Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11/*
12 * This file implements UBIFS initialization and VFS superblock operations. Some
13 * initialization stuff which is rather large and complex is placed at
14 * corresponding subsystems, but most of it is here.
15 */
16
17#include <linux/init.h>
18#include <linux/slab.h>
19#include <linux/module.h>
20#include <linux/ctype.h>
21#include <linux/kthread.h>
22#include <linux/parser.h>
23#include <linux/seq_file.h>
24#include <linux/mount.h>
25#include <linux/math64.h>
26#include <linux/writeback.h>
27#include "ubifs.h"
28
29static int ubifs_default_version_set(const char *val, const struct kernel_param *kp)
30{
31 int n = 0, ret;
32
33 ret = kstrtoint(val, 10, &n);
34 if (ret != 0 || n < 4 || n > UBIFS_FORMAT_VERSION)
35 return -EINVAL;
36 return param_set_int(val, kp);
37}
38
39static const struct kernel_param_ops ubifs_default_version_ops = {
40 .set = ubifs_default_version_set,
41 .get = param_get_int,
42};
43
44int ubifs_default_version = UBIFS_FORMAT_VERSION;
45module_param_cb(default_version, &ubifs_default_version_ops, &ubifs_default_version, 0600);
46
47/*
48 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
49 * allocating too much.
50 */
51#define UBIFS_KMALLOC_OK (128*1024)
52
53/* Slab cache for UBIFS inodes */
54static struct kmem_cache *ubifs_inode_slab;
55
56/* UBIFS TNC shrinker description */
57static struct shrinker *ubifs_shrinker_info;
58
59/**
60 * validate_inode - validate inode.
61 * @c: UBIFS file-system description object
62 * @inode: the inode to validate
63 *
64 * This is a helper function for 'ubifs_iget()' which validates various fields
65 * of a newly built inode to make sure they contain sane values and prevent
66 * possible vulnerabilities. Returns zero if the inode is all right and
67 * a non-zero error code if not.
68 */
69static int validate_inode(struct ubifs_info *c, const struct inode *inode)
70{
71 int err;
72 const struct ubifs_inode *ui = ubifs_inode(inode);
73
74 if (inode->i_size > c->max_inode_sz) {
75 ubifs_err(c, "inode is too large (%lld)",
76 (long long)inode->i_size);
77 return 1;
78 }
79
80 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
81 ubifs_err(c, "unknown compression type %d", ui->compr_type);
82 return 2;
83 }
84
85 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
86 return 3;
87
88 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
89 return 4;
90
91 if (ui->xattr && !S_ISREG(inode->i_mode))
92 return 5;
93
94 if (!ubifs_compr_present(c, ui->compr_type)) {
95 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
96 inode->i_ino, ubifs_compr_name(c, ui->compr_type));
97 }
98
99 err = dbg_check_dir(c, inode);
100 return err;
101}
102
103struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
104{
105 int err;
106 union ubifs_key key;
107 struct ubifs_ino_node *ino;
108 struct ubifs_info *c = sb->s_fs_info;
109 struct inode *inode;
110 struct ubifs_inode *ui;
111
112 dbg_gen("inode %lu", inum);
113
114 inode = iget_locked(sb, inum);
115 if (!inode)
116 return ERR_PTR(-ENOMEM);
117 if (!(inode->i_state & I_NEW))
118 return inode;
119 ui = ubifs_inode(inode);
120
121 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
122 if (!ino) {
123 err = -ENOMEM;
124 goto out;
125 }
126
127 ino_key_init(c, &key, inode->i_ino);
128
129 err = ubifs_tnc_lookup(c, &key, ino);
130 if (err)
131 goto out_ino;
132
133 inode->i_flags |= S_NOCMTIME;
134
135 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
136 inode->i_flags |= S_NOATIME;
137
138 set_nlink(inode, le32_to_cpu(ino->nlink));
139 i_uid_write(inode, le32_to_cpu(ino->uid));
140 i_gid_write(inode, le32_to_cpu(ino->gid));
141 inode_set_atime(inode, (int64_t)le64_to_cpu(ino->atime_sec),
142 le32_to_cpu(ino->atime_nsec));
143 inode_set_mtime(inode, (int64_t)le64_to_cpu(ino->mtime_sec),
144 le32_to_cpu(ino->mtime_nsec));
145 inode_set_ctime(inode, (int64_t)le64_to_cpu(ino->ctime_sec),
146 le32_to_cpu(ino->ctime_nsec));
147 inode->i_mode = le32_to_cpu(ino->mode);
148 inode->i_size = le64_to_cpu(ino->size);
149
150 ui->data_len = le32_to_cpu(ino->data_len);
151 ui->flags = le32_to_cpu(ino->flags);
152 ui->compr_type = le16_to_cpu(ino->compr_type);
153 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
154 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
155 ui->xattr_size = le32_to_cpu(ino->xattr_size);
156 ui->xattr_names = le32_to_cpu(ino->xattr_names);
157 ui->synced_i_size = ui->ui_size = inode->i_size;
158
159 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
160
161 err = validate_inode(c, inode);
162 if (err)
163 goto out_invalid;
164
165 switch (inode->i_mode & S_IFMT) {
166 case S_IFREG:
167 inode->i_mapping->a_ops = &ubifs_file_address_operations;
168 inode->i_op = &ubifs_file_inode_operations;
169 inode->i_fop = &ubifs_file_operations;
170 if (ui->xattr) {
171 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
172 if (!ui->data) {
173 err = -ENOMEM;
174 goto out_ino;
175 }
176 memcpy(ui->data, ino->data, ui->data_len);
177 ((char *)ui->data)[ui->data_len] = '\0';
178 } else if (ui->data_len != 0) {
179 err = 10;
180 goto out_invalid;
181 }
182 break;
183 case S_IFDIR:
184 inode->i_op = &ubifs_dir_inode_operations;
185 inode->i_fop = &ubifs_dir_operations;
186 if (ui->data_len != 0) {
187 err = 11;
188 goto out_invalid;
189 }
190 break;
191 case S_IFLNK:
192 inode->i_op = &ubifs_symlink_inode_operations;
193 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
194 err = 12;
195 goto out_invalid;
196 }
197 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
198 if (!ui->data) {
199 err = -ENOMEM;
200 goto out_ino;
201 }
202 memcpy(ui->data, ino->data, ui->data_len);
203 ((char *)ui->data)[ui->data_len] = '\0';
204 break;
205 case S_IFBLK:
206 case S_IFCHR:
207 {
208 dev_t rdev;
209 union ubifs_dev_desc *dev;
210
211 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
212 if (!ui->data) {
213 err = -ENOMEM;
214 goto out_ino;
215 }
216
217 dev = (union ubifs_dev_desc *)ino->data;
218 if (ui->data_len == sizeof(dev->new))
219 rdev = new_decode_dev(le32_to_cpu(dev->new));
220 else if (ui->data_len == sizeof(dev->huge))
221 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
222 else {
223 err = 13;
224 goto out_invalid;
225 }
226 memcpy(ui->data, ino->data, ui->data_len);
227 inode->i_op = &ubifs_file_inode_operations;
228 init_special_inode(inode, inode->i_mode, rdev);
229 break;
230 }
231 case S_IFSOCK:
232 case S_IFIFO:
233 inode->i_op = &ubifs_file_inode_operations;
234 init_special_inode(inode, inode->i_mode, 0);
235 if (ui->data_len != 0) {
236 err = 14;
237 goto out_invalid;
238 }
239 break;
240 default:
241 err = 15;
242 goto out_invalid;
243 }
244
245 kfree(ino);
246 ubifs_set_inode_flags(inode);
247 unlock_new_inode(inode);
248 return inode;
249
250out_invalid:
251 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
252 ubifs_dump_node(c, ino, UBIFS_MAX_INO_NODE_SZ);
253 ubifs_dump_inode(c, inode);
254 err = -EINVAL;
255out_ino:
256 kfree(ino);
257out:
258 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
259 iget_failed(inode);
260 return ERR_PTR(err);
261}
262
263static struct inode *ubifs_alloc_inode(struct super_block *sb)
264{
265 struct ubifs_inode *ui;
266
267 ui = alloc_inode_sb(sb, ubifs_inode_slab, GFP_NOFS);
268 if (!ui)
269 return NULL;
270
271 memset((void *)ui + sizeof(struct inode), 0,
272 sizeof(struct ubifs_inode) - sizeof(struct inode));
273 mutex_init(&ui->ui_mutex);
274 init_rwsem(&ui->xattr_sem);
275 spin_lock_init(&ui->ui_lock);
276 return &ui->vfs_inode;
277};
278
279static void ubifs_free_inode(struct inode *inode)
280{
281 struct ubifs_inode *ui = ubifs_inode(inode);
282
283 kfree(ui->data);
284 fscrypt_free_inode(inode);
285
286 kmem_cache_free(ubifs_inode_slab, ui);
287}
288
289/*
290 * Note, Linux write-back code calls this without 'i_mutex'.
291 */
292static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
293{
294 int err = 0;
295 struct ubifs_info *c = inode->i_sb->s_fs_info;
296 struct ubifs_inode *ui = ubifs_inode(inode);
297
298 ubifs_assert(c, !ui->xattr);
299 if (is_bad_inode(inode))
300 return 0;
301
302 mutex_lock(&ui->ui_mutex);
303 /*
304 * Due to races between write-back forced by budgeting
305 * (see 'sync_some_inodes()') and background write-back, the inode may
306 * have already been synchronized, do not do this again. This might
307 * also happen if it was synchronized in an VFS operation, e.g.
308 * 'ubifs_link()'.
309 */
310 if (!ui->dirty) {
311 mutex_unlock(&ui->ui_mutex);
312 return 0;
313 }
314
315 /*
316 * As an optimization, do not write orphan inodes to the media just
317 * because this is not needed.
318 */
319 dbg_gen("inode %lu, mode %#x, nlink %u",
320 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
321 if (inode->i_nlink) {
322 err = ubifs_jnl_write_inode(c, inode);
323 if (err)
324 ubifs_err(c, "can't write inode %lu, error %d",
325 inode->i_ino, err);
326 else
327 err = dbg_check_inode_size(c, inode, ui->ui_size);
328 }
329
330 ui->dirty = 0;
331 mutex_unlock(&ui->ui_mutex);
332 ubifs_release_dirty_inode_budget(c, ui);
333 return err;
334}
335
336static int ubifs_drop_inode(struct inode *inode)
337{
338 int drop = generic_drop_inode(inode);
339
340 if (!drop)
341 drop = fscrypt_drop_inode(inode);
342
343 return drop;
344}
345
346static void ubifs_evict_inode(struct inode *inode)
347{
348 int err;
349 struct ubifs_info *c = inode->i_sb->s_fs_info;
350 struct ubifs_inode *ui = ubifs_inode(inode);
351
352 if (ui->xattr)
353 /*
354 * Extended attribute inode deletions are fully handled in
355 * 'ubifs_removexattr()'. These inodes are special and have
356 * limited usage, so there is nothing to do here.
357 */
358 goto out;
359
360 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
361 ubifs_assert(c, !atomic_read(&inode->i_count));
362
363 truncate_inode_pages_final(&inode->i_data);
364
365 if (inode->i_nlink)
366 goto done;
367
368 if (is_bad_inode(inode))
369 goto out;
370
371 ui->ui_size = inode->i_size = 0;
372 err = ubifs_jnl_delete_inode(c, inode);
373 if (err)
374 /*
375 * Worst case we have a lost orphan inode wasting space, so a
376 * simple error message is OK here.
377 */
378 ubifs_err(c, "can't delete inode %lu, error %d",
379 inode->i_ino, err);
380
381out:
382 if (ui->dirty)
383 ubifs_release_dirty_inode_budget(c, ui);
384 else {
385 /* We've deleted something - clean the "no space" flags */
386 c->bi.nospace = c->bi.nospace_rp = 0;
387 smp_wmb();
388 }
389done:
390 clear_inode(inode);
391 fscrypt_put_encryption_info(inode);
392}
393
394static void ubifs_dirty_inode(struct inode *inode, int flags)
395{
396 struct ubifs_info *c = inode->i_sb->s_fs_info;
397 struct ubifs_inode *ui = ubifs_inode(inode);
398
399 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
400 if (!ui->dirty) {
401 ui->dirty = 1;
402 dbg_gen("inode %lu", inode->i_ino);
403 }
404}
405
406static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
407{
408 struct ubifs_info *c = dentry->d_sb->s_fs_info;
409 unsigned long long free;
410 __le32 *uuid = (__le32 *)c->uuid;
411
412 free = ubifs_get_free_space(c);
413 dbg_gen("free space %lld bytes (%lld blocks)",
414 free, free >> UBIFS_BLOCK_SHIFT);
415
416 buf->f_type = UBIFS_SUPER_MAGIC;
417 buf->f_bsize = UBIFS_BLOCK_SIZE;
418 buf->f_blocks = c->block_cnt;
419 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
420 if (free > c->report_rp_size)
421 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
422 else
423 buf->f_bavail = 0;
424 buf->f_files = 0;
425 buf->f_ffree = 0;
426 buf->f_namelen = UBIFS_MAX_NLEN;
427 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
428 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
429 ubifs_assert(c, buf->f_bfree <= c->block_cnt);
430 return 0;
431}
432
433static int ubifs_show_options(struct seq_file *s, struct dentry *root)
434{
435 struct ubifs_info *c = root->d_sb->s_fs_info;
436
437 if (c->mount_opts.unmount_mode == 2)
438 seq_puts(s, ",fast_unmount");
439 else if (c->mount_opts.unmount_mode == 1)
440 seq_puts(s, ",norm_unmount");
441
442 if (c->mount_opts.bulk_read == 2)
443 seq_puts(s, ",bulk_read");
444 else if (c->mount_opts.bulk_read == 1)
445 seq_puts(s, ",no_bulk_read");
446
447 if (c->mount_opts.chk_data_crc == 2)
448 seq_puts(s, ",chk_data_crc");
449 else if (c->mount_opts.chk_data_crc == 1)
450 seq_puts(s, ",no_chk_data_crc");
451
452 if (c->mount_opts.override_compr) {
453 seq_printf(s, ",compr=%s",
454 ubifs_compr_name(c, c->mount_opts.compr_type));
455 }
456
457 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
458 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
459
460 return 0;
461}
462
463static int ubifs_sync_fs(struct super_block *sb, int wait)
464{
465 int i, err;
466 struct ubifs_info *c = sb->s_fs_info;
467
468 /*
469 * Zero @wait is just an advisory thing to help the file system shove
470 * lots of data into the queues, and there will be the second
471 * '->sync_fs()' call, with non-zero @wait.
472 */
473 if (!wait)
474 return 0;
475
476 /*
477 * Synchronize write buffers, because 'ubifs_run_commit()' does not
478 * do this if it waits for an already running commit.
479 */
480 for (i = 0; i < c->jhead_cnt; i++) {
481 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
482 if (err)
483 return err;
484 }
485
486 /*
487 * Strictly speaking, it is not necessary to commit the journal here,
488 * synchronizing write-buffers would be enough. But committing makes
489 * UBIFS free space predictions much more accurate, so we want to let
490 * the user be able to get more accurate results of 'statfs()' after
491 * they synchronize the file system.
492 */
493 err = ubifs_run_commit(c);
494 if (err)
495 return err;
496
497 return ubi_sync(c->vi.ubi_num);
498}
499
500/**
501 * init_constants_early - initialize UBIFS constants.
502 * @c: UBIFS file-system description object
503 *
504 * This function initialize UBIFS constants which do not need the superblock to
505 * be read. It also checks that the UBI volume satisfies basic UBIFS
506 * requirements. Returns zero in case of success and a negative error code in
507 * case of failure.
508 */
509static int init_constants_early(struct ubifs_info *c)
510{
511 if (c->vi.corrupted) {
512 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
513 c->ro_media = 1;
514 }
515
516 if (c->di.ro_mode) {
517 ubifs_msg(c, "read-only UBI device");
518 c->ro_media = 1;
519 }
520
521 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
522 ubifs_msg(c, "static UBI volume - read-only mode");
523 c->ro_media = 1;
524 }
525
526 c->leb_cnt = c->vi.size;
527 c->leb_size = c->vi.usable_leb_size;
528 c->leb_start = c->di.leb_start;
529 c->half_leb_size = c->leb_size / 2;
530 c->min_io_size = c->di.min_io_size;
531 c->min_io_shift = fls(c->min_io_size) - 1;
532 c->max_write_size = c->di.max_write_size;
533 c->max_write_shift = fls(c->max_write_size) - 1;
534
535 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
536 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
537 c->leb_size, UBIFS_MIN_LEB_SZ);
538 return -EINVAL;
539 }
540
541 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
542 ubifs_errc(c, "too few LEBs (%d), min. is %d",
543 c->leb_cnt, UBIFS_MIN_LEB_CNT);
544 return -EINVAL;
545 }
546
547 if (!is_power_of_2(c->min_io_size)) {
548 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
549 return -EINVAL;
550 }
551
552 /*
553 * Maximum write size has to be greater or equivalent to min. I/O
554 * size, and be multiple of min. I/O size.
555 */
556 if (c->max_write_size < c->min_io_size ||
557 c->max_write_size % c->min_io_size ||
558 !is_power_of_2(c->max_write_size)) {
559 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
560 c->max_write_size, c->min_io_size);
561 return -EINVAL;
562 }
563
564 /*
565 * UBIFS aligns all node to 8-byte boundary, so to make function in
566 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
567 * less than 8.
568 */
569 if (c->min_io_size < 8) {
570 c->min_io_size = 8;
571 c->min_io_shift = 3;
572 if (c->max_write_size < c->min_io_size) {
573 c->max_write_size = c->min_io_size;
574 c->max_write_shift = c->min_io_shift;
575 }
576 }
577
578 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
579 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
580
581 /*
582 * Initialize node length ranges which are mostly needed for node
583 * length validation.
584 */
585 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
586 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
587 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
588 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
589 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
590 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
591 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
592 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
593 UBIFS_MAX_HMAC_LEN;
594 c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
595 c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
596
597 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
598 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
599 c->ranges[UBIFS_ORPH_NODE].min_len =
600 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
601 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
602 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
603 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
604 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
605 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
606 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
607 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
608 /*
609 * Minimum indexing node size is amended later when superblock is
610 * read and the key length is known.
611 */
612 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
613 /*
614 * Maximum indexing node size is amended later when superblock is
615 * read and the fanout is known.
616 */
617 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
618
619 /*
620 * Initialize dead and dark LEB space watermarks. See gc.c for comments
621 * about these values.
622 */
623 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
624 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
625
626 /*
627 * Calculate how many bytes would be wasted at the end of LEB if it was
628 * fully filled with data nodes of maximum size. This is used in
629 * calculations when reporting free space.
