Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2012, Microsoft Corporation.
4 *
5 * Author:
6 * K. Y. Srinivasan <kys@microsoft.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/cleanup.h>
12#include <linux/kernel.h>
13#include <linux/jiffies.h>
14#include <linux/mman.h>
15#include <linux/debugfs.h>
16#include <linux/delay.h>
17#include <linux/init.h>
18#include <linux/module.h>
19#include <linux/slab.h>
20#include <linux/kthread.h>
21#include <linux/completion.h>
22#include <linux/count_zeros.h>
23#include <linux/memory_hotplug.h>
24#include <linux/memory.h>
25#include <linux/notifier.h>
26#include <linux/percpu_counter.h>
27#include <linux/page_reporting.h>
28
29#include <linux/hyperv.h>
30#include <asm/hyperv-tlfs.h>
31
32#include <asm/mshyperv.h>
33
34#define CREATE_TRACE_POINTS
35#include "hv_trace_balloon.h"
36
37/*
38 * We begin with definitions supporting the Dynamic Memory protocol
39 * with the host.
40 *
41 * Begin protocol definitions.
42 */
43
44
45
46/*
47 * Protocol versions. The low word is the minor version, the high word the major
48 * version.
49 *
50 * History:
51 * Initial version 1.0
52 * Changed to 0.1 on 2009/03/25
53 * Changes to 0.2 on 2009/05/14
54 * Changes to 0.3 on 2009/12/03
55 * Changed to 1.0 on 2011/04/05
56 */
57
58#define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59#define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60#define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
61
62enum {
63 DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64 DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
65 DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
66
67 DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
68 DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
69 DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
70
71 DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
72};
73
74
75
76/*
77 * Message Types
78 */
79
80enum dm_message_type {
81 /*
82 * Version 0.3
83 */
84 DM_ERROR = 0,
85 DM_VERSION_REQUEST = 1,
86 DM_VERSION_RESPONSE = 2,
87 DM_CAPABILITIES_REPORT = 3,
88 DM_CAPABILITIES_RESPONSE = 4,
89 DM_STATUS_REPORT = 5,
90 DM_BALLOON_REQUEST = 6,
91 DM_BALLOON_RESPONSE = 7,
92 DM_UNBALLOON_REQUEST = 8,
93 DM_UNBALLOON_RESPONSE = 9,
94 DM_MEM_HOT_ADD_REQUEST = 10,
95 DM_MEM_HOT_ADD_RESPONSE = 11,
96 DM_VERSION_03_MAX = 11,
97 /*
98 * Version 1.0.
99 */
100 DM_INFO_MESSAGE = 12,
101 DM_VERSION_1_MAX = 12
102};
103
104
105/*
106 * Structures defining the dynamic memory management
107 * protocol.
108 */
109
110union dm_version {
111 struct {
112 __u16 minor_version;
113 __u16 major_version;
114 };
115 __u32 version;
116} __packed;
117
118
119union dm_caps {
120 struct {
121 __u64 balloon:1;
122 __u64 hot_add:1;
123 /*
124 * To support guests that may have alignment
125 * limitations on hot-add, the guest can specify
126 * its alignment requirements; a value of n
127 * represents an alignment of 2^n in mega bytes.
128 */
129 __u64 hot_add_alignment:4;
130 __u64 reservedz:58;
131 } cap_bits;
132 __u64 caps;
133} __packed;
134
135union dm_mem_page_range {
136 struct {
137 /*
138 * The PFN number of the first page in the range.
139 * 40 bits is the architectural limit of a PFN
140 * number for AMD64.
141 */
142 __u64 start_page:40;
143 /*
144 * The number of pages in the range.
145 */
146 __u64 page_cnt:24;
147 } finfo;
148 __u64 page_range;
149} __packed;
150
151
152
153/*
154 * The header for all dynamic memory messages:
155 *
156 * type: Type of the message.
157 * size: Size of the message in bytes; including the header.
158 * trans_id: The guest is responsible for manufacturing this ID.
159 */
160
161struct dm_header {
162 __u16 type;
163 __u16 size;
164 __u32 trans_id;
165} __packed;
166
167/*
168 * A generic message format for dynamic memory.
169 * Specific message formats are defined later in the file.
170 */
171
172struct dm_message {
173 struct dm_header hdr;
174 __u8 data[]; /* enclosed message */
175} __packed;
176
177
178/*
179 * Specific message types supporting the dynamic memory protocol.
180 */
181
182/*
183 * Version negotiation message. Sent from the guest to the host.
184 * The guest is free to try different versions until the host
185 * accepts the version.
186 *
187 * dm_version: The protocol version requested.
188 * is_last_attempt: If TRUE, this is the last version guest will request.
189 * reservedz: Reserved field, set to zero.
190 */
191
192struct dm_version_request {
193 struct dm_header hdr;
194 union dm_version version;
195 __u32 is_last_attempt:1;
196 __u32 reservedz:31;
197} __packed;
198
199/*
200 * Version response message; Host to Guest and indicates
201 * if the host has accepted the version sent by the guest.
202 *
203 * is_accepted: If TRUE, host has accepted the version and the guest
204 * should proceed to the next stage of the protocol. FALSE indicates that
205 * guest should re-try with a different version.
206 *
207 * reservedz: Reserved field, set to zero.
208 */
209
210struct dm_version_response {
211 struct dm_header hdr;
212 __u64 is_accepted:1;
213 __u64 reservedz:63;
214} __packed;
215
216/*
217 * Message reporting capabilities. This is sent from the guest to the
218 * host.
219 */
220
221struct dm_capabilities {
222 struct dm_header hdr;
223 union dm_caps caps;
224 __u64 min_page_cnt;
225 __u64 max_page_number;
226} __packed;
227
228/*
229 * Response to the capabilities message. This is sent from the host to the
230 * guest. This message notifies if the host has accepted the guest's
231 * capabilities. If the host has not accepted, the guest must shutdown
232 * the service.
233 *
234 * is_accepted: Indicates if the host has accepted guest's capabilities.
235 * reservedz: Must be 0.
236 */
237
238struct dm_capabilities_resp_msg {
239 struct dm_header hdr;
240 __u64 is_accepted:1;
241 __u64 reservedz:63;
242} __packed;
243
244/*
245 * This message is used to report memory pressure from the guest.
246 * This message is not part of any transaction and there is no
247 * response to this message.
248 *
249 * num_avail: Available memory in pages.
250 * num_committed: Committed memory in pages.
251 * page_file_size: The accumulated size of all page files
252 * in the system in pages.
253 * zero_free: The number of zero and free pages.
254 * page_file_writes: The writes to the page file in pages.
255 * io_diff: An indicator of file cache efficiency or page file activity,
256 * calculated as File Cache Page Fault Count - Page Read Count.
257 * This value is in pages.
258 *
259 * Some of these metrics are Windows specific and fortunately
260 * the algorithm on the host side that computes the guest memory
261 * pressure only uses num_committed value.
262 */
263
264struct dm_status {
265 struct dm_header hdr;
266 __u64 num_avail;
267 __u64 num_committed;
268 __u64 page_file_size;
269 __u64 zero_free;
270 __u32 page_file_writes;
271 __u32 io_diff;
272} __packed;
273
274
275/*
276 * Message to ask the guest to allocate memory - balloon up message.
277 * This message is sent from the host to the guest. The guest may not be
278 * able to allocate as much memory as requested.
279 *
280 * num_pages: number of pages to allocate.
281 */
282
283struct dm_balloon {
284 struct dm_header hdr;
285 __u32 num_pages;
286 __u32 reservedz;
287} __packed;
288
289
290/*
291 * Balloon response message; this message is sent from the guest
292 * to the host in response to the balloon message.
293 *
294 * reservedz: Reserved; must be set to zero.
295 * more_pages: If FALSE, this is the last message of the transaction.
296 * if TRUE there will atleast one more message from the guest.
297 *
298 * range_count: The number of ranges in the range array.
299 *
300 * range_array: An array of page ranges returned to the host.
301 *
302 */
303
304struct dm_balloon_response {
305 struct dm_header hdr;
306 __u32 reservedz;
307 __u32 more_pages:1;
308 __u32 range_count:31;
309 union dm_mem_page_range range_array[];
310} __packed;
311
312/*
313 * Un-balloon message; this message is sent from the host
314 * to the guest to give guest more memory.
315 *
316 * more_pages: If FALSE, this is the last message of the transaction.
317 * if TRUE there will atleast one more message from the guest.
318 *
319 * reservedz: Reserved; must be set to zero.
320 *
321 * range_count: The number of ranges in the range array.
322 *
323 * range_array: An array of page ranges returned to the host.
324 *
325 */
326
327struct dm_unballoon_request {
328 struct dm_header hdr;
329 __u32 more_pages:1;
330 __u32 reservedz:31;
331 __u32 range_count;
332 union dm_mem_page_range range_array[];
333} __packed;
334
335/*
336 * Un-balloon response message; this message is sent from the guest
337 * to the host in response to an unballoon request.
338 *
339 */
340
341struct dm_unballoon_response {
342 struct dm_header hdr;
343} __packed;
344
345
346/*
347 * Hot add request message. Message sent from the host to the guest.
348 *
349 * mem_range: Memory range to hot add.
350 *
351 */
352
353struct dm_hot_add {
354 struct dm_header hdr;
355 union dm_mem_page_range range;
356} __packed;
357
358/*
359 * Hot add response message.
360 * This message is sent by the guest to report the status of a hot add request.
361 * If page_count is less than the requested page count, then the host should
362 * assume all further hot add requests will fail, since this indicates that
363 * the guest has hit an upper physical memory barrier.
364 *
365 * Hot adds may also fail due to low resources; in this case, the guest must
366 * not complete this message until the hot add can succeed, and the host must
367 * not send a new hot add request until the response is sent.
368 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
369 * times it fails the request.
370 *
371 *
372 * page_count: number of pages that were successfully hot added.
373 *
374 * result: result of the operation 1: success, 0: failure.
375 *
376 */
377
378struct dm_hot_add_response {
379 struct dm_header hdr;
380 __u32 page_count;
381 __u32 result;
382} __packed;
383
384/*
385 * Types of information sent from host to the guest.
386 */
387
388enum dm_info_type {
389 INFO_TYPE_MAX_PAGE_CNT = 0,
390 MAX_INFO_TYPE
391};
392
393
394/*
395 * Header for the information message.
396 */
397
398struct dm_info_header {
399 enum dm_info_type type;
400 __u32 data_size;
401} __packed;
402
403/*
404 * This message is sent from the host to the guest to pass
405 * some relevant information (win8 addition).
406 *
407 * reserved: no used.
408 * info_size: size of the information blob.
409 * info: information blob.
410 */
411
412struct dm_info_msg {
413 struct dm_header hdr;
414 __u32 reserved;
415 __u32 info_size;
416 __u8 info[];
417};
418
419/*
420 * End protocol definitions.
421 */
422
423/*
424 * State to manage hot adding memory into the guest.
425 * The range start_pfn : end_pfn specifies the range
426 * that the host has asked us to hot add. The range
427 * start_pfn : ha_end_pfn specifies the range that we have
428 * currently hot added. We hot add in multiples of 128M
429 * chunks; it is possible that we may not be able to bring
430 * online all the pages in the region. The range
431 * covered_start_pfn:covered_end_pfn defines the pages that can
432 * be brough online.
433 */
434
435struct hv_hotadd_state {
436 struct list_head list;
437 unsigned long start_pfn;
438 unsigned long covered_start_pfn;
439 unsigned long covered_end_pfn;
440 unsigned long ha_end_pfn;
441 unsigned long end_pfn;
442 /*
443 * A list of gaps.
444 */
445 struct list_head gap_list;
446};
447
448struct hv_hotadd_gap {
449 struct list_head list;
450 unsigned long start_pfn;
451 unsigned long end_pfn;
452};
453
454struct balloon_state {
455 __u32 num_pages;
456 struct work_struct wrk;
457};
458
459struct hot_add_wrk {
460 union dm_mem_page_range ha_page_range;
461 union dm_mem_page_range ha_region_range;
462 struct work_struct wrk;
463};
464
465static bool allow_hibernation;
466static bool hot_add = true;
467static bool do_hot_add;
468/*
469 * Delay reporting memory pressure by
470 * the specified number of seconds.
471 */
472static uint pressure_report_delay = 45;
473extern unsigned int page_reporting_order;
474#define HV_MAX_FAILURES 2
475
476/*
477 * The last time we posted a pressure report to host.
478 */
479static unsigned long last_post_time;
480
481static int hv_hypercall_multi_failure;
482
483module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
484MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
485
486module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
487MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
488static atomic_t trans_id = ATOMIC_INIT(0);
489
490static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024);
491
492/*
493 * Driver specific state.
494 */
495
496enum hv_dm_state {
497 DM_INITIALIZING = 0,
498 DM_INITIALIZED,
499 DM_BALLOON_UP,
500 DM_BALLOON_DOWN,
501 DM_HOT_ADD,
502 DM_INIT_ERROR
503};
504
505
506static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
507static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
508#define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
509#define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
510
511struct hv_dynmem_device {
512 struct hv_device *dev;
513 enum hv_dm_state state;
514 struct completion host_event;
515 struct completion config_event;
516
517 /*
518 * Number of pages we have currently ballooned out.
519 */
520 unsigned int num_pages_ballooned;
521 unsigned int num_pages_onlined;
522 unsigned int num_pages_added;
523
524 /*
525 * State to manage the ballooning (up) operation.
526 */
527 struct balloon_state balloon_wrk;
528
529 /*
530 * State to execute the "hot-add" operation.
531 */
532 struct hot_add_wrk ha_wrk;
533
534 /*
535 * This state tracks if the host has specified a hot-add
536 * region.
537 */
538 bool host_specified_ha_region;
539
540 /*
541 * State to synchronize hot-add.
542 */
543 struct completion ol_waitevent;
544 /*
545 * This thread handles hot-add
546 * requests from the host as well as notifying
547 * the host with regards to memory pressure in
548 * the guest.
549 */
550 struct task_struct *thread;
551
552 /*
553 * Protects ha_region_list, num_pages_onlined counter and individual
554 * regions from ha_region_list.
555 */
556 spinlock_t ha_lock;
557
558 /*
559 * A list of hot-add regions.
560 */
561 struct list_head ha_region_list;
562
563 /*
564 * We start with the highest version we can support
565 * and downgrade based on the host; we save here the
566 * next version to try.
567 */
568 __u32 next_version;
569
570 /*
571 * The negotiated version agreed by host.
572 */
573 __u32 version;
574
575 struct page_reporting_dev_info pr_dev_info;
576
577 /*
578 * Maximum number of pages that can be hot_add-ed
579 */
580 __u64 max_dynamic_page_count;
581};
582
583static struct hv_dynmem_device dm_device;
584
585static void post_status(struct hv_dynmem_device *dm);
586
587static void enable_page_reporting(void);
588
589static void disable_page_reporting(void);
590
591#ifdef CONFIG_MEMORY_HOTPLUG
592static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
593 unsigned long pfn)
594{
595 struct hv_hotadd_gap *gap;
596
597 /* The page is not backed. */
598 if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
599 return false;
600
601 /* Check for gaps. */
602 list_for_each_entry(gap, &has->gap_list, list) {
603 if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
604 return false;
605 }
606
607 return true;
608}
609
610static unsigned long hv_page_offline_check(unsigned long start_pfn,
611 unsigned long nr_pages)
612{
613 unsigned long pfn = start_pfn, count = 0;
614 struct hv_hotadd_state *has;
615 bool found;
616
617 while (pfn < start_pfn + nr_pages) {
618 /*
619 * Search for HAS which covers the pfn and when we find one
620 * count how many consequitive PFNs are covered.
621 */
622 found = false;
623 list_for_each_entry(has, &dm_device.ha_region_list, list) {
624 while ((pfn >= has->start_pfn) &&
625 (pfn < has->end_pfn) &&
626 (pfn < start_pfn + nr_pages)) {
627 found = true;
628 if (has_pfn_is_backed(has, pfn))
629 count++;
630 pfn++;
631 }
632 }
633
634 /*
635 * This PFN is not in any HAS (e.g. we're offlining a region
636 * which was present at boot), no need to account for it. Go
637 * to the next one.
