Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright 2018-2019 NXP.
  4 *
  5 * Limitations:
  6 * - The TPM counter and period counter are shared between
  7 *   multiple channels, so all channels should use same period
  8 *   settings.
  9 * - Changes to polarity cannot be latched at the time of the
 10 *   next period start.
 11 * - Changing period and duty cycle together isn't atomic,
 12 *   with the wrong timing it might happen that a period is
 13 *   produced with old duty cycle but new period settings.
 14 */
 15
 16#include <linux/bitfield.h>
 17#include <linux/bitops.h>
 18#include <linux/clk.h>
 19#include <linux/err.h>
 20#include <linux/io.h>
 21#include <linux/module.h>
 22#include <linux/of.h>
 23#include <linux/platform_device.h>
 24#include <linux/pwm.h>
 25#include <linux/slab.h>
 26
 27#define PWM_IMX_TPM_PARAM	0x4
 28#define PWM_IMX_TPM_GLOBAL	0x8
 29#define PWM_IMX_TPM_SC		0x10
 30#define PWM_IMX_TPM_CNT		0x14
 31#define PWM_IMX_TPM_MOD		0x18
 32#define PWM_IMX_TPM_CnSC(n)	(0x20 + (n) * 0x8)
 33#define PWM_IMX_TPM_CnV(n)	(0x24 + (n) * 0x8)
 34
 35#define PWM_IMX_TPM_PARAM_CHAN			GENMASK(7, 0)
 36
 37#define PWM_IMX_TPM_SC_PS			GENMASK(2, 0)
 38#define PWM_IMX_TPM_SC_CMOD			GENMASK(4, 3)
 39#define PWM_IMX_TPM_SC_CMOD_INC_EVERY_CLK	FIELD_PREP(PWM_IMX_TPM_SC_CMOD, 1)
 40#define PWM_IMX_TPM_SC_CPWMS			BIT(5)
 41
 42#define PWM_IMX_TPM_CnSC_CHF	BIT(7)
 43#define PWM_IMX_TPM_CnSC_MSB	BIT(5)
 44#define PWM_IMX_TPM_CnSC_MSA	BIT(4)
 45
 46/*
 47 * The reference manual describes this field as two separate bits. The
 48 * semantic of the two bits isn't orthogonal though, so they are treated
 49 * together as a 2-bit field here.
 50 */
 51#define PWM_IMX_TPM_CnSC_ELS	GENMASK(3, 2)
 52#define PWM_IMX_TPM_CnSC_ELS_INVERSED	FIELD_PREP(PWM_IMX_TPM_CnSC_ELS, 1)
 53#define PWM_IMX_TPM_CnSC_ELS_NORMAL	FIELD_PREP(PWM_IMX_TPM_CnSC_ELS, 2)
 54
 55
 56#define PWM_IMX_TPM_MOD_WIDTH	16
 57#define PWM_IMX_TPM_MOD_MOD	GENMASK(PWM_IMX_TPM_MOD_WIDTH - 1, 0)
 58
 59struct imx_tpm_pwm_chip {
 60	struct pwm_chip chip;
 61	struct clk *clk;
 62	void __iomem *base;
 63	struct mutex lock;
 64	u32 user_count;
 65	u32 enable_count;
 66	u32 real_period;
 67};
 68
 69struct imx_tpm_pwm_param {
 70	u8 prescale;
 71	u32 mod;
 72	u32 val;
 73};
 74
 75static inline struct imx_tpm_pwm_chip *
 76to_imx_tpm_pwm_chip(struct pwm_chip *chip)
 77{
 78	return container_of(chip, struct imx_tpm_pwm_chip, chip);
 79}
 80
 81/*
 82 * This function determines for a given pwm_state *state that a consumer
 83 * might request the pwm_state *real_state that eventually is implemented
 84 * by the hardware and the necessary register values (in *p) to achieve
 85 * this.
