Loading...
1// SPDX-License-Identifier: GPL-2.0
2
3/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2018-2023 Linaro Ltd.
5 */
6
7#include <linux/types.h>
8#include <linux/atomic.h>
9#include <linux/bitfield.h>
10#include <linux/device.h>
11#include <linux/bug.h>
12#include <linux/io.h>
13#include <linux/firmware.h>
14#include <linux/module.h>
15#include <linux/of.h>
16#include <linux/of_address.h>
17#include <linux/platform_device.h>
18#include <linux/pm_runtime.h>
19#include <linux/firmware/qcom/qcom_scm.h>
20#include <linux/soc/qcom/mdt_loader.h>
21
22#include "ipa.h"
23#include "ipa_power.h"
24#include "ipa_data.h"
25#include "ipa_endpoint.h"
26#include "ipa_resource.h"
27#include "ipa_cmd.h"
28#include "ipa_reg.h"
29#include "ipa_mem.h"
30#include "ipa_table.h"
31#include "ipa_smp2p.h"
32#include "ipa_modem.h"
33#include "ipa_uc.h"
34#include "ipa_interrupt.h"
35#include "gsi_trans.h"
36#include "ipa_sysfs.h"
37
38/**
39 * DOC: The IP Accelerator
40 *
41 * This driver supports the Qualcomm IP Accelerator (IPA), which is a
42 * networking component found in many Qualcomm SoCs. The IPA is connected
43 * to the application processor (AP), but is also connected (and partially
44 * controlled by) other "execution environments" (EEs), such as a modem.
45 *
46 * The IPA is the conduit between the AP and the modem that carries network
47 * traffic. This driver presents a network interface representing the
48 * connection of the modem to external (e.g. LTE) networks.
49 *
50 * The IPA provides protocol checksum calculation, offloading this work
51 * from the AP. The IPA offers additional functionality, including routing,
52 * filtering, and NAT support, but that more advanced functionality is not
53 * currently supported. Despite that, some resources--including routing
54 * tables and filter tables--are defined in this driver because they must
55 * be initialized even when the advanced hardware features are not used.
56 *
57 * There are two distinct layers that implement the IPA hardware, and this
58 * is reflected in the organization of the driver. The generic software
59 * interface (GSI) is an integral component of the IPA, providing a
60 * well-defined communication layer between the AP subsystem and the IPA
61 * core. The GSI implements a set of "channels" used for communication
62 * between the AP and the IPA.
63 *
64 * The IPA layer uses GSI channels to implement its "endpoints". And while
65 * a GSI channel carries data between the AP and the IPA, a pair of IPA
66 * endpoints is used to carry traffic between two EEs. Specifically, the main
67 * modem network interface is implemented by two pairs of endpoints: a TX
68 * endpoint on the AP coupled with an RX endpoint on the modem; and another
69 * RX endpoint on the AP receiving data from a TX endpoint on the modem.
70 */
71
72/* The name of the GSI firmware file relative to /lib/firmware */
73#define IPA_FW_PATH_DEFAULT "ipa_fws.mdt"
74#define IPA_PAS_ID 15
75
76/* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
77/* IPA v5.5+ does not specify Qtime timestamp config for DPL */
78#define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */
79#define TAG_TIMESTAMP_SHIFT 14
80#define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */
81
82/* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
83#define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */
84
85/**
86 * enum ipa_firmware_loader: How GSI firmware gets loaded
87 *
88 * @IPA_LOADER_DEFER: System not ready; try again later
89 * @IPA_LOADER_SELF: AP loads GSI firmware
90 * @IPA_LOADER_MODEM: Modem loads GSI firmware, signals when done
91 * @IPA_LOADER_SKIP: Neither AP nor modem need to load GSI firmware
92 * @IPA_LOADER_INVALID: GSI firmware loader specification is invalid
93 */
94enum ipa_firmware_loader {
95 IPA_LOADER_DEFER,
96 IPA_LOADER_SELF,
97 IPA_LOADER_MODEM,
98 IPA_LOADER_SKIP,
99 IPA_LOADER_INVALID,
100};
101
102/**
103 * ipa_setup() - Set up IPA hardware
104 * @ipa: IPA pointer
105 *
106 * Perform initialization that requires issuing immediate commands on
107 * the command TX endpoint. If the modem is doing GSI firmware load
108 * and initialization, this function will be called when an SMP2P
109 * interrupt has been signaled by the modem. Otherwise it will be
110 * called from ipa_probe() after GSI firmware has been successfully
111 * loaded, authenticated, and started by Trust Zone.
112 */
113int ipa_setup(struct ipa *ipa)
114{
115 struct ipa_endpoint *exception_endpoint;
116 struct ipa_endpoint *command_endpoint;
117 struct device *dev = &ipa->pdev->dev;
118 int ret;
119
120 ret = gsi_setup(&ipa->gsi);
121 if (ret)
122 return ret;
123
124 ret = ipa_power_setup(ipa);
125 if (ret)
126 goto err_gsi_teardown;
127
128 ipa_endpoint_setup(ipa);
129
130 /* We need to use the AP command TX endpoint to perform other
131 * initialization, so we enable first.
132 */
133 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
134 ret = ipa_endpoint_enable_one(command_endpoint);
135 if (ret)
136 goto err_endpoint_teardown;
137
138 ret = ipa_mem_setup(ipa); /* No matching teardown required */
139 if (ret)
140 goto err_command_disable;
141
142 ret = ipa_table_setup(ipa); /* No matching teardown required */
143 if (ret)
144 goto err_command_disable;
145
146 /* Enable the exception handling endpoint, and tell the hardware
147 * to use it by default.
148 */
149 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
150 ret = ipa_endpoint_enable_one(exception_endpoint);
151 if (ret)
152 goto err_command_disable;
153
154 ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
155
156 /* We're all set. Now prepare for communication with the modem */
157 ret = ipa_qmi_setup(ipa);
158 if (ret)
159 goto err_default_route_clear;
160
161 ipa->setup_complete = true;
162
163 dev_info(dev, "IPA driver setup completed successfully\n");
164
165 return 0;
166
167err_default_route_clear:
168 ipa_endpoint_default_route_clear(ipa);
169 ipa_endpoint_disable_one(exception_endpoint);
170err_command_disable:
171 ipa_endpoint_disable_one(command_endpoint);
172err_endpoint_teardown:
173 ipa_endpoint_teardown(ipa);
174 ipa_power_teardown(ipa);
175err_gsi_teardown:
176 gsi_teardown(&ipa->gsi);
177
178 return ret;
179}
180
181/**
182 * ipa_teardown() - Inverse of ipa_setup()
183 * @ipa: IPA pointer
184 */
185static void ipa_teardown(struct ipa *ipa)
186{
187 struct ipa_endpoint *exception_endpoint;
188 struct ipa_endpoint *command_endpoint;
189
190 /* We're going to tear everything down, as if setup never completed */
191 ipa->setup_complete = false;
192
193 ipa_qmi_teardown(ipa);
194 ipa_endpoint_default_route_clear(ipa);
195 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
196 ipa_endpoint_disable_one(exception_endpoint);
197 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
198 ipa_endpoint_disable_one(command_endpoint);
199 ipa_endpoint_teardown(ipa);
200 ipa_power_teardown(ipa);
201 gsi_teardown(&ipa->gsi);
202}
203
204static void
205ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data)
206{
207 const struct reg *reg;
208 u32 val;
209
210 /* IPA v4.5+ has no backward compatibility register */
211 if (ipa->version >= IPA_VERSION_4_5)
212 return;
213
214 reg = ipa_reg(ipa, IPA_BCR);
215 val = data->backward_compat;
216 iowrite32(val, ipa->reg_virt + reg_offset(reg));
217}
218
219static void ipa_hardware_config_tx(struct ipa *ipa)
220{
221 enum ipa_version version = ipa->version;
222 const struct reg *reg;
223 u32 offset;
224 u32 val;
225
226 if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5)
227 return;
228
229 /* Disable PA mask to allow HOLB drop */
230 reg = ipa_reg(ipa, IPA_TX_CFG);
231 offset = reg_offset(reg);
232
233 val = ioread32(ipa->reg_virt + offset);
234
235 val &= ~reg_bit(reg, PA_MASK_EN);
236
237 iowrite32(val, ipa->reg_virt + offset);
238}
239
240static void ipa_hardware_config_clkon(struct ipa *ipa)
241{
242 enum ipa_version version = ipa->version;
243 const struct reg *reg;
244 u32 val;
245
246 if (version >= IPA_VERSION_4_5)
247 return;
248
249 if (version < IPA_VERSION_4_0 && version != IPA_VERSION_3_1)
250 return;
251
252 /* Implement some hardware workarounds */
253 reg = ipa_reg(ipa, CLKON_CFG);
254 if (version == IPA_VERSION_3_1) {
255 /* Disable MISC clock gating */
