Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/usb/core/usb.c
   4 *
   5 * (C) Copyright Linus Torvalds 1999
   6 * (C) Copyright Johannes Erdfelt 1999-2001
   7 * (C) Copyright Andreas Gal 1999
   8 * (C) Copyright Gregory P. Smith 1999
   9 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
  10 * (C) Copyright Randy Dunlap 2000
  11 * (C) Copyright David Brownell 2000-2004
  12 * (C) Copyright Yggdrasil Computing, Inc. 2000
  13 *     (usb_device_id matching changes by Adam J. Richter)
  14 * (C) Copyright Greg Kroah-Hartman 2002-2003
  15 *
  16 * Released under the GPLv2 only.
  17 *
  18 * NOTE! This is not actually a driver at all, rather this is
  19 * just a collection of helper routines that implement the
  20 * generic USB things that the real drivers can use..
  21 *
  22 * Think of this as a "USB library" rather than anything else,
  23 * with no callbacks.  Callbacks are evil.
  24 */
  25
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/of.h>
  29#include <linux/string.h>
  30#include <linux/bitops.h>
  31#include <linux/slab.h>
  32#include <linux/kmod.h>
  33#include <linux/init.h>
  34#include <linux/spinlock.h>
  35#include <linux/errno.h>
  36#include <linux/usb.h>
  37#include <linux/usb/hcd.h>
  38#include <linux/mutex.h>
  39#include <linux/workqueue.h>
  40#include <linux/debugfs.h>
  41#include <linux/usb/of.h>
  42
  43#include <asm/io.h>
  44#include <linux/scatterlist.h>
  45#include <linux/mm.h>
  46#include <linux/dma-mapping.h>
  47
  48#include "hub.h"
  49
  50const char *usbcore_name = "usbcore";
  51
  52static bool nousb;	/* Disable USB when built into kernel image */
  53
  54module_param(nousb, bool, 0444);
  55
  56/*
  57 * for external read access to <nousb>
  58 */
  59int usb_disabled(void)
  60{
  61	return nousb;
  62}
  63EXPORT_SYMBOL_GPL(usb_disabled);
  64
  65#ifdef	CONFIG_PM
  66/* Default delay value, in seconds */
  67static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY;
  68module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
  69MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
  70
  71#else
  72#define usb_autosuspend_delay		0
  73#endif
  74
  75static bool match_endpoint(struct usb_endpoint_descriptor *epd,
  76		struct usb_endpoint_descriptor **bulk_in,
  77		struct usb_endpoint_descriptor **bulk_out,
  78		struct usb_endpoint_descriptor **int_in,
  79		struct usb_endpoint_descriptor **int_out)
  80{
  81	switch (usb_endpoint_type(epd)) {
  82	case USB_ENDPOINT_XFER_BULK:
  83		if (usb_endpoint_dir_in(epd)) {
  84			if (bulk_in && !*bulk_in) {
  85				*bulk_in = epd;
  86				break;
  87			}
  88		} else {
  89			if (bulk_out && !*bulk_out) {
  90				*bulk_out = epd;
  91				break;
  92			}
  93		}
  94
  95		return false;
  96	case USB_ENDPOINT_XFER_INT:
  97		if (usb_endpoint_dir_in(epd)) {
  98			if (int_in && !*int_in) {
  99				*int_in = epd;
 100				break;
 101			}
 102		} else {
 103			if (int_out && !*int_out) {
 104				*int_out = epd;
 105				break;
 106			}
 107		}
 108
 109		return false;
 110	default:
 111		return false;
 112	}
 113
 114	return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
 115			(!int_in || *int_in) && (!int_out || *int_out);
 116}
 117
 118/**
 119 * usb_find_common_endpoints() -- look up common endpoint descriptors
 120 * @alt:	alternate setting to search
 121 * @bulk_in:	pointer to descriptor pointer, or NULL
 122 * @bulk_out:	pointer to descriptor pointer, or NULL
 123 * @int_in:	pointer to descriptor pointer, or NULL
 124 * @int_out:	pointer to descriptor pointer, or NULL
 125 *
 126 * Search the alternate setting's endpoint descriptors for the first bulk-in,
 127 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
 128 * provided pointers (unless they are NULL).
 129 *
 130 * If a requested endpoint is not found, the corresponding pointer is set to
 131 * NULL.
 132 *
 133 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
 134 */
 135int usb_find_common_endpoints(struct usb_host_interface *alt,
 136		struct usb_endpoint_descriptor **bulk_in,
 137		struct usb_endpoint_descriptor **bulk_out,
 138		struct usb_endpoint_descriptor **int_in,
 139		struct usb_endpoint_descriptor **int_out)
 140{
 141	struct usb_endpoint_descriptor *epd;
 142	int i;
 143
 144	if (bulk_in)
 145		*bulk_in = NULL;
 146	if (bulk_out)
 147		*bulk_out = NULL;
 148	if (int_in)
 149		*int_in = NULL;
 150	if (int_out)
 151		*int_out = NULL;
 152
 153	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
 154		epd = &alt->endpoint[i].desc;
 155
 156		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
 157			return 0;
 158	}
 159
 160	return -ENXIO;
 161}
 162EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
 163
 164/**
 165 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
 166 * @alt:	alternate setting to search
 167 * @bulk_in:	pointer to descriptor pointer, or NULL
 168 * @bulk_out:	pointer to descriptor pointer, or NULL
 169 * @int_in:	pointer to descriptor pointer, or NULL
 170 * @int_out:	pointer to descriptor pointer, or NULL
 171 *
 172 * Search the alternate setting's endpoint descriptors for the last bulk-in,
 173 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
 174 * provided pointers (unless they are NULL).
 175 *
 176 * If a requested endpoint is not found, the corresponding pointer is set to
 177 * NULL.
 178 *
 179 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
 180 */
 181int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
 182		struct usb_endpoint_descriptor **bulk_in,
 183		struct usb_endpoint_descriptor **bulk_out,
 184		struct usb_endpoint_descriptor **int_in,
 185		struct usb_endpoint_descriptor **int_out)
 186{
 187	struct usb_endpoint_descriptor *epd;
 188	int i;
 189
 190	if (bulk_in)
 191		*bulk_in = NULL;
 192	if (bulk_out)
 193		*bulk_out = NULL;
 194	if (int_in)
 195		*int_in = NULL;
 196	if (int_out)
 197		*int_out = NULL;
 198
 199	for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
 200		epd = &alt->endpoint[i].desc;
 201
 202		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
 203			return 0;
 204	}
 205
 206	return -ENXIO;
 207}
 208EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
 209
 210/**
 211 * usb_find_endpoint() - Given an endpoint address, search for the endpoint's
 212 * usb_host_endpoint structure in an interface's current altsetting.
 213 * @intf: the interface whose current altsetting should be searched
 214 * @ep_addr: the endpoint address (number and direction) to find
 215 *
 216 * Search the altsetting's list of endpoints for one with the specified address.
 217 *
 218 * Return: Pointer to the usb_host_endpoint if found, %NULL otherwise.
 219 */
 220static const struct usb_host_endpoint *usb_find_endpoint(
 221		const struct usb_interface *intf, unsigned int ep_addr)
 222{
 223	int n;
 224	const struct usb_host_endpoint *ep;
 225
 226	n = intf->cur_altsetting->desc.bNumEndpoints;
 227	ep = intf->cur_altsetting->endpoint;
 228	for (; n > 0; (--n, ++ep)) {
 229		if (ep->desc.bEndpointAddress == ep_addr)
 230			return ep;
 231	}
 232	return NULL;
 233}
 234
 235/**
 236 * usb_check_bulk_endpoints - Check whether an interface's current altsetting
 237 * contains a set of bulk endpoints with the given addresses.
 238 * @intf: the interface whose current altsetting should be searched
 239 * @ep_addrs: 0-terminated array of the endpoint addresses (number and
 240 * direction) to look for
 241 *
 242 * Search for endpoints with the specified addresses and check their types.
 243 *
 244 * Return: %true if all the endpoints are found and are bulk, %false otherwise.
 245 */
 246bool usb_check_bulk_endpoints(
 247		const struct usb_interface *intf, const u8 *ep_addrs)
 248{
 249	const struct usb_host_endpoint *ep;
 250
 251	for (; *ep_addrs; ++ep_addrs) {
 252		ep = usb_find_endpoint(intf, *ep_addrs);
 253		if (!ep || !usb_endpoint_xfer_bulk(&ep->desc))
 254			return false;
 255	}
 256	return true;
 257}
 258EXPORT_SYMBOL_GPL(usb_check_bulk_endpoints);
 259
 260/**
 261 * usb_check_int_endpoints - Check whether an interface's current altsetting
 262 * contains a set of interrupt endpoints with the given addresses.
 263 * @intf: the interface whose current altsetting should be searched
 264 * @ep_addrs: 0-terminated array of the endpoint addresses (number and
 265 * direction) to look for
 266 *
 267 * Search for endpoints with the specified addresses and check their types.
 268 *
 269 * Return: %true if all the endpoints are found and are interrupt,
 270 * %false otherwise.