638 */
639 if (!found)
640 pfn++;
641 }
642
643 return count;
644}
645
646static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
647 void *v)
648{
649 struct memory_notify *mem = (struct memory_notify *)v;
650 unsigned long pfn_count;
651
652 switch (val) {
653 case MEM_ONLINE:
654 case MEM_CANCEL_ONLINE:
655 complete(&dm_device.ol_waitevent);
656 break;
657
658 case MEM_OFFLINE:
659 scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
660 pfn_count = hv_page_offline_check(mem->start_pfn,
661 mem->nr_pages);
662 if (pfn_count <= dm_device.num_pages_onlined) {
663 dm_device.num_pages_onlined -= pfn_count;
664 } else {
665 /*
666 * We're offlining more pages than we
667 * managed to online. This is
668 * unexpected. In any case don't let
669 * num_pages_onlined wrap around zero.
670 */
671 WARN_ON_ONCE(1);
672 dm_device.num_pages_onlined = 0;
673 }
674 }
675 break;
676 case MEM_GOING_ONLINE:
677 case MEM_GOING_OFFLINE:
678 case MEM_CANCEL_OFFLINE:
679 break;
680 }
681 return NOTIFY_OK;
682}
683
684static struct notifier_block hv_memory_nb = {
685 .notifier_call = hv_memory_notifier,
686 .priority = 0
687};
688
689/* Check if the particular page is backed and can be onlined and online it. */
690static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
691{
692 if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
693 if (!PageOffline(pg))
694 __SetPageOffline(pg);
695 return;
696 }
697 if (PageOffline(pg))
698 __ClearPageOffline(pg);
699
700 /* This frame is currently backed; online the page. */
701 generic_online_page(pg, 0);
702
703 lockdep_assert_held(&dm_device.ha_lock);
704 dm_device.num_pages_onlined++;
705}
706
707static void hv_bring_pgs_online(struct hv_hotadd_state *has,
708 unsigned long start_pfn, unsigned long size)
709{
710 int i;
711
712 pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
713 for (i = 0; i < size; i++)
714 hv_page_online_one(has, pfn_to_page(start_pfn + i));
715}
716
717static void hv_mem_hot_add(unsigned long start, unsigned long size,
718 unsigned long pfn_count,
719 struct hv_hotadd_state *has)
720{
721 int ret = 0;
722 int i, nid;
723 unsigned long start_pfn;
724 unsigned long processed_pfn;
725 unsigned long total_pfn = pfn_count;
726
727 for (i = 0; i < (size/HA_CHUNK); i++) {
728 start_pfn = start + (i * HA_CHUNK);
729
730 scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
731 has->ha_end_pfn += HA_CHUNK;
732
733 if (total_pfn > HA_CHUNK) {
734 processed_pfn = HA_CHUNK;
735 total_pfn -= HA_CHUNK;
736 } else {
737 processed_pfn = total_pfn;
738 total_pfn = 0;
739 }
740
741 has->covered_end_pfn += processed_pfn;
742 }
743
744 reinit_completion(&dm_device.ol_waitevent);
745
746 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
747 ret = add_memory(nid, PFN_PHYS((start_pfn)),
748 (HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE);
749
750 if (ret) {
751 pr_err("hot_add memory failed error is %d\n", ret);
752 if (ret == -EEXIST) {
753 /*
754 * This error indicates that the error
755 * is not a transient failure. This is the
756 * case where the guest's physical address map
757 * precludes hot adding memory. Stop all further
758 * memory hot-add.
759 */
760 do_hot_add = false;
761 }
762 scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
763 has->ha_end_pfn -= HA_CHUNK;
764 has->covered_end_pfn -= processed_pfn;
765 }
766 break;
767 }
768
769 /*
770 * Wait for memory to get onlined. If the kernel onlined the
771 * memory when adding it, this will return directly. Otherwise,
772 * it will wait for user space to online the memory. This helps
773 * to avoid adding memory faster than it is getting onlined. As
774 * adding succeeded, it is ok to proceed even if the memory was
775 * not onlined in time.
776 */
777 wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
778 post_status(&dm_device);
779 }
780}
781
782static void hv_online_page(struct page *pg, unsigned int order)
783{
784 struct hv_hotadd_state *has;
785 unsigned long pfn = page_to_pfn(pg);
786
787 guard(spinlock_irqsave)(&dm_device.ha_lock);
788 list_for_each_entry(has, &dm_device.ha_region_list, list) {
789 /* The page belongs to a different HAS. */
790 if ((pfn < has->start_pfn) ||
791 (pfn + (1UL << order) > has->end_pfn))
792 continue;
793
794 hv_bring_pgs_online(has, pfn, 1UL << order);
795 break;
796 }
797}
798
799static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
800{
801 struct hv_hotadd_state *has;
802 struct hv_hotadd_gap *gap;
803 unsigned long residual, new_inc;
804 int ret = 0;
805
806 guard(spinlock_irqsave)(&dm_device.ha_lock);
807 list_for_each_entry(has, &dm_device.ha_region_list, list) {
808 /*
809 * If the pfn range we are dealing with is not in the current
810 * "hot add block", move on.
811 */
812 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
813 continue;
814
815 /*
816 * If the current start pfn is not where the covered_end
817 * is, create a gap and update covered_end_pfn.
818 */
819 if (has->covered_end_pfn != start_pfn) {
820 gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
821 if (!gap) {
822 ret = -ENOMEM;
823 break;
824 }
825
826 INIT_LIST_HEAD(&gap->list);
827 gap->start_pfn = has->covered_end_pfn;
828 gap->end_pfn = start_pfn;
829 list_add_tail(&gap->list, &has->gap_list);
830
831 has->covered_end_pfn = start_pfn;
832 }
833
834 /*
835 * If the current hot add-request extends beyond
836 * our current limit; extend it.
837 */
838 if ((start_pfn + pfn_cnt) > has->end_pfn) {
839 residual = (start_pfn + pfn_cnt - has->end_pfn);
840 /*
841 * Extend the region by multiples of HA_CHUNK.
842 */
843 new_inc = (residual / HA_CHUNK) * HA_CHUNK;
844 if (residual % HA_CHUNK)
845 new_inc += HA_CHUNK;
846
847 has->end_pfn += new_inc;
848 }
849
850 ret = 1;
851 break;
852 }
853
854 return ret;
855}
856
857static unsigned long handle_pg_range(unsigned long pg_start,
858 unsigned long pg_count)
859{
860 unsigned long start_pfn = pg_start;
861 unsigned long pfn_cnt = pg_count;
862 unsigned long size;
863 struct hv_hotadd_state *has;
864 unsigned long pgs_ol = 0;
865 unsigned long old_covered_state;
866 unsigned long res = 0, flags;
867
868 pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
869 pg_start);
870
871 spin_lock_irqsave(&dm_device.ha_lock, flags);
872 list_for_each_entry(has, &dm_device.ha_region_list, list) {
873 /*
874 * If the pfn range we are dealing with is not in the current
875 * "hot add block", move on.
876 */
877 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
878 continue;
879
880 old_covered_state = has->covered_end_pfn;
881
882 if (start_pfn < has->ha_end_pfn) {
883 /*
884 * This is the case where we are backing pages
885 * in an already hot added region. Bring
886 * these pages online first.
887 */
888 pgs_ol = has->ha_end_pfn - start_pfn;
889 if (pgs_ol > pfn_cnt)
890 pgs_ol = pfn_cnt;
891
892 has->covered_end_pfn += pgs_ol;
893 pfn_cnt -= pgs_ol;
894 /*
895 * Check if the corresponding memory block is already
896 * online. It is possible to observe struct pages still
897 * being uninitialized here so check section instead.
898 * In case the section is online we need to bring the
899 * rest of pfns (which were not backed previously)
900 * online too.
901 */
902 if (start_pfn > has->start_pfn &&
903 online_section_nr(pfn_to_section_nr(start_pfn)))
904 hv_bring_pgs_online(has, start_pfn, pgs_ol);
905
906 }
907
908 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
909 /*
910 * We have some residual hot add range
911 * that needs to be hot added; hot add
912 * it now. Hot add a multiple of
913 * HA_CHUNK that fully covers the pages
914 * we have.
915 */
916 size = (has->end_pfn - has->ha_end_pfn);
917 if (pfn_cnt <= size) {
918 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
919 if (pfn_cnt % HA_CHUNK)
920 size += HA_CHUNK;
921 } else {
922 pfn_cnt = size;
923 }
924 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
925 hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
926 spin_lock_irqsave(&dm_device.ha_lock, flags);
927 }
928 /*
929 * If we managed to online any pages that were given to us,
930 * we declare success.
931 */
932 res = has->covered_end_pfn - old_covered_state;
933 break;
934 }
935 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
936
937 return res;
938}
939
940static unsigned long process_hot_add(unsigned long pg_start,
941 unsigned long pfn_cnt,
942 unsigned long rg_start,
943 unsigned long rg_size)
944{
945 struct hv_hotadd_state *ha_region = NULL;
946 int covered;
947
948 if (pfn_cnt == 0)
949 return 0;
950
951 if (!dm_device.host_specified_ha_region) {
952 covered = pfn_covered(pg_start, pfn_cnt);
953 if (covered < 0)
954 return 0;
955
956 if (covered)
957 goto do_pg_range;
958 }
959
960 /*
961 * If the host has specified a hot-add range; deal with it first.
962 */
963
964 if (rg_size != 0) {
965 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
966 if (!ha_region)
967 return 0;
968
969 INIT_LIST_HEAD(&ha_region->list);
970 INIT_LIST_HEAD(&ha_region->gap_list);
971
972 ha_region->start_pfn = rg_start;
973 ha_region->ha_end_pfn = rg_start;
974 ha_region->covered_start_pfn = pg_start;
975 ha_region->covered_end_pfn = pg_start;
976 ha_region->end_pfn = rg_start + rg_size;
977
978 scoped_guard(spinlock_irqsave, &dm_device.ha_lock) {
979 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
980 }
981 }
982
983do_pg_range:
984 /*
985 * Process the page range specified; bringing them
986 * online if possible.
987 */
988 return handle_pg_range(pg_start, pfn_cnt);
989}
990
991#endif
992
993static void hot_add_req(struct work_struct *dummy)
994{
995 struct dm_hot_add_response resp;
996#ifdef CONFIG_MEMORY_HOTPLUG
997 unsigned long pg_start, pfn_cnt;
998 unsigned long rg_start, rg_sz;
999#endif
1000 struct hv_dynmem_device *dm = &dm_device;
1001
1002 memset(&resp, 0, sizeof(struct dm_hot_add_response));
1003 resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
1004 resp.hdr.size = sizeof(struct dm_hot_add_response);
1005
1006#ifdef CONFIG_MEMORY_HOTPLUG
1007 pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
1008 pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
1009
1010 rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1011 rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1012
1013 if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1014 unsigned long region_size;
1015 unsigned long region_start;
1016
1017 /*
1018 * The host has not specified the hot-add region.
1019 * Based on the hot-add page range being specified,
1020 * compute a hot-add region that can cover the pages
1021 * that need to be hot-added while ensuring the alignment
1022 * and size requirements of Linux as it relates to hot-add.
1023 */
1024 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1025 if (pfn_cnt % HA_CHUNK)
1026 region_size += HA_CHUNK;
1027
1028 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1029
1030 rg_start = region_start;
1031 rg_sz = region_size;
1032 }
1033
1034 if (do_hot_add)
1035 resp.page_count = process_hot_add(pg_start, pfn_cnt,
1036 rg_start, rg_sz);
1037
1038 dm->num_pages_added += resp.page_count;
1039#endif
1040 /*
1041 * The result field of the response structure has the
1042 * following semantics:
1043 *
1044 * 1. If all or some pages hot-added: Guest should return success.
1045 *
1046 * 2. If no pages could be hot-added:
1047 *
1048 * If the guest returns success, then the host
1049 * will not attempt any further hot-add operations. This
1050 * signifies a permanent failure.
1051 *
1052 * If the guest returns failure, then this failure will be
1053 * treated as a transient failure and the host may retry the
1054 * hot-add operation after some delay.
1055 */
1056 if (resp.page_count > 0)
1057 resp.result = 1;
1058 else if (!do_hot_add)
1059 resp.result = 1;
1060 else
1061 resp.result = 0;
1062
1063 if (!do_hot_add || resp.page_count == 0) {
1064 if (!allow_hibernation)
1065 pr_err("Memory hot add failed\n");
1066 else
1067 pr_info("Ignore hot-add request!\n");
1068 }
1069
1070 dm->state = DM_INITIALIZED;
1071 resp.hdr.trans_id = atomic_inc_return(&trans_id);
1072 vmbus_sendpacket(dm->dev->channel, &resp,
1073 sizeof(struct dm_hot_add_response),
1074 (unsigned long)NULL,
1075 VM_PKT_DATA_INBAND, 0);
1076}
1077
1078static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1079{
1080 struct dm_info_header *info_hdr;
1081
1082 info_hdr = (struct dm_info_header *)msg->info;
1083
1084 switch (info_hdr->type) {
1085 case INFO_TYPE_MAX_PAGE_CNT:
1086 if (info_hdr->data_size == sizeof(__u64)) {
1087 __u64 *max_page_count = (__u64 *)&info_hdr[1];
1088
1089 pr_info("Max. dynamic memory size: %llu MB\n",
1090 (*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1091 dm->max_dynamic_page_count = *max_page_count;
1092 }
1093
1094 break;
1095 default:
1096 pr_warn("Received Unknown type: %d\n", info_hdr->type);
1097 }
1098}
1099
1100static unsigned long compute_balloon_floor(void)
1101{
1102 unsigned long min_pages;
1103 unsigned long nr_pages = totalram_pages();
1104#define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1105 /* Simple continuous piecewiese linear function:
1106 * max MiB -> min MiB gradient
1107 * 0 0
1108 * 16 16
1109 * 32 24
1110 * 128 72 (1/2)
1111 * 512 168 (1/4)
1112 * 2048 360 (1/8)
1113 * 8192 744 (1/16)
1114 * 32768 1512 (1/32)
1115 */
1116 if (nr_pages < MB2PAGES(128))
1117 min_pages = MB2PAGES(8) + (nr_pages >> 1);
1118 else if (nr_pages < MB2PAGES(512))
1119 min_pages = MB2PAGES(40) + (nr_pages >> 2);
1120 else if (nr_pages < MB2PAGES(2048))
1121 min_pages = MB2PAGES(104) + (nr_pages >> 3);
1122 else if (nr_pages < MB2PAGES(8192))
1123 min_pages = MB2PAGES(232) + (nr_pages >> 4);
1124 else
1125 min_pages = MB2PAGES(488) + (nr_pages >> 5);
1126#undef MB2PAGES
1127 return min_pages;
1128}
1129
1130/*
1131 * Compute total committed memory pages
1132 */
1133
1134static unsigned long get_pages_committed(struct hv_dynmem_device *dm)
1135{
1136 return vm_memory_committed() +
1137 dm->num_pages_ballooned +
1138 (dm->num_pages_added > dm->num_pages_onlined ?
1139 dm->num_pages_added - dm->num_pages_onlined : 0) +
1140 compute_balloon_floor();
1141}
1142
1143/*
1144 * Post our status as it relates memory pressure to the
1145 * host. Host expects the guests to post this status
1146 * periodically at 1 second intervals.
1147 *
1148 * The metrics specified in this protocol are very Windows
1149 * specific and so we cook up numbers here to convey our memory
1150 * pressure.
1151 */
1152
1153static void post_status(struct hv_dynmem_device *dm)
1154{
1155 struct dm_status status;
1156 unsigned long now = jiffies;
1157 unsigned long last_post = last_post_time;
1158 unsigned long num_pages_avail, num_pages_committed;
1159
1160 if (pressure_report_delay > 0) {
1161 --pressure_report_delay;
1162 return;
1163 }
1164
1165 if (!time_after(now, (last_post_time + HZ)))
1166 return;
1167
1168 memset(&status, 0, sizeof(struct dm_status));
1169 status.hdr.type = DM_STATUS_REPORT;
1170 status.hdr.size = sizeof(struct dm_status);
1171 status.hdr.trans_id = atomic_inc_return(&trans_id);
1172
1173 /*
1174 * The host expects the guest to report free and committed memory.