256 val = reg_bit(reg, CLKON_MISC);
257 } else { /* IPA v4.0+ */
258 /* Enable open global clocks in the CLKON configuration */
259 val = reg_bit(reg, CLKON_GLOBAL);
260 val |= reg_bit(reg, GLOBAL_2X_CLK);
261 }
262
263 iowrite32(val, ipa->reg_virt + reg_offset(reg));
264}
265
266/* Configure bus access behavior for IPA components */
267static void ipa_hardware_config_comp(struct ipa *ipa)
268{
269 const struct reg *reg;
270 u32 offset;
271 u32 val;
272
273 /* Nothing to configure prior to IPA v4.0 */
274 if (ipa->version < IPA_VERSION_4_0)
275 return;
276
277 reg = ipa_reg(ipa, COMP_CFG);
278 offset = reg_offset(reg);
279
280 val = ioread32(ipa->reg_virt + offset);
281
282 if (ipa->version == IPA_VERSION_4_0) {
283 val &= ~reg_bit(reg, IPA_QMB_SELECT_CONS_EN);
284 val &= ~reg_bit(reg, IPA_QMB_SELECT_PROD_EN);
285 val &= ~reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN);
286 } else if (ipa->version < IPA_VERSION_4_5) {
287 val |= reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS);
288 } else {
289 /* For IPA v4.5+ FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */
290 }
291
292 val |= reg_bit(reg, GSI_MULTI_INORDER_RD_DIS);
293 val |= reg_bit(reg, GSI_MULTI_INORDER_WR_DIS);
294
295 iowrite32(val, ipa->reg_virt + offset);
296}
297
298/* Configure DDR and (possibly) PCIe max read/write QSB values */
299static void
300ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
301{
302 const struct ipa_qsb_data *data0;
303 const struct ipa_qsb_data *data1;
304 const struct reg *reg;
305 u32 val;
306
307 /* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
308 data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
309 if (data->qsb_count > 1)
310 data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
311
312 /* Max outstanding write accesses for QSB masters */
313 reg = ipa_reg(ipa, QSB_MAX_WRITES);
314
315 val = reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes);
316 if (data->qsb_count > 1)
317 val |= reg_encode(reg, GEN_QMB_1_MAX_WRITES, data1->max_writes);
318
319 iowrite32(val, ipa->reg_virt + reg_offset(reg));
320
321 /* Max outstanding read accesses for QSB masters */
322 reg = ipa_reg(ipa, QSB_MAX_READS);
323
324 val = reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads);
325 if (ipa->version >= IPA_VERSION_4_0)
326 val |= reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS,
327 data0->max_reads_beats);
328 if (data->qsb_count > 1) {
329 val = reg_encode(reg, GEN_QMB_1_MAX_READS, data1->max_reads);
330 if (ipa->version >= IPA_VERSION_4_0)
331 val |= reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS,
332 data1->max_reads_beats);
333 }
334
335 iowrite32(val, ipa->reg_virt + reg_offset(reg));
336}
337
338/* The internal inactivity timer clock is used for the aggregation timer */
339#define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */
340
341/* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
342 * field to represent the given number of microseconds. The value is one
343 * less than the number of timer ticks in the requested period. 0 is not
344 * a valid granularity value (so for example @usec must be at least 16 for
345 * a TIMER_FREQUENCY of 32000).
346 */
347static __always_inline u32 ipa_aggr_granularity_val(u32 usec)
348{
349 return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
350}
351
352/* IPA uses unified Qtime starting at IPA v4.5, implementing various
353 * timestamps and timers independent of the IPA core clock rate. The
354 * Qtimer is based on a 56-bit timestamp incremented at each tick of
355 * a 19.2 MHz SoC crystal oscillator (XO clock).
356 *
357 * For IPA timestamps (tag, NAT, data path logging) a lower resolution
358 * timestamp is achieved by shifting the Qtimer timestamp value right
359 * some number of bits to produce the low-order bits of the coarser
360 * granularity timestamp.
361 *
362 * For timers, a common timer clock is derived from the XO clock using
363 * a divider (we use 192, to produce a 100kHz timer clock). From
364 * this common clock, three "pulse generators" are used to produce
365 * timer ticks at a configurable frequency. IPA timers (such as
366 * those used for aggregation or head-of-line block handling) now
367 * define their period based on one of these pulse generators.
368 */
369static void ipa_qtime_config(struct ipa *ipa)
370{
371 const struct reg *reg;
372 u32 offset;
373 u32 val;
374
375 /* Timer clock divider must be disabled when we change the rate */
376 reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
377 iowrite32(0, ipa->reg_virt + reg_offset(reg));
378
379 reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG);
380 if (ipa->version < IPA_VERSION_5_5) {
381 /* Set DPL time stamp resolution to use Qtime (not 1 msec) */
382 val = reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT);
383 val |= reg_bit(reg, DPL_TIMESTAMP_SEL);
384 }
385 /* Configure tag and NAT Qtime timestamp resolution as well */
386 val = reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT);
387 val = reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT);
388
389 iowrite32(val, ipa->reg_virt + reg_offset(reg));
390
391 /* Set granularity of pulse generators used for other timers */
392 reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG);
393 val = reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US);
394 val |= reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS);
395 if (ipa->version >= IPA_VERSION_5_0) {
396 val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_10_MS);
397 val |= reg_encode(reg, PULSE_GRAN_3, IPA_GRAN_10_MS);
398 } else {
399 val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS);
400 }
401
402 iowrite32(val, ipa->reg_virt + reg_offset(reg));
403
404 /* Actual divider is 1 more than value supplied here */
405 reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
406 offset = reg_offset(reg);
407
408 val = reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1);
409
410 iowrite32(val, ipa->reg_virt + offset);
411
412 /* Divider value is set; re-enable the common timer clock divider */
413 val |= reg_bit(reg, DIV_ENABLE);
414
415 iowrite32(val, ipa->reg_virt + offset);
416}
417
418/* Before IPA v4.5 timing is controlled by a counter register */
419static void ipa_hardware_config_counter(struct ipa *ipa)
420{
421 u32 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
422 const struct reg *reg;
423 u32 val;
424
425 reg = ipa_reg(ipa, COUNTER_CFG);
426 /* If defined, EOT_COAL_GRANULARITY is 0 */
427 val = reg_encode(reg, AGGR_GRANULARITY, granularity);
428 iowrite32(val, ipa->reg_virt + reg_offset(reg));
429}
430
431static void ipa_hardware_config_timing(struct ipa *ipa)
432{
433 if (ipa->version < IPA_VERSION_4_5)
434 ipa_hardware_config_counter(ipa);
435 else
436 ipa_qtime_config(ipa);
437}
438
439static void ipa_hardware_config_hashing(struct ipa *ipa)
440{
441 const struct reg *reg;
442
443 /* Other than IPA v4.2, all versions enable "hashing". Starting
444 * with IPA v5.0, the filter and router tables are implemented
445 * differently, but the default configuration enables this feature
446 * (now referred to as "cacheing"), so there's nothing to do here.
447 */
448 if (ipa->version != IPA_VERSION_4_2)
449 return;
450
451 /* IPA v4.2 does not support hashed tables, so disable them */
452 reg = ipa_reg(ipa, FILT_ROUT_HASH_EN);
453
454 /* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH,
455 * IPV4_FILTER_HASH are all zero.
456 */
457 iowrite32(0, ipa->reg_virt + reg_offset(reg));
458}
459
460static void ipa_idle_indication_cfg(struct ipa *ipa,
461 u32 enter_idle_debounce_thresh,
462 bool const_non_idle_enable)
463{
464 const struct reg *reg;
465 u32 val;
466
467 if (ipa->version < IPA_VERSION_3_5_1)
468 return;
469
470 reg = ipa_reg(ipa, IDLE_INDICATION_CFG);
471 val = reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH,
472 enter_idle_debounce_thresh);
473 if (const_non_idle_enable)
474 val |= reg_bit(reg, CONST_NON_IDLE_ENABLE);
475
476 iowrite32(val, ipa->reg_virt + reg_offset(reg));
477}
478
479/**
480 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
481 * @ipa: IPA pointer
482 *
483 * Configures when the IPA signals it is idle to the global clock
484 * controller, which can respond by scaling down the clock to save
485 * power.
