Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/nfs/file.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * Changes Copyright (C) 1994 by Florian La Roche
8 * - Do not copy data too often around in the kernel.
9 * - In nfs_file_read the return value of kmalloc wasn't checked.
10 * - Put in a better version of read look-ahead buffering. Original idea
11 * and implementation by Wai S Kok elekokws@ee.nus.sg.
12 *
13 * Expire cache on write to a file by Wai S Kok (Oct 1994).
14 *
15 * Total rewrite of read side for new NFS buffer cache.. Linus.
16 *
17 * nfs regular file handling functions
18 */
19
20#include <linux/module.h>
21#include <linux/time.h>
22#include <linux/kernel.h>
23#include <linux/errno.h>
24#include <linux/fcntl.h>
25#include <linux/stat.h>
26#include <linux/nfs_fs.h>
27#include <linux/nfs_mount.h>
28#include <linux/mm.h>
29#include <linux/pagemap.h>
30#include <linux/gfp.h>
31#include <linux/swap.h>
32
33#include <linux/uaccess.h>
34#include <linux/filelock.h>
35
36#include "delegation.h"
37#include "internal.h"
38#include "iostat.h"
39#include "fscache.h"
40#include "pnfs.h"
41
42#include "nfstrace.h"
43
44#define NFSDBG_FACILITY NFSDBG_FILE
45
46static const struct vm_operations_struct nfs_file_vm_ops;
47
48int nfs_check_flags(int flags)
49{
50 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
51 return -EINVAL;
52
53 return 0;
54}
55EXPORT_SYMBOL_GPL(nfs_check_flags);
56
57/*
58 * Open file
59 */
60static int
61nfs_file_open(struct inode *inode, struct file *filp)
62{
63 int res;
64
65 dprintk("NFS: open file(%pD2)\n", filp);
66
67 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
68 res = nfs_check_flags(filp->f_flags);
69 if (res)
70 return res;
71
72 res = nfs_open(inode, filp);
73 if (res == 0)
74 filp->f_mode |= FMODE_CAN_ODIRECT;
75 return res;
76}
77
78int
79nfs_file_release(struct inode *inode, struct file *filp)
80{
81 dprintk("NFS: release(%pD2)\n", filp);
82
83 nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
84 nfs_file_clear_open_context(filp);
85 nfs_fscache_release_file(inode, filp);
86 return 0;
87}
88EXPORT_SYMBOL_GPL(nfs_file_release);
89
90/**
91 * nfs_revalidate_file_size - Revalidate the file size
92 * @inode: pointer to inode struct
93 * @filp: pointer to struct file
94 *
95 * Revalidates the file length. This is basically a wrapper around
96 * nfs_revalidate_inode() that takes into account the fact that we may
97 * have cached writes (in which case we don't care about the server's
98 * idea of what the file length is), or O_DIRECT (in which case we
99 * shouldn't trust the cache).
100 */
101static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102{
103 struct nfs_server *server = NFS_SERVER(inode);
104
105 if (filp->f_flags & O_DIRECT)
106 goto force_reval;
107 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_SIZE))
108 goto force_reval;
109 return 0;
110force_reval:
111 return __nfs_revalidate_inode(server, inode);
112}
113
114loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
115{
116 dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
117 filp, offset, whence);
118
119 /*
120 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
121 * the cached file length
122 */
123 if (whence != SEEK_SET && whence != SEEK_CUR) {
124 struct inode *inode = filp->f_mapping->host;
125
126 int retval = nfs_revalidate_file_size(inode, filp);
127 if (retval < 0)
128 return (loff_t)retval;
129 }
130
131 return generic_file_llseek(filp, offset, whence);
132}
133EXPORT_SYMBOL_GPL(nfs_file_llseek);
134
135/*
136 * Flush all dirty pages, and check for write errors.
137 */
138static int
139nfs_file_flush(struct file *file, fl_owner_t id)
140{
141 struct inode *inode = file_inode(file);
142 errseq_t since;
143
144 dprintk("NFS: flush(%pD2)\n", file);
145
146 nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
147 if ((file->f_mode & FMODE_WRITE) == 0)
148 return 0;
149
150 /* Flush writes to the server and return any errors */
151 since = filemap_sample_wb_err(file->f_mapping);
152 nfs_wb_all(inode);
153 return filemap_check_wb_err(file->f_mapping, since);
154}
155
156ssize_t
157nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
158{
159 struct inode *inode = file_inode(iocb->ki_filp);
160 ssize_t result;
161
162 if (iocb->ki_flags & IOCB_DIRECT)
163 return nfs_file_direct_read(iocb, to, false);
164
165 dprintk("NFS: read(%pD2, %zu@%lu)\n",
166 iocb->ki_filp,
167 iov_iter_count(to), (unsigned long) iocb->ki_pos);
168
169 nfs_start_io_read(inode);
170 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
171 if (!result) {
172 result = generic_file_read_iter(iocb, to);
173 if (result > 0)
174 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
175 }
176 nfs_end_io_read(inode);
177 return result;
178}
179EXPORT_SYMBOL_GPL(nfs_file_read);
180
181ssize_t
182nfs_file_splice_read(struct file *in, loff_t *ppos, struct pipe_inode_info *pipe,
183 size_t len, unsigned int flags)
184{
185 struct inode *inode = file_inode(in);
186 ssize_t result;
187
188 dprintk("NFS: splice_read(%pD2, %zu@%llu)\n", in, len, *ppos);
189
190 nfs_start_io_read(inode);
191 result = nfs_revalidate_mapping(inode, in->f_mapping);
192 if (!result) {
193 result = filemap_splice_read(in, ppos, pipe, len, flags);
194 if (result > 0)
195 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
196 }
197 nfs_end_io_read(inode);
198 return result;
199}
200EXPORT_SYMBOL_GPL(nfs_file_splice_read);
201
202int
203nfs_file_mmap(struct file *file, struct vm_area_struct *vma)
204{
205 struct inode *inode = file_inode(file);
206 int status;
207
208 dprintk("NFS: mmap(%pD2)\n", file);
209
210 /* Note: generic_file_mmap() returns ENOSYS on nommu systems
211 * so we call that before revalidating the mapping
212 */
213 status = generic_file_mmap(file, vma);
214 if (!status) {
215 vma->vm_ops = &nfs_file_vm_ops;
216 status = nfs_revalidate_mapping(inode, file->f_mapping);
217 }
218 return status;
219}
220EXPORT_SYMBOL_GPL(nfs_file_mmap);
221
222/*
223 * Flush any dirty pages for this process, and check for write errors.
224 * The return status from this call provides a reliable indication of
225 * whether any write errors occurred for this process.
