Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2011 Red Hat, Inc.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-btree.h"
9#include "dm-btree-internal.h"
10#include "dm-transaction-manager.h"
11
12#include <linux/export.h>
13#include <linux/device-mapper.h>
14
15#define DM_MSG_PREFIX "btree"
16
17/*
18 * Removing an entry from a btree
19 * ==============================
20 *
21 * A very important constraint for our btree is that no node, except the
22 * root, may have fewer than a certain number of entries.
23 * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
24 *
25 * Ensuring this is complicated by the way we want to only ever hold the
26 * locks on 2 nodes concurrently, and only change nodes in a top to bottom
27 * fashion.
28 *
29 * Each node may have a left or right sibling. When decending the spine,
30 * if a node contains only MIN_ENTRIES then we try and increase this to at
31 * least MIN_ENTRIES + 1. We do this in the following ways:
32 *
33 * [A] No siblings => this can only happen if the node is the root, in which
34 * case we copy the childs contents over the root.
35 *
36 * [B] No left sibling
37 * ==> rebalance(node, right sibling)
38 *
39 * [C] No right sibling
40 * ==> rebalance(left sibling, node)
41 *
42 * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
43 * ==> delete node adding it's contents to left and right
44 *
45 * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
46 * ==> rebalance(left, node, right)
47 *
48 * After these operations it's possible that the our original node no
49 * longer contains the desired sub tree. For this reason this rebalancing
50 * is performed on the children of the current node. This also avoids
51 * having a special case for the root.
52 *
53 * Once this rebalancing has occurred we can then step into the child node
54 * for internal nodes. Or delete the entry for leaf nodes.
55 */
56
57/*
58 * Some little utilities for moving node data around.
59 */
60static void node_shift(struct btree_node *n, int shift)
61{
62 uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
63 uint32_t value_size = le32_to_cpu(n->header.value_size);
64
65 if (shift < 0) {
66 shift = -shift;
67 BUG_ON(shift > nr_entries);
68 BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift));
69 memmove(key_ptr(n, 0),
70 key_ptr(n, shift),
71 (nr_entries - shift) * sizeof(__le64));
72 memmove(value_ptr(n, 0),
73 value_ptr(n, shift),
74 (nr_entries - shift) * value_size);
75 } else {
76 BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
77 memmove(key_ptr(n, shift),
78 key_ptr(n, 0),
79 nr_entries * sizeof(__le64));
80 memmove(value_ptr(n, shift),
81 value_ptr(n, 0),
82 nr_entries * value_size);
83 }
84}
85
86static int node_copy(struct btree_node *left, struct btree_node *right, int shift)
87{
88 uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
89 uint32_t value_size = le32_to_cpu(left->header.value_size);
90
91 if (value_size != le32_to_cpu(right->header.value_size)) {
92 DMERR("mismatched value size");
93 return -EILSEQ;
94 }
95
96 if (shift < 0) {
97 shift = -shift;
98
99 if (nr_left + shift > le32_to_cpu(left->header.max_entries)) {
100 DMERR("bad shift");
101 return -EINVAL;
102 }
103
104 memcpy(key_ptr(left, nr_left),
105 key_ptr(right, 0),
106 shift * sizeof(__le64));
107 memcpy(value_ptr(left, nr_left),
108 value_ptr(right, 0),
109 shift * value_size);
110 } else {
111 if (shift > le32_to_cpu(right->header.max_entries)) {
112 DMERR("bad shift");
113 return -EINVAL;
114 }
115
116 memcpy(key_ptr(right, 0),
117 key_ptr(left, nr_left - shift),
118 shift * sizeof(__le64));
119 memcpy(value_ptr(right, 0),
120 value_ptr(left, nr_left - shift),
121 shift * value_size);
122 }
123 return 0;
124}
125
126/*
127 * Delete a specific entry from a leaf node.