 271 */
 272bool usb_check_int_endpoints(
 273		const struct usb_interface *intf, const u8 *ep_addrs)
 274{
 275	const struct usb_host_endpoint *ep;
 276
 277	for (; *ep_addrs; ++ep_addrs) {
 278		ep = usb_find_endpoint(intf, *ep_addrs);
 279		if (!ep || !usb_endpoint_xfer_int(&ep->desc))
 280			return false;
 281	}
 282	return true;
 283}
 284EXPORT_SYMBOL_GPL(usb_check_int_endpoints);
 285
 286/**
 287 * usb_find_alt_setting() - Given a configuration, find the alternate setting
 288 * for the given interface.
 289 * @config: the configuration to search (not necessarily the current config).
 290 * @iface_num: interface number to search in
 291 * @alt_num: alternate interface setting number to search for.
 292 *
 293 * Search the configuration's interface cache for the given alt setting.
 294 *
 295 * Return: The alternate setting, if found. %NULL otherwise.
 296 */
 297struct usb_host_interface *usb_find_alt_setting(
 298		struct usb_host_config *config,
 299		unsigned int iface_num,
 300		unsigned int alt_num)
 301{
 302	struct usb_interface_cache *intf_cache = NULL;
 303	int i;
 304
 305	if (!config)
 306		return NULL;
 307	for (i = 0; i < config->desc.bNumInterfaces; i++) {
 308		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
 309				== iface_num) {
 310			intf_cache = config->intf_cache[i];
 311			break;
 312		}
 313	}
 314	if (!intf_cache)
 315		return NULL;
 316	for (i = 0; i < intf_cache->num_altsetting; i++)
 317		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
 318			return &intf_cache->altsetting[i];
 319
 320	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
 321			"config %u\n", alt_num, iface_num,
 322			config->desc.bConfigurationValue);
 323	return NULL;
 324}
 325EXPORT_SYMBOL_GPL(usb_find_alt_setting);
 326
 327/**
 328 * usb_ifnum_to_if - get the interface object with a given interface number
 329 * @dev: the device whose current configuration is considered
 330 * @ifnum: the desired interface
 331 *
 332 * This walks the device descriptor for the currently active configuration
 333 * to find the interface object with the particular interface number.
 334 *
 335 * Note that configuration descriptors are not required to assign interface
 336 * numbers sequentially, so that it would be incorrect to assume that
 337 * the first interface in that descriptor corresponds to interface zero.
 338 * This routine helps device drivers avoid such mistakes.
 339 * However, you should make sure that you do the right thing with any
 340 * alternate settings available for this interfaces.
 341 *
 342 * Don't call this function unless you are bound to one of the interfaces
 343 * on this device or you have locked the device!
 344 *
 345 * Return: A pointer to the interface that has @ifnum as interface number,
 346 * if found. %NULL otherwise.
 347 */
 348struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 349				      unsigned ifnum)
 350{
 351	struct usb_host_config *config = dev->actconfig;
 352	int i;
 353
 354	if (!config)
 355		return NULL;
 356	for (i = 0; i < config->desc.bNumInterfaces; i++)
 357		if (config->interface[i]->altsetting[0]
 358				.desc.bInterfaceNumber == ifnum)
 359			return config->interface[i];
 360
 361	return NULL;
 362}
 363EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
 364
 365/**
 366 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
 367 * @intf: the interface containing the altsetting in question
 368 * @altnum: the desired alternate setting number
 369 *
 370 * This searches the altsetting array of the specified interface for
 371 * an entry with the correct bAlternateSetting value.
 372 *
 373 * Note that altsettings need not be stored sequentially by number, so
 374 * it would be incorrect to assume that the first altsetting entry in
 375 * the array corresponds to altsetting zero.  This routine helps device
 376 * drivers avoid such mistakes.
 377 *
 378 * Don't call this function unless you are bound to the intf interface
 379 * or you have locked the device!
 380 *
 381 * Return: A pointer to the entry of the altsetting array of @intf that
 382 * has @altnum as the alternate setting number. %NULL if not found.
 383 */
 384struct usb_host_interface *usb_altnum_to_altsetting(
 385					const struct usb_interface *intf,
 386					unsigned int altnum)
 387{
 388	int i;
 389
 390	for (i = 0; i < intf->num_altsetting; i++) {
 391		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
 392			return &intf->altsetting[i];
 393	}
 394	return NULL;
 395}
 396EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
 397
 398struct find_interface_arg {
 399	int minor;
 400	struct device_driver *drv;
 401};
 402
 403static int __find_interface(struct device *dev, const void *data)
 404{
 405	const struct find_interface_arg *arg = data;
 406	struct usb_interface *intf;
 407
 408	if (!is_usb_interface(dev))
 409		return 0;
 410
 411	if (dev->driver != arg->drv)
 412		return 0;
 413	intf = to_usb_interface(dev);
 414	return intf->minor == arg->minor;
 415}
 416
 417/**
 418 * usb_find_interface - find usb_interface pointer for driver and device
 419 * @drv: the driver whose current configuration is considered
 420 * @minor: the minor number of the desired device
 421 *
 422 * This walks the bus device list and returns a pointer to the interface
 423 * with the matching minor and driver.  Note, this only works for devices
 424 * that share the USB major number.
 425 *
 426 * Return: A pointer to the interface with the matching major and @minor.
 427 */
 428struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
 429{
 430	struct find_interface_arg argb;
 431	struct device *dev;
 432
 433	argb.minor = minor;
 434	argb.drv = &drv->driver;
 435
 436	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
 437
 438	/* Drop reference count from bus_find_device */
 439	put_device(dev);
 440
 441	return dev ? to_usb_interface(dev) : NULL;
 442}
 443EXPORT_SYMBOL_GPL(usb_find_interface);
 444
 445struct each_dev_arg {
 446	void *data;
 447	int (*fn)(struct usb_device *, void *);
 448};
 449
 450static int __each_dev(struct device *dev, void *data)
 451{
 452	struct each_dev_arg *arg = (struct each_dev_arg *)data;
 453
 454	/* There are struct usb_interface on the same bus, filter them out */
 455	if (!is_usb_device(dev))
 456		return 0;
 457
 458	return arg->fn(to_usb_device(dev), arg->data);
 459}
 460
 461/**
 462 * usb_for_each_dev - iterate over all USB devices in the system
 463 * @data: data pointer that will be handed to the callback function
 464 * @fn: callback function to be called for each USB device
 465 *
 466 * Iterate over all USB devices and call @fn for each, passing it @data. If it
 467 * returns anything other than 0, we break the iteration prematurely and return
 468 * that value.
 469 */
 470int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
 471{
 472	struct each_dev_arg arg = {data, fn};
 473
 474	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
 475}
 476EXPORT_SYMBOL_GPL(usb_for_each_dev);
 477
 478/**
 479 * usb_release_dev - free a usb device structure when all users of it are finished.
 480 * @dev: device that's been disconnected
 481 *
 482 * Will be called only by the device core when all users of this usb device are
 483 * done.
 484 */
 485static void usb_release_dev(struct device *dev)
 486{
 487	struct usb_device *udev;
 488	struct usb_hcd *hcd;
 489
 490	udev = to_usb_device(dev);
 491	hcd = bus_to_hcd(udev->bus);
 492
 493	usb_destroy_configuration(udev);
 494	usb_release_bos_descriptor(udev);
 495	of_node_put(dev->of_node);
 496	usb_put_hcd(hcd);
 497	kfree(udev->product);
 498	kfree(udev->manufacturer);
 499	kfree(udev->serial);
 500	kfree(udev);
 501}
 502
 503static int usb_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
 504{
 505	const struct usb_device *usb_dev;
 506
 507	usb_dev = to_usb_device(dev);
 508
 509	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
 510		return -ENOMEM;
 511
 512	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
 513		return -ENOMEM;
 514
 515	return 0;
 516}
 517
 518#ifdef	CONFIG_PM
 519
 520/* USB device Power-Management thunks.
 521 * There's no need to distinguish here between quiescing a USB device
 522 * and powering it down; the generic_suspend() routine takes care of
 523 * it by skipping the usb_port_suspend() call for a quiesce.  And for
 524 * USB interfaces there's no difference at all.