226 */
227static int
228nfs_file_fsync_commit(struct file *file, int datasync)
229{
230 struct inode *inode = file_inode(file);
231 int ret, ret2;
232
233 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
234
235 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
236 ret = nfs_commit_inode(inode, FLUSH_SYNC);
237 ret2 = file_check_and_advance_wb_err(file);
238 if (ret2 < 0)
239 return ret2;
240 return ret;
241}
242
243int
244nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
245{
246 struct inode *inode = file_inode(file);
247 struct nfs_inode *nfsi = NFS_I(inode);
248 long save_nredirtied = atomic_long_read(&nfsi->redirtied_pages);
249 long nredirtied;
250 int ret;
251
252 trace_nfs_fsync_enter(inode);
253
254 for (;;) {
255 ret = file_write_and_wait_range(file, start, end);
256 if (ret != 0)
257 break;
258 ret = nfs_file_fsync_commit(file, datasync);
259 if (ret != 0)
260 break;
261 ret = pnfs_sync_inode(inode, !!datasync);
262 if (ret != 0)
263 break;
264 nredirtied = atomic_long_read(&nfsi->redirtied_pages);
265 if (nredirtied == save_nredirtied)
266 break;
267 save_nredirtied = nredirtied;
268 }
269
270 trace_nfs_fsync_exit(inode, ret);
271 return ret;
272}
273EXPORT_SYMBOL_GPL(nfs_file_fsync);
274
275/*
276 * Decide whether a read/modify/write cycle may be more efficient
277 * then a modify/write/read cycle when writing to a page in the
278 * page cache.
279 *
280 * Some pNFS layout drivers can only read/write at a certain block
281 * granularity like all block devices and therefore we must perform
282 * read/modify/write whenever a page hasn't read yet and the data
283 * to be written there is not aligned to a block boundary and/or
284 * smaller than the block size.
285 *
286 * The modify/write/read cycle may occur if a page is read before
287 * being completely filled by the writer. In this situation, the
288 * page must be completely written to stable storage on the server
289 * before it can be refilled by reading in the page from the server.
290 * This can lead to expensive, small, FILE_SYNC mode writes being
291 * done.
292 *
293 * It may be more efficient to read the page first if the file is
294 * open for reading in addition to writing, the page is not marked
295 * as Uptodate, it is not dirty or waiting to be committed,
296 * indicating that it was previously allocated and then modified,
297 * that there were valid bytes of data in that range of the file,
298 * and that the new data won't completely replace the old data in
299 * that range of the file.
300 */
301static bool nfs_folio_is_full_write(struct folio *folio, loff_t pos,
302 unsigned int len)
303{
304 unsigned int pglen = nfs_folio_length(folio);
305 unsigned int offset = offset_in_folio(folio, pos);
306 unsigned int end = offset + len;
307
308 return !pglen || (end >= pglen && !offset);
309}
310
311static bool nfs_want_read_modify_write(struct file *file, struct folio *folio,
312 loff_t pos, unsigned int len)
313{
314 /*
315 * Up-to-date pages, those with ongoing or full-page write
316 * don't need read/modify/write
317 */
318 if (folio_test_uptodate(folio) || folio_test_private(folio) ||
319 nfs_folio_is_full_write(folio, pos, len))
320 return false;
321
322 if (pnfs_ld_read_whole_page(file_inode(file)))
323 return true;
324 /* Open for reading too? */
325 if (file->f_mode & FMODE_READ)
326 return true;
327 return false;
328}
329
330/*
331 * This does the "real" work of the write. We must allocate and lock the
332 * page to be sent back to the generic routine, which then copies the
333 * data from user space.
334 *
335 * If the writer ends up delaying the write, the writer needs to
336 * increment the page use counts until he is done with the page.
337 */
338static int nfs_write_begin(struct file *file, struct address_space *mapping,
339 loff_t pos, unsigned len, struct page **pagep,
340 void **fsdata)
341{
342 struct folio *folio;
343 int once_thru = 0;
344 int ret;
345
346 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
347 file, mapping->host->i_ino, len, (long long) pos);
348
349start:
350 folio = __filemap_get_folio(mapping, pos >> PAGE_SHIFT, FGP_WRITEBEGIN,
351 mapping_gfp_mask(mapping));
352 if (IS_ERR(folio))
353 return PTR_ERR(folio);
354 *pagep = &folio->page;
355
356 ret = nfs_flush_incompatible(file, folio);
357 if (ret) {
358 folio_unlock(folio);
359 folio_put(folio);
360 } else if (!once_thru &&
361 nfs_want_read_modify_write(file, folio, pos, len)) {
362 once_thru = 1;
363 ret = nfs_read_folio(file, folio);
364 folio_put(folio);
365 if (!ret)
366 goto start;
367 }
368 return ret;
369}
370
371static int nfs_write_end(struct file *file, struct address_space *mapping,
372 loff_t pos, unsigned len, unsigned copied,
373 struct page *page, void *fsdata)
374{
375 struct nfs_open_context *ctx = nfs_file_open_context(file);
376 struct folio *folio = page_folio(page);
377 unsigned offset = offset_in_folio(folio, pos);
378 int status;
379
380 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
381 file, mapping->host->i_ino, len, (long long) pos);
382
383 /*
384 * Zero any uninitialised parts of the page, and then mark the page
385 * as up to date if it turns out that we're extending the file.
386 */
387 if (!folio_test_uptodate(folio)) {
388 size_t fsize = folio_size(folio);
389 unsigned pglen = nfs_folio_length(folio);
390 unsigned end = offset + copied;
391
392 if (pglen == 0) {
393 folio_zero_segments(folio, 0, offset, end, fsize);
394 folio_mark_uptodate(folio);
395 } else if (end >= pglen) {
396 folio_zero_segment(folio, end, fsize);
397 if (offset == 0)
398 folio_mark_uptodate(folio);
399 } else
400 folio_zero_segment(folio, pglen, fsize);
401 }
402
403 status = nfs_update_folio(file, folio, offset, copied);
404
405 folio_unlock(folio);
406 folio_put(folio);
407
408 if (status < 0)
409 return status;
410 NFS_I(mapping->host)->write_io += copied;
411
412 if (nfs_ctx_key_to_expire(ctx, mapping->host))
413 nfs_wb_all(mapping->host);
414
415 return copied;
416}
417
418/*
419 * Partially or wholly invalidate a page
420 * - Release the private state associated with a page if undergoing complete
421 * page invalidation
422 * - Called if either PG_private or PG_fscache is set on the page
423 * - Caller holds page lock
424 */
425static void nfs_invalidate_folio(struct folio *folio, size_t offset,
426 size_t length)
427{
428 struct inode *inode = folio_file_mapping(folio)->host;
429 dfprintk(PAGECACHE, "NFS: invalidate_folio(%lu, %zu, %zu)\n",
430 folio->index, offset, length);
431
432 if (offset != 0 || length < folio_size(folio))
433 return;
434 /* Cancel any unstarted writes on this page */
435 nfs_wb_folio_cancel(inode, folio);
436 folio_wait_fscache(folio);
437 trace_nfs_invalidate_folio(inode, folio);
438}
439
440/*
441 * Attempt to release the private state associated with a folio
442 * - Called if either private or fscache flags are set on the folio
443 * - Caller holds folio lock
444 * - Return true (may release folio) or false (may not)
445 */
446static bool nfs_release_folio(struct folio *folio, gfp_t gfp)
447{
448 dfprintk(PAGECACHE, "NFS: release_folio(%p)\n", folio);
449
450 /* If the private flag is set, then the folio is not freeable */
451 if (folio_test_private(folio)) {
452 if ((current_gfp_context(gfp) & GFP_KERNEL) != GFP_KERNEL ||
453 current_is_kswapd())
454 return false;
455 if (nfs_wb_folio(folio_file_mapping(folio)->host, folio) < 0)
456 return false;
457 }
458 return nfs_fscache_release_folio(folio, gfp);
459}
460
461static void nfs_check_dirty_writeback(struct folio *folio,
462 bool *dirty, bool *writeback)
463{
464 struct nfs_inode *nfsi;
465 struct address_space *mapping = folio->mapping;
466
467 /*
468 * Check if an unstable folio is currently being committed and
469 * if so, have the VM treat it as if the folio is under writeback
470 * so it will not block due to folios that will shortly be freeable.