630 */
631 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
632
633 /* Buffer size for bulk-reads */
634 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
635 if (c->max_bu_buf_len > c->leb_size)
636 c->max_bu_buf_len = c->leb_size;
637
638 /* Log is ready, preserve one LEB for commits. */
639 c->min_log_bytes = c->leb_size;
640
641 return 0;
642}
643
644/**
645 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
646 * @c: UBIFS file-system description object
647 * @lnum: LEB the write-buffer was synchronized to
648 * @free: how many free bytes left in this LEB
649 * @pad: how many bytes were padded
650 *
651 * This is a callback function which is called by the I/O unit when the
652 * write-buffer is synchronized. We need this to correctly maintain space
653 * accounting in bud logical eraseblocks. This function returns zero in case of
654 * success and a negative error code in case of failure.
655 *
656 * This function actually belongs to the journal, but we keep it here because
657 * we want to keep it static.
658 */
659static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
660{
661 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
662}
663
664/*
665 * init_constants_sb - initialize UBIFS constants.
666 * @c: UBIFS file-system description object
667 *
668 * This is a helper function which initializes various UBIFS constants after
669 * the superblock has been read. It also checks various UBIFS parameters and
670 * makes sure they are all right. Returns zero in case of success and a
671 * negative error code in case of failure.
672 */
673static int init_constants_sb(struct ubifs_info *c)
674{
675 int tmp, err;
676 long long tmp64;
677
678 c->main_bytes = (long long)c->main_lebs * c->leb_size;
679 c->max_znode_sz = sizeof(struct ubifs_znode) +
680 c->fanout * sizeof(struct ubifs_zbranch);
681
682 tmp = ubifs_idx_node_sz(c, 1);
683 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
684 c->min_idx_node_sz = ALIGN(tmp, 8);
685
686 tmp = ubifs_idx_node_sz(c, c->fanout);
687 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
688 c->max_idx_node_sz = ALIGN(tmp, 8);
689
690 /* Make sure LEB size is large enough to fit full commit */
691 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
692 tmp = ALIGN(tmp, c->min_io_size);
693 if (tmp > c->leb_size) {
694 ubifs_err(c, "too small LEB size %d, at least %d needed",
695 c->leb_size, tmp);
696 return -EINVAL;
697 }
698
699 /*
700 * Make sure that the log is large enough to fit reference nodes for
701 * all buds plus one reserved LEB.
702 */
703 tmp64 = c->max_bud_bytes + c->leb_size - 1;
704 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
705 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
706 tmp /= c->leb_size;
707 tmp += 1;
708 if (c->log_lebs < tmp) {
709 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
710 c->log_lebs, tmp);
711 return -EINVAL;
712 }
713
714 /*
715 * When budgeting we assume worst-case scenarios when the pages are not
716 * be compressed and direntries are of the maximum size.
717 *
718 * Note, data, which may be stored in inodes is budgeted separately, so
719 * it is not included into 'c->bi.inode_budget'.
720 */
721 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
722 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
723 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
724
725 /*
726 * When the amount of flash space used by buds becomes
727 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
728 * The writers are unblocked when the commit is finished. To avoid
729 * writers to be blocked UBIFS initiates background commit in advance,
730 * when number of bud bytes becomes above the limit defined below.
731 */
732 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
733
734 /*
735 * Ensure minimum journal size. All the bytes in the journal heads are
736 * considered to be used, when calculating the current journal usage.
737 * Consequently, if the journal is too small, UBIFS will treat it as
738 * always full.
739 */
740 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
741 if (c->bg_bud_bytes < tmp64)
742 c->bg_bud_bytes = tmp64;
743 if (c->max_bud_bytes < tmp64 + c->leb_size)
744 c->max_bud_bytes = tmp64 + c->leb_size;
745
746 err = ubifs_calc_lpt_geom(c);
747 if (err)
748 return err;
749
750 /* Initialize effective LEB size used in budgeting calculations */
751 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
752 return 0;
753}
754
755/*
756 * init_constants_master - initialize UBIFS constants.
757 * @c: UBIFS file-system description object
758 *
759 * This is a helper function which initializes various UBIFS constants after
760 * the master node has been read. It also checks various UBIFS parameters and
761 * makes sure they are all right.
762 */
763static void init_constants_master(struct ubifs_info *c)
764{
765 long long tmp64;
766
767 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
768 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
769
770 /*
771 * Calculate total amount of FS blocks. This number is not used
772 * internally because it does not make much sense for UBIFS, but it is
773 * necessary to report something for the 'statfs()' call.
774 *
775 * Subtract the LEB reserved for GC, the LEB which is reserved for
776 * deletions, minimum LEBs for the index, and assume only one journal
777 * head is available.
778 */
779 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
780 tmp64 *= (long long)c->leb_size - c->leb_overhead;
781 tmp64 = ubifs_reported_space(c, tmp64);
782 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
783}
784
785/**
786 * take_gc_lnum - reserve GC LEB.
787 * @c: UBIFS file-system description object
788 *
789 * This function ensures that the LEB reserved for garbage collection is marked
790 * as "taken" in lprops. We also have to set free space to LEB size and dirty
791 * space to zero, because lprops may contain out-of-date information if the
792 * file-system was un-mounted before it has been committed. This function
793 * returns zero in case of success and a negative error code in case of
794 * failure.
795 */
796static int take_gc_lnum(struct ubifs_info *c)
797{
798 int err;
799
800 if (c->gc_lnum == -1) {
801 ubifs_err(c, "no LEB for GC");
802 return -EINVAL;
803 }
804
805 /* And we have to tell lprops that this LEB is taken */
806 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
807 LPROPS_TAKEN, 0, 0);
808 return err;
809}
810
811/**
812 * alloc_wbufs - allocate write-buffers.
813 * @c: UBIFS file-system description object
814 *
815 * This helper function allocates and initializes UBIFS write-buffers. Returns
816 * zero in case of success and %-ENOMEM in case of failure.
817 */
818static int alloc_wbufs(struct ubifs_info *c)
819{
820 int i, err;
821
822 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
823 GFP_KERNEL);
824 if (!c->jheads)
825 return -ENOMEM;
826
827 /* Initialize journal heads */
828 for (i = 0; i < c->jhead_cnt; i++) {
829 INIT_LIST_HEAD(&c->jheads[i].buds_list);
830 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
831 if (err)
832 goto out_wbuf;
833
834 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
835 c->jheads[i].wbuf.jhead = i;
836 c->jheads[i].grouped = 1;
837 c->jheads[i].log_hash = ubifs_hash_get_desc(c);
838 if (IS_ERR(c->jheads[i].log_hash)) {
839 err = PTR_ERR(c->jheads[i].log_hash);
840 goto out_log_hash;
841 }
842 }
843
844 /*
845 * Garbage Collector head does not need to be synchronized by timer.
846 * Also GC head nodes are not grouped.
847 */
848 c->jheads[GCHD].wbuf.no_timer = 1;
849 c->jheads[GCHD].grouped = 0;
850
851 return 0;
852
853out_log_hash:
854 kfree(c->jheads[i].wbuf.buf);
855 kfree(c->jheads[i].wbuf.inodes);
856
857out_wbuf:
858 while (i--) {
859 kfree(c->jheads[i].wbuf.buf);
860 kfree(c->jheads[i].wbuf.inodes);
861 kfree(c->jheads[i].log_hash);
862 }
863 kfree(c->jheads);
864 c->jheads = NULL;
865
866 return err;
867}
868
869/**
870 * free_wbufs - free write-buffers.
871 * @c: UBIFS file-system description object
872 */
873static void free_wbufs(struct ubifs_info *c)
874{
875 int i;
876
877 if (c->jheads) {
878 for (i = 0; i < c->jhead_cnt; i++) {
879 kfree(c->jheads[i].wbuf.buf);
880 kfree(c->jheads[i].wbuf.inodes);
881 kfree(c->jheads[i].log_hash);
882 }
883 kfree(c->jheads);
884 c->jheads = NULL;
885 }
886}
887
888/**
889 * free_orphans - free orphans.
890 * @c: UBIFS file-system description object
891 */
892static void free_orphans(struct ubifs_info *c)
893{
894 struct ubifs_orphan *orph;
895
896 while (c->orph_dnext) {
897 orph = c->orph_dnext;
898 c->orph_dnext = orph->dnext;
899 list_del(&orph->list);
900 kfree(orph);
901 }
902
903 while (!list_empty(&c->orph_list)) {
904 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
905 list_del(&orph->list);
906 kfree(orph);
907 ubifs_err(c, "orphan list not empty at unmount");
908 }
909
910 vfree(c->orph_buf);
911 c->orph_buf = NULL;
912}
913
914/**
915 * free_buds - free per-bud objects.
916 * @c: UBIFS file-system description object
917 */
918static void free_buds(struct ubifs_info *c)
919{
920 struct ubifs_bud *bud, *n;
921
922 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) {
923 kfree(bud->log_hash);
924 kfree(bud);
925 }
926}
927
928/**
929 * check_volume_empty - check if the UBI volume is empty.
930 * @c: UBIFS file-system description object
931 *
932 * This function checks if the UBIFS volume is empty by looking if its LEBs are
933 * mapped or not. The result of checking is stored in the @c->empty variable.
934 * Returns zero in case of success and a negative error code in case of
935 * failure.
936 */
937static int check_volume_empty(struct ubifs_info *c)
938{
939 int lnum, err;
940
941 c->empty = 1;
942 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
943 err = ubifs_is_mapped(c, lnum);
944 if (unlikely(err < 0))
945 return err;
946 if (err == 1) {
947 c->empty = 0;
948 break;
949 }
950
951 cond_resched();
952 }
953
954 return 0;
955}
956
957/*
958 * UBIFS mount options.
959 *
960 * Opt_fast_unmount: do not run a journal commit before un-mounting
961 * Opt_norm_unmount: run a journal commit before un-mounting
962 * Opt_bulk_read: enable bulk-reads
963 * Opt_no_bulk_read: disable bulk-reads
964 * Opt_chk_data_crc: check CRCs when reading data nodes
965 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
966 * Opt_override_compr: override default compressor
967 * Opt_assert: set ubifs_assert() action
968 * Opt_auth_key: The key name used for authentication
969 * Opt_auth_hash_name: The hash type used for authentication
970 * Opt_err: just end of array marker
971 */
972enum {
973 Opt_fast_unmount,
974 Opt_norm_unmount,
975 Opt_bulk_read,
976 Opt_no_bulk_read,
977 Opt_chk_data_crc,
978 Opt_no_chk_data_crc,
979 Opt_override_compr,
980 Opt_assert,
981 Opt_auth_key,
982 Opt_auth_hash_name,
983 Opt_ignore,
984 Opt_err,
985};
986
987static const match_table_t tokens = {
988 {Opt_fast_unmount, "fast_unmount"},
989 {Opt_norm_unmount, "norm_unmount"},
990 {Opt_bulk_read, "bulk_read"},
991 {Opt_no_bulk_read, "no_bulk_read"},
992 {Opt_chk_data_crc, "chk_data_crc"},
993 {Opt_no_chk_data_crc, "no_chk_data_crc"},
994 {Opt_override_compr, "compr=%s"},
995 {Opt_auth_key, "auth_key=%s"},
996 {Opt_auth_hash_name, "auth_hash_name=%s"},
997 {Opt_ignore, "ubi=%s"},
998 {Opt_ignore, "vol=%s"},
999 {Opt_assert, "assert=%s"},
1000 {Opt_err, NULL},
1001};
1002
1003/**
1004 * parse_standard_option - parse a standard mount option.
1005 * @option: the option to parse
1006 *
1007 * Normally, standard mount options like "sync" are passed to file-systems as
1008 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1009 * be present in the options string. This function tries to deal with this
1010 * situation and parse standard options. Returns 0 if the option was not
1011 * recognized, and the corresponding integer flag if it was.
1012 *
1013 * UBIFS is only interested in the "sync" option, so do not check for anything
1014 * else.
1015 */
1016static int parse_standard_option(const char *option)
1017{
1018
1019 pr_notice("UBIFS: parse %s\n", option);
1020 if (!strcmp(option, "sync"))
1021 return SB_SYNCHRONOUS;
1022 return 0;
1023}
1024
1025/**
1026 * ubifs_parse_options - parse mount parameters.
1027 * @c: UBIFS file-system description object
1028 * @options: parameters to parse
1029 * @is_remount: non-zero if this is FS re-mount
1030 *
1031 * This function parses UBIFS mount options and returns zero in case success
1032 * and a negative error code in case of failure.
1033 */
1034static int ubifs_parse_options(struct ubifs_info *c, char *options,
1035 int is_remount)
1036{
1037 char *p;
1038 substring_t args[MAX_OPT_ARGS];
1039
1040 if (!options)
1041 return 0;
1042
1043 while ((p = strsep(&options, ","))) {
1044 int token;
1045
1046 if (!*p)
1047 continue;
1048
1049 token = match_token(p, tokens, args);
1050 switch (token) {
1051 /*
1052 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1053 * We accept them in order to be backward-compatible. But this
1054 * should be removed at some point.
1055 */
1056 case Opt_fast_unmount:
1057 c->mount_opts.unmount_mode = 2;
1058 break;
1059 case Opt_norm_unmount:
1060 c->mount_opts.unmount_mode = 1;
1061 break;
1062 case Opt_bulk_read:
1063 c->mount_opts.bulk_read = 2;
1064 c->bulk_read = 1;
1065 break;
1066 case Opt_no_bulk_read:
1067 c->mount_opts.bulk_read = 1;
1068 c->bulk_read = 0;
1069 break;
1070 case Opt_chk_data_crc:
1071 c->mount_opts.chk_data_crc = 2;
1072 c->no_chk_data_crc = 0;
1073 break;
1074 case Opt_no_chk_data_crc:
1075 c->mount_opts.chk_data_crc = 1;
1076 c->no_chk_data_crc = 1;
1077 break;
1078 case Opt_override_compr:
1079 {
1080 char *name = match_strdup(&args[0]);
1081
1082 if (!name)
1083 return -ENOMEM;
1084 if (!strcmp(name, "none"))
1085 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1086 else if (!strcmp(name, "lzo"))
1087 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1088 else if (!strcmp(name, "zlib"))
1089 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1090 else if (!strcmp(name, "zstd"))
1091 c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1092 else {
1093 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1094 kfree(name);
1095 return -EINVAL;
1096 }
1097 kfree(name);
1098 c->mount_opts.override_compr = 1;
1099 c->default_compr = c->mount_opts.compr_type;
1100 break;
1101 }
1102 case Opt_assert:
1103 {
1104 char *act = match_strdup(&args[0]);
1105
1106 if (!act)
1107 return -ENOMEM;
1108 if (!strcmp(act, "report"))
1109 c->assert_action = ASSACT_REPORT;
1110 else if (!strcmp(act, "read-only"))
1111 c->assert_action = ASSACT_RO;
1112 else if (!strcmp(act, "panic"))
1113 c->assert_action = ASSACT_PANIC;
1114 else {
1115 ubifs_err(c, "unknown assert action \"%s\"", act);
1116 kfree(act);
1117 return -EINVAL;
1118 }
1119 kfree(act);
1120 break;
1121 }
1122 case Opt_auth_key:
1123 if (!is_remount) {
1124 c->auth_key_name = kstrdup(args[0].from,
1125 GFP_KERNEL);
1126 if (!c->auth_key_name)
1127 return -ENOMEM;
1128 }
1129 break;
1130 case Opt_auth_hash_name:
1131 if (!is_remount) {
1132 c->auth_hash_name = kstrdup(args[0].from,
1133 GFP_KERNEL);
1134 if (!c->auth_hash_name)
1135 return -ENOMEM;
1136 }
1137 break;
1138 case Opt_ignore:
1139 break;
1140 default:
1141 {
1142 unsigned long flag;
1143 struct super_block *sb = c->vfs_sb;
1144
1145 flag = parse_standard_option(p);
1146 if (!flag) {
1147 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1148 p);
1149 return -EINVAL;
1150 }
1151 sb->s_flags |= flag;
1152 break;
1153 }
1154 }
1155 }
1156
1157 return 0;
1158}
1159
1160/*
1161 * ubifs_release_options - release mount parameters which have been dumped.
1162 * @c: UBIFS file-system description object
1163 */
1164static void ubifs_release_options(struct ubifs_info *c)
1165{
1166 kfree(c->auth_key_name);
1167 c->auth_key_name = NULL;
1168 kfree(c->auth_hash_name);
1169 c->auth_hash_name = NULL;
1170}
1171
1172/**
1173 * destroy_journal - destroy journal data structures.
1174 * @c: UBIFS file-system description object
1175 *
1176 * This function destroys journal data structures including those that may have
1177 * been created by recovery functions.
1178 */
1179static void destroy_journal(struct ubifs_info *c)
1180{
1181 while (!list_empty(&c->unclean_leb_list)) {
1182 struct ubifs_unclean_leb *ucleb;
1183
1184 ucleb = list_entry(c->unclean_leb_list.next,
1185 struct ubifs_unclean_leb, list);
1186 list_del(&ucleb->list);
1187 kfree(ucleb);
1188 }
1189 while (!list_empty(&c->old_buds)) {
1190 struct ubifs_bud *bud;
1191
1192 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1193 list_del(&bud->list);
1194 kfree(bud->log_hash);
1195 kfree(bud);
1196 }
1197 ubifs_destroy_idx_gc(c);
1198 ubifs_destroy_size_tree(c);
1199 ubifs_tnc_close(c);
1200 free_buds(c);
1201}
1202
1203/**
1204 * bu_init - initialize bulk-read information.
1205 * @c: UBIFS file-system description object
1206 */
1207static void bu_init(struct ubifs_info *c)
1208{
1209 ubifs_assert(c, c->bulk_read == 1);
1210
1211 if (c->bu.buf)
1212 return; /* Already initialized */
1213
1214again:
1215 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1216 if (!c->bu.buf) {
1217 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1218 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1219 goto again;
1220 }
1221
1222 /* Just disable bulk-read */
1223 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1224 c->max_bu_buf_len);
1225 c->mount_opts.bulk_read = 1;
1226 c->bulk_read = 0;
1227 return;
1228 }
1229}
1230
1231/**
1232 * check_free_space - check if there is enough free space to mount.
1233 * @c: UBIFS file-system description object
1234 *
1235 * This function makes sure UBIFS has enough free space to be mounted in
1236 * read/write mode. UBIFS must always have some free space to allow deletions.
1237 */
1238static int check_free_space(struct ubifs_info *c)
1239{
1240 ubifs_assert(c, c->dark_wm > 0);
1241 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1242 ubifs_err(c, "insufficient free space to mount in R/W mode");
1243 ubifs_dump_budg(c, &c->bi);
1244 ubifs_dump_lprops(c);
1245 return -ENOSPC;
1246 }
1247 return 0;
1248}
1249
1250/**
1251 * mount_ubifs - mount UBIFS file-system.
