Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) STMicroelectronics 2016
  4 *
  5 * Author: Gerald Baeza <gerald.baeza@st.com>
  6 *
  7 * Inspired by timer-stm32.c from Maxime Coquelin
  8 *             pwm-atmel.c from Bo Shen
  9 */
 10
 11#include <linux/bitfield.h>
 12#include <linux/mfd/stm32-timers.h>
 13#include <linux/module.h>
 14#include <linux/of.h>
 15#include <linux/pinctrl/consumer.h>
 16#include <linux/platform_device.h>
 17#include <linux/pwm.h>
 18
 19#define CCMR_CHANNEL_SHIFT 8
 20#define CCMR_CHANNEL_MASK  0xFF
 21#define MAX_BREAKINPUT 2
 22
 23struct stm32_breakinput {
 24	u32 index;
 25	u32 level;
 26	u32 filter;
 27};
 28
 29struct stm32_pwm {
 30	struct pwm_chip chip;
 31	struct mutex lock; /* protect pwm config/enable */
 32	struct clk *clk;
 33	struct regmap *regmap;
 34	u32 max_arr;
 35	bool have_complementary_output;
 36	struct stm32_breakinput breakinputs[MAX_BREAKINPUT];
 37	unsigned int num_breakinputs;
 38	u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
 39};
 40
 41static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
 42{
 43	return container_of(chip, struct stm32_pwm, chip);
 44}
 45
 46static u32 active_channels(struct stm32_pwm *dev)
 47{
 48	u32 ccer;
 49
 50	regmap_read(dev->regmap, TIM_CCER, &ccer);
 51
 52	return ccer & TIM_CCER_CCXE;
 53}
 54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55#define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
 56#define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
 57#define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
 58#define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
 59
 60/*
 61 * Capture using PWM input mode:
 62 *                              ___          ___
 63 * TI[1, 2, 3 or 4]: ........._|   |________|
 64 *                             ^0  ^1       ^2
 65 *                              .   .        .
 66 *                              .   .        XXXXX
 67 *                              .   .   XXXXX     |
 68 *                              .  XXXXX     .    |
 69 *                            XXXXX .        .    |
 70 * COUNTER:        ______XXXXX  .   .        .    |_XXX
 71 *                 start^       .   .        .        ^stop
 72 *                      .       .   .        .
 73 *                      v       v   .        v
 74 *                                  v
 75 * CCR1/CCR3:       tx..........t0...........t2
 76 * CCR2/CCR4:       tx..............t1.........
 77 *
 78 * DMA burst transfer:          |            |
 79 *                              v            v
 80 * DMA buffer:                  { t0, tx }   { t2, t1 }
 81 * DMA done:                                 ^
 82 *
 83 * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
 84 *    + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
 85 * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
 86 * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
 87 *    + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
 88 *
 89 * DMA done, compute:
 90 * - Period     = t2 - t0
 91 * - Duty cycle = t1 - t0
 92 */
 93static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm,
 94				 unsigned long tmo_ms, u32 *raw_prd,
 95				 u32 *raw_dty)
 96{
 97	struct device *parent = priv->chip.dev->parent;
 98	enum stm32_timers_dmas dma_id;
 99	u32 ccen, ccr;
100	int ret;
101
102	/* Ensure registers have been updated, enable counter and capture */
103	regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
104	regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
105
106	/* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
107	dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
108	ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
109	ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
110	regmap_set_bits(priv->regmap, TIM_CCER, ccen);
111
112	/*
113	 * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
114	 * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
115	 * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
116	 * or { CCR3, CCR4 }, { CCR3, CCR4 }
117	 */
118	ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
119					  2, tmo_ms);
120	if (ret)
121		goto stop;
122
123	/* Period: t2 - t0 (take care of counter overflow) */
124	if (priv->capture[0] <= priv->capture[2])
125		*raw_prd = priv->capture[2] - priv->capture[0];
126	else
127		*raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
128
129	/* Duty cycle capture requires at least two capture units */
130	if (pwm->chip->npwm < 2)
131		*raw_dty = 0;
132	else if (priv->capture[0] <= priv->capture[3])
133		*raw_dty = priv->capture[3] - priv->capture[0];
134	else
135		*raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
136
137	if (*raw_dty > *raw_prd) {
138		/*
139		 * Race beetween PWM input and DMA: it may happen
140		 * falling edge triggers new capture on TI2/4 before DMA
141		 * had a chance to read CCR2/4. It means capture[1]
142		 * contains period + duty_cycle. So, subtract period.
143		 */
144		*raw_dty -= *raw_prd;
145	}
146
147stop:
148	regmap_clear_bits(priv->regmap, TIM_CCER, ccen);
149	regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
150
151	return ret;
152}
153
154static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
155			     struct pwm_capture *result, unsigned long tmo_ms)
156{
157	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
158	unsigned long long prd, div, dty;