471 */
472 nfsi = NFS_I(mapping->host);
473 if (atomic_read(&nfsi->commit_info.rpcs_out)) {
474 *writeback = true;
475 return;
476 }
477
478 /*
479 * If the private flag is set, then the folio is not freeable
480 * and as the inode is not being committed, it's not going to
481 * be cleaned in the near future so treat it as dirty
482 */
483 if (folio_test_private(folio))
484 *dirty = true;
485}
486
487/*
488 * Attempt to clear the private state associated with a page when an error
489 * occurs that requires the cached contents of an inode to be written back or
490 * destroyed
491 * - Called if either PG_private or fscache is set on the page
492 * - Caller holds page lock
493 * - Return 0 if successful, -error otherwise
494 */
495static int nfs_launder_folio(struct folio *folio)
496{
497 struct inode *inode = folio->mapping->host;
498 int ret;
499
500 dfprintk(PAGECACHE, "NFS: launder_folio(%ld, %llu)\n",
501 inode->i_ino, folio_pos(folio));
502
503 folio_wait_fscache(folio);
504 ret = nfs_wb_folio(inode, folio);
505 trace_nfs_launder_folio_done(inode, folio, ret);
506 return ret;
507}
508
509static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
510 sector_t *span)
511{
512 unsigned long blocks;
513 long long isize;
514 int ret;
515 struct inode *inode = file_inode(file);
516 struct rpc_clnt *clnt = NFS_CLIENT(inode);
517 struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
518
519 spin_lock(&inode->i_lock);
520 blocks = inode->i_blocks;
521 isize = inode->i_size;
522 spin_unlock(&inode->i_lock);
523 if (blocks*512 < isize) {
524 pr_warn("swap activate: swapfile has holes\n");
525 return -EINVAL;
526 }
527
528 ret = rpc_clnt_swap_activate(clnt);
529 if (ret)
530 return ret;
531 ret = add_swap_extent(sis, 0, sis->max, 0);
532 if (ret < 0) {
533 rpc_clnt_swap_deactivate(clnt);
534 return ret;
535 }
536
537 *span = sis->pages;
538
539 if (cl->rpc_ops->enable_swap)
540 cl->rpc_ops->enable_swap(inode);
541
542 sis->flags |= SWP_FS_OPS;
543 return ret;
544}
545
546static void nfs_swap_deactivate(struct file *file)
547{
548 struct inode *inode = file_inode(file);
549 struct rpc_clnt *clnt = NFS_CLIENT(inode);
550 struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
551
552 rpc_clnt_swap_deactivate(clnt);
553 if (cl->rpc_ops->disable_swap)
554 cl->rpc_ops->disable_swap(file_inode(file));
555}
556
557const struct address_space_operations nfs_file_aops = {
558 .read_folio = nfs_read_folio,
559 .readahead = nfs_readahead,
560 .dirty_folio = filemap_dirty_folio,
561 .writepages = nfs_writepages,
562 .write_begin = nfs_write_begin,
563 .write_end = nfs_write_end,
564 .invalidate_folio = nfs_invalidate_folio,
565 .release_folio = nfs_release_folio,
566 .migrate_folio = nfs_migrate_folio,
567 .launder_folio = nfs_launder_folio,
568 .is_dirty_writeback = nfs_check_dirty_writeback,
569 .error_remove_folio = generic_error_remove_folio,
570 .swap_activate = nfs_swap_activate,
571 .swap_deactivate = nfs_swap_deactivate,
572 .swap_rw = nfs_swap_rw,
573};
574
575/*
576 * Notification that a PTE pointing to an NFS page is about to be made
577 * writable, implying that someone is about to modify the page through a
578 * shared-writable mapping
579 */
580static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
581{
582 struct file *filp = vmf->vma->vm_file;
583 struct inode *inode = file_inode(filp);
584 unsigned pagelen;
585 vm_fault_t ret = VM_FAULT_NOPAGE;
586 struct address_space *mapping;
587 struct folio *folio = page_folio(vmf->page);
588
589 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
590 filp, filp->f_mapping->host->i_ino,
591 (long long)folio_file_pos(folio));
592
593 sb_start_pagefault(inode->i_sb);
594
595 /* make sure the cache has finished storing the page */
596 if (folio_test_fscache(folio) &&
597 folio_wait_fscache_killable(folio) < 0) {
598 ret = VM_FAULT_RETRY;
599 goto out;
600 }
601
602 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
603 nfs_wait_bit_killable,
604 TASK_KILLABLE|TASK_FREEZABLE_UNSAFE);
605
606 folio_lock(folio);
607 mapping = folio_file_mapping(folio);
608 if (mapping != inode->i_mapping)
609 goto out_unlock;
610
611 folio_wait_writeback(folio);
612
613 pagelen = nfs_folio_length(folio);
614 if (pagelen == 0)
615 goto out_unlock;
616
617 ret = VM_FAULT_LOCKED;
618 if (nfs_flush_incompatible(filp, folio) == 0 &&
619 nfs_update_folio(filp, folio, 0, pagelen) == 0)
620 goto out;
621
622 ret = VM_FAULT_SIGBUS;
623out_unlock:
624 folio_unlock(folio);
625out:
626 sb_end_pagefault(inode->i_sb);
627 return ret;
628}
629
630static const struct vm_operations_struct nfs_file_vm_ops = {
631 .fault = filemap_fault,
632 .map_pages = filemap_map_pages,
633 .page_mkwrite = nfs_vm_page_mkwrite,
634};
635
636ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
637{
638 struct file *file = iocb->ki_filp;
639 struct inode *inode = file_inode(file);
640 unsigned int mntflags = NFS_SERVER(inode)->flags;
641 ssize_t result, written;
642 errseq_t since;
643 int error;
644
645 result = nfs_key_timeout_notify(file, inode);
646 if (result)
647 return result;
648
649 if (iocb->ki_flags & IOCB_DIRECT)
650 return nfs_file_direct_write(iocb, from, false);
651
652 dprintk("NFS: write(%pD2, %zu@%Ld)\n",
653 file, iov_iter_count(from), (long long) iocb->ki_pos);
654
655 if (IS_SWAPFILE(inode))
656 goto out_swapfile;
657 /*
658 * O_APPEND implies that we must revalidate the file length.