 525 */
 526
 527static int usb_dev_prepare(struct device *dev)
 528{
 529	return 0;		/* Implement eventually? */
 530}
 531
 532static void usb_dev_complete(struct device *dev)
 533{
 534	/* Currently used only for rebinding interfaces */
 535	usb_resume_complete(dev);
 536}
 537
 538static int usb_dev_suspend(struct device *dev)
 539{
 540	return usb_suspend(dev, PMSG_SUSPEND);
 541}
 542
 543static int usb_dev_resume(struct device *dev)
 544{
 545	return usb_resume(dev, PMSG_RESUME);
 546}
 547
 548static int usb_dev_freeze(struct device *dev)
 549{
 550	return usb_suspend(dev, PMSG_FREEZE);
 551}
 552
 553static int usb_dev_thaw(struct device *dev)
 554{
 555	return usb_resume(dev, PMSG_THAW);
 556}
 557
 558static int usb_dev_poweroff(struct device *dev)
 559{
 560	return usb_suspend(dev, PMSG_HIBERNATE);
 561}
 562
 563static int usb_dev_restore(struct device *dev)
 564{
 565	return usb_resume(dev, PMSG_RESTORE);
 566}
 567
 568static const struct dev_pm_ops usb_device_pm_ops = {
 569	.prepare =	usb_dev_prepare,
 570	.complete =	usb_dev_complete,
 571	.suspend =	usb_dev_suspend,
 572	.resume =	usb_dev_resume,
 573	.freeze =	usb_dev_freeze,
 574	.thaw =		usb_dev_thaw,
 575	.poweroff =	usb_dev_poweroff,
 576	.restore =	usb_dev_restore,
 577	.runtime_suspend =	usb_runtime_suspend,
 578	.runtime_resume =	usb_runtime_resume,
 579	.runtime_idle =		usb_runtime_idle,
 580};
 581
 582#endif	/* CONFIG_PM */
 583
 584
 585static char *usb_devnode(const struct device *dev,
 586			 umode_t *mode, kuid_t *uid, kgid_t *gid)
 587{
 588	const struct usb_device *usb_dev;
 589
 590	usb_dev = to_usb_device(dev);
 591	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
 592			 usb_dev->bus->busnum, usb_dev->devnum);
 593}
 594
 595struct device_type usb_device_type = {
 596	.name =		"usb_device",
 597	.release =	usb_release_dev,
 598	.uevent =	usb_dev_uevent,
 599	.devnode = 	usb_devnode,
 600#ifdef CONFIG_PM
 601	.pm =		&usb_device_pm_ops,
 602#endif
 603};
 604
 
 
 
 
 
 
 
 
 605static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd)
 606{
 607	struct usb_hub *hub;
 608
 609	if (!dev->parent)
 610		return true; /* Root hub always ok [and always wired] */
 611
 612	switch (hcd->dev_policy) {
 613	case USB_DEVICE_AUTHORIZE_NONE:
 614	default:
 615		return false;
 616
 617	case USB_DEVICE_AUTHORIZE_ALL:
 618		return true;
 619
 620	case USB_DEVICE_AUTHORIZE_INTERNAL:
 621		hub = usb_hub_to_struct_hub(dev->parent);
 622		return hub->ports[dev->portnum - 1]->connect_type ==
 623				USB_PORT_CONNECT_TYPE_HARD_WIRED;
 624	}
 625}
 626
 627/**
 628 * usb_alloc_dev - usb device constructor (usbcore-internal)
 629 * @parent: hub to which device is connected; null to allocate a root hub
 630 * @bus: bus used to access the device
 631 * @port1: one-based index of port; ignored for root hubs
 632 *
 633 * Context: task context, might sleep.
 634 *
 635 * Only hub drivers (including virtual root hub drivers for host
 636 * controllers) should ever call this.
 637 *
 638 * This call may not be used in a non-sleeping context.
 639 *
 640 * Return: On success, a pointer to the allocated usb device. %NULL on
 641 * failure.
 642 */
 643struct usb_device *usb_alloc_dev(struct usb_device *parent,
 644				 struct usb_bus *bus, unsigned port1)
 645{
 646	struct usb_device *dev;
 647	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
 
 648	unsigned raw_port = port1;
 649
 650	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 651	if (!dev)
 652		return NULL;
 653
 654	if (!usb_get_hcd(usb_hcd)) {
 655		kfree(dev);
 656		return NULL;
 657	}
 658	/* Root hubs aren't true devices, so don't allocate HCD resources */
 659	if (usb_hcd->driver->alloc_dev && parent &&
 660		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
 661		usb_put_hcd(bus_to_hcd(bus));
 662		kfree(dev);
 663		return NULL;
 664	}
 665
 666	device_initialize(&dev->dev);
 667	dev->dev.bus = &usb_bus_type;
 668	dev->dev.type = &usb_device_type;
 669	dev->dev.groups = usb_device_groups;
 670	set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
 671	dev->state = USB_STATE_ATTACHED;
 672	dev->lpm_disable_count = 1;
 673	atomic_set(&dev->urbnum, 0);
 674
 675	INIT_LIST_HEAD(&dev->ep0.urb_list);
 676	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
 677	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
 678	/* ep0 maxpacket comes later, from device descriptor */
 679	usb_enable_endpoint(dev, &dev->ep0, false);
 680	dev->can_submit = 1;
 681
 682	/* Save readable and stable topology id, distinguishing devices
 683	 * by location for diagnostics, tools, driver model, etc.  The
 684	 * string is a path along hub ports, from the root.  Each device's
 685	 * dev->devpath will be stable until USB is re-cabled, and hubs
 686	 * are often labeled with these port numbers.  The name isn't
 687	 * as stable:  bus->busnum changes easily from modprobe order,
 688	 * cardbus or pci hotplugging, and so on.
 689	 */
 690	if (unlikely(!parent)) {
 691		dev->devpath[0] = '0';
 692		dev->route = 0;
 693
 694		dev->dev.parent = bus->controller;
 695		device_set_of_node_from_dev(&dev->dev, bus->sysdev);
 696		dev_set_name(&dev->dev, "usb%d", bus->busnum);
 
 697	} else {
 698		/* match any labeling on the hubs; it's one-based */
 699		if (parent->devpath[0] == '0') {
 700			snprintf(dev->devpath, sizeof dev->devpath,
 701				"%d", port1);
 702			/* Root ports are not counted in route string */
 703			dev->route = 0;
 704		} else {
 705			snprintf(dev->devpath, sizeof dev->devpath,
 706				"%s.%d", parent->devpath, port1);
 707			/* Route string assumes hubs have less than 16 ports */
 708			if (port1 < 15)
 709				dev->route = parent->route +
 710					(port1 << ((parent->level - 1)*4));
 711			else
 712				dev->route = parent->route +
 713					(15 << ((parent->level - 1)*4));
 714		}
 715
 716		dev->dev.parent = &parent->dev;
 717		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
 718
 719		if (!parent->parent) {
 720			/* device under root hub's port */
 721			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
 722				port1);
 723		}
 724		dev->dev.of_node = usb_of_get_device_node(parent, raw_port);
 725
 726		/* hub driver sets up TT records */
 727	}
 728
 729	dev->portnum = port1;
 730	dev->bus = bus;
 731	dev->parent = parent;
 732	INIT_LIST_HEAD(&dev->filelist);
 733
 734#ifdef	CONFIG_PM
 735	pm_runtime_set_autosuspend_delay(&dev->dev,
 736			usb_autosuspend_delay * 1000);
 737	dev->connect_time = jiffies;
 738	dev->active_duration = -jiffies;
 739#endif
 740
 741	dev->authorized = usb_dev_authorized(dev, usb_hcd);
 
 
 
 742	return dev;
 743}
 744EXPORT_SYMBOL_GPL(usb_alloc_dev);
 745
 746/**
 747 * usb_get_dev - increments the reference count of the usb device structure
 748 * @dev: the device being referenced
 749 *
 750 * Each live reference to a device should be refcounted.
 751 *
 752 * Drivers for USB interfaces should normally record such references in
 753 * their probe() methods, when they bind to an interface, and release
 754 * them by calling usb_put_dev(), in their disconnect() methods.
 755 * However, if a driver does not access the usb_device structure after
 756 * its disconnect() method returns then refcounting is not necessary,
 757 * because the USB core guarantees that a usb_device will not be
 758 * deallocated until after all of its interface drivers have been unbound.
 759 *
 760 * Return: A pointer to the device with the incremented reference counter.
 761 */
 762struct usb_device *usb_get_dev(struct usb_device *dev)
 763{
 764	if (dev)
 765		get_device(&dev->dev);
 766	return dev;
 767}
 768EXPORT_SYMBOL_GPL(usb_get_dev);
 769
 770/**
 771 * usb_put_dev - release a use of the usb device structure
 772 * @dev: device that's been disconnected
 773 *
 774 * Must be called when a user of a device is finished with it.  When the last
 775 * user of the device calls this function, the memory of the device is freed.
 776 */
 777void usb_put_dev(struct usb_device *dev)
 778{
 779	if (dev)
 780		put_device(&dev->dev);
 781}
 782EXPORT_SYMBOL_GPL(usb_put_dev);
 783
 784/**
 785 * usb_get_intf - increments the reference count of the usb interface structure
 786 * @intf: the interface being referenced
 787 *
 788 * Each live reference to a interface must be refcounted.
 789 *
 790 * Drivers for USB interfaces should normally record such references in
 791 * their probe() methods, when they bind to an interface, and release
 792 * them by calling usb_put_intf(), in their disconnect() methods.
 793 * However, if a driver does not access the usb_interface structure after
 794 * its disconnect() method returns then refcounting is not necessary,
 795 * because the USB core guarantees that a usb_interface will not be
 796 * deallocated until after its driver has been unbound.
 797 *
 798 * Return: A pointer to the interface with the incremented reference counter.
 799 */
 800struct usb_interface *usb_get_intf(struct usb_interface *intf)
 801{
 802	if (intf)
 803		get_device(&intf->dev);
 804	return intf;
 805}
 806EXPORT_SYMBOL_GPL(usb_get_intf);
 807
 808/**
 809 * usb_put_intf - release a use of the usb interface structure
 810 * @intf: interface that's been decremented
 811 *
 812 * Must be called when a user of an interface is finished with it.  When the
 813 * last user of the interface calls this function, the memory of the interface
 814 * is freed.