159	unsigned long rate;
160	unsigned int psc = 0, icpsc, scale;
161	u32 raw_prd = 0, raw_dty = 0;
162	int ret = 0;
163
164	mutex_lock(&priv->lock);
165
166	if (active_channels(priv)) {
167		ret = -EBUSY;
168		goto unlock;
169	}
170
171	ret = clk_enable(priv->clk);
172	if (ret) {
173		dev_err(priv->chip.dev, "failed to enable counter clock\n");
174		goto unlock;
175	}
176
177	rate = clk_get_rate(priv->clk);
178	if (!rate) {
179		ret = -EINVAL;
180		goto clk_dis;
181	}
182
183	/* prescaler: fit timeout window provided by upper layer */
184	div = (unsigned long long)rate * (unsigned long long)tmo_ms;
185	do_div(div, MSEC_PER_SEC);
186	prd = div;
187	while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
188		psc++;
189		div = prd;
190		do_div(div, psc + 1);
191	}
192	regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
193	regmap_write(priv->regmap, TIM_PSC, psc);
194
195	/* Reset input selector to its default input and disable slave mode */
196	regmap_write(priv->regmap, TIM_TISEL, 0x0);
197	regmap_write(priv->regmap, TIM_SMCR, 0x0);
198
199	/* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
200	regmap_update_bits(priv->regmap,
201			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
202			   TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
203			   TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
204			   TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
205
206	/* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
207	regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
208			   TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
209			   TIM_CCER_CC2P : TIM_CCER_CC4P);
210
211	ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
212	if (ret)
213		goto stop;
214
215	/*
216	 * Got a capture. Try to improve accuracy at high rates:
217	 * - decrease counter clock prescaler, scale up to max rate.
218	 * - use input prescaler, capture once every /2 /4 or /8 edges.
219	 */
220	if (raw_prd) {
221		u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
222
223		scale = max_arr / min(max_arr, raw_prd);
224	} else {
225		scale = priv->max_arr; /* bellow resolution, use max scale */
226	}
227
228	if (psc && scale > 1) {
229		/* 2nd measure with new scale */
230		psc /= scale;
231		regmap_write(priv->regmap, TIM_PSC, psc);
232		ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd,
233					    &raw_dty);
234		if (ret)
235			goto stop;
236	}
237
238	/* Compute intermediate period not to exceed timeout at low rates */
239	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
240	do_div(prd, rate);
241
242	for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
243		/* input prescaler: also keep arbitrary margin */
244		if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
245			break;
246		if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
247			break;
248	}
249
250	if (!icpsc)
251		goto done;
252
253	/* Last chance to improve period accuracy, using input prescaler */
254	regmap_update_bits(priv->regmap,
255			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
256			   TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
257			   FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
258			   FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));
259
260	ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
261	if (ret)
262		goto stop;
263
264	if (raw_dty >= (raw_prd >> icpsc)) {
265		/*
266		 * We may fall here using input prescaler, when input
267		 * capture starts on high side (before falling edge).
268		 * Example with icpsc to capture on each 4 events:
269		 *
270		 *       start   1st capture                     2nd capture
271		 *         v     v                               v
272		 *         ___   _____   _____   _____   _____   ____
273		 * TI1..4     |__|    |__|    |__|    |__|    |__|
274		 *            v  v    .  .    .  .    .       v  v
275		 * icpsc1/3:  .  0    .  1    .  2    .  3    .  0
276		 * icpsc2/4:  0       1       2       3       0
277		 *            v  v                            v  v
278		 * CCR1/3  ......t0..............................t2
279		 * CCR2/4  ..t1..............................t1'...
280		 *               .                            .  .
281		 * Capture0:     .<----------------------------->.
282		 * Capture1:     .<-------------------------->.  .
283		 *               .                            .  .
284		 * Period:       .<------>                    .  .
285		 * Low side:                                  .<>.
286		 *
287		 * Result:
288		 * - Period = Capture0 / icpsc
289		 * - Duty = Period - Low side = Period - (Capture0 - Capture1)
290		 */
291		raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
292	}
293
294done:
295	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
296	result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
297	dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
298	result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
299stop:
300	regmap_write(priv->regmap, TIM_CCER, 0);
301	regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
302	regmap_write(priv->regmap, TIM_PSC, 0);
303clk_dis:
304	clk_disable(priv->clk);
305unlock:
306	mutex_unlock(&priv->lock);
307
308	return ret;
309}
310
311static int stm32_pwm_config(struct stm32_pwm *priv, unsigned int ch,
312			    int duty_ns, int period_ns)
313{
314	unsigned long long prd, div, dty;