1252 * @c: UBIFS file-system description object
1253 *
1254 * This function mounts UBIFS file system. Returns zero in case of success and
1255 * a negative error code in case of failure.
1256 */
1257static int mount_ubifs(struct ubifs_info *c)
1258{
1259 int err;
1260 long long x, y;
1261 size_t sz;
1262
1263 c->ro_mount = !!sb_rdonly(c->vfs_sb);
1264 /* Suppress error messages while probing if SB_SILENT is set */
1265 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1266
1267 err = init_constants_early(c);
1268 if (err)
1269 return err;
1270
1271 err = ubifs_debugging_init(c);
1272 if (err)
1273 return err;
1274
1275 err = ubifs_sysfs_register(c);
1276 if (err)
1277 goto out_debugging;
1278
1279 err = check_volume_empty(c);
1280 if (err)
1281 goto out_free;
1282
1283 if (c->empty && (c->ro_mount || c->ro_media)) {
1284 /*
1285 * This UBI volume is empty, and read-only, or the file system
1286 * is mounted read-only - we cannot format it.
1287 */
1288 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1289 c->ro_media ? "UBI volume" : "mount");
1290 err = -EROFS;
1291 goto out_free;
1292 }
1293
1294 if (c->ro_media && !c->ro_mount) {
1295 ubifs_err(c, "cannot mount read-write - read-only media");
1296 err = -EROFS;
1297 goto out_free;
1298 }
1299
1300 /*
1301 * The requirement for the buffer is that it should fit indexing B-tree
1302 * height amount of integers. We assume the height if the TNC tree will
1303 * never exceed 64.
1304 */
1305 err = -ENOMEM;
1306 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1307 GFP_KERNEL);
1308 if (!c->bottom_up_buf)
1309 goto out_free;
1310
1311 c->sbuf = vmalloc(c->leb_size);
1312 if (!c->sbuf)
1313 goto out_free;
1314
1315 if (!c->ro_mount) {
1316 c->ileb_buf = vmalloc(c->leb_size);
1317 if (!c->ileb_buf)
1318 goto out_free;
1319 }
1320
1321 if (c->bulk_read == 1)
1322 bu_init(c);
1323
1324 if (!c->ro_mount) {
1325 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1326 UBIFS_CIPHER_BLOCK_SIZE,
1327 GFP_KERNEL);
1328 if (!c->write_reserve_buf)
1329 goto out_free;
1330 }
1331
1332 c->mounting = 1;
1333
1334 if (c->auth_key_name) {
1335 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1336 err = ubifs_init_authentication(c);
1337 if (err)
1338 goto out_free;
1339 } else {
1340 ubifs_err(c, "auth_key_name, but UBIFS is built without"
1341 " authentication support");
1342 err = -EINVAL;
1343 goto out_free;
1344 }
1345 }
1346
1347 err = ubifs_read_superblock(c);
1348 if (err)
1349 goto out_auth;
1350
1351 c->probing = 0;
1352
1353 /*
1354 * Make sure the compressor which is set as default in the superblock
1355 * or overridden by mount options is actually compiled in.
1356 */
1357 if (!ubifs_compr_present(c, c->default_compr)) {
1358 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1359 ubifs_compr_name(c, c->default_compr));
1360 err = -ENOTSUPP;
1361 goto out_auth;
1362 }
1363
1364 err = init_constants_sb(c);
1365 if (err)
1366 goto out_auth;
1367
1368 sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1369 c->cbuf = kmalloc(sz, GFP_NOFS);
1370 if (!c->cbuf) {
1371 err = -ENOMEM;
1372 goto out_auth;
1373 }
1374
1375 err = alloc_wbufs(c);
1376 if (err)
1377 goto out_cbuf;
1378
1379 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1380 if (!c->ro_mount) {
1381 /* Create background thread */
1382 c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
1383 if (IS_ERR(c->bgt)) {
1384 err = PTR_ERR(c->bgt);
1385 c->bgt = NULL;
1386 ubifs_err(c, "cannot spawn \"%s\", error %d",
1387 c->bgt_name, err);
1388 goto out_wbufs;
1389 }
1390 }
1391
1392 err = ubifs_read_master(c);
1393 if (err)
1394 goto out_master;
1395
1396 init_constants_master(c);
1397
1398 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1399 ubifs_msg(c, "recovery needed");
1400 c->need_recovery = 1;
1401 }
1402
1403 if (c->need_recovery && !c->ro_mount) {
1404 err = ubifs_recover_inl_heads(c, c->sbuf);
1405 if (err)
1406 goto out_master;
1407 }
1408
1409 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1410 if (err)
1411 goto out_master;
1412
1413 if (!c->ro_mount && c->space_fixup) {
1414 err = ubifs_fixup_free_space(c);
1415 if (err)
1416 goto out_lpt;
1417 }
1418
1419 if (!c->ro_mount && !c->need_recovery) {
1420 /*
1421 * Set the "dirty" flag so that if we reboot uncleanly we
1422 * will notice this immediately on the next mount.
1423 */
1424 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1425 err = ubifs_write_master(c);
1426 if (err)
1427 goto out_lpt;
1428 }
1429
1430 /*
1431 * Handle offline signed images: Now that the master node is
1432 * written and its validation no longer depends on the hash
1433 * in the superblock, we can update the offline signed
1434 * superblock with a HMAC version,
1435 */
1436 if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1437 err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1438 if (err)
1439 goto out_lpt;
1440 c->superblock_need_write = 1;
1441 }
1442
1443 if (!c->ro_mount && c->superblock_need_write) {
1444 err = ubifs_write_sb_node(c, c->sup_node);
1445 if (err)
1446 goto out_lpt;
1447 c->superblock_need_write = 0;
1448 }
1449
1450 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1451 if (err)
1452 goto out_lpt;
1453
1454 err = ubifs_replay_journal(c);
1455 if (err)
1456 goto out_journal;
1457
1458 /* Calculate 'min_idx_lebs' after journal replay */
1459 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1460
1461 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1462 if (err)
1463 goto out_orphans;
1464
1465 if (!c->ro_mount) {
1466 int lnum;
1467
1468 err = check_free_space(c);
1469 if (err)
1470 goto out_orphans;
1471
1472 /* Check for enough log space */
1473 lnum = c->lhead_lnum + 1;
1474 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1475 lnum = UBIFS_LOG_LNUM;
1476 if (lnum == c->ltail_lnum) {
1477 err = ubifs_consolidate_log(c);
1478 if (err)
1479 goto out_orphans;
1480 }
1481
1482 if (c->need_recovery) {
1483 if (!ubifs_authenticated(c)) {
1484 err = ubifs_recover_size(c, true);
1485 if (err)
1486 goto out_orphans;
1487 }
1488
1489 err = ubifs_rcvry_gc_commit(c);
1490 if (err)
1491 goto out_orphans;
1492
1493 if (ubifs_authenticated(c)) {
1494 err = ubifs_recover_size(c, false);
1495 if (err)
1496 goto out_orphans;
1497 }
1498 } else {
1499 err = take_gc_lnum(c);
1500 if (err)
1501 goto out_orphans;
1502
1503 /*
1504 * GC LEB may contain garbage if there was an unclean
1505 * reboot, and it should be un-mapped.
1506 */
1507 err = ubifs_leb_unmap(c, c->gc_lnum);
1508 if (err)
1509 goto out_orphans;
1510 }
1511
1512 err = dbg_check_lprops(c);
1513 if (err)
1514 goto out_orphans;
1515 } else if (c->need_recovery) {
1516 err = ubifs_recover_size(c, false);
1517 if (err)
1518 goto out_orphans;
1519 } else {
1520 /*
1521 * Even if we mount read-only, we have to set space in GC LEB
1522 * to proper value because this affects UBIFS free space
1523 * reporting. We do not want to have a situation when
1524 * re-mounting from R/O to R/W changes amount of free space.
1525 */
1526 err = take_gc_lnum(c);
1527 if (err)
1528 goto out_orphans;
1529 }
1530
1531 spin_lock(&ubifs_infos_lock);
1532 list_add_tail(&c->infos_list, &ubifs_infos);
1533 spin_unlock(&ubifs_infos_lock);
1534
1535 if (c->need_recovery) {
1536 if (c->ro_mount)
1537 ubifs_msg(c, "recovery deferred");
1538 else {
1539 c->need_recovery = 0;
1540 ubifs_msg(c, "recovery completed");
1541 /*
1542 * GC LEB has to be empty and taken at this point. But
1543 * the journal head LEBs may also be accounted as
1544 * "empty taken" if they are empty.
1545 */
1546 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1547 }
1548 } else
1549 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1550
1551 err = dbg_check_filesystem(c);
1552 if (err)
1553 goto out_infos;
1554
1555 dbg_debugfs_init_fs(c);
1556
1557 c->mounting = 0;
1558
1559 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1560 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1561 c->ro_mount ? ", R/O mode" : "");
1562 x = (long long)c->main_lebs * c->leb_size;
1563 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1564 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1565 c->leb_size, c->leb_size >> 10, c->min_io_size,
1566 c->max_write_size);
1567 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), max %d LEBs, journal size %lld bytes (%lld MiB, %d LEBs)",
1568 x, x >> 20, c->main_lebs, c->max_leb_cnt,
1569 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1570 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1571 c->report_rp_size, c->report_rp_size >> 10);
1572 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1573 c->fmt_version, c->ro_compat_version,
1574 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1575 c->big_lpt ? ", big LPT model" : ", small LPT model");
1576
1577 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr));
1578 dbg_gen("data journal heads: %d",
1579 c->jhead_cnt - NONDATA_JHEADS_CNT);
1580 dbg_gen("log LEBs: %d (%d - %d)",
1581 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1582 dbg_gen("LPT area LEBs: %d (%d - %d)",
1583 c->lpt_lebs, c->lpt_first, c->lpt_last);
1584 dbg_gen("orphan area LEBs: %d (%d - %d)",
1585 c->orph_lebs, c->orph_first, c->orph_last);
1586 dbg_gen("main area LEBs: %d (%d - %d)",
1587 c->main_lebs, c->main_first, c->leb_cnt - 1);
1588 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1589 dbg_gen("total index bytes: %llu (%llu KiB, %llu MiB)",
1590 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1591 c->bi.old_idx_sz >> 20);
1592 dbg_gen("key hash type: %d", c->key_hash_type);
1593 dbg_gen("tree fanout: %d", c->fanout);
1594 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1595 dbg_gen("max. znode size %d", c->max_znode_sz);
1596 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1597 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1598 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1599 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1600 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1601 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1602 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1603 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1604 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1605 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1606 dbg_gen("dead watermark: %d", c->dead_wm);
1607 dbg_gen("dark watermark: %d", c->dark_wm);
1608 dbg_gen("LEB overhead: %d", c->leb_overhead);
1609 x = (long long)c->main_lebs * c->dark_wm;
1610 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1611 x, x >> 10, x >> 20);
1612 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1613 c->max_bud_bytes, c->max_bud_bytes >> 10,
1614 c->max_bud_bytes >> 20);
1615 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1616 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1617 c->bg_bud_bytes >> 20);
1618 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1619 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1620 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1621 dbg_gen("commit number: %llu", c->cmt_no);
1622 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1623 dbg_gen("max orphans: %d", c->max_orphans);
1624
1625 return 0;
1626
1627out_infos:
1628 spin_lock(&ubifs_infos_lock);
1629 list_del(&c->infos_list);
1630 spin_unlock(&ubifs_infos_lock);
1631out_orphans:
1632 free_orphans(c);
1633out_journal:
1634 destroy_journal(c);
1635out_lpt:
1636 ubifs_lpt_free(c, 0);
1637out_master:
1638 kfree(c->mst_node);
1639 kfree(c->rcvrd_mst_node);
1640 if (c->bgt)
1641 kthread_stop(c->bgt);
1642out_wbufs:
1643 free_wbufs(c);
1644out_cbuf:
1645 kfree(c->cbuf);
1646out_auth:
1647 ubifs_exit_authentication(c);
1648out_free:
1649 kfree(c->write_reserve_buf);
1650 kfree(c->bu.buf);
1651 vfree(c->ileb_buf);
1652 vfree(c->sbuf);
1653 kfree(c->bottom_up_buf);
1654 kfree(c->sup_node);
1655 ubifs_sysfs_unregister(c);
1656out_debugging:
1657 ubifs_debugging_exit(c);
1658 return err;
1659}
1660
1661/**
1662 * ubifs_umount - un-mount UBIFS file-system.
1663 * @c: UBIFS file-system description object
1664 *
1665 * Note, this function is called to free allocated resourced when un-mounting,
1666 * as well as free resources when an error occurred while we were half way
1667 * through mounting (error path cleanup function). So it has to make sure the
1668 * resource was actually allocated before freeing it.
1669 */
1670static void ubifs_umount(struct ubifs_info *c)
1671{
1672 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1673 c->vi.vol_id);
1674
1675 dbg_debugfs_exit_fs(c);
1676 spin_lock(&ubifs_infos_lock);
1677 list_del(&c->infos_list);
1678 spin_unlock(&ubifs_infos_lock);
1679
1680 if (c->bgt)
1681 kthread_stop(c->bgt);
1682
1683 destroy_journal(c);
1684 free_wbufs(c);
1685 free_orphans(c);
1686 ubifs_lpt_free(c, 0);
1687 ubifs_exit_authentication(c);
1688
1689 ubifs_release_options(c);
1690 kfree(c->cbuf);
1691 kfree(c->rcvrd_mst_node);
1692 kfree(c->mst_node);
1693 kfree(c->write_reserve_buf);
1694 kfree(c->bu.buf);
1695 vfree(c->ileb_buf);
1696 vfree(c->sbuf);
1697 kfree(c->bottom_up_buf);
1698 kfree(c->sup_node);
1699 ubifs_debugging_exit(c);
1700 ubifs_sysfs_unregister(c);
1701}
1702
1703/**
1704 * ubifs_remount_rw - re-mount in read-write mode.
1705 * @c: UBIFS file-system description object
1706 *
1707 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1708 * mode. This function allocates the needed resources and re-mounts UBIFS in
1709 * read-write mode.
1710 */
1711static int ubifs_remount_rw(struct ubifs_info *c)
1712{
1713 int err, lnum;
1714
1715 if (c->rw_incompat) {
1716 ubifs_err(c, "the file-system is not R/W-compatible");
1717 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1718 c->fmt_version, c->ro_compat_version,
1719 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1720 return -EROFS;
1721 }
1722
1723 mutex_lock(&c->umount_mutex);
1724 dbg_save_space_info(c);
1725 c->remounting_rw = 1;
1726 c->ro_mount = 0;
1727
1728 if (c->space_fixup) {
1729 err = ubifs_fixup_free_space(c);
1730 if (err)
1731 goto out;
1732 }
1733
1734 err = check_free_space(c);
1735 if (err)
1736 goto out;
1737
1738 if (c->need_recovery) {
1739 ubifs_msg(c, "completing deferred recovery");
1740 err = ubifs_write_rcvrd_mst_node(c);
1741 if (err)
1742 goto out;
1743 if (!ubifs_authenticated(c)) {
1744 err = ubifs_recover_size(c, true);
1745 if (err)
1746 goto out;
1747 }
1748 err = ubifs_clean_lebs(c, c->sbuf);
1749 if (err)
1750 goto out;
1751 err = ubifs_recover_inl_heads(c, c->sbuf);
1752 if (err)
1753 goto out;
1754 } else {
1755 /* A readonly mount is not allowed to have orphans */
1756 ubifs_assert(c, c->tot_orphans == 0);
1757 err = ubifs_clear_orphans(c);
1758 if (err)
1759 goto out;
1760 }
1761
1762 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1763 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1764 err = ubifs_write_master(c);
1765 if (err)
1766 goto out;
1767 }
1768
1769 if (c->superblock_need_write) {
1770 struct ubifs_sb_node *sup = c->sup_node;
1771
1772 err = ubifs_write_sb_node(c, sup);
1773 if (err)
1774 goto out;
1775
1776 c->superblock_need_write = 0;
1777 }
1778
1779 c->ileb_buf = vmalloc(c->leb_size);
1780 if (!c->ileb_buf) {
1781 err = -ENOMEM;
1782 goto out;
1783 }
1784
1785 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1786 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1787 if (!c->write_reserve_buf) {
1788 err = -ENOMEM;
1789 goto out;
1790 }
1791
1792 err = ubifs_lpt_init(c, 0, 1);
1793 if (err)
1794 goto out;
1795
1796 /* Create background thread */
1797 c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
1798 if (IS_ERR(c->bgt)) {
1799 err = PTR_ERR(c->bgt);
1800 c->bgt = NULL;
1801 ubifs_err(c, "cannot spawn \"%s\", error %d",
1802 c->bgt_name, err);
1803 goto out;
1804 }
1805
1806 c->orph_buf = vmalloc(c->leb_size);
1807 if (!c->orph_buf) {
1808 err = -ENOMEM;
1809 goto out;
1810 }
1811
1812 /* Check for enough log space */
1813 lnum = c->lhead_lnum + 1;
1814 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1815 lnum = UBIFS_LOG_LNUM;
1816 if (lnum == c->ltail_lnum) {
1817 err = ubifs_consolidate_log(c);
1818 if (err)
1819 goto out;
1820 }
1821
1822 if (c->need_recovery) {
1823 err = ubifs_rcvry_gc_commit(c);
1824 if (err)
1825 goto out;
1826
1827 if (ubifs_authenticated(c)) {
1828 err = ubifs_recover_size(c, false);
1829 if (err)
1830 goto out;
1831 }
1832 } else {
1833 err = ubifs_leb_unmap(c, c->gc_lnum);
1834 }
1835 if (err)
1836 goto out;
1837
1838 dbg_gen("re-mounted read-write");
1839 c->remounting_rw = 0;
1840
1841 if (c->need_recovery) {
1842 c->need_recovery = 0;
1843 ubifs_msg(c, "deferred recovery completed");
1844 } else {
1845 /*
1846 * Do not run the debugging space check if the were doing
1847 * recovery, because when we saved the information we had the
1848 * file-system in a state where the TNC and lprops has been
1849 * modified in memory, but all the I/O operations (including a
1850 * commit) were deferred. So the file-system was in
1851 * "non-committed" state. Now the file-system is in committed
1852 * state, and of course the amount of free space will change
1853 * because, for example, the old index size was imprecise.
1854 */
1855 err = dbg_check_space_info(c);
1856 }
1857
1858 mutex_unlock(&c->umount_mutex);
1859 return err;
1860
1861out:
1862 c->ro_mount = 1;
1863 vfree(c->orph_buf);
1864 c->orph_buf = NULL;
1865 if (c->bgt) {
1866 kthread_stop(c->bgt);
1867 c->bgt = NULL;
1868 }
1869 kfree(c->write_reserve_buf);
1870 c->write_reserve_buf = NULL;
1871 vfree(c->ileb_buf);
1872 c->ileb_buf = NULL;
1873 ubifs_lpt_free(c, 1);
1874 c->remounting_rw = 0;
1875 mutex_unlock(&c->umount_mutex);
1876 return err;
1877}
1878
1879/**
1880 * ubifs_remount_ro - re-mount in read-only mode.
