunc_tab,
7769 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
7770 GFP_KERNEL | __GFP_NOWARN);
7771 if (!tab) {
7772 ret = -ENOMEM;
7773 goto end;
7774 }
7775
7776 if (!btf->dtor_kfunc_tab)
7777 tab->cnt = 0;
7778 btf->dtor_kfunc_tab = tab;
7779
7780 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
7781 tab->cnt += add_cnt;
7782
7783 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
7784
7785end:
7786 if (ret)
7787 btf_free_dtor_kfunc_tab(btf);
7788 btf_put(btf);
7789 return ret;
7790}
7791EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
7792
7793#define MAX_TYPES_ARE_COMPAT_DEPTH 2
7794
7795/* Check local and target types for compatibility. This check is used for
7796 * type-based CO-RE relocations and follow slightly different rules than
7797 * field-based relocations. This function assumes that root types were already
7798 * checked for name match. Beyond that initial root-level name check, names
7799 * are completely ignored. Compatibility rules are as follows:
7800 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
7801 * kind should match for local and target types (i.e., STRUCT is not
7802 * compatible with UNION);
7803 * - for ENUMs/ENUM64s, the size is ignored;
7804 * - for INT, size and signedness are ignored;
7805 * - for ARRAY, dimensionality is ignored, element types are checked for
7806 * compatibility recursively;
7807 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
7808 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
7809 * - FUNC_PROTOs are compatible if they have compatible signature: same
7810 * number of input args and compatible return and argument types.
7811 * These rules are not set in stone and probably will be adjusted as we get
7812 * more experience with using BPF CO-RE relocations.
7813 */
7814int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
7815 const struct btf *targ_btf, __u32 targ_id)
7816{
7817 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
7818 MAX_TYPES_ARE_COMPAT_DEPTH);
7819}
7820
7821#define MAX_TYPES_MATCH_DEPTH 2
7822
7823int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
7824 const struct btf *targ_btf, u32 targ_id)
7825{
7826 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
7827 MAX_TYPES_MATCH_DEPTH);
7828}
7829
7830static bool bpf_core_is_flavor_sep(const char *s)
7831{
7832 /* check X___Y name pattern, where X and Y are not underscores */
7833 return s[0] != '_' && /* X */
7834 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
7835 s[4] != '_'; /* Y */
7836}
7837
7838size_t bpf_core_essential_name_len(const char *name)
7839{
7840 size_t n = strlen(name);
7841 int i;
7842
7843 for (i = n - 5; i >= 0; i--) {
7844 if (bpf_core_is_flavor_sep(name + i))
7845 return i + 1;
7846 }
7847 return n;
7848}
7849
7850struct bpf_cand_cache {
7851 const char *name;
7852 u32 name_len;
7853 u16 kind;
7854 u16 cnt;
7855 struct {
7856 const struct btf *btf;
7857 u32 id;
7858 } cands[];
7859};
7860
7861static void bpf_free_cands(struct bpf_cand_cache *cands)
7862{
7863 if (!cands->cnt)
7864 /* empty candidate array was allocated on stack */
7865 return;
7866 kfree(cands);
7867}
7868
7869static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
7870{
7871 kfree(cands->name);
7872 kfree(cands);
7873}
7874
7875#define VMLINUX_CAND_CACHE_SIZE 31
7876static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
7877
7878#define MODULE_CAND_CACHE_SIZE 31
7879static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
7880
7881static DEFINE_MUTEX(cand_cache_mutex);
7882
7883static void __print_cand_cache(struct bpf_verifier_log *log,
7884 struct bpf_cand_cache **cache,
7885 int cache_size)
7886{
7887 struct bpf_cand_cache *cc;
7888 int i, j;
7889
7890 for (i = 0; i < cache_size; i++) {
7891 cc = cache[i];
7892 if (!cc)
7893 continue;
7894 bpf_log(log, "[%d]%s(", i, cc->name);
7895 for (j = 0; j < cc->cnt; j++) {
7896 bpf_log(log, "%d", cc->cands[j].id);
7897 if (j < cc->cnt - 1)
7898 bpf_log(log, " ");
7899 }
7900 bpf_log(log, "), ");
7901 }
7902}
7903
7904static void print_cand_cache(struct bpf_verifier_log *log)
7905{
7906 mutex_lock(&cand_cache_mutex);
7907 bpf_log(log, "vmlinux_cand_cache:");
7908 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7909 bpf_log(log, "\nmodule_cand_cache:");
7910 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7911 bpf_log(log, "\n");
7912 mutex_unlock(&cand_cache_mutex);
7913}
7914
7915static u32 hash_cands(struct bpf_cand_cache *cands)
7916{
7917 return jhash(cands->name, cands->name_len, 0);
7918}
7919
7920static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
7921 struct bpf_cand_cache **cache,
7922 int cache_size)
7923{
7924 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
7925
7926 if (cc && cc->name_len == cands->name_len &&
7927 !strncmp(cc->name, cands->name, cands->name_len))
7928 return cc;
7929 return NULL;
7930}
7931
7932static size_t sizeof_cands(int cnt)
7933{
7934 return offsetof(struct bpf_cand_cache, cands[cnt]);
7935}
7936
7937static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
7938 struct bpf_cand_cache **cache,
7939 int cache_size)
7940{
7941 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
7942
7943 if (*cc) {
7944 bpf_free_cands_from_cache(*cc);
7945 *cc = NULL;
7946 }
7947 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
7948 if (!new_cands) {
7949 bpf_free_cands(cands);
7950 return ERR_PTR(-ENOMEM);
7951 }
7952 /* strdup the name, since it will stay in cache.