 86 */
 87static int pwm_imx_tpm_round_state(struct pwm_chip *chip,
 88				   struct imx_tpm_pwm_param *p,
 89				   struct pwm_state *real_state,
 90				   const struct pwm_state *state)
 91{
 92	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
 93	u32 rate, prescale, period_count, clock_unit;
 94	u64 tmp;
 95
 96	rate = clk_get_rate(tpm->clk);
 97	tmp = (u64)state->period * rate;
 98	clock_unit = DIV_ROUND_CLOSEST_ULL(tmp, NSEC_PER_SEC);
 99	if (clock_unit <= PWM_IMX_TPM_MOD_MOD)
100		prescale = 0;
101	else
102		prescale = ilog2(clock_unit) + 1 - PWM_IMX_TPM_MOD_WIDTH;
103
104	if ((!FIELD_FIT(PWM_IMX_TPM_SC_PS, prescale)))
105		return -ERANGE;
106	p->prescale = prescale;
107
108	period_count = (clock_unit + ((1 << prescale) >> 1)) >> prescale;
109	p->mod = period_count;
110
111	/* calculate real period HW can support */
112	tmp = (u64)period_count << prescale;
113	tmp *= NSEC_PER_SEC;
114	real_state->period = DIV_ROUND_CLOSEST_ULL(tmp, rate);
115
116	/*
117	 * if eventually the PWM output is inactive, either
118	 * duty cycle is 0 or status is disabled, need to
119	 * make sure the output pin is inactive.
120	 */
121	if (!state->enabled)
122		real_state->duty_cycle = 0;
123	else
124		real_state->duty_cycle = state->duty_cycle;
125
126	tmp = (u64)p->mod * real_state->duty_cycle;
127	p->val = DIV64_U64_ROUND_CLOSEST(tmp, real_state->period);
128
129	real_state->polarity = state->polarity;
130	real_state->enabled = state->enabled;
131
132	return 0;
133}
134
135static int pwm_imx_tpm_get_state(struct pwm_chip *chip,
136				 struct pwm_device *pwm,
137				 struct pwm_state *state)
138{
139	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
140	u32 rate, val, prescale;
141	u64 tmp;
142
143	/* get period */
144	state->period = tpm->real_period;
145
146	/* get duty cycle */
147	rate = clk_get_rate(tpm->clk);
148	val = readl(tpm->base + PWM_IMX_TPM_SC);
149	prescale = FIELD_GET(PWM_IMX_TPM_SC_PS, val);
150	tmp = readl(tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm));
151	tmp = (tmp << prescale) * NSEC_PER_SEC;
152	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, rate);
153
154	/* get polarity */
155	val = readl(tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
156	if ((val & PWM_IMX_TPM_CnSC_ELS) == PWM_IMX_TPM_CnSC_ELS_INVERSED)
157		state->polarity = PWM_POLARITY_INVERSED;
158	else
159		/*
160		 * Assume reserved values (2b00 and 2b11) to yield
161		 * normal polarity.
162		 */
163		state->polarity = PWM_POLARITY_NORMAL;
164
165	/* get channel status */
166	state->enabled = FIELD_GET(PWM_IMX_TPM_CnSC_ELS, val) ? true : false;
167
168	return 0;
169}
170
171/* this function is supposed to be called with mutex hold */
172static int pwm_imx_tpm_apply_hw(struct pwm_chip *chip,
173				struct imx_tpm_pwm_param *p,
174				struct pwm_state *state,
175				struct pwm_device *pwm)
176{
177	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
178	bool period_update = false;
179	bool duty_update = false;
180	u32 val, cmod, cur_prescale;
181	unsigned long timeout;
182	struct pwm_state c;
183
184	if (state->period != tpm->real_period) {
185		/*
186		 * TPM counter is shared by multiple channels, so
187		 * prescale and period can NOT be modified when
188		 * there are multiple channels in use with different
189		 * period settings.
190		 */
191		if (tpm->user_count > 1)
192			return -EBUSY;
193
194		val = readl(tpm->base + PWM_IMX_TPM_SC);
195		cmod = FIELD_GET(PWM_IMX_TPM_SC_CMOD, val);
196		cur_prescale = FIELD_GET(PWM_IMX_TPM_SC_PS, val);
197		if (cmod && cur_prescale != p->prescale)
198			return -EBUSY;
199
200		/* set TPM counter prescale */
201		val &= ~PWM_IMX_TPM_SC_PS;
202		val |= FIELD_PREP(PWM_IMX_TPM_SC_PS, p->prescale);
203		writel(val, tpm->base + PWM_IMX_TPM_SC);
204
205		/*
206		 * set period count:
207		 * if the PWM is disabled (CMOD[1:0] = 2b00), then MOD register
208		 * is updated when MOD register is written.