315	unsigned int prescaler = 0;
316	u32 ccmr, mask, shift;
317
318	/* Period and prescaler values depends on clock rate */
319	div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
320
321	do_div(div, NSEC_PER_SEC);
322	prd = div;
323
324	while (div > priv->max_arr) {
325		prescaler++;
326		div = prd;
327		do_div(div, prescaler + 1);
328	}
329
330	prd = div;
331
332	if (prescaler > MAX_TIM_PSC)
333		return -EINVAL;
334
335	/*
336	 * All channels share the same prescaler and counter so when two
337	 * channels are active at the same time we can't change them
338	 */
339	if (active_channels(priv) & ~(1 << ch * 4)) {
340		u32 psc, arr;
341
342		regmap_read(priv->regmap, TIM_PSC, &psc);
343		regmap_read(priv->regmap, TIM_ARR, &arr);
344
345		if ((psc != prescaler) || (arr != prd - 1))
346			return -EBUSY;
347	}
348
349	regmap_write(priv->regmap, TIM_PSC, prescaler);
350	regmap_write(priv->regmap, TIM_ARR, prd - 1);
351	regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE);
352
353	/* Calculate the duty cycles */
354	dty = prd * duty_ns;
355	do_div(dty, period_ns);
356
357	regmap_write(priv->regmap, TIM_CCR1 + 4 * ch, dty);
358
359	/* Configure output mode */
360	shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
361	ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
362	mask = CCMR_CHANNEL_MASK << shift;
363
364	if (ch < 2)
365		regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
366	else
367		regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
368
369	regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE);
370
371	return 0;
372}
373
374static int stm32_pwm_set_polarity(struct stm32_pwm *priv, unsigned int ch,
375				  enum pwm_polarity polarity)
376{
377	u32 mask;
378
379	mask = TIM_CCER_CC1P << (ch * 4);
380	if (priv->have_complementary_output)
381		mask |= TIM_CCER_CC1NP << (ch * 4);
382
383	regmap_update_bits(priv->regmap, TIM_CCER, mask,
384			   polarity == PWM_POLARITY_NORMAL ? 0 : mask);
385
386	return 0;
387}
388
389static int stm32_pwm_enable(struct stm32_pwm *priv, unsigned int ch)
390{
391	u32 mask;
392	int ret;
393
394	ret = clk_enable(priv->clk);
395	if (ret)
396		return ret;
397
398	/* Enable channel */
399	mask = TIM_CCER_CC1E << (ch * 4);
400	if (priv->have_complementary_output)
401		mask |= TIM_CCER_CC1NE << (ch * 4);
402
403	regmap_set_bits(priv->regmap, TIM_CCER, mask);
404
405	/* Make sure that registers are updated */
406	regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
407
408	/* Enable controller */
409	regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
410
411	return 0;
412}
413
414static void stm32_pwm_disable(struct stm32_pwm *priv, unsigned int ch)
415{
416	u32 mask;
417
418	/* Disable channel */
419	mask = TIM_CCER_CC1E << (ch * 4);
420	if (priv->have_complementary_output)
421		mask |= TIM_CCER_CC1NE << (ch * 4);
422
423	regmap_clear_bits(priv->regmap, TIM_CCER, mask);
424
425	/* When all channels are disabled, we can disable the controller */
426	if (!active_channels(priv))
427		regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
428
429	clk_disable(priv->clk);
430}
431
432static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
433			   const struct pwm_state *state)
434{
435	bool enabled;
436	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
437	int ret;
438
439	enabled = pwm->state.enabled;
440
441	if (enabled && !state->enabled) {
442		stm32_pwm_disable(priv, pwm->hwpwm);
443		return 0;
444	}
445
446	if (state->polarity != pwm->state.polarity)
447		stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
448
449	ret = stm32_pwm_config(priv, pwm->hwpwm,
450			       state->duty_cycle, state->period);
451	if (ret)
452		return ret;
453
454	if (!enabled && state->enabled)
455		ret = stm32_pwm_enable(priv, pwm->hwpwm);
456
457	return ret;
458}
459
460static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
461				  const struct pwm_state *state)
462{
463	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
464	int ret;
465
466	/* protect common prescaler for all active channels */
467	mutex_lock(&priv->lock);
468	ret = stm32_pwm_apply(chip, pwm, state);
469	mutex_unlock(&priv->lock);
470
471	return ret;
472}
473
474static int stm32_pwm_get_state(struct pwm_chip *chip,
475			       struct pwm_device *pwm, struct pwm_state *state)
476{
477	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
478	int ch = pwm->hwpwm;
479	unsigned long rate;
480	u32 ccer, psc, arr, ccr;
481	u64 dty, prd;
482	int ret;
483
484	mutex_lock(&priv->lock);
485
486	ret = regmap_read(priv->regmap, TIM_CCER, &ccer);
487	if (ret)
488		goto out;
489
490	state->enabled = ccer & (TIM_CCER_CC1E << (ch * 4));
491	state->polarity = (ccer & (TIM_CCER_CC1P << (ch * 4))) ?
492			  PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;
493	ret = regmap_read(priv->regmap, TIM_PSC, &psc);
494	if (ret)
495		goto out;
496	ret = regmap_read(priv->regmap, TIM_ARR, &arr);
497	if (ret)
498		goto out;
499	ret = regmap_read(priv->regmap, TIM_CCR1 + 4 * ch, &ccr);
500	if (ret)
501		goto out;
502
503	rate = clk_get_rate(priv->clk);
504
505	prd = (u64)NSEC_PER_SEC * (psc + 1) * (arr + 1);
506	state->period = DIV_ROUND_UP_ULL(prd, rate);
507	dty = (u64)NSEC_PER_SEC * (psc + 1) * ccr;
508	state->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
509
510out:
511	mutex_unlock(&priv->lock);
512	return ret;
513}
514
515static const struct pwm_ops stm32pwm_ops = {
 