128 */
129static void delete_at(struct btree_node *n, unsigned int index)
130{
131 unsigned int nr_entries = le32_to_cpu(n->header.nr_entries);
132 unsigned int nr_to_copy = nr_entries - (index + 1);
133 uint32_t value_size = le32_to_cpu(n->header.value_size);
134
135 BUG_ON(index >= nr_entries);
136
137 if (nr_to_copy) {
138 memmove(key_ptr(n, index),
139 key_ptr(n, index + 1),
140 nr_to_copy * sizeof(__le64));
141
142 memmove(value_ptr(n, index),
143 value_ptr(n, index + 1),
144 nr_to_copy * value_size);
145 }
146
147 n->header.nr_entries = cpu_to_le32(nr_entries - 1);
148}
149
150static unsigned int merge_threshold(struct btree_node *n)
151{
152 return le32_to_cpu(n->header.max_entries) / 3;
153}
154
155struct child {
156 unsigned int index;
157 struct dm_block *block;
158 struct btree_node *n;
159};
160
161static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
162 struct btree_node *parent,
163 unsigned int index, struct child *result)
164{
165 int r, inc;
166 dm_block_t root;
167
168 result->index = index;
169 root = value64(parent, index);
170
171 r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
172 &result->block, &inc);
173 if (r)
174 return r;
175
176 result->n = dm_block_data(result->block);
177
178 if (inc)
179 inc_children(info->tm, result->n, vt);
180
181 *((__le64 *) value_ptr(parent, index)) =
182 cpu_to_le64(dm_block_location(result->block));
183
184 return 0;
185}
186
187static void exit_child(struct dm_btree_info *info, struct child *c)
188{
189 dm_tm_unlock(info->tm, c->block);
190}
191
192static int shift(struct btree_node *left, struct btree_node *right, int count)
193{
194 int r;
195 uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
196 uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
197 uint32_t max_entries = le32_to_cpu(left->header.max_entries);
198 uint32_t r_max_entries = le32_to_cpu(right->header.max_entries);
199
200 if (max_entries != r_max_entries) {
201 DMERR("node max_entries mismatch");
202 return -EILSEQ;
203 }
204
205 if (nr_left - count > max_entries) {
206 DMERR("node shift out of bounds");
207 return -EINVAL;
208 }
209
210 if (nr_right + count > max_entries) {
211 DMERR("node shift out of bounds");
212 return -EINVAL;
213 }
214
215 if (!count)
216 return 0;
217
218 if (count > 0) {
219 node_shift(right, count);
220 r = node_copy(left, right, count);
221 if (r)
222 return r;
223 } else {
224 r = node_copy(left, right, count);
225 if (r)
226 return r;
227 node_shift(right, count);
228 }
229
230 left->header.nr_entries = cpu_to_le32(nr_left - count);
231 right->header.nr_entries = cpu_to_le32(nr_right + count);
232
233 return 0;
234}
235
236static int __rebalance2(struct dm_btree_info *info, struct btree_node *parent,
237 struct child *l, struct child *r)
238{
239 int ret;
240 struct btree_node *left = l->n;
241 struct btree_node *right = r->n;
242 uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
243 uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
244 /*
245 * Ensure the number of entries in each child will be greater
246 * than or equal to (max_entries / 3 + 1), so no matter which
247 * child is used for removal, the number will still be not
248 * less than (max_entries / 3).
249 */
250 unsigned int threshold = 2 * (merge_threshold(left) + 1);
251
252 if (nr_left + nr_right < threshold) {
253 /*
254 * Merge
255 */
256 node_copy(left, right, -nr_right);
257 left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
258 delete_at(parent, r->index);
259
260 /*
261 * We need to decrement the right block, but not it's
262 * children, since they're still referenced by left.
263 */
264 dm_tm_dec(info->tm, dm_block_location(r->block));
265 } else {
266 /*
267 * Rebalance.
268 */
269 unsigned int target_left = (nr_left + nr_right) / 2;
270
271 ret = shift(left, right, nr_left - target_left);
272 if (ret)
273 return ret;
274 *key_ptr(parent, r->index) = right->keys[0];
275 }
276 return 0;
277}
278
279static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
280 struct dm_btree_value_type *vt, unsigned int left_index)
281{
282 int r;
283 struct btree_node *parent;
284 struct child left, right;
285
286 parent = dm_block_data(shadow_current(s));
287
288 r = init_child(info, vt, parent, left_index, &left);
289 if (r)
290 return r;
291
292 r = init_child(info, vt, parent, left_index + 1, &right);
293 if (r) {
294 exit_child(info, &left);
295 return r;
296 }
297
298 r = __rebalance2(info, parent, &left, &right);
299
300 exit_child(info, &left);
301 exit_child(info, &right);
302
303 return r;
304}
305
306/*
307 * We dump as many entries from center as possible into left, then the rest
308 * in right, then rebalance2. This wastes some cpu, but I want something
309 * simple atm.
310 */
311static int delete_center_node(struct dm_btree_info *info, struct btree_node *parent,
312 struct child *l, struct child *c, struct child *r,
313 struct btree_node *left, struct btree_node *center, struct btree_node *right,
314 uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
315{
316 uint32_t max_entries = le32_to_cpu(left->header.max_entries);
317 unsigned int shift = min(max_entries - nr_left, nr_center);
318
319 if (nr_left + shift > max_entries) {
320 DMERR("node shift out of bounds");
321 return -EINVAL;
322 }
323
324 node_copy(left, center, -shift);
325 left->header.nr_entries = cpu_to_le32(nr_left + shift);
326
327 if (shift != nr_center) {
328 shift = nr_center - shift;
329
330 if ((nr_right + shift) > max_entries) {
331 DMERR("node shift out of bounds");
332 return -EINVAL;
333 }
334
335 node_shift(right, shift);
336 node_copy(center, right, shift);
337 right->header.nr_entries = cpu_to_le32(nr_right + shift);
338 }
339 *key_ptr(parent, r->index) = right->keys[0];
340
341 delete_at(parent, c->index);
342 r->index--;
343
344 dm_tm_dec(info->tm, dm_block_location(c->block));
345 return __rebalance2(info, parent, l, r);
346}
347
348/*
349 * Redistributes entries among 3 sibling nodes.