1175 * Furthermore, the host expects the pressure information to include
1176 * the ballooned out pages. For a given amount of memory that we are
1177 * managing we need to compute a floor below which we should not
1178 * balloon. Compute this and add it to the pressure report.
1179 * We also need to report all offline pages (num_pages_added -
1180 * num_pages_onlined) as committed to the host, otherwise it can try
1181 * asking us to balloon them out.
1182 */
1183 num_pages_avail = si_mem_available();
1184 num_pages_committed = get_pages_committed(dm);
1185
1186 trace_balloon_status(num_pages_avail, num_pages_committed,
1187 vm_memory_committed(), dm->num_pages_ballooned,
1188 dm->num_pages_added, dm->num_pages_onlined);
1189
1190 /* Convert numbers of pages into numbers of HV_HYP_PAGEs. */
1191 status.num_avail = num_pages_avail * NR_HV_HYP_PAGES_IN_PAGE;
1192 status.num_committed = num_pages_committed * NR_HV_HYP_PAGES_IN_PAGE;
1193
1194 /*
1195 * If our transaction ID is no longer current, just don't
1196 * send the status. This can happen if we were interrupted
1197 * after we picked our transaction ID.
1198 */
1199 if (status.hdr.trans_id != atomic_read(&trans_id))
1200 return;
1201
1202 /*
1203 * If the last post time that we sampled has changed,
1204 * we have raced, don't post the status.
1205 */
1206 if (last_post != last_post_time)
1207 return;
1208
1209 last_post_time = jiffies;
1210 vmbus_sendpacket(dm->dev->channel, &status,
1211 sizeof(struct dm_status),
1212 (unsigned long)NULL,
1213 VM_PKT_DATA_INBAND, 0);
1214
1215}
1216
1217static void free_balloon_pages(struct hv_dynmem_device *dm,
1218 union dm_mem_page_range *range_array)
1219{
1220 int num_pages = range_array->finfo.page_cnt;
1221 __u64 start_frame = range_array->finfo.start_page;
1222 struct page *pg;
1223 int i;
1224
1225 for (i = 0; i < num_pages; i++) {
1226 pg = pfn_to_page(i + start_frame);
1227 __ClearPageOffline(pg);
1228 __free_page(pg);
1229 dm->num_pages_ballooned--;
1230 adjust_managed_page_count(pg, 1);
1231 }
1232}
1233
1234
1235
1236static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1237 unsigned int num_pages,
1238 struct dm_balloon_response *bl_resp,
1239 int alloc_unit)
1240{
1241 unsigned int i, j;
1242 struct page *pg;
1243
1244 for (i = 0; i < num_pages / alloc_unit; i++) {
1245 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1246 HV_HYP_PAGE_SIZE)
1247 return i * alloc_unit;
1248
1249 /*
1250 * We execute this code in a thread context. Furthermore,
1251 * we don't want the kernel to try too hard.
1252 */
1253 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1254 __GFP_NOMEMALLOC | __GFP_NOWARN,
1255 get_order(alloc_unit << PAGE_SHIFT));
1256
1257 if (!pg)
1258 return i * alloc_unit;
1259
1260 dm->num_pages_ballooned += alloc_unit;
1261
1262 /*
1263 * If we allocatted 2M pages; split them so we
1264 * can free them in any order we get.
1265 */
1266
1267 if (alloc_unit != 1)
1268 split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1269
1270 /* mark all pages offline */
1271 for (j = 0; j < alloc_unit; j++) {
1272 __SetPageOffline(pg + j);
1273 adjust_managed_page_count(pg + j, -1);
1274 }
1275
1276 bl_resp->range_count++;
1277 bl_resp->range_array[i].finfo.start_page =
1278 page_to_pfn(pg);
1279 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1280 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1281
1282 }
1283
1284 return i * alloc_unit;
1285}
1286
1287static void balloon_up(struct work_struct *dummy)
1288{
1289 unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1290 unsigned int num_ballooned = 0;
1291 struct dm_balloon_response *bl_resp;
1292 int alloc_unit;
1293 int ret;
1294 bool done = false;
1295 int i;
1296 long avail_pages;
1297 unsigned long floor;
1298
1299 /*
1300 * We will attempt 2M allocations. However, if we fail to
1301 * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1302 */
1303 alloc_unit = PAGES_IN_2M;
1304
1305 avail_pages = si_mem_available();
1306 floor = compute_balloon_floor();
1307
1308 /* Refuse to balloon below the floor. */
1309 if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1310 pr_info("Balloon request will be partially fulfilled. %s\n",
1311 avail_pages < num_pages ? "Not enough memory." :
1312 "Balloon floor reached.");
1313
1314 num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1315 }
1316
1317 while (!done) {
1318 memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1319 bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1320 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1321 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1322 bl_resp->more_pages = 1;
1323
1324 num_pages -= num_ballooned;
1325 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1326 bl_resp, alloc_unit);
1327
1328 if (alloc_unit != 1 && num_ballooned == 0) {
1329 alloc_unit = 1;
1330 continue;
1331 }
1332
1333 if (num_ballooned == 0 || num_ballooned == num_pages) {
1334 pr_debug("Ballooned %u out of %u requested pages.\n",
1335 num_pages, dm_device.balloon_wrk.num_pages);
1336
1337 bl_resp->more_pages = 0;
1338 done = true;
1339 dm_device.state = DM_INITIALIZED;
1340 }
1341
1342 /*
1343 * We are pushing a lot of data through the channel;
1344 * deal with transient failures caused because of the
1345 * lack of space in the ring buffer.
1346 */
1347
1348 do {
1349 bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1350 ret = vmbus_sendpacket(dm_device.dev->channel,
1351 bl_resp,
1352 bl_resp->hdr.size,
1353 (unsigned long)NULL,
1354 VM_PKT_DATA_INBAND, 0);
1355
1356 if (ret == -EAGAIN)
1357 msleep(20);
1358 post_status(&dm_device);
1359 } while (ret == -EAGAIN);
1360
1361 if (ret) {
1362 /*
1363 * Free up the memory we allocatted.
1364 */
1365 pr_err("Balloon response failed\n");
1366
1367 for (i = 0; i < bl_resp->range_count; i++)
1368 free_balloon_pages(&dm_device,
1369 &bl_resp->range_array[i]);
1370
1371 done = true;
1372 }
1373 }
1374
1375}
1376
1377static void balloon_down(struct hv_dynmem_device *dm,
1378 struct dm_unballoon_request *req)
1379{
1380 union dm_mem_page_range *range_array = req->range_array;
1381 int range_count = req->range_count;
1382 struct dm_unballoon_response resp;
1383 int i;
1384 unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1385
1386 for (i = 0; i < range_count; i++) {
1387 free_balloon_pages(dm, &range_array[i]);
1388 complete(&dm_device.config_event);
1389 }
1390
1391 pr_debug("Freed %u ballooned pages.\n",
1392 prev_pages_ballooned - dm->num_pages_ballooned);
1393
1394 if (req->more_pages == 1)
1395 return;
1396
1397 memset(&resp, 0, sizeof(struct dm_unballoon_response));
1398 resp.hdr.type = DM_UNBALLOON_RESPONSE;
1399 resp.hdr.trans_id = atomic_inc_return(&trans_id);
1400 resp.hdr.size = sizeof(struct dm_unballoon_response);
1401
1402 vmbus_sendpacket(dm_device.dev->channel, &resp,
1403 sizeof(struct dm_unballoon_response),
1404 (unsigned long)NULL,
1405 VM_PKT_DATA_INBAND, 0);
1406
1407 dm->state = DM_INITIALIZED;
1408}
1409
1410static void balloon_onchannelcallback(void *context);
1411
1412static int dm_thread_func(void *dm_dev)
1413{
1414 struct hv_dynmem_device *dm = dm_dev;
1415
1416 while (!kthread_should_stop()) {
1417 wait_for_completion_interruptible_timeout(
1418 &dm_device.config_event, 1*HZ);
1419 /*
1420 * The host expects us to post information on the memory
1421 * pressure every second.
1422 */
1423 reinit_completion(&dm_device.config_event);
1424 post_status(dm);
1425 /*
1426 * disable free page reporting if multiple hypercall
1427 * failure flag set. It is not done in the page_reporting
1428 * callback context as that causes a deadlock between
1429 * page_reporting_process() and page_reporting_unregister()
1430 */
1431 if (hv_hypercall_multi_failure >= HV_MAX_FAILURES) {
1432 pr_err("Multiple failures in cold memory discard hypercall, disabling page reporting\n");
1433 disable_page_reporting();
1434 /* Reset the flag after disabling reporting */
1435 hv_hypercall_multi_failure = 0;
1436 }
1437 }
1438
1439 return 0;
1440}
1441
1442
1443static void version_resp(struct hv_dynmem_device *dm,
1444 struct dm_version_response *vresp)
1445{
1446 struct dm_version_request version_req;
1447 int ret;
1448
1449 if (vresp->is_accepted) {
1450 /*
1451 * We are done; wakeup the
1452 * context waiting for version
1453 * negotiation.
1454 */
1455 complete(&dm->host_event);
1456 return;
1457 }
1458 /*
1459 * If there are more versions to try, continue
1460 * with negotiations; if not
1461 * shutdown the service since we are not able
1462 * to negotiate a suitable version number
1463 * with the host.
1464 */
1465 if (dm->next_version == 0)
1466 goto version_error;
1467
1468 memset(&version_req, 0, sizeof(struct dm_version_request));
1469 version_req.hdr.type = DM_VERSION_REQUEST;
1470 version_req.hdr.size = sizeof(struct dm_version_request);
1471 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1472 version_req.version.version = dm->next_version;
1473 dm->version = version_req.version.version;
1474
1475 /*
1476 * Set the next version to try in case current version fails.
1477 * Win7 protocol ought to be the last one to try.
1478 */
1479 switch (version_req.version.version) {
1480 case DYNMEM_PROTOCOL_VERSION_WIN8:
1481 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1482 version_req.is_last_attempt = 0;
1483 break;
1484 default:
1485 dm->next_version = 0;
1486 version_req.is_last_attempt = 1;
1487 }
1488
1489 ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1490 sizeof(struct dm_version_request),
1491 (unsigned long)NULL,
1492 VM_PKT_DATA_INBAND, 0);
1493
1494 if (ret)
1495 goto version_error;
1496
1497 return;
1498
1499version_error:
1500 dm->state = DM_INIT_ERROR;
1501 complete(&dm->host_event);
1502}
1503
1504static void cap_resp(struct hv_dynmem_device *dm,
1505 struct dm_capabilities_resp_msg *cap_resp)
1506{
1507 if (!cap_resp->is_accepted) {
1508 pr_err("Capabilities not accepted by host\n");
1509 dm->state = DM_INIT_ERROR;
1510 }
1511 complete(&dm->host_event);
1512}
1513
1514static void balloon_onchannelcallback(void *context)
1515{
1516 struct hv_device *dev = context;
1517 u32 recvlen;
1518 u64 requestid;
1519 struct dm_message *dm_msg;
1520 struct dm_header *dm_hdr;
1521 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1522 struct dm_balloon *bal_msg;
1523 struct dm_hot_add *ha_msg;
1524 union dm_mem_page_range *ha_pg_range;
1525 union dm_mem_page_range *ha_region;
1526
1527 memset(recv_buffer, 0, sizeof(recv_buffer));
1528 vmbus_recvpacket(dev->channel, recv_buffer,
1529 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1530
1531 if (recvlen > 0) {
1532 dm_msg = (struct dm_message *)recv_buffer;
1533 dm_hdr = &dm_msg->hdr;
1534
1535 switch (dm_hdr->type) {
1536 case DM_VERSION_RESPONSE:
1537 version_resp(dm,
1538 (struct dm_version_response *)dm_msg);
1539 break;
1540
1541 case DM_CAPABILITIES_RESPONSE:
1542 cap_resp(dm,
1543 (struct dm_capabilities_resp_msg *)dm_msg);
1544 break;
1545
1546 case DM_BALLOON_REQUEST:
1547 if (allow_hibernation) {
1548 pr_info("Ignore balloon-up request!\n");
1549 break;
1550 }
1551
1552 if (dm->state == DM_BALLOON_UP)
1553 pr_warn("Currently ballooning\n");
1554 bal_msg = (struct dm_balloon *)recv_buffer;
1555 dm->state = DM_BALLOON_UP;
1556 dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1557 schedule_work(&dm_device.balloon_wrk.wrk);
1558 break;
1559
1560 case DM_UNBALLOON_REQUEST:
1561 if (allow_hibernation) {
1562 pr_info("Ignore balloon-down request!\n");
1563 break;
1564 }
1565
1566 dm->state = DM_BALLOON_DOWN;
1567 balloon_down(dm,
1568 (struct dm_unballoon_request *)recv_buffer);
1569 break;
1570
1571 case DM_MEM_HOT_ADD_REQUEST:
1572 if (dm->state == DM_HOT_ADD)
1573 pr_warn("Currently hot-adding\n");
1574 dm->state = DM_HOT_ADD;
1575 ha_msg = (struct dm_hot_add *)recv_buffer;
1576 if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1577 /*
1578 * This is a normal hot-add request specifying
1579 * hot-add memory.
1580 */
1581 dm->host_specified_ha_region = false;
1582 ha_pg_range = &ha_msg->range;
1583 dm->ha_wrk.ha_page_range = *ha_pg_range;
1584 dm->ha_wrk.ha_region_range.page_range = 0;
1585 } else {
1586 /*
1587 * Host is specifying that we first hot-add
1588 * a region and then partially populate this
1589 * region.
1590 */
1591 dm->host_specified_ha_region = true;
1592 ha_pg_range = &ha_msg->range;
1593 ha_region = &ha_pg_range[1];
1594 dm->ha_wrk.ha_page_range = *ha_pg_range;
1595 dm->ha_wrk.ha_region_range = *ha_region;
1596 }
1597 schedule_work(&dm_device.ha_wrk.wrk);
1598 break;
1599
1600 case DM_INFO_MESSAGE:
1601 process_info(dm, (struct dm_info_msg *)dm_msg);
1602 break;
1603
1604 default:
1605 pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type);
1606
1607 }
1608 }
1609
1610}
1611
1612#define HV_LARGE_REPORTING_ORDER 9
1613#define HV_LARGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << \
1614 HV_LARGE_REPORTING_ORDER)
1615static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info,
1616 struct scatterlist *sgl, unsigned int nents)
1617{
1618 unsigned long flags;
1619 struct hv_memory_hint *hint;
1620 int i, order;
1621 u64 status;
1622 struct scatterlist *sg;
1623
1624 WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1625 WARN_ON_ONCE(sgl->length < (HV_HYP_PAGE_SIZE << page_reporting_order));
1626 local_irq_save(flags);
1627 hint = *this_cpu_ptr(hyperv_pcpu_input_arg);
1628 if (!hint) {
1629 local_irq_restore(flags);
1630 return -ENOSPC;
1631 }
1632
1633 hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD;
1634 hint->reserved = 0;
1635 for_each_sg(sgl, sg, nents, i) {
1636 union hv_gpa_page_range *range;
1637
1638 range = &hint->ranges[i];
1639 range->address_space = 0;
1640 order = get_order(sg->length);
1641 /*
1642 * Hyper-V expects the additional_pages field in the units
1643 * of one of these 3 sizes, 4Kbytes, 2Mbytes or 1Gbytes.
1644 * This is dictated by the values of the fields page.largesize
1645 * and page_size.
1646 * This code however, only uses 4Kbytes and 2Mbytes units
1647 * and not 1Gbytes unit.