516	.apply = stm32_pwm_apply_locked,
517	.get_state = stm32_pwm_get_state,
518	.capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
519};
520
521static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
522				    const struct stm32_breakinput *bi)
523{
524	u32 shift = TIM_BDTR_BKF_SHIFT(bi->index);
525	u32 bke = TIM_BDTR_BKE(bi->index);
526	u32 bkp = TIM_BDTR_BKP(bi->index);
527	u32 bkf = TIM_BDTR_BKF(bi->index);
528	u32 mask = bkf | bkp | bke;
529	u32 bdtr;
530
531	bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke;
532
533	if (bi->level)
534		bdtr |= bkp;
535
536	regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
537
538	regmap_read(priv->regmap, TIM_BDTR, &bdtr);
539
540	return (bdtr & bke) ? 0 : -EINVAL;
541}
542
543static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv)
544{
545	unsigned int i;
546	int ret;
547
548	for (i = 0; i < priv->num_breakinputs; i++) {
549		ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]);
550		if (ret < 0)
551			return ret;
552	}
553
554	return 0;
555}
556
557static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv,
558				       struct device_node *np)
559{
560	int nb, ret, array_size;
561	unsigned int i;
562
563	nb = of_property_count_elems_of_size(np, "st,breakinput",
564					     sizeof(struct stm32_breakinput));
565
566	/*
567	 * Because "st,breakinput" parameter is optional do not make probe
568	 * failed if it doesn't exist.
569	 */
570	if (nb <= 0)
571		return 0;
572
573	if (nb > MAX_BREAKINPUT)
574		return -EINVAL;
575
576	priv->num_breakinputs = nb;
577	array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
578	ret = of_property_read_u32_array(np, "st,breakinput",
579					 (u32 *)priv->breakinputs, array_size);
580	if (ret)
581		return ret;
582
583	for (i = 0; i < priv->num_breakinputs; i++) {
584		if (priv->breakinputs[i].index > 1 ||
585		    priv->breakinputs[i].level > 1 ||
586		    priv->breakinputs[i].filter > 15)
587			return -EINVAL;
588	}
589
590	return stm32_pwm_apply_breakinputs(priv);
591}
592
593static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
594{
595	u32 ccer;
596
597	/*
598	 * If complementary bit doesn't exist writing 1 will have no
599	 * effect so we can detect it.
600	 */
601	regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
602	regmap_read(priv->regmap, TIM_CCER, &ccer);
603	regmap_clear_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
604
605	priv->have_complementary_output = (ccer != 0);
606}
607
608static unsigned int stm32_pwm_detect_channels(struct stm32_pwm *priv,
609					      unsigned int *num_enabled)
610{
611	u32 ccer, ccer_backup;
 