350 */
351static int redistribute3(struct dm_btree_info *info, struct btree_node *parent,
352 struct child *l, struct child *c, struct child *r,
353 struct btree_node *left, struct btree_node *center, struct btree_node *right,
354 uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
355{
356 int s, ret;
357 uint32_t max_entries = le32_to_cpu(left->header.max_entries);
358 unsigned int total = nr_left + nr_center + nr_right;
359 unsigned int target_right = total / 3;
360 unsigned int remainder = (target_right * 3) != total;
361 unsigned int target_left = target_right + remainder;
362
363 BUG_ON(target_left > max_entries);
364 BUG_ON(target_right > max_entries);
365
366 if (nr_left < nr_right) {
367 s = nr_left - target_left;
368
369 if (s < 0 && nr_center < -s) {
370 /* not enough in central node */
371 ret = shift(left, center, -nr_center);
372 if (ret)
373 return ret;
374
375 s += nr_center;
376 ret = shift(left, right, s);
377 if (ret)
378 return ret;
379
380 nr_right += s;
381 } else {
382 ret = shift(left, center, s);
383 if (ret)
384 return ret;
385 }
386
387 ret = shift(center, right, target_right - nr_right);
388 if (ret)
389 return ret;
390 } else {
391 s = target_right - nr_right;
392 if (s > 0 && nr_center < s) {
393 /* not enough in central node */
394 ret = shift(center, right, nr_center);
395 if (ret)
396 return ret;
397 s -= nr_center;
398 ret = shift(left, right, s);
399 if (ret)
400 return ret;
401 nr_left -= s;
402 } else {
403 ret = shift(center, right, s);
404 if (ret)
405 return ret;
406 }
407
408 ret = shift(left, center, nr_left - target_left);
409 if (ret)
410 return ret;
411 }
412
413 *key_ptr(parent, c->index) = center->keys[0];
414 *key_ptr(parent, r->index) = right->keys[0];
415 return 0;
416}
417
418static int __rebalance3(struct dm_btree_info *info, struct btree_node *parent,
419 struct child *l, struct child *c, struct child *r)
420{
421 struct btree_node *left = l->n;
422 struct btree_node *center = c->n;
423 struct btree_node *right = r->n;
424
425 uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
426 uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
427 uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
428
429 unsigned int threshold = merge_threshold(left) * 4 + 1;
430
431 if ((left->header.max_entries != center->header.max_entries) ||
432 (center->header.max_entries != right->header.max_entries)) {
433 DMERR("bad btree metadata, max_entries differ");
434 return -EILSEQ;
435 }
436
437 if ((nr_left + nr_center + nr_right) < threshold) {
438 return delete_center_node(info, parent, l, c, r, left, center, right,
439 nr_left, nr_center, nr_right);
440 }
441
442 return redistribute3(info, parent, l, c, r, left, center, right,
443 nr_left, nr_center, nr_right);
444}
445
446static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
447 struct dm_btree_value_type *vt, unsigned int left_index)
448{
449 int r;
450 struct btree_node *parent = dm_block_data(shadow_current(s));
451 struct child left, center, right;
452
453 /*
454 * FIXME: fill out an array?
455 */
456 r = init_child(info, vt, parent, left_index, &left);
457 if (r)
458 return r;
459
460 r = init_child(info, vt, parent, left_index + 1, ¢er);
461 if (r) {
462 exit_child(info, &left);
463 return r;
464 }
465
466 r = init_child(info, vt, parent, left_index + 2, &right);
467 if (r) {
468 exit_child(info, &left);
469 exit_child(info, ¢er);
470 return r;
471 }
472
473 r = __rebalance3(info, parent, &left, ¢er, &right);
474
475 exit_child(info, &left);
476 exit_child(info, ¢er);
477 exit_child(info, &right);
478
479 return r;
480}
481
482static int rebalance_children(struct shadow_spine *s,
483 struct dm_btree_info *info,
484 struct dm_btree_value_type *vt, uint64_t key)
485{
486 int i, r, has_left_sibling, has_right_sibling;
487 struct btree_node *n;
488
489 n = dm_block_data(shadow_current(s));
490
491 if (le32_to_cpu(n->header.nr_entries) == 1) {
492 struct dm_block *child;
493 dm_block_t b = value64(n, 0);
494
495 r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
496 if (r)
497 return r;
498
499 memcpy(n, dm_block_data(child),
500 dm_bm_block_size(dm_tm_get_bm(info->tm)));
501
502 dm_tm_dec(info->tm, dm_block_location(child));
503 dm_tm_unlock(info->tm, child);
504 return 0;
505 }
506
507 i = lower_bound(n, key);
508 if (i < 0)
509 return -ENODATA;
510
511 has_left_sibling = i > 0;
512 has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
513
514 if (!has_left_sibling)
515 r = rebalance2(s, info, vt, i);
516
517 else if (!has_right_sibling)
518 r = rebalance2(s, info, vt, i - 1);
519
520 else
521 r = rebalance3(s, info, vt, i - 1);
522
523 return r;
524}
525
526static int do_leaf(struct btree_node *n, uint64_t key, unsigned int *index)
527{
528 int i = lower_bound(n, key);
529
530 if ((i < 0) ||
531 (i >= le32_to_cpu(n->header.nr_entries)) ||
532 (le64_to_cpu(n->keys[i]) != key))
533 return -ENODATA;
534
535 *index = i;
536
537 return 0;
538}
539
540/*
541 * Prepares for removal from one level of the hierarchy. The caller must
542 * call delete_at() to remove the entry at index.
543 */
544static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
545 struct dm_btree_value_type *vt, dm_block_t root,
546 uint64_t key, unsigned int *index)
547{
548 int i = *index, r;
549 struct btree_node *n;
550
551 for (;;) {
552 r = shadow_step(s, root, vt);
553 if (r < 0)
554 break;
555
556 /*
557 * We have to patch up the parent node, ugly, but I don't
558 * see a way to do this automatically as part of the spine
559 * op.
