Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v6.8
   1/*
   2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
   3 * Copyright (c) 2007-2008 Intel Corporation
   4 *   Jesse Barnes <jesse.barnes@intel.com>
   5 * Copyright 2010 Red Hat, Inc.
   6 *
   7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
   8 * FB layer.
   9 *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
  10 *
  11 * Permission is hereby granted, free of charge, to any person obtaining a
  12 * copy of this software and associated documentation files (the "Software"),
  13 * to deal in the Software without restriction, including without limitation
  14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
  15 * and/or sell copies of the Software, and to permit persons to whom the
  16 * Software is furnished to do so, subject to the following conditions:
  17 *
  18 * The above copyright notice and this permission notice (including the
  19 * next paragraph) shall be included in all copies or substantial portions
  20 * of the Software.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  28 * DEALINGS IN THE SOFTWARE.
  29 */
  30
  31#include <linux/bitfield.h>
  32#include <linux/cec.h>
  33#include <linux/hdmi.h>
  34#include <linux/i2c.h>
  35#include <linux/kernel.h>
  36#include <linux/module.h>
  37#include <linux/pci.h>
  38#include <linux/slab.h>
  39#include <linux/vga_switcheroo.h>
  40
  41#include <drm/drm_displayid.h>
  42#include <drm/drm_drv.h>
  43#include <drm/drm_edid.h>
  44#include <drm/drm_eld.h>
  45#include <drm/drm_encoder.h>
  46#include <drm/drm_print.h>
  47
  48#include "drm_crtc_internal.h"
  49#include "drm_internal.h"
  50
  51static int oui(u8 first, u8 second, u8 third)
  52{
  53	return (first << 16) | (second << 8) | third;
  54}
  55
  56#define EDID_EST_TIMINGS 16
  57#define EDID_STD_TIMINGS 8
  58#define EDID_DETAILED_TIMINGS 4
  59
  60/*
  61 * EDID blocks out in the wild have a variety of bugs, try to collect
  62 * them here (note that userspace may work around broken monitors first,
  63 * but fixes should make their way here so that the kernel "just works"
  64 * on as many displays as possible).
  65 */
  66
  67/* First detailed mode wrong, use largest 60Hz mode */
  68#define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
  69/* Reported 135MHz pixel clock is too high, needs adjustment */
  70#define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
  71/* Prefer the largest mode at 75 Hz */
  72#define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
  73/* Detail timing is in cm not mm */
  74#define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
  75/* Detailed timing descriptors have bogus size values, so just take the
  76 * maximum size and use that.
  77 */
  78#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
  79/* use +hsync +vsync for detailed mode */
  80#define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
  81/* Force reduced-blanking timings for detailed modes */
  82#define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
  83/* Force 8bpc */
  84#define EDID_QUIRK_FORCE_8BPC			(1 << 8)
  85/* Force 12bpc */
  86#define EDID_QUIRK_FORCE_12BPC			(1 << 9)
  87/* Force 6bpc */
  88#define EDID_QUIRK_FORCE_6BPC			(1 << 10)
  89/* Force 10bpc */
  90#define EDID_QUIRK_FORCE_10BPC			(1 << 11)
  91/* Non desktop display (i.e. HMD) */
  92#define EDID_QUIRK_NON_DESKTOP			(1 << 12)
  93/* Cap the DSC target bitrate to 15bpp */
  94#define EDID_QUIRK_CAP_DSC_15BPP		(1 << 13)
  95
  96#define MICROSOFT_IEEE_OUI	0xca125c
  97
  98struct detailed_mode_closure {
  99	struct drm_connector *connector;
 100	const struct drm_edid *drm_edid;
 101	bool preferred;
 
 102	int modes;
 103};
 104
 105#define LEVEL_DMT	0
 106#define LEVEL_GTF	1
 107#define LEVEL_GTF2	2
 108#define LEVEL_CVT	3
 109
 110#define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
 111{ \
 112	.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
 113					     product_id), \
 114	.quirks = _quirks \
 115}
 116
 117static const struct edid_quirk {
 118	u32 panel_id;
 119	u32 quirks;
 120} edid_quirk_list[] = {
 121	/* Acer AL1706 */
 122	EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
 123	/* Acer F51 */
 124	EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
 125
 126	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
 127	EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
 128
 129	/* BenQ GW2765 */
 130	EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC),
 131
 132	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
 133	EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
 134
 135	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
 136	EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
 137
 138	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
 139	EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
 140
 141	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
 142	EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
 143
 144	/* Belinea 10 15 55 */
 145	EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
 146	EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
 147
 148	/* Envision Peripherals, Inc. EN-7100e */
 149	EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
 150	/* Envision EN2028 */
 151	EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
 152
 153	/* Funai Electronics PM36B */
 154	EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
 155				       EDID_QUIRK_DETAILED_IN_CM),
 156
 157	/* LG 27GP950 */
 158	EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
 159
 160	/* LG 27GN950 */
 161	EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
 162
 163	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
 164	EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
 165
 166	/* LG Philips LCD LP154W01-A5 */
 167	EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
 168	EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
 169
 170	/* Samsung SyncMaster 205BW.  Note: irony */
 171	EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
 172	/* Samsung SyncMaster 22[5-6]BW */
 173	EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
 174	EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
 175
 176	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
 177	EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
 178
 179	/* ViewSonic VA2026w */
 180	EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
 181
 182	/* Medion MD 30217 PG */
 183	EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
 184
 185	/* Lenovo G50 */
 186	EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
 187
 188	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
 189	EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
 190
 191	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
 192	EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
 193
 194	/* Valve Index Headset */
 195	EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
 196	EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
 197	EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
 198	EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
 199	EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
 200	EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
 201	EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
 202	EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
 203	EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
 204	EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
 205	EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
 206	EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
 207	EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
 208	EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
 209	EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
 210	EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
 211	EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
 212
 213	/* HTC Vive and Vive Pro VR Headsets */
 214	EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
 215	EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
 216
 217	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
 218	EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
 219	EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
 220	EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
 221	EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
 222
 223	/* Windows Mixed Reality Headsets */
 224	EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
 225	EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
 226	EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
 227	EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
 228	EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
 229	EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
 230
 231	/* Sony PlayStation VR Headset */
 232	EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
 233
 234	/* Sensics VR Headsets */
 235	EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
 236
 237	/* OSVR HDK and HDK2 VR Headsets */
 238	EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
 239	EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP),
 240};
 241
 242/*
 243 * Autogenerated from the DMT spec.
 244 * This table is copied from xfree86/modes/xf86EdidModes.c.
 245 */
 246static const struct drm_display_mode drm_dmt_modes[] = {
 247	/* 0x01 - 640x350@85Hz */
 248	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 249		   736, 832, 0, 350, 382, 385, 445, 0,
 250		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 251	/* 0x02 - 640x400@85Hz */
 252	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 253		   736, 832, 0, 400, 401, 404, 445, 0,
 254		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 255	/* 0x03 - 720x400@85Hz */
 256	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
 257		   828, 936, 0, 400, 401, 404, 446, 0,
 258		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 259	/* 0x04 - 640x480@60Hz */
 260	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 261		   752, 800, 0, 480, 490, 492, 525, 0,
 262		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 263	/* 0x05 - 640x480@72Hz */
 264	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 265		   704, 832, 0, 480, 489, 492, 520, 0,
 266		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 267	/* 0x06 - 640x480@75Hz */
 268	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 269		   720, 840, 0, 480, 481, 484, 500, 0,
 270		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 271	/* 0x07 - 640x480@85Hz */
 272	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
 273		   752, 832, 0, 480, 481, 484, 509, 0,
 274		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 275	/* 0x08 - 800x600@56Hz */
 276	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 277		   896, 1024, 0, 600, 601, 603, 625, 0,
 278		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 279	/* 0x09 - 800x600@60Hz */
 280	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 281		   968, 1056, 0, 600, 601, 605, 628, 0,
 282		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 283	/* 0x0a - 800x600@72Hz */
 284	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 285		   976, 1040, 0, 600, 637, 643, 666, 0,
 286		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 287	/* 0x0b - 800x600@75Hz */
 288	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 289		   896, 1056, 0, 600, 601, 604, 625, 0,
 290		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 291	/* 0x0c - 800x600@85Hz */
 292	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
 293		   896, 1048, 0, 600, 601, 604, 631, 0,
 294		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 295	/* 0x0d - 800x600@120Hz RB */
 296	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
 297		   880, 960, 0, 600, 603, 607, 636, 0,
 298		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 299	/* 0x0e - 848x480@60Hz */
 300	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
 301		   976, 1088, 0, 480, 486, 494, 517, 0,
 302		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 303	/* 0x0f - 1024x768@43Hz, interlace */
 304	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
 305		   1208, 1264, 0, 768, 768, 776, 817, 0,
 306		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 307		   DRM_MODE_FLAG_INTERLACE) },
 308	/* 0x10 - 1024x768@60Hz */
 309	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 310		   1184, 1344, 0, 768, 771, 777, 806, 0,
 311		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 312	/* 0x11 - 1024x768@70Hz */
 313	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 314		   1184, 1328, 0, 768, 771, 777, 806, 0,
 315		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 316	/* 0x12 - 1024x768@75Hz */
 317	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 318		   1136, 1312, 0, 768, 769, 772, 800, 0,
 319		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 320	/* 0x13 - 1024x768@85Hz */
 321	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
 322		   1168, 1376, 0, 768, 769, 772, 808, 0,
 323		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 324	/* 0x14 - 1024x768@120Hz RB */
 325	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
 326		   1104, 1184, 0, 768, 771, 775, 813, 0,
 327		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 328	/* 0x15 - 1152x864@75Hz */
 329	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 330		   1344, 1600, 0, 864, 865, 868, 900, 0,
 331		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 332	/* 0x55 - 1280x720@60Hz */
 333	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 334		   1430, 1650, 0, 720, 725, 730, 750, 0,
 335		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 336	/* 0x16 - 1280x768@60Hz RB */
 337	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
 338		   1360, 1440, 0, 768, 771, 778, 790, 0,
 339		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 340	/* 0x17 - 1280x768@60Hz */
 341	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
 342		   1472, 1664, 0, 768, 771, 778, 798, 0,
 343		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 344	/* 0x18 - 1280x768@75Hz */
 345	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
 346		   1488, 1696, 0, 768, 771, 778, 805, 0,
 347		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 348	/* 0x19 - 1280x768@85Hz */
 349	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
 350		   1496, 1712, 0, 768, 771, 778, 809, 0,
 351		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 352	/* 0x1a - 1280x768@120Hz RB */
 353	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
 354		   1360, 1440, 0, 768, 771, 778, 813, 0,
 355		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 356	/* 0x1b - 1280x800@60Hz RB */
 357	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
 358		   1360, 1440, 0, 800, 803, 809, 823, 0,
 359		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 360	/* 0x1c - 1280x800@60Hz */
 361	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
 362		   1480, 1680, 0, 800, 803, 809, 831, 0,
 363		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 364	/* 0x1d - 1280x800@75Hz */
 365	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
 366		   1488, 1696, 0, 800, 803, 809, 838, 0,
 367		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 368	/* 0x1e - 1280x800@85Hz */
 369	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
 370		   1496, 1712, 0, 800, 803, 809, 843, 0,
 371		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 372	/* 0x1f - 1280x800@120Hz RB */
 373	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
 374		   1360, 1440, 0, 800, 803, 809, 847, 0,
 375		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 376	/* 0x20 - 1280x960@60Hz */
 377	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
 378		   1488, 1800, 0, 960, 961, 964, 1000, 0,
 379		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 380	/* 0x21 - 1280x960@85Hz */
 381	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
 382		   1504, 1728, 0, 960, 961, 964, 1011, 0,
 383		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 384	/* 0x22 - 1280x960@120Hz RB */
 385	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
