Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * emc1403.c - SMSC Thermal Driver
  4 *
  5 * Copyright (C) 2008 Intel Corp
  6 *
  7 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  8 *
  9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 10 */
 11
 12#include <linux/module.h>
 13#include <linux/init.h>
 14#include <linux/slab.h>
 15#include <linux/i2c.h>
 16#include <linux/hwmon.h>
 17#include <linux/hwmon-sysfs.h>
 18#include <linux/err.h>
 19#include <linux/sysfs.h>
 20#include <linux/mutex.h>
 21#include <linux/regmap.h>
 22
 23#define THERMAL_PID_REG		0xfd
 24#define THERMAL_SMSC_ID_REG	0xfe
 25#define THERMAL_REVISION_REG	0xff
 26
 27enum emc1403_chip { emc1402, emc1403, emc1404 };
 28
 29struct thermal_data {
 30	struct regmap *regmap;
 31	struct mutex mutex;
 32	const struct attribute_group *groups[4];
 33};
 34
 35static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
 36			 char *buf)
 37{
 38	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
 39	struct thermal_data *data = dev_get_drvdata(dev);
 40	unsigned int val;
 41	int retval;
 42
 43	retval = regmap_read(data->regmap, sda->index, &val);
 44	if (retval < 0)
 45		return retval;
 46	return sprintf(buf, "%d000\n", val);
 47}
 48
 49static ssize_t bit_show(struct device *dev, struct device_attribute *attr,
 50			char *buf)
 51{
 52	struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
 53	struct thermal_data *data = dev_get_drvdata(dev);
 54	unsigned int val;
 55	int retval;
 56
 57	retval = regmap_read(data->regmap, sda->nr, &val);
 58	if (retval < 0)
 59		return retval;
 60	return sprintf(buf, "%d\n", !!(val & sda->index));
 61}
 62
 63static ssize_t temp_store(struct device *dev, struct device_attribute *attr,
 64			  const char *buf, size_t count)
 65{
 66	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
 67	struct thermal_data *data = dev_get_drvdata(dev);
 68	unsigned long val;
 69	int retval;
 70
 71	if (kstrtoul(buf, 10, &val))
 72		return -EINVAL;
 73	retval = regmap_write(data->regmap, sda->index,
 74			      DIV_ROUND_CLOSEST(val, 1000));
 75	if (retval < 0)
 76		return retval;
 77	return count;
 78}
 79
 80static ssize_t bit_store(struct device *dev, struct device_attribute *attr,
 81			 const char *buf, size_t count)
 82{
 83	struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
 84	struct thermal_data *data = dev_get_drvdata(dev);
 85	unsigned long val;
 86	int retval;
 87
 88	if (kstrtoul(buf, 10, &val))
 89		return -EINVAL;
 90
 91	retval = regmap_update_bits(data->regmap, sda->nr, sda->index,
 92				    val ? sda->index : 0);
 93	if (retval < 0)
 94		return retval;
 95	return count;
 96}
 97
 98static ssize_t show_hyst_common(struct device *dev,
 99				struct device_attribute *attr, char *buf,
100				bool is_min)
101{
102	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
103	struct thermal_data *data = dev_get_drvdata(dev);
104	struct regmap *regmap = data->regmap;
105	unsigned int limit;
106	unsigned int hyst;
107	int retval;
108
109	retval = regmap_read(regmap, sda->index, &limit);
110	if (retval < 0)
111		return retval;
112
113	retval = regmap_read(regmap, 0x21, &hyst);
114	if (retval < 0)
115		return retval;
116
117	return sprintf(buf, "%d000\n", is_min ? limit + hyst : limit - hyst);
118}
119
120static ssize_t hyst_show(struct device *dev, struct device_attribute *attr,
121			 char *buf)
122{
123	return show_hyst_common(dev, attr, buf, false);
124}
125
126static ssize_t min_hyst_show(struct device *dev,
127			     struct device_attribute *attr, char *buf)
128{
129	return show_hyst_common(dev, attr, buf, true);
130}
131
132static ssize_t hyst_store(struct device *dev, struct device_attribute *attr,
133			  const char *buf, size_t count)
134{
135	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
136	struct thermal_data *data = dev_get_drvdata(dev);
137	struct regmap *regmap = data->regmap;
138	unsigned int limit;
139	int retval;
140	int hyst;
141	unsigned long val;
142
143	if (kstrtoul(buf, 10, &val))
144		return -EINVAL;
145
146	mutex_lock(&data->mutex);
147	retval = regmap_read(regmap, sda->index, &limit);
148	if (retval < 0)
149		goto fail;
150
151	hyst = limit * 1000 - val;
152	hyst = clamp_val(DIV_ROUND_CLOSEST(hyst, 1000), 0, 255);
153	retval = regmap_write(regmap, 0x21, hyst);
154	if (retval == 0)
155		retval = count;
156fail:
157	mutex_unlock(&data->mutex);
158	return retval;
159}
160
161/*
162 *	Sensors. We pass the actual i2c register to the methods.