1881 * @c: UBIFS file-system description object
1882 *
1883 * We assume VFS has stopped writing. Possibly the background thread could be
1884 * running a commit, however kthread_stop will wait in that case.
1885 */
1886static void ubifs_remount_ro(struct ubifs_info *c)
1887{
1888 int i, err;
1889
1890 ubifs_assert(c, !c->need_recovery);
1891 ubifs_assert(c, !c->ro_mount);
1892
1893 mutex_lock(&c->umount_mutex);
1894 if (c->bgt) {
1895 kthread_stop(c->bgt);
1896 c->bgt = NULL;
1897 }
1898
1899 dbg_save_space_info(c);
1900
1901 for (i = 0; i < c->jhead_cnt; i++) {
1902 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1903 if (err)
1904 ubifs_ro_mode(c, err);
1905 }
1906
1907 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1908 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1909 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1910 err = ubifs_write_master(c);
1911 if (err)
1912 ubifs_ro_mode(c, err);
1913
1914 vfree(c->orph_buf);
1915 c->orph_buf = NULL;
1916 kfree(c->write_reserve_buf);
1917 c->write_reserve_buf = NULL;
1918 vfree(c->ileb_buf);
1919 c->ileb_buf = NULL;
1920 ubifs_lpt_free(c, 1);
1921 c->ro_mount = 1;
1922 err = dbg_check_space_info(c);
1923 if (err)
1924 ubifs_ro_mode(c, err);
1925 mutex_unlock(&c->umount_mutex);
1926}
1927
1928static void ubifs_put_super(struct super_block *sb)
1929{
1930 int i;
1931 struct ubifs_info *c = sb->s_fs_info;
1932
1933 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1934
1935 /*
1936 * The following asserts are only valid if there has not been a failure
1937 * of the media. For example, there will be dirty inodes if we failed
1938 * to write them back because of I/O errors.
1939 */
1940 if (!c->ro_error) {
1941 ubifs_assert(c, c->bi.idx_growth == 0);
1942 ubifs_assert(c, c->bi.dd_growth == 0);
1943 ubifs_assert(c, c->bi.data_growth == 0);
1944 }
1945
1946 /*
1947 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1948 * and file system un-mount. Namely, it prevents the shrinker from
1949 * picking this superblock for shrinking - it will be just skipped if
1950 * the mutex is locked.
1951 */
1952 mutex_lock(&c->umount_mutex);
1953 if (!c->ro_mount) {
1954 /*
1955 * First of all kill the background thread to make sure it does
1956 * not interfere with un-mounting and freeing resources.
1957 */
1958 if (c->bgt) {
1959 kthread_stop(c->bgt);
1960 c->bgt = NULL;
1961 }
1962
1963 /*
1964 * On fatal errors c->ro_error is set to 1, in which case we do
1965 * not write the master node.
1966 */
1967 if (!c->ro_error) {
1968 int err;
1969
1970 /* Synchronize write-buffers */
1971 for (i = 0; i < c->jhead_cnt; i++) {
1972 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1973 if (err)
1974 ubifs_ro_mode(c, err);
1975 }
1976
1977 /*
1978 * We are being cleanly unmounted which means the
1979 * orphans were killed - indicate this in the master
1980 * node. Also save the reserved GC LEB number.
1981 */
1982 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1983 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1984 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1985 err = ubifs_write_master(c);
1986 if (err)
1987 /*
1988 * Recovery will attempt to fix the master area
1989 * next mount, so we just print a message and
1990 * continue to unmount normally.
1991 */
1992 ubifs_err(c, "failed to write master node, error %d",
1993 err);
1994 } else {
1995 for (i = 0; i < c->jhead_cnt; i++)
1996 /* Make sure write-buffer timers are canceled */
1997 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1998 }
1999 }
2000
2001 ubifs_umount(c);
2002 ubi_close_volume(c->ubi);
2003 mutex_unlock(&c->umount_mutex);
2004}
2005
2006static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2007{
2008 int err;
2009 struct ubifs_info *c = sb->s_fs_info;
2010
2011 sync_filesystem(sb);
2012 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2013
2014 err = ubifs_parse_options(c, data, 1);
2015 if (err) {
2016 ubifs_err(c, "invalid or unknown remount parameter");
2017 return err;
2018 }
2019
2020 if (c->ro_mount && !(*flags & SB_RDONLY)) {
2021 if (c->ro_error) {
2022 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2023 return -EROFS;
2024 }
2025 if (c->ro_media) {
2026 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2027 return -EROFS;
2028 }
2029 err = ubifs_remount_rw(c);
2030 if (err)
2031 return err;
2032 } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
2033 if (c->ro_error) {
2034 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2035 return -EROFS;
2036 }
2037 ubifs_remount_ro(c);
2038 }
2039
2040 if (c->bulk_read == 1)
2041 bu_init(c);
2042 else {
2043 dbg_gen("disable bulk-read");
2044 mutex_lock(&c->bu_mutex);
2045 kfree(c->bu.buf);
2046 c->bu.buf = NULL;
2047 mutex_unlock(&c->bu_mutex);
2048 }
2049
2050 if (!c->need_recovery)
2051 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
2052
2053 return 0;
2054}
2055
2056const struct super_operations ubifs_super_operations = {
2057 .alloc_inode = ubifs_alloc_inode,
2058 .free_inode = ubifs_free_inode,
2059 .put_super = ubifs_put_super,
2060 .write_inode = ubifs_write_inode,
2061 .drop_inode = ubifs_drop_inode,
2062 .evict_inode = ubifs_evict_inode,
2063 .statfs = ubifs_statfs,
2064 .dirty_inode = ubifs_dirty_inode,
2065 .remount_fs = ubifs_remount_fs,
2066 .show_options = ubifs_show_options,
2067 .sync_fs = ubifs_sync_fs,
2068};
2069
2070/**
2071 * open_ubi - parse UBI device name string and open the UBI device.
2072 * @name: UBI volume name
2073 * @mode: UBI volume open mode
2074 *
2075 * The primary method of mounting UBIFS is by specifying the UBI volume
2076 * character device node path. However, UBIFS may also be mounted without any
2077 * character device node using one of the following methods:
2078 *
2079 * o ubiX_Y - mount UBI device number X, volume Y;
2080 * o ubiY - mount UBI device number 0, volume Y;
2081 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2082 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2083 *
2084 * Alternative '!' separator may be used instead of ':' (because some shells
2085 * like busybox may interpret ':' as an NFS host name separator). This function
2086 * returns UBI volume description object in case of success and a negative
2087 * error code in case of failure.
2088 */
2089static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2090{
2091 struct ubi_volume_desc *ubi;
2092 int dev, vol;
2093 char *endptr;
2094
2095 if (!name || !*name)
2096 return ERR_PTR(-EINVAL);
2097
2098 /* First, try to open using the device node path method */
2099 ubi = ubi_open_volume_path(name, mode);
2100 if (!IS_ERR(ubi))
2101 return ubi;
2102
2103 /* Try the "nodev" method */
2104 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2105 return ERR_PTR(-EINVAL);
2106
2107 /* ubi:NAME method */
2108 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2109 return ubi_open_volume_nm(0, name + 4, mode);
2110
2111 if (!isdigit(name[3]))
2112 return ERR_PTR(-EINVAL);
2113
2114 dev = simple_strtoul(name + 3, &endptr, 0);
2115
2116 /* ubiY method */
2117 if (*endptr == '\0')
2118 return ubi_open_volume(0, dev, mode);
2119
2120 /* ubiX_Y method */
2121 if (*endptr == '_' && isdigit(endptr[1])) {
2122 vol = simple_strtoul(endptr + 1, &endptr, 0);
2123 if (*endptr != '\0')
2124 return ERR_PTR(-EINVAL);
2125 return ubi_open_volume(dev, vol, mode);
2126 }
2127
2128 /* ubiX:NAME method */
2129 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2130 return ubi_open_volume_nm(dev, ++endptr, mode);
2131
2132 return ERR_PTR(-EINVAL);
2133}
2134
2135static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2136{
2137 struct ubifs_info *c;
2138
2139 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2140 if (c) {
2141 spin_lock_init(&c->cnt_lock);
2142 spin_lock_init(&c->cs_lock);
2143 spin_lock_init(&c->buds_lock);
2144 spin_lock_init(&c->space_lock);
2145 spin_lock_init(&c->orphan_lock);
2146 init_rwsem(&c->commit_sem);
2147 mutex_init(&c->lp_mutex);
2148 mutex_init(&c->tnc_mutex);
2149 mutex_init(&c->log_mutex);
2150 mutex_init(&c->umount_mutex);
2151 mutex_init(&c->bu_mutex);
2152 mutex_init(&c->write_reserve_mutex);
2153 init_waitqueue_head(&c->cmt_wq);
2154 c->buds = RB_ROOT;
2155 c->old_idx = RB_ROOT;
2156 c->size_tree = RB_ROOT;
2157 c->orph_tree = RB_ROOT;
2158 INIT_LIST_HEAD(&c->infos_list);
2159 INIT_LIST_HEAD(&c->idx_gc);
2160 INIT_LIST_HEAD(&c->replay_list);
2161 INIT_LIST_HEAD(&c->replay_buds);
2162 INIT_LIST_HEAD(&c->uncat_list);
2163 INIT_LIST_HEAD(&c->empty_list);
2164 INIT_LIST_HEAD(&c->freeable_list);
2165 INIT_LIST_HEAD(&c->frdi_idx_list);
2166 INIT_LIST_HEAD(&c->unclean_leb_list);
2167 INIT_LIST_HEAD(&c->old_buds);
2168 INIT_LIST_HEAD(&c->orph_list);
2169 INIT_LIST_HEAD(&c->orph_new);
2170 c->no_chk_data_crc = 1;
2171 c->assert_action = ASSACT_RO;
2172
2173 c->highest_inum = UBIFS_FIRST_INO;
2174 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2175
2176 ubi_get_volume_info(ubi, &c->vi);
2177 ubi_get_device_info(c->vi.ubi_num, &c->di);
2178 }
2179 return c;
2180}
2181
2182static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2183{
2184 struct ubifs_info *c = sb->s_fs_info;
2185 struct inode *root;
2186 int err;
2187
2188 c->vfs_sb = sb;
2189 /* Re-open the UBI device in read-write mode */
2190 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2191 if (IS_ERR(c->ubi)) {
2192 err = PTR_ERR(c->ubi);
2193 goto out;
2194 }
2195
2196 err = ubifs_parse_options(c, data, 0);
2197 if (err)
2198 goto out_close;
2199
2200 /*
2201 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2202 * UBIFS, I/O is not deferred, it is done immediately in read_folio,
2203 * which means the user would have to wait not just for their own I/O
2204 * but the read-ahead I/O as well i.e. completely pointless.
2205 *
2206 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2207 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2208 * writeback happening.
2209 */
2210 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2211 c->vi.vol_id);
2212 if (err)
2213 goto out_close;
2214 sb->s_bdi->ra_pages = 0;
2215 sb->s_bdi->io_pages = 0;
2216
2217 sb->s_fs_info = c;
2218 sb->s_magic = UBIFS_SUPER_MAGIC;
2219 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2220 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2221 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2222 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2223 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2224 sb->s_op = &ubifs_super_operations;
2225 sb->s_xattr = ubifs_xattr_handlers;
2226 fscrypt_set_ops(sb, &ubifs_crypt_operations);
2227
2228 mutex_lock(&c->umount_mutex);
2229 err = mount_ubifs(c);
2230 if (err) {
2231 ubifs_assert(c, err < 0);
2232 goto out_unlock;
2233 }
2234
2235 /* Read the root inode */
2236 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2237 if (IS_ERR(root)) {
2238 err = PTR_ERR(root);
2239 goto out_umount;
2240 }
2241
2242 sb->s_root = d_make_root(root);
2243 if (!sb->s_root) {
2244 err = -ENOMEM;
2245 goto out_umount;
2246 }
2247
2248 import_uuid(&sb->s_uuid, c->uuid);
2249
2250 mutex_unlock(&c->umount_mutex);
2251 return 0;
2252
2253out_umount:
2254 ubifs_umount(c);
2255out_unlock:
2256 mutex_unlock(&c->umount_mutex);
2257out_close:
2258 ubifs_release_options(c);
2259 ubi_close_volume(c->ubi);
2260out:
2261 return err;
2262}
2263
2264static int sb_test(struct super_block *sb, void *data)
2265{
2266 struct ubifs_info *c1 = data;
2267 struct ubifs_info *c = sb->s_fs_info;
2268
2269 return c->vi.cdev == c1->vi.cdev;
2270}
2271
2272static int sb_set(struct super_block *sb, void *data)
2273{
2274 sb->s_fs_info = data;
2275 return set_anon_super(sb, NULL);
2276}
2277
2278static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2279 const char *name, void *data)
2280{
2281 struct ubi_volume_desc *ubi;
2282 struct ubifs_info *c;
2283 struct super_block *sb;
2284 int err;
2285
2286 dbg_gen("name %s, flags %#x", name, flags);
2287
2288 /*
2289 * Get UBI device number and volume ID. Mount it read-only so far
2290 * because this might be a new mount point, and UBI allows only one
2291 * read-write user at a time.
2292 */
2293 ubi = open_ubi(name, UBI_READONLY);
2294 if (IS_ERR(ubi)) {
2295 if (!(flags & SB_SILENT))
2296 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2297 current->pid, name, (int)PTR_ERR(ubi));
2298 return ERR_CAST(ubi);
2299 }
2300
2301 c = alloc_ubifs_info(ubi);
2302 if (!c) {
2303 err = -ENOMEM;
2304 goto out_close;
2305 }
2306
2307 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2308
2309 sb = sget(fs_type, sb_test, sb_set, flags, c);
2310 if (IS_ERR(sb)) {
2311 err = PTR_ERR(sb);
2312 kfree(c);
2313 goto out_close;
2314 }
2315
2316 if (sb->s_root) {
2317 struct ubifs_info *c1 = sb->s_fs_info;
2318 kfree(c);
2319 /* A new mount point for already mounted UBIFS */
2320 dbg_gen("this ubi volume is already mounted");
2321 if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2322 err = -EBUSY;
2323 goto out_deact;
2324 }
2325 } else {
2326 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2327 if (err)
2328 goto out_deact;
2329 /* We do not support atime */
2330 sb->s_flags |= SB_ACTIVE;
2331 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2332 ubifs_msg(c, "full atime support is enabled.");
2333 else
2334 sb->s_flags |= SB_NOATIME;
2335 }
2336
2337 /* 'fill_super()' opens ubi again so we must close it here */
2338 ubi_close_volume(ubi);
2339
2340 return dget(sb->s_root);
2341
2342out_deact:
2343 deactivate_locked_super(sb);
2344out_close:
2345 ubi_close_volume(ubi);
2346 return ERR_PTR(err);
2347}
2348
2349static void kill_ubifs_super(struct super_block *s)
2350{
2351 struct ubifs_info *c = s->s_fs_info;
2352 kill_anon_super(s);
2353 kfree(c);
2354}
2355
2356static struct file_system_type ubifs_fs_type = {
2357 .name = "ubifs",
2358 .owner = THIS_MODULE,
2359 .mount = ubifs_mount,
2360 .kill_sb = kill_ubifs_super,
2361};
2362MODULE_ALIAS_FS("ubifs");
2363
2364/*
2365 * Inode slab cache constructor.
2366 */
2367static void inode_slab_ctor(void *obj)
2368{
2369 struct ubifs_inode *ui = obj;
2370 inode_init_once(&ui->vfs_inode);
2371}
2372
2373static int __init ubifs_init(void)
2374{
2375 int err = -ENOMEM;
2376
2377 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2378
2379 /* Make sure node sizes are 8-byte aligned */
2380 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2381 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2382 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2383 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2384 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2385 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2386 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2387 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2388 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2389 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2390 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2391
2392 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2393 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2394 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2395 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2396 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2397 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2398
2399 /* Check min. node size */
2400 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2401 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2402 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2403 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2404
2405 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2406 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2407 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2408 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2409
2410 /* Defined node sizes */
2411 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2412 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2413 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2414 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2415
2416 /*
2417 * We use 2 bit wide bit-fields to store compression type, which should
2418 * be amended if more compressors are added. The bit-fields are:
2419 * @compr_type in 'struct ubifs_inode', @default_compr in
2420 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2421 */
2422 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2423
2424 /*
2425 * We require that PAGE_SIZE is greater-than-or-equal-to
2426 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2427 */
2428 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2429 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2430 current->pid, (unsigned int)PAGE_SIZE);
2431 return -EINVAL;
2432 }
2433
2434 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2435 sizeof(struct ubifs_inode), 0,
2436 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2437 SLAB_ACCOUNT, &inode_slab_ctor);
2438 if (!ubifs_inode_slab)
2439 return -ENOMEM;
2440
2441 ubifs_shrinker_info = shrinker_alloc(0, "ubifs-slab");
2442 if (!ubifs_shrinker_info)
2443 goto out_slab;
2444
2445 ubifs_shrinker_info->count_objects = ubifs_shrink_count;
2446 ubifs_shrinker_info->scan_objects = ubifs_shrink_scan;
2447
2448 shrinker_register(ubifs_shrinker_info);
2449
2450 err = ubifs_compressors_init();
2451 if (err)
2452 goto out_shrinker;
2453
2454 dbg_debugfs_init();
2455
2456 err = ubifs_sysfs_init();
2457 if (err)
2458 goto out_dbg;
2459
2460 err = register_filesystem(&ubifs_fs_type);
2461 if (err) {
2462 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2463 current->pid, err);
2464 goto out_sysfs;
2465 }
2466 return 0;
2467
2468out_sysfs:
2469 ubifs_sysfs_exit();
2470out_dbg:
2471 dbg_debugfs_exit();
2472 ubifs_compressors_exit();
2473out_shrinker:
2474 shrinker_free(ubifs_shrinker_info);
2475out_slab:
2476 kmem_cache_destroy(ubifs_inode_slab);
2477 return err;
2478}
2479/* late_initcall to let compressors initialize first */
2480late_initcall(ubifs_init);
2481
2482static void __exit ubifs_exit(void)
2483{
2484 WARN_ON(!list_empty(&ubifs_infos));
2485 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2486
2487 dbg_debugfs_exit();
2488 ubifs_sysfs_exit();
2489 ubifs_compressors_exit();
2490 shrinker_free(ubifs_shrinker_info);
2491
2492 /*
2493 * Make sure all delayed rcu free inodes are flushed before we
2494 * destroy cache.