1648 */
1649
1650 /* page reporting for pages 2MB or higher */
1651 if (order >= HV_LARGE_REPORTING_ORDER ) {
1652 range->page.largepage = 1;
1653 range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB;
1654 range->base_large_pfn = page_to_hvpfn(
1655 sg_page(sg)) >> HV_LARGE_REPORTING_ORDER;
1656 range->page.additional_pages =
1657 (sg->length / HV_LARGE_REPORTING_LEN) - 1;
1658 } else {
1659 /* Page reporting for pages below 2MB */
1660 range->page.basepfn = page_to_hvpfn(sg_page(sg));
1661 range->page.largepage = false;
1662 range->page.additional_pages =
1663 (sg->length / HV_HYP_PAGE_SIZE) - 1;
1664 }
1665
1666 }
1667
1668 status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0,
1669 hint, NULL);
1670 local_irq_restore(flags);
1671 if (!hv_result_success(status)) {
1672
1673 pr_err("Cold memory discard hypercall failed with status %llx\n",
1674 status);
1675 if (hv_hypercall_multi_failure > 0)
1676 hv_hypercall_multi_failure++;
1677
1678 if (hv_result(status) == HV_STATUS_INVALID_PARAMETER) {
1679 pr_err("Underlying Hyper-V does not support order less than 9. Hypercall failed\n");
1680 pr_err("Defaulting to page_reporting_order %d\n",
1681 pageblock_order);
1682 page_reporting_order = pageblock_order;
1683 hv_hypercall_multi_failure++;
1684 return -EINVAL;
1685 }
1686
1687 return -EINVAL;
1688 }
1689
1690 return 0;
1691}
1692
1693static void enable_page_reporting(void)
1694{
1695 int ret;
1696
1697 if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) {
1698 pr_debug("Cold memory discard hint not supported by Hyper-V\n");
1699 return;
1700 }
1701
1702 BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1703 dm_device.pr_dev_info.report = hv_free_page_report;
1704 /*
1705 * We let the page_reporting_order parameter decide the order
1706 * in the page_reporting code
1707 */
1708 dm_device.pr_dev_info.order = 0;
1709 ret = page_reporting_register(&dm_device.pr_dev_info);
1710 if (ret < 0) {
1711 dm_device.pr_dev_info.report = NULL;
1712 pr_err("Failed to enable cold memory discard: %d\n", ret);
1713 } else {
1714 pr_info("Cold memory discard hint enabled with order %d\n",
1715 page_reporting_order);
1716 }
1717}
1718
1719static void disable_page_reporting(void)
1720{
1721 if (dm_device.pr_dev_info.report) {
1722 page_reporting_unregister(&dm_device.pr_dev_info);
1723 dm_device.pr_dev_info.report = NULL;
1724 }
1725}
1726
1727static int ballooning_enabled(void)
1728{
1729 /*
1730 * Disable ballooning if the page size is not 4k (HV_HYP_PAGE_SIZE),
1731 * since currently it's unclear to us whether an unballoon request can
1732 * make sure all page ranges are guest page size aligned.
1733 */
1734 if (PAGE_SIZE != HV_HYP_PAGE_SIZE) {
1735 pr_info("Ballooning disabled because page size is not 4096 bytes\n");
1736 return 0;
1737 }
1738
1739 return 1;
1740}
1741
1742static int hot_add_enabled(void)
1743{
1744 /*
1745 * Disable hot add on ARM64, because we currently rely on
1746 * memory_add_physaddr_to_nid() to get a node id of a hot add range,
1747 * however ARM64's memory_add_physaddr_to_nid() always return 0 and
1748 * DM_MEM_HOT_ADD_REQUEST doesn't have the NUMA node information for
1749 * add_memory().
1750 */
1751 if (IS_ENABLED(CONFIG_ARM64)) {
1752 pr_info("Memory hot add disabled on ARM64\n");
1753 return 0;
1754 }
1755
1756 return 1;
1757}
1758
1759static int balloon_connect_vsp(struct hv_device *dev)
1760{
1761 struct dm_version_request version_req;
1762 struct dm_capabilities cap_msg;
1763 unsigned long t;
1764 int ret;
1765
1766 /*
1767 * max_pkt_size should be large enough for one vmbus packet header plus
1768 * our receive buffer size. Hyper-V sends messages up to
1769 * HV_HYP_PAGE_SIZE bytes long on balloon channel.
1770 */
1771 dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2;
1772
1773 ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1774 balloon_onchannelcallback, dev);
1775 if (ret)
1776 return ret;
1777
1778 /*
1779 * Initiate the hand shake with the host and negotiate
1780 * a version that the host can support. We start with the
1781 * highest version number and go down if the host cannot
1782 * support it.
1783 */
1784 memset(&version_req, 0, sizeof(struct dm_version_request));
1785 version_req.hdr.type = DM_VERSION_REQUEST;
1786 version_req.hdr.size = sizeof(struct dm_version_request);
1787 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1788 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1789 version_req.is_last_attempt = 0;
1790 dm_device.version = version_req.version.version;
1791
1792 ret = vmbus_sendpacket(dev->channel, &version_req,
1793 sizeof(struct dm_version_request),
1794 (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1795 if (ret)
1796 goto out;
1797
1798 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1799 if (t == 0) {
1800 ret = -ETIMEDOUT;
1801 goto out;
1802 }
1803
1804 /*
1805 * If we could not negotiate a compatible version with the host
1806 * fail the probe function.
1807 */
1808 if (dm_device.state == DM_INIT_ERROR) {
1809 ret = -EPROTO;
1810 goto out;
1811 }
1812
1813 pr_info("Using Dynamic Memory protocol version %u.%u\n",
1814 DYNMEM_MAJOR_VERSION(dm_device.version),
1815 DYNMEM_MINOR_VERSION(dm_device.version));
1816
1817 /*
1818 * Now submit our capabilities to the host.
1819 */
1820 memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1821 cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1822 cap_msg.hdr.size = sizeof(struct dm_capabilities);
1823 cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1824
1825 /*
1826 * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1827 * currently still requires the bits to be set, so we have to add code
1828 * to fail the host's hot-add and balloon up/down requests, if any.
1829 */
1830 cap_msg.caps.cap_bits.balloon = ballooning_enabled();
1831 cap_msg.caps.cap_bits.hot_add = hot_add_enabled();
1832
1833 /*
1834 * Specify our alignment requirements as it relates
1835 * memory hot-add. Specify 128MB alignment.
1836 */
1837 cap_msg.caps.cap_bits.hot_add_alignment = 7;
1838
1839 /*
1840 * Currently the host does not use these
1841 * values and we set them to what is done in the
1842 * Windows driver.
1843 */
1844 cap_msg.min_page_cnt = 0;
1845 cap_msg.max_page_number = -1;
1846
1847 ret = vmbus_sendpacket(dev->channel, &cap_msg,
1848 sizeof(struct dm_capabilities),
1849 (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1850 if (ret)
1851 goto out;
1852
1853 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1854 if (t == 0) {
1855 ret = -ETIMEDOUT;
1856 goto out;
1857 }
1858
1859 /*
1860 * If the host does not like our capabilities,
1861 * fail the probe function.
1862 */
1863 if (dm_device.state == DM_INIT_ERROR) {
1864 ret = -EPROTO;
1865 goto out;
1866 }
1867
1868 return 0;
1869out:
1870 vmbus_close(dev->channel);
1871 return ret;
1872}
1873
1874/*
1875 * DEBUGFS Interface
1876 */
1877#ifdef CONFIG_DEBUG_FS
1878
1879/**
1880 * hv_balloon_debug_show - shows statistics of balloon operations.
1881 * @f: pointer to the &struct seq_file.
1882 * @offset: ignored.
1883 *
1884 * Provides the statistics that can be accessed in hv-balloon in the debugfs.
1885 *
1886 * Return: zero on success or an error code.
1887 */
1888static int hv_balloon_debug_show(struct seq_file *f, void *offset)
1889{
1890 struct hv_dynmem_device *dm = f->private;
1891 char *sname;
1892
1893 seq_printf(f, "%-22s: %u.%u\n", "host_version",
1894 DYNMEM_MAJOR_VERSION(dm->version),
1895 DYNMEM_MINOR_VERSION(dm->version));
1896
1897 seq_printf(f, "%-22s:", "capabilities");
1898 if (ballooning_enabled())
1899 seq_puts(f, " enabled");
1900
1901 if (hot_add_enabled())
1902 seq_puts(f, " hot_add");
1903
1904 seq_puts(f, "\n");
1905
1906 seq_printf(f, "%-22s: %u", "state", dm->state);
1907 switch (dm->state) {
1908 case DM_INITIALIZING:
1909 sname = "Initializing";
1910 break;
1911 case DM_INITIALIZED:
1912 sname = "Initialized";
1913 break;
1914 case DM_BALLOON_UP:
1915 sname = "Balloon Up";
1916 break;
1917 case DM_BALLOON_DOWN:
1918 sname = "Balloon Down";
1919 break;
1920 case DM_HOT_ADD:
1921 sname = "Hot Add";
1922 break;
1923 case DM_INIT_ERROR:
1924 sname = "Error";
1925 break;
1926 default:
1927 sname = "Unknown";
1928 }
1929 seq_printf(f, " (%s)\n", sname);
1930
1931 /* HV Page Size */
1932 seq_printf(f, "%-22s: %ld\n", "page_size", HV_HYP_PAGE_SIZE);
1933
1934 /* Pages added with hot_add */
1935 seq_printf(f, "%-22s: %u\n", "pages_added", dm->num_pages_added);
1936
1937 /* pages that are "onlined"/used from pages_added */
1938 seq_printf(f, "%-22s: %u\n", "pages_onlined", dm->num_pages_onlined);
1939
1940 /* pages we have given back to host */
1941 seq_printf(f, "%-22s: %u\n", "pages_ballooned", dm->num_pages_ballooned);
1942
1943 seq_printf(f, "%-22s: %lu\n", "total_pages_committed",
1944 get_pages_committed(dm));
1945
1946 seq_printf(f, "%-22s: %llu\n", "max_dynamic_page_count",
1947 dm->max_dynamic_page_count);
1948
1949 return 0;
1950}
1951
1952DEFINE_SHOW_ATTRIBUTE(hv_balloon_debug);
1953
1954static void hv_balloon_debugfs_init(struct hv_dynmem_device *b)
1955{
1956 debugfs_create_file("hv-balloon", 0444, NULL, b,
1957 &hv_balloon_debug_fops);
1958}
1959
1960static void hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1961{
1962 debugfs_lookup_and_remove("hv-balloon", NULL);
1963}
1964
1965#else
1966
1967static inline void hv_balloon_debugfs_init(struct hv_dynmem_device *b)
1968{
1969}
1970
1971static inline void hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1972{
1973}
1974
1975#endif /* CONFIG_DEBUG_FS */
1976
1977static int balloon_probe(struct hv_device *dev,
1978 const struct hv_vmbus_device_id *dev_id)
1979{
1980 int ret;
1981
1982 allow_hibernation = hv_is_hibernation_supported();
1983 if (allow_hibernation)
1984 hot_add = false;
1985
1986#ifdef CONFIG_MEMORY_HOTPLUG
1987 do_hot_add = hot_add;
1988#else
1989 do_hot_add = false;
1990#endif
1991 dm_device.dev = dev;
1992 dm_device.state = DM_INITIALIZING;
1993 dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1994 init_completion(&dm_device.host_event);
1995 init_completion(&dm_device.config_event);
1996 INIT_LIST_HEAD(&dm_device.ha_region_list);
1997 spin_lock_init(&dm_device.ha_lock);
1998 INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1999 INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
2000 dm_device.host_specified_ha_region = false;
2001
2002#ifdef CONFIG_MEMORY_HOTPLUG
2003 set_online_page_callback(&hv_online_page);
2004 init_completion(&dm_device.ol_waitevent);
2005 register_memory_notifier(&hv_memory_nb);
2006#endif
2007
2008 hv_set_drvdata(dev, &dm_device);
2009
2010 ret = balloon_connect_vsp(dev);
2011 if (ret != 0)
2012 goto connect_error;
2013
2014 enable_page_reporting();
2015 dm_device.state = DM_INITIALIZED;
2016
2017 dm_device.thread =
2018 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
2019 if (IS_ERR(dm_device.thread)) {
2020 ret = PTR_ERR(dm_device.thread);
2021 goto probe_error;
2022 }
2023
2024 hv_balloon_debugfs_init(&dm_device);
2025
2026 return 0;
2027
2028probe_error:
2029 dm_device.state = DM_INIT_ERROR;
2030 dm_device.thread = NULL;
2031 disable_page_reporting();
2032 vmbus_close(dev->channel);
2033connect_error:
2034#ifdef CONFIG_MEMORY_HOTPLUG
2035 unregister_memory_notifier(&hv_memory_nb);
2036 restore_online_page_callback(&hv_online_page);
2037#endif
2038 return ret;
2039}
2040
2041static void balloon_remove(struct hv_device *dev)
2042{
2043 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
2044 struct hv_hotadd_state *has, *tmp;
2045 struct hv_hotadd_gap *gap, *tmp_gap;
2046
2047 if (dm->num_pages_ballooned != 0)
2048 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
2049
2050 hv_balloon_debugfs_exit(dm);
2051
2052 cancel_work_sync(&dm->balloon_wrk.wrk);
2053 cancel_work_sync(&dm->ha_wrk.wrk);
2054
2055 kthread_stop(dm->thread);
2056
2057 /*
2058 * This is to handle the case when balloon_resume()
2059 * call has failed and some cleanup has been done as
2060 * a part of the error handling.
2061 */
2062 if (dm_device.state != DM_INIT_ERROR) {
2063 disable_page_reporting();
2064 vmbus_close(dev->channel);
2065#ifdef CONFIG_MEMORY_HOTPLUG
2066 unregister_memory_notifier(&hv_memory_nb);
2067 restore_online_page_callback(&hv_online_page);
2068#endif
2069 }
2070
2071 guard(spinlock_irqsave)(&dm_device.ha_lock);
2072 list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
2073 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
2074 list_del(&gap->list);
2075 kfree(gap);
2076 }
2077 list_del(&has->list);
2078 kfree(has);
2079 }
2080}
2081
2082static int balloon_suspend(struct hv_device *hv_dev)
2083{
2084 struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
2085
2086 tasklet_disable(&hv_dev->channel->callback_event);
2087
2088 cancel_work_sync(&dm->balloon_wrk.wrk);
2089 cancel_work_sync(&dm->ha_wrk.wrk);
2090
2091 if (dm->thread) {
2092 kthread_stop(dm->thread);
2093 dm->thread = NULL;
2094 vmbus_close(hv_dev->channel);
2095 }
2096
2097 tasklet_enable(&hv_dev->channel->callback_event);
2098
2099 return 0;
2100
2101}
2102
2103static int balloon_resume(struct hv_device *dev)
2104{
2105 int ret;
2106
2107 dm_device.state = DM_INITIALIZING;
2108
2109 ret = balloon_connect_vsp(dev);
2110
2111 if (ret != 0)
2112 goto out;
2113
2114 dm_device.thread =
2115 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
2116 if (IS_ERR(dm_device.thread)) {
2117 ret = PTR_ERR(dm_device.thread);
2118 dm_device.thread = NULL;
2119 goto close_channel;
2120 }
2121
2122 dm_device.state = DM_INITIALIZED;
2123 return 0;
2124close_channel:
2125 vmbus_close(dev->channel);
2126out:
2127 dm_device.state = DM_INIT_ERROR;
2128 disable_page_reporting();
2129#ifdef CONFIG_MEMORY_HOTPLUG
2130 unregister_memory_notifier(&hv_memory_nb);
2131 restore_online_page_callback(&hv_online_page);
2132#endif
2133 return ret;
2134}
2135
2136static const struct hv_vmbus_device_id id_table[] = {
2137 /* Dynamic Memory Class ID */
2138 /* 525074DC-8985-46e2-8057-A307DC18A502 */
2139 { HV_DM_GUID, },
2140 { },
2141};
2142
2143MODULE_DEVICE_TABLE(vmbus, id_table);
2144
2145static struct hv_driver balloon_drv = {
2146 .name = "hv_balloon",
2147 .id_table = id_table,
2148 .probe = balloon_probe,
2149 .remove = balloon_remove,
2150 .suspend = balloon_suspend,
2151 .resume = balloon_resume,
2152 .driver = {
2153 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2154 },
2155};
2156
2157static int __init init_balloon_drv(void)
2158{
2159
2160 return vmbus_driver_register(&balloon_drv);
2161}
2162
2163module_init(init_balloon_drv);
2164
2165MODULE_DESCRIPTION("Hyper-V Balloon");
2166MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2012, Microsoft Corporation.