612
613	/*
614	 * If channels enable bits don't exist writing 1 will have no
615	 * effect so we can detect and count them.
616	 */
617	regmap_read(priv->regmap, TIM_CCER, &ccer_backup);
618	regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE);
619	regmap_read(priv->regmap, TIM_CCER, &ccer);
620	regmap_write(priv->regmap, TIM_CCER, ccer_backup);
 
 
 
 
 
 
621
622	*num_enabled = hweight32(ccer_backup & TIM_CCER_CCXE);
 
623
624	return hweight32(ccer & TIM_CCER_CCXE);
 
 
 
625}
626
627static int stm32_pwm_probe(struct platform_device *pdev)
628{
629	struct device *dev = &pdev->dev;
630	struct device_node *np = dev->of_node;
631	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
632	struct stm32_pwm *priv;
633	unsigned int num_enabled;
634	unsigned int i;
635	int ret;
636
637	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
638	if (!priv)
639		return -ENOMEM;
640
641	mutex_init(&priv->lock);
642	priv->regmap = ddata->regmap;
643	priv->clk = ddata->clk;
644	priv->max_arr = ddata->max_arr;
645
646	if (!priv->regmap || !priv->clk)
647		return -EINVAL;
648
649	ret = stm32_pwm_probe_breakinputs(priv, np);
650	if (ret)
651		return ret;
652
653	stm32_pwm_detect_complementary(priv);
654
655	priv->chip.dev = dev;
656	priv->chip.ops = &stm32pwm_ops;
657	priv->chip.npwm = stm32_pwm_detect_channels(priv, &num_enabled);
658
659	/* Initialize clock refcount to number of enabled PWM channels. */
660	for (i = 0; i < num_enabled; i++)
661		clk_enable(priv->clk);
662
663	ret = devm_pwmchip_add(dev, &priv->chip);
664	if (ret < 0)
665		return ret;
666
667	platform_set_drvdata(pdev, priv);
668
669	return 0;
670}
671
672static int stm32_pwm_suspend(struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
673{
674	struct stm32_pwm *priv = dev_get_drvdata(dev);
675	unsigned int i;
676	u32 ccer, mask;
677
678	/* Look for active channels */
679	ccer = active_channels(priv);
680
681	for (i = 0; i < priv->chip.npwm; i++) {
682		mask = TIM_CCER_CC1E << (i * 4);
683		if (ccer & mask) {
684			dev_err(dev, "PWM %u still in use by consumer %s\n",
685				i, priv->chip.pwms[i].label);
686			return -EBUSY;
687		}
688	}
689
690	return pinctrl_pm_select_sleep_state(dev);
691}
692
693static int stm32_pwm_resume(struct device *dev)
694{
695	struct stm32_pwm *priv = dev_get_drvdata(dev);
696	int ret;
697
698	ret = pinctrl_pm_select_default_state(dev);
699	if (ret)
700		return ret;
701
702	/* restore breakinput registers that may have been lost in low power */
703	return stm32_pwm_apply_breakinputs(priv);
704}
705
706static DEFINE_SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume);
707
708static const struct of_device_id stm32_pwm_of_match[] = {
709	{ .compatible = "st,stm32-pwm",	},
710	{ /* end node */ },
711};
712MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
713
714static struct platform_driver stm32_pwm_driver = {
715	.probe	= stm32_pwm_probe,
 