209		 *
210		 * if the PWM is enabled (CMOD[1:0] ≠ 2b00), the period length
211		 * is latched into hardware when the next period starts.
212		 */
213		writel(p->mod, tpm->base + PWM_IMX_TPM_MOD);
214		tpm->real_period = state->period;
215		period_update = true;
216	}
217
218	pwm_imx_tpm_get_state(chip, pwm, &c);
219
220	/* polarity is NOT allowed to be changed if PWM is active */
221	if (c.enabled && c.polarity != state->polarity)
222		return -EBUSY;
223
224	if (state->duty_cycle != c.duty_cycle) {
225		/*
226		 * set channel value:
227		 * if the PWM is disabled (CMOD[1:0] = 2b00), then CnV register
228		 * is updated when CnV register is written.
229		 *
230		 * if the PWM is enabled (CMOD[1:0] ≠ 2b00), the duty length
231		 * is latched into hardware when the next period starts.
232		 */
233		writel(p->val, tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm));
234		duty_update = true;
235	}
236
237	/* make sure MOD & CnV registers are updated */
238	if (period_update || duty_update) {
239		timeout = jiffies + msecs_to_jiffies(tpm->real_period /
240						     NSEC_PER_MSEC + 1);
241		while (readl(tpm->base + PWM_IMX_TPM_MOD) != p->mod
242		       || readl(tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm))
243		       != p->val) {
244			if (time_after(jiffies, timeout))
245				return -ETIME;
246			cpu_relax();
247		}
248	}
249
250	/*
251	 * polarity settings will enabled/disable output status
252	 * immediately, so if the channel is disabled, need to
253	 * make sure MSA/MSB/ELS are set to 0 which means channel
254	 * disabled.
255	 */
256	val = readl(tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
257	val &= ~(PWM_IMX_TPM_CnSC_ELS | PWM_IMX_TPM_CnSC_MSA |
258		 PWM_IMX_TPM_CnSC_MSB);
259	if (state->enabled) {
260		/*
261		 * set polarity (for edge-aligned PWM modes)
262		 *
263		 * ELS[1:0] = 2b10 yields normal polarity behaviour,
264		 * ELS[1:0] = 2b01 yields inversed polarity.
265		 * The other values are reserved.
266		 */
267		val |= PWM_IMX_TPM_CnSC_MSB;
268		val |= (state->polarity == PWM_POLARITY_NORMAL) ?
269			PWM_IMX_TPM_CnSC_ELS_NORMAL :
270			PWM_IMX_TPM_CnSC_ELS_INVERSED;
271	}
272	writel(val, tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
273
274	/* control the counter status */
275	if (state->enabled != c.enabled) {
276		val = readl(tpm->base + PWM_IMX_TPM_SC);
277		if (state->enabled) {
278			if (++tpm->enable_count == 1)
279				val |= PWM_IMX_TPM_SC_CMOD_INC_EVERY_CLK;
280		} else {
281			if (--tpm->enable_count == 0)
282				val &= ~PWM_IMX_TPM_SC_CMOD;
283		}
284		writel(val, tpm->base + PWM_IMX_TPM_SC);
285	}
286
287	return 0;
288}
289
290static int pwm_imx_tpm_apply(struct pwm_chip *chip,
291			     struct pwm_device *pwm,
292			     const struct pwm_state *state)
293{
294	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
295	struct imx_tpm_pwm_param param;
296	struct pwm_state real_state;
297	int ret;
298
299	ret = pwm_imx_tpm_round_state(chip, &param, &real_state, state);
300	if (ret)
301		return ret;
302
303	mutex_lock(&tpm->lock);
304	ret = pwm_imx_tpm_apply_hw(chip, &param, &real_state, pwm);
305	mutex_unlock(&tpm->lock);
306
307	return ret;
308}
309
310static int pwm_imx_tpm_request(struct pwm_chip *chip, struct pwm_device *pwm)
311{
312	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
313