560 */
561 if (shadow_has_parent(s)) {
562 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
563
564 memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
565 &location, sizeof(__le64));
566 }
567
568 n = dm_block_data(shadow_current(s));
569
570 if (le32_to_cpu(n->header.flags) & LEAF_NODE)
571 return do_leaf(n, key, index);
572
573 r = rebalance_children(s, info, vt, key);
574 if (r)
575 break;
576
577 n = dm_block_data(shadow_current(s));
578 if (le32_to_cpu(n->header.flags) & LEAF_NODE)
579 return do_leaf(n, key, index);
580
581 i = lower_bound(n, key);
582
583 /*
584 * We know the key is present, or else
585 * rebalance_children would have returned
586 * -ENODATA
587 */
588 root = value64(n, i);
589 }
590
591 return r;
592}
593
594int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
595 uint64_t *keys, dm_block_t *new_root)
596{
597 unsigned int level, last_level = info->levels - 1;
598 int index = 0, r = 0;
599 struct shadow_spine spine;
600 struct btree_node *n;
601 struct dm_btree_value_type le64_vt;
602
603 init_le64_type(info->tm, &le64_vt);
604 init_shadow_spine(&spine, info);
605 for (level = 0; level < info->levels; level++) {
606 r = remove_raw(&spine, info,
607 (level == last_level ?
608 &info->value_type : &le64_vt),
609 root, keys[level], (unsigned int *)&index);
610 if (r < 0)
611 break;
612
613 n = dm_block_data(shadow_current(&spine));
614 if (level != last_level) {
615 root = value64(n, index);
616 continue;
617 }
618
619 BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
620
621 if (info->value_type.dec)
622 info->value_type.dec(info->value_type.context,
623 value_ptr(n, index), 1);
624
625 delete_at(n, index);
626 }
627
628 if (!r)
629 *new_root = shadow_root(&spine);
630 exit_shadow_spine(&spine);
631
632 return r;
633}
634EXPORT_SYMBOL_GPL(dm_btree_remove);
635
636/*----------------------------------------------------------------*/
637
638static int remove_nearest(struct shadow_spine *s, struct dm_btree_info *info,
639 struct dm_btree_value_type *vt, dm_block_t root,
640 uint64_t key, int *index)
641{
642 int i = *index, r;
643 struct btree_node *n;
644
645 for (;;) {
646 r = shadow_step(s, root, vt);
647 if (r < 0)
648 break;
649
650 /*
651 * We have to patch up the parent node, ugly, but I don't
652 * see a way to do this automatically as part of the spine
653 * op.
654 */
655 if (shadow_has_parent(s)) {
656 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
657
658 memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
659 &location, sizeof(__le64));
660 }
661
662 n = dm_block_data(shadow_current(s));
663
664 if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
665 *index = lower_bound(n, key);
666 return 0;
667 }
668
669 r = rebalance_children(s, info, vt, key);
670 if (r)
671 break;
672
673 n = dm_block_data(shadow_current(s));
674 if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
675 *index = lower_bound(n, key);
676 return 0;
677 }
678
679 i = lower_bound(n, key);
680
681 /*
682 * We know the key is present, or else
683 * rebalance_children would have returned
684 * -ENODATA
685 */
686 root = value64(n, i);
687 }
688
689 return r;
690}
691
692static int remove_one(struct dm_btree_info *info, dm_block_t root,
693 uint64_t *keys, uint64_t end_key,
694 dm_block_t *new_root, unsigned int *nr_removed)
695{
696 unsigned int level, last_level = info->levels - 1;
697 int index = 0, r = 0;
698 struct shadow_spine spine;
699 struct btree_node *n;
700 struct dm_btree_value_type le64_vt;
701 uint64_t k;
702
703 init_le64_type(info->tm, &le64_vt);
704 init_shadow_spine(&spine, info);
705 for (level = 0; level < last_level; level++) {
706 r = remove_raw(&spine, info, &le64_vt,
707 root, keys[level], (unsigned int *) &index);
708 if (r < 0)
709 goto out;
710
711 n = dm_block_data(shadow_current(&spine));
712 root = value64(n, index);
713 }
714
715 r = remove_nearest(&spine, info, &info->value_type,
716 root, keys[last_level], &index);
717 if (r < 0)
718 goto out;
719
720 n = dm_block_data(shadow_current(&spine));
721
722 if (index < 0)
723 index = 0;
724
725 if (index >= le32_to_cpu(n->header.nr_entries)) {
726 r = -ENODATA;
727 goto out;
728 }
729
730 k = le64_to_cpu(n->keys[index]);
731 if (k >= keys[last_level] && k < end_key) {
732 if (info->value_type.dec)
733 info->value_type.dec(info->value_type.context,
734 value_ptr(n, index), 1);
735
736 delete_at(n, index);
737 keys[last_level] = k + 1ull;
738
739 } else
740 r = -ENODATA;
741
742out:
743 *new_root = shadow_root(&spine);
744 exit_shadow_spine(&spine);
745
746 return r;
747}
748
749int dm_btree_remove_leaves(struct dm_btree_info *info, dm_block_t root,
750 uint64_t *first_key, uint64_t end_key,
751 dm_block_t *new_root, unsigned int *nr_removed)
752{
753 int r;
754
755 *nr_removed = 0;
756 do {
757 r = remove_one(info, root, first_key, end_key, &root, nr_removed);
758 if (!r)
759 (*nr_removed)++;
760 } while (!r);
761
762 *new_root = root;
763 return r == -ENODATA ? 0 : r;
764}
765EXPORT_SYMBOL_GPL(dm_btree_remove_leaves);
1/*
2 * Copyright (C) 2011 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-btree.h"
8#include "dm-btree-internal.h"
9#include "dm-transaction-manager.h"
10
11#include <linux/export.h>
12#include <linux/device-mapper.h>
13
14#define DM_MSG_PREFIX "btree"
15
16/*
17 * Removing an entry from a btree
18 * ==============================
19 *
20 * A very important constraint for our btree is that no node, except the
21 * root, may have fewer than a certain number of entries.