486 */
487static void ipa_hardware_dcd_config(struct ipa *ipa)
488{
489 /* Recommended values for IPA 3.5 and later according to IPA HPG */
490 ipa_idle_indication_cfg(ipa, 256, false);
491}
492
493static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
494{
495 /* Power-on reset values */
496 ipa_idle_indication_cfg(ipa, 0, true);
497}
498
499/**
500 * ipa_hardware_config() - Primitive hardware initialization
501 * @ipa: IPA pointer
502 * @data: IPA configuration data
503 */
504static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
505{
506 ipa_hardware_config_bcr(ipa, data);
507 ipa_hardware_config_tx(ipa);
508 ipa_hardware_config_clkon(ipa);
509 ipa_hardware_config_comp(ipa);
510 ipa_hardware_config_qsb(ipa, data);
511 ipa_hardware_config_timing(ipa);
512 ipa_hardware_config_hashing(ipa);
513 ipa_hardware_dcd_config(ipa);
514}
515
516/**
517 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
518 * @ipa: IPA pointer
519 *
520 * This restores the power-on reset values (even if they aren't different)
521 */
522static void ipa_hardware_deconfig(struct ipa *ipa)
523{
524 /* Mostly we just leave things as we set them. */
525 ipa_hardware_dcd_deconfig(ipa);
526}
527
528/**
529 * ipa_config() - Configure IPA hardware
530 * @ipa: IPA pointer
531 * @data: IPA configuration data
532 *
533 * Perform initialization requiring IPA power to be enabled.
534 */
535static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
536{
537 int ret;
538
539 ipa_hardware_config(ipa, data);
540
541 ret = ipa_mem_config(ipa);
542 if (ret)
543 goto err_hardware_deconfig;
544
545 ipa->interrupt = ipa_interrupt_config(ipa);
546 if (IS_ERR(ipa->interrupt)) {
547 ret = PTR_ERR(ipa->interrupt);
548 ipa->interrupt = NULL;
549 goto err_mem_deconfig;
550 }
551
552 ipa_uc_config(ipa);
553
554 ret = ipa_endpoint_config(ipa);
555 if (ret)
556 goto err_uc_deconfig;
557
558 ipa_table_config(ipa); /* No deconfig required */
559
560 /* Assign resource limitation to each group; no deconfig required */
561 ret = ipa_resource_config(ipa, data->resource_data);
562 if (ret)
563 goto err_endpoint_deconfig;
564
565 ret = ipa_modem_config(ipa);
566 if (ret)
567 goto err_endpoint_deconfig;
568
569 return 0;
570
571err_endpoint_deconfig:
572 ipa_endpoint_deconfig(ipa);
573err_uc_deconfig:
574 ipa_uc_deconfig(ipa);
575 ipa_interrupt_deconfig(ipa->interrupt);
576 ipa->interrupt = NULL;
577err_mem_deconfig:
578 ipa_mem_deconfig(ipa);
579err_hardware_deconfig:
580 ipa_hardware_deconfig(ipa);
581
582 return ret;
583}
584
585/**
586 * ipa_deconfig() - Inverse of ipa_config()
587 * @ipa: IPA pointer
588 */
589static void ipa_deconfig(struct ipa *ipa)
590{
591 ipa_modem_deconfig(ipa);
592 ipa_endpoint_deconfig(ipa);
593 ipa_uc_deconfig(ipa);
594 ipa_interrupt_deconfig(ipa->interrupt);
595 ipa->interrupt = NULL;
596 ipa_mem_deconfig(ipa);
597 ipa_hardware_deconfig(ipa);
598}
599
600static int ipa_firmware_load(struct device *dev)
601{
602 const struct firmware *fw;
603 struct device_node *node;
604 struct resource res;
605 phys_addr_t phys;
606 const char *path;
607 ssize_t size;
608 void *virt;
609 int ret;
610
611 node = of_parse_phandle(dev->of_node, "memory-region", 0);
612 if (!node) {
613 dev_err(dev, "DT error getting \"memory-region\" property\n");
614 return -EINVAL;
615 }
616
617 ret = of_address_to_resource(node, 0, &res);
618 of_node_put(node);
619 if (ret) {
620 dev_err(dev, "error %d getting \"memory-region\" resource\n",
621 ret);
622 return ret;
623 }
624
625 /* Use name from DTB if specified; use default for *any* error */
626 ret = of_property_read_string(dev->of_node, "firmware-name", &path);
627 if (ret) {
628 dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
629 ret);
630 path = IPA_FW_PATH_DEFAULT;
631 }
632
633 ret = request_firmware(&fw, path, dev);
634 if (ret) {
635 dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
636 return ret;
637 }
638
639 phys = res.start;
640 size = (size_t)resource_size(&res);
641 virt = memremap(phys, size, MEMREMAP_WC);
642 if (!virt) {
643 dev_err(dev, "unable to remap firmware memory\n");
644 ret = -ENOMEM;
645 goto out_release_firmware;
646 }
647
648 ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
649 if (ret)
650 dev_err(dev, "error %d loading \"%s\"\n", ret, path);
651 else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
652 dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
653
654 memunmap(virt);
655out_release_firmware:
656 release_firmware(fw);
657
658 return ret;
659}
660
661static const struct of_device_id ipa_match[] = {
662 {
663 .compatible = "qcom,msm8998-ipa",
664 .data = &ipa_data_v3_1,
665 },
666 {
667 .compatible = "qcom,sdm845-ipa",
668 .data = &ipa_data_v3_5_1,
669 },
670 {
671 .compatible = "qcom,sc7180-ipa",
672 .data = &ipa_data_v4_2,
673 },
674 {
675 .compatible = "qcom,sdx55-ipa",
676 .data = &ipa_data_v4_5,
677 },
678 {
679 .compatible = "qcom,sm6350-ipa",
680 .data = &ipa_data_v4_7,
681 },
682 {
683 .compatible = "qcom,sm8350-ipa",
684 .data = &ipa_data_v4_9,
685 },
686 {
687 .compatible = "qcom,sc7280-ipa",
688 .data = &ipa_data_v4_11,
689 },
690 {
691 .compatible = "qcom,sdx65-ipa",
692 .data = &ipa_data_v5_0,
693 },
694 {
695 .compatible = "qcom,sm8550-ipa",
696 .data = &ipa_data_v5_5,
697 },
698 { },
699};
700MODULE_DEVICE_TABLE(of, ipa_match);
701
702/* Check things that can be validated at build time. This just
703 * groups these things BUILD_BUG_ON() calls don't clutter the rest
704 * of the code.
705 * */
706static void ipa_validate_build(void)
707{
708 /* At one time we assumed a 64-bit build, allowing some do_div()
709 * calls to be replaced by simple division or modulo operations.
710 * We currently only perform divide and modulo operations on u32,
711 * u16, or size_t objects, and of those only size_t has any chance
712 * of being a 64-bit value. (It should be guaranteed 32 bits wide
713 * on a 32-bit build, but there is no harm in verifying that.)
714 */
715 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
716
717 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
718 BUILD_BUG_ON(GSI_EE_AP != 0);
719
720 /* There's no point if we have no channels or event rings */
721 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
722 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
723
724 /* GSI hardware design limits */
725 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
726 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
727
728 /* The number of TREs in a transaction is limited by the channel's
729 * TLV FIFO size. A transaction structure uses 8-bit fields
730 * to represents the number of TREs it has allocated and used.
731 */
732 BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
733
734 /* This is used as a divisor */
735 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
736
737 /* Aggregation granularity value can't be 0, and must fit */
738 BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
739}
740
741static enum ipa_firmware_loader ipa_firmware_loader(struct device *dev)
742{
743 bool modem_init;
744 const char *str;
745 int ret;
746
747 /* Look up the old and new properties by name */
748 modem_init = of_property_read_bool(dev->of_node, "modem-init");
749 ret = of_property_read_string(dev->of_node, "qcom,gsi-loader", &str);
750
751 /* If the new property doesn't exist, it's legacy behavior */
752 if (ret == -EINVAL) {
753 if (modem_init)
754 return IPA_LOADER_MODEM;
755 goto out_self;
756 }
757
758 /* Any other error on the new property means it's poorly defined */
759 if (ret)
760 return IPA_LOADER_INVALID;
761
762 /* New property value exists; if old one does too, that's invalid */
763 if (modem_init)
764 return IPA_LOADER_INVALID;
765
766 /* Modem loads GSI firmware for "modem" */
767 if (!strcmp(str, "modem"))
768 return IPA_LOADER_MODEM;
769
770 /* No GSI firmware load is needed for "skip" */
771 if (!strcmp(str, "skip"))
772 return IPA_LOADER_SKIP;
773
774 /* Any value other than "self" is an error */
775 if (strcmp(str, "self"))
776 return IPA_LOADER_INVALID;
777out_self:
778 /* We need Trust Zone to load firmware; make sure it's available */
779 if (qcom_scm_is_available())
780 return IPA_LOADER_SELF;
781
782 return IPA_LOADER_DEFER;
783}
784
785/**
786 * ipa_probe() - IPA platform driver probe function
787 * @pdev: Platform device pointer
788 *
789 * Return: 0 if successful, or a negative error code (possibly
790 * EPROBE_DEFER)
791 *
792 * This is the main entry point for the IPA driver. Initialization proceeds
793 * in several stages:
794 * - The "init" stage involves activities that can be initialized without
795 * access to the IPA hardware.