163 */
164
165static SENSOR_DEVICE_ATTR_RW(temp1_min, temp, 0x06);
166static SENSOR_DEVICE_ATTR_RW(temp1_max, temp, 0x05);
167static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp, 0x20);
168static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0x00);
169static SENSOR_DEVICE_ATTR_2_RO(temp1_min_alarm, bit, 0x36, 0x01);
170static SENSOR_DEVICE_ATTR_2_RO(temp1_max_alarm, bit, 0x35, 0x01);
171static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, bit, 0x37, 0x01);
172static SENSOR_DEVICE_ATTR_RO(temp1_min_hyst, min_hyst, 0x06);
173static SENSOR_DEVICE_ATTR_RO(temp1_max_hyst, hyst, 0x05);
174static SENSOR_DEVICE_ATTR_RW(temp1_crit_hyst, hyst, 0x20);
175
176static SENSOR_DEVICE_ATTR_RW(temp2_min, temp, 0x08);
177static SENSOR_DEVICE_ATTR_RW(temp2_max, temp, 0x07);
178static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp, 0x19);
179static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 0x01);
180static SENSOR_DEVICE_ATTR_2_RO(temp2_fault, bit, 0x1b, 0x02);
181static SENSOR_DEVICE_ATTR_2_RO(temp2_min_alarm, bit, 0x36, 0x02);
182static SENSOR_DEVICE_ATTR_2_RO(temp2_max_alarm, bit, 0x35, 0x02);
183static SENSOR_DEVICE_ATTR_2_RO(temp2_crit_alarm, bit, 0x37, 0x02);
184static SENSOR_DEVICE_ATTR_RO(temp2_min_hyst, min_hyst, 0x08);
185static SENSOR_DEVICE_ATTR_RO(temp2_max_hyst, hyst, 0x07);
186static SENSOR_DEVICE_ATTR_RO(temp2_crit_hyst, hyst, 0x19);
187
188static SENSOR_DEVICE_ATTR_RW(temp3_min, temp, 0x16);
189static SENSOR_DEVICE_ATTR_RW(temp3_max, temp, 0x15);
190static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp, 0x1A);
191static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 0x23);
192static SENSOR_DEVICE_ATTR_2_RO(temp3_fault, bit, 0x1b, 0x04);
193static SENSOR_DEVICE_ATTR_2_RO(temp3_min_alarm, bit, 0x36, 0x04);
194static SENSOR_DEVICE_ATTR_2_RO(temp3_max_alarm, bit, 0x35, 0x04);
195static SENSOR_DEVICE_ATTR_2_RO(temp3_crit_alarm, bit, 0x37, 0x04);
196static SENSOR_DEVICE_ATTR_RO(temp3_min_hyst, min_hyst, 0x16);
197static SENSOR_DEVICE_ATTR_RO(temp3_max_hyst, hyst, 0x15);
198static SENSOR_DEVICE_ATTR_RO(temp3_crit_hyst, hyst, 0x1A);
199
200static SENSOR_DEVICE_ATTR_RW(temp4_min, temp, 0x2D);
201static SENSOR_DEVICE_ATTR_RW(temp4_max, temp, 0x2C);
202static SENSOR_DEVICE_ATTR_RW(temp4_crit, temp, 0x30);
203static SENSOR_DEVICE_ATTR_RO(temp4_input, temp, 0x2A);
204static SENSOR_DEVICE_ATTR_2_RO(temp4_fault, bit, 0x1b, 0x08);
205static SENSOR_DEVICE_ATTR_2_RO(temp4_min_alarm, bit, 0x36, 0x08);
206static SENSOR_DEVICE_ATTR_2_RO(temp4_max_alarm, bit, 0x35, 0x08);
207static SENSOR_DEVICE_ATTR_2_RO(temp4_crit_alarm, bit, 0x37, 0x08);
208static SENSOR_DEVICE_ATTR_RO(temp4_min_hyst, min_hyst, 0x2D);
209static SENSOR_DEVICE_ATTR_RO(temp4_max_hyst, hyst, 0x2C);
210static SENSOR_DEVICE_ATTR_RO(temp4_crit_hyst, hyst, 0x30);
211
212static SENSOR_DEVICE_ATTR_2_RW(power_state, bit, 0x03, 0x40);
213
214static struct attribute *emc1402_attrs[] = {
215	&sensor_dev_attr_temp1_min.dev_attr.attr,
216	&sensor_dev_attr_temp1_max.dev_attr.attr,
217	&sensor_dev_attr_temp1_crit.dev_attr.attr,
218	&sensor_dev_attr_temp1_input.dev_attr.attr,
219	&sensor_dev_attr_temp1_min_hyst.dev_attr.attr,
220	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
221	&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
222
223	&sensor_dev_attr_temp2_min.dev_attr.attr,
224	&sensor_dev_attr_temp2_max.dev_attr.attr,
225	&sensor_dev_attr_temp2_crit.dev_attr.attr,
226	&sensor_dev_attr_temp2_input.dev_attr.attr,
227	&sensor_dev_attr_temp2_min_hyst.dev_attr.attr,
228	&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
229	&sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
230
231	&sensor_dev_attr_power_state.dev_attr.attr,
232	NULL
233};
234
235static const struct attribute_group emc1402_group = {
236		.attrs = emc1402_attrs,
237};
238
239static struct attribute *emc1403_attrs[] = {
240	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