2495 */
2496 rcu_barrier();
2497 kmem_cache_destroy(ubifs_inode_slab);
2498 unregister_filesystem(&ubifs_fs_type);
2499}
2500module_exit(ubifs_exit);
2501
2502MODULE_LICENSE("GPL");
2503MODULE_VERSION(__stringify(UBIFS_VERSION));
2504MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2505MODULE_DESCRIPTION("UBIFS - UBI File System");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11/*
12 * This file implements UBIFS initialization and VFS superblock operations. Some
13 * initialization stuff which is rather large and complex is placed at
14 * corresponding subsystems, but most of it is here.
15 */
16
17#include <linux/init.h>
18#include <linux/slab.h>
19#include <linux/module.h>
20#include <linux/ctype.h>
21#include <linux/kthread.h>
22#include <linux/parser.h>
23#include <linux/seq_file.h>
24#include <linux/mount.h>
25#include <linux/math64.h>
26#include <linux/writeback.h>
27#include "ubifs.h"
28
29static int ubifs_default_version_set(const char *val, const struct kernel_param *kp)
30{
31 int n = 0, ret;
32
33 ret = kstrtoint(val, 10, &n);
34 if (ret != 0 || n < 4 || n > UBIFS_FORMAT_VERSION)
35 return -EINVAL;
36 return param_set_int(val, kp);
37}
38
39static const struct kernel_param_ops ubifs_default_version_ops = {
40 .set = ubifs_default_version_set,
41 .get = param_get_int,
42};
43
44int ubifs_default_version = UBIFS_FORMAT_VERSION;
45module_param_cb(default_version, &ubifs_default_version_ops, &ubifs_default_version, 0600);
46
47/*
48 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
49 * allocating too much.
50 */
51#define UBIFS_KMALLOC_OK (128*1024)
52
53/* Slab cache for UBIFS inodes */
54static struct kmem_cache *ubifs_inode_slab;
55
56/* UBIFS TNC shrinker description */
57static struct shrinker ubifs_shrinker_info = {
58 .scan_objects = ubifs_shrink_scan,
59 .count_objects = ubifs_shrink_count,
60 .seeks = DEFAULT_SEEKS,
61};
62
63/**
64 * validate_inode - validate inode.
65 * @c: UBIFS file-system description object
66 * @inode: the inode to validate
67 *
68 * This is a helper function for 'ubifs_iget()' which validates various fields
69 * of a newly built inode to make sure they contain sane values and prevent
70 * possible vulnerabilities. Returns zero if the inode is all right and
71 * a non-zero error code if not.
72 */
73static int validate_inode(struct ubifs_info *c, const struct inode *inode)
74{
75 int err;
76 const struct ubifs_inode *ui = ubifs_inode(inode);
77
78 if (inode->i_size > c->max_inode_sz) {
79 ubifs_err(c, "inode is too large (%lld)",
80 (long long)inode->i_size);
81 return 1;
82 }
83
84 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
85 ubifs_err(c, "unknown compression type %d", ui->compr_type);
86 return 2;
87 }
88
89 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
90 return 3;
91
92 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
93 return 4;
94
95 if (ui->xattr && !S_ISREG(inode->i_mode))
96 return 5;
97
98 if (!ubifs_compr_present(c, ui->compr_type)) {
99 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
100 inode->i_ino, ubifs_compr_name(c, ui->compr_type));
101 }
102
103 err = dbg_check_dir(c, inode);
104 return err;
105}
106
107struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
108{
109 int err;
110 union ubifs_key key;
111 struct ubifs_ino_node *ino;
112 struct ubifs_info *c = sb->s_fs_info;
113 struct inode *inode;
114 struct ubifs_inode *ui;
115
116 dbg_gen("inode %lu", inum);
117
118 inode = iget_locked(sb, inum);
119 if (!inode)
120 return ERR_PTR(-ENOMEM);
121 if (!(inode->i_state & I_NEW))
122 return inode;
123 ui = ubifs_inode(inode);
124
125 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
126 if (!ino) {
127 err = -ENOMEM;
128 goto out;
129 }
130
131 ino_key_init(c, &key, inode->i_ino);
132
133 err = ubifs_tnc_lookup(c, &key, ino);
134 if (err)
135 goto out_ino;
136
137 inode->i_flags |= S_NOCMTIME;
138
139 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
140 inode->i_flags |= S_NOATIME;
141
142 set_nlink(inode, le32_to_cpu(ino->nlink));
143 i_uid_write(inode, le32_to_cpu(ino->uid));
144 i_gid_write(inode, le32_to_cpu(ino->gid));
145 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
146 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
147 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
148 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
149 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
150 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
151 inode->i_mode = le32_to_cpu(ino->mode);
152 inode->i_size = le64_to_cpu(ino->size);
153
154 ui->data_len = le32_to_cpu(ino->data_len);
155 ui->flags = le32_to_cpu(ino->flags);
156 ui->compr_type = le16_to_cpu(ino->compr_type);
157 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
158 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
159 ui->xattr_size = le32_to_cpu(ino->xattr_size);
160 ui->xattr_names = le32_to_cpu(ino->xattr_names);
161 ui->synced_i_size = ui->ui_size = inode->i_size;
162
163 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
164
165 err = validate_inode(c, inode);
166 if (err)
167 goto out_invalid;
168
169 switch (inode->i_mode & S_IFMT) {
170 case S_IFREG:
171 inode->i_mapping->a_ops = &ubifs_file_address_operations;
172 inode->i_op = &ubifs_file_inode_operations;
173 inode->i_fop = &ubifs_file_operations;
174 if (ui->xattr) {
175 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
176 if (!ui->data) {
177 err = -ENOMEM;
178 goto out_ino;
179 }
180 memcpy(ui->data, ino->data, ui->data_len);
181 ((char *)ui->data)[ui->data_len] = '\0';
182 } else if (ui->data_len != 0) {
183 err = 10;
184 goto out_invalid;
185 }
186 break;
187 case S_IFDIR:
188 inode->i_op = &ubifs_dir_inode_operations;
189 inode->i_fop = &ubifs_dir_operations;
190 if (ui->data_len != 0) {
191 err = 11;
192 goto out_invalid;
193 }
194 break;
195 case S_IFLNK:
196 inode->i_op = &ubifs_symlink_inode_operations;
197 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
198 err = 12;
199 goto out_invalid;
200 }
201 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
202 if (!ui->data) {
203 err = -ENOMEM;
204 goto out_ino;
205 }
206 memcpy(ui->data, ino->data, ui->data_len);
207 ((char *)ui->data)[ui->data_len] = '\0';
208 break;
209 case S_IFBLK:
210 case S_IFCHR:
211 {
212 dev_t rdev;
213 union ubifs_dev_desc *dev;
214
215 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
216 if (!ui->data) {
217 err = -ENOMEM;
218 goto out_ino;
219 }
220
221 dev = (union ubifs_dev_desc *)ino->data;
222 if (ui->data_len == sizeof(dev->new))
223 rdev = new_decode_dev(le32_to_cpu(dev->new));
224 else if (ui->data_len == sizeof(dev->huge))
225 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
226 else {
227 err = 13;
228 goto out_invalid;
229 }
230 memcpy(ui->data, ino->data, ui->data_len);
231 inode->i_op = &ubifs_file_inode_operations;
232 init_special_inode(inode, inode->i_mode, rdev);
233 break;
234 }
235 case S_IFSOCK:
236 case S_IFIFO:
237 inode->i_op = &ubifs_file_inode_operations;
238 init_special_inode(inode, inode->i_mode, 0);
239 if (ui->data_len != 0) {
240 err = 14;
241 goto out_invalid;
242 }
243 break;
244 default:
245 err = 15;
246 goto out_invalid;
247 }
248
249 kfree(ino);
250 ubifs_set_inode_flags(inode);
251 unlock_new_inode(inode);
252 return inode;
253
254out_invalid:
255 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
256 ubifs_dump_node(c, ino, UBIFS_MAX_INO_NODE_SZ);
257 ubifs_dump_inode(c, inode);
258 err = -EINVAL;
259out_ino:
260 kfree(ino);
261out:
262 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
263 iget_failed(inode);
264 return ERR_PTR(err);
265}
266
267static struct inode *ubifs_alloc_inode(struct super_block *sb)
268{
269 struct ubifs_inode *ui;
270
271 ui = alloc_inode_sb(sb, ubifs_inode_slab, GFP_NOFS);
272 if (!ui)
273 return NULL;
274
275 memset((void *)ui + sizeof(struct inode), 0,
276 sizeof(struct ubifs_inode) - sizeof(struct inode));
277 mutex_init(&ui->ui_mutex);
278 init_rwsem(&ui->xattr_sem);
279 spin_lock_init(&ui->ui_lock);
280 return &ui->vfs_inode;
281};
282
283static void ubifs_free_inode(struct inode *inode)
284{
285 struct ubifs_inode *ui = ubifs_inode(inode);
286
287 kfree(ui->data);
288 fscrypt_free_inode(inode);
289
290 kmem_cache_free(ubifs_inode_slab, ui);
291}
292
293/*
294 * Note, Linux write-back code calls this without 'i_mutex'.
295 */
296static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
297{
298 int err = 0;
299 struct ubifs_info *c = inode->i_sb->s_fs_info;
300 struct ubifs_inode *ui = ubifs_inode(inode);
301
302 ubifs_assert(c, !ui->xattr);
303 if (is_bad_inode(inode))
304 return 0;
305
306 mutex_lock(&ui->ui_mutex);
307 /*
308 * Due to races between write-back forced by budgeting
309 * (see 'sync_some_inodes()') and background write-back, the inode may
310 * have already been synchronized, do not do this again. This might
311 * also happen if it was synchronized in an VFS operation, e.g.
312 * 'ubifs_link()'.
313 */
314 if (!ui->dirty) {
315 mutex_unlock(&ui->ui_mutex);
316 return 0;
317 }
318
319 /*
320 * As an optimization, do not write orphan inodes to the media just
321 * because this is not needed.
322 */
323 dbg_gen("inode %lu, mode %#x, nlink %u",
324 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
325 if (inode->i_nlink) {
326 err = ubifs_jnl_write_inode(c, inode);
327 if (err)
328 ubifs_err(c, "can't write inode %lu, error %d",
329 inode->i_ino, err);
330 else
331 err = dbg_check_inode_size(c, inode, ui->ui_size);
332 }
333
334 ui->dirty = 0;
335 mutex_unlock(&ui->ui_mutex);
336 ubifs_release_dirty_inode_budget(c, ui);
337 return err;
338}
339
340static int ubifs_drop_inode(struct inode *inode)
341{
342 int drop = generic_drop_inode(inode);
343
344 if (!drop)
345 drop = fscrypt_drop_inode(inode);
346
347 return drop;
348}
349
350static void ubifs_evict_inode(struct inode *inode)
351{
352 int err;
353 struct ubifs_info *c = inode->i_sb->s_fs_info;
354 struct ubifs_inode *ui = ubifs_inode(inode);
355
356 if (ui->xattr)
357 /*
358 * Extended attribute inode deletions are fully handled in
359 * 'ubifs_removexattr()'. These inodes are special and have
360 * limited usage, so there is nothing to do here.
361 */
362 goto out;
363
364 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
365 ubifs_assert(c, !atomic_read(&inode->i_count));
366
367 truncate_inode_pages_final(&inode->i_data);
368
369 if (inode->i_nlink)
370 goto done;
371
372 if (is_bad_inode(inode))
373 goto out;
374
375 ui->ui_size = inode->i_size = 0;
376 err = ubifs_jnl_delete_inode(c, inode);
377 if (err)
378 /*
379 * Worst case we have a lost orphan inode wasting space, so a
380 * simple error message is OK here.
381 */
382 ubifs_err(c, "can't delete inode %lu, error %d",
383 inode->i_ino, err);
384
385out:
386 if (ui->dirty)
387 ubifs_release_dirty_inode_budget(c, ui);
388 else {
389 /* We've deleted something - clean the "no space" flags */
390 c->bi.nospace = c->bi.nospace_rp = 0;
391 smp_wmb();
392 }
393done:
394 clear_inode(inode);
395 fscrypt_put_encryption_info(inode);
396}
397
398static void ubifs_dirty_inode(struct inode *inode, int flags)
399{
400 struct ubifs_info *c = inode->i_sb->s_fs_info;
401 struct ubifs_inode *ui = ubifs_inode(inode);
402
403 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
404 if (!ui->dirty) {
405 ui->dirty = 1;
406 dbg_gen("inode %lu", inode->i_ino);
407 }
408}
409
410static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
411{
412 struct ubifs_info *c = dentry->d_sb->s_fs_info;
413 unsigned long long free;
414 __le32 *uuid = (__le32 *)c->uuid;
415
416 free = ubifs_get_free_space(c);
417 dbg_gen("free space %lld bytes (%lld blocks)",
418 free, free >> UBIFS_BLOCK_SHIFT);
419
420 buf->f_type = UBIFS_SUPER_MAGIC;
421 buf->f_bsize = UBIFS_BLOCK_SIZE;
422 buf->f_blocks = c->block_cnt;
423 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
424 if (free > c->report_rp_size)
425 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
426 else
427 buf->f_bavail = 0;
428 buf->f_files = 0;
429 buf->f_ffree = 0;
430 buf->f_namelen = UBIFS_MAX_NLEN;
431 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
432 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
433 ubifs_assert(c, buf->f_bfree <= c->block_cnt);
434 return 0;
435}
436
437static int ubifs_show_options(struct seq_file *s, struct dentry *root)
438{
439 struct ubifs_info *c = root->d_sb->s_fs_info;
440
441 if (c->mount_opts.unmount_mode == 2)
442 seq_puts(s, ",fast_unmount");
443 else if (c->mount_opts.unmount_mode == 1)
444 seq_puts(s, ",norm_unmount");
445
446 if (c->mount_opts.bulk_read == 2)
447 seq_puts(s, ",bulk_read");
448 else if (c->mount_opts.bulk_read == 1)
449 seq_puts(s, ",no_bulk_read");
450
451 if (c->mount_opts.chk_data_crc == 2)
452 seq_puts(s, ",chk_data_crc");
453 else if (c->mount_opts.chk_data_crc == 1)
454 seq_puts(s, ",no_chk_data_crc");
455
456 if (c->mount_opts.override_compr) {
457 seq_printf(s, ",compr=%s",
458 ubifs_compr_name(c, c->mount_opts.compr_type));
459 }
460
461 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
462 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
463
464 return 0;
465}
466
467static int ubifs_sync_fs(struct super_block *sb, int wait)
468{
469 int i, err;
470 struct ubifs_info *c = sb->s_fs_info;
471
472 /*
473 * Zero @wait is just an advisory thing to help the file system shove
474 * lots of data into the queues, and there will be the second
475 * '->sync_fs()' call, with non-zero @wait.
476 */
477 if (!wait)
478 return 0;
479
480 /*
481 * Synchronize write buffers, because 'ubifs_run_commit()' does not
482 * do this if it waits for an already running commit.
483 */
484 for (i = 0; i < c->jhead_cnt; i++) {
485 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
486 if (err)
487 return err;
488 }
489
490 /*
491 * Strictly speaking, it is not necessary to commit the journal here,
492 * synchronizing write-buffers would be enough. But committing makes
493 * UBIFS free space predictions much more accurate, so we want to let
494 * the user be able to get more accurate results of 'statfs()' after
495 * they synchronize the file system.
496 */
497 err = ubifs_run_commit(c);
498 if (err)
499 return err;
500
501 return ubi_sync(c->vi.ubi_num);
502}
503
504/**
505 * init_constants_early - initialize UBIFS constants.
506 * @c: UBIFS file-system description object
507 *
508 * This function initialize UBIFS constants which do not need the superblock to
509 * be read. It also checks that the UBI volume satisfies basic UBIFS
510 * requirements. Returns zero in case of success and a negative error code in
511 * case of failure.
512 */
513static int init_constants_early(struct ubifs_info *c)
514{
515 if (c->vi.corrupted) {
516 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
517 c->ro_media = 1;
518 }
519
520 if (c->di.ro_mode) {
521 ubifs_msg(c, "read-only UBI device");
522 c->ro_media = 1;
523 }
524
525 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
526 ubifs_msg(c, "static UBI volume - read-only mode");
527 c->ro_media = 1;
528 }
529
530 c->leb_cnt = c->vi.size;
531 c->leb_size = c->vi.usable_leb_size;
532 c->leb_start = c->di.leb_start;
533 c->half_leb_size = c->leb_size / 2;
534 c->min_io_size = c->di.min_io_size;
535 c->min_io_shift = fls(c->min_io_size) - 1;
536 c->max_write_size = c->di.max_write_size;
537 c->max_write_shift = fls(c->max_write_size) - 1;
538
539 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
540 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
541 c->leb_size, UBIFS_MIN_LEB_SZ);
542 return -EINVAL;
543 }
544
545 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
546 ubifs_errc(c, "too few LEBs (%d), min. is %d",
547 c->leb_cnt, UBIFS_MIN_LEB_CNT);
548 return -EINVAL;
549 }
550
551 if (!is_power_of_2(c->min_io_size)) {
552 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
553 return -EINVAL;
554 }
555
556 /*
557 * Maximum write size has to be greater or equivalent to min. I/O
558 * size, and be multiple of min. I/O size.
559 */
560 if (c->max_write_size < c->min_io_size ||
561 c->max_write_size % c->min_io_size ||
562 !is_power_of_2(c->max_write_size)) {
563 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
564 c->max_write_size, c->min_io_size);
565 return -EINVAL;
566 }
567
568 /*
569 * UBIFS aligns all node to 8-byte boundary, so to make function in
570 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
571 * less than 8.
572 */
573 if (c->min_io_size < 8) {
574 c->min_io_size = 8;
575 c->min_io_shift = 3;
576 if (c->max_write_size < c->min_io_size) {
577 c->max_write_size = c->min_io_size;
578 c->max_write_shift = c->min_io_shift;
579 }
580 }
581
582 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
583 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
584
585 /*
586 * Initialize node length ranges which are mostly needed for node
587 * length validation.
588 */
589 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
590 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
591 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
592 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
593 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
594 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
595 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
596 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
597 UBIFS_MAX_HMAC_LEN;
598 c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
599 c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
600
601 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
602 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
603 c->ranges[UBIFS_ORPH_NODE].min_len =
604 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
605 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
606 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
607 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
608 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
609 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
610 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
611 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
612 /*
613 * Minimum indexing node size is amended later when superblock is
614 * read and the key length is known.
615 */
616 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
617 /*
618 * Maximum indexing node size is amended later when superblock is
619 * read and the fanout is known.
620 */
621 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
622
623 /*
624 * Initialize dead and dark LEB space watermarks. See gc.c for comments
625 * about these values.