796 * - The "config" stage requires IPA power to be active so IPA registers
797 * can be accessed, but does not require the use of IPA immediate commands.
798 * - The "setup" stage uses IPA immediate commands, and so requires the GSI
799 * layer to be initialized.
800 *
801 * A Boolean Device Tree "modem-init" property determines whether GSI
802 * initialization will be performed by the AP (Trust Zone) or the modem.
803 * If the AP does GSI initialization, the setup phase is entered after
804 * this has completed successfully. Otherwise the modem initializes
805 * the GSI layer and signals it has finished by sending an SMP2P interrupt
806 * to the AP; this triggers the start if IPA setup.
807 */
808static int ipa_probe(struct platform_device *pdev)
809{
810 struct device *dev = &pdev->dev;
811 enum ipa_firmware_loader loader;
812 const struct ipa_data *data;
813 struct ipa_power *power;
814 struct ipa *ipa;
815 int ret;
816
817 ipa_validate_build();
818
819 /* Get configuration data early; needed for power initialization */
820 data = of_device_get_match_data(dev);
821 if (!data) {
822 dev_err(dev, "matched hardware not supported\n");
823 return -ENODEV;
824 }
825
826 if (!ipa_version_supported(data->version)) {
827 dev_err(dev, "unsupported IPA version %u\n", data->version);
828 return -EINVAL;
829 }
830
831 if (!data->modem_route_count) {
832 dev_err(dev, "modem_route_count cannot be zero\n");
833 return -EINVAL;
834 }
835
836 loader = ipa_firmware_loader(dev);
837 if (loader == IPA_LOADER_INVALID)
838 return -EINVAL;
839 if (loader == IPA_LOADER_DEFER)
840 return -EPROBE_DEFER;
841
842 /* The clock and interconnects might not be ready when we're
843 * probed, so might return -EPROBE_DEFER.
844 */
845 power = ipa_power_init(dev, data->power_data);
846 if (IS_ERR(power))
847 return PTR_ERR(power);
848
849 /* No more EPROBE_DEFER. Allocate and initialize the IPA structure */
850 ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
851 if (!ipa) {
852 ret = -ENOMEM;
853 goto err_power_exit;
854 }
855
856 ipa->pdev = pdev;
857 dev_set_drvdata(dev, ipa);
858 ipa->power = power;
859 ipa->version = data->version;
860 ipa->modem_route_count = data->modem_route_count;
861 init_completion(&ipa->completion);
862
863 ret = ipa_reg_init(ipa);
864 if (ret)
865 goto err_kfree_ipa;
866
867 ret = ipa_mem_init(ipa, data->mem_data);
868 if (ret)
869 goto err_reg_exit;
870
871 ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
872 data->endpoint_data);
873 if (ret)
874 goto err_mem_exit;
875
876 /* Result is a non-zero mask of endpoints that support filtering */
877 ret = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data);
878 if (ret)
879 goto err_gsi_exit;
880
881 ret = ipa_table_init(ipa);
882 if (ret)
883 goto err_endpoint_exit;
884
885 ret = ipa_smp2p_init(ipa, loader == IPA_LOADER_MODEM);
886 if (ret)
887 goto err_table_exit;
888
889 /* Power needs to be active for config and setup */
890 ret = pm_runtime_get_sync(dev);
891 if (WARN_ON(ret < 0))
892 goto err_power_put;
893
894 ret = ipa_config(ipa, data);
895 if (ret)
896 goto err_power_put;
897
898 dev_info(dev, "IPA driver initialized");
899
900 /* If the modem is loading GSI firmware, it will trigger a call to
901 * ipa_setup() when it has finished. In that case we're done here.
902 */
903 if (loader == IPA_LOADER_MODEM)
904 goto done;
905
906 if (loader == IPA_LOADER_SELF) {
907 /* The AP is loading GSI firmware; do so now */
908 ret = ipa_firmware_load(dev);
909 if (ret)
910 goto err_deconfig;
911 } /* Otherwise loader == IPA_LOADER_SKIP */
912
913 /* GSI firmware is loaded; proceed to setup */
914 ret = ipa_setup(ipa);
915 if (ret)
916 goto err_deconfig;
917done:
918 pm_runtime_mark_last_busy(dev);
919 (void)pm_runtime_put_autosuspend(dev);
920
921 return 0;
922
923err_deconfig:
924 ipa_deconfig(ipa);
925err_power_put:
926 pm_runtime_put_noidle(dev);
927 ipa_smp2p_exit(ipa);
928err_table_exit:
929 ipa_table_exit(ipa);
930err_endpoint_exit:
931 ipa_endpoint_exit(ipa);
932err_gsi_exit:
933 gsi_exit(&ipa->gsi);
934err_mem_exit:
935 ipa_mem_exit(ipa);
936err_reg_exit:
937 ipa_reg_exit(ipa);
938err_kfree_ipa:
939 kfree(ipa);
940err_power_exit:
941 ipa_power_exit(power);
942
943 return ret;
944}
945
946static void ipa_remove(struct platform_device *pdev)
947{
948 struct ipa *ipa = dev_get_drvdata(&pdev->dev);
949 struct ipa_power *power = ipa->power;
950 struct device *dev = &pdev->dev;
951 int ret;
952
953 /* Prevent the modem from triggering a call to ipa_setup(). This
954 * also ensures a modem-initiated setup that's underway completes.
955 */
956 ipa_smp2p_irq_disable_setup(ipa);
957
958 ret = pm_runtime_get_sync(dev);
959 if (WARN_ON(ret < 0))
960 goto out_power_put;
961
962 if (ipa->setup_complete) {
963 ret = ipa_modem_stop(ipa);
964 /* If starting or stopping is in progress, try once more */
965 if (ret == -EBUSY) {
966 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
967 ret = ipa_modem_stop(ipa);
968 }
969 if (ret) {
970 /*
971 * Not cleaning up here properly might also yield a
972 * crash later on. As the device is still unregistered
973 * in this case, this might even yield a crash later on.
974 */
975 dev_err(dev, "Failed to stop modem (%pe), leaking resources\n",
976 ERR_PTR(ret));
977 return;
978 }
979
980 ipa_teardown(ipa);
981 }
982
983 ipa_deconfig(ipa);
984out_power_put:
985 pm_runtime_put_noidle(dev);
986 ipa_smp2p_exit(ipa);
987 ipa_table_exit(ipa);
988 ipa_endpoint_exit(ipa);
989 gsi_exit(&ipa->gsi);
990 ipa_mem_exit(ipa);
991 ipa_reg_exit(ipa);
992 kfree(ipa);
993 ipa_power_exit(power);
994
995 dev_info(dev, "IPA driver removed");
996}
997
998static const struct attribute_group *ipa_attribute_groups[] = {
999 &ipa_attribute_group,
1000 &ipa_feature_attribute_group,
1001 &ipa_endpoint_id_attribute_group,
1002 &ipa_modem_attribute_group,
1003 NULL,
1004};
1005
1006static struct platform_driver ipa_driver = {
1007 .probe = ipa_probe,
1008 .remove_new = ipa_remove,
1009 .shutdown = ipa_remove,
1010 .driver = {
1011 .name = "ipa",
1012 .pm = &ipa_pm_ops,
1013 .of_match_table = ipa_match,
1014 .dev_groups = ipa_attribute_groups,
1015 },
1016};
1017
1018module_platform_driver(ipa_driver);
1019
1020MODULE_LICENSE("GPL v2");
1021MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");
1// SPDX-License-Identifier: GPL-2.0
2
3/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2018-2022 Linaro Ltd.