 386		   1360, 1440, 0, 960, 963, 967, 1017, 0,
 387		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 388	/* 0x23 - 1280x1024@60Hz */
 389	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
 390		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 391		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 392	/* 0x24 - 1280x1024@75Hz */
 393	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 394		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 395		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 396	/* 0x25 - 1280x1024@85Hz */
 397	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
 398		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
 399		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 400	/* 0x26 - 1280x1024@120Hz RB */
 401	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
 402		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
 403		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 404	/* 0x27 - 1360x768@60Hz */
 405	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
 406		   1536, 1792, 0, 768, 771, 777, 795, 0,
 407		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 408	/* 0x28 - 1360x768@120Hz RB */
 409	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
 410		   1440, 1520, 0, 768, 771, 776, 813, 0,
 411		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 412	/* 0x51 - 1366x768@60Hz */
 413	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
 414		   1579, 1792, 0, 768, 771, 774, 798, 0,
 415		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 416	/* 0x56 - 1366x768@60Hz */
 417	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
 418		   1436, 1500, 0, 768, 769, 772, 800, 0,
 419		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 420	/* 0x29 - 1400x1050@60Hz RB */
 421	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
 422		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
 423		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 424	/* 0x2a - 1400x1050@60Hz */
 425	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
 426		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
 427		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 428	/* 0x2b - 1400x1050@75Hz */
 429	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
 430		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
 431		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 432	/* 0x2c - 1400x1050@85Hz */
 433	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
 434		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
 435		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 436	/* 0x2d - 1400x1050@120Hz RB */
 437	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
 438		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
 439		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 440	/* 0x2e - 1440x900@60Hz RB */
 441	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
 442		   1520, 1600, 0, 900, 903, 909, 926, 0,
 443		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 444	/* 0x2f - 1440x900@60Hz */
 445	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
 446		   1672, 1904, 0, 900, 903, 909, 934, 0,
 447		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 448	/* 0x30 - 1440x900@75Hz */
 449	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
 450		   1688, 1936, 0, 900, 903, 909, 942, 0,
 451		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 452	/* 0x31 - 1440x900@85Hz */
 453	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
 454		   1696, 1952, 0, 900, 903, 909, 948, 0,
 455		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 456	/* 0x32 - 1440x900@120Hz RB */
 457	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
 458		   1520, 1600, 0, 900, 903, 909, 953, 0,
 459		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 460	/* 0x53 - 1600x900@60Hz */
 461	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
 462		   1704, 1800, 0, 900, 901, 904, 1000, 0,
 463		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 464	/* 0x33 - 1600x1200@60Hz */
 465	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
 466		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 467		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 468	/* 0x34 - 1600x1200@65Hz */
 469	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
 470		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 471		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 472	/* 0x35 - 1600x1200@70Hz */
 473	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
 474		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 475		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 476	/* 0x36 - 1600x1200@75Hz */
 477	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
 478		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 479		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 480	/* 0x37 - 1600x1200@85Hz */
 481	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
 482		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 483		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 484	/* 0x38 - 1600x1200@120Hz RB */
 485	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
 486		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
 487		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 488	/* 0x39 - 1680x1050@60Hz RB */
 489	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
 490		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
 491		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 492	/* 0x3a - 1680x1050@60Hz */
 493	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
 494		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
 495		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 496	/* 0x3b - 1680x1050@75Hz */
 497	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
 498		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
 499		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 500	/* 0x3c - 1680x1050@85Hz */
 501	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
 502		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
 503		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 504	/* 0x3d - 1680x1050@120Hz RB */
 505	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
 506		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
 507		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 508	/* 0x3e - 1792x1344@60Hz */
 509	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
 510		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
 511		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 512	/* 0x3f - 1792x1344@75Hz */
 513	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
 514		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
 515		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 516	/* 0x40 - 1792x1344@120Hz RB */
 517	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
 518		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
 519		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 520	/* 0x41 - 1856x1392@60Hz */
 521	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
 522		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
 523		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 524	/* 0x42 - 1856x1392@75Hz */
 525	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
 526		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
 527		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 528	/* 0x43 - 1856x1392@120Hz RB */
 529	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
 530		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
 531		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 532	/* 0x52 - 1920x1080@60Hz */
 533	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 534		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 535		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 536	/* 0x44 - 1920x1200@60Hz RB */
 537	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
 538		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
 539		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 540	/* 0x45 - 1920x1200@60Hz */
 541	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
 542		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
 543		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 544	/* 0x46 - 1920x1200@75Hz */
 545	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
 546		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
 547		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 548	/* 0x47 - 1920x1200@85Hz */
 549	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
 550		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
 551		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 552	/* 0x48 - 1920x1200@120Hz RB */
 553	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
 554		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
 555		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 556	/* 0x49 - 1920x1440@60Hz */
 557	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
 558		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
 559		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 560	/* 0x4a - 1920x1440@75Hz */
 561	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
 562		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
 563		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 564	/* 0x4b - 1920x1440@120Hz RB */
 565	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
 566		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
 567		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 568	/* 0x54 - 2048x1152@60Hz */
 569	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
 570		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
 571		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 572	/* 0x4c - 2560x1600@60Hz RB */
 573	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
 574		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
 575		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 576	/* 0x4d - 2560x1600@60Hz */
 577	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
 578		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
 579		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 580	/* 0x4e - 2560x1600@75Hz */
 581	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
 582		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
 583		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 584	/* 0x4f - 2560x1600@85Hz */
 585	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
 586		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
 587		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 588	/* 0x50 - 2560x1600@120Hz RB */
 589	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
 590		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
 591		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 592	/* 0x57 - 4096x2160@60Hz RB */
 593	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
 594		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 595		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 596	/* 0x58 - 4096x2160@59.94Hz RB */
 597	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
 598		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 599		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 600};
 601
 602/*
 603 * These more or less come from the DMT spec.  The 720x400 modes are
 604 * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
 605 * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
 606 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
 607 * mode.
 608 *
 609 * The DMT modes have been fact-checked; the rest are mild guesses.
 610 */
 611static const struct drm_display_mode edid_est_modes[] = {
 612	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 613		   968, 1056, 0, 600, 601, 605, 628, 0,
 614		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
 615	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 616		   896, 1024, 0, 600, 601, 603,  625, 0,
 617		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
 618	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 619		   720, 840, 0, 480, 481, 484, 500, 0,
 620		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
 621	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 622		   704,  832, 0, 480, 489, 492, 520, 0,
 623		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
 624	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
 625		   768,  864, 0, 480, 483, 486, 525, 0,
 626		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
 627	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 628		   752, 800, 0, 480, 490, 492, 525, 0,
 629		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
 630	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
 631		   846, 900, 0, 400, 421, 423,  449, 0,
 632		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
 633	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
 634		   846,  900, 0, 400, 412, 414, 449, 0,
 635		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
 636	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 637		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 638		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
 639	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 640		   1136, 1312, 0,  768, 769, 772, 800, 0,
 641		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
 642	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 643		   1184, 1328, 0,  768, 771, 777, 806, 0,
 644		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
 645	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 646		   1184, 1344, 0,  768, 771, 777, 806, 0,
 647		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
 648	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
 649		   1208, 1264, 0, 768, 768, 776, 817, 0,
 650		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
 651	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
 652		   928, 1152, 0, 624, 625, 628, 667, 0,
 653		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
 654	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 655		   896, 1056, 0, 600, 601, 604,  625, 0,
 656		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
 657	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 658		   976, 1040, 0, 600, 637, 643, 666, 0,
 659		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
 660	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 661		   1344, 1600, 0,  864, 865, 868, 900, 0,
 662		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
 663};
 664
 665struct minimode {
 666	short w;
 667	short h;
 668	short r;
 669	short rb;
 670};
 671
 672static const struct minimode est3_modes[] = {
 673	/* byte 6 */
 674	{ 640, 350, 85, 0 },
 675	{ 640, 400, 85, 0 },
 676	{ 720, 400, 85, 0 },
 677	{ 640, 480, 85, 0 },
 678	{ 848, 480, 60, 0 },
 679	{ 800, 600, 85, 0 },
 680	{ 1024, 768, 85, 0 },
 681	{ 1152, 864, 75, 0 },
 682	/* byte 7 */
 683	{ 1280, 768, 60, 1 },
 684	{ 1280, 768, 60, 0 },
 685	{ 1280, 768, 75, 0 },
 686	{ 1280, 768, 85, 0 },
 687	{ 1280, 960, 60, 0 },
 688	{ 1280, 960, 85, 0 },
 689	{ 1280, 1024, 60, 0 },
 690	{ 1280, 1024, 85, 0 },
 691	/* byte 8 */
 692	{ 1360, 768, 60, 0 },
 693	{ 1440, 900, 60, 1 },
 694	{ 1440, 900, 60, 0 },
 695	{ 1440, 900, 75, 0 },
 696	{ 1440, 900, 85, 0 },
 697	{ 1400, 1050, 60, 1 },
 698	{ 1400, 1050, 60, 0 },
 699	{ 1400, 1050, 75, 0 },
 700	/* byte 9 */
 701	{ 1400, 1050, 85, 0 },
 702	{ 1680, 1050, 60, 1 },
 703	{ 1680, 1050, 60, 0 },
 704	{ 1680, 1050, 75, 0 },
 705	{ 1680, 1050, 85, 0 },
 706	{ 1600, 1200, 60, 0 },
 707	{ 1600, 1200, 65, 0 },
 708	{ 1600, 1200, 70, 0 },
 709	/* byte 10 */
 710	{ 1600, 1200, 75, 0 },
 711	{ 1600, 1200, 85, 0 },
 712	{ 1792, 1344, 60, 0 },
 713	{ 1792, 1344, 75, 0 },
 714	{ 1856, 1392, 60, 0 },
 715	{ 1856, 1392, 75, 0 },
 716	{ 1920, 1200, 60, 1 },
 717	{ 1920, 1200, 60, 0 },
 718	/* byte 11 */
 719	{ 1920, 1200, 75, 0 },
 720	{ 1920, 1200, 85, 0 },
 721	{ 1920, 1440, 60, 0 },
 722	{ 1920, 1440, 75, 0 },
 723};
 724
 725static const struct minimode extra_modes[] = {
 726	{ 1024, 576,  60, 0 },
 727	{ 1366, 768,  60, 0 },
 728	{ 1600, 900,  60, 0 },
 729	{ 1680, 945,  60, 0 },
 730	{ 1920, 1080, 60, 0 },
 731	{ 2048, 1152, 60, 0 },
 732	{ 2048, 1536, 60, 0 },
 733};
 734
 735/*
 736 * From CEA/CTA-861 spec.