659 */
660 if (iocb->ki_flags & IOCB_APPEND || iocb->ki_pos > i_size_read(inode)) {
661 result = nfs_revalidate_file_size(inode, file);
662 if (result)
663 return result;
664 }
665
666 nfs_clear_invalid_mapping(file->f_mapping);
667
668 since = filemap_sample_wb_err(file->f_mapping);
669 nfs_start_io_write(inode);
670 result = generic_write_checks(iocb, from);
671 if (result > 0)
672 result = generic_perform_write(iocb, from);
673 nfs_end_io_write(inode);
674 if (result <= 0)
675 goto out;
676
677 written = result;
678 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
679
680 if (mntflags & NFS_MOUNT_WRITE_EAGER) {
681 result = filemap_fdatawrite_range(file->f_mapping,
682 iocb->ki_pos - written,
683 iocb->ki_pos - 1);
684 if (result < 0)
685 goto out;
686 }
687 if (mntflags & NFS_MOUNT_WRITE_WAIT) {
688 filemap_fdatawait_range(file->f_mapping,
689 iocb->ki_pos - written,
690 iocb->ki_pos - 1);
691 }
692 result = generic_write_sync(iocb, written);
693 if (result < 0)
694 return result;
695
696out:
697 /* Return error values */
698 error = filemap_check_wb_err(file->f_mapping, since);
699 switch (error) {
700 default:
701 break;
702 case -EDQUOT:
703 case -EFBIG:
704 case -ENOSPC:
705 nfs_wb_all(inode);
706 error = file_check_and_advance_wb_err(file);
707 if (error < 0)
708 result = error;
709 }
710 return result;
711
712out_swapfile:
713 printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
714 return -ETXTBSY;
715}
716EXPORT_SYMBOL_GPL(nfs_file_write);
717
718static int
719do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
720{
721 struct inode *inode = filp->f_mapping->host;
722 int status = 0;
723 unsigned int saved_type = fl->fl_type;
724
725 /* Try local locking first */
726 posix_test_lock(filp, fl);
727 if (fl->fl_type != F_UNLCK) {
728 /* found a conflict */
729 goto out;
730 }
731 fl->fl_type = saved_type;
732
733 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
734 goto out_noconflict;
735
736 if (is_local)
737 goto out_noconflict;
738
739 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
740out:
741 return status;
742out_noconflict:
743 fl->fl_type = F_UNLCK;
744 goto out;
745}
746
747static int
748do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
749{
750 struct inode *inode = filp->f_mapping->host;
751 struct nfs_lock_context *l_ctx;
752 int status;
753
754 /*
755 * Flush all pending writes before doing anything
756 * with locks..
757 */
758 nfs_wb_all(inode);
759
760 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
761 if (!IS_ERR(l_ctx)) {
762 status = nfs_iocounter_wait(l_ctx);
763 nfs_put_lock_context(l_ctx);
764 /* NOTE: special case
765 * If we're signalled while cleaning up locks on process exit, we
766 * still need to complete the unlock.
767 */
768 if (status < 0 && !(fl->fl_flags & FL_CLOSE))
769 return status;
770 }
771
772 /*
773 * Use local locking if mounted with "-onolock" or with appropriate
774 * "-olocal_lock="
775 */
776 if (!is_local)
777 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
778 else
779 status = locks_lock_file_wait(filp, fl);
780 return status;
781}
782
783static int
784do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
785{
786 struct inode *inode = filp->f_mapping->host;
787 int status;
788
789 /*
790 * Flush all pending writes before doing anything
791 * with locks..
792 */
793 status = nfs_sync_mapping(filp->f_mapping);
794 if (status != 0)
795 goto out;
796
797 /*
798 * Use local locking if mounted with "-onolock" or with appropriate
799 * "-olocal_lock="
800 */
801 if (!is_local)
802 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
803 else
804 status = locks_lock_file_wait(filp, fl);
805 if (status < 0)
806 goto out;
807
808 /*
809 * Invalidate cache to prevent missing any changes. If
810 * the file is mapped, clear the page cache as well so
811 * those mappings will be loaded.
812 *
813 * This makes locking act as a cache coherency point.
814 */
815 nfs_sync_mapping(filp->f_mapping);
816 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
817 nfs_zap_caches(inode);
818 if (mapping_mapped(filp->f_mapping))
819 nfs_revalidate_mapping(inode, filp->f_mapping);
820 }
821out:
822 return status;
823}
824
825/*
826 * Lock a (portion of) a file
827 */
828int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
829{
830 struct inode *inode = filp->f_mapping->host;
831 int ret = -ENOLCK;
832 int is_local = 0;
833
834 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
835 filp, fl->fl_type, fl->fl_flags,
836 (long long)fl->fl_start, (long long)fl->fl_end);
837
838 nfs_inc_stats(inode, NFSIOS_VFSLOCK);
839
840 if (fl->fl_flags & FL_RECLAIM)
841 return -ENOGRACE;
842
843 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
844 is_local = 1;
845
846 if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
847 ret = NFS_PROTO(inode)->lock_check_bounds(fl);
848 if (ret < 0)
849 goto out_err;
850 }
851
852 if (IS_GETLK(cmd))
853 ret = do_getlk(filp, cmd, fl, is_local);
854 else if (fl->fl_type == F_UNLCK)
855 ret = do_unlk(filp, cmd, fl, is_local);
856 else
857 ret = do_setlk(filp, cmd, fl, is_local);
858out_err:
859 return ret;
860}
861EXPORT_SYMBOL_GPL(nfs_lock);
862
863/*
864 * Lock a (portion of) a file
865 */
866int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
867{
868 struct inode *inode = filp->f_mapping->host;
869 int is_local = 0;
870
871 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
872 filp, fl->fl_type, fl->fl_flags);
873
874 if (!(fl->fl_flags & FL_FLOCK))
875 return -ENOLCK;
876
877 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
878 is_local = 1;
879
880 /* We're simulating flock() locks using posix locks on the server */
881 if (fl->fl_type == F_UNLCK)
882 return do_unlk(filp, cmd, fl, is_local);
883 return do_setlk(filp, cmd, fl, is_local);
884}
885EXPORT_SYMBOL_GPL(nfs_flock);
886
887const struct file_operations nfs_file_operations = {
888 .llseek = nfs_file_llseek,
889 .read_iter = nfs_file_read,
890 .write_iter = nfs_file_write,
891 .mmap = nfs_file_mmap,
892 .open = nfs_file_open,
893 .flush = nfs_file_flush,
894 .release = nfs_file_release,
895 .fsync = nfs_file_fsync,
896 .lock = nfs_lock,
897 .flock = nfs_flock,
898 .splice_read = nfs_file_splice_read,
899 .splice_write = iter_file_splice_write,
900 .check_flags = nfs_check_flags,
901 .setlease = simple_nosetlease,
902};
903EXPORT_SYMBOL_GPL(nfs_file_operations);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/nfs/file.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * Changes Copyright (C) 1994 by Florian La Roche
8 * - Do not copy data too often around in the kernel.