241	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
242	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
243
244	&sensor_dev_attr_temp2_fault.dev_attr.attr,
245	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
246	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
247	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
248
249	&sensor_dev_attr_temp3_min.dev_attr.attr,
250	&sensor_dev_attr_temp3_max.dev_attr.attr,
251	&sensor_dev_attr_temp3_crit.dev_attr.attr,
252	&sensor_dev_attr_temp3_input.dev_attr.attr,
253	&sensor_dev_attr_temp3_fault.dev_attr.attr,
254	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
255	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
256	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
257	&sensor_dev_attr_temp3_min_hyst.dev_attr.attr,
258	&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
259	&sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
260	NULL
261};
262
263static const struct attribute_group emc1403_group = {
264	.attrs = emc1403_attrs,
265};
266
267static struct attribute *emc1404_attrs[] = {
268	&sensor_dev_attr_temp4_min.dev_attr.attr,
269	&sensor_dev_attr_temp4_max.dev_attr.attr,
270	&sensor_dev_attr_temp4_crit.dev_attr.attr,
271	&sensor_dev_attr_temp4_input.dev_attr.attr,
272	&sensor_dev_attr_temp4_fault.dev_attr.attr,
273	&sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
274	&sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
275	&sensor_dev_attr_temp4_crit_alarm.dev_attr.attr,
276	&sensor_dev_attr_temp4_min_hyst.dev_attr.attr,
277	&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
278	&sensor_dev_attr_temp4_crit_hyst.dev_attr.attr,
279	NULL
280};
281
282static const struct attribute_group emc1404_group = {
283	.attrs = emc1404_attrs,
284};
285
286/*
287 * EMC14x2 uses a different register and different bits to report alarm and
288 * fault status. For simplicity, provide a separate attribute group for this
289 * chip series.
290 * Since we can not re-use the same attribute names, create a separate attribute
291 * array.
292 */
293static struct sensor_device_attribute_2 emc1402_alarms[] = {
294	SENSOR_ATTR_2_RO(temp1_min_alarm, bit, 0x02, 0x20),
295	SENSOR_ATTR_2_RO(temp1_max_alarm, bit, 0x02, 0x40),
296	SENSOR_ATTR_2_RO(temp1_crit_alarm, bit, 0x02, 0x01),
297
298	SENSOR_ATTR_2_RO(temp2_fault, bit, 0x02, 0x04),
299	SENSOR_ATTR_2_RO(temp2_min_alarm, bit, 0x02, 0x08),
300	SENSOR_ATTR_2_RO(temp2_max_alarm, bit, 0x02, 0x10),
301	SENSOR_ATTR_2_RO(temp2_crit_alarm, bit, 0x02, 0x02),
302};
303
304static struct attribute *emc1402_alarm_attrs[] = {
305	&emc1402_alarms[0].dev_attr.attr,
306	&emc1402_alarms[1].dev_attr.attr,
307	&emc1402_alarms[2].dev_attr.attr,
308	&emc1402_alarms[3].dev_attr.attr,
309	&emc1402_alarms[4].dev_attr.attr,
310	&emc1402_alarms[5].dev_attr.attr,
311	&emc1402_alarms[6].dev_attr.attr,
312	NULL,
313};
314
315static const struct attribute_group emc1402_alarm_group = {
316	.attrs = emc1402_alarm_attrs,
317};
318
319static int emc1403_detect(struct i2c_client *client,
320			struct i2c_board_info *info)
321{
322	int id;
323	/* Check if thermal chip is SMSC and EMC1403 or EMC1423 */
324
325	id = i2c_smbus_read_byte_data(client, THERMAL_SMSC_ID_REG);
326	if (id != 0x5d)
327		return -ENODEV;
328
329	id = i2c_smbus_read_byte_data(client, THERMAL_PID_REG);
330	switch (id) {
331	case 0x20:
332		strscpy(info->type, "emc1402", I2C_NAME_SIZE);
333		break;
334	case 0x21:
335		strscpy(info->type, "emc1403", I2C_NAME_SIZE);
336		break;
337	case 0x22:
338		strscpy(info->type, "emc1422", I2C_NAME_SIZE);
339		break;
340	case 0x23:
341		strscpy(info->type, "emc1423", I2C_NAME_SIZE);
342		break;
343	case 0x25:
344		strscpy(info->type, "emc1404", I2C_NAME_SIZE);
345		break;
346	case 0x27:
347		strscpy(info->type, "emc1424", I2C_NAME_SIZE);
348		break;
349	case 0x60:
350		strscpy(info->type, "emc1442", I2C_NAME_SIZE);
351		break;