 737 *
 738 * Do not access directly, instead always use cea_mode_for_vic().
 739 */
 740static const struct drm_display_mode edid_cea_modes_1[] = {
 741	/* 1 - 640x480@60Hz 4:3 */
 742	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 743		   752, 800, 0, 480, 490, 492, 525, 0,
 744		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 745	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 746	/* 2 - 720x480@60Hz 4:3 */
 747	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 748		   798, 858, 0, 480, 489, 495, 525, 0,
 749		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 750	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 751	/* 3 - 720x480@60Hz 16:9 */
 752	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 753		   798, 858, 0, 480, 489, 495, 525, 0,
 754		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 755	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 756	/* 4 - 1280x720@60Hz 16:9 */
 757	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 758		   1430, 1650, 0, 720, 725, 730, 750, 0,
 759		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 760	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 761	/* 5 - 1920x1080i@60Hz 16:9 */
 762	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 763		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 764		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 765		   DRM_MODE_FLAG_INTERLACE),
 766	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 767	/* 6 - 720(1440)x480i@60Hz 4:3 */
 768	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 769		   801, 858, 0, 480, 488, 494, 525, 0,
 770		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 771		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 772	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 773	/* 7 - 720(1440)x480i@60Hz 16:9 */
 774	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 775		   801, 858, 0, 480, 488, 494, 525, 0,
 776		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 777		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 778	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 779	/* 8 - 720(1440)x240@60Hz 4:3 */
 780	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 781		   801, 858, 0, 240, 244, 247, 262, 0,
 782		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 783		   DRM_MODE_FLAG_DBLCLK),
 784	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 785	/* 9 - 720(1440)x240@60Hz 16:9 */
 786	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 787		   801, 858, 0, 240, 244, 247, 262, 0,
 788		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 789		   DRM_MODE_FLAG_DBLCLK),
 790	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 791	/* 10 - 2880x480i@60Hz 4:3 */
 792	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 793		   3204, 3432, 0, 480, 488, 494, 525, 0,
 794		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 795		   DRM_MODE_FLAG_INTERLACE),
 796	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 797	/* 11 - 2880x480i@60Hz 16:9 */
 798	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 799		   3204, 3432, 0, 480, 488, 494, 525, 0,
 800		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 801		   DRM_MODE_FLAG_INTERLACE),
 802	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 803	/* 12 - 2880x240@60Hz 4:3 */
 804	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 805		   3204, 3432, 0, 240, 244, 247, 262, 0,
 806		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 807	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 808	/* 13 - 2880x240@60Hz 16:9 */
 809	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 810		   3204, 3432, 0, 240, 244, 247, 262, 0,
 811		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 812	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 813	/* 14 - 1440x480@60Hz 4:3 */
 814	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 815		   1596, 1716, 0, 480, 489, 495, 525, 0,
 816		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 817	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 818	/* 15 - 1440x480@60Hz 16:9 */
 819	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 820		   1596, 1716, 0, 480, 489, 495, 525, 0,
 821		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 822	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 823	/* 16 - 1920x1080@60Hz 16:9 */
 824	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 825		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 826		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 827	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 828	/* 17 - 720x576@50Hz 4:3 */
 829	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 830		   796, 864, 0, 576, 581, 586, 625, 0,
 831		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 832	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 833	/* 18 - 720x576@50Hz 16:9 */
 834	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 835		   796, 864, 0, 576, 581, 586, 625, 0,
 836		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 837	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 838	/* 19 - 1280x720@50Hz 16:9 */
 839	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
 840		   1760, 1980, 0, 720, 725, 730, 750, 0,
 841		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 842	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 843	/* 20 - 1920x1080i@50Hz 16:9 */
 844	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 845		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 846		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 847		   DRM_MODE_FLAG_INTERLACE),
 848	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 849	/* 21 - 720(1440)x576i@50Hz 4:3 */
 850	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 851		   795, 864, 0, 576, 580, 586, 625, 0,
 852		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 853		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 854	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 855	/* 22 - 720(1440)x576i@50Hz 16:9 */
 856	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 857		   795, 864, 0, 576, 580, 586, 625, 0,
 858		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 859		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 860	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 861	/* 23 - 720(1440)x288@50Hz 4:3 */
 862	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 863		   795, 864, 0, 288, 290, 293, 312, 0,
 864		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 865		   DRM_MODE_FLAG_DBLCLK),
 866	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 867	/* 24 - 720(1440)x288@50Hz 16:9 */
 868	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 869		   795, 864, 0, 288, 290, 293, 312, 0,
 870		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 871		   DRM_MODE_FLAG_DBLCLK),
 872	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 873	/* 25 - 2880x576i@50Hz 4:3 */
 874	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 875		   3180, 3456, 0, 576, 580, 586, 625, 0,
 876		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 877		   DRM_MODE_FLAG_INTERLACE),
 878	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 879	/* 26 - 2880x576i@50Hz 16:9 */
 880	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 881		   3180, 3456, 0, 576, 580, 586, 625, 0,
 882		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 883		   DRM_MODE_FLAG_INTERLACE),
 884	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 885	/* 27 - 2880x288@50Hz 4:3 */
 886	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 887		   3180, 3456, 0, 288, 290, 293, 312, 0,
 888		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 889	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 890	/* 28 - 2880x288@50Hz 16:9 */
 891	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 892		   3180, 3456, 0, 288, 290, 293, 312, 0,
 893		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 894	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 895	/* 29 - 1440x576@50Hz 4:3 */
 896	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 897		   1592, 1728, 0, 576, 581, 586, 625, 0,
 898		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 899	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 900	/* 30 - 1440x576@50Hz 16:9 */
 901	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 902		   1592, 1728, 0, 576, 581, 586, 625, 0,
 903		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 904	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 905	/* 31 - 1920x1080@50Hz 16:9 */
 906	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 907		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 908		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 909	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 910	/* 32 - 1920x1080@24Hz 16:9 */
 911	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
 912		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
 913		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 914	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 915	/* 33 - 1920x1080@25Hz 16:9 */
 916	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 917		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 918		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 919	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 920	/* 34 - 1920x1080@30Hz 16:9 */
 921	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 922		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 923		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 924	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 925	/* 35 - 2880x480@60Hz 4:3 */
 926	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 927		   3192, 3432, 0, 480, 489, 495, 525, 0,
 928		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 929	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 930	/* 36 - 2880x480@60Hz 16:9 */
 931	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 932		   3192, 3432, 0, 480, 489, 495, 525, 0,
 933		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 934	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 935	/* 37 - 2880x576@50Hz 4:3 */
 936	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 937		   3184, 3456, 0, 576, 581, 586, 625, 0,
 938		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 939	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 940	/* 38 - 2880x576@50Hz 16:9 */
 941	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 942		   3184, 3456, 0, 576, 581, 586, 625, 0,
 943		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 944	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 945	/* 39 - 1920x1080i@50Hz 16:9 */
 946	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
 947		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
 948		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
 949		   DRM_MODE_FLAG_INTERLACE),
 950	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 951	/* 40 - 1920x1080i@100Hz 16:9 */
 952	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 953		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 954		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 955		   DRM_MODE_FLAG_INTERLACE),
 956	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 957	/* 41 - 1280x720@100Hz 16:9 */
 958	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
 959		   1760, 1980, 0, 720, 725, 730, 750, 0,
 960		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 961	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 962	/* 42 - 720x576@100Hz 4:3 */
 963	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 964		   796, 864, 0, 576, 581, 586, 625, 0,
 965		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 966	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 967	/* 43 - 720x576@100Hz 16:9 */
 968	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 969		   796, 864, 0, 576, 581, 586, 625, 0,
 970		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 971	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 972	/* 44 - 720(1440)x576i@100Hz 4:3 */
 973	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 974		   795, 864, 0, 576, 580, 586, 625, 0,
 975		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 976		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 977	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 978	/* 45 - 720(1440)x576i@100Hz 16:9 */
 979	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 980		   795, 864, 0, 576, 580, 586, 625, 0,
 981		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 982		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 983	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 984	/* 46 - 1920x1080i@120Hz 16:9 */
 985	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 986		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 987		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 988		   DRM_MODE_FLAG_INTERLACE),
 989	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 990	/* 47 - 1280x720@120Hz 16:9 */
 991	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
 992		   1430, 1650, 0, 720, 725, 730, 750, 0,
 993		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 994	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 995	/* 48 - 720x480@120Hz 4:3 */
 996	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
 997		   798, 858, 0, 480, 489, 495, 525, 0,
 998		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 999	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1000	/* 49 - 720x480@120Hz 16:9 */
1001	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1002		   798, 858, 0, 480, 489, 495, 525, 0,
1003		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1004	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1005	/* 50 - 720(1440)x480i@120Hz 4:3 */
1006	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1007		   801, 858, 0, 480, 488, 494, 525, 0,
1008		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1011	/* 51 - 720(1440)x480i@120Hz 16:9 */
1012	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1013		   801, 858, 0, 480, 488, 494, 525, 0,
1014		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1015		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1016	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1017	/* 52 - 720x576@200Hz 4:3 */
1018	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1019		   796, 864, 0, 576, 581, 586, 625, 0,
1020		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1021	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1022	/* 53 - 720x576@200Hz 16:9 */
1023	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1024		   796, 864, 0, 576, 581, 586, 625, 0,
1025		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1026	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1027	/* 54 - 720(1440)x576i@200Hz 4:3 */
1028	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1029		   795, 864, 0, 576, 580, 586, 625, 0,
1030		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1033	/* 55 - 720(1440)x576i@200Hz 16:9 */
1034	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1035		   795, 864, 0, 576, 580, 586, 625, 0,
1036		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1037		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1038	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1039	/* 56 - 720x480@240Hz 4:3 */
1040	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1041		   798, 858, 0, 480, 489, 495, 525, 0,
1042		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1043	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1044	/* 57 - 720x480@240Hz 16:9 */
1045	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1046		   798, 858, 0, 480, 489, 495, 525, 0,
1047		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1048	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1049	/* 58 - 720(1440)x480i@240Hz 4:3 */
1050	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1051		   801, 858, 0, 480, 488, 494, 525, 0,
1052		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1053		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1054	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1055	/* 59 - 720(1440)x480i@240Hz 16:9 */
1056	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1057		   801, 858, 0, 480, 488, 494, 525, 0,
1058		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1059		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1060	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1061	/* 60 - 1280x720@24Hz 16:9 */
1062	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1063		   3080, 3300, 0, 720, 725, 730, 750, 0,
1064		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1065	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1066	/* 61 - 1280x720@25Hz 16:9 */
1067	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1068		   3740, 3960, 0, 720, 725, 730, 750, 0,
1069		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1070	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1071	/* 62 - 1280x720@30Hz 16:9 */
1072	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1073		   3080, 3300, 0, 720, 725, 730, 750, 0,
1074		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1075	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1076	/* 63 - 1920x1080@120Hz 16:9 */
1077	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1078		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1079		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1080	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1081	/* 64 - 1920x1080@100Hz 16:9 */