9 * - In nfs_file_read the return value of kmalloc wasn't checked.
10 * - Put in a better version of read look-ahead buffering. Original idea
11 * and implementation by Wai S Kok elekokws@ee.nus.sg.
12 *
13 * Expire cache on write to a file by Wai S Kok (Oct 1994).
14 *
15 * Total rewrite of read side for new NFS buffer cache.. Linus.
16 *
17 * nfs regular file handling functions
18 */
19
20#include <linux/module.h>
21#include <linux/time.h>
22#include <linux/kernel.h>
23#include <linux/errno.h>
24#include <linux/fcntl.h>
25#include <linux/stat.h>
26#include <linux/nfs_fs.h>
27#include <linux/nfs_mount.h>
28#include <linux/mm.h>
29#include <linux/pagemap.h>
30#include <linux/gfp.h>
31#include <linux/swap.h>
32
33#include <linux/uaccess.h>
34
35#include "delegation.h"
36#include "internal.h"
37#include "iostat.h"
38#include "fscache.h"
39#include "pnfs.h"
40
41#include "nfstrace.h"
42
43#define NFSDBG_FACILITY NFSDBG_FILE
44
45static const struct vm_operations_struct nfs_file_vm_ops;
46
47int nfs_check_flags(int flags)
48{
49 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
50 return -EINVAL;
51
52 return 0;
53}
54EXPORT_SYMBOL_GPL(nfs_check_flags);
55
56/*
57 * Open file
58 */
59static int
60nfs_file_open(struct inode *inode, struct file *filp)
61{
62 int res;
63
64 dprintk("NFS: open file(%pD2)\n", filp);
65
66 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
67 res = nfs_check_flags(filp->f_flags);
68 if (res)
69 return res;
70
71 res = nfs_open(inode, filp);
72 if (res == 0)
73 filp->f_mode |= FMODE_CAN_ODIRECT;
74 return res;
75}
76
77int
78nfs_file_release(struct inode *inode, struct file *filp)
79{
80 dprintk("NFS: release(%pD2)\n", filp);
81
82 nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
83 nfs_file_clear_open_context(filp);
84 nfs_fscache_release_file(inode, filp);
85 return 0;
86}
87EXPORT_SYMBOL_GPL(nfs_file_release);
88
89/**
90 * nfs_revalidate_file_size - Revalidate the file size
91 * @inode: pointer to inode struct
92 * @filp: pointer to struct file
93 *
94 * Revalidates the file length. This is basically a wrapper around
95 * nfs_revalidate_inode() that takes into account the fact that we may
96 * have cached writes (in which case we don't care about the server's
97 * idea of what the file length is), or O_DIRECT (in which case we
98 * shouldn't trust the cache).
99 */
100static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
101{
102 struct nfs_server *server = NFS_SERVER(inode);
103
104 if (filp->f_flags & O_DIRECT)
105 goto force_reval;
106 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_SIZE))
107 goto force_reval;
108 return 0;
109force_reval:
110 return __nfs_revalidate_inode(server, inode);
111}
112
113loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
114{
115 dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
116 filp, offset, whence);
117
118 /*
119 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
120 * the cached file length
121 */
122 if (whence != SEEK_SET && whence != SEEK_CUR) {
123 struct inode *inode = filp->f_mapping->host;
124
125 int retval = nfs_revalidate_file_size(inode, filp);
126 if (retval < 0)
127 return (loff_t)retval;
128 }
129
130 return generic_file_llseek(filp, offset, whence);
131}
132EXPORT_SYMBOL_GPL(nfs_file_llseek);
133
134/*
135 * Flush all dirty pages, and check for write errors.
136 */
137static int
138nfs_file_flush(struct file *file, fl_owner_t id)
139{
140 struct inode *inode = file_inode(file);
141 errseq_t since;
142
143 dprintk("NFS: flush(%pD2)\n", file);
144
145 nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
146 if ((file->f_mode & FMODE_WRITE) == 0)
147 return 0;
148
149 /* Flush writes to the server and return any errors */
150 since = filemap_sample_wb_err(file->f_mapping);
151 nfs_wb_all(inode);
152 return filemap_check_wb_err(file->f_mapping, since);
153}
154
155ssize_t
156nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
157{
158 struct inode *inode = file_inode(iocb->ki_filp);
159 ssize_t result;
160
161 if (iocb->ki_flags & IOCB_DIRECT)
162 return nfs_file_direct_read(iocb, to, false);
163
164 dprintk("NFS: read(%pD2, %zu@%lu)\n",
165 iocb->ki_filp,
166 iov_iter_count(to), (unsigned long) iocb->ki_pos);
167
168 nfs_start_io_read(inode);
169 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
170 if (!result) {
171 result = generic_file_read_iter(iocb, to);
172 if (result > 0)
173 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
174 }
175 nfs_end_io_read(inode);
176 return result;
177}
178EXPORT_SYMBOL_GPL(nfs_file_read);
179
180int
181nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
182{
183 struct inode *inode = file_inode(file);
184 int status;
185
186 dprintk("NFS: mmap(%pD2)\n", file);
187
188 /* Note: generic_file_mmap() returns ENOSYS on nommu systems
189 * so we call that before revalidating the mapping
190 */
191 status = generic_file_mmap(file, vma);
192 if (!status) {
193 vma->vm_ops = &nfs_file_vm_ops;
194 status = nfs_revalidate_mapping(inode, file->f_mapping);
195 }
196 return status;
197}
198EXPORT_SYMBOL_GPL(nfs_file_mmap);
199
200/*
201 * Flush any dirty pages for this process, and check for write errors.
202 * The return status from this call provides a reliable indication of
203 * whether any write errors occurred for this process.