4 *
5 * Author:
6 * K. Y. Srinivasan <kys@microsoft.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/kernel.h>
12#include <linux/jiffies.h>
13#include <linux/mman.h>
14#include <linux/debugfs.h>
15#include <linux/delay.h>
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/kthread.h>
20#include <linux/completion.h>
21#include <linux/count_zeros.h>
22#include <linux/memory_hotplug.h>
23#include <linux/memory.h>
24#include <linux/notifier.h>
25#include <linux/percpu_counter.h>
26#include <linux/page_reporting.h>
27
28#include <linux/hyperv.h>
29#include <asm/hyperv-tlfs.h>
30
31#include <asm/mshyperv.h>
32
33#define CREATE_TRACE_POINTS
34#include "hv_trace_balloon.h"
35
36/*
37 * We begin with definitions supporting the Dynamic Memory protocol
38 * with the host.
39 *
40 * Begin protocol definitions.
41 */
42
43
44
45/*
46 * Protocol versions. The low word is the minor version, the high word the major
47 * version.
48 *
49 * History:
50 * Initial version 1.0
51 * Changed to 0.1 on 2009/03/25
52 * Changes to 0.2 on 2009/05/14
53 * Changes to 0.3 on 2009/12/03
54 * Changed to 1.0 on 2011/04/05
55 */
56
57#define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
58#define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
59#define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
60
61enum {
62 DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
63 DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
64 DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
65
66 DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
67 DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
68 DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
69
70 DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
71};
72
73
74
75/*
76 * Message Types
77 */
78
79enum dm_message_type {
80 /*
81 * Version 0.3
82 */
83 DM_ERROR = 0,
84 DM_VERSION_REQUEST = 1,
85 DM_VERSION_RESPONSE = 2,
86 DM_CAPABILITIES_REPORT = 3,
87 DM_CAPABILITIES_RESPONSE = 4,
88 DM_STATUS_REPORT = 5,
89 DM_BALLOON_REQUEST = 6,
90 DM_BALLOON_RESPONSE = 7,
91 DM_UNBALLOON_REQUEST = 8,
92 DM_UNBALLOON_RESPONSE = 9,
93 DM_MEM_HOT_ADD_REQUEST = 10,
94 DM_MEM_HOT_ADD_RESPONSE = 11,
95 DM_VERSION_03_MAX = 11,
96 /*
97 * Version 1.0.
98 */
99 DM_INFO_MESSAGE = 12,
100 DM_VERSION_1_MAX = 12
101};
102
103
104/*
105 * Structures defining the dynamic memory management
106 * protocol.
107 */
108
109union dm_version {
110 struct {
111 __u16 minor_version;
112 __u16 major_version;
113 };
114 __u32 version;
115} __packed;
116
117
118union dm_caps {
119 struct {
120 __u64 balloon:1;
121 __u64 hot_add:1;
122 /*
123 * To support guests that may have alignment
124 * limitations on hot-add, the guest can specify
125 * its alignment requirements; a value of n
126 * represents an alignment of 2^n in mega bytes.
127 */
128 __u64 hot_add_alignment:4;
129 __u64 reservedz:58;
130 } cap_bits;
131 __u64 caps;
132} __packed;
133
134union dm_mem_page_range {
135 struct {
136 /*
137 * The PFN number of the first page in the range.
138 * 40 bits is the architectural limit of a PFN
139 * number for AMD64.
140 */
141 __u64 start_page:40;
142 /*
143 * The number of pages in the range.
144 */
145 __u64 page_cnt:24;
146 } finfo;
147 __u64 page_range;
148} __packed;
149
150
151
152/*
153 * The header for all dynamic memory messages:
154 *
155 * type: Type of the message.
156 * size: Size of the message in bytes; including the header.
157 * trans_id: The guest is responsible for manufacturing this ID.
158 */
159
160struct dm_header {
161 __u16 type;
162 __u16 size;
163 __u32 trans_id;
164} __packed;
165
166/*
167 * A generic message format for dynamic memory.
168 * Specific message formats are defined later in the file.
169 */
170
171struct dm_message {
172 struct dm_header hdr;
173 __u8 data[]; /* enclosed message */
174} __packed;
175
176
177/*
178 * Specific message types supporting the dynamic memory protocol.
179 */
180
181/*
182 * Version negotiation message. Sent from the guest to the host.
183 * The guest is free to try different versions until the host
184 * accepts the version.
185 *
186 * dm_version: The protocol version requested.
187 * is_last_attempt: If TRUE, this is the last version guest will request.
188 * reservedz: Reserved field, set to zero.
189 */
190
191struct dm_version_request {
192 struct dm_header hdr;
193 union dm_version version;
194 __u32 is_last_attempt:1;
195 __u32 reservedz:31;
196} __packed;
197
198/*
199 * Version response message; Host to Guest and indicates
200 * if the host has accepted the version sent by the guest.
201 *
202 * is_accepted: If TRUE, host has accepted the version and the guest
203 * should proceed to the next stage of the protocol. FALSE indicates that
204 * guest should re-try with a different version.
205 *
206 * reservedz: Reserved field, set to zero.
207 */
208
209struct dm_version_response {
210 struct dm_header hdr;
211 __u64 is_accepted:1;
212 __u64 reservedz:63;
213} __packed;
214
215/*
216 * Message reporting capabilities. This is sent from the guest to the
217 * host.
218 */
219
220struct dm_capabilities {
221 struct dm_header hdr;
222 union dm_caps caps;
223 __u64 min_page_cnt;
224 __u64 max_page_number;
225} __packed;
226
227/*
228 * Response to the capabilities message. This is sent from the host to the
229 * guest. This message notifies if the host has accepted the guest's
230 * capabilities. If the host has not accepted, the guest must shutdown
231 * the service.
232 *
233 * is_accepted: Indicates if the host has accepted guest's capabilities.
234 * reservedz: Must be 0.
235 */
236
237struct dm_capabilities_resp_msg {
238 struct dm_header hdr;
239 __u64 is_accepted:1;
240 __u64 reservedz:63;
241} __packed;
242
243/*
244 * This message is used to report memory pressure from the guest.
245 * This message is not part of any transaction and there is no
246 * response to this message.
247 *
248 * num_avail: Available memory in pages.
249 * num_committed: Committed memory in pages.
250 * page_file_size: The accumulated size of all page files
251 * in the system in pages.
252 * zero_free: The number of zero and free pages.
253 * page_file_writes: The writes to the page file in pages.
254 * io_diff: An indicator of file cache efficiency or page file activity,
255 * calculated as File Cache Page Fault Count - Page Read Count.
256 * This value is in pages.
257 *
258 * Some of these metrics are Windows specific and fortunately
259 * the algorithm on the host side that computes the guest memory
260 * pressure only uses num_committed value.
261 */
262
263struct dm_status {
264 struct dm_header hdr;
265 __u64 num_avail;
266 __u64 num_committed;
267 __u64 page_file_size;
268 __u64 zero_free;
269 __u32 page_file_writes;
270 __u32 io_diff;
271} __packed;
272
273
274/*
275 * Message to ask the guest to allocate memory - balloon up message.
276 * This message is sent from the host to the guest. The guest may not be
277 * able to allocate as much memory as requested.
278 *
279 * num_pages: number of pages to allocate.
280 */
281
282struct dm_balloon {
283 struct dm_header hdr;
284 __u32 num_pages;
285 __u32 reservedz;
286} __packed;
287
288
289/*
290 * Balloon response message; this message is sent from the guest
291 * to the host in response to the balloon message.
292 *
293 * reservedz: Reserved; must be set to zero.
294 * more_pages: If FALSE, this is the last message of the transaction.
295 * if TRUE there will atleast one more message from the guest.
296 *
297 * range_count: The number of ranges in the range array.
298 *
299 * range_array: An array of page ranges returned to the host.
300 *
301 */
302
303struct dm_balloon_response {
304 struct dm_header hdr;
305 __u32 reservedz;
306 __u32 more_pages:1;
307 __u32 range_count:31;
308 union dm_mem_page_range range_array[];
309} __packed;
310
311/*
312 * Un-balloon message; this message is sent from the host
313 * to the guest to give guest more memory.
314 *
315 * more_pages: If FALSE, this is the last message of the transaction.
316 * if TRUE there will atleast one more message from the guest.
317 *
318 * reservedz: Reserved; must be set to zero.
319 *
320 * range_count: The number of ranges in the range array.
321 *
322 * range_array: An array of page ranges returned to the host.
323 *
324 */
325
326struct dm_unballoon_request {
327 struct dm_header hdr;
328 __u32 more_pages:1;
329 __u32 reservedz:31;
330 __u32 range_count;
331 union dm_mem_page_range range_array[];
332} __packed;
333
334/*
335 * Un-balloon response message; this message is sent from the guest
336 * to the host in response to an unballoon request.
337 *
338 */
339
340struct dm_unballoon_response {
341 struct dm_header hdr;
342} __packed;
343
344
345/*
346 * Hot add request message. Message sent from the host to the guest.
347 *
348 * mem_range: Memory range to hot add.
349 *
350 */
351
352struct dm_hot_add {
353 struct dm_header hdr;
354 union dm_mem_page_range range;
355} __packed;
356
357/*
358 * Hot add response message.
359 * This message is sent by the guest to report the status of a hot add request.
360 * If page_count is less than the requested page count, then the host should
361 * assume all further hot add requests will fail, since this indicates that
362 * the guest has hit an upper physical memory barrier.
363 *
364 * Hot adds may also fail due to low resources; in this case, the guest must
365 * not complete this message until the hot add can succeed, and the host must
366 * not send a new hot add request until the response is sent.
367 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
368 * times it fails the request.
369 *
370 *
371 * page_count: number of pages that were successfully hot added.
372 *
373 * result: result of the operation 1: success, 0: failure.
374 *
375 */
376
377struct dm_hot_add_response {
378 struct dm_header hdr;
379 __u32 page_count;
380 __u32 result;
381} __packed;
382
383/*
384 * Types of information sent from host to the guest.
385 */
386
387enum dm_info_type {
388 INFO_TYPE_MAX_PAGE_CNT = 0,
389 MAX_INFO_TYPE
390};
391
392
393/*
394 * Header for the information message.
395 */
396
397struct dm_info_header {
398 enum dm_info_type type;
399 __u32 data_size;
400} __packed;
401
402/*
403 * This message is sent from the host to the guest to pass
404 * some relevant information (win8 addition).
405 *
406 * reserved: no used.
407 * info_size: size of the information blob.
408 * info: information blob.
409 */
410
411struct dm_info_msg {
412 struct dm_header hdr;
413 __u32 reserved;
414 __u32 info_size;
415 __u8 info[];
416};
417
418/*
419 * End protocol definitions.
420 */
421
422/*
423 * State to manage hot adding memory into the guest.
424 * The range start_pfn : end_pfn specifies the range
425 * that the host has asked us to hot add. The range
426 * start_pfn : ha_end_pfn specifies the range that we have
427 * currently hot added. We hot add in multiples of 128M
428 * chunks; it is possible that we may not be able to bring
429 * online all the pages in the region. The range
430 * covered_start_pfn:covered_end_pfn defines the pages that can
431 * be brough online.
432 */
433
434struct hv_hotadd_state {
435 struct list_head list;
436 unsigned long start_pfn;
437 unsigned long covered_start_pfn;
438 unsigned long covered_end_pfn;
439 unsigned long ha_end_pfn;
440 unsigned long end_pfn;
441 /*
442 * A list of gaps.
443 */
444 struct list_head gap_list;
445};
446
447struct hv_hotadd_gap {
448 struct list_head list;
449 unsigned long start_pfn;
450 unsigned long end_pfn;
451};
452
453struct balloon_state {
454 __u32 num_pages;
455 struct work_struct wrk;
456};
457
458struct hot_add_wrk {
459 union dm_mem_page_range ha_page_range;
460 union dm_mem_page_range ha_region_range;
461 struct work_struct wrk;
462};
463
464static bool allow_hibernation;
465static bool hot_add = true;
466static bool do_hot_add;
467/*
468 * Delay reporting memory pressure by
469 * the specified number of seconds.
470 */
471static uint pressure_report_delay = 45;
472extern unsigned int page_reporting_order;
473#define HV_MAX_FAILURES 2
474
475/*
476 * The last time we posted a pressure report to host.
477 */
478static unsigned long last_post_time;
479
480static int hv_hypercall_multi_failure;
481
482module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
483MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
484
485module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
486MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
487static atomic_t trans_id = ATOMIC_INIT(0);
488
489static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024);
490
491/*
492 * Driver specific state.
493 */
494
495enum hv_dm_state {
496 DM_INITIALIZING = 0,
497 DM_INITIALIZED,
498 DM_BALLOON_UP,
499 DM_BALLOON_DOWN,
500 DM_HOT_ADD,
501 DM_INIT_ERROR
502};
503
504
505static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
506static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
507#define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
508#define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
509
510struct hv_dynmem_device {
511 struct hv_device *dev;
512 enum hv_dm_state state;
513 struct completion host_event;
514 struct completion config_event;
515
516 /*
517 * Number of pages we have currently ballooned out.
518 */
519 unsigned int num_pages_ballooned;
520 unsigned int num_pages_onlined;
521 unsigned int num_pages_added;
522
523 /*
524 * State to manage the ballooning (up) operation.
525 */
526 struct balloon_state balloon_wrk;
527
528 /*
529 * State to execute the "hot-add" operation.
530 */
531 struct hot_add_wrk ha_wrk;
532
533 /*
534 * This state tracks if the host has specified a hot-add
535 * region.
536 */
537 bool host_specified_ha_region;
538
539 /*
540 * State to synchronize hot-add.
541 */
542 struct completion ol_waitevent;
543 /*
544 * This thread handles hot-add
545 * requests from the host as well as notifying
546 * the host with regards to memory pressure in
547 * the guest.
548 */
549 struct task_struct *thread;
550
551 /*
552 * Protects ha_region_list, num_pages_onlined counter and individual
553 * regions from ha_region_list.
554 */
555 spinlock_t ha_lock;
556
557 /*
558 * A list of hot-add regions.
559 */
560 struct list_head ha_region_list;
561
562 /*
563 * We start with the highest version we can support
564 * and downgrade based on the host; we save here the
565 * next version to try.
566 */
567 __u32 next_version;
568
569 /*
570 * The negotiated version agreed by host.
571 */
572 __u32 version;
573
574 struct page_reporting_dev_info pr_dev_info;
575
576 /*
577 * Maximum number of pages that can be hot_add-ed
578 */
579 __u64 max_dynamic_page_count;
580};
581
582static struct hv_dynmem_device dm_device;
583
584static void post_status(struct hv_dynmem_device *dm);
585
586static void enable_page_reporting(void);
587
588static void disable_page_reporting(void);
589
590#ifdef CONFIG_MEMORY_HOTPLUG
591static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
592 unsigned long pfn)
593{
594 struct hv_hotadd_gap *gap;
595
596 /* The page is not backed. */
597 if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
598 return false;
599
600 /* Check for gaps. */
601 list_for_each_entry(gap, &has->gap_list, list) {
602 if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
603 return false;
604 }
605
606 return true;
607}
608
609static unsigned long hv_page_offline_check(unsigned long start_pfn,
610 unsigned long nr_pages)
611{
612 unsigned long pfn = start_pfn, count = 0;
613 struct hv_hotadd_state *has;
614 bool found;
615
616 while (pfn < start_pfn + nr_pages) {
617 /*
618 * Search for HAS which covers the pfn and when we find one
619 * count how many consequitive PFNs are covered.
620 */
621 found = false;
622 list_for_each_entry(has, &dm_device.ha_region_list, list) {
623 while ((pfn >= has->start_pfn) &&
624 (pfn < has->end_pfn) &&
625 (pfn < start_pfn + nr_pages)) {
626 found = true;
627 if (has_pfn_is_backed(has, pfn))
628 count++;
629 pfn++;
630 }
631 }
632
633 /*
634 * This PFN is not in any HAS (e.g. we're offlining a region
635 * which was present at boot), no need to account for it. Go
636 * to the next one.