5 */
6
7#include <linux/types.h>
8#include <linux/atomic.h>
9#include <linux/bitfield.h>
10#include <linux/device.h>
11#include <linux/bug.h>
12#include <linux/io.h>
13#include <linux/firmware.h>
14#include <linux/module.h>
15#include <linux/of.h>
16#include <linux/of_device.h>
17#include <linux/of_address.h>
18#include <linux/pm_runtime.h>
19#include <linux/qcom_scm.h>
20#include <linux/soc/qcom/mdt_loader.h>
21
22#include "ipa.h"
23#include "ipa_power.h"
24#include "ipa_data.h"
25#include "ipa_endpoint.h"
26#include "ipa_resource.h"
27#include "ipa_cmd.h"
28#include "ipa_reg.h"
29#include "ipa_mem.h"
30#include "ipa_table.h"
31#include "ipa_smp2p.h"
32#include "ipa_modem.h"
33#include "ipa_uc.h"
34#include "ipa_interrupt.h"
35#include "gsi_trans.h"
36#include "ipa_sysfs.h"
37
38/**
39 * DOC: The IP Accelerator
40 *
41 * This driver supports the Qualcomm IP Accelerator (IPA), which is a
42 * networking component found in many Qualcomm SoCs. The IPA is connected
43 * to the application processor (AP), but is also connected (and partially
44 * controlled by) other "execution environments" (EEs), such as a modem.
45 *
46 * The IPA is the conduit between the AP and the modem that carries network
47 * traffic. This driver presents a network interface representing the
48 * connection of the modem to external (e.g. LTE) networks.
49 *
50 * The IPA provides protocol checksum calculation, offloading this work
51 * from the AP. The IPA offers additional functionality, including routing,
52 * filtering, and NAT support, but that more advanced functionality is not
53 * currently supported. Despite that, some resources--including routing
54 * tables and filter tables--are defined in this driver because they must
55 * be initialized even when the advanced hardware features are not used.
56 *
57 * There are two distinct layers that implement the IPA hardware, and this
58 * is reflected in the organization of the driver. The generic software
59 * interface (GSI) is an integral component of the IPA, providing a
60 * well-defined communication layer between the AP subsystem and the IPA
61 * core. The GSI implements a set of "channels" used for communication
62 * between the AP and the IPA.
63 *
64 * The IPA layer uses GSI channels to implement its "endpoints". And while
65 * a GSI channel carries data between the AP and the IPA, a pair of IPA
66 * endpoints is used to carry traffic between two EEs. Specifically, the main
67 * modem network interface is implemented by two pairs of endpoints: a TX
68 * endpoint on the AP coupled with an RX endpoint on the modem; and another
69 * RX endpoint on the AP receiving data from a TX endpoint on the modem.
70 */
71
72/* The name of the GSI firmware file relative to /lib/firmware */
73#define IPA_FW_PATH_DEFAULT "ipa_fws.mdt"
74#define IPA_PAS_ID 15
75
76/* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
77#define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */
78#define TAG_TIMESTAMP_SHIFT 14
79#define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */
80
81/* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
82#define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */
83
84/**
85 * enum ipa_firmware_loader: How GSI firmware gets loaded
86 *
87 * @IPA_LOADER_DEFER: System not ready; try again later
88 * @IPA_LOADER_SELF: AP loads GSI firmware
89 * @IPA_LOADER_MODEM: Modem loads GSI firmware, signals when done
90 * @IPA_LOADER_SKIP: Neither AP nor modem need to load GSI firmware
91 * @IPA_LOADER_INVALID: GSI firmware loader specification is invalid
92 */
93enum ipa_firmware_loader {
94 IPA_LOADER_DEFER,
95 IPA_LOADER_SELF,
96 IPA_LOADER_MODEM,
97 IPA_LOADER_SKIP,
98 IPA_LOADER_INVALID,
99};
100
101/**
102 * ipa_setup() - Set up IPA hardware
103 * @ipa: IPA pointer
104 *
105 * Perform initialization that requires issuing immediate commands on
106 * the command TX endpoint. If the modem is doing GSI firmware load
107 * and initialization, this function will be called when an SMP2P
108 * interrupt has been signaled by the modem. Otherwise it will be
109 * called from ipa_probe() after GSI firmware has been successfully
110 * loaded, authenticated, and started by Trust Zone.
111 */
112int ipa_setup(struct ipa *ipa)
113{
114 struct ipa_endpoint *exception_endpoint;
115 struct ipa_endpoint *command_endpoint;
116 struct device *dev = &ipa->pdev->dev;
117 int ret;
118
119 ret = gsi_setup(&ipa->gsi);
120 if (ret)
121 return ret;
122
123 ret = ipa_power_setup(ipa);
124 if (ret)
125 goto err_gsi_teardown;
126
127 ipa_endpoint_setup(ipa);
128
129 /* We need to use the AP command TX endpoint to perform other
130 * initialization, so we enable first.
131 */
132 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
133 ret = ipa_endpoint_enable_one(command_endpoint);
134 if (ret)
135 goto err_endpoint_teardown;
136
137 ret = ipa_mem_setup(ipa); /* No matching teardown required */
138 if (ret)
139 goto err_command_disable;
140
141 ret = ipa_table_setup(ipa); /* No matching teardown required */
142 if (ret)
143 goto err_command_disable;
144
145 /* Enable the exception handling endpoint, and tell the hardware
146 * to use it by default.
147 */
148 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
149 ret = ipa_endpoint_enable_one(exception_endpoint);
150 if (ret)
151 goto err_command_disable;
152
153 ipa_endpoint_default_route_set(ipa, exception_endpoint->endpoint_id);
154
155 /* We're all set. Now prepare for communication with the modem */
156 ret = ipa_qmi_setup(ipa);
157 if (ret)
158 goto err_default_route_clear;
159
160 ipa->setup_complete = true;
161
162 dev_info(dev, "IPA driver setup completed successfully\n");
163
164 return 0;
165
166err_default_route_clear:
167 ipa_endpoint_default_route_clear(ipa);
168 ipa_endpoint_disable_one(exception_endpoint);
169err_command_disable:
170 ipa_endpoint_disable_one(command_endpoint);
171err_endpoint_teardown:
172 ipa_endpoint_teardown(ipa);
173 ipa_power_teardown(ipa);
174err_gsi_teardown:
175 gsi_teardown(&ipa->gsi);
176
177 return ret;
178}
179
180/**
181 * ipa_teardown() - Inverse of ipa_setup()
182 * @ipa: IPA pointer
183 */
184static void ipa_teardown(struct ipa *ipa)
185{
186 struct ipa_endpoint *exception_endpoint;
187 struct ipa_endpoint *command_endpoint;
188
189 /* We're going to tear everything down, as if setup never completed */
190 ipa->setup_complete = false;
191
192 ipa_qmi_teardown(ipa);
193 ipa_endpoint_default_route_clear(ipa);
194 exception_endpoint = ipa->name_map[IPA_ENDPOINT_AP_LAN_RX];
195 ipa_endpoint_disable_one(exception_endpoint);
196 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
197 ipa_endpoint_disable_one(command_endpoint);
198 ipa_endpoint_teardown(ipa);
199 ipa_power_teardown(ipa);
200 gsi_teardown(&ipa->gsi);
201}
202
203static void
204ipa_hardware_config_bcr(struct ipa *ipa, const struct ipa_data *data)
205{
206 const struct ipa_reg *reg;
207 u32 val;
208
209 /* IPA v4.5+ has no backward compatibility register */
210 if (ipa->version >= IPA_VERSION_4_5)
211 return;
212
213 reg = ipa_reg(ipa, IPA_BCR);
214 val = data->backward_compat;
215 iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg));
216}
217
218static void ipa_hardware_config_tx(struct ipa *ipa)
219{
220 enum ipa_version version = ipa->version;
221 const struct ipa_reg *reg;
222 u32 offset;
223 u32 val;
224
225 if (version <= IPA_VERSION_4_0 || version >= IPA_VERSION_4_5)
226 return;
227
228 /* Disable PA mask to allow HOLB drop */
229 reg = ipa_reg(ipa, IPA_TX_CFG);
230 offset = ipa_reg_offset(reg);
231
232 val = ioread32(ipa->reg_virt + offset);
233
234 val &= ~ipa_reg_bit(reg, PA_MASK_EN);
235
236 iowrite32(val, ipa->reg_virt + offset);
237}
238
239static void ipa_hardware_config_clkon(struct ipa *ipa)
240{
241 enum ipa_version version = ipa->version;
242 const struct ipa_reg *reg;
243 u32 val;
244
245 if (version >= IPA_VERSION_4_5)
246 return;
247
248 if (version < IPA_VERSION_4_0 && version != IPA_VERSION_3_1)
249 return;
250
251 /* Implement some hardware workarounds */
252 reg = ipa_reg(ipa, CLKON_CFG);