1082	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1083		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1084		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1085	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1086	/* 65 - 1280x720@24Hz 64:27 */
1087	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1088		   3080, 3300, 0, 720, 725, 730, 750, 0,
1089		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1090	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1091	/* 66 - 1280x720@25Hz 64:27 */
1092	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1093		   3740, 3960, 0, 720, 725, 730, 750, 0,
1094		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1095	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1096	/* 67 - 1280x720@30Hz 64:27 */
1097	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1098		   3080, 3300, 0, 720, 725, 730, 750, 0,
1099		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1100	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1101	/* 68 - 1280x720@50Hz 64:27 */
1102	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1103		   1760, 1980, 0, 720, 725, 730, 750, 0,
1104		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1105	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1106	/* 69 - 1280x720@60Hz 64:27 */
1107	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1108		   1430, 1650, 0, 720, 725, 730, 750, 0,
1109		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1110	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1111	/* 70 - 1280x720@100Hz 64:27 */
1112	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1113		   1760, 1980, 0, 720, 725, 730, 750, 0,
1114		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1115	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1116	/* 71 - 1280x720@120Hz 64:27 */
1117	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1118		   1430, 1650, 0, 720, 725, 730, 750, 0,
1119		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1120	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1121	/* 72 - 1920x1080@24Hz 64:27 */
1122	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1123		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1124		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1125	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1126	/* 73 - 1920x1080@25Hz 64:27 */
1127	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1128		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1129		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1130	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1131	/* 74 - 1920x1080@30Hz 64:27 */
1132	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1133		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1134		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1135	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1136	/* 75 - 1920x1080@50Hz 64:27 */
1137	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1138		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1139		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1140	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1141	/* 76 - 1920x1080@60Hz 64:27 */
1142	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1143		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1144		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1145	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1146	/* 77 - 1920x1080@100Hz 64:27 */
1147	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1148		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1149		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1150	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1151	/* 78 - 1920x1080@120Hz 64:27 */
1152	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1153		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1154		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1155	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1156	/* 79 - 1680x720@24Hz 64:27 */
1157	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1158		   3080, 3300, 0, 720, 725, 730, 750, 0,
1159		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1160	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1161	/* 80 - 1680x720@25Hz 64:27 */
1162	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1163		   2948, 3168, 0, 720, 725, 730, 750, 0,
1164		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1165	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1166	/* 81 - 1680x720@30Hz 64:27 */
1167	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1168		   2420, 2640, 0, 720, 725, 730, 750, 0,
1169		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1170	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1171	/* 82 - 1680x720@50Hz 64:27 */
1172	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1173		   1980, 2200, 0, 720, 725, 730, 750, 0,
1174		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1175	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1176	/* 83 - 1680x720@60Hz 64:27 */
1177	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1178		   1980, 2200, 0, 720, 725, 730, 750, 0,
1179		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1180	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1181	/* 84 - 1680x720@100Hz 64:27 */
1182	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1183		   1780, 2000, 0, 720, 725, 730, 825, 0,
1184		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1185	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1186	/* 85 - 1680x720@120Hz 64:27 */
1187	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1188		   1780, 2000, 0, 720, 725, 730, 825, 0,
1189		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1190	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1191	/* 86 - 2560x1080@24Hz 64:27 */
1192	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1193		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1194		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1195	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1196	/* 87 - 2560x1080@25Hz 64:27 */
1197	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1198		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1199		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1200	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1201	/* 88 - 2560x1080@30Hz 64:27 */
1202	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1203		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1204		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1205	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1206	/* 89 - 2560x1080@50Hz 64:27 */
1207	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1208		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1209		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1210	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1211	/* 90 - 2560x1080@60Hz 64:27 */
1212	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1213		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1214		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1215	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1216	/* 91 - 2560x1080@100Hz 64:27 */
1217	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1218		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1219		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1220	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1221	/* 92 - 2560x1080@120Hz 64:27 */
1222	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1223		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1224		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1225	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1226	/* 93 - 3840x2160@24Hz 16:9 */
1227	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1228		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1229		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1230	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1231	/* 94 - 3840x2160@25Hz 16:9 */
1232	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1233		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1234		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1235	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1236	/* 95 - 3840x2160@30Hz 16:9 */
1237	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1238		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1239		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1240	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1241	/* 96 - 3840x2160@50Hz 16:9 */
1242	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1243		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1244		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1245	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1246	/* 97 - 3840x2160@60Hz 16:9 */
1247	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1248		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1249		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1250	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1251	/* 98 - 4096x2160@24Hz 256:135 */
1252	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1253		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1254		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1255	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1256	/* 99 - 4096x2160@25Hz 256:135 */
1257	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1258		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1259		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1260	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1261	/* 100 - 4096x2160@30Hz 256:135 */
1262	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1263		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1264		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1265	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1266	/* 101 - 4096x2160@50Hz 256:135 */
1267	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1268		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1269		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1270	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1271	/* 102 - 4096x2160@60Hz 256:135 */
1272	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1273		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1274		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1275	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1276	/* 103 - 3840x2160@24Hz 64:27 */
1277	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1278		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1279		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1280	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1281	/* 104 - 3840x2160@25Hz 64:27 */
1282	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1283		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1284		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1285	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1286	/* 105 - 3840x2160@30Hz 64:27 */
1287	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1288		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1289		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1290	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1291	/* 106 - 3840x2160@50Hz 64:27 */
1292	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1293		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1294		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1295	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1296	/* 107 - 3840x2160@60Hz 64:27 */
1297	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1298		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1299		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1300	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1301	/* 108 - 1280x720@48Hz 16:9 */
1302	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1303		   2280, 2500, 0, 720, 725, 730, 750, 0,
1304		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1305	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1306	/* 109 - 1280x720@48Hz 64:27 */
1307	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1308		   2280, 2500, 0, 720, 725, 730, 750, 0,
1309		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1310	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1311	/* 110 - 1680x720@48Hz 64:27 */
1312	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1313		   2530, 2750, 0, 720, 725, 730, 750, 0,
1314		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1315	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1316	/* 111 - 1920x1080@48Hz 16:9 */
1317	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1318		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1319		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1320	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1321	/* 112 - 1920x1080@48Hz 64:27 */
1322	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1323		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1324		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1325	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1326	/* 113 - 2560x1080@48Hz 64:27 */
1327	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1328		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1329		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1330	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1331	/* 114 - 3840x2160@48Hz 16:9 */
1332	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1333		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1334		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1335	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1336	/* 115 - 4096x2160@48Hz 256:135 */
1337	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1338		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1339		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1340	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1341	/* 116 - 3840x2160@48Hz 64:27 */
1342	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1343		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1344		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1345	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1346	/* 117 - 3840x2160@100Hz 16:9 */
1347	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1348		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1349		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1350	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1351	/* 118 - 3840x2160@120Hz 16:9 */
1352	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1353		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1354		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1355	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1356	/* 119 - 3840x2160@100Hz 64:27 */
1357	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1358		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1359		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1360	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1361	/* 120 - 3840x2160@120Hz 64:27 */
1362	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1363		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1364		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1365	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1366	/* 121 - 5120x2160@24Hz 64:27 */
1367	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1368		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1369		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1370	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1371	/* 122 - 5120x2160@25Hz 64:27 */
1372	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1373		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1374		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1375	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1376	/* 123 - 5120x2160@30Hz 64:27 */
1377	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1378		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1379		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1380	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1381	/* 124 - 5120x2160@48Hz 64:27 */
1382	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1383		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1384		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1385	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1386	/* 125 - 5120x2160@50Hz 64:27 */
1387	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1388		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1389		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1390	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1391	/* 126 - 5120x2160@60Hz 64:27 */
1392	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1393		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1394		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1395	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1396	/* 127 - 5120x2160@100Hz 64:27 */
1397	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1398		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1399		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1400	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1401};
1402
1403/*
1404 * From CEA/CTA-861 spec.
1405 *
1406 * Do not access directly, instead always use cea_mode_for_vic().