22 * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
23 *
24 * Ensuring this is complicated by the way we want to only ever hold the
25 * locks on 2 nodes concurrently, and only change nodes in a top to bottom
26 * fashion.
27 *
28 * Each node may have a left or right sibling. When decending the spine,
29 * if a node contains only MIN_ENTRIES then we try and increase this to at
30 * least MIN_ENTRIES + 1. We do this in the following ways:
31 *
32 * [A] No siblings => this can only happen if the node is the root, in which
33 * case we copy the childs contents over the root.
34 *
35 * [B] No left sibling
36 * ==> rebalance(node, right sibling)
37 *
38 * [C] No right sibling
39 * ==> rebalance(left sibling, node)
40 *
41 * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
42 * ==> delete node adding it's contents to left and right
43 *
44 * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
45 * ==> rebalance(left, node, right)
46 *
47 * After these operations it's possible that the our original node no
48 * longer contains the desired sub tree. For this reason this rebalancing
49 * is performed on the children of the current node. This also avoids
50 * having a special case for the root.
51 *
52 * Once this rebalancing has occurred we can then step into the child node
53 * for internal nodes. Or delete the entry for leaf nodes.
54 */
55
56/*
57 * Some little utilities for moving node data around.
58 */
59static void node_shift(struct btree_node *n, int shift)
60{
61 uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
62 uint32_t value_size = le32_to_cpu(n->header.value_size);
63
64 if (shift < 0) {
65 shift = -shift;
66 BUG_ON(shift > nr_entries);
67 BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift));
68 memmove(key_ptr(n, 0),
69 key_ptr(n, shift),
70 (nr_entries - shift) * sizeof(__le64));
71 memmove(value_ptr(n, 0),
72 value_ptr(n, shift),
73 (nr_entries - shift) * value_size);
74 } else {
75 BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
76 memmove(key_ptr(n, shift),
77 key_ptr(n, 0),
78 nr_entries * sizeof(__le64));
79 memmove(value_ptr(n, shift),
80 value_ptr(n, 0),
81 nr_entries * value_size);
82 }
83}
84
85static int node_copy(struct btree_node *left, struct btree_node *right, int shift)
86{
87 uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
88 uint32_t value_size = le32_to_cpu(left->header.value_size);
89 if (value_size != le32_to_cpu(right->header.value_size)) {
90 DMERR("mismatched value size");
91 return -EILSEQ;
92 }
93
94 if (shift < 0) {
95 shift = -shift;
96
97 if (nr_left + shift > le32_to_cpu(left->header.max_entries)) {
98 DMERR("bad shift");
99 return -EINVAL;
100 }
101
102 memcpy(key_ptr(left, nr_left),
103 key_ptr(right, 0),
104 shift * sizeof(__le64));
105 memcpy(value_ptr(left, nr_left),
106 value_ptr(right, 0),
107 shift * value_size);
108 } else {
109 if (shift > le32_to_cpu(right->header.max_entries)) {
110 DMERR("bad shift");
111 return -EINVAL;
112 }
113
114 memcpy(key_ptr(right, 0),
115 key_ptr(left, nr_left - shift),
116 shift * sizeof(__le64));
117 memcpy(value_ptr(right, 0),
118 value_ptr(left, nr_left - shift),
119 shift * value_size);
120 }
121 return 0;
122}
123
124/*
125 * Delete a specific entry from a leaf node.