7953 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
7954 */
7955 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
7956 bpf_free_cands(cands);
7957 if (!new_cands->name) {
7958 kfree(new_cands);
7959 return ERR_PTR(-ENOMEM);
7960 }
7961 *cc = new_cands;
7962 return new_cands;
7963}
7964
7965#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7966static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
7967 int cache_size)
7968{
7969 struct bpf_cand_cache *cc;
7970 int i, j;
7971
7972 for (i = 0; i < cache_size; i++) {
7973 cc = cache[i];
7974 if (!cc)
7975 continue;
7976 if (!btf) {
7977 /* when new module is loaded purge all of module_cand_cache,
7978 * since new module might have candidates with the name
7979 * that matches cached cands.
7980 */
7981 bpf_free_cands_from_cache(cc);
7982 cache[i] = NULL;
7983 continue;
7984 }
7985 /* when module is unloaded purge cache entries
7986 * that match module's btf
7987 */
7988 for (j = 0; j < cc->cnt; j++)
7989 if (cc->cands[j].btf == btf) {
7990 bpf_free_cands_from_cache(cc);
7991 cache[i] = NULL;
7992 break;
7993 }
7994 }
7995
7996}
7997
7998static void purge_cand_cache(struct btf *btf)
7999{
8000 mutex_lock(&cand_cache_mutex);
8001 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8002 mutex_unlock(&cand_cache_mutex);
8003}
8004#endif
8005
8006static struct bpf_cand_cache *
8007bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8008 int targ_start_id)
8009{
8010 struct bpf_cand_cache *new_cands;
8011 const struct btf_type *t;
8012 const char *targ_name;
8013 size_t targ_essent_len;
8014 int n, i;
8015
8016 n = btf_nr_types(targ_btf);
8017 for (i = targ_start_id; i < n; i++) {
8018 t = btf_type_by_id(targ_btf, i);
8019 if (btf_kind(t) != cands->kind)
8020 continue;
8021
8022 targ_name = btf_name_by_offset(targ_btf, t->name_off);
8023 if (!targ_name)
8024 continue;
8025
8026 /* the resched point is before strncmp to make sure that search
8027 * for non-existing name will have a chance to schedule().