1407 */
1408static const struct drm_display_mode edid_cea_modes_193[] = {
1409	/* 193 - 5120x2160@120Hz 64:27 */
1410	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1411		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1412		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1413	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1414	/* 194 - 7680x4320@24Hz 16:9 */
1415	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1416		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1417		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1418	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1419	/* 195 - 7680x4320@25Hz 16:9 */
1420	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1421		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1422		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1423	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1424	/* 196 - 7680x4320@30Hz 16:9 */
1425	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1426		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1427		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1428	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1429	/* 197 - 7680x4320@48Hz 16:9 */
1430	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1431		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1432		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1433	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1434	/* 198 - 7680x4320@50Hz 16:9 */
1435	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1436		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1437		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1438	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1439	/* 199 - 7680x4320@60Hz 16:9 */
1440	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1441		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1442		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1443	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1444	/* 200 - 7680x4320@100Hz 16:9 */
1445	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1446		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1447		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1448	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1449	/* 201 - 7680x4320@120Hz 16:9 */
1450	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1451		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1452		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1453	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1454	/* 202 - 7680x4320@24Hz 64:27 */
1455	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1456		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1457		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1458	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1459	/* 203 - 7680x4320@25Hz 64:27 */
1460	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1461		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1462		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1463	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1464	/* 204 - 7680x4320@30Hz 64:27 */
1465	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1466		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1467		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1468	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1469	/* 205 - 7680x4320@48Hz 64:27 */
1470	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1471		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1472		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1473	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1474	/* 206 - 7680x4320@50Hz 64:27 */
1475	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1476		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1477		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1478	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1479	/* 207 - 7680x4320@60Hz 64:27 */
1480	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1481		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1482		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1483	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1484	/* 208 - 7680x4320@100Hz 64:27 */
1485	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1486		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1487		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1488	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1489	/* 209 - 7680x4320@120Hz 64:27 */
1490	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1491		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1492		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1493	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1494	/* 210 - 10240x4320@24Hz 64:27 */
1495	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1496		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1497		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1498	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1499	/* 211 - 10240x4320@25Hz 64:27 */
1500	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1501		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1502		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1503	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1504	/* 212 - 10240x4320@30Hz 64:27 */
1505	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1506		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1507		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1508	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1509	/* 213 - 10240x4320@48Hz 64:27 */
1510	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1511		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1512		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1513	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1514	/* 214 - 10240x4320@50Hz 64:27 */
1515	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1516		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1517		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1518	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1519	/* 215 - 10240x4320@60Hz 64:27 */
1520	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1521		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1522		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1523	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1524	/* 216 - 10240x4320@100Hz 64:27 */
1525	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1526		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1527		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1528	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1529	/* 217 - 10240x4320@120Hz 64:27 */
1530	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1531		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1532		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1533	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1534	/* 218 - 4096x2160@100Hz 256:135 */
1535	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1536		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1537		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1538	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1539	/* 219 - 4096x2160@120Hz 256:135 */
1540	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1541		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1542		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1543	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1544};
1545
1546/*
1547 * HDMI 1.4 4k modes. Index using the VIC.
1548 */
1549static const struct drm_display_mode edid_4k_modes[] = {
1550	/* 0 - dummy, VICs start at 1 */
1551	{ },
1552	/* 1 - 3840x2160@30Hz */
1553	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1554		   3840, 4016, 4104, 4400, 0,
1555		   2160, 2168, 2178, 2250, 0,
1556		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1557	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1558	/* 2 - 3840x2160@25Hz */
1559	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1560		   3840, 4896, 4984, 5280, 0,
1561		   2160, 2168, 2178, 2250, 0,
1562		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564	/* 3 - 3840x2160@24Hz */
1565	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1566		   3840, 5116, 5204, 5500, 0,
1567		   2160, 2168, 2178, 2250, 0,
1568		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1569	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1570	/* 4 - 4096x2160@24Hz (SMPTE) */
1571	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1572		   4096, 5116, 5204, 5500, 0,
1573		   2160, 2168, 2178, 2250, 0,
1574		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1575	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1576};
1577
1578/*** DDC fetch and block validation ***/
1579
1580/*
1581 * The opaque EDID type, internal to drm_edid.c.
1582 */
1583struct drm_edid {
1584	/* Size allocated for edid */
1585	size_t size;
1586	const struct edid *edid;
1587};
1588
1589static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1590
1591static int edid_hfeeodb_block_count(const struct edid *edid)
1592{
1593	int eeodb = edid_hfeeodb_extension_block_count(edid);
1594
1595	return eeodb ? eeodb + 1 : 0;
1596}
1597
1598static int edid_extension_block_count(const struct edid *edid)
1599{
1600	return edid->extensions;
1601}
1602
1603static int edid_block_count(const struct edid *edid)
1604{
1605	return edid_extension_block_count(edid) + 1;
1606}
1607
1608static int edid_size_by_blocks(int num_blocks)
1609{
1610	return num_blocks * EDID_LENGTH;
1611}
1612
1613static int edid_size(const struct edid *edid)
1614{
1615	return edid_size_by_blocks(edid_block_count(edid));
1616}
1617
1618static const void *edid_block_data(const struct edid *edid, int index)
1619{
1620	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1621
1622	return edid + index;
1623}
1624
1625static const void *edid_extension_block_data(const struct edid *edid, int index)
1626{
1627	return edid_block_data(edid, index + 1);
1628}
1629
1630/* EDID block count indicated in EDID, may exceed allocated size */
1631static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1632{
1633	int num_blocks;
1634
1635	/* Starting point */
1636	num_blocks = edid_block_count(drm_edid->edid);
1637
1638	/* HF-EEODB override */
1639	if (drm_edid->size >= edid_size_by_blocks(2)) {
1640		int eeodb;
1641
1642		/*
1643		 * Note: HF-EEODB may specify a smaller extension count than the
1644		 * regular one. Unlike in buffer allocation, here we can use it.
1645		 */
1646		eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1647		if (eeodb)
1648			num_blocks = eeodb;
1649	}
1650
1651	return num_blocks;
1652}
1653
1654/* EDID block count, limited by allocated size */
1655static int drm_edid_block_count(const struct drm_edid *drm_edid)
1656{
1657	/* Limit by allocated size */
1658	return min(__drm_edid_block_count(drm_edid),
1659		   (int)drm_edid->size / EDID_LENGTH);
1660}
1661
1662/* EDID extension block count, limited by allocated size */
1663static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1664{
1665	return drm_edid_block_count(drm_edid) - 1;
1666}
1667
1668static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1669{
1670	return edid_block_data(drm_edid->edid, index);
1671}
1672
1673static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1674						 int index)
1675{
1676	return edid_extension_block_data(drm_edid->edid, index);
1677}
1678
1679/*
1680 * Initializer helper for legacy interfaces, where we have no choice but to
1681 * trust edid size. Not for general purpose use.
1682 */
1683static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1684						   const struct edid *edid)
1685{
1686	if (!edid)
1687		return NULL;
1688
1689	memset(drm_edid, 0, sizeof(*drm_edid));
1690
1691	drm_edid->edid = edid;
1692	drm_edid->size = edid_size(edid);
1693
1694	return drm_edid;
1695}
1696
1697/*
1698 * EDID base and extension block iterator.
1699 *
1700 * struct drm_edid_iter iter;
1701 * const u8 *block;
1702 *
1703 * drm_edid_iter_begin(drm_edid, &iter);
1704 * drm_edid_iter_for_each(block, &iter) {
1705 *         // do stuff with block
1706 * }
1707 * drm_edid_iter_end(&iter);
1708 */
1709struct drm_edid_iter {
1710	const struct drm_edid *drm_edid;
1711
1712	/* Current block index. */
1713	int index;
1714};
1715
1716static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1717				struct drm_edid_iter *iter)
1718{
1719	memset(iter, 0, sizeof(*iter));
1720
1721	iter->drm_edid = drm_edid;
1722}
1723
1724static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1725{
1726	const void *block = NULL;
1727
1728	if (!iter->drm_edid)
1729		return NULL;
1730
1731	if (iter->index < drm_edid_block_count(iter->drm_edid))
1732		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1733
1734	return block;
1735}
1736
1737#define drm_edid_iter_for_each(__block, __iter)			\
1738	while (((__block) = __drm_edid_iter_next(__iter)))
1739
1740static void drm_edid_iter_end(struct drm_edid_iter *iter)
1741{
1742	memset(iter, 0, sizeof(*iter));
1743}
1744
1745static const u8 edid_header[] = {
1746	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1747};
1748
1749static void edid_header_fix(void *edid)
1750{
1751	memcpy(edid, edid_header, sizeof(edid_header));
1752}
1753
1754/**
1755 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1756 * @_edid: pointer to raw base EDID block
1757 *
1758 * Sanity check the header of the base EDID block.
1759 *
1760 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1761 */
1762int drm_edid_header_is_valid(const void *_edid)
1763{
1764	const struct edid *edid = _edid;
1765	int i, score = 0;
1766
1767	for (i = 0; i < sizeof(edid_header); i++) {
1768		if (edid->header[i] == edid_header[i])
1769			score++;
1770	}
1771
1772	return score;
1773}
1774EXPORT_SYMBOL(drm_edid_header_is_valid);
1775
1776static int edid_fixup __read_mostly = 6;
1777module_param_named(edid_fixup, edid_fixup, int, 0400);
1778MODULE_PARM_DESC(edid_fixup,
1779		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1780
1781static int edid_block_compute_checksum(const void *_block)
1782{
1783	const u8 *block = _block;
1784	int i;
1785	u8 csum = 0, crc = 0;
1786
1787	for (i = 0; i < EDID_LENGTH - 1; i++)
1788		csum += block[i];
1789
1790	crc = 0x100 - csum;
1791
1792	return crc;
1793}
1794
1795static int edid_block_get_checksum(const void *_block)
1796{
1797	const struct edid *block = _block;
1798
1799	return block->checksum;
1800}
1801
1802static int edid_block_tag(const void *_block)
1803{
1804	const u8 *block = _block;
1805
1806	return block[0];
1807}
1808
1809static bool edid_block_is_zero(const void *edid)
1810{
1811	return !memchr_inv(edid, 0, EDID_LENGTH);
1812}
1813
1814/**
1815 * drm_edid_are_equal - compare two edid blobs.
1816 * @edid1: pointer to first blob
1817 * @edid2: pointer to second blob
1818 * This helper can be used during probing to determine if
1819 * edid had changed.