126 */
127static void delete_at(struct btree_node *n, unsigned index)
128{
129 unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
130 unsigned nr_to_copy = nr_entries - (index + 1);
131 uint32_t value_size = le32_to_cpu(n->header.value_size);
132 BUG_ON(index >= nr_entries);
133
134 if (nr_to_copy) {
135 memmove(key_ptr(n, index),
136 key_ptr(n, index + 1),
137 nr_to_copy * sizeof(__le64));
138
139 memmove(value_ptr(n, index),
140 value_ptr(n, index + 1),
141 nr_to_copy * value_size);
142 }
143
144 n->header.nr_entries = cpu_to_le32(nr_entries - 1);
145}
146
147static unsigned merge_threshold(struct btree_node *n)
148{
149 return le32_to_cpu(n->header.max_entries) / 3;
150}
151
152struct child {
153 unsigned index;
154 struct dm_block *block;
155 struct btree_node *n;
156};
157
158static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
159 struct btree_node *parent,
160 unsigned index, struct child *result)
161{
162 int r, inc;
163 dm_block_t root;
164
165 result->index = index;
166 root = value64(parent, index);
167
168 r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
169 &result->block, &inc);
170 if (r)
171 return r;
172
173 result->n = dm_block_data(result->block);
174
175 if (inc)
176 inc_children(info->tm, result->n, vt);
177
178 *((__le64 *) value_ptr(parent, index)) =
179 cpu_to_le64(dm_block_location(result->block));
180
181 return 0;
182}
183
184static void exit_child(struct dm_btree_info *info, struct child *c)
185{
186 dm_tm_unlock(info->tm, c->block);
187}
188
189static int shift(struct btree_node *left, struct btree_node *right, int count)
190{
191 int r;
192 uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
193 uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
194 uint32_t max_entries = le32_to_cpu(left->header.max_entries);
195 uint32_t r_max_entries = le32_to_cpu(right->header.max_entries);
196
197 if (max_entries != r_max_entries) {
198 DMERR("node max_entries mismatch");
199 return -EILSEQ;
200 }
201
202 if (nr_left - count > max_entries) {
203 DMERR("node shift out of bounds");
204 return -EINVAL;
205 }
206
207 if (nr_right + count > max_entries) {
208 DMERR("node shift out of bounds");
209 return -EINVAL;
210 }
211
212 if (!count)
213 return 0;
214
215 if (count > 0) {
216 node_shift(right, count);
217 r = node_copy(left, right, count);
218 if (r)
219 return r;
220 } else {
221 r = node_copy(left, right, count);
222 if (r)
223 return r;
224 node_shift(right, count);
225 }
226
227 left->header.nr_entries = cpu_to_le32(nr_left - count);
228 right->header.nr_entries = cpu_to_le32(nr_right + count);
229
230 return 0;
231}
232
233static int __rebalance2(struct dm_btree_info *info, struct btree_node *parent,
234 struct child *l, struct child *r)
235{
236 int ret;
237 struct btree_node *left = l->n;
238 struct btree_node *right = r->n;
239 uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
240 uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
241 /*
242 * Ensure the number of entries in each child will be greater
243 * than or equal to (max_entries / 3 + 1), so no matter which
244 * child is used for removal, the number will still be not
245 * less than (max_entries / 3).
246 */
247 unsigned int threshold = 2 * (merge_threshold(left) + 1);
248
249 if (nr_left + nr_right < threshold) {
250 /*
251 * Merge
252 */
253 node_copy(left, right, -nr_right);
254 left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
255 delete_at(parent, r->index);
256
257 /*
258 * We need to decrement the right block, but not it's
259 * children, since they're still referenced by left.
260 */
261 dm_tm_dec(info->tm, dm_block_location(r->block));
262 } else {
263 /*
264 * Rebalance.
265 */
266 unsigned target_left = (nr_left + nr_right) / 2;
267 ret = shift(left, right, nr_left - target_left);
268 if (ret)
269 return ret;
270 *key_ptr(parent, r->index) = right->keys[0];
271 }
272 return 0;
273}
274
275static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
276 struct dm_btree_value_type *vt, unsigned left_index)
277{
278 int r;
279 struct btree_node *parent;
280 struct child left, right;
281
282 parent = dm_block_data(shadow_current(s));
283
284 r = init_child(info, vt, parent, left_index, &left);
285 if (r)
286 return r;
287
288 r = init_child(info, vt, parent, left_index + 1, &right);
289 if (r) {
290 exit_child(info, &left);
291 return r;
292 }
293
294 r = __rebalance2(info, parent, &left, &right);
295
296 exit_child(info, &left);
297 exit_child(info, &right);
298
299 return r;
300}
301
302/*
303 * We dump as many entries from center as possible into left, then the rest
304 * in right, then rebalance2. This wastes some cpu, but I want something
305 * simple atm.
306 */
307static int delete_center_node(struct dm_btree_info *info, struct btree_node *parent,
308 struct child *l, struct child *c, struct child *r,
309 struct btree_node *left, struct btree_node *center, struct btree_node *right,
310 uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
311{
312 uint32_t max_entries = le32_to_cpu(left->header.max_entries);
313 unsigned shift = min(max_entries - nr_left, nr_center);
314
315 if (nr_left + shift > max_entries) {
316 DMERR("node shift out of bounds");
317 return -EINVAL;
318 }
319
320 node_copy(left, center, -shift);
321 left->header.nr_entries = cpu_to_le32(nr_left + shift);
322
323 if (shift != nr_center) {
324 shift = nr_center - shift;
325
326 if ((nr_right + shift) > max_entries) {
327 DMERR("node shift out of bounds");
328 return -EINVAL;
329 }
330
331 node_shift(right, shift);
332 node_copy(center, right, shift);
333 right->header.nr_entries = cpu_to_le32(nr_right + shift);
334 }
335 *key_ptr(parent, r->index) = right->keys[0];
336
337 delete_at(parent, c->index);
338 r->index--;
339
340 dm_tm_dec(info->tm, dm_block_location(c->block));
341 return __rebalance2(info, parent, l, r);
342}
343
344/*
345 * Redistributes entries among 3 sibling nodes.