314	mutex_lock(&tpm->lock);
315	tpm->user_count++;
316	mutex_unlock(&tpm->lock);
317
318	return 0;
319}
320
321static void pwm_imx_tpm_free(struct pwm_chip *chip, struct pwm_device *pwm)
322{
323	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
324
325	mutex_lock(&tpm->lock);
326	tpm->user_count--;
327	mutex_unlock(&tpm->lock);
328}
329
330static const struct pwm_ops imx_tpm_pwm_ops = {
331	.request = pwm_imx_tpm_request,
332	.free = pwm_imx_tpm_free,
333	.get_state = pwm_imx_tpm_get_state,
334	.apply = pwm_imx_tpm_apply,
 
335};
336
337static int pwm_imx_tpm_probe(struct platform_device *pdev)
338{
339	struct imx_tpm_pwm_chip *tpm;
340	int ret;
341	u32 val;
342
343	tpm = devm_kzalloc(&pdev->dev, sizeof(*tpm), GFP_KERNEL);
344	if (!tpm)
345		return -ENOMEM;
346
347	platform_set_drvdata(pdev, tpm);
348
349	tpm->base = devm_platform_ioremap_resource(pdev, 0);
350	if (IS_ERR(tpm->base))
351		return PTR_ERR(tpm->base);
352
353	tpm->clk = devm_clk_get_enabled(&pdev->dev, NULL);
354	if (IS_ERR(tpm->clk))
355		return dev_err_probe(&pdev->dev, PTR_ERR(tpm->clk),
356				     "failed to get PWM clock\n");
357
 
 
 
 
 
 
 
358	tpm->chip.dev = &pdev->dev;
359	tpm->chip.ops = &imx_tpm_pwm_ops;
360
361	/* get number of channels */
362	val = readl(tpm->base + PWM_IMX_TPM_PARAM);
363	tpm->chip.npwm = FIELD_GET(PWM_IMX_TPM_PARAM_CHAN, val);
364
365	mutex_init(&tpm->lock);
366
367	ret = devm_pwmchip_add(&pdev->dev, &tpm->chip);
368	if (ret)
369		return dev_err_probe(&pdev->dev, ret, "failed to add PWM chip\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
370
371	return 0;
372}
373
374static int pwm_imx_tpm_suspend(struct device *dev)
375{
376	struct imx_tpm_pwm_chip *tpm = dev_get_drvdata(dev);
377
378	if (tpm->enable_count > 0)
379		return -EBUSY;
380
381	/*
382	 * Force 'real_period' to be zero to force period update code
383	 * can be executed after system resume back, since suspend causes
384	 * the period related registers to become their reset values.
385	 */
386	tpm->real_period = 0;
387
388	clk_disable_unprepare(tpm->clk);
389
390	return 0;
391}
392
393static int pwm_imx_tpm_resume(struct device *dev)
394{
395	struct imx_tpm_pwm_chip *tpm = dev_get_drvdata(dev);
396	int ret = 0;
397
398	ret = clk_prepare_enable(tpm->clk);
399	if (ret)
400		dev_err(dev, "failed to prepare or enable clock: %d\n", ret);
401
402	return ret;
403}
404
405static DEFINE_SIMPLE_DEV_PM_OPS(imx_tpm_pwm_pm,
406				pwm_imx_tpm_suspend, pwm_imx_tpm_resume);
407
408static const struct of_device_id imx_tpm_pwm_dt_ids[] = {
409	{ .compatible = "fsl,imx7ulp-pwm", },
410	{ /* sentinel */ }
411};
412MODULE_DEVICE_TABLE(of, imx_tpm_pwm_dt_ids);
413
414static struct platform_driver imx_tpm_pwm_driver = {
415	.driver = {
416		.name = "imx7ulp-tpm-pwm",
417		.of_match_table = imx_tpm_pwm_dt_ids,
418		.pm = pm_ptr(&imx_tpm_pwm_pm),
419	},
420	.probe	= pwm_imx_tpm_probe,
 
421};
422module_platform_driver(imx_tpm_pwm_driver);
423
424MODULE_AUTHOR("Anson Huang <Anson.Huang@nxp.com>");
425MODULE_DESCRIPTION("i.MX TPM PWM Driver");
426MODULE_LICENSE("GPL v2");
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright 2018-2019 NXP.
  4 *
  5 * Limitations:
  6 * - The TPM counter and period counter are shared between
  7 *   multiple channels, so all channels should use same period
  8 *   settings.