1820 */
1821bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1822{
1823	int edid1_len, edid2_len;
1824	bool edid1_present = edid1 != NULL;
1825	bool edid2_present = edid2 != NULL;
1826
1827	if (edid1_present != edid2_present)
1828		return false;
1829
1830	if (edid1) {
1831		edid1_len = edid_size(edid1);
1832		edid2_len = edid_size(edid2);
1833
1834		if (edid1_len != edid2_len)
1835			return false;
1836
1837		if (memcmp(edid1, edid2, edid1_len))
1838			return false;
1839	}
1840
1841	return true;
1842}
1843EXPORT_SYMBOL(drm_edid_are_equal);
1844
1845enum edid_block_status {
1846	EDID_BLOCK_OK = 0,
1847	EDID_BLOCK_READ_FAIL,
1848	EDID_BLOCK_NULL,
1849	EDID_BLOCK_ZERO,
1850	EDID_BLOCK_HEADER_CORRUPT,
1851	EDID_BLOCK_HEADER_REPAIR,
1852	EDID_BLOCK_HEADER_FIXED,
1853	EDID_BLOCK_CHECKSUM,
1854	EDID_BLOCK_VERSION,
1855};
1856
1857static enum edid_block_status edid_block_check(const void *_block,
1858					       bool is_base_block)
1859{
1860	const struct edid *block = _block;
1861
1862	if (!block)
1863		return EDID_BLOCK_NULL;
1864
1865	if (is_base_block) {
1866		int score = drm_edid_header_is_valid(block);
1867
1868		if (score < clamp(edid_fixup, 0, 8)) {
1869			if (edid_block_is_zero(block))
1870				return EDID_BLOCK_ZERO;
1871			else
1872				return EDID_BLOCK_HEADER_CORRUPT;
1873		}
1874
1875		if (score < 8)
1876			return EDID_BLOCK_HEADER_REPAIR;
1877	}
1878
1879	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1880		if (edid_block_is_zero(block))
1881			return EDID_BLOCK_ZERO;
1882		else
1883			return EDID_BLOCK_CHECKSUM;
1884	}
1885
1886	if (is_base_block) {
1887		if (block->version != 1)
1888			return EDID_BLOCK_VERSION;
1889	}
1890
1891	return EDID_BLOCK_OK;
1892}
1893
1894static bool edid_block_status_valid(enum edid_block_status status, int tag)
1895{
1896	return status == EDID_BLOCK_OK ||
1897		status == EDID_BLOCK_HEADER_FIXED ||
1898		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1899}
1900
1901static bool edid_block_valid(const void *block, bool base)
1902{
1903	return edid_block_status_valid(edid_block_check(block, base),
1904				       edid_block_tag(block));
1905}
1906
1907static void edid_block_status_print(enum edid_block_status status,
1908				    const struct edid *block,
1909				    int block_num)
1910{
1911	switch (status) {
1912	case EDID_BLOCK_OK:
1913		break;
1914	case EDID_BLOCK_READ_FAIL:
1915		pr_debug("EDID block %d read failed\n", block_num);
1916		break;
1917	case EDID_BLOCK_NULL:
1918		pr_debug("EDID block %d pointer is NULL\n", block_num);
1919		break;
1920	case EDID_BLOCK_ZERO:
1921		pr_notice("EDID block %d is all zeroes\n", block_num);
1922		break;
1923	case EDID_BLOCK_HEADER_CORRUPT:
1924		pr_notice("EDID has corrupt header\n");
1925		break;
1926	case EDID_BLOCK_HEADER_REPAIR:
1927		pr_debug("EDID corrupt header needs repair\n");
1928		break;
1929	case EDID_BLOCK_HEADER_FIXED:
1930		pr_debug("EDID corrupt header fixed\n");
1931		break;
1932	case EDID_BLOCK_CHECKSUM:
1933		if (edid_block_status_valid(status, edid_block_tag(block))) {
1934			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1935				 block_num, edid_block_tag(block),
1936				 edid_block_compute_checksum(block));
1937		} else {
1938			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1939				  block_num, edid_block_tag(block),
1940				  edid_block_compute_checksum(block));
1941		}
1942		break;
1943	case EDID_BLOCK_VERSION:
1944		pr_notice("EDID has major version %d, instead of 1\n",
1945			  block->version);
1946		break;
1947	default:
1948		WARN(1, "EDID block %d unknown edid block status code %d\n",
1949		     block_num, status);
1950		break;
1951	}
1952}
1953
1954static void edid_block_dump(const char *level, const void *block, int block_num)
1955{
1956	enum edid_block_status status;
1957	char prefix[20];
1958
1959	status = edid_block_check(block, block_num == 0);
1960	if (status == EDID_BLOCK_ZERO)
1961		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1962	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1963		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1964	else
1965		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1966
1967	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1968		       block, EDID_LENGTH, false);
1969}
1970
1971/**
1972 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1973 * @_block: pointer to raw EDID block
1974 * @block_num: type of block to validate (0 for base, extension otherwise)
1975 * @print_bad_edid: if true, dump bad EDID blocks to the console
1976 * @edid_corrupt: if true, the header or checksum is invalid
1977 *
1978 * Validate a base or extension EDID block and optionally dump bad blocks to
1979 * the console.
1980 *
1981 * Return: True if the block is valid, false otherwise.
1982 */
1983bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1984			  bool *edid_corrupt)
1985{
1986	struct edid *block = (struct edid *)_block;
1987	enum edid_block_status status;
1988	bool is_base_block = block_num == 0;
1989	bool valid;
1990
1991	if (WARN_ON(!block))
1992		return false;
1993
1994	status = edid_block_check(block, is_base_block);
1995	if (status == EDID_BLOCK_HEADER_REPAIR) {
1996		DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1997		edid_header_fix(block);
1998
1999		/* Retry with fixed header, update status if that worked. */
2000		status = edid_block_check(block, is_base_block);
2001		if (status == EDID_BLOCK_OK)
2002			status = EDID_BLOCK_HEADER_FIXED;
2003	}
2004
2005	if (edid_corrupt) {
2006		/*
2007		 * Unknown major version isn't corrupt but we can't use it. Only
2008		 * the base block can reset edid_corrupt to false.
2009		 */
2010		if (is_base_block &&
2011		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2012			*edid_corrupt = false;
2013		else if (status != EDID_BLOCK_OK)
2014			*edid_corrupt = true;
2015	}
2016
2017	edid_block_status_print(status, block, block_num);
2018
2019	/* Determine whether we can use this block with this status. */
2020	valid = edid_block_status_valid(status, edid_block_tag(block));
2021
2022	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2023		pr_notice("Raw EDID:\n");
2024		edid_block_dump(KERN_NOTICE, block, block_num);
2025	}
2026
2027	return valid;
2028}
2029EXPORT_SYMBOL(drm_edid_block_valid);
2030
2031/**
2032 * drm_edid_is_valid - sanity check EDID data
2033 * @edid: EDID data
2034 *
2035 * Sanity-check an entire EDID record (including extensions)
2036 *
2037 * Return: True if the EDID data is valid, false otherwise.
2038 */
2039bool drm_edid_is_valid(struct edid *edid)
2040{
2041	int i;
2042
2043	if (!edid)
2044		return false;
2045
2046	for (i = 0; i < edid_block_count(edid); i++) {
2047		void *block = (void *)edid_block_data(edid, i);
2048
2049		if (!drm_edid_block_valid(block, i, true, NULL))
2050			return false;
2051	}
2052
2053	return true;
2054}
2055EXPORT_SYMBOL(drm_edid_is_valid);
2056
2057/**
2058 * drm_edid_valid - sanity check EDID data
2059 * @drm_edid: EDID data
2060 *
2061 * Sanity check an EDID. Cross check block count against allocated size and
2062 * checksum the blocks.
2063 *
2064 * Return: True if the EDID data is valid, false otherwise.
2065 */
2066bool drm_edid_valid(const struct drm_edid *drm_edid)
2067{
2068	int i;
2069
2070	if (!drm_edid)
2071		return false;
2072
2073	if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2074		return false;
2075
2076	for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2077		const void *block = drm_edid_block_data(drm_edid, i);
2078
2079		if (!edid_block_valid(block, i == 0))
2080			return false;
2081	}
2082
2083	return true;
2084}
2085EXPORT_SYMBOL(drm_edid_valid);
2086
2087static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2088					       size_t *alloc_size)
2089{
2090	struct edid *new;
2091	int i, valid_blocks = 0;
2092
2093	/*
2094	 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2095	 * back to regular extension count here. We don't want to start
2096	 * modifying the HF-EEODB extension too.
2097	 */
2098	for (i = 0; i < edid_block_count(edid); i++) {
2099		const void *src_block = edid_block_data(edid, i);
2100
2101		if (edid_block_valid(src_block, i == 0)) {
2102			void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2103
2104			memmove(dst_block, src_block, EDID_LENGTH);
2105			valid_blocks++;
2106		}
2107	}
2108
2109	/* We already trusted the base block to be valid here... */
2110	if (WARN_ON(!valid_blocks)) {
2111		kfree(edid);
2112		return NULL;
2113	}
2114
2115	edid->extensions = valid_blocks - 1;
2116	edid->checksum = edid_block_compute_checksum(edid);
2117
2118	*alloc_size = edid_size_by_blocks(valid_blocks);
2119
2120	new = krealloc(edid, *alloc_size, GFP_KERNEL);
2121	if (!new)
2122		kfree(edid);
2123
2124	return new;
2125}
2126
2127#define DDC_SEGMENT_ADDR 0x30
2128/**
2129 * drm_do_probe_ddc_edid() - get EDID information via I2C
2130 * @data: I2C device adapter
2131 * @buf: EDID data buffer to be filled
2132 * @block: 128 byte EDID block to start fetching from
2133 * @len: EDID data buffer length to fetch
2134 *
2135 * Try to fetch EDID information by calling I2C driver functions.
2136 *
2137 * Return: 0 on success or -1 on failure.
2138 */
2139static int
2140drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2141{
2142	struct i2c_adapter *adapter = data;
2143	unsigned char start = block * EDID_LENGTH;
2144	unsigned char segment = block >> 1;
2145	unsigned char xfers = segment ? 3 : 2;
2146	int ret, retries = 5;
2147
2148	/*
2149	 * The core I2C driver will automatically retry the transfer if the
2150	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2151	 * are susceptible to errors under a heavily loaded machine and
2152	 * generate spurious NAKs and timeouts. Retrying the transfer
2153	 * of the individual block a few times seems to overcome this.
