Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2012 Fusion-io  All rights reserved.
  4 * Copyright (C) 2012 Intel Corp. All rights reserved.
  5 */
  6
  7#ifndef BTRFS_RAID56_H
  8#define BTRFS_RAID56_H
  9
 10#include <linux/workqueue.h>
 11#include "volumes.h"
 12
 13enum btrfs_rbio_ops {
 14	BTRFS_RBIO_WRITE,
 15	BTRFS_RBIO_READ_REBUILD,
 16	BTRFS_RBIO_PARITY_SCRUB,
 
 17};
 18
 19struct btrfs_raid_bio {
 20	struct btrfs_io_context *bioc;
 21
 22	/*
 23	 * While we're doing RMW on a stripe we put it into a hash table so we
 24	 * can lock the stripe and merge more rbios into it.
 25	 */
 26	struct list_head hash_list;
 27
 28	/* LRU list for the stripe cache */
 29	struct list_head stripe_cache;
 30
 31	/* For scheduling work in the helper threads */
 32	struct work_struct work;
 33
 34	/*
 35	 * bio_list and bio_list_lock are used to add more bios into the stripe
 36	 * in hopes of avoiding the full RMW
 37	 */
 38	struct bio_list bio_list;
 39	spinlock_t bio_list_lock;
 40
 41	/*
 42	 * Also protected by the bio_list_lock, the plug list is used by the
 43	 * plugging code to collect partial bios while plugged.  The stripe
 44	 * locking code also uses it to hand off the stripe lock to the next
 45	 * pending IO.
 46	 */
 47	struct list_head plug_list;
 48
 49	/* Flags that tell us if it is safe to merge with this bio. */
 50	unsigned long flags;
 51
 52	/*
 53	 * Set if we're doing a parity rebuild for a read from higher up, which
 54	 * is handled differently from a parity rebuild as part of RMW.
 55	 */
 56	enum btrfs_rbio_ops operation;
 57
 58	/* How many pages there are for the full stripe including P/Q */
 59	u16 nr_pages;
 60
 61	/* How many sectors there are for the full stripe including P/Q */
 62	u16 nr_sectors;
 63
 64	/* Number of data stripes (no p/q) */
 65	u8 nr_data;
 66
 67	/* Number of all stripes (including P/Q) */
 68	u8 real_stripes;
 69
 70	/* How many pages there are for each stripe */
 71	u8 stripe_npages;
 72
 73	/* How many sectors there are for each stripe */
 74	u8 stripe_nsectors;
 75
 76	/* Stripe number that we're scrubbing  */
 77	u8 scrubp;
 78
 79	/*
 80	 * Size of all the bios in the bio_list.  This helps us decide if the
 81	 * rbio maps to a full stripe or not.
 82	 */
 83	int bio_list_bytes;
 84
 85	refcount_t refs;
 86
 87	atomic_t stripes_pending;
 88
 89	wait_queue_head_t io_wait;
 90
 91	/* Bitmap to record which horizontal stripe has data */
 92	unsigned long dbitmap;
 93
 94	/* Allocated with stripe_nsectors-many bits for finish_*() calls */
 95	unsigned long finish_pbitmap;
 96
 97	/*
 98	 * These are two arrays of pointers.  We allocate the rbio big enough
 99	 * to hold them both and setup their locations when the rbio is
100	 * allocated.
101	 */
102
103	/*
104	 * Pointers to pages that we allocated for reading/writing stripes
105	 * directly from the disk (including P/Q).
106	 */
107	struct page **stripe_pages;
108
109	/* Pointers to the sectors in the bio_list, for faster lookup */
110	struct sector_ptr *bio_sectors;
111
112	/*
113	 * For subpage support, we need to map each sector to above
114	 * stripe_pages.
115	 */
116	struct sector_ptr *stripe_sectors;
117
118	/* Allocated with real_stripes-many pointers for finish_*() calls */
119	void **finish_pointers;
120
121	/*
122	 * The bitmap recording where IO errors happened.
123	 * Each bit is corresponding to one sector in either bio_sectors[] or
124	 * stripe_sectors[] array.
125	 *
126	 * The reason we don't use another bit in sector_ptr is, we have two
127	 * arrays of sectors, and a lot of IO can use sectors in both arrays.
128	 * Thus making it much harder to iterate.
129	 */
130	unsigned long *error_bitmap;
131
132	/*
133	 * Checksum buffer if the rbio is for data.  The buffer should cover
134	 * all data sectors (excluding P/Q sectors).
135	 */
136	u8 *csum_buf;
137
138	/*
139	 * Each bit represents if the corresponding sector has data csum found.
140	 * Should only cover data sectors (excluding P/Q sectors).
141	 */
142	unsigned long *csum_bitmap;
143};
144
145/*
146 * For trace event usage only. Records useful debug info for each bio submitted
147 * by RAID56 to each physical device.
148 *
149 * No matter signed or not, (-1) is always the one indicating we can not grab
150 * the proper stripe number.
151 */
152struct raid56_bio_trace_info {
153	u64 devid;
154
155	/* The offset inside the stripe. (<= STRIPE_LEN) */
156	u32 offset;
157
158	/*
159	 * Stripe number.
160	 * 0 is the first data stripe, and nr_data for P stripe,
161	 * nr_data + 1 for Q stripe.
162	 * >= real_stripes for
163	 */
164	u8 stripe_nr;
165};
166
167static inline int nr_data_stripes(const struct btrfs_chunk_map *map)
168{
169	return map->num_stripes - btrfs_nr_parity_stripes(map->type);
170}
171
172static inline int nr_bioc_data_stripes(const struct btrfs_io_context *bioc)
173{
174	return bioc->num_stripes - btrfs_nr_parity_stripes(bioc->map_type);
175}
176
177#define RAID5_P_STRIPE ((u64)-2)
178#define RAID6_Q_STRIPE ((u64)-1)
179
180#define is_parity_stripe(x) (((x) == RAID5_P_STRIPE) ||		\
181			     ((x) == RAID6_Q_STRIPE))
182
183struct btrfs_device;
184
185void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
186			   int mirror_num);
187void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc);
188
 