253 if (version == IPA_VERSION_3_1) {
254 /* Disable MISC clock gating */
255 val = ipa_reg_bit(reg, CLKON_MISC);
256 } else { /* IPA v4.0+ */
257 /* Enable open global clocks in the CLKON configuration */
258 val = ipa_reg_bit(reg, CLKON_GLOBAL);
259 val |= ipa_reg_bit(reg, GLOBAL_2X_CLK);
260 }
261
262 iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg));
263}
264
265/* Configure bus access behavior for IPA components */
266static void ipa_hardware_config_comp(struct ipa *ipa)
267{
268 const struct ipa_reg *reg;
269 u32 offset;
270 u32 val;
271
272 /* Nothing to configure prior to IPA v4.0 */
273 if (ipa->version < IPA_VERSION_4_0)
274 return;
275
276 reg = ipa_reg(ipa, COMP_CFG);
277 offset = ipa_reg_offset(reg);
278 val = ioread32(ipa->reg_virt + offset);
279
280 if (ipa->version == IPA_VERSION_4_0) {
281 val &= ~ipa_reg_bit(reg, IPA_QMB_SELECT_CONS_EN);
282 val &= ~ipa_reg_bit(reg, IPA_QMB_SELECT_PROD_EN);
283 val &= ~ipa_reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN);
284 } else if (ipa->version < IPA_VERSION_4_5) {
285 val |= ipa_reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS);
286 } else {
287 /* For IPA v4.5 FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */
288 }
289
290 val |= ipa_reg_bit(reg, GSI_MULTI_INORDER_RD_DIS);
291 val |= ipa_reg_bit(reg, GSI_MULTI_INORDER_WR_DIS);
292
293 iowrite32(val, ipa->reg_virt + offset);
294}
295
296/* Configure DDR and (possibly) PCIe max read/write QSB values */
297static void
298ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
299{
300 const struct ipa_qsb_data *data0;
301 const struct ipa_qsb_data *data1;
302 const struct ipa_reg *reg;
303 u32 val;
304
305 /* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
306 data0 = &data->qsb_data[IPA_QSB_MASTER_DDR];
307 if (data->qsb_count > 1)
308 data1 = &data->qsb_data[IPA_QSB_MASTER_PCIE];
309
310 /* Max outstanding write accesses for QSB masters */
311 reg = ipa_reg(ipa, QSB_MAX_WRITES);
312
313 val = ipa_reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes);
314 if (data->qsb_count > 1)
315 val |= ipa_reg_encode(reg, GEN_QMB_1_MAX_WRITES,
316 data1->max_writes);
317
318 iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg));
319
320 /* Max outstanding read accesses for QSB masters */
321 reg = ipa_reg(ipa, QSB_MAX_READS);
322
323 val = ipa_reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads);
324 if (ipa->version >= IPA_VERSION_4_0)
325 val |= ipa_reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS,
326 data0->max_reads_beats);
327 if (data->qsb_count > 1) {
328 val = ipa_reg_encode(reg, GEN_QMB_1_MAX_READS,
329 data1->max_reads);
330 if (ipa->version >= IPA_VERSION_4_0)
331 val |= ipa_reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS,
332 data1->max_reads_beats);
333 }
334
335 iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg));
336}
337
338/* The internal inactivity timer clock is used for the aggregation timer */
339#define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */
340
341/* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
342 * field to represent the given number of microseconds. The value is one
343 * less than the number of timer ticks in the requested period. 0 is not
344 * a valid granularity value (so for example @usec must be at least 16 for
345 * a TIMER_FREQUENCY of 32000).
346 */
347static __always_inline u32 ipa_aggr_granularity_val(u32 usec)
348{
349 return DIV_ROUND_CLOSEST(usec * TIMER_FREQUENCY, USEC_PER_SEC) - 1;
350}
351
352/* IPA uses unified Qtime starting at IPA v4.5, implementing various
353 * timestamps and timers independent of the IPA core clock rate. The
354 * Qtimer is based on a 56-bit timestamp incremented at each tick of
355 * a 19.2 MHz SoC crystal oscillator (XO clock).
356 *
357 * For IPA timestamps (tag, NAT, data path logging) a lower resolution
358 * timestamp is achieved by shifting the Qtimer timestamp value right
359 * some number of bits to produce the low-order bits of the coarser
360 * granularity timestamp.
361 *
362 * For timers, a common timer clock is derived from the XO clock using
363 * a divider (we use 192, to produce a 100kHz timer clock). From
364 * this common clock, three "pulse generators" are used to produce
365 * timer ticks at a configurable frequency. IPA timers (such as
366 * those used for aggregation or head-of-line block handling) now
367 * define their period based on one of these pulse generators.
368 */
369static void ipa_qtime_config(struct ipa *ipa)
370{
371 const struct ipa_reg *reg;
372 u32 offset;
373 u32 val;
374
375 /* Timer clock divider must be disabled when we change the rate */
376 reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
377 iowrite32(0, ipa->reg_virt + ipa_reg_offset(reg));
378
379 reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG);
380 /* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */
381 val = ipa_reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT);
382 val |= ipa_reg_bit(reg, DPL_TIMESTAMP_SEL);
383 /* Configure tag and NAT Qtime timestamp resolution as well */
384 val = ipa_reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT);
385 val = ipa_reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT);
386
387 iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg));
388
389 /* Set granularity of pulse generators used for other timers */
390 reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG);
391 val = ipa_reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US);
392 val |= ipa_reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS);
393 val |= ipa_reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS);
394
395 iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg));
396
397 /* Actual divider is 1 more than value supplied here */
398 reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
399 offset = ipa_reg_offset(reg);
400 val = ipa_reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1);
401
402 iowrite32(val, ipa->reg_virt + offset);
403
404 /* Divider value is set; re-enable the common timer clock divider */
405 val |= ipa_reg_bit(reg, DIV_ENABLE);
406
407 iowrite32(val, ipa->reg_virt + offset);
408}
409
410/* Before IPA v4.5 timing is controlled by a counter register */
411static void ipa_hardware_config_counter(struct ipa *ipa)
412{
413 u32 granularity = ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY);
414 const struct ipa_reg *reg;
415 u32 val;
416
417 reg = ipa_reg(ipa, COUNTER_CFG);
418 /* If defined, EOT_COAL_GRANULARITY is 0 */
419 val = ipa_reg_encode(reg, AGGR_GRANULARITY, granularity);
420 iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg));
421}
422
423static void ipa_hardware_config_timing(struct ipa *ipa)
424{
425 if (ipa->version < IPA_VERSION_4_5)
426 ipa_hardware_config_counter(ipa);
427 else
428 ipa_qtime_config(ipa);
429}
430
431static void ipa_hardware_config_hashing(struct ipa *ipa)
432{
433 const struct ipa_reg *reg;
434
435 if (ipa->version != IPA_VERSION_4_2)
436 return;
437
438 /* IPA v4.2 does not support hashed tables, so disable them */
439 reg = ipa_reg(ipa, FILT_ROUT_HASH_EN);
440
441 /* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH,
442 * IPV4_FILTER_HASH are all zero.
443 */
444 iowrite32(0, ipa->reg_virt + ipa_reg_offset(reg));
445}
446
447static void ipa_idle_indication_cfg(struct ipa *ipa,
448 u32 enter_idle_debounce_thresh,
449 bool const_non_idle_enable)
450{
451 const struct ipa_reg *reg;
452 u32 val;
453
454 if (ipa->version < IPA_VERSION_3_5_1)
455 return;
456
457 reg = ipa_reg(ipa, IDLE_INDICATION_CFG);
458 val = ipa_reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH,
459 enter_idle_debounce_thresh);
460 if (const_non_idle_enable)
461 val |= ipa_reg_bit(reg, CONST_NON_IDLE_ENABLE);
462
463 iowrite32(val, ipa->reg_virt + ipa_reg_offset(reg));
464}
465
466/**
467 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
468 * @ipa: IPA pointer
469 *
470 * Configures when the IPA signals it is idle to the global clock
471 * controller, which can respond by scaling down the clock to save
472 * power.