2154	 */
2155	do {
2156		struct i2c_msg msgs[] = {
2157			{
2158				.addr	= DDC_SEGMENT_ADDR,
2159				.flags	= 0,
2160				.len	= 1,
2161				.buf	= &segment,
2162			}, {
2163				.addr	= DDC_ADDR,
2164				.flags	= 0,
2165				.len	= 1,
2166				.buf	= &start,
2167			}, {
2168				.addr	= DDC_ADDR,
2169				.flags	= I2C_M_RD,
2170				.len	= len,
2171				.buf	= buf,
2172			}
2173		};
2174
2175		/*
2176		 * Avoid sending the segment addr to not upset non-compliant
2177		 * DDC monitors.
2178		 */
2179		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2180
2181		if (ret == -ENXIO) {
2182			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2183					adapter->name);
2184			break;
2185		}
2186	} while (ret != xfers && --retries);
2187
2188	return ret == xfers ? 0 : -1;
2189}
2190
2191static void connector_bad_edid(struct drm_connector *connector,
2192			       const struct edid *edid, int num_blocks)
2193{
2194	int i;
2195	u8 last_block;
2196
2197	/*
2198	 * 0x7e in the EDID is the number of extension blocks. The EDID
2199	 * is 1 (base block) + num_ext_blocks big. That means we can think
2200	 * of 0x7e in the EDID of the _index_ of the last block in the
2201	 * combined chunk of memory.
2202	 */
2203	last_block = edid->extensions;
2204
2205	/* Calculate real checksum for the last edid extension block data */
2206	if (last_block < num_blocks)
2207		connector->real_edid_checksum =
2208			edid_block_compute_checksum(edid + last_block);
2209
2210	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2211		return;
2212
2213	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2214		    connector->base.id, connector->name);
2215	for (i = 0; i < num_blocks; i++)
2216		edid_block_dump(KERN_DEBUG, edid + i, i);
2217}
2218
2219/* Get override or firmware EDID */
2220static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2221{
2222	const struct drm_edid *override = NULL;
2223
2224	mutex_lock(&connector->edid_override_mutex);
2225
2226	if (connector->edid_override)
2227		override = drm_edid_dup(connector->edid_override);
2228
2229	mutex_unlock(&connector->edid_override_mutex);
2230
2231	if (!override)
2232		override = drm_edid_load_firmware(connector);
2233
2234	return IS_ERR(override) ? NULL : override;
2235}
2236
2237/* For debugfs edid_override implementation */
2238int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2239{
2240	const struct drm_edid *drm_edid;
2241
2242	mutex_lock(&connector->edid_override_mutex);
2243
2244	drm_edid = connector->edid_override;
2245	if (drm_edid)
2246		seq_write(m, drm_edid->edid, drm_edid->size);
2247
2248	mutex_unlock(&connector->edid_override_mutex);
2249
2250	return 0;
2251}
2252
2253/* For debugfs edid_override implementation */
2254int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2255			  size_t size)
2256{
2257	const struct drm_edid *drm_edid;
2258
2259	drm_edid = drm_edid_alloc(edid, size);
2260	if (!drm_edid_valid(drm_edid)) {
2261		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2262			    connector->base.id, connector->name);
2263		drm_edid_free(drm_edid);
2264		return -EINVAL;
2265	}
2266
2267	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2268		    connector->base.id, connector->name);
2269
2270	mutex_lock(&connector->edid_override_mutex);
2271
2272	drm_edid_free(connector->edid_override);
2273	connector->edid_override = drm_edid;
2274
2275	mutex_unlock(&connector->edid_override_mutex);
2276
2277	return 0;
2278}
2279
2280/* For debugfs edid_override implementation */
2281int drm_edid_override_reset(struct drm_connector *connector)
2282{
2283	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2284		    connector->base.id, connector->name);
2285
2286	mutex_lock(&connector->edid_override_mutex);
2287
2288	drm_edid_free(connector->edid_override);
2289	connector->edid_override = NULL;
2290
2291	mutex_unlock(&connector->edid_override_mutex);
2292
2293	return 0;
2294}
2295
2296/**
2297 * drm_edid_override_connector_update - add modes from override/firmware EDID
2298 * @connector: connector we're probing
2299 *
2300 * Add modes from the override/firmware EDID, if available. Only to be used from
2301 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2302 * failed during drm_get_edid() and caused the override/firmware EDID to be
2303 * skipped.
2304 *
2305 * Return: The number of modes added or 0 if we couldn't find any.
2306 */
2307int drm_edid_override_connector_update(struct drm_connector *connector)
2308{
2309	const struct drm_edid *override;
2310	int num_modes = 0;
2311
2312	override = drm_edid_override_get(connector);
2313	if (override) {
2314		if (drm_edid_connector_update(connector, override) == 0)
2315			num_modes = drm_edid_connector_add_modes(connector);
2316
2317		drm_edid_free(override);
2318
2319		drm_dbg_kms(connector->dev,
2320			    "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2321			    connector->base.id, connector->name, num_modes);
2322	}
2323
2324	return num_modes;
2325}
2326EXPORT_SYMBOL(drm_edid_override_connector_update);
2327
2328typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2329
2330static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2331					      read_block_fn read_block,
2332					      void *context)
2333{
2334	enum edid_block_status status;
2335	bool is_base_block = block_num == 0;
2336	int try;
2337
2338	for (try = 0; try < 4; try++) {
2339		if (read_block(context, block, block_num, EDID_LENGTH))
2340			return EDID_BLOCK_READ_FAIL;
2341
2342		status = edid_block_check(block, is_base_block);
2343		if (status == EDID_BLOCK_HEADER_REPAIR) {
2344			edid_header_fix(block);
2345
2346			/* Retry with fixed header, update status if that worked. */
2347			status = edid_block_check(block, is_base_block);
2348			if (status == EDID_BLOCK_OK)
2349				status = EDID_BLOCK_HEADER_FIXED;
2350		}
2351
2352		if (edid_block_status_valid(status, edid_block_tag(block)))
2353			break;
2354
2355		/* Fail early for unrepairable base block all zeros. */
2356		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2357			break;
2358	}
2359
2360	return status;
2361}
2362
2363static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2364				     read_block_fn read_block, void *context,
2365				     size_t *size)
2366{
2367	enum edid_block_status status;
2368	int i, num_blocks, invalid_blocks = 0;
2369	const struct drm_edid *override;
2370	struct edid *edid, *new;
2371	size_t alloc_size = EDID_LENGTH;
2372
2373	override = drm_edid_override_get(connector);
2374	if (override) {
2375		alloc_size = override->size;
2376		edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2377		drm_edid_free(override);
2378		if (!edid)
2379			return NULL;
2380		goto ok;
2381	}
2382
2383	edid = kmalloc(alloc_size, GFP_KERNEL);
2384	if (!edid)
2385		return NULL;
2386
2387	status = edid_block_read(edid, 0, read_block, context);
2388
2389	edid_block_status_print(status, edid, 0);
2390
2391	if (status == EDID_BLOCK_READ_FAIL)
2392		goto fail;
2393
2394	/* FIXME: Clarify what a corrupt EDID actually means. */
2395	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2396		connector->edid_corrupt = false;
2397	else
2398		connector->edid_corrupt = true;
2399
2400	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2401		if (status == EDID_BLOCK_ZERO)
2402			connector->null_edid_counter++;
2403
2404		connector_bad_edid(connector, edid, 1);
2405		goto fail;
2406	}
2407
2408	if (!edid_extension_block_count(edid))
2409		goto ok;
2410
2411	alloc_size = edid_size(edid);
2412	new = krealloc(edid, alloc_size, GFP_KERNEL);
2413	if (!new)
2414		goto fail;
2415	edid = new;
2416
2417	num_blocks = edid_block_count(edid);
2418	for (i = 1; i < num_blocks; i++) {
2419		void *block = (void *)edid_block_data(edid, i);
2420
2421		status = edid_block_read(block, i, read_block, context);
2422
2423		edid_block_status_print(status, block, i);
2424
2425		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2426			if (status == EDID_BLOCK_READ_FAIL)
2427				goto fail;
2428			invalid_blocks++;
2429		} else if (i == 1) {
2430			/*
2431			 * If the first EDID extension is a CTA extension, and
2432			 * the first Data Block is HF-EEODB, override the
2433			 * extension block count.
2434			 *
2435			 * Note: HF-EEODB could specify a smaller extension
2436			 * count too, but we can't risk allocating a smaller
2437			 * amount.
2438			 */
2439			int eeodb = edid_hfeeodb_block_count(edid);
2440
2441			if (eeodb > num_blocks) {
2442				num_blocks = eeodb;
2443				alloc_size = edid_size_by_blocks(num_blocks);
2444				new = krealloc(edid, alloc_size, GFP_KERNEL);
2445				if (!new)
2446					goto fail;
2447				edid = new;
2448			}
2449		}
2450	}
2451
2452	if (invalid_blocks) {
2453		connector_bad_edid(connector, edid, num_blocks);
2454
2455		edid = edid_filter_invalid_blocks(edid, &alloc_size);
2456	}
2457
2458ok:
2459	if (size)
2460		*size = alloc_size;
2461
2462	return edid;
2463
2464fail:
2465	kfree(edid);
2466	return NULL;
2467}
2468
2469/**
2470 * drm_do_get_edid - get EDID data using a custom EDID block read function
2471 * @connector: connector we're probing
2472 * @read_block: EDID block read function
2473 * @context: private data passed to the block read function
2474 *
2475 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2476 * exposes a different interface to read EDID blocks this function can be used
2477 * to get EDID data using a custom block read function.
2478 *
2479 * As in the general case the DDC bus is accessible by the kernel at the I2C
2480 * level, drivers must make all reasonable efforts to expose it as an I2C
2481 * adapter and use drm_get_edid() instead of abusing this function.
2482 *
2483 * The EDID may be overridden using debugfs override_edid or firmware EDID
2484 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2485 * order. Having either of them bypasses actual EDID reads.
2486 *
2487 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2488 */
2489struct edid *drm_do_get_edid(struct drm_connector *connector,
2490			     read_block_fn read_block,
2491			     void *context)
2492{
2493	return _drm_do_get_edid(connector, read_block, context, NULL);
2494}
2495EXPORT_SYMBOL_GPL(drm_do_get_edid);
2496
2497/**
2498 * drm_edid_raw - Get a pointer to the raw EDID data.
2499 * @drm_edid: drm_edid container
2500 *
2501 * Get a pointer to the raw EDID data.
2502 *
2503 * This is for transition only. Avoid using this like the plague.
2504 *
2505 * Return: Pointer to raw EDID data.