 
 
189struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
190				struct btrfs_io_context *bioc,
191				struct btrfs_device *scrub_dev,
192				unsigned long *dbitmap, int stripe_nsectors);
193void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio);
194
195void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio,
196				    struct page **data_pages, u64 data_logical);
 
197
198int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info);
199void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info);
200
201#endif
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2012 Fusion-io  All rights reserved.
  4 * Copyright (C) 2012 Intel Corp. All rights reserved.
  5 */
  6
  7#ifndef BTRFS_RAID56_H
  8#define BTRFS_RAID56_H
  9
 10#include <linux/workqueue.h>
 11#include "volumes.h"
 12
 13enum btrfs_rbio_ops {
 14	BTRFS_RBIO_WRITE,
 15	BTRFS_RBIO_READ_REBUILD,
 16	BTRFS_RBIO_PARITY_SCRUB,
 17	BTRFS_RBIO_REBUILD_MISSING,
 18};
 19
 20struct btrfs_raid_bio {
 21	struct btrfs_io_context *bioc;
 22
 23	/*
 24	 * While we're doing RMW on a stripe we put it into a hash table so we
 25	 * can lock the stripe and merge more rbios into it.
 26	 */
 27	struct list_head hash_list;
 28
 29	/* LRU list for the stripe cache */
 30	struct list_head stripe_cache;
 31
 32	/* For scheduling work in the helper threads */
 33	struct work_struct work;
 34
 35	/*
 36	 * bio_list and bio_list_lock are used to add more bios into the stripe
 37	 * in hopes of avoiding the full RMW
 38	 */
 39	struct bio_list bio_list;
 40	spinlock_t bio_list_lock;
 41
 42	/*
 43	 * Also protected by the bio_list_lock, the plug list is used by the
 44	 * plugging code to collect partial bios while plugged.  The stripe
 45	 * locking code also uses it to hand off the stripe lock to the next
 46	 * pending IO.
 47	 */
 48	struct list_head plug_list;
 49
 50	/* Flags that tell us if it is safe to merge with this bio. */
 51	unsigned long flags;
 52
 53	/*
 54	 * Set if we're doing a parity rebuild for a read from higher up, which
 55	 * is handled differently from a parity rebuild as part of RMW.
 56	 */
 57	enum btrfs_rbio_ops operation;
 58
 59	/* How many pages there are for the full stripe including P/Q */
 60	u16 nr_pages;
 61
 62	/* How many sectors there are for the full stripe including P/Q */
 63	u16 nr_sectors;
 64
 65	/* Number of data stripes (no p/q) */
 66	u8 nr_data;
 67
 68	/* Numer of all stripes (including P/Q) */
 69	u8 real_stripes;
 70
 71	/* How many pages there are for each stripe */
 72	u8 stripe_npages;
 73
 74	/* How many sectors there are for each stripe */
 75	u8 stripe_nsectors;
 76
 77	/* Stripe number that we're scrubbing  */
 78	u8 scrubp;
 79
 80	/*
 81	 * Size of all the bios in the bio_list.  This helps us decide if the
 82	 * rbio maps to a full stripe or not.
 83	 */
 84	int bio_list_bytes;
 85
 86	refcount_t refs;
 87
 88	atomic_t stripes_pending;
 89
 90	wait_queue_head_t io_wait;
 91
 92	/* Bitmap to record which horizontal stripe has data */
 93	unsigned long dbitmap;
 94
 95	/* Allocated with stripe_nsectors-many bits for finish_*() calls */
 96	unsigned long finish_pbitmap;
 97
 98	/*