473 */
474static void ipa_hardware_dcd_config(struct ipa *ipa)
475{
476 /* Recommended values for IPA 3.5 and later according to IPA HPG */
477 ipa_idle_indication_cfg(ipa, 256, false);
478}
479
480static void ipa_hardware_dcd_deconfig(struct ipa *ipa)
481{
482 /* Power-on reset values */
483 ipa_idle_indication_cfg(ipa, 0, true);
484}
485
486/**
487 * ipa_hardware_config() - Primitive hardware initialization
488 * @ipa: IPA pointer
489 * @data: IPA configuration data
490 */
491static void ipa_hardware_config(struct ipa *ipa, const struct ipa_data *data)
492{
493 ipa_hardware_config_bcr(ipa, data);
494 ipa_hardware_config_tx(ipa);
495 ipa_hardware_config_clkon(ipa);
496 ipa_hardware_config_comp(ipa);
497 ipa_hardware_config_qsb(ipa, data);
498 ipa_hardware_config_timing(ipa);
499 ipa_hardware_config_hashing(ipa);
500 ipa_hardware_dcd_config(ipa);
501}
502
503/**
504 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
505 * @ipa: IPA pointer
506 *
507 * This restores the power-on reset values (even if they aren't different)
508 */
509static void ipa_hardware_deconfig(struct ipa *ipa)
510{
511 /* Mostly we just leave things as we set them. */
512 ipa_hardware_dcd_deconfig(ipa);
513}
514
515/**
516 * ipa_config() - Configure IPA hardware
517 * @ipa: IPA pointer
518 * @data: IPA configuration data
519 *
520 * Perform initialization requiring IPA power to be enabled.
521 */
522static int ipa_config(struct ipa *ipa, const struct ipa_data *data)
523{
524 int ret;
525
526 ipa_hardware_config(ipa, data);
527
528 ret = ipa_mem_config(ipa);
529 if (ret)
530 goto err_hardware_deconfig;
531
532 ipa->interrupt = ipa_interrupt_config(ipa);
533 if (IS_ERR(ipa->interrupt)) {
534 ret = PTR_ERR(ipa->interrupt);
535 ipa->interrupt = NULL;
536 goto err_mem_deconfig;
537 }
538
539 ipa_uc_config(ipa);
540
541 ret = ipa_endpoint_config(ipa);
542 if (ret)
543 goto err_uc_deconfig;
544
545 ipa_table_config(ipa); /* No deconfig required */
546
547 /* Assign resource limitation to each group; no deconfig required */
548 ret = ipa_resource_config(ipa, data->resource_data);
549 if (ret)
550 goto err_endpoint_deconfig;
551
552 ret = ipa_modem_config(ipa);
553 if (ret)
554 goto err_endpoint_deconfig;
555
556 return 0;
557
558err_endpoint_deconfig:
559 ipa_endpoint_deconfig(ipa);
560err_uc_deconfig:
561 ipa_uc_deconfig(ipa);
562 ipa_interrupt_deconfig(ipa->interrupt);
563 ipa->interrupt = NULL;
564err_mem_deconfig:
565 ipa_mem_deconfig(ipa);
566err_hardware_deconfig:
567 ipa_hardware_deconfig(ipa);
568
569 return ret;
570}
571
572/**
573 * ipa_deconfig() - Inverse of ipa_config()
574 * @ipa: IPA pointer
575 */
576static void ipa_deconfig(struct ipa *ipa)
577{
578 ipa_modem_deconfig(ipa);
579 ipa_endpoint_deconfig(ipa);
580 ipa_uc_deconfig(ipa);
581 ipa_interrupt_deconfig(ipa->interrupt);
582 ipa->interrupt = NULL;
583 ipa_mem_deconfig(ipa);
584 ipa_hardware_deconfig(ipa);
585}
586
587static int ipa_firmware_load(struct device *dev)
588{
589 const struct firmware *fw;
590 struct device_node *node;
591 struct resource res;
592 phys_addr_t phys;
593 const char *path;
594 ssize_t size;
595 void *virt;
596 int ret;
597
598 node = of_parse_phandle(dev->of_node, "memory-region", 0);
599 if (!node) {
600 dev_err(dev, "DT error getting \"memory-region\" property\n");
601 return -EINVAL;
602 }
603
604 ret = of_address_to_resource(node, 0, &res);
605 of_node_put(node);
606 if (ret) {
607 dev_err(dev, "error %d getting \"memory-region\" resource\n",
608 ret);
609 return ret;
610 }
611
612 /* Use name from DTB if specified; use default for *any* error */
613 ret = of_property_read_string(dev->of_node, "firmware-name", &path);
614 if (ret) {
615 dev_dbg(dev, "error %d getting \"firmware-name\" resource\n",
616 ret);
617 path = IPA_FW_PATH_DEFAULT;
618 }
619
620 ret = request_firmware(&fw, path, dev);
621 if (ret) {
622 dev_err(dev, "error %d requesting \"%s\"\n", ret, path);
623 return ret;
624 }
625
626 phys = res.start;
627 size = (size_t)resource_size(&res);
628 virt = memremap(phys, size, MEMREMAP_WC);
629 if (!virt) {
630 dev_err(dev, "unable to remap firmware memory\n");
631 ret = -ENOMEM;
632 goto out_release_firmware;
633 }
634
635 ret = qcom_mdt_load(dev, fw, path, IPA_PAS_ID, virt, phys, size, NULL);
636 if (ret)
637 dev_err(dev, "error %d loading \"%s\"\n", ret, path);
638 else if ((ret = qcom_scm_pas_auth_and_reset(IPA_PAS_ID)))
639 dev_err(dev, "error %d authenticating \"%s\"\n", ret, path);
640
641 memunmap(virt);
642out_release_firmware:
643 release_firmware(fw);
644
645 return ret;
646}
647
648static const struct of_device_id ipa_match[] = {
649 {
650 .compatible = "qcom,msm8998-ipa",
651 .data = &ipa_data_v3_1,
652 },
653 {
654 .compatible = "qcom,sdm845-ipa",
655 .data = &ipa_data_v3_5_1,
656 },
657 {
658 .compatible = "qcom,sc7180-ipa",
659 .data = &ipa_data_v4_2,
660 },
661 {
662 .compatible = "qcom,sdx55-ipa",
663 .data = &ipa_data_v4_5,
664 },
665 {
666 .compatible = "qcom,sm6350-ipa",
667 .data = &ipa_data_v4_7,
668 },
669 {
670 .compatible = "qcom,sm8350-ipa",
671 .data = &ipa_data_v4_9,
672 },
673 {
674 .compatible = "qcom,sc7280-ipa",
675 .data = &ipa_data_v4_11,
676 },
677 { },
678};
679MODULE_DEVICE_TABLE(of, ipa_match);
680
681/* Check things that can be validated at build time. This just
682 * groups these things BUILD_BUG_ON() calls don't clutter the rest
683 * of the code.
684 * */
685static void ipa_validate_build(void)
686{
687 /* At one time we assumed a 64-bit build, allowing some do_div()
688 * calls to be replaced by simple division or modulo operations.
689 * We currently only perform divide and modulo operations on u32,
690 * u16, or size_t objects, and of those only size_t has any chance
691 * of being a 64-bit value. (It should be guaranteed 32 bits wide
692 * on a 32-bit build, but there is no harm in verifying that.)
693 */
694 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT) && sizeof(size_t) != 4);
695
696 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
697 BUILD_BUG_ON(GSI_EE_AP != 0);
698
699 /* There's no point if we have no channels or event rings */
700 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX);
701 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX);
702
703 /* GSI hardware design limits */
704 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX > 32);
705 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX > 31);
706
707 /* The number of TREs in a transaction is limited by the channel's
708 * TLV FIFO size. A transaction structure uses 8-bit fields
709 * to represents the number of TREs it has allocated and used.
710 */
711 BUILD_BUG_ON(GSI_TLV_MAX > U8_MAX);
712
713 /* This is used as a divisor */
714 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY);
715
716 /* Aggregation granularity value can't be 0, and must fit */
717 BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY));
718}
719
720static enum ipa_firmware_loader ipa_firmware_loader(struct device *dev)
721{
722 bool modem_init;
723 const char *str;
724 int ret;
725
726 /* Look up the old and new properties by name */
727 modem_init = of_property_read_bool(dev->of_node, "modem-init");
728 ret = of_property_read_string(dev->of_node, "qcom,gsi-loader", &str);
729
730 /* If the new property doesn't exist, it's legacy behavior */
731 if (ret == -EINVAL) {
732 if (modem_init)
733 return IPA_LOADER_MODEM;
734 goto out_self;
735 }
736
737 /* Any other error on the new property means it's poorly defined */
738 if (ret)
739 return IPA_LOADER_INVALID;
740
741 /* New property value exists; if old one does too, that's invalid */
742 if (modem_init)
743 return IPA_LOADER_INVALID;
744
745 /* Modem loads GSI firmware for "modem" */
746 if (!strcmp(str, "modem"))
747 return IPA_LOADER_MODEM;
748
749 /* No GSI firmware load is needed for "skip" */
750 if (!strcmp(str, "skip"))
751 return IPA_LOADER_SKIP;
752
753 /* Any value other than "self" is an error */
754 if (strcmp(str, "self"))
755 return IPA_LOADER_INVALID;
756out_self:
757 /* We need Trust Zone to load firmware; make sure it's available */
758 if (qcom_scm_is_available())
759 return IPA_LOADER_SELF;
760
761 return IPA_LOADER_DEFER;
762}
763
764/**
765 * ipa_probe() - IPA platform driver probe function
766 * @pdev: Platform device pointer
767 *
768 * Return: 0 if successful, or a negative error code (possibly
769 * EPROBE_DEFER)
770 *
771 * This is the main entry point for the IPA driver. Initialization proceeds
772 * in several stages:
773 * - The "init" stage involves activities that can be initialized without
774 * access to the IPA hardware.