352	default:
353		return -ENODEV;
354	}
355
356	id = i2c_smbus_read_byte_data(client, THERMAL_REVISION_REG);
357	if (id < 0x01 || id > 0x04)
358		return -ENODEV;
359
360	return 0;
361}
362
363static bool emc1403_regmap_is_volatile(struct device *dev, unsigned int reg)
364{
365	switch (reg) {
366	case 0x00:	/* internal diode high byte */
367	case 0x01:	/* external diode 1 high byte */
368	case 0x02:	/* status */
369	case 0x10:	/* external diode 1 low byte */
370	case 0x1b:	/* external diode fault */
371	case 0x23:	/* external diode 2 high byte */
372	case 0x24:	/* external diode 2 low byte */
373	case 0x29:	/* internal diode low byte */
374	case 0x2a:	/* externl diode 3 high byte */
375	case 0x2b:	/* external diode 3 low byte */
376	case 0x35:	/* high limit status */
377	case 0x36:	/* low limit status */
378	case 0x37:	/* therm limit status */
379		return true;
380	default:
381		return false;
382	}
383}
384
385static const struct regmap_config emc1403_regmap_config = {
386	.reg_bits = 8,
387	.val_bits = 8,
388	.cache_type = REGCACHE_RBTREE,
389	.volatile_reg = emc1403_regmap_is_volatile,
390};
391
392static const struct i2c_device_id emc1403_idtable[];
393
394static int emc1403_probe(struct i2c_client *client)
395{
396	struct thermal_data *data;
397	struct device *hwmon_dev;
398	const struct i2c_device_id *id = i2c_match_id(emc1403_idtable, client);
399
400	data = devm_kzalloc(&client->dev, sizeof(struct thermal_data),
401			    GFP_KERNEL);
402	if (data == NULL)
403		return -ENOMEM;
404
405	data->regmap = devm_regmap_init_i2c(client, &emc1403_regmap_config);
406	if (IS_ERR(data->regmap))
407		return PTR_ERR(data->regmap);
408
409	mutex_init(&data->mutex);
410
411	switch (id->driver_data) {
412	case emc1404:
413		data->groups[2] = &emc1404_group;
414		fallthrough;
415	case emc1403:
416		data->groups[1] = &emc1403_group;
417		fallthrough;
418	case emc1402:
419		data->groups[0] = &emc1402_group;
420	}
421
422	if (id->driver_data == emc1402)
423		data->groups[1] = &emc1402_alarm_group;
424
425	hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
426							   client->name, data,
427							   data->groups);
428	if (IS_ERR(hwmon_dev))
429		return PTR_ERR(hwmon_dev);
430
431	dev_info(&client->dev, "%s Thermal chip found\n", id->name);
432	return 0;
433}
434
435static const unsigned short emc1403_address_list[] = {
436	0x18, 0x1c, 0x29, 0x3c, 0x4c, 0x4d, 0x5c, I2C_CLIENT_END
437};
438
439/* Last digit of chip name indicates number of channels */
440static const struct i2c_device_id emc1403_idtable[] = {
441	{ "emc1402", emc1402 },
442	{ "emc1403", emc1403 },
443	{ "emc1404", emc1404 },
444	{ "emc1412", emc1402 },
445	{ "emc1413", emc1403 },
446	{ "emc1414", emc1404 },
447	{ "emc1422", emc1402 },
448	{ "emc1423", emc1403 },
449	{ "emc1424", emc1404 },
450	{ "emc1442", emc1402 },
451	{ }
452};
453MODULE_DEVICE_TABLE(i2c, emc1403_idtable);
454
455static struct i2c_driver sensor_emc1403 = {
456	.class = I2C_CLASS_HWMON,
457	.driver = {
458		.name = "emc1403",
459	},
460	.detect = emc1403_detect,
461	.probe = emc1403_probe,
462	.id_table = emc1403_idtable,
463	.address_list = emc1403_address_list,
464};
465
466module_i2c_driver(sensor_emc1403);
467
468MODULE_AUTHOR("Kalhan Trisal <kalhan.trisal@intel.com");
469MODULE_DESCRIPTION("emc1403 Thermal Driver");
470MODULE_LICENSE("GPL v2");
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * emc1403.c - SMSC Thermal Driver
  4 *
  5 * Copyright (C) 2008 Intel Corp
  6 *
  7 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  8 *
  9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 10 */
 11
 12#include <linux/module.h>
 13#include <linux/init.h>
 14#include <linux/slab.h>
 15#include <linux/i2c.h>
 16#include <linux/hwmon.h>
 17#include <linux/hwmon-sysfs.h>
 18#include <linux/err.h>
 19#include <linux/sysfs.h>
 20#include <linux/mutex.h>
 21#include <linux/regmap.h>
 22
 23#define THERMAL_PID_REG		0xfd