204 */
205static int
206nfs_file_fsync_commit(struct file *file, int datasync)
207{
208 struct inode *inode = file_inode(file);
209 int ret, ret2;
210
211 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
212
213 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
214 ret = nfs_commit_inode(inode, FLUSH_SYNC);
215 ret2 = file_check_and_advance_wb_err(file);
216 if (ret2 < 0)
217 return ret2;
218 return ret;
219}
220
221int
222nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
223{
224 struct inode *inode = file_inode(file);
225 struct nfs_inode *nfsi = NFS_I(inode);
226 long save_nredirtied = atomic_long_read(&nfsi->redirtied_pages);
227 long nredirtied;
228 int ret;
229
230 trace_nfs_fsync_enter(inode);
231
232 for (;;) {
233 ret = file_write_and_wait_range(file, start, end);
234 if (ret != 0)
235 break;
236 ret = nfs_file_fsync_commit(file, datasync);
237 if (ret != 0)
238 break;
239 ret = pnfs_sync_inode(inode, !!datasync);
240 if (ret != 0)
241 break;
242 nredirtied = atomic_long_read(&nfsi->redirtied_pages);
243 if (nredirtied == save_nredirtied)
244 break;
245 save_nredirtied = nredirtied;
246 }
247
248 trace_nfs_fsync_exit(inode, ret);
249 return ret;
250}
251EXPORT_SYMBOL_GPL(nfs_file_fsync);
252
253/*
254 * Decide whether a read/modify/write cycle may be more efficient
255 * then a modify/write/read cycle when writing to a page in the
256 * page cache.
257 *
258 * Some pNFS layout drivers can only read/write at a certain block
259 * granularity like all block devices and therefore we must perform
260 * read/modify/write whenever a page hasn't read yet and the data
261 * to be written there is not aligned to a block boundary and/or
262 * smaller than the block size.
263 *
264 * The modify/write/read cycle may occur if a page is read before
265 * being completely filled by the writer. In this situation, the
266 * page must be completely written to stable storage on the server
267 * before it can be refilled by reading in the page from the server.
268 * This can lead to expensive, small, FILE_SYNC mode writes being
269 * done.
270 *
271 * It may be more efficient to read the page first if the file is
272 * open for reading in addition to writing, the page is not marked
273 * as Uptodate, it is not dirty or waiting to be committed,
274 * indicating that it was previously allocated and then modified,
275 * that there were valid bytes of data in that range of the file,
276 * and that the new data won't completely replace the old data in
277 * that range of the file.
278 */
279static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
280{
281 unsigned int pglen = nfs_page_length(page);
282 unsigned int offset = pos & (PAGE_SIZE - 1);
283 unsigned int end = offset + len;
284
285 return !pglen || (end >= pglen && !offset);
286}
287
288static bool nfs_want_read_modify_write(struct file *file, struct page *page,
289 loff_t pos, unsigned int len)
290{
291 /*
292 * Up-to-date pages, those with ongoing or full-page write
293 * don't need read/modify/write
294 */
295 if (PageUptodate(page) || PagePrivate(page) ||
296 nfs_full_page_write(page, pos, len))
297 return false;
298
299 if (pnfs_ld_read_whole_page(file->f_mapping->host))
300 return true;
301 /* Open for reading too? */
302 if (file->f_mode & FMODE_READ)
303 return true;
304 return false;
305}
306
307/*
308 * This does the "real" work of the write. We must allocate and lock the
309 * page to be sent back to the generic routine, which then copies the
310 * data from user space.
311 *
312 * If the writer ends up delaying the write, the writer needs to
313 * increment the page use counts until he is done with the page.
314 */
315static int nfs_write_begin(struct file *file, struct address_space *mapping,
316 loff_t pos, unsigned len,
317 struct page **pagep, void **fsdata)
318{
319 int ret;
320 pgoff_t index = pos >> PAGE_SHIFT;
321 struct page *page;
322 int once_thru = 0;
323
324 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
325 file, mapping->host->i_ino, len, (long long) pos);
326
327start:
328 page = grab_cache_page_write_begin(mapping, index);
329 if (!page)
330 return -ENOMEM;
331 *pagep = page;
332
333 ret = nfs_flush_incompatible(file, page);
334 if (ret) {
335 unlock_page(page);
336 put_page(page);
337 } else if (!once_thru &&
338 nfs_want_read_modify_write(file, page, pos, len)) {
339 once_thru = 1;
340 ret = nfs_read_folio(file, page_folio(page));
341 put_page(page);
342 if (!ret)
343 goto start;
344 }
345 return ret;
346}
347
348static int nfs_write_end(struct file *file, struct address_space *mapping,
349 loff_t pos, unsigned len, unsigned copied,
350 struct page *page, void *fsdata)
351{
352 unsigned offset = pos & (PAGE_SIZE - 1);
353 struct nfs_open_context *ctx = nfs_file_open_context(file);
354 int status;
355
356 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
357 file, mapping->host->i_ino, len, (long long) pos);
358
359 /*
360 * Zero any uninitialised parts of the page, and then mark the page
361 * as up to date if it turns out that we're extending the file.
362 */
363 if (!PageUptodate(page)) {
364 unsigned pglen = nfs_page_length(page);
365 unsigned end = offset + copied;
366
367 if (pglen == 0) {
368 zero_user_segments(page, 0, offset,
369 end, PAGE_SIZE);
370 SetPageUptodate(page);
371 } else if (end >= pglen) {
372 zero_user_segment(page, end, PAGE_SIZE);
373 if (offset == 0)
374 SetPageUptodate(page);
375 } else
376 zero_user_segment(page, pglen, PAGE_SIZE);
377 }
378
379 status = nfs_updatepage(file, page, offset, copied);
380
381 unlock_page(page);
382 put_page(page);
383
384 if (status < 0)
385 return status;
386 NFS_I(mapping->host)->write_io += copied;
387
388 if (nfs_ctx_key_to_expire(ctx, mapping->host))
389 nfs_wb_all(mapping->host);
390
391 return copied;
392}
393
394/*
395 * Partially or wholly invalidate a page
396 * - Release the private state associated with a page if undergoing complete
397 * page invalidation
398 * - Called if either PG_private or PG_fscache is set on the page
399 * - Caller holds page lock
400 */
401static void nfs_invalidate_folio(struct folio *folio, size_t offset,
402 size_t length)
403{
404 dfprintk(PAGECACHE, "NFS: invalidate_folio(%lu, %zu, %zu)\n",
405 folio->index, offset, length);
406
407 if (offset != 0 || length < folio_size(folio))
408 return;
409 /* Cancel any unstarted writes on this page */
410 nfs_wb_folio_cancel(folio->mapping->host, folio);
411 folio_wait_fscache(folio);
412}
413
414/*
415 * Attempt to release the private state associated with a folio
416 * - Called if either private or fscache flags are set on the folio
417 * - Caller holds folio lock
418 * - Return true (may release folio) or false (may not)
419 */
420static bool nfs_release_folio(struct folio *folio, gfp_t gfp)
421{
422 dfprintk(PAGECACHE, "NFS: release_folio(%p)\n", folio);
423
424 /* If the private flag is set, then the folio is not freeable */
425 if (folio_test_private(folio))
426 return false;
427 return nfs_fscache_release_folio(folio, gfp);
428}
429
430static void nfs_check_dirty_writeback(struct folio *folio,
431 bool *dirty, bool *writeback)
432{
433 struct nfs_inode *nfsi;
434 struct address_space *mapping = folio->mapping;
435
436 /*
437 * Check if an unstable folio is currently being committed and
438 * if so, have the VM treat it as if the folio is under writeback
439 * so it will not block due to folios that will shortly be freeable.