626 */
627 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
628 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
629
630 /*
631 * Calculate how many bytes would be wasted at the end of LEB if it was
632 * fully filled with data nodes of maximum size. This is used in
633 * calculations when reporting free space.
634 */
635 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
636
637 /* Buffer size for bulk-reads */
638 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
639 if (c->max_bu_buf_len > c->leb_size)
640 c->max_bu_buf_len = c->leb_size;
641
642 /* Log is ready, preserve one LEB for commits. */
643 c->min_log_bytes = c->leb_size;
644
645 return 0;
646}
647
648/**
649 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
650 * @c: UBIFS file-system description object
651 * @lnum: LEB the write-buffer was synchronized to
652 * @free: how many free bytes left in this LEB
653 * @pad: how many bytes were padded
654 *
655 * This is a callback function which is called by the I/O unit when the
656 * write-buffer is synchronized. We need this to correctly maintain space
657 * accounting in bud logical eraseblocks. This function returns zero in case of
658 * success and a negative error code in case of failure.
659 *
660 * This function actually belongs to the journal, but we keep it here because
661 * we want to keep it static.
662 */
663static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
664{
665 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
666}
667
668/*
669 * init_constants_sb - initialize UBIFS constants.
670 * @c: UBIFS file-system description object
671 *
672 * This is a helper function which initializes various UBIFS constants after
673 * the superblock has been read. It also checks various UBIFS parameters and
674 * makes sure they are all right. Returns zero in case of success and a
675 * negative error code in case of failure.
676 */
677static int init_constants_sb(struct ubifs_info *c)
678{
679 int tmp, err;
680 long long tmp64;
681
682 c->main_bytes = (long long)c->main_lebs * c->leb_size;
683 c->max_znode_sz = sizeof(struct ubifs_znode) +
684 c->fanout * sizeof(struct ubifs_zbranch);
685
686 tmp = ubifs_idx_node_sz(c, 1);
687 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
688 c->min_idx_node_sz = ALIGN(tmp, 8);
689
690 tmp = ubifs_idx_node_sz(c, c->fanout);
691 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
692 c->max_idx_node_sz = ALIGN(tmp, 8);
693
694 /* Make sure LEB size is large enough to fit full commit */
695 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
696 tmp = ALIGN(tmp, c->min_io_size);
697 if (tmp > c->leb_size) {
698 ubifs_err(c, "too small LEB size %d, at least %d needed",
699 c->leb_size, tmp);
700 return -EINVAL;
701 }
702
703 /*
704 * Make sure that the log is large enough to fit reference nodes for
705 * all buds plus one reserved LEB.
706 */
707 tmp64 = c->max_bud_bytes + c->leb_size - 1;
708 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
709 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
710 tmp /= c->leb_size;
711 tmp += 1;
712 if (c->log_lebs < tmp) {
713 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
714 c->log_lebs, tmp);
715 return -EINVAL;
716 }
717
718 /*
719 * When budgeting we assume worst-case scenarios when the pages are not
720 * be compressed and direntries are of the maximum size.
721 *
722 * Note, data, which may be stored in inodes is budgeted separately, so
723 * it is not included into 'c->bi.inode_budget'.
724 */
725 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
726 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
727 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
728
729 /*
730 * When the amount of flash space used by buds becomes
731 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
732 * The writers are unblocked when the commit is finished. To avoid
733 * writers to be blocked UBIFS initiates background commit in advance,
734 * when number of bud bytes becomes above the limit defined below.
735 */
736 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
737
738 /*
739 * Ensure minimum journal size. All the bytes in the journal heads are
740 * considered to be used, when calculating the current journal usage.
741 * Consequently, if the journal is too small, UBIFS will treat it as
742 * always full.
743 */
744 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
745 if (c->bg_bud_bytes < tmp64)
746 c->bg_bud_bytes = tmp64;
747 if (c->max_bud_bytes < tmp64 + c->leb_size)
748 c->max_bud_bytes = tmp64 + c->leb_size;
749
750 err = ubifs_calc_lpt_geom(c);
751 if (err)
752 return err;
753
754 /* Initialize effective LEB size used in budgeting calculations */
755 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
756 return 0;
757}
758
759/*
760 * init_constants_master - initialize UBIFS constants.
761 * @c: UBIFS file-system description object
762 *
763 * This is a helper function which initializes various UBIFS constants after
764 * the master node has been read. It also checks various UBIFS parameters and
765 * makes sure they are all right.
766 */
767static void init_constants_master(struct ubifs_info *c)
768{
769 long long tmp64;
770
771 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
772 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
773
774 /*
775 * Calculate total amount of FS blocks. This number is not used
776 * internally because it does not make much sense for UBIFS, but it is
777 * necessary to report something for the 'statfs()' call.
778 *
779 * Subtract the LEB reserved for GC, the LEB which is reserved for
780 * deletions, minimum LEBs for the index, and assume only one journal
781 * head is available.
782 */
783 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
784 tmp64 *= (long long)c->leb_size - c->leb_overhead;
785 tmp64 = ubifs_reported_space(c, tmp64);
786 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
787}
788
789/**
790 * take_gc_lnum - reserve GC LEB.
791 * @c: UBIFS file-system description object
792 *
793 * This function ensures that the LEB reserved for garbage collection is marked
794 * as "taken" in lprops. We also have to set free space to LEB size and dirty
795 * space to zero, because lprops may contain out-of-date information if the
796 * file-system was un-mounted before it has been committed. This function
797 * returns zero in case of success and a negative error code in case of
798 * failure.
799 */
800static int take_gc_lnum(struct ubifs_info *c)
801{
802 int err;
803
804 if (c->gc_lnum == -1) {
805 ubifs_err(c, "no LEB for GC");
806 return -EINVAL;
807 }
808
809 /* And we have to tell lprops that this LEB is taken */
810 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
811 LPROPS_TAKEN, 0, 0);
812 return err;
813}
814
815/**
816 * alloc_wbufs - allocate write-buffers.
817 * @c: UBIFS file-system description object
818 *
819 * This helper function allocates and initializes UBIFS write-buffers. Returns
820 * zero in case of success and %-ENOMEM in case of failure.
821 */
822static int alloc_wbufs(struct ubifs_info *c)
823{
824 int i, err;
825
826 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
827 GFP_KERNEL);
828 if (!c->jheads)
829 return -ENOMEM;
830
831 /* Initialize journal heads */
832 for (i = 0; i < c->jhead_cnt; i++) {
833 INIT_LIST_HEAD(&c->jheads[i].buds_list);
834 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
835 if (err)
836 return err;
837
838 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
839 c->jheads[i].wbuf.jhead = i;
840 c->jheads[i].grouped = 1;
841 c->jheads[i].log_hash = ubifs_hash_get_desc(c);
842 if (IS_ERR(c->jheads[i].log_hash)) {
843 err = PTR_ERR(c->jheads[i].log_hash);
844 goto out;
845 }
846 }
847
848 /*
849 * Garbage Collector head does not need to be synchronized by timer.
850 * Also GC head nodes are not grouped.
851 */
852 c->jheads[GCHD].wbuf.no_timer = 1;
853 c->jheads[GCHD].grouped = 0;
854
855 return 0;
856
857out:
858 while (i--)
859 kfree(c->jheads[i].log_hash);
860
861 return err;
862}
863
864/**
865 * free_wbufs - free write-buffers.
866 * @c: UBIFS file-system description object
867 */
868static void free_wbufs(struct ubifs_info *c)
869{
870 int i;
871
872 if (c->jheads) {
873 for (i = 0; i < c->jhead_cnt; i++) {
874 kfree(c->jheads[i].wbuf.buf);
875 kfree(c->jheads[i].wbuf.inodes);
876 kfree(c->jheads[i].log_hash);
877 }
878 kfree(c->jheads);
879 c->jheads = NULL;
880 }
881}
882
883/**
884 * free_orphans - free orphans.
885 * @c: UBIFS file-system description object
886 */
887static void free_orphans(struct ubifs_info *c)
888{
889 struct ubifs_orphan *orph;
890
891 while (c->orph_dnext) {
892 orph = c->orph_dnext;
893 c->orph_dnext = orph->dnext;
894 list_del(&orph->list);
895 kfree(orph);
896 }
897
898 while (!list_empty(&c->orph_list)) {
899 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
900 list_del(&orph->list);
901 kfree(orph);
902 ubifs_err(c, "orphan list not empty at unmount");
903 }
904
905 vfree(c->orph_buf);
906 c->orph_buf = NULL;
907}
908
909/**
910 * free_buds - free per-bud objects.
911 * @c: UBIFS file-system description object
912 */
913static void free_buds(struct ubifs_info *c)
914{
915 struct ubifs_bud *bud, *n;
916
917 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
918 kfree(bud);
919}
920
921/**
922 * check_volume_empty - check if the UBI volume is empty.
923 * @c: UBIFS file-system description object
924 *
925 * This function checks if the UBIFS volume is empty by looking if its LEBs are
926 * mapped or not. The result of checking is stored in the @c->empty variable.
927 * Returns zero in case of success and a negative error code in case of
928 * failure.
929 */
930static int check_volume_empty(struct ubifs_info *c)
931{
932 int lnum, err;
933
934 c->empty = 1;
935 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
936 err = ubifs_is_mapped(c, lnum);
937 if (unlikely(err < 0))
938 return err;
939 if (err == 1) {
940 c->empty = 0;
941 break;
942 }
943
944 cond_resched();
945 }
946
947 return 0;
948}
949
950/*
951 * UBIFS mount options.
952 *
953 * Opt_fast_unmount: do not run a journal commit before un-mounting
954 * Opt_norm_unmount: run a journal commit before un-mounting
955 * Opt_bulk_read: enable bulk-reads
956 * Opt_no_bulk_read: disable bulk-reads
957 * Opt_chk_data_crc: check CRCs when reading data nodes
958 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
959 * Opt_override_compr: override default compressor
960 * Opt_assert: set ubifs_assert() action
961 * Opt_auth_key: The key name used for authentication
962 * Opt_auth_hash_name: The hash type used for authentication
963 * Opt_err: just end of array marker
964 */
965enum {
966 Opt_fast_unmount,
967 Opt_norm_unmount,
968 Opt_bulk_read,
969 Opt_no_bulk_read,
970 Opt_chk_data_crc,
971 Opt_no_chk_data_crc,
972 Opt_override_compr,
973 Opt_assert,
974 Opt_auth_key,
975 Opt_auth_hash_name,
976 Opt_ignore,
977 Opt_err,
978};
979
980static const match_table_t tokens = {
981 {Opt_fast_unmount, "fast_unmount"},
982 {Opt_norm_unmount, "norm_unmount"},
983 {Opt_bulk_read, "bulk_read"},
984 {Opt_no_bulk_read, "no_bulk_read"},
985 {Opt_chk_data_crc, "chk_data_crc"},
986 {Opt_no_chk_data_crc, "no_chk_data_crc"},
987 {Opt_override_compr, "compr=%s"},
988 {Opt_auth_key, "auth_key=%s"},
989 {Opt_auth_hash_name, "auth_hash_name=%s"},
990 {Opt_ignore, "ubi=%s"},
991 {Opt_ignore, "vol=%s"},
992 {Opt_assert, "assert=%s"},
993 {Opt_err, NULL},
994};
995
996/**
997 * parse_standard_option - parse a standard mount option.
998 * @option: the option to parse
999 *
1000 * Normally, standard mount options like "sync" are passed to file-systems as
1001 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1002 * be present in the options string. This function tries to deal with this
1003 * situation and parse standard options. Returns 0 if the option was not
1004 * recognized, and the corresponding integer flag if it was.
1005 *
1006 * UBIFS is only interested in the "sync" option, so do not check for anything
1007 * else.
1008 */
1009static int parse_standard_option(const char *option)
1010{
1011
1012 pr_notice("UBIFS: parse %s\n", option);
1013 if (!strcmp(option, "sync"))
1014 return SB_SYNCHRONOUS;
1015 return 0;
1016}
1017
1018/**
1019 * ubifs_parse_options - parse mount parameters.
1020 * @c: UBIFS file-system description object
1021 * @options: parameters to parse
1022 * @is_remount: non-zero if this is FS re-mount
1023 *
1024 * This function parses UBIFS mount options and returns zero in case success
1025 * and a negative error code in case of failure.
1026 */
1027static int ubifs_parse_options(struct ubifs_info *c, char *options,
1028 int is_remount)
1029{
1030 char *p;
1031 substring_t args[MAX_OPT_ARGS];
1032
1033 if (!options)
1034 return 0;
1035
1036 while ((p = strsep(&options, ","))) {
1037 int token;
1038
1039 if (!*p)
1040 continue;
1041
1042 token = match_token(p, tokens, args);
1043 switch (token) {
1044 /*
1045 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1046 * We accept them in order to be backward-compatible. But this
1047 * should be removed at some point.
1048 */
1049 case Opt_fast_unmount:
1050 c->mount_opts.unmount_mode = 2;
1051 break;
1052 case Opt_norm_unmount:
1053 c->mount_opts.unmount_mode = 1;
1054 break;
1055 case Opt_bulk_read:
1056 c->mount_opts.bulk_read = 2;
1057 c->bulk_read = 1;
1058 break;
1059 case Opt_no_bulk_read:
1060 c->mount_opts.bulk_read = 1;
1061 c->bulk_read = 0;
1062 break;
1063 case Opt_chk_data_crc:
1064 c->mount_opts.chk_data_crc = 2;
1065 c->no_chk_data_crc = 0;
1066 break;
1067 case Opt_no_chk_data_crc:
1068 c->mount_opts.chk_data_crc = 1;
1069 c->no_chk_data_crc = 1;
1070 break;
1071 case Opt_override_compr:
1072 {
1073 char *name = match_strdup(&args[0]);
1074
1075 if (!name)
1076 return -ENOMEM;
1077 if (!strcmp(name, "none"))
1078 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1079 else if (!strcmp(name, "lzo"))
1080 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1081 else if (!strcmp(name, "zlib"))
1082 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1083 else if (!strcmp(name, "zstd"))
1084 c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1085 else {
1086 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1087 kfree(name);
1088 return -EINVAL;
1089 }
1090 kfree(name);
1091 c->mount_opts.override_compr = 1;
1092 c->default_compr = c->mount_opts.compr_type;
1093 break;
1094 }
1095 case Opt_assert:
1096 {
1097 char *act = match_strdup(&args[0]);
1098
1099 if (!act)
1100 return -ENOMEM;
1101 if (!strcmp(act, "report"))
1102 c->assert_action = ASSACT_REPORT;
1103 else if (!strcmp(act, "read-only"))
1104 c->assert_action = ASSACT_RO;
1105 else if (!strcmp(act, "panic"))
1106 c->assert_action = ASSACT_PANIC;
1107 else {
1108 ubifs_err(c, "unknown assert action \"%s\"", act);
1109 kfree(act);
1110 return -EINVAL;
1111 }
1112 kfree(act);
1113 break;
1114 }
1115 case Opt_auth_key:
1116 if (!is_remount) {
1117 c->auth_key_name = kstrdup(args[0].from,
1118 GFP_KERNEL);
1119 if (!c->auth_key_name)
1120 return -ENOMEM;
1121 }
1122 break;
1123 case Opt_auth_hash_name:
1124 if (!is_remount) {
1125 c->auth_hash_name = kstrdup(args[0].from,
1126 GFP_KERNEL);
1127 if (!c->auth_hash_name)
1128 return -ENOMEM;
1129 }
1130 break;
1131 case Opt_ignore:
1132 break;
1133 default:
1134 {
1135 unsigned long flag;
1136 struct super_block *sb = c->vfs_sb;
1137
1138 flag = parse_standard_option(p);
1139 if (!flag) {
1140 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1141 p);
1142 return -EINVAL;
1143 }
1144 sb->s_flags |= flag;
1145 break;
1146 }
1147 }
1148 }
1149
1150 return 0;
1151}
1152
1153/*
1154 * ubifs_release_options - release mount parameters which have been dumped.
1155 * @c: UBIFS file-system description object
1156 */
1157static void ubifs_release_options(struct ubifs_info *c)
1158{
1159 kfree(c->auth_key_name);
1160 c->auth_key_name = NULL;
1161 kfree(c->auth_hash_name);
1162 c->auth_hash_name = NULL;
1163}
1164
1165/**
1166 * destroy_journal - destroy journal data structures.
1167 * @c: UBIFS file-system description object
1168 *
1169 * This function destroys journal data structures including those that may have
1170 * been created by recovery functions.
1171 */
1172static void destroy_journal(struct ubifs_info *c)
1173{
1174 while (!list_empty(&c->unclean_leb_list)) {
1175 struct ubifs_unclean_leb *ucleb;
1176
1177 ucleb = list_entry(c->unclean_leb_list.next,
1178 struct ubifs_unclean_leb, list);
1179 list_del(&ucleb->list);
1180 kfree(ucleb);
1181 }
1182 while (!list_empty(&c->old_buds)) {
1183 struct ubifs_bud *bud;
1184
1185 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1186 list_del(&bud->list);
1187 kfree(bud);
1188 }
1189 ubifs_destroy_idx_gc(c);
1190 ubifs_destroy_size_tree(c);
1191 ubifs_tnc_close(c);
1192 free_buds(c);
1193}
1194
1195/**
1196 * bu_init - initialize bulk-read information.
1197 * @c: UBIFS file-system description object
1198 */
1199static void bu_init(struct ubifs_info *c)
1200{
1201 ubifs_assert(c, c->bulk_read == 1);
1202
1203 if (c->bu.buf)
1204 return; /* Already initialized */
1205
1206again:
1207 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1208 if (!c->bu.buf) {
1209 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1210 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1211 goto again;
1212 }
1213
1214 /* Just disable bulk-read */
1215 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1216 c->max_bu_buf_len);
1217 c->mount_opts.bulk_read = 1;
1218 c->bulk_read = 0;
1219 return;
1220 }
1221}
1222
1223/**
1224 * check_free_space - check if there is enough free space to mount.
1225 * @c: UBIFS file-system description object
1226 *
1227 * This function makes sure UBIFS has enough free space to be mounted in
1228 * read/write mode. UBIFS must always have some free space to allow deletions.
1229 */
1230static int check_free_space(struct ubifs_info *c)
1231{
1232 ubifs_assert(c, c->dark_wm > 0);
1233 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1234 ubifs_err(c, "insufficient free space to mount in R/W mode");
1235 ubifs_dump_budg(c, &c->bi);
1236 ubifs_dump_lprops(c);
1237 return -ENOSPC;
1238 }
1239 return 0;
1240}
1241
1242/**
1243 * mount_ubifs - mount UBIFS file-system.
1244 * @c: UBIFS file-system description object
1245 *
1246 * This function mounts UBIFS file system. Returns zero in case of success and
1247 * a negative error code in case of failure.