 24#define THERMAL_SMSC_ID_REG	0xfe
 25#define THERMAL_REVISION_REG	0xff
 26
 27enum emc1403_chip { emc1402, emc1403, emc1404 };
 28
 29struct thermal_data {
 30	struct regmap *regmap;
 31	struct mutex mutex;
 32	const struct attribute_group *groups[4];
 33};
 34
 35static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
 36			 char *buf)
 37{
 38	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
 39	struct thermal_data *data = dev_get_drvdata(dev);
 40	unsigned int val;
 41	int retval;
 42
 43	retval = regmap_read(data->regmap, sda->index, &val);
 44	if (retval < 0)
 45		return retval;
 46	return sprintf(buf, "%d000\n", val);
 47}
 48
 49static ssize_t bit_show(struct device *dev, struct device_attribute *attr,
 50			char *buf)
 51{
 52	struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
 53	struct thermal_data *data = dev_get_drvdata(dev);
 54	unsigned int val;
 55	int retval;
 56
 57	retval = regmap_read(data->regmap, sda->nr, &val);
 58	if (retval < 0)
 59		return retval;
 60	return sprintf(buf, "%d\n", !!(val & sda->index));
 61}
 62
 63static ssize_t temp_store(struct device *dev, struct device_attribute *attr,
 64			  const char *buf, size_t count)
 65{
 66	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
 67	struct thermal_data *data = dev_get_drvdata(dev);
 68	unsigned long val;
 69	int retval;
 70
 71	if (kstrtoul(buf, 10, &val))
 72		return -EINVAL;
 73	retval = regmap_write(data->regmap, sda->index,
 74			      DIV_ROUND_CLOSEST(val, 1000));
 75	if (retval < 0)
 76		return retval;
 77	return count;
 78}
 79
 80static ssize_t bit_store(struct device *dev, struct device_attribute *attr,
 81			 const char *buf, size_t count)
 82{
 83	struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
 84	struct thermal_data *data = dev_get_drvdata(dev);
 85	unsigned long val;
 86	int retval;
 87
 88	if (kstrtoul(buf, 10, &val))
 89		return -EINVAL;
 90
 91	retval = regmap_update_bits(data->regmap, sda->nr, sda->index,
 92				    val ? sda->index : 0);
 93	if (retval < 0)
 94		return retval;
 95	return count;
 96}
 97
 98static ssize_t show_hyst_common(struct device *dev,
 99				struct device_attribute *attr, char *buf,
100				bool is_min)
101{
102	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
103	struct thermal_data *data = dev_get_drvdata(dev);
104	struct regmap *regmap = data->regmap;
105	unsigned int limit;
106	unsigned int hyst;
107	int retval;
108
109	retval = regmap_read(regmap, sda->index, &limit);
110	if (retval < 0)
111		return retval;
112
113	retval = regmap_read(regmap, 0x21, &hyst);
114	if (retval < 0)
115		return retval;
116
117	return sprintf(buf, "%d000\n", is_min ? limit + hyst : limit - hyst);
118}
119
120static ssize_t hyst_show(struct device *dev, struct device_attribute *attr,
121			 char *buf)
122{
123	return show_hyst_common(dev, attr, buf, false);
124}
125
126static ssize_t min_hyst_show(struct device *dev,
127			     struct device_attribute *attr, char *buf)
128{
129	return show_hyst_common(dev, attr, buf, true);
130}
131
132static ssize_t hyst_store(struct device *dev, struct device_attribute *attr,
133			  const char *buf, size_t count)
134{
135	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
136	struct thermal_data *data = dev_get_drvdata(dev);
137	struct regmap *regmap = data->regmap;
138	unsigned int limit;
139	int retval;
140	int hyst;
141	unsigned long val;
142
143	if (kstrtoul(buf, 10, &val))
144		return -EINVAL;
145
146	mutex_lock(&data->mutex);
147	retval = regmap_read(regmap, sda->index, &limit);
148	if (retval < 0)
149		goto fail;
150
151	hyst = limit * 1000 - val;
152	hyst = clamp_val(DIV_ROUND_CLOSEST(hyst, 1000), 0, 255);
153	retval = regmap_write(regmap, 0x21, hyst);
154	if (retval == 0)
155		retval = count;
156fail:
157	mutex_unlock(&data->mutex);
158	return retval;
159}
160
161/*
162 *	Sensors. We pass the actual i2c register to the methods.