  9 * - Changes to polarity cannot be latched at the time of the
 10 *   next period start.
 11 * - Changing period and duty cycle together isn't atomic,
 12 *   with the wrong timing it might happen that a period is
 13 *   produced with old duty cycle but new period settings.
 14 */
 15
 16#include <linux/bitfield.h>
 17#include <linux/bitops.h>
 18#include <linux/clk.h>
 19#include <linux/err.h>
 20#include <linux/io.h>
 21#include <linux/module.h>
 22#include <linux/of.h>
 23#include <linux/platform_device.h>
 24#include <linux/pwm.h>
 25#include <linux/slab.h>
 26
 27#define PWM_IMX_TPM_PARAM	0x4
 28#define PWM_IMX_TPM_GLOBAL	0x8
 29#define PWM_IMX_TPM_SC		0x10
 30#define PWM_IMX_TPM_CNT		0x14
 31#define PWM_IMX_TPM_MOD		0x18
 32#define PWM_IMX_TPM_CnSC(n)	(0x20 + (n) * 0x8)
 33#define PWM_IMX_TPM_CnV(n)	(0x24 + (n) * 0x8)
 34
 35#define PWM_IMX_TPM_PARAM_CHAN			GENMASK(7, 0)
 36
 37#define PWM_IMX_TPM_SC_PS			GENMASK(2, 0)
 38#define PWM_IMX_TPM_SC_CMOD			GENMASK(4, 3)
 39#define PWM_IMX_TPM_SC_CMOD_INC_EVERY_CLK	FIELD_PREP(PWM_IMX_TPM_SC_CMOD, 1)
 40#define PWM_IMX_TPM_SC_CPWMS			BIT(5)
 41
 42#define PWM_IMX_TPM_CnSC_CHF	BIT(7)
 43#define PWM_IMX_TPM_CnSC_MSB	BIT(5)
 44#define PWM_IMX_TPM_CnSC_MSA	BIT(4)
 45
 46/*
 47 * The reference manual describes this field as two separate bits. The
 48 * semantic of the two bits isn't orthogonal though, so they are treated
 49 * together as a 2-bit field here.
 50 */
 51#define PWM_IMX_TPM_CnSC_ELS	GENMASK(3, 2)
 52#define PWM_IMX_TPM_CnSC_ELS_INVERSED	FIELD_PREP(PWM_IMX_TPM_CnSC_ELS, 1)
 53#define PWM_IMX_TPM_CnSC_ELS_NORMAL	FIELD_PREP(PWM_IMX_TPM_CnSC_ELS, 2)
 54
 55
 56#define PWM_IMX_TPM_MOD_WIDTH	16
 57#define PWM_IMX_TPM_MOD_MOD	GENMASK(PWM_IMX_TPM_MOD_WIDTH - 1, 0)
 58
 59struct imx_tpm_pwm_chip {
 60	struct pwm_chip chip;
 61	struct clk *clk;
 62	void __iomem *base;
 63	struct mutex lock;
 64	u32 user_count;
 65	u32 enable_count;
 66	u32 real_period;
 67};
 68
 69struct imx_tpm_pwm_param {
 70	u8 prescale;
 71	u32 mod;
 72	u32 val;
 73};
 74
 75static inline struct imx_tpm_pwm_chip *
 76to_imx_tpm_pwm_chip(struct pwm_chip *chip)
 77{
 78	return container_of(chip, struct imx_tpm_pwm_chip, chip);
 79}
 80
 81/*
 82 * This function determines for a given pwm_state *state that a consumer
 83 * might request the pwm_state *real_state that eventually is implemented
 84 * by the hardware and the necessary register values (in *p) to achieve
 85 * this.