440 */
441 nfsi = NFS_I(mapping->host);
442 if (atomic_read(&nfsi->commit_info.rpcs_out)) {
443 *writeback = true;
444 return;
445 }
446
447 /*
448 * If the private flag is set, then the folio is not freeable
449 * and as the inode is not being committed, it's not going to
450 * be cleaned in the near future so treat it as dirty
451 */
452 if (folio_test_private(folio))
453 *dirty = true;
454}
455
456/*
457 * Attempt to clear the private state associated with a page when an error
458 * occurs that requires the cached contents of an inode to be written back or
459 * destroyed
460 * - Called if either PG_private or fscache is set on the page
461 * - Caller holds page lock
462 * - Return 0 if successful, -error otherwise
463 */
464static int nfs_launder_folio(struct folio *folio)
465{
466 struct inode *inode = folio->mapping->host;
467
468 dfprintk(PAGECACHE, "NFS: launder_folio(%ld, %llu)\n",
469 inode->i_ino, folio_pos(folio));
470
471 folio_wait_fscache(folio);
472 return nfs_wb_page(inode, &folio->page);
473}
474
475static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
476 sector_t *span)
477{
478 unsigned long blocks;
479 long long isize;
480 int ret;
481 struct inode *inode = file_inode(file);
482 struct rpc_clnt *clnt = NFS_CLIENT(inode);
483 struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
484
485 spin_lock(&inode->i_lock);
486 blocks = inode->i_blocks;
487 isize = inode->i_size;
488 spin_unlock(&inode->i_lock);
489 if (blocks*512 < isize) {
490 pr_warn("swap activate: swapfile has holes\n");
491 return -EINVAL;
492 }
493
494 ret = rpc_clnt_swap_activate(clnt);
495 if (ret)
496 return ret;
497 ret = add_swap_extent(sis, 0, sis->max, 0);
498 if (ret < 0) {
499 rpc_clnt_swap_deactivate(clnt);
500 return ret;
501 }
502
503 *span = sis->pages;
504
505 if (cl->rpc_ops->enable_swap)
506 cl->rpc_ops->enable_swap(inode);
507
508 sis->flags |= SWP_FS_OPS;
509 return ret;
510}
511
512static void nfs_swap_deactivate(struct file *file)
513{
514 struct inode *inode = file_inode(file);
515 struct rpc_clnt *clnt = NFS_CLIENT(inode);
516 struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
517
518 rpc_clnt_swap_deactivate(clnt);
519 if (cl->rpc_ops->disable_swap)
520 cl->rpc_ops->disable_swap(file_inode(file));
521}
522
523const struct address_space_operations nfs_file_aops = {
524 .read_folio = nfs_read_folio,
525 .readahead = nfs_readahead,
526 .dirty_folio = filemap_dirty_folio,
527 .writepage = nfs_writepage,
528 .writepages = nfs_writepages,
529 .write_begin = nfs_write_begin,
530 .write_end = nfs_write_end,
531 .invalidate_folio = nfs_invalidate_folio,
532 .release_folio = nfs_release_folio,
533 .migrate_folio = nfs_migrate_folio,
534 .launder_folio = nfs_launder_folio,
535 .is_dirty_writeback = nfs_check_dirty_writeback,
536 .error_remove_page = generic_error_remove_page,
537 .swap_activate = nfs_swap_activate,
538 .swap_deactivate = nfs_swap_deactivate,
539 .swap_rw = nfs_swap_rw,
540};
541
542/*
543 * Notification that a PTE pointing to an NFS page is about to be made
544 * writable, implying that someone is about to modify the page through a
545 * shared-writable mapping
546 */
547static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
548{
549 struct page *page = vmf->page;
550 struct file *filp = vmf->vma->vm_file;
551 struct inode *inode = file_inode(filp);
552 unsigned pagelen;
553 vm_fault_t ret = VM_FAULT_NOPAGE;
554 struct address_space *mapping;
555
556 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
557 filp, filp->f_mapping->host->i_ino,
558 (long long)page_offset(page));
559
560 sb_start_pagefault(inode->i_sb);
561
562 /* make sure the cache has finished storing the page */
563 if (PageFsCache(page) &&
564 wait_on_page_fscache_killable(vmf->page) < 0) {
565 ret = VM_FAULT_RETRY;
566 goto out;
567 }
568
569 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
570 nfs_wait_bit_killable,
571 TASK_KILLABLE|TASK_FREEZABLE_UNSAFE);
572
573 lock_page(page);
574 mapping = page_file_mapping(page);
575 if (mapping != inode->i_mapping)
576 goto out_unlock;
577
578 wait_on_page_writeback(page);
579
580 pagelen = nfs_page_length(page);
581 if (pagelen == 0)
582 goto out_unlock;
583
584 ret = VM_FAULT_LOCKED;
585 if (nfs_flush_incompatible(filp, page) == 0 &&
586 nfs_updatepage(filp, page, 0, pagelen) == 0)
587 goto out;
588
589 ret = VM_FAULT_SIGBUS;
590out_unlock:
591 unlock_page(page);
592out:
593 sb_end_pagefault(inode->i_sb);
594 return ret;
595}
596
597static const struct vm_operations_struct nfs_file_vm_ops = {
598 .fault = filemap_fault,
599 .map_pages = filemap_map_pages,
600 .page_mkwrite = nfs_vm_page_mkwrite,
601};
602
603ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
604{
605 struct file *file = iocb->ki_filp;
606 struct inode *inode = file_inode(file);
607 unsigned int mntflags = NFS_SERVER(inode)->flags;
608 ssize_t result, written;
609 errseq_t since;
610 int error;
611
612 result = nfs_key_timeout_notify(file, inode);
613 if (result)
614 return result;
615
616 if (iocb->ki_flags & IOCB_DIRECT)
617 return nfs_file_direct_write(iocb, from, false);
618
619 dprintk("NFS: write(%pD2, %zu@%Ld)\n",
620 file, iov_iter_count(from), (long long) iocb->ki_pos);
621
622 if (IS_SWAPFILE(inode))
623 goto out_swapfile;
624 /*
625 * O_APPEND implies that we must revalidate the file length.