637 */
638 if (!found)
639 pfn++;
640 }
641
642 return count;
643}
644
645static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
646 void *v)
647{
648 struct memory_notify *mem = (struct memory_notify *)v;
649 unsigned long flags, pfn_count;
650
651 switch (val) {
652 case MEM_ONLINE:
653 case MEM_CANCEL_ONLINE:
654 complete(&dm_device.ol_waitevent);
655 break;
656
657 case MEM_OFFLINE:
658 spin_lock_irqsave(&dm_device.ha_lock, flags);
659 pfn_count = hv_page_offline_check(mem->start_pfn,
660 mem->nr_pages);
661 if (pfn_count <= dm_device.num_pages_onlined) {
662 dm_device.num_pages_onlined -= pfn_count;
663 } else {
664 /*
665 * We're offlining more pages than we managed to online.
666 * This is unexpected. In any case don't let
667 * num_pages_onlined wrap around zero.
668 */
669 WARN_ON_ONCE(1);
670 dm_device.num_pages_onlined = 0;
671 }
672 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
673 break;
674 case MEM_GOING_ONLINE:
675 case MEM_GOING_OFFLINE:
676 case MEM_CANCEL_OFFLINE:
677 break;
678 }
679 return NOTIFY_OK;
680}
681
682static struct notifier_block hv_memory_nb = {
683 .notifier_call = hv_memory_notifier,
684 .priority = 0
685};
686
687/* Check if the particular page is backed and can be onlined and online it. */
688static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
689{
690 if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
691 if (!PageOffline(pg))
692 __SetPageOffline(pg);
693 return;
694 }
695 if (PageOffline(pg))
696 __ClearPageOffline(pg);
697
698 /* This frame is currently backed; online the page. */
699 generic_online_page(pg, 0);
700
701 lockdep_assert_held(&dm_device.ha_lock);
702 dm_device.num_pages_onlined++;
703}
704
705static void hv_bring_pgs_online(struct hv_hotadd_state *has,
706 unsigned long start_pfn, unsigned long size)
707{
708 int i;
709
710 pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
711 for (i = 0; i < size; i++)
712 hv_page_online_one(has, pfn_to_page(start_pfn + i));
713}
714
715static void hv_mem_hot_add(unsigned long start, unsigned long size,
716 unsigned long pfn_count,
717 struct hv_hotadd_state *has)
718{
719 int ret = 0;
720 int i, nid;
721 unsigned long start_pfn;
722 unsigned long processed_pfn;
723 unsigned long total_pfn = pfn_count;
724 unsigned long flags;
725
726 for (i = 0; i < (size/HA_CHUNK); i++) {
727 start_pfn = start + (i * HA_CHUNK);
728
729 spin_lock_irqsave(&dm_device.ha_lock, flags);
730 has->ha_end_pfn += HA_CHUNK;
731
732 if (total_pfn > HA_CHUNK) {
733 processed_pfn = HA_CHUNK;
734 total_pfn -= HA_CHUNK;
735 } else {
736 processed_pfn = total_pfn;
737 total_pfn = 0;
738 }
739
740 has->covered_end_pfn += processed_pfn;
741 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
742
743 reinit_completion(&dm_device.ol_waitevent);
744
745 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
746 ret = add_memory(nid, PFN_PHYS((start_pfn)),
747 (HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE);
748
749 if (ret) {
750 pr_err("hot_add memory failed error is %d\n", ret);
751 if (ret == -EEXIST) {
752 /*
753 * This error indicates that the error
754 * is not a transient failure. This is the
755 * case where the guest's physical address map
756 * precludes hot adding memory. Stop all further
757 * memory hot-add.
758 */
759 do_hot_add = false;
760 }
761 spin_lock_irqsave(&dm_device.ha_lock, flags);
762 has->ha_end_pfn -= HA_CHUNK;
763 has->covered_end_pfn -= processed_pfn;
764 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
765 break;
766 }
767
768 /*
769 * Wait for memory to get onlined. If the kernel onlined the
770 * memory when adding it, this will return directly. Otherwise,
771 * it will wait for user space to online the memory. This helps
772 * to avoid adding memory faster than it is getting onlined. As
773 * adding succeeded, it is ok to proceed even if the memory was
774 * not onlined in time.
775 */
776 wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
777 post_status(&dm_device);
778 }
779}
780
781static void hv_online_page(struct page *pg, unsigned int order)
782{
783 struct hv_hotadd_state *has;
784 unsigned long flags;
785 unsigned long pfn = page_to_pfn(pg);
786
787 spin_lock_irqsave(&dm_device.ha_lock, flags);
788 list_for_each_entry(has, &dm_device.ha_region_list, list) {
789 /* The page belongs to a different HAS. */
790 if ((pfn < has->start_pfn) ||
791 (pfn + (1UL << order) > has->end_pfn))
792 continue;
793
794 hv_bring_pgs_online(has, pfn, 1UL << order);
795 break;
796 }
797 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
798}
799
800static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
801{
802 struct hv_hotadd_state *has;
803 struct hv_hotadd_gap *gap;
804 unsigned long residual, new_inc;
805 int ret = 0;
806 unsigned long flags;
807
808 spin_lock_irqsave(&dm_device.ha_lock, flags);
809 list_for_each_entry(has, &dm_device.ha_region_list, list) {
810 /*
811 * If the pfn range we are dealing with is not in the current
812 * "hot add block", move on.
813 */
814 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
815 continue;
816
817 /*
818 * If the current start pfn is not where the covered_end
819 * is, create a gap and update covered_end_pfn.
820 */
821 if (has->covered_end_pfn != start_pfn) {
822 gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
823 if (!gap) {
824 ret = -ENOMEM;
825 break;
826 }
827
828 INIT_LIST_HEAD(&gap->list);
829 gap->start_pfn = has->covered_end_pfn;
830 gap->end_pfn = start_pfn;
831 list_add_tail(&gap->list, &has->gap_list);
832
833 has->covered_end_pfn = start_pfn;
834 }
835
836 /*
837 * If the current hot add-request extends beyond
838 * our current limit; extend it.
839 */
840 if ((start_pfn + pfn_cnt) > has->end_pfn) {
841 residual = (start_pfn + pfn_cnt - has->end_pfn);
842 /*
843 * Extend the region by multiples of HA_CHUNK.
844 */
845 new_inc = (residual / HA_CHUNK) * HA_CHUNK;
846 if (residual % HA_CHUNK)
847 new_inc += HA_CHUNK;
848
849 has->end_pfn += new_inc;
850 }
851
852 ret = 1;
853 break;
854 }
855 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
856
857 return ret;
858}
859
860static unsigned long handle_pg_range(unsigned long pg_start,
861 unsigned long pg_count)
862{
863 unsigned long start_pfn = pg_start;
864 unsigned long pfn_cnt = pg_count;
865 unsigned long size;
866 struct hv_hotadd_state *has;
867 unsigned long pgs_ol = 0;
868 unsigned long old_covered_state;
869 unsigned long res = 0, flags;
870
871 pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
872 pg_start);
873
874 spin_lock_irqsave(&dm_device.ha_lock, flags);
875 list_for_each_entry(has, &dm_device.ha_region_list, list) {
876 /*
877 * If the pfn range we are dealing with is not in the current
878 * "hot add block", move on.
879 */
880 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
881 continue;
882
883 old_covered_state = has->covered_end_pfn;
884
885 if (start_pfn < has->ha_end_pfn) {
886 /*
887 * This is the case where we are backing pages
888 * in an already hot added region. Bring
889 * these pages online first.
890 */
891 pgs_ol = has->ha_end_pfn - start_pfn;
892 if (pgs_ol > pfn_cnt)
893 pgs_ol = pfn_cnt;
894
895 has->covered_end_pfn += pgs_ol;
896 pfn_cnt -= pgs_ol;
897 /*
898 * Check if the corresponding memory block is already
899 * online. It is possible to observe struct pages still
900 * being uninitialized here so check section instead.
901 * In case the section is online we need to bring the
902 * rest of pfns (which were not backed previously)
903 * online too.
904 */
905 if (start_pfn > has->start_pfn &&
906 online_section_nr(pfn_to_section_nr(start_pfn)))
907 hv_bring_pgs_online(has, start_pfn, pgs_ol);
908
909 }
910
911 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
912 /*
913 * We have some residual hot add range
914 * that needs to be hot added; hot add
915 * it now. Hot add a multiple of
916 * HA_CHUNK that fully covers the pages
917 * we have.
918 */
919 size = (has->end_pfn - has->ha_end_pfn);
920 if (pfn_cnt <= size) {
921 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
922 if (pfn_cnt % HA_CHUNK)
923 size += HA_CHUNK;
924 } else {
925 pfn_cnt = size;
926 }
927 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
928 hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
929 spin_lock_irqsave(&dm_device.ha_lock, flags);
930 }
931 /*
932 * If we managed to online any pages that were given to us,
933 * we declare success.
934 */
935 res = has->covered_end_pfn - old_covered_state;
936 break;
937 }
938 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
939
940 return res;
941}
942
943static unsigned long process_hot_add(unsigned long pg_start,
944 unsigned long pfn_cnt,
945 unsigned long rg_start,
946 unsigned long rg_size)
947{
948 struct hv_hotadd_state *ha_region = NULL;
949 int covered;
950 unsigned long flags;
951
952 if (pfn_cnt == 0)
953 return 0;
954
955 if (!dm_device.host_specified_ha_region) {
956 covered = pfn_covered(pg_start, pfn_cnt);
957 if (covered < 0)
958 return 0;
959
960 if (covered)
961 goto do_pg_range;
962 }
963
964 /*
965 * If the host has specified a hot-add range; deal with it first.
966 */
967
968 if (rg_size != 0) {
969 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
970 if (!ha_region)
971 return 0;
972
973 INIT_LIST_HEAD(&ha_region->list);
974 INIT_LIST_HEAD(&ha_region->gap_list);
975
976 ha_region->start_pfn = rg_start;
977 ha_region->ha_end_pfn = rg_start;
978 ha_region->covered_start_pfn = pg_start;
979 ha_region->covered_end_pfn = pg_start;
980 ha_region->end_pfn = rg_start + rg_size;
981
982 spin_lock_irqsave(&dm_device.ha_lock, flags);
983 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
984 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
985 }
986
987do_pg_range:
988 /*
989 * Process the page range specified; bringing them
990 * online if possible.
991 */
992 return handle_pg_range(pg_start, pfn_cnt);
993}
994
995#endif
996
997static void hot_add_req(struct work_struct *dummy)
998{
999 struct dm_hot_add_response resp;
1000#ifdef CONFIG_MEMORY_HOTPLUG
1001 unsigned long pg_start, pfn_cnt;
1002 unsigned long rg_start, rg_sz;
1003#endif
1004 struct hv_dynmem_device *dm = &dm_device;
1005
1006 memset(&resp, 0, sizeof(struct dm_hot_add_response));
1007 resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
1008 resp.hdr.size = sizeof(struct dm_hot_add_response);
1009
1010#ifdef CONFIG_MEMORY_HOTPLUG
1011 pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
1012 pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
1013
1014 rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1015 rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1016
1017 if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1018 unsigned long region_size;
1019 unsigned long region_start;
1020
1021 /*
1022 * The host has not specified the hot-add region.
1023 * Based on the hot-add page range being specified,
1024 * compute a hot-add region that can cover the pages
1025 * that need to be hot-added while ensuring the alignment
1026 * and size requirements of Linux as it relates to hot-add.
1027 */
1028 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1029 if (pfn_cnt % HA_CHUNK)
1030 region_size += HA_CHUNK;
1031
1032 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1033
1034 rg_start = region_start;
1035 rg_sz = region_size;
1036 }
1037
1038 if (do_hot_add)
1039 resp.page_count = process_hot_add(pg_start, pfn_cnt,
1040 rg_start, rg_sz);
1041
1042 dm->num_pages_added += resp.page_count;
1043#endif
1044 /*
1045 * The result field of the response structure has the
1046 * following semantics:
1047 *
1048 * 1. If all or some pages hot-added: Guest should return success.
1049 *
1050 * 2. If no pages could be hot-added:
1051 *
1052 * If the guest returns success, then the host
1053 * will not attempt any further hot-add operations. This
1054 * signifies a permanent failure.
1055 *
1056 * If the guest returns failure, then this failure will be
1057 * treated as a transient failure and the host may retry the
1058 * hot-add operation after some delay.
1059 */
1060 if (resp.page_count > 0)
1061 resp.result = 1;
1062 else if (!do_hot_add)
1063 resp.result = 1;
1064 else
1065 resp.result = 0;
1066
1067 if (!do_hot_add || resp.page_count == 0) {
1068 if (!allow_hibernation)
1069 pr_err("Memory hot add failed\n");
1070 else
1071 pr_info("Ignore hot-add request!\n");
1072 }
1073
1074 dm->state = DM_INITIALIZED;
1075 resp.hdr.trans_id = atomic_inc_return(&trans_id);
1076 vmbus_sendpacket(dm->dev->channel, &resp,
1077 sizeof(struct dm_hot_add_response),
1078 (unsigned long)NULL,
1079 VM_PKT_DATA_INBAND, 0);
1080}
1081
1082static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1083{
1084 struct dm_info_header *info_hdr;
1085
1086 info_hdr = (struct dm_info_header *)msg->info;
1087
1088 switch (info_hdr->type) {
1089 case INFO_TYPE_MAX_PAGE_CNT:
1090 if (info_hdr->data_size == sizeof(__u64)) {
1091 __u64 *max_page_count = (__u64 *)&info_hdr[1];
1092
1093 pr_info("Max. dynamic memory size: %llu MB\n",
1094 (*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1095 dm->max_dynamic_page_count = *max_page_count;
1096 }
1097
1098 break;
1099 default:
1100 pr_warn("Received Unknown type: %d\n", info_hdr->type);
1101 }
1102}
1103
1104static unsigned long compute_balloon_floor(void)
1105{
1106 unsigned long min_pages;
1107 unsigned long nr_pages = totalram_pages();
1108#define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1109 /* Simple continuous piecewiese linear function:
1110 * max MiB -> min MiB gradient
1111 * 0 0
1112 * 16 16
1113 * 32 24
1114 * 128 72 (1/2)
1115 * 512 168 (1/4)
1116 * 2048 360 (1/8)
1117 * 8192 744 (1/16)
1118 * 32768 1512 (1/32)
1119 */
1120 if (nr_pages < MB2PAGES(128))
1121 min_pages = MB2PAGES(8) + (nr_pages >> 1);
1122 else if (nr_pages < MB2PAGES(512))
1123 min_pages = MB2PAGES(40) + (nr_pages >> 2);
1124 else if (nr_pages < MB2PAGES(2048))
1125 min_pages = MB2PAGES(104) + (nr_pages >> 3);
1126 else if (nr_pages < MB2PAGES(8192))
1127 min_pages = MB2PAGES(232) + (nr_pages >> 4);
1128 else
1129 min_pages = MB2PAGES(488) + (nr_pages >> 5);
1130#undef MB2PAGES
1131 return min_pages;
1132}
1133
1134/*
1135 * Compute total committed memory pages
1136 */
1137
1138static unsigned long get_pages_committed(struct hv_dynmem_device *dm)
1139{
1140 return vm_memory_committed() +
1141 dm->num_pages_ballooned +
1142 (dm->num_pages_added > dm->num_pages_onlined ?
1143 dm->num_pages_added - dm->num_pages_onlined : 0) +
1144 compute_balloon_floor();
1145}
1146
1147/*
1148 * Post our status as it relates memory pressure to the
1149 * host. Host expects the guests to post this status
1150 * periodically at 1 second intervals.
1151 *
1152 * The metrics specified in this protocol are very Windows
1153 * specific and so we cook up numbers here to convey our memory
1154 * pressure.
1155 */
1156
1157static void post_status(struct hv_dynmem_device *dm)
1158{
1159 struct dm_status status;
1160 unsigned long now = jiffies;
1161 unsigned long last_post = last_post_time;
1162 unsigned long num_pages_avail, num_pages_committed;
1163
1164 if (pressure_report_delay > 0) {
1165 --pressure_report_delay;
1166 return;
1167 }
1168
1169 if (!time_after(now, (last_post_time + HZ)))
1170 return;
1171
1172 memset(&status, 0, sizeof(struct dm_status));
1173 status.hdr.type = DM_STATUS_REPORT;
1174 status.hdr.size = sizeof(struct dm_status);
1175 status.hdr.trans_id = atomic_inc_return(&trans_id);
1176
1177 /*
1178 * The host expects the guest to report free and committed memory.