716	.driver	= {
717		.name = "stm32-pwm",
718		.of_match_table = stm32_pwm_of_match,
719		.pm = pm_ptr(&stm32_pwm_pm_ops),
720	},
721};
722module_platform_driver(stm32_pwm_driver);
723
724MODULE_ALIAS("platform:stm32-pwm");
725MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
726MODULE_LICENSE("GPL v2");
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) STMicroelectronics 2016
  4 *
  5 * Author: Gerald Baeza <gerald.baeza@st.com>
  6 *
  7 * Inspired by timer-stm32.c from Maxime Coquelin
  8 *             pwm-atmel.c from Bo Shen
  9 */
 10
 11#include <linux/bitfield.h>
 12#include <linux/mfd/stm32-timers.h>
 13#include <linux/module.h>
 14#include <linux/of.h>
 15#include <linux/pinctrl/consumer.h>
 16#include <linux/platform_device.h>
 17#include <linux/pwm.h>
 18
 19#define CCMR_CHANNEL_SHIFT 8
 20#define CCMR_CHANNEL_MASK  0xFF
 21#define MAX_BREAKINPUT 2
 22
 23struct stm32_breakinput {
 24	u32 index;
 25	u32 level;
 26	u32 filter;
 27};
 28
 29struct stm32_pwm {
 30	struct pwm_chip chip;
 31	struct mutex lock; /* protect pwm config/enable */
 32	struct clk *clk;
 33	struct regmap *regmap;
 34	u32 max_arr;
 35	bool have_complementary_output;
 36	struct stm32_breakinput breakinputs[MAX_BREAKINPUT];
 37	unsigned int num_breakinputs;
 38	u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
 39};
 40
 41static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
 42{
 43	return container_of(chip, struct stm32_pwm, chip);
 44}
 45
 46static u32 active_channels(struct stm32_pwm *dev)
 47{
 48	u32 ccer;
 49
 50	regmap_read(dev->regmap, TIM_CCER, &ccer);
 51
 52	return ccer & TIM_CCER_CCXE;
 53}
 54
 55static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
 56{
 57	switch (ch) {
 58	case 0:
 59		return regmap_write(dev->regmap, TIM_CCR1, value);
 60	case 1:
 61		return regmap_write(dev->regmap, TIM_CCR2, value);
 62	case 2:
 63		return regmap_write(dev->regmap, TIM_CCR3, value);
 64	case 3:
 65		return regmap_write(dev->regmap, TIM_CCR4, value);
 66	}
 67	return -EINVAL;
 68}
 69
 70#define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
 71#define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
 72#define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
 73#define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
 74
 75/*
 76 * Capture using PWM input mode:
 77 *                              ___          ___
 78 * TI[1, 2, 3 or 4]: ........._|   |________|
 79 *                             ^0  ^1       ^2
 80 *                              .   .        .
 81 *                              .   .        XXXXX
 82 *                              .   .   XXXXX     |
 83 *                              .  XXXXX     .    |
 84 *                            XXXXX .        .    |
 85 * COUNTER:        ______XXXXX  .   .        .    |_XXX
 86 *                 start^       .   .        .        ^stop
 87 *                      .       .   .        .
 88 *                      v       v   .        v
 89 *                                  v
 90 * CCR1/CCR3:       tx..........t0...........t2
 91 * CCR2/CCR4:       tx..............t1.........
 92 *
 93 * DMA burst transfer:          |            |
 94 *                              v            v
 95 * DMA buffer:                  { t0, tx }   { t2, t1 }
 96 * DMA done:                                 ^
 97 *
 98 * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
 99 *    + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
100 * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
101 * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
102 *    + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
103 *
104 * DMA done, compute:
105 * - Period     = t2 - t0
106 * - Duty cycle = t1 - t0
107 */
108static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm,
109				 unsigned long tmo_ms, u32 *raw_prd,
110				 u32 *raw_dty)
111{
112	struct device *parent = priv->chip.dev->parent;
113	enum stm32_timers_dmas dma_id;
114	u32 ccen, ccr;
115	int ret;
116
117	/* Ensure registers have been updated, enable counter and capture */
118	regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
119	regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
120
121	/* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
122	dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
123	ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
124	ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
125	regmap_set_bits(priv->regmap, TIM_CCER, ccen);
126
127	/*
128	 * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
129	 * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
130	 * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
131	 * or { CCR3, CCR4 }, { CCR3, CCR4 }
132	 */
133	ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
134					  2, tmo_ms);
135	if (ret)
136		goto stop;
137
138	/* Period: t2 - t0 (take care of counter overflow) */
139	if (priv->capture[0] <= priv->capture[2])
140		*raw_prd = priv->capture[2] - priv->capture[0];
141	else
142		*raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
143
144	/* Duty cycle capture requires at least two capture units */
145	if (pwm->chip->npwm < 2)
146		*raw_dty = 0;
147	else if (priv->capture[0] <= priv->capture[3])
148		*raw_dty = priv->capture[3] - priv->capture[0];
149	else
150		*raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
151
152	if (*raw_dty > *raw_prd) {
153		/*
154		 * Race beetween PWM input and DMA: it may happen
155		 * falling edge triggers new capture on TI2/4 before DMA
156		 * had a chance to read CCR2/4. It means capture[1]
157		 * contains period + duty_cycle. So, subtract period.
158		 */
159		*raw_dty -= *raw_prd;
160	}
161
162stop:
163	regmap_clear_bits(priv->regmap, TIM_CCER, ccen);
164	regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
165
166	return ret;
167}
168
169static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
170			     struct pwm_capture *result, unsigned long tmo_ms)
171{
172	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
173	unsigned long long prd, div, dty;
174	unsigned long rate;
175	unsigned int psc = 0, icpsc, scale;
176	u32 raw_prd = 0, raw_dty = 0;
177	int ret = 0;
178
179	mutex_lock(&priv->lock);
180
181	if (active_channels(priv)) {
182		ret = -EBUSY;
183		goto unlock;
184	}
185
186	ret = clk_enable(priv->clk);
187	if (ret) {
188		dev_err(priv->chip.dev, "failed to enable counter clock\n");
189		goto unlock;
190	}
191
192	rate = clk_get_rate(priv->clk);
193	if (!rate) {
194		ret = -EINVAL;
195		goto clk_dis;
196	}
197
198	/* prescaler: fit timeout window provided by upper layer */
199	div = (unsigned long long)rate * (unsigned long long)tmo_ms;
200	do_div(div, MSEC_PER_SEC);
201	prd = div;
202	while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
203		psc++;
204		div = prd;
205		do_div(div, psc + 1);
206	}
207	regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
208	regmap_write(priv->regmap, TIM_PSC, psc);
209
 