8028 */
8029 cond_resched();
8030
8031 if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8032 continue;
8033
8034 targ_essent_len = bpf_core_essential_name_len(targ_name);
8035 if (targ_essent_len != cands->name_len)
8036 continue;
8037
8038 /* most of the time there is only one candidate for a given kind+name pair */
8039 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8040 if (!new_cands) {
8041 bpf_free_cands(cands);
8042 return ERR_PTR(-ENOMEM);
8043 }
8044
8045 memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8046 bpf_free_cands(cands);
8047 cands = new_cands;
8048 cands->cands[cands->cnt].btf = targ_btf;
8049 cands->cands[cands->cnt].id = i;
8050 cands->cnt++;
8051 }
8052 return cands;
8053}
8054
8055static struct bpf_cand_cache *
8056bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8057{
8058 struct bpf_cand_cache *cands, *cc, local_cand = {};
8059 const struct btf *local_btf = ctx->btf;
8060 const struct btf_type *local_type;
8061 const struct btf *main_btf;
8062 size_t local_essent_len;
8063 struct btf *mod_btf;
8064 const char *name;
8065 int id;
8066
8067 main_btf = bpf_get_btf_vmlinux();
8068 if (IS_ERR(main_btf))
8069 return ERR_CAST(main_btf);
8070 if (!main_btf)
8071 return ERR_PTR(-EINVAL);
8072
8073 local_type = btf_type_by_id(local_btf, local_type_id);
8074 if (!local_type)
8075 return ERR_PTR(-EINVAL);
8076
8077 name = btf_name_by_offset(local_btf, local_type->name_off);
8078 if (str_is_empty(name))
8079 return ERR_PTR(-EINVAL);
8080 local_essent_len = bpf_core_essential_name_len(name);
8081
8082 cands = &local_cand;
8083 cands->name = name;
8084 cands->kind = btf_kind(local_type);
8085 cands->name_len = local_essent_len;
8086
8087 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8088 /* cands is a pointer to stack here */
8089 if (cc) {
8090 if (cc->cnt)
8091 return cc;
8092 goto check_modules;
8093 }
8094
8095 /* Attempt to find target candidates in vmlinux BTF first */
8096 cands = bpf_core_add_cands(cands, main_btf, 1);
8097 if (IS_ERR(cands))
8098 return ERR_CAST(cands);
8099
8100 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8101
8102 /* populate cache even when cands->cnt == 0 */
8103 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8104 if (IS_ERR(cc))
8105 return ERR_CAST(cc);
8106
8107 /* if vmlinux BTF has any candidate, don't go for module BTFs */
8108 if (cc->cnt)
8109 return cc;
8110
8111check_modules:
8112 /* cands is a pointer to stack here and cands->cnt == 0 */
8113 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8114 if (cc)
8115 /* if cache has it return it even if cc->cnt == 0 */
8116 return cc;
8117
8118 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8119 spin_lock_bh(&btf_idr_lock);
8120 idr_for_each_entry(&btf_idr, mod_btf, id) {
8121 if (!btf_is_module(mod_btf))
8122 continue;
8123 /* linear search could be slow hence unlock/lock
8124 * the IDR to avoiding holding it for too long
8125 */
8126 btf_get(mod_btf);
8127 spin_unlock_bh(&btf_idr_lock);
8128 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8129 if (IS_ERR(cands)) {
8130 btf_put(mod_btf);
8131 return ERR_CAST(cands);
8132 }
8133 spin_lock_bh(&btf_idr_lock);
8134 btf_put(mod_btf);
8135 }
8136 spin_unlock_bh(&btf_idr_lock);
8137 /* cands is a pointer to kmalloced memory here if cands->cnt > 0
8138 * or pointer to stack if cands->cnd == 0.
8139 * Copy it into the cache even when cands->cnt == 0 and
8140 * return the result.
8141 */
8142 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8143}
8144
8145int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8146 int relo_idx, void *insn)
8147{
8148 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8149 struct bpf_core_cand_list cands = {};
8150 struct bpf_core_relo_res targ_res;
8151 struct bpf_core_spec *specs;
8152 int err;
8153
8154 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8155 * into arrays of btf_ids of struct fields and array indices.
8156 */
8157 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8158 if (!specs)
8159 return -ENOMEM;
8160
8161 if (need_cands) {
8162 struct bpf_cand_cache *cc;
8163 int i;
8164
8165 mutex_lock(&cand_cache_mutex);
8166 cc = bpf_core_find_cands(ctx, relo->type_id);
8167 if (IS_ERR(cc)) {
8168 bpf_log(ctx->log, "target candidate search failed for %d\n",
8169 relo->type_id);
8170 err = PTR_ERR(cc);
8171 goto out;
8172 }
8173 if (cc->cnt) {
8174 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8175 if (!cands.cands) {
8176 err = -ENOMEM;
8177 goto out;
8178 }
8179 }
8180 for (i = 0; i < cc->cnt; i++) {
8181 bpf_log(ctx->log,
8182 "CO-RE relocating %s %s: found target candidate [%d]\n",
8183 btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8184 cands.cands[i].btf = cc->cands[i].btf;
8185 cands.cands[i].id = cc->cands[i].id;
8186 }
8187 cands.len = cc->cnt;
8188 /* cand_cache_mutex needs to span the cache lookup and
8189 * copy of btf pointer into bpf_core_cand_list,
8190 * since module can be unloaded while bpf_core_calc_relo_insn
8191 * is working with module's btf.
8192 */
8193 }
8194
8195 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8196 &targ_res);
8197 if (err)
8198 goto out;
8199
8200 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8201 &targ_res);
8202
8203out:
8204 kfree(specs);
8205 if (need_cands) {
8206 kfree(cands.cands);
8207 mutex_unlock(&cand_cache_mutex);
8208 if (ctx->log->level & BPF_LOG_LEVEL2)
8209 print_cand_cache(ctx->log);
8210 }
8211 return err;
8212}