163 */
164
165static SENSOR_DEVICE_ATTR_RW(temp1_min, temp, 0x06);
166static SENSOR_DEVICE_ATTR_RW(temp1_max, temp, 0x05);
167static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp, 0x20);
168static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0x00);
169static SENSOR_DEVICE_ATTR_2_RO(temp1_min_alarm, bit, 0x36, 0x01);
170static SENSOR_DEVICE_ATTR_2_RO(temp1_max_alarm, bit, 0x35, 0x01);
171static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, bit, 0x37, 0x01);
172static SENSOR_DEVICE_ATTR_RO(temp1_min_hyst, min_hyst, 0x06);
173static SENSOR_DEVICE_ATTR_RO(temp1_max_hyst, hyst, 0x05);
174static SENSOR_DEVICE_ATTR_RW(temp1_crit_hyst, hyst, 0x20);
175
176static SENSOR_DEVICE_ATTR_RW(temp2_min, temp, 0x08);
177static SENSOR_DEVICE_ATTR_RW(temp2_max, temp, 0x07);
178static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp, 0x19);
179static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 0x01);
180static SENSOR_DEVICE_ATTR_2_RO(temp2_fault, bit, 0x1b, 0x02);
181static SENSOR_DEVICE_ATTR_2_RO(temp2_min_alarm, bit, 0x36, 0x02);
182static SENSOR_DEVICE_ATTR_2_RO(temp2_max_alarm, bit, 0x35, 0x02);
183static SENSOR_DEVICE_ATTR_2_RO(temp2_crit_alarm, bit, 0x37, 0x02);
184static SENSOR_DEVICE_ATTR_RO(temp2_min_hyst, min_hyst, 0x08);
185static SENSOR_DEVICE_ATTR_RO(temp2_max_hyst, hyst, 0x07);
186static SENSOR_DEVICE_ATTR_RO(temp2_crit_hyst, hyst, 0x19);
187
188static SENSOR_DEVICE_ATTR_RW(temp3_min, temp, 0x16);
189static SENSOR_DEVICE_ATTR_RW(temp3_max, temp, 0x15);
190static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp, 0x1A);
191static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 0x23);
192static SENSOR_DEVICE_ATTR_2_RO(temp3_fault, bit, 0x1b, 0x04);
193static SENSOR_DEVICE_ATTR_2_RO(temp3_min_alarm, bit, 0x36, 0x04);
194static SENSOR_DEVICE_ATTR_2_RO(temp3_max_alarm, bit, 0x35, 0x04);
195static SENSOR_DEVICE_ATTR_2_RO(temp3_crit_alarm, bit, 0x37, 0x04);
196static SENSOR_DEVICE_ATTR_RO(temp3_min_hyst, min_hyst, 0x16);
197static SENSOR_DEVICE_ATTR_RO(temp3_max_hyst, hyst, 0x15);
198static SENSOR_DEVICE_ATTR_RO(temp3_crit_hyst, hyst, 0x1A);
199
200static SENSOR_DEVICE_ATTR_RW(temp4_min, temp, 0x2D);
201static SENSOR_DEVICE_ATTR_RW(temp4_max, temp, 0x2C);
202static SENSOR_DEVICE_ATTR_RW(temp4_crit, temp, 0x30);
203static SENSOR_DEVICE_ATTR_RO(temp4_input, temp, 0x2A);
204static SENSOR_DEVICE_ATTR_2_RO(temp4_fault, bit, 0x1b, 0x08);
205static SENSOR_DEVICE_ATTR_2_RO(temp4_min_alarm, bit, 0x36, 0x08);
206static SENSOR_DEVICE_ATTR_2_RO(temp4_max_alarm, bit, 0x35, 0x08);
207static SENSOR_DEVICE_ATTR_2_RO(temp4_crit_alarm, bit, 0x37, 0x08);
208static SENSOR_DEVICE_ATTR_RO(temp4_min_hyst, min_hyst, 0x2D);
209static SENSOR_DEVICE_ATTR_RO(temp4_max_hyst, hyst, 0x2C);
210static SENSOR_DEVICE_ATTR_RO(temp4_crit_hyst, hyst, 0x30);
211
212static SENSOR_DEVICE_ATTR_2_RW(power_state, bit, 0x03, 0x40);
213
214static struct attribute *emc1402_attrs[] = {
215	&sensor_dev_attr_temp1_min.dev_attr.attr,
216	&sensor_dev_attr_temp1_max.dev_attr.attr,
217	&sensor_dev_attr_temp1_crit.dev_attr.attr,
218	&sensor_dev_attr_temp1_input.dev_attr.attr,
219	&sensor_dev_attr_temp1_min_hyst.dev_attr.attr,
220	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
221	&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
222
223	&sensor_dev_attr_temp2_min.dev_attr.attr,
224	&sensor_dev_attr_temp2_max.dev_attr.attr,
225	&sensor_dev_attr_temp2_crit.dev_attr.attr,
226	&sensor_dev_attr_temp2_input.dev_attr.attr,
227	&sensor_dev_attr_temp2_min_hyst.dev_attr.attr,
228	&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
229	&sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
230
231	&sensor_dev_attr_power_state.dev_attr.attr,