346 */
347static int redistribute3(struct dm_btree_info *info, struct btree_node *parent,
348 struct child *l, struct child *c, struct child *r,
349 struct btree_node *left, struct btree_node *center, struct btree_node *right,
350 uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
351{
352 int s, ret;
353 uint32_t max_entries = le32_to_cpu(left->header.max_entries);
354 unsigned total = nr_left + nr_center + nr_right;
355 unsigned target_right = total / 3;
356 unsigned remainder = (target_right * 3) != total;
357 unsigned target_left = target_right + remainder;
358
359 BUG_ON(target_left > max_entries);
360 BUG_ON(target_right > max_entries);
361
362 if (nr_left < nr_right) {
363 s = nr_left - target_left;
364
365 if (s < 0 && nr_center < -s) {
366 /* not enough in central node */
367 ret = shift(left, center, -nr_center);
368 if (ret)
369 return ret;
370
371 s += nr_center;
372 ret = shift(left, right, s);
373 if (ret)
374 return ret;
375
376 nr_right += s;
377 } else {
378 ret = shift(left, center, s);
379 if (ret)
380 return ret;
381 }
382
383 ret = shift(center, right, target_right - nr_right);
384 if (ret)
385 return ret;
386 } else {
387 s = target_right - nr_right;
388 if (s > 0 && nr_center < s) {
389 /* not enough in central node */
390 ret = shift(center, right, nr_center);
391 if (ret)
392 return ret;
393 s -= nr_center;
394 ret = shift(left, right, s);
395 if (ret)
396 return ret;
397 nr_left -= s;
398 } else {
399 ret = shift(center, right, s);
400 if (ret)
401 return ret;
402 }
403
404 ret = shift(left, center, nr_left - target_left);
405 if (ret)
406 return ret;
407 }
408
409 *key_ptr(parent, c->index) = center->keys[0];
410 *key_ptr(parent, r->index) = right->keys[0];
411 return 0;
412}
413
414static int __rebalance3(struct dm_btree_info *info, struct btree_node *parent,
415 struct child *l, struct child *c, struct child *r)
416{
417 struct btree_node *left = l->n;
418 struct btree_node *center = c->n;
419 struct btree_node *right = r->n;
420
421 uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
422 uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
423 uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
424
425 unsigned threshold = merge_threshold(left) * 4 + 1;
426
427 if ((left->header.max_entries != center->header.max_entries) ||
428 (center->header.max_entries != right->header.max_entries)) {
429 DMERR("bad btree metadata, max_entries differ");
430 return -EILSEQ;
431 }
432
433 if ((nr_left + nr_center + nr_right) < threshold) {
434 return delete_center_node(info, parent, l, c, r, left, center, right,
435 nr_left, nr_center, nr_right);
436 }
437
438 return redistribute3(info, parent, l, c, r, left, center, right,
439 nr_left, nr_center, nr_right);
440}
441
442static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
443 struct dm_btree_value_type *vt, unsigned left_index)
444{
445 int r;
446 struct btree_node *parent = dm_block_data(shadow_current(s));
447 struct child left, center, right;
448
449 /*
450 * FIXME: fill out an array?
451 */
452 r = init_child(info, vt, parent, left_index, &left);
453 if (r)
454 return r;
455
456 r = init_child(info, vt, parent, left_index + 1, ¢er);
457 if (r) {
458 exit_child(info, &left);
459 return r;
460 }
461
462 r = init_child(info, vt, parent, left_index + 2, &right);
463 if (r) {
464 exit_child(info, &left);
465 exit_child(info, ¢er);
466 return r;
467 }
468
469 r = __rebalance3(info, parent, &left, ¢er, &right);
470
471 exit_child(info, &left);
472 exit_child(info, ¢er);
473 exit_child(info, &right);
474
475 return r;
476}
477
478static int rebalance_children(struct shadow_spine *s,
479 struct dm_btree_info *info,
480 struct dm_btree_value_type *vt, uint64_t key)
481{
482 int i, r, has_left_sibling, has_right_sibling;
483 struct btree_node *n;
484
485 n = dm_block_data(shadow_current(s));
486
487 if (le32_to_cpu(n->header.nr_entries) == 1) {
488 struct dm_block *child;
489 dm_block_t b = value64(n, 0);
490
491 r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
492 if (r)
493 return r;
494
495 memcpy(n, dm_block_data(child),
496 dm_bm_block_size(dm_tm_get_bm(info->tm)));
497
498 dm_tm_dec(info->tm, dm_block_location(child));
499 dm_tm_unlock(info->tm, child);
500 return 0;
501 }
502
503 i = lower_bound(n, key);
504 if (i < 0)
505 return -ENODATA;
506
507 has_left_sibling = i > 0;
508 has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
509
510 if (!has_left_sibling)
511 r = rebalance2(s, info, vt, i);
512
513 else if (!has_right_sibling)
514 r = rebalance2(s, info, vt, i - 1);
515
516 else
517 r = rebalance3(s, info, vt, i - 1);
518
519 return r;
520}
521
522static int do_leaf(struct btree_node *n, uint64_t key, unsigned *index)
523{
524 int i = lower_bound(n, key);
525
526 if ((i < 0) ||
527 (i >= le32_to_cpu(n->header.nr_entries)) ||
528 (le64_to_cpu(n->keys[i]) != key))
529 return -ENODATA;
530
531 *index = i;
532
533 return 0;
534}
535
536/*
537 * Prepares for removal from one level of the hierarchy. The caller must
538 * call delete_at() to remove the entry at index.
539 */
540static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
541 struct dm_btree_value_type *vt, dm_block_t root,
542 uint64_t key, unsigned *index)
543{
544 int i = *index, r;
545 struct btree_node *n;
546
547 for (;;) {
548 r = shadow_step(s, root, vt);
549 if (r < 0)
550 break;
551
552 /*
553 * We have to patch up the parent node, ugly, but I don't
554 * see a way to do this automatically as part of the spine
555 * op.