 86 */
 87static int pwm_imx_tpm_round_state(struct pwm_chip *chip,
 88				   struct imx_tpm_pwm_param *p,
 89				   struct pwm_state *real_state,
 90				   const struct pwm_state *state)
 91{
 92	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
 93	u32 rate, prescale, period_count, clock_unit;
 94	u64 tmp;
 95
 96	rate = clk_get_rate(tpm->clk);
 97	tmp = (u64)state->period * rate;
 98	clock_unit = DIV_ROUND_CLOSEST_ULL(tmp, NSEC_PER_SEC);
 99	if (clock_unit <= PWM_IMX_TPM_MOD_MOD)
100		prescale = 0;
101	else
102		prescale = ilog2(clock_unit) + 1 - PWM_IMX_TPM_MOD_WIDTH;
103
104	if ((!FIELD_FIT(PWM_IMX_TPM_SC_PS, prescale)))
105		return -ERANGE;
106	p->prescale = prescale;
107
108	period_count = (clock_unit + ((1 << prescale) >> 1)) >> prescale;
109	p->mod = period_count;
110
111	/* calculate real period HW can support */
112	tmp = (u64)period_count << prescale;
113	tmp *= NSEC_PER_SEC;
114	real_state->period = DIV_ROUND_CLOSEST_ULL(tmp, rate);
115
116	/*
117	 * if eventually the PWM output is inactive, either
118	 * duty cycle is 0 or status is disabled, need to
119	 * make sure the output pin is inactive.
120	 */
121	if (!state->enabled)
122		real_state->duty_cycle = 0;
123	else
124		real_state->duty_cycle = state->duty_cycle;
125
126	tmp = (u64)p->mod * real_state->duty_cycle;
127	p->val = DIV64_U64_ROUND_CLOSEST(tmp, real_state->period);
128
129	real_state->polarity = state->polarity;
130	real_state->enabled = state->enabled;
131
132	return 0;
133}
134
135static int pwm_imx_tpm_get_state(struct pwm_chip *chip,
136				 struct pwm_device *pwm,
137				 struct pwm_state *state)
138{
139	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
140	u32 rate, val, prescale;
141	u64 tmp;
142
143	/* get period */
144	state->period = tpm->real_period;
145
146	/* get duty cycle */
147	rate = clk_get_rate(tpm->clk);
148	val = readl(tpm->base + PWM_IMX_TPM_SC);
149	prescale = FIELD_GET(PWM_IMX_TPM_SC_PS, val);
150	tmp = readl(tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm));
151	tmp = (tmp << prescale) * NSEC_PER_SEC;
152	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, rate);
153
154	/* get polarity */
155	val = readl(tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
156	if ((val & PWM_IMX_TPM_CnSC_ELS) == PWM_IMX_TPM_CnSC_ELS_INVERSED)
157		state->polarity = PWM_POLARITY_INVERSED;
158	else
159		/*
160		 * Assume reserved values (2b00 and 2b11) to yield
161		 * normal polarity.
162		 */
163		state->polarity = PWM_POLARITY_NORMAL;
164
165	/* get channel status */
166	state->enabled = FIELD_GET(PWM_IMX_TPM_CnSC_ELS, val) ? true : false;
167
168	return 0;
169}
170
171/* this function is supposed to be called with mutex hold */
172static int pwm_imx_tpm_apply_hw(struct pwm_chip *chip,
173				struct imx_tpm_pwm_param *p,
174				struct pwm_state *state,
175				struct pwm_device *pwm)
176{
177	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
178	bool period_update = false;
179	bool duty_update = false;
180	u32 val, cmod, cur_prescale;
181	unsigned long timeout;
182	struct pwm_state c;
183
184	if (state->period != tpm->real_period) {
185		/*
186		 * TPM counter is shared by multiple channels, so
187		 * prescale and period can NOT be modified when
188		 * there are multiple channels in use with different
189		 * period settings.
190		 */
191		if (tpm->user_count > 1)
192			return -EBUSY;
193
194		val = readl(tpm->base + PWM_IMX_TPM_SC);
195		cmod = FIELD_GET(PWM_IMX_TPM_SC_CMOD, val);
196		cur_prescale = FIELD_GET(PWM_IMX_TPM_SC_PS, val);
197		if (cmod && cur_prescale != p->prescale)
198			return -EBUSY;
199
200		/* set TPM counter prescale */
201		val &= ~PWM_IMX_TPM_SC_PS;
202		val |= FIELD_PREP(PWM_IMX_TPM_SC_PS, p->prescale);
203		writel(val, tpm->base + PWM_IMX_TPM_SC);
204
205		/*
206		 * set period count:
207		 * if the PWM is disabled (CMOD[1:0] = 2b00), then MOD register
208		 * is updated when MOD register is written.