 
 
 
210	/* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
211	regmap_update_bits(priv->regmap,
212			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
213			   TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
214			   TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
215			   TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
216
217	/* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
218	regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
219			   TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
220			   TIM_CCER_CC2P : TIM_CCER_CC4P);
221
222	ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
223	if (ret)
224		goto stop;
225
226	/*
227	 * Got a capture. Try to improve accuracy at high rates:
228	 * - decrease counter clock prescaler, scale up to max rate.
229	 * - use input prescaler, capture once every /2 /4 or /8 edges.
230	 */
231	if (raw_prd) {
232		u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
233
234		scale = max_arr / min(max_arr, raw_prd);
235	} else {
236		scale = priv->max_arr; /* bellow resolution, use max scale */
237	}
238
239	if (psc && scale > 1) {
240		/* 2nd measure with new scale */
241		psc /= scale;
242		regmap_write(priv->regmap, TIM_PSC, psc);
243		ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd,
244					    &raw_dty);
245		if (ret)
246			goto stop;
247	}
248
249	/* Compute intermediate period not to exceed timeout at low rates */
250	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
251	do_div(prd, rate);
252
253	for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
254		/* input prescaler: also keep arbitrary margin */
255		if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
256			break;
257		if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
258			break;
259	}
260
261	if (!icpsc)
262		goto done;
263
264	/* Last chance to improve period accuracy, using input prescaler */
265	regmap_update_bits(priv->regmap,
266			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
267			   TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
268			   FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
269			   FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));
270
271	ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
272	if (ret)
273		goto stop;
274
275	if (raw_dty >= (raw_prd >> icpsc)) {
276		/*
277		 * We may fall here using input prescaler, when input
278		 * capture starts on high side (before falling edge).
279		 * Example with icpsc to capture on each 4 events:
280		 *
281		 *       start   1st capture                     2nd capture
282		 *         v     v                               v
283		 *         ___   _____   _____   _____   _____   ____
284		 * TI1..4     |__|    |__|    |__|    |__|    |__|
285		 *            v  v    .  .    .  .    .       v  v
286		 * icpsc1/3:  .  0    .  1    .  2    .  3    .  0
287		 * icpsc2/4:  0       1       2       3       0
288		 *            v  v                            v  v
289		 * CCR1/3  ......t0..............................t2
290		 * CCR2/4  ..t1..............................t1'...
291		 *               .                            .  .
292		 * Capture0:     .<----------------------------->.
293		 * Capture1:     .<-------------------------->.  .
294		 *               .                            .  .
295		 * Period:       .<------>                    .  .
296		 * Low side:                                  .<>.
297		 *
298		 * Result:
299		 * - Period = Capture0 / icpsc
300		 * - Duty = Period - Low side = Period - (Capture0 - Capture1)
301		 */
302		raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
303	}
304
305done:
306	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
307	result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
308	dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
309	result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
310stop:
311	regmap_write(priv->regmap, TIM_CCER, 0);
312	regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
313	regmap_write(priv->regmap, TIM_PSC, 0);
314clk_dis:
315	clk_disable(priv->clk);
316unlock:
317	mutex_unlock(&priv->lock);
318
319	return ret;
320}
321
322static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
323			    int duty_ns, int period_ns)
324{
325	unsigned long long prd, div, dty;
326	unsigned int prescaler = 0;
327	u32 ccmr, mask, shift;
328
329	/* Period and prescaler values depends on clock rate */
330	div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
331
332	do_div(div, NSEC_PER_SEC);
333	prd = div;
334
335	while (div > priv->max_arr) {
336		prescaler++;
337		div = prd;
338		do_div(div, prescaler + 1);
339	}
340
341	prd = div;
342
343	if (prescaler > MAX_TIM_PSC)
344		return -EINVAL;
345
346	/*
347	 * All channels share the same prescaler and counter so when two
348	 * channels are active at the same time we can't change them
349	 */
350	if (active_channels(priv) & ~(1 << ch * 4)) {
351		u32 psc, arr;
352
353		regmap_read(priv->regmap, TIM_PSC, &psc);
354		regmap_read(priv->regmap, TIM_ARR, &arr);
355
356		if ((psc != prescaler) || (arr != prd - 1))
357			return -EBUSY;
358	}
359
360	regmap_write(priv->regmap, TIM_PSC, prescaler);
361	regmap_write(priv->regmap, TIM_ARR, prd - 1);
362	regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE);
363
364	/* Calculate the duty cycles */
365	dty = prd * duty_ns;
366	do_div(dty, period_ns);
367
368	write_ccrx(priv, ch, dty);
369
370	/* Configure output mode */
371	shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
372	ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
373	mask = CCMR_CHANNEL_MASK << shift;
374
375	if (ch < 2)
376		regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
377	else
378		regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
379
380	regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE);
381
382	return 0;
383}
384
385static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
386				  enum pwm_polarity polarity)
387{
388	u32 mask;
389
390	mask = TIM_CCER_CC1P << (ch * 4);
391	if (priv->have_complementary_output)
392		mask |= TIM_CCER_CC1NP << (ch * 4);
393
394	regmap_update_bits(priv->regmap, TIM_CCER, mask,
395			   polarity == PWM_POLARITY_NORMAL ? 0 : mask);
396
397	return 0;
398}
399
400static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
401{
402	u32 mask;
403	int ret;
404
405	ret = clk_enable(priv->clk);
406	if (ret)
407		return ret;
408
409	/* Enable channel */
410	mask = TIM_CCER_CC1E << (ch * 4);
411	if (priv->have_complementary_output)
412		mask |= TIM_CCER_CC1NE << (ch * 4);
413
414	regmap_set_bits(priv->regmap, TIM_CCER, mask);
415
416	/* Make sure that registers are updated */
417	regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
418
419	/* Enable controller */
420	regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
421
422	return 0;
423}
424
425static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
426{
427	u32 mask;
428
429	/* Disable channel */
430	mask = TIM_CCER_CC1E << (ch * 4);
431	if (priv->have_complementary_output)
432		mask |= TIM_CCER_CC1NE << (ch * 4);
433
434	regmap_clear_bits(priv->regmap, TIM_CCER, mask);
435
436	/* When all channels are disabled, we can disable the controller */
437	if (!active_channels(priv))
438		regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
439
440	clk_disable(priv->clk);
441}
442
443static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
444			   const struct pwm_state *state)
445{
446	bool enabled;
447	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
448	int ret;
449
450	enabled = pwm->state.enabled;
451
452	if (enabled && !state->enabled) {
453		stm32_pwm_disable(priv, pwm->hwpwm);
454		return 0;
455	}
456
457	if (state->polarity != pwm->state.polarity)
458		stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
459
460	ret = stm32_pwm_config(priv, pwm->hwpwm,
461			       state->duty_cycle, state->period);
462	if (ret)
463		return ret;
464
465	if (!enabled && state->enabled)
466		ret = stm32_pwm_enable(priv, pwm->hwpwm);
467
468	return ret;
469}
470
471static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
472				  const struct pwm_state *state)
473{
474	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
475	int ret;
476
477	/* protect common prescaler for all active channels */
478	mutex_lock(&priv->lock);
479	ret = stm32_pwm_apply(chip, pwm, state);
480	mutex_unlock(&priv->lock);
481
482	return ret;
483}
484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485static const struct pwm_ops stm32pwm_ops = {
486	.owner = THIS_MODULE,
487	.apply = stm32_pwm_apply_locked,
 