626 */
627 if (iocb->ki_flags & IOCB_APPEND || iocb->ki_pos > i_size_read(inode)) {
628 result = nfs_revalidate_file_size(inode, file);
629 if (result)
630 return result;
631 }
632
633 nfs_clear_invalid_mapping(file->f_mapping);
634
635 since = filemap_sample_wb_err(file->f_mapping);
636 nfs_start_io_write(inode);
637 result = generic_write_checks(iocb, from);
638 if (result > 0) {
639 current->backing_dev_info = inode_to_bdi(inode);
640 result = generic_perform_write(iocb, from);
641 current->backing_dev_info = NULL;
642 }
643 nfs_end_io_write(inode);
644 if (result <= 0)
645 goto out;
646
647 written = result;
648 iocb->ki_pos += written;
649 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
650
651 if (mntflags & NFS_MOUNT_WRITE_EAGER) {
652 result = filemap_fdatawrite_range(file->f_mapping,
653 iocb->ki_pos - written,
654 iocb->ki_pos - 1);
655 if (result < 0)
656 goto out;
657 }
658 if (mntflags & NFS_MOUNT_WRITE_WAIT) {
659 filemap_fdatawait_range(file->f_mapping,
660 iocb->ki_pos - written,
661 iocb->ki_pos - 1);
662 }
663 result = generic_write_sync(iocb, written);
664 if (result < 0)
665 return result;
666
667out:
668 /* Return error values */
669 error = filemap_check_wb_err(file->f_mapping, since);
670 switch (error) {
671 default:
672 break;
673 case -EDQUOT:
674 case -EFBIG:
675 case -ENOSPC:
676 nfs_wb_all(inode);
677 error = file_check_and_advance_wb_err(file);
678 if (error < 0)
679 result = error;
680 }
681 return result;
682
683out_swapfile:
684 printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
685 return -ETXTBSY;
686}
687EXPORT_SYMBOL_GPL(nfs_file_write);
688
689static int
690do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
691{
692 struct inode *inode = filp->f_mapping->host;
693 int status = 0;
694 unsigned int saved_type = fl->fl_type;
695
696 /* Try local locking first */
697 posix_test_lock(filp, fl);
698 if (fl->fl_type != F_UNLCK) {
699 /* found a conflict */
700 goto out;
701 }
702 fl->fl_type = saved_type;
703
704 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
705 goto out_noconflict;
706
707 if (is_local)
708 goto out_noconflict;
709
710 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
711out:
712 return status;
713out_noconflict:
714 fl->fl_type = F_UNLCK;
715 goto out;
716}
717
718static int
719do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
720{
721 struct inode *inode = filp->f_mapping->host;
722 struct nfs_lock_context *l_ctx;
723 int status;
724
725 /*
726 * Flush all pending writes before doing anything
727 * with locks..
728 */
729 nfs_wb_all(inode);
730
731 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
732 if (!IS_ERR(l_ctx)) {
733 status = nfs_iocounter_wait(l_ctx);
734 nfs_put_lock_context(l_ctx);
735 /* NOTE: special case
736 * If we're signalled while cleaning up locks on process exit, we
737 * still need to complete the unlock.
738 */
739 if (status < 0 && !(fl->fl_flags & FL_CLOSE))
740 return status;
741 }
742
743 /*
744 * Use local locking if mounted with "-onolock" or with appropriate
745 * "-olocal_lock="
746 */
747 if (!is_local)
748 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
749 else
750 status = locks_lock_file_wait(filp, fl);
751 return status;
752}
753
754static int
755do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
756{
757 struct inode *inode = filp->f_mapping->host;
758 int status;
759
760 /*
761 * Flush all pending writes before doing anything
762 * with locks..
763 */
764 status = nfs_sync_mapping(filp->f_mapping);
765 if (status != 0)
766 goto out;
767
768 /*
769 * Use local locking if mounted with "-onolock" or with appropriate
770 * "-olocal_lock="
771 */
772 if (!is_local)
773 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
774 else
775 status = locks_lock_file_wait(filp, fl);
776 if (status < 0)
777 goto out;
778
779 /*
780 * Invalidate cache to prevent missing any changes. If
781 * the file is mapped, clear the page cache as well so
782 * those mappings will be loaded.
783 *
784 * This makes locking act as a cache coherency point.
785 */
786 nfs_sync_mapping(filp->f_mapping);
787 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
788 nfs_zap_caches(inode);
789 if (mapping_mapped(filp->f_mapping))
790 nfs_revalidate_mapping(inode, filp->f_mapping);
791 }
792out:
793 return status;
794}
795
796/*
797 * Lock a (portion of) a file
798 */
799int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
800{
801 struct inode *inode = filp->f_mapping->host;
802 int ret = -ENOLCK;
803 int is_local = 0;
804
805 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
806 filp, fl->fl_type, fl->fl_flags,
807 (long long)fl->fl_start, (long long)fl->fl_end);
808
809 nfs_inc_stats(inode, NFSIOS_VFSLOCK);
810
811 if (fl->fl_flags & FL_RECLAIM)
812 return -ENOGRACE;
813
814 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
815 is_local = 1;
816
817 if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
818 ret = NFS_PROTO(inode)->lock_check_bounds(fl);
819 if (ret < 0)
820 goto out_err;
821 }
822
823 if (IS_GETLK(cmd))
824 ret = do_getlk(filp, cmd, fl, is_local);
825 else if (fl->fl_type == F_UNLCK)
826 ret = do_unlk(filp, cmd, fl, is_local);
827 else
828 ret = do_setlk(filp, cmd, fl, is_local);
829out_err:
830 return ret;
831}
832EXPORT_SYMBOL_GPL(nfs_lock);
833
834/*
835 * Lock a (portion of) a file
836 */
837int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
838{
839 struct inode *inode = filp->f_mapping->host;
840 int is_local = 0;
841
842 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
843 filp, fl->fl_type, fl->fl_flags);
844
845 if (!(fl->fl_flags & FL_FLOCK))
846 return -ENOLCK;
847
848 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
849 is_local = 1;
850
851 /* We're simulating flock() locks using posix locks on the server */
852 if (fl->fl_type == F_UNLCK)
853 return do_unlk(filp, cmd, fl, is_local);
854 return do_setlk(filp, cmd, fl, is_local);
855}
856EXPORT_SYMBOL_GPL(nfs_flock);
857
858const struct file_operations nfs_file_operations = {
859 .llseek = nfs_file_llseek,
860 .read_iter = nfs_file_read,
861 .write_iter = nfs_file_write,
862 .mmap = nfs_file_mmap,
863 .open = nfs_file_open,
864 .flush = nfs_file_flush,
865 .release = nfs_file_release,
866 .fsync = nfs_file_fsync,
867 .lock = nfs_lock,
868 .flock = nfs_flock,
869 .splice_read = generic_file_splice_read,
870 .splice_write = iter_file_splice_write,
871 .check_flags = nfs_check_flags,
872 .setlease = simple_nosetlease,
873};
874EXPORT_SYMBOL_GPL(nfs_file_operations);