 99	 * These are two arrays of pointers.  We allocate the rbio big enough
100	 * to hold them both and setup their locations when the rbio is
101	 * allocated.
102	 */
103
104	/*
105	 * Pointers to pages that we allocated for reading/writing stripes
106	 * directly from the disk (including P/Q).
107	 */
108	struct page **stripe_pages;
109
110	/* Pointers to the sectors in the bio_list, for faster lookup */
111	struct sector_ptr *bio_sectors;
112
113	/*
114	 * For subpage support, we need to map each sector to above
115	 * stripe_pages.
116	 */
117	struct sector_ptr *stripe_sectors;
118
119	/* Allocated with real_stripes-many pointers for finish_*() calls */
120	void **finish_pointers;
121
122	/*
123	 * The bitmap recording where IO errors happened.
124	 * Each bit is corresponding to one sector in either bio_sectors[] or
125	 * stripe_sectors[] array.
126	 *
127	 * The reason we don't use another bit in sector_ptr is, we have two
128	 * arrays of sectors, and a lot of IO can use sectors in both arrays.
129	 * Thus making it much harder to iterate.
130	 */
131	unsigned long *error_bitmap;
132
133	/*
134	 * Checksum buffer if the rbio is for data.  The buffer should cover
135	 * all data sectors (exlcuding P/Q sectors).
136	 */
137	u8 *csum_buf;
138
139	/*
140	 * Each bit represents if the corresponding sector has data csum found.
141	 * Should only cover data sectors (excluding P/Q sectors).
142	 */
143	unsigned long *csum_bitmap;
144};
145
146/*
147 * For trace event usage only. Records useful debug info for each bio submitted
148 * by RAID56 to each physical device.
149 *
150 * No matter signed or not, (-1) is always the one indicating we can not grab
151 * the proper stripe number.
152 */
153struct raid56_bio_trace_info {
154	u64 devid;
155
156	/* The offset inside the stripe. (<= STRIPE_LEN) */
157	u32 offset;
158
159	/*
160	 * Stripe number.
161	 * 0 is the first data stripe, and nr_data for P stripe,
162	 * nr_data + 1 for Q stripe.
163	 * >= real_stripes for
164	 */
165	u8 stripe_nr;
166};
167
168static inline int nr_data_stripes(const struct map_lookup *map)
169{
170	return map->num_stripes - btrfs_nr_parity_stripes(map->type);
171}
172
 
 
 
 
 
173#define RAID5_P_STRIPE ((u64)-2)
174#define RAID6_Q_STRIPE ((u64)-1)
175
176#define is_parity_stripe(x) (((x) == RAID5_P_STRIPE) ||		\
177			     ((x) == RAID6_Q_STRIPE))
178
179struct btrfs_device;
180
181void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
182			   int mirror_num);
183void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc);
184
185void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
186			    unsigned int pgoff, u64 logical);
187
188struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
189				struct btrfs_io_context *bioc,
190				struct btrfs_device *scrub_dev,
191				unsigned long *dbitmap, int stripe_nsectors);
192void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio);
193
194struct btrfs_raid_bio *
195raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc);
196void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio);
197
198int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info);
199void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info);
200
201#endif