 815 */
 816void usb_put_intf(struct usb_interface *intf)
 817{
 818	if (intf)
 819		put_device(&intf->dev);
 820}
 821EXPORT_SYMBOL_GPL(usb_put_intf);
 822
 823/**
 824 * usb_intf_get_dma_device - acquire a reference on the usb interface's DMA endpoint
 825 * @intf: the usb interface
 826 *
 827 * While a USB device cannot perform DMA operations by itself, many USB
 828 * controllers can. A call to usb_intf_get_dma_device() returns the DMA endpoint
 829 * for the given USB interface, if any. The returned device structure must be
 830 * released with put_device().
 831 *
 832 * See also usb_get_dma_device().
 833 *
 834 * Returns: A reference to the usb interface's DMA endpoint; or NULL if none
 835 *          exists.
 836 */
 837struct device *usb_intf_get_dma_device(struct usb_interface *intf)
 838{
 839	struct usb_device *udev = interface_to_usbdev(intf);
 840	struct device *dmadev;
 841
 842	if (!udev->bus)
 843		return NULL;
 844
 845	dmadev = get_device(udev->bus->sysdev);
 846	if (!dmadev || !dmadev->dma_mask) {
 847		put_device(dmadev);
 848		return NULL;
 849	}
 850
 851	return dmadev;
 852}
 853EXPORT_SYMBOL_GPL(usb_intf_get_dma_device);
 854
 855/*			USB device locking
 856 *
 857 * USB devices and interfaces are locked using the semaphore in their
 858 * embedded struct device.  The hub driver guarantees that whenever a
 859 * device is connected or disconnected, drivers are called with the
 860 * USB device locked as well as their particular interface.
 861 *
 862 * Complications arise when several devices are to be locked at the same
 863 * time.  Only hub-aware drivers that are part of usbcore ever have to
 864 * do this; nobody else needs to worry about it.  The rule for locking
 865 * is simple:
 866 *
 867 *	When locking both a device and its parent, always lock the
 868 *	parent first.
 869 */
 870
 871/**
 872 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
 873 * @udev: device that's being locked
 874 * @iface: interface bound to the driver making the request (optional)
 875 *
 876 * Attempts to acquire the device lock, but fails if the device is
 877 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
 878 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
 879 * lock, the routine polls repeatedly.  This is to prevent deadlock with
 880 * disconnect; in some drivers (such as usb-storage) the disconnect()
 881 * or suspend() method will block waiting for a device reset to complete.
 882 *
 883 * Return: A negative error code for failure, otherwise 0.
 884 */
 885int usb_lock_device_for_reset(struct usb_device *udev,
 886			      const struct usb_interface *iface)
 887{
 888	unsigned long jiffies_expire = jiffies + HZ;
 889
 890	if (udev->state == USB_STATE_NOTATTACHED)
 891		return -ENODEV;
 892	if (udev->state == USB_STATE_SUSPENDED)
 893		return -EHOSTUNREACH;
 894	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 895			iface->condition == USB_INTERFACE_UNBOUND))
 896		return -EINTR;
 897
 898	while (!usb_trylock_device(udev)) {
 899
 900		/* If we can't acquire the lock after waiting one second,
 901		 * we're probably deadlocked */
 902		if (time_after(jiffies, jiffies_expire))
 903			return -EBUSY;
 904
 905		msleep(15);
 906		if (udev->state == USB_STATE_NOTATTACHED)
 907			return -ENODEV;
 908		if (udev->state == USB_STATE_SUSPENDED)
 909			return -EHOSTUNREACH;
 910		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 911				iface->condition == USB_INTERFACE_UNBOUND))
 912			return -EINTR;
 913	}
 914	return 0;
 915}
 916EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
 917
 918/**
 919 * usb_get_current_frame_number - return current bus frame number
 920 * @dev: the device whose bus is being queried
 921 *
 922 * Return: The current frame number for the USB host controller used
 923 * with the given USB device. This can be used when scheduling
 924 * isochronous requests.
 925 *
 926 * Note: Different kinds of host controller have different "scheduling
 927 * horizons". While one type might support scheduling only 32 frames
 928 * into the future, others could support scheduling up to 1024 frames
 929 * into the future.
 930 *
 931 */
 932int usb_get_current_frame_number(struct usb_device *dev)
 933{
 934	return usb_hcd_get_frame_number(dev);
 935}
 936EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
 937
 938/*-------------------------------------------------------------------*/
 939/*
 940 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
 941 * extra field of the interface and endpoint descriptor structs.
 942 */
 943
 944int __usb_get_extra_descriptor(char *buffer, unsigned size,
 945			       unsigned char type, void **ptr, size_t minsize)
 946{
 947	struct usb_descriptor_header *header;
 948
 949	while (size >= sizeof(struct usb_descriptor_header)) {
 950		header = (struct usb_descriptor_header *)buffer;
 951
 952		if (header->bLength < 2 || header->bLength > size) {
 953			printk(KERN_ERR
 954				"%s: bogus descriptor, type %d length %d\n",
 955				usbcore_name,
 956				header->bDescriptorType,
 957				header->bLength);
 958			return -1;
 959		}
 960
 961		if (header->bDescriptorType == type && header->bLength >= minsize) {
 962			*ptr = header;
 963			return 0;
 964		}
 965
 966		buffer += header->bLength;
 967		size -= header->bLength;
 968	}
 969	return -1;
 970}
 971EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
 972
 973/**
 974 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
 975 * @dev: device the buffer will be used with
 976 * @size: requested buffer size
 977 * @mem_flags: affect whether allocation may block
 978 * @dma: used to return DMA address of buffer
 979 *
 980 * Return: Either null (indicating no buffer could be allocated), or the
 981 * cpu-space pointer to a buffer that may be used to perform DMA to the
 982 * specified device.  Such cpu-space buffers are returned along with the DMA
 983 * address (through the pointer provided).
 984 *
 985 * Note:
 986 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
 987 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
 988 * hardware during URB completion/resubmit.  The implementation varies between
 989 * platforms, depending on details of how DMA will work to this device.
 990 * Using these buffers also eliminates cacheline sharing problems on
 991 * architectures where CPU caches are not DMA-coherent.  On systems without
 992 * bus-snooping caches, these buffers are uncached.
 993 *
 994 * When the buffer is no longer used, free it with usb_free_coherent().
 995 */
 996void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
 997			 dma_addr_t *dma)
 998{
 999	if (!dev || !dev->bus)
1000		return NULL;
1001	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
1002}
1003EXPORT_SYMBOL_GPL(usb_alloc_coherent);
1004
1005/**
1006 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
1007 * @dev: device the buffer was used with
1008 * @size: requested buffer size
1009 * @addr: CPU address of buffer
1010 * @dma: DMA address of buffer
1011 *
1012 * This reclaims an I/O buffer, letting it be reused.  The memory must have
1013 * been allocated using usb_alloc_coherent(), and the parameters must match
1014 * those provided in that allocation request.
1015 */
1016void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
1017		       dma_addr_t dma)
1018{
1019	if (!dev || !dev->bus)
1020		return;
1021	if (!addr)
1022		return;
1023	hcd_buffer_free(dev->bus, size, addr, dma);
1024}
1025EXPORT_SYMBOL_GPL(usb_free_coherent);
1026
1027/*
1028 * Notifications of device and interface registration
1029 */
1030static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1031		void *data)
1032{
1033	struct device *dev = data;
1034
1035	switch (action) {
1036	case BUS_NOTIFY_ADD_DEVICE:
1037		if (dev->type == &usb_device_type)
1038			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
1039		else if (dev->type == &usb_if_device_type)
1040			usb_create_sysfs_intf_files(to_usb_interface(dev));
1041		break;
1042
1043	case BUS_NOTIFY_DEL_DEVICE:
1044		if (dev->type == &usb_device_type)
1045			usb_remove_sysfs_dev_files(to_usb_device(dev));
1046		else if (dev->type == &usb_if_device_type)
1047			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1048		break;
1049	}
1050	return 0;
1051}
1052
1053static struct notifier_block usb_bus_nb = {
1054	.notifier_call = usb_bus_notify,
1055};
1056
1057static void usb_debugfs_init(void)
1058{
1059	debugfs_create_file("devices", 0444, usb_debug_root, NULL,
1060			    &usbfs_devices_fops);
1061}
1062
1063static void usb_debugfs_cleanup(void)
1064{
1065	debugfs_lookup_and_remove("devices", usb_debug_root);
1066}
1067
1068/*
1069 * Init
1070 */
1071static int __init usb_init(void)
1072{
1073	int retval;
1074	if (usb_disabled()) {
1075		pr_info("%s: USB support disabled\n", usbcore_name);
1076		return 0;
1077	}
1078	usb_init_pool_max();
1079
1080	usb_debugfs_init();
1081
1082	usb_acpi_register();
1083	retval = bus_register(&usb_bus_type);
1084	if (retval)
1085		goto bus_register_failed;
1086	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1087	if (retval)
1088		goto bus_notifier_failed;
1089	retval = usb_major_init();
1090	if (retval)
1091		goto major_init_failed;
1092	retval = class_register(&usbmisc_class);
1093	if (retval)
1094		goto class_register_failed;
1095	retval = usb_register(&usbfs_driver);
1096	if (retval)
1097		goto driver_register_failed;
1098	retval = usb_devio_init();
1099	if (retval)
1100		goto usb_devio_init_failed;
1101	retval = usb_hub_init();
1102	if (retval)
1103		goto hub_init_failed;
1104	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1105	if (!retval)
1106		goto out;
1107
1108	usb_hub_cleanup();
1109hub_init_failed:
1110	usb_devio_cleanup();
1111usb_devio_init_failed:
1112	usb_deregister(&usbfs_driver);
1113driver_register_failed:
1114	class_unregister(&usbmisc_class);
1115class_register_failed:
1116	usb_major_cleanup();
1117major_init_failed:
1118	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1119bus_notifier_failed:
1120	bus_unregister(&usb_bus_type);
1121bus_register_failed:
1122	usb_acpi_unregister();
1123	usb_debugfs_cleanup();
1124out:
1125	return retval;
1126}
1127
1128/*
1129 * Cleanup
1130 */
1131static void __exit usb_exit(void)
1132{
1133	/* This will matter if shutdown/reboot does exitcalls. */
1134	if (usb_disabled())
1135		return;
1136
1137	usb_release_quirk_list();
1138	usb_deregister_device_driver(&usb_generic_driver);
1139	usb_major_cleanup();
1140	usb_deregister(&usbfs_driver);
1141	usb_devio_cleanup();
1142	usb_hub_cleanup();
1143	class_unregister(&usbmisc_class);
1144	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1145	bus_unregister(&usb_bus_type);
1146	usb_acpi_unregister();
1147	usb_debugfs_cleanup();
1148	idr_destroy(&usb_bus_idr);
1149}
1150
1151subsys_initcall(usb_init);
1152module_exit(usb_exit);
1153MODULE_LICENSE("GPL");
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/usb/core/usb.c
   4 *
   5 * (C) Copyright Linus Torvalds 1999
   6 * (C) Copyright Johannes Erdfelt 1999-2001
   7 * (C) Copyright Andreas Gal 1999
   8 * (C) Copyright Gregory P. Smith 1999
   9 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
  10 * (C) Copyright Randy Dunlap 2000
  11 * (C) Copyright David Brownell 2000-2004
  12 * (C) Copyright Yggdrasil Computing, Inc. 2000
  13 *     (usb_device_id matching changes by Adam J. Richter)
  14 * (C) Copyright Greg Kroah-Hartman 2002-2003
  15 *
  16 * Released under the GPLv2 only.