209		 *
210		 * if the PWM is enabled (CMOD[1:0] ≠ 2b00), the period length
211		 * is latched into hardware when the next period starts.
212		 */
213		writel(p->mod, tpm->base + PWM_IMX_TPM_MOD);
214		tpm->real_period = state->period;
215		period_update = true;
216	}
217
218	pwm_imx_tpm_get_state(chip, pwm, &c);
219
220	/* polarity is NOT allowed to be changed if PWM is active */
221	if (c.enabled && c.polarity != state->polarity)
222		return -EBUSY;
223
224	if (state->duty_cycle != c.duty_cycle) {
225		/*
226		 * set channel value:
227		 * if the PWM is disabled (CMOD[1:0] = 2b00), then CnV register
228		 * is updated when CnV register is written.
229		 *
230		 * if the PWM is enabled (CMOD[1:0] ≠ 2b00), the duty length
231		 * is latched into hardware when the next period starts.
232		 */
233		writel(p->val, tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm));
234		duty_update = true;
235	}
236
237	/* make sure MOD & CnV registers are updated */
238	if (period_update || duty_update) {
239		timeout = jiffies + msecs_to_jiffies(tpm->real_period /
240						     NSEC_PER_MSEC + 1);
241		while (readl(tpm->base + PWM_IMX_TPM_MOD) != p->mod
242		       || readl(tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm))
243		       != p->val) {
244			if (time_after(jiffies, timeout))
245				return -ETIME;
246			cpu_relax();
247		}
248	}
249
250	/*
251	 * polarity settings will enabled/disable output status
252	 * immediately, so if the channel is disabled, need to
253	 * make sure MSA/MSB/ELS are set to 0 which means channel
254	 * disabled.
255	 */
256	val = readl(tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
257	val &= ~(PWM_IMX_TPM_CnSC_ELS | PWM_IMX_TPM_CnSC_MSA |
258		 PWM_IMX_TPM_CnSC_MSB);
259	if (state->enabled) {
260		/*
261		 * set polarity (for edge-aligned PWM modes)
262		 *
263		 * ELS[1:0] = 2b10 yields normal polarity behaviour,
264		 * ELS[1:0] = 2b01 yields inversed polarity.
265		 * The other values are reserved.
266		 */
267		val |= PWM_IMX_TPM_CnSC_MSB;
268		val |= (state->polarity == PWM_POLARITY_NORMAL) ?
269			PWM_IMX_TPM_CnSC_ELS_NORMAL :
270			PWM_IMX_TPM_CnSC_ELS_INVERSED;
271	}
272	writel(val, tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
273
274	/* control the counter status */
275	if (state->enabled != c.enabled) {
276		val = readl(tpm->base + PWM_IMX_TPM_SC);
277		if (state->enabled) {
278			if (++tpm->enable_count == 1)
279				val |= PWM_IMX_TPM_SC_CMOD_INC_EVERY_CLK;
280		} else {
281			if (--tpm->enable_count == 0)
282				val &= ~PWM_IMX_TPM_SC_CMOD;
283		}
284		writel(val, tpm->base + PWM_IMX_TPM_SC);
285	}
286
287	return 0;
288}
289
290static int pwm_imx_tpm_apply(struct pwm_chip *chip,
291			     struct pwm_device *pwm,
292			     const struct pwm_state *state)
293{
294	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
295	struct imx_tpm_pwm_param param;
296	struct pwm_state real_state;
297	int ret;
298
299	ret = pwm_imx_tpm_round_state(chip, &param, &real_state, state);
300	if (ret)
301		return ret;
302
303	mutex_lock(&tpm->lock);
304	ret = pwm_imx_tpm_apply_hw(chip, &param, &real_state, pwm);
305	mutex_unlock(&tpm->lock);
306
307	return ret;
308}
309
310static int pwm_imx_tpm_request(struct pwm_chip *chip, struct pwm_device *pwm)
311{
312	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