775 * - The "config" stage requires IPA power to be active so IPA registers
776 * can be accessed, but does not require the use of IPA immediate commands.
777 * - The "setup" stage uses IPA immediate commands, and so requires the GSI
778 * layer to be initialized.
779 *
780 * A Boolean Device Tree "modem-init" property determines whether GSI
781 * initialization will be performed by the AP (Trust Zone) or the modem.
782 * If the AP does GSI initialization, the setup phase is entered after
783 * this has completed successfully. Otherwise the modem initializes
784 * the GSI layer and signals it has finished by sending an SMP2P interrupt
785 * to the AP; this triggers the start if IPA setup.
786 */
787static int ipa_probe(struct platform_device *pdev)
788{
789 struct device *dev = &pdev->dev;
790 enum ipa_firmware_loader loader;
791 const struct ipa_data *data;
792 struct ipa_power *power;
793 struct ipa *ipa;
794 int ret;
795
796 ipa_validate_build();
797
798 /* Get configuration data early; needed for power initialization */
799 data = of_device_get_match_data(dev);
800 if (!data) {
801 dev_err(dev, "matched hardware not supported\n");
802 return -ENODEV;
803 }
804
805 if (!ipa_version_supported(data->version)) {
806 dev_err(dev, "unsupported IPA version %u\n", data->version);
807 return -EINVAL;
808 }
809
810 if (!data->modem_route_count) {
811 dev_err(dev, "modem_route_count cannot be zero\n");
812 return -EINVAL;
813 }
814
815 loader = ipa_firmware_loader(dev);
816 if (loader == IPA_LOADER_INVALID)
817 return -EINVAL;
818 if (loader == IPA_LOADER_DEFER)
819 return -EPROBE_DEFER;
820
821 /* The clock and interconnects might not be ready when we're
822 * probed, so might return -EPROBE_DEFER.
823 */
824 power = ipa_power_init(dev, data->power_data);
825 if (IS_ERR(power))
826 return PTR_ERR(power);
827
828 /* No more EPROBE_DEFER. Allocate and initialize the IPA structure */
829 ipa = kzalloc(sizeof(*ipa), GFP_KERNEL);
830 if (!ipa) {
831 ret = -ENOMEM;
832 goto err_power_exit;
833 }
834
835 ipa->pdev = pdev;
836 dev_set_drvdata(dev, ipa);
837 ipa->power = power;
838 ipa->version = data->version;
839 ipa->modem_route_count = data->modem_route_count;
840 init_completion(&ipa->completion);
841
842 ret = ipa_reg_init(ipa);
843 if (ret)
844 goto err_kfree_ipa;
845
846 ret = ipa_mem_init(ipa, data->mem_data);
847 if (ret)
848 goto err_reg_exit;
849
850 ret = gsi_init(&ipa->gsi, pdev, ipa->version, data->endpoint_count,
851 data->endpoint_data);
852 if (ret)
853 goto err_mem_exit;
854
855 /* Result is a non-zero mask of endpoints that support filtering */
856 ret = ipa_endpoint_init(ipa, data->endpoint_count, data->endpoint_data);
857 if (ret)
858 goto err_gsi_exit;
859
860 ret = ipa_table_init(ipa);
861 if (ret)
862 goto err_endpoint_exit;
863
864 ret = ipa_smp2p_init(ipa, loader == IPA_LOADER_MODEM);
865 if (ret)
866 goto err_table_exit;
867
868 /* Power needs to be active for config and setup */
869 ret = pm_runtime_get_sync(dev);
870 if (WARN_ON(ret < 0))
871 goto err_power_put;
872
873 ret = ipa_config(ipa, data);
874 if (ret)
875 goto err_power_put;
876
877 dev_info(dev, "IPA driver initialized");
878
879 /* If the modem is loading GSI firmware, it will trigger a call to
880 * ipa_setup() when it has finished. In that case we're done here.
881 */
882 if (loader == IPA_LOADER_MODEM)
883 goto done;
884
885 if (loader == IPA_LOADER_SELF) {
886 /* The AP is loading GSI firmware; do so now */
887 ret = ipa_firmware_load(dev);
888 if (ret)
889 goto err_deconfig;
890 } /* Otherwise loader == IPA_LOADER_SKIP */
891
892 /* GSI firmware is loaded; proceed to setup */
893 ret = ipa_setup(ipa);
894 if (ret)
895 goto err_deconfig;
896done:
897 pm_runtime_mark_last_busy(dev);
898 (void)pm_runtime_put_autosuspend(dev);
899
900 return 0;
901
902err_deconfig:
903 ipa_deconfig(ipa);
904err_power_put:
905 pm_runtime_put_noidle(dev);
906 ipa_smp2p_exit(ipa);
907err_table_exit:
908 ipa_table_exit(ipa);
909err_endpoint_exit:
910 ipa_endpoint_exit(ipa);
911err_gsi_exit:
912 gsi_exit(&ipa->gsi);
913err_mem_exit:
914 ipa_mem_exit(ipa);
915err_reg_exit:
916 ipa_reg_exit(ipa);
917err_kfree_ipa:
918 kfree(ipa);
919err_power_exit:
920 ipa_power_exit(power);
921
922 return ret;
923}
924
925static int ipa_remove(struct platform_device *pdev)
926{
927 struct ipa *ipa = dev_get_drvdata(&pdev->dev);
928 struct ipa_power *power = ipa->power;
929 struct device *dev = &pdev->dev;
930 int ret;
931
932 /* Prevent the modem from triggering a call to ipa_setup(). This
933 * also ensures a modem-initiated setup that's underway completes.
934 */
935 ipa_smp2p_irq_disable_setup(ipa);
936
937 ret = pm_runtime_get_sync(dev);
938 if (WARN_ON(ret < 0))
939 goto out_power_put;
940
941 if (ipa->setup_complete) {
942 ret = ipa_modem_stop(ipa);
943 /* If starting or stopping is in progress, try once more */
944 if (ret == -EBUSY) {
945 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
946 ret = ipa_modem_stop(ipa);
947 }
948 if (ret)
949 return ret;
950
951 ipa_teardown(ipa);
952 }
953
954 ipa_deconfig(ipa);
955out_power_put:
956 pm_runtime_put_noidle(dev);
957 ipa_smp2p_exit(ipa);
958 ipa_table_exit(ipa);
959 ipa_endpoint_exit(ipa);
960 gsi_exit(&ipa->gsi);
961 ipa_mem_exit(ipa);
962 ipa_reg_exit(ipa);
963 kfree(ipa);
964 ipa_power_exit(power);
965
966 dev_info(dev, "IPA driver removed");
967
968 return 0;
969}
970
971static void ipa_shutdown(struct platform_device *pdev)
972{
973 int ret;
974
975 ret = ipa_remove(pdev);
976 if (ret)
977 dev_err(&pdev->dev, "shutdown: remove returned %d\n", ret);
978}
979
980static const struct attribute_group *ipa_attribute_groups[] = {
981 &ipa_attribute_group,
982 &ipa_feature_attribute_group,
983 &ipa_endpoint_id_attribute_group,
984 &ipa_modem_attribute_group,
985 NULL,
986};
987
988static struct platform_driver ipa_driver = {
989 .probe = ipa_probe,
990 .remove = ipa_remove,
991 .shutdown = ipa_shutdown,
992 .driver = {
993 .name = "ipa",
994 .pm = &ipa_pm_ops,
995 .of_match_table = ipa_match,
996 .dev_groups = ipa_attribute_groups,
997 },
998};
999
1000module_platform_driver(ipa_driver);
1001
1002MODULE_LICENSE("GPL v2");
1003MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");