  17 *
  18 * NOTE! This is not actually a driver at all, rather this is
  19 * just a collection of helper routines that implement the
  20 * generic USB things that the real drivers can use..
  21 *
  22 * Think of this as a "USB library" rather than anything else,
  23 * with no callbacks.  Callbacks are evil.
  24 */
  25
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
 
  28#include <linux/string.h>
  29#include <linux/bitops.h>
  30#include <linux/slab.h>
  31#include <linux/kmod.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/errno.h>
  35#include <linux/usb.h>
  36#include <linux/usb/hcd.h>
  37#include <linux/mutex.h>
  38#include <linux/workqueue.h>
  39#include <linux/debugfs.h>
  40#include <linux/usb/of.h>
  41
  42#include <asm/io.h>
  43#include <linux/scatterlist.h>
  44#include <linux/mm.h>
  45#include <linux/dma-mapping.h>
  46
  47#include "hub.h"
  48
  49const char *usbcore_name = "usbcore";
  50
  51static bool nousb;	/* Disable USB when built into kernel image */
  52
  53module_param(nousb, bool, 0444);
  54
  55/*
  56 * for external read access to <nousb>
  57 */
  58int usb_disabled(void)
  59{
  60	return nousb;
  61}
  62EXPORT_SYMBOL_GPL(usb_disabled);
  63
  64#ifdef	CONFIG_PM
  65/* Default delay value, in seconds */
  66static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY;
  67module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
  68MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
  69
  70#else
  71#define usb_autosuspend_delay		0
  72#endif
  73
  74static bool match_endpoint(struct usb_endpoint_descriptor *epd,
  75		struct usb_endpoint_descriptor **bulk_in,
  76		struct usb_endpoint_descriptor **bulk_out,
  77		struct usb_endpoint_descriptor **int_in,
  78		struct usb_endpoint_descriptor **int_out)
  79{
  80	switch (usb_endpoint_type(epd)) {
  81	case USB_ENDPOINT_XFER_BULK:
  82		if (usb_endpoint_dir_in(epd)) {
  83			if (bulk_in && !*bulk_in) {
  84				*bulk_in = epd;
  85				break;
  86			}
  87		} else {
  88			if (bulk_out && !*bulk_out) {
  89				*bulk_out = epd;
  90				break;
  91			}
  92		}
  93
  94		return false;
  95	case USB_ENDPOINT_XFER_INT:
  96		if (usb_endpoint_dir_in(epd)) {
  97			if (int_in && !*int_in) {
  98				*int_in = epd;
  99				break;
 100			}
 101		} else {
 102			if (int_out && !*int_out) {
 103				*int_out = epd;
 104				break;
 105			}
 106		}
 107
 108		return false;
 109	default:
 110		return false;
 111	}
 112
 113	return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
 114			(!int_in || *int_in) && (!int_out || *int_out);
 115}
 116
 117/**
 118 * usb_find_common_endpoints() -- look up common endpoint descriptors
 119 * @alt:	alternate setting to search
 120 * @bulk_in:	pointer to descriptor pointer, or NULL
 121 * @bulk_out:	pointer to descriptor pointer, or NULL
 122 * @int_in:	pointer to descriptor pointer, or NULL
 123 * @int_out:	pointer to descriptor pointer, or NULL
 124 *
 125 * Search the alternate setting's endpoint descriptors for the first bulk-in,
 126 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
 127 * provided pointers (unless they are NULL).
 128 *
 129 * If a requested endpoint is not found, the corresponding pointer is set to
 130 * NULL.
 131 *
 132 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
 133 */
 134int usb_find_common_endpoints(struct usb_host_interface *alt,
 135		struct usb_endpoint_descriptor **bulk_in,
 136		struct usb_endpoint_descriptor **bulk_out,
 137		struct usb_endpoint_descriptor **int_in,
 138		struct usb_endpoint_descriptor **int_out)
 139{
 140	struct usb_endpoint_descriptor *epd;
 141	int i;
 142
 143	if (bulk_in)
 144		*bulk_in = NULL;
 145	if (bulk_out)
 146		*bulk_out = NULL;
 147	if (int_in)
 148		*int_in = NULL;
 149	if (int_out)
 150		*int_out = NULL;
 151
 152	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
 153		epd = &alt->endpoint[i].desc;
 154
 155		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
 156			return 0;
 157	}
 158
 159	return -ENXIO;
 160}
 161EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
 162
 163/**
 164 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
 165 * @alt:	alternate setting to search
 166 * @bulk_in:	pointer to descriptor pointer, or NULL
 167 * @bulk_out:	pointer to descriptor pointer, or NULL
 168 * @int_in:	pointer to descriptor pointer, or NULL
 169 * @int_out:	pointer to descriptor pointer, or NULL
 170 *
 171 * Search the alternate setting's endpoint descriptors for the last bulk-in,
 172 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
 173 * provided pointers (unless they are NULL).
 174 *
 175 * If a requested endpoint is not found, the corresponding pointer is set to
 176 * NULL.
 177 *
 178 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
 179 */
 180int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
 181		struct usb_endpoint_descriptor **bulk_in,
 182		struct usb_endpoint_descriptor **bulk_out,
 183		struct usb_endpoint_descriptor **int_in,
 184		struct usb_endpoint_descriptor **int_out)
 185{
 186	struct usb_endpoint_descriptor *epd;
 187	int i;
 188
 189	if (bulk_in)
 190		*bulk_in = NULL;
 191	if (bulk_out)
 192		*bulk_out = NULL;
 193	if (int_in)
 194		*int_in = NULL;
 195	if (int_out)
 196		*int_out = NULL;
 197
 198	for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
 199		epd = &alt->endpoint[i].desc;
 200
 201		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
 202			return 0;
 203	}
 204
 205	return -ENXIO;
 206}
 207EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
 208
 209/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210 * usb_find_alt_setting() - Given a configuration, find the alternate setting
 211 * for the given interface.
 212 * @config: the configuration to search (not necessarily the current config).
 213 * @iface_num: interface number to search in
 214 * @alt_num: alternate interface setting number to search for.
 215 *
 216 * Search the configuration's interface cache for the given alt setting.
 217 *
 218 * Return: The alternate setting, if found. %NULL otherwise.
 219 */
 220struct usb_host_interface *usb_find_alt_setting(
 221		struct usb_host_config *config,
 222		unsigned int iface_num,
 223		unsigned int alt_num)
 224{
 225	struct usb_interface_cache *intf_cache = NULL;
 226	int i;
 227
 228	if (!config)
 229		return NULL;
 230	for (i = 0; i < config->desc.bNumInterfaces; i++) {
 231		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
 232				== iface_num) {
 233			intf_cache = config->intf_cache[i];
 234			break;
 235		}
 236	}
 237	if (!intf_cache)
 238		return NULL;
 239	for (i = 0; i < intf_cache->num_altsetting; i++)
 240		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
 241			return &intf_cache->altsetting[i];
 242
 243	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
 244			"config %u\n", alt_num, iface_num,
 245			config->desc.bConfigurationValue);
 246	return NULL;
 247}
 248EXPORT_SYMBOL_GPL(usb_find_alt_setting);
 249
 250/**
 251 * usb_ifnum_to_if - get the interface object with a given interface number
 252 * @dev: the device whose current configuration is considered
 253 * @ifnum: the desired interface
 254 *
 255 * This walks the device descriptor for the currently active configuration
 256 * to find the interface object with the particular interface number.