1248 */
1249static int mount_ubifs(struct ubifs_info *c)
1250{
1251 int err;
1252 long long x, y;
1253 size_t sz;
1254
1255 c->ro_mount = !!sb_rdonly(c->vfs_sb);
1256 /* Suppress error messages while probing if SB_SILENT is set */
1257 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1258
1259 err = init_constants_early(c);
1260 if (err)
1261 return err;
1262
1263 err = ubifs_debugging_init(c);
1264 if (err)
1265 return err;
1266
1267 err = ubifs_sysfs_register(c);
1268 if (err)
1269 goto out_debugging;
1270
1271 err = check_volume_empty(c);
1272 if (err)
1273 goto out_free;
1274
1275 if (c->empty && (c->ro_mount || c->ro_media)) {
1276 /*
1277 * This UBI volume is empty, and read-only, or the file system
1278 * is mounted read-only - we cannot format it.
1279 */
1280 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1281 c->ro_media ? "UBI volume" : "mount");
1282 err = -EROFS;
1283 goto out_free;
1284 }
1285
1286 if (c->ro_media && !c->ro_mount) {
1287 ubifs_err(c, "cannot mount read-write - read-only media");
1288 err = -EROFS;
1289 goto out_free;
1290 }
1291
1292 /*
1293 * The requirement for the buffer is that it should fit indexing B-tree
1294 * height amount of integers. We assume the height if the TNC tree will
1295 * never exceed 64.
1296 */
1297 err = -ENOMEM;
1298 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1299 GFP_KERNEL);
1300 if (!c->bottom_up_buf)
1301 goto out_free;
1302
1303 c->sbuf = vmalloc(c->leb_size);
1304 if (!c->sbuf)
1305 goto out_free;
1306
1307 if (!c->ro_mount) {
1308 c->ileb_buf = vmalloc(c->leb_size);
1309 if (!c->ileb_buf)
1310 goto out_free;
1311 }
1312
1313 if (c->bulk_read == 1)
1314 bu_init(c);
1315
1316 if (!c->ro_mount) {
1317 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1318 UBIFS_CIPHER_BLOCK_SIZE,
1319 GFP_KERNEL);
1320 if (!c->write_reserve_buf)
1321 goto out_free;
1322 }
1323
1324 c->mounting = 1;
1325
1326 if (c->auth_key_name) {
1327 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1328 err = ubifs_init_authentication(c);
1329 if (err)
1330 goto out_free;
1331 } else {
1332 ubifs_err(c, "auth_key_name, but UBIFS is built without"
1333 " authentication support");
1334 err = -EINVAL;
1335 goto out_free;
1336 }
1337 }
1338
1339 err = ubifs_read_superblock(c);
1340 if (err)
1341 goto out_auth;
1342
1343 c->probing = 0;
1344
1345 /*
1346 * Make sure the compressor which is set as default in the superblock
1347 * or overridden by mount options is actually compiled in.
1348 */
1349 if (!ubifs_compr_present(c, c->default_compr)) {
1350 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1351 ubifs_compr_name(c, c->default_compr));
1352 err = -ENOTSUPP;
1353 goto out_auth;
1354 }
1355
1356 err = init_constants_sb(c);
1357 if (err)
1358 goto out_auth;
1359
1360 sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1361 c->cbuf = kmalloc(sz, GFP_NOFS);
1362 if (!c->cbuf) {
1363 err = -ENOMEM;
1364 goto out_auth;
1365 }
1366
1367 err = alloc_wbufs(c);
1368 if (err)
1369 goto out_cbuf;
1370
1371 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1372 if (!c->ro_mount) {
1373 /* Create background thread */
1374 c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
1375 if (IS_ERR(c->bgt)) {
1376 err = PTR_ERR(c->bgt);
1377 c->bgt = NULL;
1378 ubifs_err(c, "cannot spawn \"%s\", error %d",
1379 c->bgt_name, err);
1380 goto out_wbufs;
1381 }
1382 }
1383
1384 err = ubifs_read_master(c);
1385 if (err)
1386 goto out_master;
1387
1388 init_constants_master(c);
1389
1390 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1391 ubifs_msg(c, "recovery needed");
1392 c->need_recovery = 1;
1393 }
1394
1395 if (c->need_recovery && !c->ro_mount) {
1396 err = ubifs_recover_inl_heads(c, c->sbuf);
1397 if (err)
1398 goto out_master;
1399 }
1400
1401 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1402 if (err)
1403 goto out_master;
1404
1405 if (!c->ro_mount && c->space_fixup) {
1406 err = ubifs_fixup_free_space(c);
1407 if (err)
1408 goto out_lpt;
1409 }
1410
1411 if (!c->ro_mount && !c->need_recovery) {
1412 /*
1413 * Set the "dirty" flag so that if we reboot uncleanly we
1414 * will notice this immediately on the next mount.
1415 */
1416 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1417 err = ubifs_write_master(c);
1418 if (err)
1419 goto out_lpt;
1420 }
1421
1422 /*
1423 * Handle offline signed images: Now that the master node is
1424 * written and its validation no longer depends on the hash
1425 * in the superblock, we can update the offline signed
1426 * superblock with a HMAC version,
1427 */
1428 if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1429 err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1430 if (err)
1431 goto out_lpt;
1432 c->superblock_need_write = 1;
1433 }
1434
1435 if (!c->ro_mount && c->superblock_need_write) {
1436 err = ubifs_write_sb_node(c, c->sup_node);
1437 if (err)
1438 goto out_lpt;
1439 c->superblock_need_write = 0;
1440 }
1441
1442 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1443 if (err)
1444 goto out_lpt;
1445
1446 err = ubifs_replay_journal(c);
1447 if (err)
1448 goto out_journal;
1449
1450 /* Calculate 'min_idx_lebs' after journal replay */
1451 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1452
1453 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1454 if (err)
1455 goto out_orphans;
1456
1457 if (!c->ro_mount) {
1458 int lnum;
1459
1460 err = check_free_space(c);
1461 if (err)
1462 goto out_orphans;
1463
1464 /* Check for enough log space */
1465 lnum = c->lhead_lnum + 1;
1466 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1467 lnum = UBIFS_LOG_LNUM;
1468 if (lnum == c->ltail_lnum) {
1469 err = ubifs_consolidate_log(c);
1470 if (err)
1471 goto out_orphans;
1472 }
1473
1474 if (c->need_recovery) {
1475 if (!ubifs_authenticated(c)) {
1476 err = ubifs_recover_size(c, true);
1477 if (err)
1478 goto out_orphans;
1479 }
1480
1481 err = ubifs_rcvry_gc_commit(c);
1482 if (err)
1483 goto out_orphans;
1484
1485 if (ubifs_authenticated(c)) {
1486 err = ubifs_recover_size(c, false);
1487 if (err)
1488 goto out_orphans;
1489 }
1490 } else {
1491 err = take_gc_lnum(c);
1492 if (err)
1493 goto out_orphans;
1494
1495 /*
1496 * GC LEB may contain garbage if there was an unclean
1497 * reboot, and it should be un-mapped.
1498 */
1499 err = ubifs_leb_unmap(c, c->gc_lnum);
1500 if (err)
1501 goto out_orphans;
1502 }
1503
1504 err = dbg_check_lprops(c);
1505 if (err)
1506 goto out_orphans;
1507 } else if (c->need_recovery) {
1508 err = ubifs_recover_size(c, false);
1509 if (err)
1510 goto out_orphans;
1511 } else {
1512 /*
1513 * Even if we mount read-only, we have to set space in GC LEB
1514 * to proper value because this affects UBIFS free space
1515 * reporting. We do not want to have a situation when
1516 * re-mounting from R/O to R/W changes amount of free space.
1517 */
1518 err = take_gc_lnum(c);
1519 if (err)
1520 goto out_orphans;
1521 }
1522
1523 spin_lock(&ubifs_infos_lock);
1524 list_add_tail(&c->infos_list, &ubifs_infos);
1525 spin_unlock(&ubifs_infos_lock);
1526
1527 if (c->need_recovery) {
1528 if (c->ro_mount)
1529 ubifs_msg(c, "recovery deferred");
1530 else {
1531 c->need_recovery = 0;
1532 ubifs_msg(c, "recovery completed");
1533 /*
1534 * GC LEB has to be empty and taken at this point. But
1535 * the journal head LEBs may also be accounted as
1536 * "empty taken" if they are empty.
1537 */
1538 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1539 }
1540 } else
1541 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1542
1543 err = dbg_check_filesystem(c);
1544 if (err)
1545 goto out_infos;
1546
1547 dbg_debugfs_init_fs(c);
1548
1549 c->mounting = 0;
1550
1551 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1552 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1553 c->ro_mount ? ", R/O mode" : "");
1554 x = (long long)c->main_lebs * c->leb_size;
1555 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1556 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1557 c->leb_size, c->leb_size >> 10, c->min_io_size,
1558 c->max_write_size);
1559 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), max %d LEBs, journal size %lld bytes (%lld MiB, %d LEBs)",
1560 x, x >> 20, c->main_lebs, c->max_leb_cnt,
1561 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1562 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1563 c->report_rp_size, c->report_rp_size >> 10);
1564 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1565 c->fmt_version, c->ro_compat_version,
1566 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1567 c->big_lpt ? ", big LPT model" : ", small LPT model");
1568
1569 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr));
1570 dbg_gen("data journal heads: %d",
1571 c->jhead_cnt - NONDATA_JHEADS_CNT);
1572 dbg_gen("log LEBs: %d (%d - %d)",
1573 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1574 dbg_gen("LPT area LEBs: %d (%d - %d)",
1575 c->lpt_lebs, c->lpt_first, c->lpt_last);
1576 dbg_gen("orphan area LEBs: %d (%d - %d)",
1577 c->orph_lebs, c->orph_first, c->orph_last);
1578 dbg_gen("main area LEBs: %d (%d - %d)",
1579 c->main_lebs, c->main_first, c->leb_cnt - 1);
1580 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1581 dbg_gen("total index bytes: %llu (%llu KiB, %llu MiB)",
1582 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1583 c->bi.old_idx_sz >> 20);
1584 dbg_gen("key hash type: %d", c->key_hash_type);
1585 dbg_gen("tree fanout: %d", c->fanout);
1586 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1587 dbg_gen("max. znode size %d", c->max_znode_sz);
1588 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1589 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1590 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1591 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1592 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1593 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1594 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1595 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1596 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1597 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1598 dbg_gen("dead watermark: %d", c->dead_wm);
1599 dbg_gen("dark watermark: %d", c->dark_wm);
1600 dbg_gen("LEB overhead: %d", c->leb_overhead);
1601 x = (long long)c->main_lebs * c->dark_wm;
1602 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1603 x, x >> 10, x >> 20);
1604 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1605 c->max_bud_bytes, c->max_bud_bytes >> 10,
1606 c->max_bud_bytes >> 20);
1607 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1608 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1609 c->bg_bud_bytes >> 20);
1610 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1611 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1612 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1613 dbg_gen("commit number: %llu", c->cmt_no);
1614 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1615 dbg_gen("max orphans: %d", c->max_orphans);
1616
1617 return 0;
1618
1619out_infos:
1620 spin_lock(&ubifs_infos_lock);
1621 list_del(&c->infos_list);
1622 spin_unlock(&ubifs_infos_lock);
1623out_orphans:
1624 free_orphans(c);
1625out_journal:
1626 destroy_journal(c);
1627out_lpt:
1628 ubifs_lpt_free(c, 0);
1629out_master:
1630 kfree(c->mst_node);
1631 kfree(c->rcvrd_mst_node);
1632 if (c->bgt)
1633 kthread_stop(c->bgt);
1634out_wbufs:
1635 free_wbufs(c);
1636out_cbuf:
1637 kfree(c->cbuf);
1638out_auth:
1639 ubifs_exit_authentication(c);
1640out_free:
1641 kfree(c->write_reserve_buf);
1642 kfree(c->bu.buf);
1643 vfree(c->ileb_buf);
1644 vfree(c->sbuf);
1645 kfree(c->bottom_up_buf);
1646 kfree(c->sup_node);
1647 ubifs_sysfs_unregister(c);
1648out_debugging:
1649 ubifs_debugging_exit(c);
1650 return err;
1651}
1652
1653/**
1654 * ubifs_umount - un-mount UBIFS file-system.
1655 * @c: UBIFS file-system description object
1656 *
1657 * Note, this function is called to free allocated resourced when un-mounting,
1658 * as well as free resources when an error occurred while we were half way
1659 * through mounting (error path cleanup function). So it has to make sure the
1660 * resource was actually allocated before freeing it.
1661 */
1662static void ubifs_umount(struct ubifs_info *c)
1663{
1664 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1665 c->vi.vol_id);
1666
1667 dbg_debugfs_exit_fs(c);
1668 spin_lock(&ubifs_infos_lock);
1669 list_del(&c->infos_list);
1670 spin_unlock(&ubifs_infos_lock);
1671
1672 if (c->bgt)
1673 kthread_stop(c->bgt);
1674
1675 destroy_journal(c);
1676 free_wbufs(c);
1677 free_orphans(c);
1678 ubifs_lpt_free(c, 0);
1679 ubifs_exit_authentication(c);
1680
1681 ubifs_release_options(c);
1682 kfree(c->cbuf);
1683 kfree(c->rcvrd_mst_node);
1684 kfree(c->mst_node);
1685 kfree(c->write_reserve_buf);
1686 kfree(c->bu.buf);
1687 vfree(c->ileb_buf);
1688 vfree(c->sbuf);
1689 kfree(c->bottom_up_buf);
1690 kfree(c->sup_node);
1691 ubifs_debugging_exit(c);
1692 ubifs_sysfs_unregister(c);
1693}
1694
1695/**
1696 * ubifs_remount_rw - re-mount in read-write mode.
1697 * @c: UBIFS file-system description object
1698 *
1699 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1700 * mode. This function allocates the needed resources and re-mounts UBIFS in
1701 * read-write mode.
1702 */
1703static int ubifs_remount_rw(struct ubifs_info *c)
1704{
1705 int err, lnum;
1706
1707 if (c->rw_incompat) {
1708 ubifs_err(c, "the file-system is not R/W-compatible");
1709 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1710 c->fmt_version, c->ro_compat_version,
1711 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1712 return -EROFS;
1713 }
1714
1715 mutex_lock(&c->umount_mutex);
1716 dbg_save_space_info(c);
1717 c->remounting_rw = 1;
1718 c->ro_mount = 0;
1719
1720 if (c->space_fixup) {
1721 err = ubifs_fixup_free_space(c);
1722 if (err)
1723 goto out;
1724 }
1725
1726 err = check_free_space(c);
1727 if (err)
1728 goto out;
1729
1730 if (c->need_recovery) {
1731 ubifs_msg(c, "completing deferred recovery");
1732 err = ubifs_write_rcvrd_mst_node(c);
1733 if (err)
1734 goto out;
1735 if (!ubifs_authenticated(c)) {
1736 err = ubifs_recover_size(c, true);
1737 if (err)
1738 goto out;
1739 }
1740 err = ubifs_clean_lebs(c, c->sbuf);
1741 if (err)
1742 goto out;
1743 err = ubifs_recover_inl_heads(c, c->sbuf);
1744 if (err)
1745 goto out;
1746 } else {
1747 /* A readonly mount is not allowed to have orphans */
1748 ubifs_assert(c, c->tot_orphans == 0);
1749 err = ubifs_clear_orphans(c);
1750 if (err)
1751 goto out;
1752 }
1753
1754 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1755 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1756 err = ubifs_write_master(c);
1757 if (err)
1758 goto out;
1759 }
1760
1761 if (c->superblock_need_write) {
1762 struct ubifs_sb_node *sup = c->sup_node;
1763
1764 err = ubifs_write_sb_node(c, sup);
1765 if (err)
1766 goto out;
1767
1768 c->superblock_need_write = 0;
1769 }
1770
1771 c->ileb_buf = vmalloc(c->leb_size);
1772 if (!c->ileb_buf) {
1773 err = -ENOMEM;
1774 goto out;
1775 }
1776
1777 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1778 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1779 if (!c->write_reserve_buf) {
1780 err = -ENOMEM;
1781 goto out;
1782 }
1783
1784 err = ubifs_lpt_init(c, 0, 1);
1785 if (err)
1786 goto out;
1787
1788 /* Create background thread */
1789 c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
1790 if (IS_ERR(c->bgt)) {
1791 err = PTR_ERR(c->bgt);
1792 c->bgt = NULL;
1793 ubifs_err(c, "cannot spawn \"%s\", error %d",
1794 c->bgt_name, err);
1795 goto out;
1796 }
1797
1798 c->orph_buf = vmalloc(c->leb_size);
1799 if (!c->orph_buf) {
1800 err = -ENOMEM;
1801 goto out;
1802 }
1803
1804 /* Check for enough log space */
1805 lnum = c->lhead_lnum + 1;
1806 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1807 lnum = UBIFS_LOG_LNUM;
1808 if (lnum == c->ltail_lnum) {
1809 err = ubifs_consolidate_log(c);
1810 if (err)
1811 goto out;
1812 }
1813
1814 if (c->need_recovery) {
1815 err = ubifs_rcvry_gc_commit(c);
1816 if (err)
1817 goto out;
1818
1819 if (ubifs_authenticated(c)) {
1820 err = ubifs_recover_size(c, false);
1821 if (err)
1822 goto out;
1823 }
1824 } else {
1825 err = ubifs_leb_unmap(c, c->gc_lnum);
1826 }
1827 if (err)
1828 goto out;
1829
1830 dbg_gen("re-mounted read-write");
1831 c->remounting_rw = 0;
1832
1833 if (c->need_recovery) {
1834 c->need_recovery = 0;
1835 ubifs_msg(c, "deferred recovery completed");
1836 } else {
1837 /*
1838 * Do not run the debugging space check if the were doing
1839 * recovery, because when we saved the information we had the
1840 * file-system in a state where the TNC and lprops has been
1841 * modified in memory, but all the I/O operations (including a
1842 * commit) were deferred. So the file-system was in
1843 * "non-committed" state. Now the file-system is in committed
1844 * state, and of course the amount of free space will change
1845 * because, for example, the old index size was imprecise.
1846 */
1847 err = dbg_check_space_info(c);
1848 }
1849
1850 mutex_unlock(&c->umount_mutex);
1851 return err;
1852
1853out:
1854 c->ro_mount = 1;
1855 vfree(c->orph_buf);
1856 c->orph_buf = NULL;
1857 if (c->bgt) {
1858 kthread_stop(c->bgt);
1859 c->bgt = NULL;
1860 }
1861 kfree(c->write_reserve_buf);
1862 c->write_reserve_buf = NULL;
1863 vfree(c->ileb_buf);
1864 c->ileb_buf = NULL;
1865 ubifs_lpt_free(c, 1);
1866 c->remounting_rw = 0;
1867 mutex_unlock(&c->umount_mutex);
1868 return err;
1869}
1870
1871/**
1872 * ubifs_remount_ro - re-mount in read-only mode.