488	.capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
489};
490
491static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
492				    const struct stm32_breakinput *bi)
493{
494	u32 shift = TIM_BDTR_BKF_SHIFT(bi->index);
495	u32 bke = TIM_BDTR_BKE(bi->index);
496	u32 bkp = TIM_BDTR_BKP(bi->index);
497	u32 bkf = TIM_BDTR_BKF(bi->index);
498	u32 mask = bkf | bkp | bke;
499	u32 bdtr;
500
501	bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke;
502
503	if (bi->level)
504		bdtr |= bkp;
505
506	regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
507
508	regmap_read(priv->regmap, TIM_BDTR, &bdtr);
509
510	return (bdtr & bke) ? 0 : -EINVAL;
511}
512
513static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv)
514{
515	unsigned int i;
516	int ret;
517
518	for (i = 0; i < priv->num_breakinputs; i++) {
519		ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]);
520		if (ret < 0)
521			return ret;
522	}
523
524	return 0;
525}
526
527static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv,
528				       struct device_node *np)
529{
530	int nb, ret, array_size;
531	unsigned int i;
532
533	nb = of_property_count_elems_of_size(np, "st,breakinput",
534					     sizeof(struct stm32_breakinput));
535
536	/*
537	 * Because "st,breakinput" parameter is optional do not make probe
538	 * failed if it doesn't exist.
539	 */
540	if (nb <= 0)
541		return 0;
542
543	if (nb > MAX_BREAKINPUT)
544		return -EINVAL;
545
546	priv->num_breakinputs = nb;
547	array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
548	ret = of_property_read_u32_array(np, "st,breakinput",
549					 (u32 *)priv->breakinputs, array_size);
550	if (ret)
551		return ret;
552
553	for (i = 0; i < priv->num_breakinputs; i++) {
554		if (priv->breakinputs[i].index > 1 ||
555		    priv->breakinputs[i].level > 1 ||
556		    priv->breakinputs[i].filter > 15)
557			return -EINVAL;
558	}
559
560	return stm32_pwm_apply_breakinputs(priv);
561}
562
563static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
564{
565	u32 ccer;
566
567	/*
568	 * If complementary bit doesn't exist writing 1 will have no
569	 * effect so we can detect it.
570	 */
571	regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
572	regmap_read(priv->regmap, TIM_CCER, &ccer);
573	regmap_clear_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
574
575	priv->have_complementary_output = (ccer != 0);
576}
577
578static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
 
579{
580	u32 ccer;
581	int npwm = 0;
582
583	/*
584	 * If channels enable bits don't exist writing 1 will have no
585	 * effect so we can detect and count them.
586	 */
 
587	regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE);
588	regmap_read(priv->regmap, TIM_CCER, &ccer);
589	regmap_clear_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE);
590
591	if (ccer & TIM_CCER_CC1E)
592		npwm++;
593
594	if (ccer & TIM_CCER_CC2E)
595		npwm++;
596
597	if (ccer & TIM_CCER_CC3E)
598		npwm++;
599
600	if (ccer & TIM_CCER_CC4E)
601		npwm++;
602
603	return npwm;
604}
605
606static int stm32_pwm_probe(struct platform_device *pdev)
607{
608	struct device *dev = &pdev->dev;
609	struct device_node *np = dev->of_node;
610	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
611	struct stm32_pwm *priv;
 
 
612	int ret;
613
614	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
615	if (!priv)
616		return -ENOMEM;
617
618	mutex_init(&priv->lock);
619	priv->regmap = ddata->regmap;
620	priv->clk = ddata->clk;
621	priv->max_arr = ddata->max_arr;
622
623	if (!priv->regmap || !priv->clk)
624		return -EINVAL;
625
626	ret = stm32_pwm_probe_breakinputs(priv, np);
627	if (ret)
628		return ret;
629
630	stm32_pwm_detect_complementary(priv);
631
632	priv->chip.dev = dev;
633	priv->chip.ops = &stm32pwm_ops;
634	priv->chip.npwm = stm32_pwm_detect_channels(priv);
635
636	ret = pwmchip_add(&priv->chip);
 
 
 
 
637	if (ret < 0)
638		return ret;
639
640	platform_set_drvdata(pdev, priv);
641
642	return 0;
643}
644
645static int stm32_pwm_remove(struct platform_device *pdev)
646{
647	struct stm32_pwm *priv = platform_get_drvdata(pdev);
648	unsigned int i;
649
650	for (i = 0; i < priv->chip.npwm; i++)
651		pwm_disable(&priv->chip.pwms[i]);
652
653	pwmchip_remove(&priv->chip);
654
655	return 0;
656}
657
658static int __maybe_unused stm32_pwm_suspend(struct device *dev)
659{
660	struct stm32_pwm *priv = dev_get_drvdata(dev);
661	unsigned int i;
662	u32 ccer, mask;
663
664	/* Look for active channels */
665	ccer = active_channels(priv);
666
667	for (i = 0; i < priv->chip.npwm; i++) {
668		mask = TIM_CCER_CC1E << (i * 4);
669		if (ccer & mask) {
670			dev_err(dev, "PWM %u still in use by consumer %s\n",
671				i, priv->chip.pwms[i].label);
672			return -EBUSY;
673		}
674	}
675
676	return pinctrl_pm_select_sleep_state(dev);
677}
678
679static int __maybe_unused stm32_pwm_resume(struct device *dev)
680{
681	struct stm32_pwm *priv = dev_get_drvdata(dev);
682	int ret;
683
684	ret = pinctrl_pm_select_default_state(dev);
685	if (ret)
686		return ret;
687
688	/* restore breakinput registers that may have been lost in low power */
689	return stm32_pwm_apply_breakinputs(priv);
690}
691
692static SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume);
693
694static const struct of_device_id stm32_pwm_of_match[] = {
695	{ .compatible = "st,stm32-pwm",	},
696	{ /* end node */ },
697};
698MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
699
700static struct platform_driver stm32_pwm_driver = {
701	.probe	= stm32_pwm_probe,
702	.remove	= stm32_pwm_remove,
703	.driver	= {
704		.name = "stm32-pwm",
705		.of_match_table = stm32_pwm_of_match,
706		.pm = &stm32_pwm_pm_ops,
707	},
708};
709module_platform_driver(stm32_pwm_driver);
710
711MODULE_ALIAS("platform:stm32-pwm");
712MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
713MODULE_LICENSE("GPL v2");