 257 *
 258 * Note that configuration descriptors are not required to assign interface
 259 * numbers sequentially, so that it would be incorrect to assume that
 260 * the first interface in that descriptor corresponds to interface zero.
 261 * This routine helps device drivers avoid such mistakes.
 262 * However, you should make sure that you do the right thing with any
 263 * alternate settings available for this interfaces.
 264 *
 265 * Don't call this function unless you are bound to one of the interfaces
 266 * on this device or you have locked the device!
 267 *
 268 * Return: A pointer to the interface that has @ifnum as interface number,
 269 * if found. %NULL otherwise.
 270 */
 271struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 272				      unsigned ifnum)
 273{
 274	struct usb_host_config *config = dev->actconfig;
 275	int i;
 276
 277	if (!config)
 278		return NULL;
 279	for (i = 0; i < config->desc.bNumInterfaces; i++)
 280		if (config->interface[i]->altsetting[0]
 281				.desc.bInterfaceNumber == ifnum)
 282			return config->interface[i];
 283
 284	return NULL;
 285}
 286EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
 287
 288/**
 289 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
 290 * @intf: the interface containing the altsetting in question
 291 * @altnum: the desired alternate setting number
 292 *
 293 * This searches the altsetting array of the specified interface for
 294 * an entry with the correct bAlternateSetting value.
 295 *
 296 * Note that altsettings need not be stored sequentially by number, so
 297 * it would be incorrect to assume that the first altsetting entry in
 298 * the array corresponds to altsetting zero.  This routine helps device
 299 * drivers avoid such mistakes.
 300 *
 301 * Don't call this function unless you are bound to the intf interface
 302 * or you have locked the device!
 303 *
 304 * Return: A pointer to the entry of the altsetting array of @intf that
 305 * has @altnum as the alternate setting number. %NULL if not found.
 306 */
 307struct usb_host_interface *usb_altnum_to_altsetting(
 308					const struct usb_interface *intf,
 309					unsigned int altnum)
 310{
 311	int i;
 312
 313	for (i = 0; i < intf->num_altsetting; i++) {
 314		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
 315			return &intf->altsetting[i];
 316	}
 317	return NULL;
 318}
 319EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
 320
 321struct find_interface_arg {
 322	int minor;
 323	struct device_driver *drv;
 324};
 325
 326static int __find_interface(struct device *dev, const void *data)
 327{
 328	const struct find_interface_arg *arg = data;
 329	struct usb_interface *intf;
 330
 331	if (!is_usb_interface(dev))
 332		return 0;
 333
 334	if (dev->driver != arg->drv)
 335		return 0;
 336	intf = to_usb_interface(dev);
 337	return intf->minor == arg->minor;
 338}
 339
 340/**
 341 * usb_find_interface - find usb_interface pointer for driver and device
 342 * @drv: the driver whose current configuration is considered
 343 * @minor: the minor number of the desired device
 344 *
 345 * This walks the bus device list and returns a pointer to the interface
 346 * with the matching minor and driver.  Note, this only works for devices
 347 * that share the USB major number.
 348 *
 349 * Return: A pointer to the interface with the matching major and @minor.
 350 */
 351struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
 352{
 353	struct find_interface_arg argb;
 354	struct device *dev;
 355
 356	argb.minor = minor;
 357	argb.drv = &drv->drvwrap.driver;
 358
 359	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
 360
 361	/* Drop reference count from bus_find_device */
 362	put_device(dev);
 363
 364	return dev ? to_usb_interface(dev) : NULL;
 365}
 366EXPORT_SYMBOL_GPL(usb_find_interface);
 367
 368struct each_dev_arg {
 369	void *data;
 370	int (*fn)(struct usb_device *, void *);
 371};
 372
 373static int __each_dev(struct device *dev, void *data)
 374{
 375	struct each_dev_arg *arg = (struct each_dev_arg *)data;
 376
 377	/* There are struct usb_interface on the same bus, filter them out */
 378	if (!is_usb_device(dev))
 379		return 0;
 380
 381	return arg->fn(to_usb_device(dev), arg->data);
 382}
 383
 384/**
 385 * usb_for_each_dev - iterate over all USB devices in the system
 386 * @data: data pointer that will be handed to the callback function
 387 * @fn: callback function to be called for each USB device
 388 *
 389 * Iterate over all USB devices and call @fn for each, passing it @data. If it
 390 * returns anything other than 0, we break the iteration prematurely and return
 391 * that value.
 392 */
 393int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
 394{
 395	struct each_dev_arg arg = {data, fn};
 396
 397	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
 398}
 399EXPORT_SYMBOL_GPL(usb_for_each_dev);
 400
 401/**
 402 * usb_release_dev - free a usb device structure when all users of it are finished.
 403 * @dev: device that's been disconnected
 404 *
 405 * Will be called only by the device core when all users of this usb device are
 406 * done.
 407 */
 408static void usb_release_dev(struct device *dev)
 409{
 410	struct usb_device *udev;
 411	struct usb_hcd *hcd;
 412
 413	udev = to_usb_device(dev);
 414	hcd = bus_to_hcd(udev->bus);
 415
 416	usb_destroy_configuration(udev);
 417	usb_release_bos_descriptor(udev);
 418	of_node_put(dev->of_node);
 419	usb_put_hcd(hcd);
 420	kfree(udev->product);
 421	kfree(udev->manufacturer);
 422	kfree(udev->serial);
 423	kfree(udev);
 424}
 425
 426static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 427{
 428	struct usb_device *usb_dev;
 429
 430	usb_dev = to_usb_device(dev);
 431
 432	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
 433		return -ENOMEM;
 434
 435	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
 436		return -ENOMEM;
 437
 438	return 0;
 439}
 440
 441#ifdef	CONFIG_PM
 442
 443/* USB device Power-Management thunks.
 444 * There's no need to distinguish here between quiescing a USB device
 445 * and powering it down; the generic_suspend() routine takes care of
 446 * it by skipping the usb_port_suspend() call for a quiesce.  And for
 447 * USB interfaces there's no difference at all.
 448 */
 449
 450static int usb_dev_prepare(struct device *dev)
 451{
 452	return 0;		/* Implement eventually? */
 453}
 454
 455static void usb_dev_complete(struct device *dev)
 456{
 457	/* Currently used only for rebinding interfaces */
 458	usb_resume_complete(dev);
 459}
 460
 461static int usb_dev_suspend(struct device *dev)
 462{
 463	return usb_suspend(dev, PMSG_SUSPEND);
 464}
 465
 466static int usb_dev_resume(struct device *dev)
 467{
 468	return usb_resume(dev, PMSG_RESUME);
 469}
 470
 471static int usb_dev_freeze(struct device *dev)
 472{
 473	return usb_suspend(dev, PMSG_FREEZE);
 474}
 475
 476static int usb_dev_thaw(struct device *dev)
 477{
 478	return usb_resume(dev, PMSG_THAW);
 479}
 480
 481static int usb_dev_poweroff(struct device *dev)
 482{
 483	return usb_suspend(dev, PMSG_HIBERNATE);
 484}
 485
 486static int usb_dev_restore(struct device *dev)
 487{
 488	return usb_resume(dev, PMSG_RESTORE);
 489}
 490
 491static const struct dev_pm_ops usb_device_pm_ops = {
 492	.prepare =	usb_dev_prepare,
 493	.complete =	usb_dev_complete,
 494	.suspend =	usb_dev_suspend,
 495	.resume =	usb_dev_resume,
 496	.freeze =	usb_dev_freeze,
 497	.thaw =		usb_dev_thaw,
 498	.poweroff =	usb_dev_poweroff,
 499	.restore =	usb_dev_restore,
 500	.runtime_suspend =	usb_runtime_suspend,
 501	.runtime_resume =	usb_runtime_resume,
 502	.runtime_idle =		usb_runtime_idle,
 503};
 504
 505#endif	/* CONFIG_PM */
 506
 507
 508static char *usb_devnode(struct device *dev,
 509			 umode_t *mode, kuid_t *uid, kgid_t *gid)
 510{
 511	struct usb_device *usb_dev;
 512
 513	usb_dev = to_usb_device(dev);
 514	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
 515			 usb_dev->bus->busnum, usb_dev->devnum);
 516}
 517
 518struct device_type usb_device_type = {
 519	.name =		"usb_device",
 520	.release =	usb_release_dev,
 521	.uevent =	usb_dev_uevent,
 522	.devnode = 	usb_devnode,
 523#ifdef CONFIG_PM
 524	.pm =		&usb_device_pm_ops,
 525#endif
 526};
 527
 528
 529/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
 530static unsigned usb_bus_is_wusb(struct usb_bus *bus)
 531{
 532	struct usb_hcd *hcd = bus_to_hcd(bus);
 533	return hcd->wireless;
 534}
 535
 536static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd)
 537{
 538	struct usb_hub *hub;
 539
 540	if (!dev->parent)
 541		return true; /* Root hub always ok [and always wired] */
 542
 543	switch (hcd->dev_policy) {
 544	case USB_DEVICE_AUTHORIZE_NONE:
 545	default:
 546		return false;
 547
 548	case USB_DEVICE_AUTHORIZE_ALL:
 549		return true;
 550
 551	case USB_DEVICE_AUTHORIZE_INTERNAL:
 552		hub = usb_hub_to_struct_hub(dev->parent);
 553		return hub->ports[dev->portnum - 1]->connect_type ==
 554				USB_PORT_CONNECT_TYPE_HARD_WIRED;
 555	}
 556}
 557
 558/**
 559 * usb_alloc_dev - usb device constructor (usbcore-internal)
 560 * @parent: hub to which device is connected; null to allocate a root hub
 561 * @bus: bus used to access the device
 562 * @port1: one-based index of port; ignored for root hubs
 563 *
 564 * Context: task context, might sleep.