1179 * Furthermore, the host expects the pressure information to include
1180 * the ballooned out pages. For a given amount of memory that we are
1181 * managing we need to compute a floor below which we should not
1182 * balloon. Compute this and add it to the pressure report.
1183 * We also need to report all offline pages (num_pages_added -
1184 * num_pages_onlined) as committed to the host, otherwise it can try
1185 * asking us to balloon them out.
1186 */
1187 num_pages_avail = si_mem_available();
1188 num_pages_committed = get_pages_committed(dm);
1189
1190 trace_balloon_status(num_pages_avail, num_pages_committed,
1191 vm_memory_committed(), dm->num_pages_ballooned,
1192 dm->num_pages_added, dm->num_pages_onlined);
1193
1194 /* Convert numbers of pages into numbers of HV_HYP_PAGEs. */
1195 status.num_avail = num_pages_avail * NR_HV_HYP_PAGES_IN_PAGE;
1196 status.num_committed = num_pages_committed * NR_HV_HYP_PAGES_IN_PAGE;
1197
1198 /*
1199 * If our transaction ID is no longer current, just don't
1200 * send the status. This can happen if we were interrupted
1201 * after we picked our transaction ID.
1202 */
1203 if (status.hdr.trans_id != atomic_read(&trans_id))
1204 return;
1205
1206 /*
1207 * If the last post time that we sampled has changed,
1208 * we have raced, don't post the status.
1209 */
1210 if (last_post != last_post_time)
1211 return;
1212
1213 last_post_time = jiffies;
1214 vmbus_sendpacket(dm->dev->channel, &status,
1215 sizeof(struct dm_status),
1216 (unsigned long)NULL,
1217 VM_PKT_DATA_INBAND, 0);
1218
1219}
1220
1221static void free_balloon_pages(struct hv_dynmem_device *dm,
1222 union dm_mem_page_range *range_array)
1223{
1224 int num_pages = range_array->finfo.page_cnt;
1225 __u64 start_frame = range_array->finfo.start_page;
1226 struct page *pg;
1227 int i;
1228
1229 for (i = 0; i < num_pages; i++) {
1230 pg = pfn_to_page(i + start_frame);
1231 __ClearPageOffline(pg);
1232 __free_page(pg);
1233 dm->num_pages_ballooned--;
1234 adjust_managed_page_count(pg, 1);
1235 }
1236}
1237
1238
1239
1240static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1241 unsigned int num_pages,
1242 struct dm_balloon_response *bl_resp,
1243 int alloc_unit)
1244{
1245 unsigned int i, j;
1246 struct page *pg;
1247
1248 for (i = 0; i < num_pages / alloc_unit; i++) {
1249 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1250 HV_HYP_PAGE_SIZE)
1251 return i * alloc_unit;
1252
1253 /*
1254 * We execute this code in a thread context. Furthermore,
1255 * we don't want the kernel to try too hard.
1256 */
1257 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1258 __GFP_NOMEMALLOC | __GFP_NOWARN,
1259 get_order(alloc_unit << PAGE_SHIFT));
1260
1261 if (!pg)
1262 return i * alloc_unit;
1263
1264 dm->num_pages_ballooned += alloc_unit;
1265
1266 /*
1267 * If we allocatted 2M pages; split them so we
1268 * can free them in any order we get.
1269 */
1270
1271 if (alloc_unit != 1)
1272 split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1273
1274 /* mark all pages offline */
1275 for (j = 0; j < alloc_unit; j++) {
1276 __SetPageOffline(pg + j);
1277 adjust_managed_page_count(pg + j, -1);
1278 }
1279
1280 bl_resp->range_count++;
1281 bl_resp->range_array[i].finfo.start_page =
1282 page_to_pfn(pg);
1283 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1284 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1285
1286 }
1287
1288 return i * alloc_unit;
1289}
1290
1291static void balloon_up(struct work_struct *dummy)
1292{
1293 unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1294 unsigned int num_ballooned = 0;
1295 struct dm_balloon_response *bl_resp;
1296 int alloc_unit;
1297 int ret;
1298 bool done = false;
1299 int i;
1300 long avail_pages;
1301 unsigned long floor;
1302
1303 /*
1304 * We will attempt 2M allocations. However, if we fail to
1305 * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1306 */
1307 alloc_unit = PAGES_IN_2M;
1308
1309 avail_pages = si_mem_available();
1310 floor = compute_balloon_floor();
1311
1312 /* Refuse to balloon below the floor. */
1313 if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1314 pr_info("Balloon request will be partially fulfilled. %s\n",
1315 avail_pages < num_pages ? "Not enough memory." :
1316 "Balloon floor reached.");
1317
1318 num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1319 }
1320
1321 while (!done) {
1322 memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1323 bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1324 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1325 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1326 bl_resp->more_pages = 1;
1327
1328 num_pages -= num_ballooned;
1329 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1330 bl_resp, alloc_unit);
1331
1332 if (alloc_unit != 1 && num_ballooned == 0) {
1333 alloc_unit = 1;
1334 continue;
1335 }
1336
1337 if (num_ballooned == 0 || num_ballooned == num_pages) {
1338 pr_debug("Ballooned %u out of %u requested pages.\n",
1339 num_pages, dm_device.balloon_wrk.num_pages);
1340
1341 bl_resp->more_pages = 0;
1342 done = true;
1343 dm_device.state = DM_INITIALIZED;
1344 }
1345
1346 /*
1347 * We are pushing a lot of data through the channel;
1348 * deal with transient failures caused because of the
1349 * lack of space in the ring buffer.
1350 */
1351
1352 do {
1353 bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1354 ret = vmbus_sendpacket(dm_device.dev->channel,
1355 bl_resp,
1356 bl_resp->hdr.size,
1357 (unsigned long)NULL,
1358 VM_PKT_DATA_INBAND, 0);
1359
1360 if (ret == -EAGAIN)
1361 msleep(20);
1362 post_status(&dm_device);
1363 } while (ret == -EAGAIN);
1364
1365 if (ret) {
1366 /*
1367 * Free up the memory we allocatted.
1368 */
1369 pr_err("Balloon response failed\n");
1370
1371 for (i = 0; i < bl_resp->range_count; i++)
1372 free_balloon_pages(&dm_device,
1373 &bl_resp->range_array[i]);
1374
1375 done = true;
1376 }
1377 }
1378
1379}
1380
1381static void balloon_down(struct hv_dynmem_device *dm,
1382 struct dm_unballoon_request *req)
1383{
1384 union dm_mem_page_range *range_array = req->range_array;
1385 int range_count = req->range_count;
1386 struct dm_unballoon_response resp;
1387 int i;
1388 unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1389
1390 for (i = 0; i < range_count; i++) {
1391 free_balloon_pages(dm, &range_array[i]);
1392 complete(&dm_device.config_event);
1393 }
1394
1395 pr_debug("Freed %u ballooned pages.\n",
1396 prev_pages_ballooned - dm->num_pages_ballooned);
1397
1398 if (req->more_pages == 1)
1399 return;
1400
1401 memset(&resp, 0, sizeof(struct dm_unballoon_response));
1402 resp.hdr.type = DM_UNBALLOON_RESPONSE;
1403 resp.hdr.trans_id = atomic_inc_return(&trans_id);
1404 resp.hdr.size = sizeof(struct dm_unballoon_response);
1405
1406 vmbus_sendpacket(dm_device.dev->channel, &resp,
1407 sizeof(struct dm_unballoon_response),
1408 (unsigned long)NULL,
1409 VM_PKT_DATA_INBAND, 0);
1410
1411 dm->state = DM_INITIALIZED;
1412}
1413
1414static void balloon_onchannelcallback(void *context);
1415
1416static int dm_thread_func(void *dm_dev)
1417{
1418 struct hv_dynmem_device *dm = dm_dev;
1419
1420 while (!kthread_should_stop()) {
1421 wait_for_completion_interruptible_timeout(
1422 &dm_device.config_event, 1*HZ);
1423 /*
1424 * The host expects us to post information on the memory
1425 * pressure every second.
1426 */
1427 reinit_completion(&dm_device.config_event);
1428 post_status(dm);
1429 /*
1430 * disable free page reporting if multiple hypercall
1431 * failure flag set. It is not done in the page_reporting
1432 * callback context as that causes a deadlock between
1433 * page_reporting_process() and page_reporting_unregister()
1434 */
1435 if (hv_hypercall_multi_failure >= HV_MAX_FAILURES) {
1436 pr_err("Multiple failures in cold memory discard hypercall, disabling page reporting\n");
1437 disable_page_reporting();
1438 /* Reset the flag after disabling reporting */
1439 hv_hypercall_multi_failure = 0;
1440 }
1441 }
1442
1443 return 0;
1444}
1445
1446
1447static void version_resp(struct hv_dynmem_device *dm,
1448 struct dm_version_response *vresp)
1449{
1450 struct dm_version_request version_req;
1451 int ret;
1452
1453 if (vresp->is_accepted) {
1454 /*
1455 * We are done; wakeup the
1456 * context waiting for version
1457 * negotiation.
1458 */
1459 complete(&dm->host_event);
1460 return;
1461 }
1462 /*
1463 * If there are more versions to try, continue
1464 * with negotiations; if not
1465 * shutdown the service since we are not able
1466 * to negotiate a suitable version number
1467 * with the host.
1468 */
1469 if (dm->next_version == 0)
1470 goto version_error;
1471
1472 memset(&version_req, 0, sizeof(struct dm_version_request));
1473 version_req.hdr.type = DM_VERSION_REQUEST;
1474 version_req.hdr.size = sizeof(struct dm_version_request);
1475 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1476 version_req.version.version = dm->next_version;
1477 dm->version = version_req.version.version;
1478
1479 /*
1480 * Set the next version to try in case current version fails.
1481 * Win7 protocol ought to be the last one to try.
1482 */
1483 switch (version_req.version.version) {
1484 case DYNMEM_PROTOCOL_VERSION_WIN8:
1485 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1486 version_req.is_last_attempt = 0;
1487 break;
1488 default:
1489 dm->next_version = 0;
1490 version_req.is_last_attempt = 1;
1491 }
1492
1493 ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1494 sizeof(struct dm_version_request),
1495 (unsigned long)NULL,
1496 VM_PKT_DATA_INBAND, 0);
1497
1498 if (ret)
1499 goto version_error;
1500
1501 return;
1502
1503version_error:
1504 dm->state = DM_INIT_ERROR;
1505 complete(&dm->host_event);
1506}
1507
1508static void cap_resp(struct hv_dynmem_device *dm,
1509 struct dm_capabilities_resp_msg *cap_resp)
1510{
1511 if (!cap_resp->is_accepted) {
1512 pr_err("Capabilities not accepted by host\n");
1513 dm->state = DM_INIT_ERROR;
1514 }
1515 complete(&dm->host_event);
1516}
1517
1518static void balloon_onchannelcallback(void *context)
1519{
1520 struct hv_device *dev = context;
1521 u32 recvlen;
1522 u64 requestid;
1523 struct dm_message *dm_msg;
1524 struct dm_header *dm_hdr;
1525 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1526 struct dm_balloon *bal_msg;
1527 struct dm_hot_add *ha_msg;
1528 union dm_mem_page_range *ha_pg_range;
1529 union dm_mem_page_range *ha_region;
1530
1531 memset(recv_buffer, 0, sizeof(recv_buffer));
1532 vmbus_recvpacket(dev->channel, recv_buffer,
1533 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1534
1535 if (recvlen > 0) {
1536 dm_msg = (struct dm_message *)recv_buffer;
1537 dm_hdr = &dm_msg->hdr;
1538
1539 switch (dm_hdr->type) {
1540 case DM_VERSION_RESPONSE:
1541 version_resp(dm,
1542 (struct dm_version_response *)dm_msg);
1543 break;
1544
1545 case DM_CAPABILITIES_RESPONSE:
1546 cap_resp(dm,
1547 (struct dm_capabilities_resp_msg *)dm_msg);
1548 break;
1549
1550 case DM_BALLOON_REQUEST:
1551 if (allow_hibernation) {
1552 pr_info("Ignore balloon-up request!\n");
1553 break;
1554 }
1555
1556 if (dm->state == DM_BALLOON_UP)
1557 pr_warn("Currently ballooning\n");
1558 bal_msg = (struct dm_balloon *)recv_buffer;
1559 dm->state = DM_BALLOON_UP;
1560 dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1561 schedule_work(&dm_device.balloon_wrk.wrk);
1562 break;
1563
1564 case DM_UNBALLOON_REQUEST:
1565 if (allow_hibernation) {
1566 pr_info("Ignore balloon-down request!\n");
1567 break;
1568 }
1569
1570 dm->state = DM_BALLOON_DOWN;
1571 balloon_down(dm,
1572 (struct dm_unballoon_request *)recv_buffer);
1573 break;
1574
1575 case DM_MEM_HOT_ADD_REQUEST:
1576 if (dm->state == DM_HOT_ADD)
1577 pr_warn("Currently hot-adding\n");
1578 dm->state = DM_HOT_ADD;
1579 ha_msg = (struct dm_hot_add *)recv_buffer;
1580 if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1581 /*
1582 * This is a normal hot-add request specifying
1583 * hot-add memory.
1584 */
1585 dm->host_specified_ha_region = false;
1586 ha_pg_range = &ha_msg->range;
1587 dm->ha_wrk.ha_page_range = *ha_pg_range;
1588 dm->ha_wrk.ha_region_range.page_range = 0;
1589 } else {
1590 /*
1591 * Host is specifying that we first hot-add
1592 * a region and then partially populate this
1593 * region.
1594 */
1595 dm->host_specified_ha_region = true;
1596 ha_pg_range = &ha_msg->range;
1597 ha_region = &ha_pg_range[1];
1598 dm->ha_wrk.ha_page_range = *ha_pg_range;
1599 dm->ha_wrk.ha_region_range = *ha_region;
1600 }
1601 schedule_work(&dm_device.ha_wrk.wrk);
1602 break;
1603
1604 case DM_INFO_MESSAGE:
1605 process_info(dm, (struct dm_info_msg *)dm_msg);
1606 break;
1607
1608 default:
1609 pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type);
1610
1611 }
1612 }
1613
1614}
1615
1616#define HV_LARGE_REPORTING_ORDER 9
1617#define HV_LARGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << \
1618 HV_LARGE_REPORTING_ORDER)
1619static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info,
1620 struct scatterlist *sgl, unsigned int nents)
1621{
1622 unsigned long flags;
1623 struct hv_memory_hint *hint;
1624 int i, order;
1625 u64 status;
1626 struct scatterlist *sg;
1627
1628 WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1629 WARN_ON_ONCE(sgl->length < (HV_HYP_PAGE_SIZE << page_reporting_order));
1630 local_irq_save(flags);
1631 hint = *(struct hv_memory_hint **)this_cpu_ptr(hyperv_pcpu_input_arg);
1632 if (!hint) {
1633 local_irq_restore(flags);
1634 return -ENOSPC;
1635 }
1636
1637 hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD;
1638 hint->reserved = 0;
1639 for_each_sg(sgl, sg, nents, i) {
1640 union hv_gpa_page_range *range;
1641
1642 range = &hint->ranges[i];
1643 range->address_space = 0;
1644 order = get_order(sg->length);
1645 /*
1646 * Hyper-V expects the additional_pages field in the units
1647 * of one of these 3 sizes, 4Kbytes, 2Mbytes or 1Gbytes.
1648 * This is dictated by the values of the fields page.largesize
1649 * and page_size.
1650 * This code however, only uses 4Kbytes and 2Mbytes units
1651 * and not 1Gbytes unit.