313
314	mutex_lock(&tpm->lock);
315	tpm->user_count++;
316	mutex_unlock(&tpm->lock);
317
318	return 0;
319}
320
321static void pwm_imx_tpm_free(struct pwm_chip *chip, struct pwm_device *pwm)
322{
323	struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
324
325	mutex_lock(&tpm->lock);
326	tpm->user_count--;
327	mutex_unlock(&tpm->lock);
328}
329
330static const struct pwm_ops imx_tpm_pwm_ops = {
331	.request = pwm_imx_tpm_request,
332	.free = pwm_imx_tpm_free,
333	.get_state = pwm_imx_tpm_get_state,
334	.apply = pwm_imx_tpm_apply,
335	.owner = THIS_MODULE,
336};
337
338static int pwm_imx_tpm_probe(struct platform_device *pdev)
339{
340	struct imx_tpm_pwm_chip *tpm;
341	int ret;
342	u32 val;
343
344	tpm = devm_kzalloc(&pdev->dev, sizeof(*tpm), GFP_KERNEL);
345	if (!tpm)
346		return -ENOMEM;
347
348	platform_set_drvdata(pdev, tpm);
349
350	tpm->base = devm_platform_ioremap_resource(pdev, 0);
351	if (IS_ERR(tpm->base))
352		return PTR_ERR(tpm->base);
353
354	tpm->clk = devm_clk_get(&pdev->dev, NULL);
355	if (IS_ERR(tpm->clk))
356		return dev_err_probe(&pdev->dev, PTR_ERR(tpm->clk),
357				     "failed to get PWM clock\n");
358
359	ret = clk_prepare_enable(tpm->clk);
360	if (ret) {
361		dev_err(&pdev->dev,
362			"failed to prepare or enable clock: %d\n", ret);
363		return ret;
364	}
365
366	tpm->chip.dev = &pdev->dev;
367	tpm->chip.ops = &imx_tpm_pwm_ops;
368
369	/* get number of channels */
370	val = readl(tpm->base + PWM_IMX_TPM_PARAM);
371	tpm->chip.npwm = FIELD_GET(PWM_IMX_TPM_PARAM_CHAN, val);
372
373	mutex_init(&tpm->lock);
374
375	ret = pwmchip_add(&tpm->chip);
376	if (ret) {
377		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
378		clk_disable_unprepare(tpm->clk);
379	}
380
381	return ret;
382}
383
384static int pwm_imx_tpm_remove(struct platform_device *pdev)
385{
386	struct imx_tpm_pwm_chip *tpm = platform_get_drvdata(pdev);
387
388	pwmchip_remove(&tpm->chip);
389
390	clk_disable_unprepare(tpm->clk);
391
392	return 0;
393}
394
395static int __maybe_unused pwm_imx_tpm_suspend(struct device *dev)
396{
397	struct imx_tpm_pwm_chip *tpm = dev_get_drvdata(dev);
398
399	if (tpm->enable_count > 0)
400		return -EBUSY;
401
 
 
 
 
 
 
 
402	clk_disable_unprepare(tpm->clk);
403
404	return 0;
405}
406
407static int __maybe_unused pwm_imx_tpm_resume(struct device *dev)
408{
409	struct imx_tpm_pwm_chip *tpm = dev_get_drvdata(dev);
410	int ret = 0;
411
412	ret = clk_prepare_enable(tpm->clk);
413	if (ret)
414		dev_err(dev, "failed to prepare or enable clock: %d\n", ret);
415
416	return ret;
417}
418
419static SIMPLE_DEV_PM_OPS(imx_tpm_pwm_pm,
420			 pwm_imx_tpm_suspend, pwm_imx_tpm_resume);
421
422static const struct of_device_id imx_tpm_pwm_dt_ids[] = {
423	{ .compatible = "fsl,imx7ulp-pwm", },
424	{ /* sentinel */ }
425};
426MODULE_DEVICE_TABLE(of, imx_tpm_pwm_dt_ids);
427
428static struct platform_driver imx_tpm_pwm_driver = {
429	.driver = {
430		.name = "imx7ulp-tpm-pwm",
431		.of_match_table = imx_tpm_pwm_dt_ids,
432		.pm = &imx_tpm_pwm_pm,
433	},
434	.probe	= pwm_imx_tpm_probe,
435	.remove = pwm_imx_tpm_remove,
436};
437module_platform_driver(imx_tpm_pwm_driver);
438
439MODULE_AUTHOR("Anson Huang <Anson.Huang@nxp.com>");
440MODULE_DESCRIPTION("i.MX TPM PWM Driver");
441MODULE_LICENSE("GPL v2");