 565 *
 566 * Only hub drivers (including virtual root hub drivers for host
 567 * controllers) should ever call this.
 568 *
 569 * This call may not be used in a non-sleeping context.
 570 *
 571 * Return: On success, a pointer to the allocated usb device. %NULL on
 572 * failure.
 573 */
 574struct usb_device *usb_alloc_dev(struct usb_device *parent,
 575				 struct usb_bus *bus, unsigned port1)
 576{
 577	struct usb_device *dev;
 578	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
 579	unsigned root_hub = 0;
 580	unsigned raw_port = port1;
 581
 582	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 583	if (!dev)
 584		return NULL;
 585
 586	if (!usb_get_hcd(usb_hcd)) {
 587		kfree(dev);
 588		return NULL;
 589	}
 590	/* Root hubs aren't true devices, so don't allocate HCD resources */
 591	if (usb_hcd->driver->alloc_dev && parent &&
 592		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
 593		usb_put_hcd(bus_to_hcd(bus));
 594		kfree(dev);
 595		return NULL;
 596	}
 597
 598	device_initialize(&dev->dev);
 599	dev->dev.bus = &usb_bus_type;
 600	dev->dev.type = &usb_device_type;
 601	dev->dev.groups = usb_device_groups;
 602	set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
 603	dev->state = USB_STATE_ATTACHED;
 604	dev->lpm_disable_count = 1;
 605	atomic_set(&dev->urbnum, 0);
 606
 607	INIT_LIST_HEAD(&dev->ep0.urb_list);
 608	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
 609	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
 610	/* ep0 maxpacket comes later, from device descriptor */
 611	usb_enable_endpoint(dev, &dev->ep0, false);
 612	dev->can_submit = 1;
 613
 614	/* Save readable and stable topology id, distinguishing devices
 615	 * by location for diagnostics, tools, driver model, etc.  The
 616	 * string is a path along hub ports, from the root.  Each device's
 617	 * dev->devpath will be stable until USB is re-cabled, and hubs
 618	 * are often labeled with these port numbers.  The name isn't
 619	 * as stable:  bus->busnum changes easily from modprobe order,
 620	 * cardbus or pci hotplugging, and so on.
 621	 */
 622	if (unlikely(!parent)) {
 623		dev->devpath[0] = '0';
 624		dev->route = 0;
 625
 626		dev->dev.parent = bus->controller;
 627		device_set_of_node_from_dev(&dev->dev, bus->sysdev);
 628		dev_set_name(&dev->dev, "usb%d", bus->busnum);
 629		root_hub = 1;
 630	} else {
 631		/* match any labeling on the hubs; it's one-based */
 632		if (parent->devpath[0] == '0') {
 633			snprintf(dev->devpath, sizeof dev->devpath,
 634				"%d", port1);
 635			/* Root ports are not counted in route string */
 636			dev->route = 0;
 637		} else {
 638			snprintf(dev->devpath, sizeof dev->devpath,
 639				"%s.%d", parent->devpath, port1);
 640			/* Route string assumes hubs have less than 16 ports */
 641			if (port1 < 15)
 642				dev->route = parent->route +
 643					(port1 << ((parent->level - 1)*4));
 644			else
 645				dev->route = parent->route +
 646					(15 << ((parent->level - 1)*4));
 647		}
 648
 649		dev->dev.parent = &parent->dev;
 650		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
 651
 652		if (!parent->parent) {
 653			/* device under root hub's port */
 654			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
 655				port1);
 656		}
 657		dev->dev.of_node = usb_of_get_device_node(parent, raw_port);
 658
 659		/* hub driver sets up TT records */
 660	}
 661
 662	dev->portnum = port1;
 663	dev->bus = bus;
 664	dev->parent = parent;
 665	INIT_LIST_HEAD(&dev->filelist);
 666
 667#ifdef	CONFIG_PM
 668	pm_runtime_set_autosuspend_delay(&dev->dev,
 669			usb_autosuspend_delay * 1000);
 670	dev->connect_time = jiffies;
 671	dev->active_duration = -jiffies;
 672#endif
 673
 674	dev->authorized = usb_dev_authorized(dev, usb_hcd);
 675	if (!root_hub)
 676		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
 677
 678	return dev;
 679}
 680EXPORT_SYMBOL_GPL(usb_alloc_dev);
 681
 682/**
 683 * usb_get_dev - increments the reference count of the usb device structure
 684 * @dev: the device being referenced
 685 *
 686 * Each live reference to a device should be refcounted.
 687 *
 688 * Drivers for USB interfaces should normally record such references in
 689 * their probe() methods, when they bind to an interface, and release
 690 * them by calling usb_put_dev(), in their disconnect() methods.
 691 * However, if a driver does not access the usb_device structure after
 692 * its disconnect() method returns then refcounting is not necessary,
 693 * because the USB core guarantees that a usb_device will not be
 694 * deallocated until after all of its interface drivers have been unbound.
 695 *
 696 * Return: A pointer to the device with the incremented reference counter.
 697 */
 698struct usb_device *usb_get_dev(struct usb_device *dev)
 699{
 700	if (dev)
 701		get_device(&dev->dev);
 702	return dev;
 703}
 704EXPORT_SYMBOL_GPL(usb_get_dev);
 705
 706/**
 707 * usb_put_dev - release a use of the usb device structure
 708 * @dev: device that's been disconnected
 709 *
 710 * Must be called when a user of a device is finished with it.  When the last
 711 * user of the device calls this function, the memory of the device is freed.
 712 */
 713void usb_put_dev(struct usb_device *dev)
 714{
 715	if (dev)
 716		put_device(&dev->dev);
 717}
 718EXPORT_SYMBOL_GPL(usb_put_dev);
 719
 720/**
 721 * usb_get_intf - increments the reference count of the usb interface structure
 722 * @intf: the interface being referenced
 723 *
 724 * Each live reference to a interface must be refcounted.
 725 *
 726 * Drivers for USB interfaces should normally record such references in
 727 * their probe() methods, when they bind to an interface, and release
 728 * them by calling usb_put_intf(), in their disconnect() methods.
 729 * However, if a driver does not access the usb_interface structure after
 730 * its disconnect() method returns then refcounting is not necessary,
 731 * because the USB core guarantees that a usb_interface will not be
 732 * deallocated until after its driver has been unbound.
 733 *
 734 * Return: A pointer to the interface with the incremented reference counter.
 735 */
 736struct usb_interface *usb_get_intf(struct usb_interface *intf)
 737{
 738	if (intf)
 739		get_device(&intf->dev);
 740	return intf;
 741}
 742EXPORT_SYMBOL_GPL(usb_get_intf);
 743
 744/**
 745 * usb_put_intf - release a use of the usb interface structure
 746 * @intf: interface that's been decremented
 747 *
 748 * Must be called when a user of an interface is finished with it.  When the
 749 * last user of the interface calls this function, the memory of the interface
 750 * is freed.
 751 */
 752void usb_put_intf(struct usb_interface *intf)
 753{
 754	if (intf)
 755		put_device(&intf->dev);
 756}
 757EXPORT_SYMBOL_GPL(usb_put_intf);
 758
 759/**
 760 * usb_intf_get_dma_device - acquire a reference on the usb interface's DMA endpoint
 761 * @intf: the usb interface
 762 *
 763 * While a USB device cannot perform DMA operations by itself, many USB
 764 * controllers can. A call to usb_intf_get_dma_device() returns the DMA endpoint
 765 * for the given USB interface, if any. The returned device structure must be
 766 * released with put_device().
 767 *
 768 * See also usb_get_dma_device().
 769 *
 770 * Returns: A reference to the usb interface's DMA endpoint; or NULL if none
 771 *          exists.
 772 */
 773struct device *usb_intf_get_dma_device(struct usb_interface *intf)
 774{
 775	struct usb_device *udev = interface_to_usbdev(intf);
 776	struct device *dmadev;
 777
 778	if (!udev->bus)
 779		return NULL;
 780
 781	dmadev = get_device(udev->bus->sysdev);
 782	if (!dmadev || !dmadev->dma_mask) {
 783		put_device(dmadev);
 784		return NULL;
 785	}
 786
 787	return dmadev;
 788}
 789EXPORT_SYMBOL_GPL(usb_intf_get_dma_device);
 790
 791/*			USB device locking
 792 *
 793 * USB devices and interfaces are locked using the semaphore in their
 794 * embedded struct device.  The hub driver guarantees that whenever a
 795 * device is connected or disconnected, drivers are called with the
 796 * USB device locked as well as their particular interface.