556 */
557 if (shadow_has_parent(s)) {
558 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
559 memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
560 &location, sizeof(__le64));
561 }
562
563 n = dm_block_data(shadow_current(s));
564
565 if (le32_to_cpu(n->header.flags) & LEAF_NODE)
566 return do_leaf(n, key, index);
567
568 r = rebalance_children(s, info, vt, key);
569 if (r)
570 break;
571
572 n = dm_block_data(shadow_current(s));
573 if (le32_to_cpu(n->header.flags) & LEAF_NODE)
574 return do_leaf(n, key, index);
575
576 i = lower_bound(n, key);
577
578 /*
579 * We know the key is present, or else
580 * rebalance_children would have returned
581 * -ENODATA
582 */
583 root = value64(n, i);
584 }
585
586 return r;
587}
588
589int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
590 uint64_t *keys, dm_block_t *new_root)
591{
592 unsigned level, last_level = info->levels - 1;
593 int index = 0, r = 0;
594 struct shadow_spine spine;
595 struct btree_node *n;
596 struct dm_btree_value_type le64_vt;
597
598 init_le64_type(info->tm, &le64_vt);
599 init_shadow_spine(&spine, info);
600 for (level = 0; level < info->levels; level++) {
601 r = remove_raw(&spine, info,
602 (level == last_level ?
603 &info->value_type : &le64_vt),
604 root, keys[level], (unsigned *)&index);
605 if (r < 0)
606 break;
607
608 n = dm_block_data(shadow_current(&spine));
609 if (level != last_level) {
610 root = value64(n, index);
611 continue;
612 }
613
614 BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
615
616 if (info->value_type.dec)
617 info->value_type.dec(info->value_type.context,
618 value_ptr(n, index), 1);
619
620 delete_at(n, index);
621 }
622
623 if (!r)
624 *new_root = shadow_root(&spine);
625 exit_shadow_spine(&spine);
626
627 return r;
628}
629EXPORT_SYMBOL_GPL(dm_btree_remove);
630
631/*----------------------------------------------------------------*/
632
633static int remove_nearest(struct shadow_spine *s, struct dm_btree_info *info,
634 struct dm_btree_value_type *vt, dm_block_t root,
635 uint64_t key, int *index)
636{
637 int i = *index, r;
638 struct btree_node *n;
639
640 for (;;) {
641 r = shadow_step(s, root, vt);
642 if (r < 0)
643 break;
644
645 /*
646 * We have to patch up the parent node, ugly, but I don't
647 * see a way to do this automatically as part of the spine
648 * op.
649 */
650 if (shadow_has_parent(s)) {
651 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
652 memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
653 &location, sizeof(__le64));
654 }
655
656 n = dm_block_data(shadow_current(s));
657
658 if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
659 *index = lower_bound(n, key);
660 return 0;
661 }
662
663 r = rebalance_children(s, info, vt, key);
664 if (r)
665 break;
666
667 n = dm_block_data(shadow_current(s));
668 if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
669 *index = lower_bound(n, key);
670 return 0;
671 }
672
673 i = lower_bound(n, key);
674
675 /*
676 * We know the key is present, or else
677 * rebalance_children would have returned
678 * -ENODATA
679 */
680 root = value64(n, i);
681 }
682
683 return r;
684}
685
686static int remove_one(struct dm_btree_info *info, dm_block_t root,
687 uint64_t *keys, uint64_t end_key,
688 dm_block_t *new_root, unsigned *nr_removed)
689{
690 unsigned level, last_level = info->levels - 1;
691 int index = 0, r = 0;
692 struct shadow_spine spine;
693 struct btree_node *n;
694 struct dm_btree_value_type le64_vt;
695 uint64_t k;
696
697 init_le64_type(info->tm, &le64_vt);
698 init_shadow_spine(&spine, info);
699 for (level = 0; level < last_level; level++) {
700 r = remove_raw(&spine, info, &le64_vt,
701 root, keys[level], (unsigned *) &index);
702 if (r < 0)
703 goto out;
704
705 n = dm_block_data(shadow_current(&spine));
706 root = value64(n, index);
707 }
708
709 r = remove_nearest(&spine, info, &info->value_type,
710 root, keys[last_level], &index);
711 if (r < 0)
712 goto out;
713
714 n = dm_block_data(shadow_current(&spine));
715
716 if (index < 0)
717 index = 0;
718
719 if (index >= le32_to_cpu(n->header.nr_entries)) {
720 r = -ENODATA;
721 goto out;
722 }
723
724 k = le64_to_cpu(n->keys[index]);
725 if (k >= keys[last_level] && k < end_key) {
726 if (info->value_type.dec)
727 info->value_type.dec(info->value_type.context,
728 value_ptr(n, index), 1);
729
730 delete_at(n, index);
731 keys[last_level] = k + 1ull;
732
733 } else
734 r = -ENODATA;
735
736out:
737 *new_root = shadow_root(&spine);
738 exit_shadow_spine(&spine);
739
740 return r;
741}
742
743int dm_btree_remove_leaves(struct dm_btree_info *info, dm_block_t root,
744 uint64_t *first_key, uint64_t end_key,
745 dm_block_t *new_root, unsigned *nr_removed)
746{
747 int r;
748
749 *nr_removed = 0;
750 do {
751 r = remove_one(info, root, first_key, end_key, &root, nr_removed);
752 if (!r)
753 (*nr_removed)++;
754 } while (!r);
755
756 *new_root = root;
757 return r == -ENODATA ? 0 : r;
758}
759EXPORT_SYMBOL_GPL(dm_btree_remove_leaves);