1873 * @c: UBIFS file-system description object
1874 *
1875 * We assume VFS has stopped writing. Possibly the background thread could be
1876 * running a commit, however kthread_stop will wait in that case.
1877 */
1878static void ubifs_remount_ro(struct ubifs_info *c)
1879{
1880 int i, err;
1881
1882 ubifs_assert(c, !c->need_recovery);
1883 ubifs_assert(c, !c->ro_mount);
1884
1885 mutex_lock(&c->umount_mutex);
1886 if (c->bgt) {
1887 kthread_stop(c->bgt);
1888 c->bgt = NULL;
1889 }
1890
1891 dbg_save_space_info(c);
1892
1893 for (i = 0; i < c->jhead_cnt; i++) {
1894 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1895 if (err)
1896 ubifs_ro_mode(c, err);
1897 }
1898
1899 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1900 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1901 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1902 err = ubifs_write_master(c);
1903 if (err)
1904 ubifs_ro_mode(c, err);
1905
1906 vfree(c->orph_buf);
1907 c->orph_buf = NULL;
1908 kfree(c->write_reserve_buf);
1909 c->write_reserve_buf = NULL;
1910 vfree(c->ileb_buf);
1911 c->ileb_buf = NULL;
1912 ubifs_lpt_free(c, 1);
1913 c->ro_mount = 1;
1914 err = dbg_check_space_info(c);
1915 if (err)
1916 ubifs_ro_mode(c, err);
1917 mutex_unlock(&c->umount_mutex);
1918}
1919
1920static void ubifs_put_super(struct super_block *sb)
1921{
1922 int i;
1923 struct ubifs_info *c = sb->s_fs_info;
1924
1925 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1926
1927 /*
1928 * The following asserts are only valid if there has not been a failure
1929 * of the media. For example, there will be dirty inodes if we failed
1930 * to write them back because of I/O errors.
1931 */
1932 if (!c->ro_error) {
1933 ubifs_assert(c, c->bi.idx_growth == 0);
1934 ubifs_assert(c, c->bi.dd_growth == 0);
1935 ubifs_assert(c, c->bi.data_growth == 0);
1936 }
1937
1938 /*
1939 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1940 * and file system un-mount. Namely, it prevents the shrinker from
1941 * picking this superblock for shrinking - it will be just skipped if
1942 * the mutex is locked.
1943 */
1944 mutex_lock(&c->umount_mutex);
1945 if (!c->ro_mount) {
1946 /*
1947 * First of all kill the background thread to make sure it does
1948 * not interfere with un-mounting and freeing resources.
1949 */
1950 if (c->bgt) {
1951 kthread_stop(c->bgt);
1952 c->bgt = NULL;
1953 }
1954
1955 /*
1956 * On fatal errors c->ro_error is set to 1, in which case we do
1957 * not write the master node.
1958 */
1959 if (!c->ro_error) {
1960 int err;
1961
1962 /* Synchronize write-buffers */
1963 for (i = 0; i < c->jhead_cnt; i++) {
1964 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1965 if (err)
1966 ubifs_ro_mode(c, err);
1967 }
1968
1969 /*
1970 * We are being cleanly unmounted which means the
1971 * orphans were killed - indicate this in the master
1972 * node. Also save the reserved GC LEB number.
1973 */
1974 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1975 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1976 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1977 err = ubifs_write_master(c);
1978 if (err)
1979 /*
1980 * Recovery will attempt to fix the master area
1981 * next mount, so we just print a message and
1982 * continue to unmount normally.
1983 */
1984 ubifs_err(c, "failed to write master node, error %d",
1985 err);
1986 } else {
1987 for (i = 0; i < c->jhead_cnt; i++)
1988 /* Make sure write-buffer timers are canceled */
1989 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1990 }
1991 }
1992
1993 ubifs_umount(c);
1994 ubi_close_volume(c->ubi);
1995 mutex_unlock(&c->umount_mutex);
1996}
1997
1998static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1999{
2000 int err;
2001 struct ubifs_info *c = sb->s_fs_info;
2002
2003 sync_filesystem(sb);
2004 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2005
2006 err = ubifs_parse_options(c, data, 1);
2007 if (err) {
2008 ubifs_err(c, "invalid or unknown remount parameter");
2009 return err;
2010 }
2011
2012 if (c->ro_mount && !(*flags & SB_RDONLY)) {
2013 if (c->ro_error) {
2014 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2015 return -EROFS;
2016 }
2017 if (c->ro_media) {
2018 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2019 return -EROFS;
2020 }
2021 err = ubifs_remount_rw(c);
2022 if (err)
2023 return err;
2024 } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
2025 if (c->ro_error) {
2026 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2027 return -EROFS;
2028 }
2029 ubifs_remount_ro(c);
2030 }
2031
2032 if (c->bulk_read == 1)
2033 bu_init(c);
2034 else {
2035 dbg_gen("disable bulk-read");
2036 mutex_lock(&c->bu_mutex);
2037 kfree(c->bu.buf);
2038 c->bu.buf = NULL;
2039 mutex_unlock(&c->bu_mutex);
2040 }
2041
2042 if (!c->need_recovery)
2043 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
2044
2045 return 0;
2046}
2047
2048const struct super_operations ubifs_super_operations = {
2049 .alloc_inode = ubifs_alloc_inode,
2050 .free_inode = ubifs_free_inode,
2051 .put_super = ubifs_put_super,
2052 .write_inode = ubifs_write_inode,
2053 .drop_inode = ubifs_drop_inode,
2054 .evict_inode = ubifs_evict_inode,
2055 .statfs = ubifs_statfs,
2056 .dirty_inode = ubifs_dirty_inode,
2057 .remount_fs = ubifs_remount_fs,
2058 .show_options = ubifs_show_options,
2059 .sync_fs = ubifs_sync_fs,
2060};
2061
2062/**
2063 * open_ubi - parse UBI device name string and open the UBI device.
2064 * @name: UBI volume name
2065 * @mode: UBI volume open mode
2066 *
2067 * The primary method of mounting UBIFS is by specifying the UBI volume
2068 * character device node path. However, UBIFS may also be mounted without any
2069 * character device node using one of the following methods:
2070 *
2071 * o ubiX_Y - mount UBI device number X, volume Y;
2072 * o ubiY - mount UBI device number 0, volume Y;
2073 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2074 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2075 *
2076 * Alternative '!' separator may be used instead of ':' (because some shells
2077 * like busybox may interpret ':' as an NFS host name separator). This function
2078 * returns UBI volume description object in case of success and a negative
2079 * error code in case of failure.
2080 */
2081static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2082{
2083 struct ubi_volume_desc *ubi;
2084 int dev, vol;
2085 char *endptr;
2086
2087 if (!name || !*name)
2088 return ERR_PTR(-EINVAL);
2089
2090 /* First, try to open using the device node path method */
2091 ubi = ubi_open_volume_path(name, mode);
2092 if (!IS_ERR(ubi))
2093 return ubi;
2094
2095 /* Try the "nodev" method */
2096 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2097 return ERR_PTR(-EINVAL);
2098
2099 /* ubi:NAME method */
2100 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2101 return ubi_open_volume_nm(0, name + 4, mode);
2102
2103 if (!isdigit(name[3]))
2104 return ERR_PTR(-EINVAL);
2105
2106 dev = simple_strtoul(name + 3, &endptr, 0);
2107
2108 /* ubiY method */
2109 if (*endptr == '\0')
2110 return ubi_open_volume(0, dev, mode);
2111
2112 /* ubiX_Y method */
2113 if (*endptr == '_' && isdigit(endptr[1])) {
2114 vol = simple_strtoul(endptr + 1, &endptr, 0);
2115 if (*endptr != '\0')
2116 return ERR_PTR(-EINVAL);
2117 return ubi_open_volume(dev, vol, mode);
2118 }
2119
2120 /* ubiX:NAME method */
2121 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2122 return ubi_open_volume_nm(dev, ++endptr, mode);
2123
2124 return ERR_PTR(-EINVAL);
2125}
2126
2127static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2128{
2129 struct ubifs_info *c;
2130
2131 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2132 if (c) {
2133 spin_lock_init(&c->cnt_lock);
2134 spin_lock_init(&c->cs_lock);
2135 spin_lock_init(&c->buds_lock);
2136 spin_lock_init(&c->space_lock);
2137 spin_lock_init(&c->orphan_lock);
2138 init_rwsem(&c->commit_sem);
2139 mutex_init(&c->lp_mutex);
2140 mutex_init(&c->tnc_mutex);
2141 mutex_init(&c->log_mutex);
2142 mutex_init(&c->umount_mutex);
2143 mutex_init(&c->bu_mutex);
2144 mutex_init(&c->write_reserve_mutex);
2145 init_waitqueue_head(&c->cmt_wq);
2146 c->buds = RB_ROOT;
2147 c->old_idx = RB_ROOT;
2148 c->size_tree = RB_ROOT;
2149 c->orph_tree = RB_ROOT;
2150 INIT_LIST_HEAD(&c->infos_list);
2151 INIT_LIST_HEAD(&c->idx_gc);
2152 INIT_LIST_HEAD(&c->replay_list);
2153 INIT_LIST_HEAD(&c->replay_buds);
2154 INIT_LIST_HEAD(&c->uncat_list);
2155 INIT_LIST_HEAD(&c->empty_list);
2156 INIT_LIST_HEAD(&c->freeable_list);
2157 INIT_LIST_HEAD(&c->frdi_idx_list);
2158 INIT_LIST_HEAD(&c->unclean_leb_list);
2159 INIT_LIST_HEAD(&c->old_buds);
2160 INIT_LIST_HEAD(&c->orph_list);
2161 INIT_LIST_HEAD(&c->orph_new);
2162 c->no_chk_data_crc = 1;
2163 c->assert_action = ASSACT_RO;
2164
2165 c->highest_inum = UBIFS_FIRST_INO;
2166 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2167
2168 ubi_get_volume_info(ubi, &c->vi);
2169 ubi_get_device_info(c->vi.ubi_num, &c->di);
2170 }
2171 return c;
2172}
2173
2174static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2175{
2176 struct ubifs_info *c = sb->s_fs_info;
2177 struct inode *root;
2178 int err;
2179
2180 c->vfs_sb = sb;
2181 /* Re-open the UBI device in read-write mode */
2182 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2183 if (IS_ERR(c->ubi)) {
2184 err = PTR_ERR(c->ubi);
2185 goto out;
2186 }
2187
2188 err = ubifs_parse_options(c, data, 0);
2189 if (err)
2190 goto out_close;
2191
2192 /*
2193 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2194 * UBIFS, I/O is not deferred, it is done immediately in read_folio,
2195 * which means the user would have to wait not just for their own I/O
2196 * but the read-ahead I/O as well i.e. completely pointless.
2197 *
2198 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2199 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2200 * writeback happening.
2201 */
2202 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2203 c->vi.vol_id);
2204 if (err)
2205 goto out_close;
2206 sb->s_bdi->ra_pages = 0;
2207 sb->s_bdi->io_pages = 0;
2208
2209 sb->s_fs_info = c;
2210 sb->s_magic = UBIFS_SUPER_MAGIC;
2211 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2212 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2213 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2214 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2215 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2216 sb->s_op = &ubifs_super_operations;
2217 sb->s_xattr = ubifs_xattr_handlers;
2218 fscrypt_set_ops(sb, &ubifs_crypt_operations);
2219
2220 mutex_lock(&c->umount_mutex);
2221 err = mount_ubifs(c);
2222 if (err) {
2223 ubifs_assert(c, err < 0);
2224 goto out_unlock;
2225 }
2226
2227 /* Read the root inode */
2228 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2229 if (IS_ERR(root)) {
2230 err = PTR_ERR(root);
2231 goto out_umount;
2232 }
2233
2234 sb->s_root = d_make_root(root);
2235 if (!sb->s_root) {
2236 err = -ENOMEM;
2237 goto out_umount;
2238 }
2239
2240 import_uuid(&sb->s_uuid, c->uuid);
2241
2242 mutex_unlock(&c->umount_mutex);
2243 return 0;
2244
2245out_umount:
2246 ubifs_umount(c);
2247out_unlock:
2248 mutex_unlock(&c->umount_mutex);
2249out_close:
2250 ubifs_release_options(c);
2251 ubi_close_volume(c->ubi);
2252out:
2253 return err;
2254}
2255
2256static int sb_test(struct super_block *sb, void *data)
2257{
2258 struct ubifs_info *c1 = data;
2259 struct ubifs_info *c = sb->s_fs_info;
2260
2261 return c->vi.cdev == c1->vi.cdev;
2262}
2263
2264static int sb_set(struct super_block *sb, void *data)
2265{
2266 sb->s_fs_info = data;
2267 return set_anon_super(sb, NULL);
2268}
2269
2270static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2271 const char *name, void *data)
2272{
2273 struct ubi_volume_desc *ubi;
2274 struct ubifs_info *c;
2275 struct super_block *sb;
2276 int err;
2277
2278 dbg_gen("name %s, flags %#x", name, flags);
2279
2280 /*
2281 * Get UBI device number and volume ID. Mount it read-only so far
2282 * because this might be a new mount point, and UBI allows only one
2283 * read-write user at a time.
2284 */
2285 ubi = open_ubi(name, UBI_READONLY);
2286 if (IS_ERR(ubi)) {
2287 if (!(flags & SB_SILENT))
2288 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2289 current->pid, name, (int)PTR_ERR(ubi));
2290 return ERR_CAST(ubi);
2291 }
2292
2293 c = alloc_ubifs_info(ubi);
2294 if (!c) {
2295 err = -ENOMEM;
2296 goto out_close;
2297 }
2298
2299 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2300
2301 sb = sget(fs_type, sb_test, sb_set, flags, c);
2302 if (IS_ERR(sb)) {
2303 err = PTR_ERR(sb);
2304 kfree(c);
2305 goto out_close;
2306 }
2307
2308 if (sb->s_root) {
2309 struct ubifs_info *c1 = sb->s_fs_info;
2310 kfree(c);
2311 /* A new mount point for already mounted UBIFS */
2312 dbg_gen("this ubi volume is already mounted");
2313 if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2314 err = -EBUSY;
2315 goto out_deact;
2316 }
2317 } else {
2318 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2319 if (err)
2320 goto out_deact;
2321 /* We do not support atime */
2322 sb->s_flags |= SB_ACTIVE;
2323 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2324 ubifs_msg(c, "full atime support is enabled.");
2325 else
2326 sb->s_flags |= SB_NOATIME;
2327 }
2328
2329 /* 'fill_super()' opens ubi again so we must close it here */
2330 ubi_close_volume(ubi);
2331
2332 return dget(sb->s_root);
2333
2334out_deact:
2335 deactivate_locked_super(sb);
2336out_close:
2337 ubi_close_volume(ubi);
2338 return ERR_PTR(err);
2339}
2340
2341static void kill_ubifs_super(struct super_block *s)
2342{
2343 struct ubifs_info *c = s->s_fs_info;
2344 kill_anon_super(s);
2345 kfree(c);
2346}
2347
2348static struct file_system_type ubifs_fs_type = {
2349 .name = "ubifs",
2350 .owner = THIS_MODULE,
2351 .mount = ubifs_mount,
2352 .kill_sb = kill_ubifs_super,
2353};
2354MODULE_ALIAS_FS("ubifs");
2355
2356/*
2357 * Inode slab cache constructor.
2358 */
2359static void inode_slab_ctor(void *obj)
2360{
2361 struct ubifs_inode *ui = obj;
2362 inode_init_once(&ui->vfs_inode);
2363}
2364
2365static int __init ubifs_init(void)
2366{
2367 int err;
2368
2369 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2370
2371 /* Make sure node sizes are 8-byte aligned */
2372 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2373 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2374 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2375 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2376 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2377 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2378 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2379 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2380 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2381 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2382 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2383
2384 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2385 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2386 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2387 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2388 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2389 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2390
2391 /* Check min. node size */
2392 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2393 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2394 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2395 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2396
2397 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2398 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2399 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2400 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2401
2402 /* Defined node sizes */
2403 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2404 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2405 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2406 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2407
2408 /*
2409 * We use 2 bit wide bit-fields to store compression type, which should
2410 * be amended if more compressors are added. The bit-fields are:
2411 * @compr_type in 'struct ubifs_inode', @default_compr in
2412 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2413 */
2414 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2415
2416 /*
2417 * We require that PAGE_SIZE is greater-than-or-equal-to
2418 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2419 */
2420 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2421 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2422 current->pid, (unsigned int)PAGE_SIZE);
2423 return -EINVAL;
2424 }
2425
2426 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2427 sizeof(struct ubifs_inode), 0,
2428 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2429 SLAB_ACCOUNT, &inode_slab_ctor);
2430 if (!ubifs_inode_slab)
2431 return -ENOMEM;
2432
2433 err = register_shrinker(&ubifs_shrinker_info, "ubifs-slab");
2434 if (err)
2435 goto out_slab;
2436
2437 err = ubifs_compressors_init();
2438 if (err)
2439 goto out_shrinker;
2440
2441 dbg_debugfs_init();
2442
2443 err = ubifs_sysfs_init();
2444 if (err)
2445 goto out_dbg;
2446
2447 err = register_filesystem(&ubifs_fs_type);
2448 if (err) {
2449 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2450 current->pid, err);
2451 goto out_sysfs;
2452 }
2453 return 0;
2454
2455out_sysfs:
2456 ubifs_sysfs_exit();
2457out_dbg:
2458 dbg_debugfs_exit();
2459 ubifs_compressors_exit();
2460out_shrinker:
2461 unregister_shrinker(&ubifs_shrinker_info);
2462out_slab:
2463 kmem_cache_destroy(ubifs_inode_slab);
2464 return err;
2465}
2466/* late_initcall to let compressors initialize first */
2467late_initcall(ubifs_init);
2468
2469static void __exit ubifs_exit(void)
2470{
2471 WARN_ON(!list_empty(&ubifs_infos));
2472 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2473
2474 dbg_debugfs_exit();
2475 ubifs_sysfs_exit();
2476 ubifs_compressors_exit();
2477 unregister_shrinker(&ubifs_shrinker_info);
2478
2479 /*
2480 * Make sure all delayed rcu free inodes are flushed before we
2481 * destroy cache.
2482 */
2483 rcu_barrier();
2484 kmem_cache_destroy(ubifs_inode_slab);
2485 unregister_filesystem(&ubifs_fs_type);
2486}
2487module_exit(ubifs_exit);
2488
2489MODULE_LICENSE("GPL");
2490MODULE_VERSION(__stringify(UBIFS_VERSION));
2491MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2492MODULE_DESCRIPTION("UBIFS - UBI File System");