 797 *
 798 * Complications arise when several devices are to be locked at the same
 799 * time.  Only hub-aware drivers that are part of usbcore ever have to
 800 * do this; nobody else needs to worry about it.  The rule for locking
 801 * is simple:
 802 *
 803 *	When locking both a device and its parent, always lock the
 804 *	parent first.
 805 */
 806
 807/**
 808 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
 809 * @udev: device that's being locked
 810 * @iface: interface bound to the driver making the request (optional)
 811 *
 812 * Attempts to acquire the device lock, but fails if the device is
 813 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
 814 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
 815 * lock, the routine polls repeatedly.  This is to prevent deadlock with
 816 * disconnect; in some drivers (such as usb-storage) the disconnect()
 817 * or suspend() method will block waiting for a device reset to complete.
 818 *
 819 * Return: A negative error code for failure, otherwise 0.
 820 */
 821int usb_lock_device_for_reset(struct usb_device *udev,
 822			      const struct usb_interface *iface)
 823{
 824	unsigned long jiffies_expire = jiffies + HZ;
 825
 826	if (udev->state == USB_STATE_NOTATTACHED)
 827		return -ENODEV;
 828	if (udev->state == USB_STATE_SUSPENDED)
 829		return -EHOSTUNREACH;
 830	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 831			iface->condition == USB_INTERFACE_UNBOUND))
 832		return -EINTR;
 833
 834	while (!usb_trylock_device(udev)) {
 835
 836		/* If we can't acquire the lock after waiting one second,
 837		 * we're probably deadlocked */
 838		if (time_after(jiffies, jiffies_expire))
 839			return -EBUSY;
 840
 841		msleep(15);
 842		if (udev->state == USB_STATE_NOTATTACHED)
 843			return -ENODEV;
 844		if (udev->state == USB_STATE_SUSPENDED)
 845			return -EHOSTUNREACH;
 846		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 847				iface->condition == USB_INTERFACE_UNBOUND))
 848			return -EINTR;
 849	}
 850	return 0;
 851}
 852EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
 853
 854/**
 855 * usb_get_current_frame_number - return current bus frame number
 856 * @dev: the device whose bus is being queried
 857 *
 858 * Return: The current frame number for the USB host controller used
 859 * with the given USB device. This can be used when scheduling
 860 * isochronous requests.
 861 *
 862 * Note: Different kinds of host controller have different "scheduling
 863 * horizons". While one type might support scheduling only 32 frames
 864 * into the future, others could support scheduling up to 1024 frames
 865 * into the future.
 866 *
 867 */
 868int usb_get_current_frame_number(struct usb_device *dev)
 869{
 870	return usb_hcd_get_frame_number(dev);
 871}
 872EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
 873
 874/*-------------------------------------------------------------------*/
 875/*
 876 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
 877 * extra field of the interface and endpoint descriptor structs.
 878 */
 879
 880int __usb_get_extra_descriptor(char *buffer, unsigned size,
 881			       unsigned char type, void **ptr, size_t minsize)
 882{
 883	struct usb_descriptor_header *header;
 884
 885	while (size >= sizeof(struct usb_descriptor_header)) {
 886		header = (struct usb_descriptor_header *)buffer;
 887
 888		if (header->bLength < 2 || header->bLength > size) {
 889			printk(KERN_ERR
 890				"%s: bogus descriptor, type %d length %d\n",
 891				usbcore_name,
 892				header->bDescriptorType,
 893				header->bLength);
 894			return -1;
 895		}
 896
 897		if (header->bDescriptorType == type && header->bLength >= minsize) {
 898			*ptr = header;
 899			return 0;
 900		}
 901
 902		buffer += header->bLength;
 903		size -= header->bLength;
 904	}
 905	return -1;
 906}
 907EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
 908
 909/**
 910 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
 911 * @dev: device the buffer will be used with
 912 * @size: requested buffer size
 913 * @mem_flags: affect whether allocation may block
 914 * @dma: used to return DMA address of buffer
 915 *
 916 * Return: Either null (indicating no buffer could be allocated), or the
 917 * cpu-space pointer to a buffer that may be used to perform DMA to the
 918 * specified device.  Such cpu-space buffers are returned along with the DMA
 919 * address (through the pointer provided).
 920 *
 921 * Note:
 922 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
 923 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
 924 * hardware during URB completion/resubmit.  The implementation varies between
 925 * platforms, depending on details of how DMA will work to this device.
 926 * Using these buffers also eliminates cacheline sharing problems on
 927 * architectures where CPU caches are not DMA-coherent.  On systems without
 928 * bus-snooping caches, these buffers are uncached.
 929 *
 930 * When the buffer is no longer used, free it with usb_free_coherent().
 931 */
 932void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
 933			 dma_addr_t *dma)
 934{
 935	if (!dev || !dev->bus)
 936		return NULL;
 937	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
 938}
 939EXPORT_SYMBOL_GPL(usb_alloc_coherent);
 940
 941/**
 942 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
 943 * @dev: device the buffer was used with
 944 * @size: requested buffer size
 945 * @addr: CPU address of buffer
 946 * @dma: DMA address of buffer
 947 *
 948 * This reclaims an I/O buffer, letting it be reused.  The memory must have
 949 * been allocated using usb_alloc_coherent(), and the parameters must match
 950 * those provided in that allocation request.
 951 */
 952void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
 953		       dma_addr_t dma)
 954{
 955	if (!dev || !dev->bus)
 956		return;
 957	if (!addr)
 958		return;
 959	hcd_buffer_free(dev->bus, size, addr, dma);
 960}
 961EXPORT_SYMBOL_GPL(usb_free_coherent);
 962
 963/*
 964 * Notifications of device and interface registration
 965 */
 966static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
 967		void *data)
 968{
 969	struct device *dev = data;
 970
 971	switch (action) {
 972	case BUS_NOTIFY_ADD_DEVICE:
 973		if (dev->type == &usb_device_type)
 974			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
 975		else if (dev->type == &usb_if_device_type)
 976			usb_create_sysfs_intf_files(to_usb_interface(dev));
 977		break;
 978
 979	case BUS_NOTIFY_DEL_DEVICE:
 980		if (dev->type == &usb_device_type)
 981			usb_remove_sysfs_dev_files(to_usb_device(dev));
 982		else if (dev->type == &usb_if_device_type)
 983			usb_remove_sysfs_intf_files(to_usb_interface(dev));
 984		break;
 985	}
 986	return 0;
 987}
 988
 989static struct notifier_block usb_bus_nb = {
 990	.notifier_call = usb_bus_notify,
 991};
 992
 993static void usb_debugfs_init(void)
 994{
 995	debugfs_create_file("devices", 0444, usb_debug_root, NULL,
 996			    &usbfs_devices_fops);
 997}
 998
 999static void usb_debugfs_cleanup(void)
1000{
1001	debugfs_remove(debugfs_lookup("devices", usb_debug_root));
1002}
1003
1004/*
1005 * Init
1006 */
1007static int __init usb_init(void)
1008{
1009	int retval;
1010	if (usb_disabled()) {
1011		pr_info("%s: USB support disabled\n", usbcore_name);
1012		return 0;
1013	}
1014	usb_init_pool_max();
1015
1016	usb_debugfs_init();
1017
1018	usb_acpi_register();
1019	retval = bus_register(&usb_bus_type);
1020	if (retval)
1021		goto bus_register_failed;
1022	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1023	if (retval)
1024		goto bus_notifier_failed;
1025	retval = usb_major_init();
1026	if (retval)
1027		goto major_init_failed;
 
 
 
1028	retval = usb_register(&usbfs_driver);
1029	if (retval)
1030		goto driver_register_failed;
1031	retval = usb_devio_init();
1032	if (retval)
1033		goto usb_devio_init_failed;
1034	retval = usb_hub_init();
1035	if (retval)
1036		goto hub_init_failed;
1037	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1038	if (!retval)
1039		goto out;
1040
1041	usb_hub_cleanup();
1042hub_init_failed:
1043	usb_devio_cleanup();
1044usb_devio_init_failed:
1045	usb_deregister(&usbfs_driver);
1046driver_register_failed:
 
 
1047	usb_major_cleanup();
1048major_init_failed:
1049	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1050bus_notifier_failed:
1051	bus_unregister(&usb_bus_type);
1052bus_register_failed:
1053	usb_acpi_unregister();
1054	usb_debugfs_cleanup();
1055out:
1056	return retval;
1057}
1058
1059/*
1060 * Cleanup
1061 */
1062static void __exit usb_exit(void)
1063{
1064	/* This will matter if shutdown/reboot does exitcalls. */
1065	if (usb_disabled())
1066		return;
1067
1068	usb_release_quirk_list();
1069	usb_deregister_device_driver(&usb_generic_driver);
1070	usb_major_cleanup();
1071	usb_deregister(&usbfs_driver);
1072	usb_devio_cleanup();
1073	usb_hub_cleanup();
 
1074	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1075	bus_unregister(&usb_bus_type);
1076	usb_acpi_unregister();
1077	usb_debugfs_cleanup();
1078	idr_destroy(&usb_bus_idr);
1079}
1080
1081subsys_initcall(usb_init);
1082module_exit(usb_exit);
1083MODULE_LICENSE("GPL");