232	NULL
233};
234
235static const struct attribute_group emc1402_group = {
236		.attrs = emc1402_attrs,
237};
238
239static struct attribute *emc1403_attrs[] = {
240	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
241	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
242	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
243
244	&sensor_dev_attr_temp2_fault.dev_attr.attr,
245	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
246	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
247	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
248
249	&sensor_dev_attr_temp3_min.dev_attr.attr,
250	&sensor_dev_attr_temp3_max.dev_attr.attr,
251	&sensor_dev_attr_temp3_crit.dev_attr.attr,
252	&sensor_dev_attr_temp3_input.dev_attr.attr,
253	&sensor_dev_attr_temp3_fault.dev_attr.attr,
254	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
255	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
256	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
257	&sensor_dev_attr_temp3_min_hyst.dev_attr.attr,
258	&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
259	&sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
260	NULL
261};
262
263static const struct attribute_group emc1403_group = {
264	.attrs = emc1403_attrs,
265};
266
267static struct attribute *emc1404_attrs[] = {
268	&sensor_dev_attr_temp4_min.dev_attr.attr,
269	&sensor_dev_attr_temp4_max.dev_attr.attr,
270	&sensor_dev_attr_temp4_crit.dev_attr.attr,
271	&sensor_dev_attr_temp4_input.dev_attr.attr,
272	&sensor_dev_attr_temp4_fault.dev_attr.attr,
273	&sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
274	&sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
275	&sensor_dev_attr_temp4_crit_alarm.dev_attr.attr,
276	&sensor_dev_attr_temp4_min_hyst.dev_attr.attr,
277	&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
278	&sensor_dev_attr_temp4_crit_hyst.dev_attr.attr,
279	NULL
280};
281
282static const struct attribute_group emc1404_group = {
283	.attrs = emc1404_attrs,
284};
285
286/*
287 * EMC14x2 uses a different register and different bits to report alarm and
288 * fault status. For simplicity, provide a separate attribute group for this
289 * chip series.
290 * Since we can not re-use the same attribute names, create a separate attribute
291 * array.
292 */
293static struct sensor_device_attribute_2 emc1402_alarms[] = {
294	SENSOR_ATTR_2_RO(temp1_min_alarm, bit, 0x02, 0x20),
295	SENSOR_ATTR_2_RO(temp1_max_alarm, bit, 0x02, 0x40),
296	SENSOR_ATTR_2_RO(temp1_crit_alarm, bit, 0x02, 0x01),
297
298	SENSOR_ATTR_2_RO(temp2_fault, bit, 0x02, 0x04),
299	SENSOR_ATTR_2_RO(temp2_min_alarm, bit, 0x02, 0x08),
300	SENSOR_ATTR_2_RO(temp2_max_alarm, bit, 0x02, 0x10),
301	SENSOR_ATTR_2_RO(temp2_crit_alarm, bit, 0x02, 0x02),
302};
303
304static struct attribute *emc1402_alarm_attrs[] = {
305	&emc1402_alarms[0].dev_attr.attr,
306	&emc1402_alarms[1].dev_attr.attr,
307	&emc1402_alarms[2].dev_attr.attr,
308	&emc1402_alarms[3].dev_attr.attr,
309	&emc1402_alarms[4].dev_attr.attr,
310	&emc1402_alarms[5].dev_attr.attr,
311	&emc1402_alarms[6].dev_attr.attr,
312	NULL,
313};
314
315static const struct attribute_group emc1402_alarm_group = {
316	.attrs = emc1402_alarm_attrs,
317};
318
319static int emc1403_detect(struct i2c_client *client,
320			struct i2c_board_info *info)
321{
322	int id;
323	/* Check if thermal chip is SMSC and EMC1403 or EMC1423 */
324
325	id = i2c_smbus_read_byte_data(client, THERMAL_SMSC_ID_REG);
326	if (id != 0x5d)
327		return -ENODEV;
328
329	id = i2c_smbus_read_byte_data(client, THERMAL_PID_REG);
330	switch (id) {
331	case 0x20:
332		strscpy(info->type, "emc1402", I2C_NAME_SIZE);
333		break;
334	case 0x21:
335		strscpy(info->type, "emc1403", I2C_NAME_SIZE);
336		break;
337	case 0x22:
338		strscpy(info->type, "emc1422", I2C_NAME_SIZE);
339		break;
340	case 0x23:
341		strscpy(info->type, "emc1423", I2C_NAME_SIZE);
342		break;
343	case 0x25:
344		strscpy(info->type, "emc1404", I2C_NAME_SIZE);
345		break;
346	case 0x27:
347		strscpy(info->type, "emc1424", I2C_NAME_SIZE);
348		break;
 
 
 
349	default:
350		return -ENODEV;
351	}
352
353	id = i2c_smbus_read_byte_data(client, THERMAL_REVISION_REG);
354	if (id < 0x01 || id > 0x04)
355		return -ENODEV;
356
357	return 0;
358}
359
360static bool emc1403_regmap_is_volatile(struct device *dev, unsigned int reg)
361{
362	switch (reg) {
363	case 0x00:	/* internal diode high byte */
364	case 0x01:	/* external diode 1 high byte */
365	case 0x02:	/* status */
366	case 0x10:	/* external diode 1 low byte */
367	case 0x1b:	/* external diode fault */
368	case 0x23:	/* external diode 2 high byte */
369	case 0x24:	/* external diode 2 low byte */
370	case 0x29:	/* internal diode low byte */
371	case 0x2a:	/* externl diode 3 high byte */
372	case 0x2b:	/* external diode 3 low byte */
373	case 0x35:	/* high limit status */
374	case 0x36:	/* low limit status */
375	case 0x37:	/* therm limit status */
376		return true;
377	default:
378		return false;
379	}
380}
381
382static const struct regmap_config emc1403_regmap_config = {
383	.reg_bits = 8,
384	.val_bits = 8,
385	.cache_type = REGCACHE_RBTREE,
386	.volatile_reg = emc1403_regmap_is_volatile,
387};
388
389static const struct i2c_device_id emc1403_idtable[];
390
391static int emc1403_probe(struct i2c_client *client)
392{
393	struct thermal_data *data;
394	struct device *hwmon_dev;
395	const struct i2c_device_id *id = i2c_match_id(emc1403_idtable, client);
396
397	data = devm_kzalloc(&client->dev, sizeof(struct thermal_data),
398			    GFP_KERNEL);
399	if (data == NULL)
400		return -ENOMEM;
401
402	data->regmap = devm_regmap_init_i2c(client, &emc1403_regmap_config);
403	if (IS_ERR(data->regmap))
404		return PTR_ERR(data->regmap);
405
406	mutex_init(&data->mutex);
407
408	switch (id->driver_data) {
409	case emc1404:
410		data->groups[2] = &emc1404_group;
411		fallthrough;
412	case emc1403:
413		data->groups[1] = &emc1403_group;
414		fallthrough;
415	case emc1402:
416		data->groups[0] = &emc1402_group;
417	}
418
419	if (id->driver_data == emc1402)
420		data->groups[1] = &emc1402_alarm_group;
421
422	hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
423							   client->name, data,
424							   data->groups);
425	if (IS_ERR(hwmon_dev))
426		return PTR_ERR(hwmon_dev);
427
428	dev_info(&client->dev, "%s Thermal chip found\n", id->name);
429	return 0;
430}
431
432static const unsigned short emc1403_address_list[] = {
433	0x18, 0x1c, 0x29, 0x4c, 0x4d, 0x5c, I2C_CLIENT_END
434};
435
436/* Last digit of chip name indicates number of channels */
437static const struct i2c_device_id emc1403_idtable[] = {
438	{ "emc1402", emc1402 },
439	{ "emc1403", emc1403 },
440	{ "emc1404", emc1404 },
441	{ "emc1412", emc1402 },
442	{ "emc1413", emc1403 },
443	{ "emc1414", emc1404 },
444	{ "emc1422", emc1402 },
445	{ "emc1423", emc1403 },
446	{ "emc1424", emc1404 },
 
447	{ }
448};
449MODULE_DEVICE_TABLE(i2c, emc1403_idtable);
450
451static struct i2c_driver sensor_emc1403 = {
452	.class = I2C_CLASS_HWMON,
453	.driver = {
454		.name = "emc1403",
455	},
456	.detect = emc1403_detect,
457	.probe_new = emc1403_probe,
458	.id_table = emc1403_idtable,
459	.address_list = emc1403_address_list,
460};
461
462module_i2c_driver(sensor_emc1403);
463
464MODULE_AUTHOR("Kalhan Trisal <kalhan.trisal@intel.com");
465MODULE_DESCRIPTION("emc1403 Thermal Driver");
466MODULE_LICENSE("GPL v2");