1652 */
1653
1654 /* page reporting for pages 2MB or higher */
1655 if (order >= HV_LARGE_REPORTING_ORDER ) {
1656 range->page.largepage = 1;
1657 range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB;
1658 range->base_large_pfn = page_to_hvpfn(
1659 sg_page(sg)) >> HV_LARGE_REPORTING_ORDER;
1660 range->page.additional_pages =
1661 (sg->length / HV_LARGE_REPORTING_LEN) - 1;
1662 } else {
1663 /* Page reporting for pages below 2MB */
1664 range->page.basepfn = page_to_hvpfn(sg_page(sg));
1665 range->page.largepage = false;
1666 range->page.additional_pages =
1667 (sg->length / HV_HYP_PAGE_SIZE) - 1;
1668 }
1669
1670 }
1671
1672 status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0,
1673 hint, NULL);
1674 local_irq_restore(flags);
1675 if (!hv_result_success(status)) {
1676
1677 pr_err("Cold memory discard hypercall failed with status %llx\n",
1678 status);
1679 if (hv_hypercall_multi_failure > 0)
1680 hv_hypercall_multi_failure++;
1681
1682 if (hv_result(status) == HV_STATUS_INVALID_PARAMETER) {
1683 pr_err("Underlying Hyper-V does not support order less than 9. Hypercall failed\n");
1684 pr_err("Defaulting to page_reporting_order %d\n",
1685 pageblock_order);
1686 page_reporting_order = pageblock_order;
1687 hv_hypercall_multi_failure++;
1688 return -EINVAL;
1689 }
1690
1691 return -EINVAL;
1692 }
1693
1694 return 0;
1695}
1696
1697static void enable_page_reporting(void)
1698{
1699 int ret;
1700
1701 if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) {
1702 pr_debug("Cold memory discard hint not supported by Hyper-V\n");
1703 return;
1704 }
1705
1706 BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1707 dm_device.pr_dev_info.report = hv_free_page_report;
1708 /*
1709 * We let the page_reporting_order parameter decide the order
1710 * in the page_reporting code
1711 */
1712 dm_device.pr_dev_info.order = 0;
1713 ret = page_reporting_register(&dm_device.pr_dev_info);
1714 if (ret < 0) {
1715 dm_device.pr_dev_info.report = NULL;
1716 pr_err("Failed to enable cold memory discard: %d\n", ret);
1717 } else {
1718 pr_info("Cold memory discard hint enabled with order %d\n",
1719 page_reporting_order);
1720 }
1721}
1722
1723static void disable_page_reporting(void)
1724{
1725 if (dm_device.pr_dev_info.report) {
1726 page_reporting_unregister(&dm_device.pr_dev_info);
1727 dm_device.pr_dev_info.report = NULL;
1728 }
1729}
1730
1731static int ballooning_enabled(void)
1732{
1733 /*
1734 * Disable ballooning if the page size is not 4k (HV_HYP_PAGE_SIZE),
1735 * since currently it's unclear to us whether an unballoon request can
1736 * make sure all page ranges are guest page size aligned.
1737 */
1738 if (PAGE_SIZE != HV_HYP_PAGE_SIZE) {
1739 pr_info("Ballooning disabled because page size is not 4096 bytes\n");
1740 return 0;
1741 }
1742
1743 return 1;
1744}
1745
1746static int hot_add_enabled(void)
1747{
1748 /*
1749 * Disable hot add on ARM64, because we currently rely on
1750 * memory_add_physaddr_to_nid() to get a node id of a hot add range,
1751 * however ARM64's memory_add_physaddr_to_nid() always return 0 and
1752 * DM_MEM_HOT_ADD_REQUEST doesn't have the NUMA node information for
1753 * add_memory().
1754 */
1755 if (IS_ENABLED(CONFIG_ARM64)) {
1756 pr_info("Memory hot add disabled on ARM64\n");
1757 return 0;
1758 }
1759
1760 return 1;
1761}
1762
1763static int balloon_connect_vsp(struct hv_device *dev)
1764{
1765 struct dm_version_request version_req;
1766 struct dm_capabilities cap_msg;
1767 unsigned long t;
1768 int ret;
1769
1770 /*
1771 * max_pkt_size should be large enough for one vmbus packet header plus
1772 * our receive buffer size. Hyper-V sends messages up to
1773 * HV_HYP_PAGE_SIZE bytes long on balloon channel.
1774 */
1775 dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2;
1776
1777 ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1778 balloon_onchannelcallback, dev);
1779 if (ret)
1780 return ret;
1781
1782 /*
1783 * Initiate the hand shake with the host and negotiate
1784 * a version that the host can support. We start with the
1785 * highest version number and go down if the host cannot
1786 * support it.
1787 */
1788 memset(&version_req, 0, sizeof(struct dm_version_request));
1789 version_req.hdr.type = DM_VERSION_REQUEST;
1790 version_req.hdr.size = sizeof(struct dm_version_request);
1791 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1792 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1793 version_req.is_last_attempt = 0;
1794 dm_device.version = version_req.version.version;
1795
1796 ret = vmbus_sendpacket(dev->channel, &version_req,
1797 sizeof(struct dm_version_request),
1798 (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1799 if (ret)
1800 goto out;
1801
1802 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1803 if (t == 0) {
1804 ret = -ETIMEDOUT;
1805 goto out;
1806 }
1807
1808 /*
1809 * If we could not negotiate a compatible version with the host
1810 * fail the probe function.
1811 */
1812 if (dm_device.state == DM_INIT_ERROR) {
1813 ret = -EPROTO;
1814 goto out;
1815 }
1816
1817 pr_info("Using Dynamic Memory protocol version %u.%u\n",
1818 DYNMEM_MAJOR_VERSION(dm_device.version),
1819 DYNMEM_MINOR_VERSION(dm_device.version));
1820
1821 /*
1822 * Now submit our capabilities to the host.
1823 */
1824 memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1825 cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1826 cap_msg.hdr.size = sizeof(struct dm_capabilities);
1827 cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1828
1829 /*
1830 * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1831 * currently still requires the bits to be set, so we have to add code
1832 * to fail the host's hot-add and balloon up/down requests, if any.
1833 */
1834 cap_msg.caps.cap_bits.balloon = ballooning_enabled();
1835 cap_msg.caps.cap_bits.hot_add = hot_add_enabled();
1836
1837 /*
1838 * Specify our alignment requirements as it relates
1839 * memory hot-add. Specify 128MB alignment.
1840 */
1841 cap_msg.caps.cap_bits.hot_add_alignment = 7;
1842
1843 /*
1844 * Currently the host does not use these
1845 * values and we set them to what is done in the
1846 * Windows driver.
1847 */
1848 cap_msg.min_page_cnt = 0;
1849 cap_msg.max_page_number = -1;
1850
1851 ret = vmbus_sendpacket(dev->channel, &cap_msg,
1852 sizeof(struct dm_capabilities),
1853 (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1854 if (ret)
1855 goto out;
1856
1857 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1858 if (t == 0) {
1859 ret = -ETIMEDOUT;
1860 goto out;
1861 }
1862
1863 /*
1864 * If the host does not like our capabilities,
1865 * fail the probe function.
1866 */
1867 if (dm_device.state == DM_INIT_ERROR) {
1868 ret = -EPROTO;
1869 goto out;
1870 }
1871
1872 return 0;
1873out:
1874 vmbus_close(dev->channel);
1875 return ret;
1876}
1877
1878/*
1879 * DEBUGFS Interface
1880 */
1881#ifdef CONFIG_DEBUG_FS
1882
1883/**
1884 * hv_balloon_debug_show - shows statistics of balloon operations.
1885 * @f: pointer to the &struct seq_file.
1886 * @offset: ignored.
1887 *
1888 * Provides the statistics that can be accessed in hv-balloon in the debugfs.
1889 *
1890 * Return: zero on success or an error code.
1891 */
1892static int hv_balloon_debug_show(struct seq_file *f, void *offset)
1893{
1894 struct hv_dynmem_device *dm = f->private;
1895 char *sname;
1896
1897 seq_printf(f, "%-22s: %u.%u\n", "host_version",
1898 DYNMEM_MAJOR_VERSION(dm->version),
1899 DYNMEM_MINOR_VERSION(dm->version));
1900
1901 seq_printf(f, "%-22s:", "capabilities");
1902 if (ballooning_enabled())
1903 seq_puts(f, " enabled");
1904
1905 if (hot_add_enabled())
1906 seq_puts(f, " hot_add");
1907
1908 seq_puts(f, "\n");
1909
1910 seq_printf(f, "%-22s: %u", "state", dm->state);
1911 switch (dm->state) {
1912 case DM_INITIALIZING:
1913 sname = "Initializing";
1914 break;
1915 case DM_INITIALIZED:
1916 sname = "Initialized";
1917 break;
1918 case DM_BALLOON_UP:
1919 sname = "Balloon Up";
1920 break;
1921 case DM_BALLOON_DOWN:
1922 sname = "Balloon Down";
1923 break;
1924 case DM_HOT_ADD:
1925 sname = "Hot Add";
1926 break;
1927 case DM_INIT_ERROR:
1928 sname = "Error";
1929 break;
1930 default:
1931 sname = "Unknown";
1932 }
1933 seq_printf(f, " (%s)\n", sname);
1934
1935 /* HV Page Size */
1936 seq_printf(f, "%-22s: %ld\n", "page_size", HV_HYP_PAGE_SIZE);
1937
1938 /* Pages added with hot_add */
1939 seq_printf(f, "%-22s: %u\n", "pages_added", dm->num_pages_added);
1940
1941 /* pages that are "onlined"/used from pages_added */
1942 seq_printf(f, "%-22s: %u\n", "pages_onlined", dm->num_pages_onlined);
1943
1944 /* pages we have given back to host */
1945 seq_printf(f, "%-22s: %u\n", "pages_ballooned", dm->num_pages_ballooned);
1946
1947 seq_printf(f, "%-22s: %lu\n", "total_pages_committed",
1948 get_pages_committed(dm));
1949
1950 seq_printf(f, "%-22s: %llu\n", "max_dynamic_page_count",
1951 dm->max_dynamic_page_count);
1952
1953 return 0;
1954}
1955
1956DEFINE_SHOW_ATTRIBUTE(hv_balloon_debug);
1957
1958static void hv_balloon_debugfs_init(struct hv_dynmem_device *b)
1959{
1960 debugfs_create_file("hv-balloon", 0444, NULL, b,
1961 &hv_balloon_debug_fops);
1962}
1963
1964static void hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1965{
1966 debugfs_lookup_and_remove("hv-balloon", NULL);
1967}
1968
1969#else
1970
1971static inline void hv_balloon_debugfs_init(struct hv_dynmem_device *b)
1972{
1973}
1974
1975static inline void hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1976{
1977}
1978
1979#endif /* CONFIG_DEBUG_FS */
1980
1981static int balloon_probe(struct hv_device *dev,
1982 const struct hv_vmbus_device_id *dev_id)
1983{
1984 int ret;
1985
1986 allow_hibernation = hv_is_hibernation_supported();
1987 if (allow_hibernation)
1988 hot_add = false;
1989
1990#ifdef CONFIG_MEMORY_HOTPLUG
1991 do_hot_add = hot_add;
1992#else
1993 do_hot_add = false;
1994#endif
1995 dm_device.dev = dev;
1996 dm_device.state = DM_INITIALIZING;
1997 dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1998 init_completion(&dm_device.host_event);
1999 init_completion(&dm_device.config_event);
2000 INIT_LIST_HEAD(&dm_device.ha_region_list);
2001 spin_lock_init(&dm_device.ha_lock);
2002 INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
2003 INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
2004 dm_device.host_specified_ha_region = false;
2005
2006#ifdef CONFIG_MEMORY_HOTPLUG
2007 set_online_page_callback(&hv_online_page);
2008 init_completion(&dm_device.ol_waitevent);
2009 register_memory_notifier(&hv_memory_nb);
2010#endif
2011
2012 hv_set_drvdata(dev, &dm_device);
2013
2014 ret = balloon_connect_vsp(dev);
2015 if (ret != 0)
2016 goto connect_error;
2017
2018 enable_page_reporting();
2019 dm_device.state = DM_INITIALIZED;
2020
2021 dm_device.thread =
2022 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
2023 if (IS_ERR(dm_device.thread)) {
2024 ret = PTR_ERR(dm_device.thread);
2025 goto probe_error;
2026 }
2027
2028 hv_balloon_debugfs_init(&dm_device);
2029
2030 return 0;
2031
2032probe_error:
2033 dm_device.state = DM_INIT_ERROR;
2034 dm_device.thread = NULL;
2035 disable_page_reporting();
2036 vmbus_close(dev->channel);
2037connect_error:
2038#ifdef CONFIG_MEMORY_HOTPLUG
2039 unregister_memory_notifier(&hv_memory_nb);
2040 restore_online_page_callback(&hv_online_page);
2041#endif
2042 return ret;
2043}
2044
2045static int balloon_remove(struct hv_device *dev)
2046{
2047 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
2048 struct hv_hotadd_state *has, *tmp;
2049 struct hv_hotadd_gap *gap, *tmp_gap;
2050 unsigned long flags;
2051
2052 if (dm->num_pages_ballooned != 0)
2053 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
2054
2055 hv_balloon_debugfs_exit(dm);
2056
2057 cancel_work_sync(&dm->balloon_wrk.wrk);
2058 cancel_work_sync(&dm->ha_wrk.wrk);
2059
2060 kthread_stop(dm->thread);
2061
2062 /*
2063 * This is to handle the case when balloon_resume()
2064 * call has failed and some cleanup has been done as
2065 * a part of the error handling.
2066 */
2067 if (dm_device.state != DM_INIT_ERROR) {
2068 disable_page_reporting();
2069 vmbus_close(dev->channel);
2070#ifdef CONFIG_MEMORY_HOTPLUG
2071 unregister_memory_notifier(&hv_memory_nb);
2072 restore_online_page_callback(&hv_online_page);
2073#endif
2074 }
2075
2076 spin_lock_irqsave(&dm_device.ha_lock, flags);
2077 list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
2078 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
2079 list_del(&gap->list);
2080 kfree(gap);
2081 }
2082 list_del(&has->list);
2083 kfree(has);
2084 }
2085 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
2086
2087 return 0;
2088}
2089
2090static int balloon_suspend(struct hv_device *hv_dev)
2091{
2092 struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
2093
2094 tasklet_disable(&hv_dev->channel->callback_event);
2095
2096 cancel_work_sync(&dm->balloon_wrk.wrk);
2097 cancel_work_sync(&dm->ha_wrk.wrk);
2098
2099 if (dm->thread) {
2100 kthread_stop(dm->thread);
2101 dm->thread = NULL;
2102 vmbus_close(hv_dev->channel);
2103 }
2104
2105 tasklet_enable(&hv_dev->channel->callback_event);
2106
2107 return 0;
2108
2109}
2110
2111static int balloon_resume(struct hv_device *dev)
2112{
2113 int ret;
2114
2115 dm_device.state = DM_INITIALIZING;
2116
2117 ret = balloon_connect_vsp(dev);
2118
2119 if (ret != 0)
2120 goto out;
2121
2122 dm_device.thread =
2123 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
2124 if (IS_ERR(dm_device.thread)) {
2125 ret = PTR_ERR(dm_device.thread);
2126 dm_device.thread = NULL;
2127 goto close_channel;
2128 }
2129
2130 dm_device.state = DM_INITIALIZED;
2131 return 0;
2132close_channel:
2133 vmbus_close(dev->channel);
2134out:
2135 dm_device.state = DM_INIT_ERROR;
2136 disable_page_reporting();
2137#ifdef CONFIG_MEMORY_HOTPLUG
2138 unregister_memory_notifier(&hv_memory_nb);
2139 restore_online_page_callback(&hv_online_page);
2140#endif
2141 return ret;
2142}
2143
2144static const struct hv_vmbus_device_id id_table[] = {
2145 /* Dynamic Memory Class ID */
2146 /* 525074DC-8985-46e2-8057-A307DC18A502 */
2147 { HV_DM_GUID, },
2148 { },
2149};
2150
2151MODULE_DEVICE_TABLE(vmbus, id_table);
2152
2153static struct hv_driver balloon_drv = {
2154 .name = "hv_balloon",
2155 .id_table = id_table,
2156 .probe = balloon_probe,
2157 .remove = balloon_remove,
2158 .suspend = balloon_suspend,
2159 .resume = balloon_resume,
2160 .driver = {
2161 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2162 },
2163};
2164
2165static int __init init_balloon_drv(void)
2166{
2167
2168 return vmbus_driver_register(&balloon_drv);
2169}
2170
2171module_init(init_balloon_drv);
2172
2173MODULE_DESCRIPTION("Hyper-V Balloon");
2174MODULE_LICENSE("GPL");