2506 */
2507const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2508{
2509	if (!drm_edid || !drm_edid->size)
2510		return NULL;
2511
2512	/*
2513	 * Do not return pointers where relying on EDID extension count would
2514	 * lead to buffer overflow.
2515	 */
2516	if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2517		return NULL;
2518
2519	return drm_edid->edid;
2520}
2521EXPORT_SYMBOL(drm_edid_raw);
2522
2523/* Allocate struct drm_edid container *without* duplicating the edid data */
2524static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2525{
2526	struct drm_edid *drm_edid;
2527
2528	if (!edid || !size || size < EDID_LENGTH)
2529		return NULL;
2530
2531	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2532	if (drm_edid) {
2533		drm_edid->edid = edid;
2534		drm_edid->size = size;
2535	}
2536
2537	return drm_edid;
2538}
2539
2540/**
2541 * drm_edid_alloc - Allocate a new drm_edid container
2542 * @edid: Pointer to raw EDID data
2543 * @size: Size of memory allocated for EDID
2544 *
2545 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2546 * the actual size that has been allocated for the data. There is no validation
2547 * of the raw EDID data against the size, but at least the EDID base block must
2548 * fit in the buffer.
2549 *
2550 * The returned pointer must be freed using drm_edid_free().
2551 *
2552 * Return: drm_edid container, or NULL on errors
2553 */
2554const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2555{
2556	const struct drm_edid *drm_edid;
2557
2558	if (!edid || !size || size < EDID_LENGTH)
2559		return NULL;
2560
2561	edid = kmemdup(edid, size, GFP_KERNEL);
2562	if (!edid)
2563		return NULL;
2564
2565	drm_edid = _drm_edid_alloc(edid, size);
2566	if (!drm_edid)
2567		kfree(edid);
2568
2569	return drm_edid;
2570}
2571EXPORT_SYMBOL(drm_edid_alloc);
2572
2573/**
2574 * drm_edid_dup - Duplicate a drm_edid container
2575 * @drm_edid: EDID to duplicate
2576 *
2577 * The returned pointer must be freed using drm_edid_free().
2578 *
2579 * Returns: drm_edid container copy, or NULL on errors
2580 */
2581const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2582{
2583	if (!drm_edid)
2584		return NULL;
2585
2586	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2587}
2588EXPORT_SYMBOL(drm_edid_dup);
2589
2590/**
2591 * drm_edid_free - Free the drm_edid container
2592 * @drm_edid: EDID to free
2593 */
2594void drm_edid_free(const struct drm_edid *drm_edid)
2595{
2596	if (!drm_edid)
2597		return;
2598
2599	kfree(drm_edid->edid);
2600	kfree(drm_edid);
2601}
2602EXPORT_SYMBOL(drm_edid_free);
2603
2604/**
2605 * drm_probe_ddc() - probe DDC presence
2606 * @adapter: I2C adapter to probe
2607 *
2608 * Return: True on success, false on failure.
2609 */
2610bool
2611drm_probe_ddc(struct i2c_adapter *adapter)
2612{
2613	unsigned char out;
2614
2615	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2616}
2617EXPORT_SYMBOL(drm_probe_ddc);
2618
2619/**
2620 * drm_get_edid - get EDID data, if available
2621 * @connector: connector we're probing
2622 * @adapter: I2C adapter to use for DDC
2623 *
2624 * Poke the given I2C channel to grab EDID data if possible.  If found,
2625 * attach it to the connector.
2626 *
2627 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2628 */
2629struct edid *drm_get_edid(struct drm_connector *connector,
2630			  struct i2c_adapter *adapter)
2631{
2632	struct edid *edid;
2633
2634	if (connector->force == DRM_FORCE_OFF)
2635		return NULL;
2636
2637	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2638		return NULL;
2639
2640	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2641	drm_connector_update_edid_property(connector, edid);
2642	return edid;
2643}
2644EXPORT_SYMBOL(drm_get_edid);
2645
2646/**
2647 * drm_edid_read_custom - Read EDID data using given EDID block read function
2648 * @connector: Connector to use
2649 * @read_block: EDID block read function
2650 * @context: Private data passed to the block read function
2651 *
2652 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2653 * exposes a different interface to read EDID blocks this function can be used
2654 * to get EDID data using a custom block read function.
2655 *
2656 * As in the general case the DDC bus is accessible by the kernel at the I2C
2657 * level, drivers must make all reasonable efforts to expose it as an I2C
2658 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2659 * this function.
2660 *
2661 * The EDID may be overridden using debugfs override_edid or firmware EDID
2662 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2663 * order. Having either of them bypasses actual EDID reads.
2664 *
2665 * The returned pointer must be freed using drm_edid_free().
2666 *
2667 * Return: Pointer to EDID, or NULL if probe/read failed.
2668 */
2669const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2670					    read_block_fn read_block,
2671					    void *context)
2672{
2673	const struct drm_edid *drm_edid;
2674	struct edid *edid;
2675	size_t size = 0;
2676
2677	edid = _drm_do_get_edid(connector, read_block, context, &size);
2678	if (!edid)
2679		return NULL;
2680
2681	/* Sanity check for now */
2682	drm_WARN_ON(connector->dev, !size);
2683
2684	drm_edid = _drm_edid_alloc(edid, size);
2685	if (!drm_edid)
2686		kfree(edid);
2687
2688	return drm_edid;
2689}
2690EXPORT_SYMBOL(drm_edid_read_custom);
2691
2692/**
2693 * drm_edid_read_ddc - Read EDID data using given I2C adapter
2694 * @connector: Connector to use
2695 * @adapter: I2C adapter to use for DDC
2696 *
2697 * Read EDID using the given I2C adapter.
2698 *
2699 * The EDID may be overridden using debugfs override_edid or firmware EDID
2700 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2701 * order. Having either of them bypasses actual EDID reads.
2702 *
2703 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2704 * using drm_edid_read() instead of this function.
2705 *
2706 * The returned pointer must be freed using drm_edid_free().
2707 *
2708 * Return: Pointer to EDID, or NULL if probe/read failed.
2709 */
2710const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2711					 struct i2c_adapter *adapter)
2712{
2713	const struct drm_edid *drm_edid;
2714
2715	if (connector->force == DRM_FORCE_OFF)
2716		return NULL;
2717
2718	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2719		return NULL;
2720
2721	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2722
2723	/* Note: Do *not* call connector updates here. */
2724
2725	return drm_edid;
2726}
2727EXPORT_SYMBOL(drm_edid_read_ddc);
2728
2729/**
2730 * drm_edid_read - Read EDID data using connector's I2C adapter
2731 * @connector: Connector to use
2732 *
2733 * Read EDID using the connector's I2C adapter.
2734 *
2735 * The EDID may be overridden using debugfs override_edid or firmware EDID
2736 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2737 * order. Having either of them bypasses actual EDID reads.
2738 *
2739 * The returned pointer must be freed using drm_edid_free().
2740 *
2741 * Return: Pointer to EDID, or NULL if probe/read failed.
2742 */
2743const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2744{
2745	if (drm_WARN_ON(connector->dev, !connector->ddc))
2746		return NULL;
2747
2748	return drm_edid_read_ddc(connector, connector->ddc);
2749}
2750EXPORT_SYMBOL(drm_edid_read);
2751
2752static u32 edid_extract_panel_id(const struct edid *edid)
2753{
2754	/*
2755	 * We represent the ID as a 32-bit number so it can easily be compared
2756	 * with "==".
2757	 *
2758	 * NOTE that we deal with endianness differently for the top half
2759	 * of this ID than for the bottom half. The bottom half (the product
2760	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2761	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2762	 * gets stored as big endian because that makes
2763	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2764	 * to write (it's easier to extract the ASCII). It doesn't really
2765	 * matter, though, as long as the number here is unique.
2766	 */
2767	return (u32)edid->mfg_id[0] << 24   |
2768	       (u32)edid->mfg_id[1] << 16   |
2769	       (u32)EDID_PRODUCT_ID(edid);
2770}
2771
2772/**
2773 * drm_edid_get_panel_id - Get a panel's ID through DDC
2774 * @adapter: I2C adapter to use for DDC
2775 *
2776 * This function reads the first block of the EDID of a panel and (assuming
2777 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2778 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2779 * supposed to be different for each different modem of panel.
2780 *
2781 * This function is intended to be used during early probing on devices where
2782 * more than one panel might be present. Because of its intended use it must
2783 * assume that the EDID of the panel is correct, at least as far as the ID
2784 * is concerned (in other words, we don't process any overrides here).
2785 *
2786 * NOTE: it's expected that this function and drm_do_get_edid() will both
2787 * be read the EDID, but there is no caching between them. Since we're only
2788 * reading the first block, hopefully this extra overhead won't be too big.
2789 *
2790 * Return: A 32-bit ID that should be different for each make/model of panel.
2791 *         See the functions drm_edid_encode_panel_id() and
2792 *         drm_edid_decode_panel_id() for some details on the structure of this
2793 *         ID.
2794 */
2795
2796u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2797{
2798	enum edid_block_status status;
2799	void *base_block;
2800	u32 panel_id = 0;
2801
2802	/*
2803	 * There are no manufacturer IDs of 0, so if there is a problem reading
2804	 * the EDID then we'll just return 0.
2805	 */
2806
2807	base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2808	if (!base_block)
2809		return 0;
2810
2811	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2812
2813	edid_block_status_print(status, base_block, 0);
2814
2815	if (edid_block_status_valid(status, edid_block_tag(base_block)))
2816		panel_id = edid_extract_panel_id(base_block);
2817	else
2818		edid_block_dump(KERN_NOTICE, base_block, 0);
2819
2820	kfree(base_block);
2821
2822	return panel_id;
2823}
2824EXPORT_SYMBOL(drm_edid_get_panel_id);
2825
2826/**
2827 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2828 * @connector: connector we're probing
2829 * @adapter: I2C adapter to use for DDC
2830 *
2831 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2832 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2833 * switch DDC to the GPU which is retrieving EDID.
2834 *
2835 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2836 */
2837struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2838				     struct i2c_adapter *adapter)
2839{
2840	struct drm_device *dev = connector->dev;
2841	struct pci_dev *pdev = to_pci_dev(dev->dev);
2842	struct edid *edid;
2843
2844	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2845		return NULL;
2846
2847	vga_switcheroo_lock_ddc(pdev);
2848	edid = drm_get_edid(connector, adapter);
2849	vga_switcheroo_unlock_ddc(pdev);
2850
2851	return edid;
2852}
2853EXPORT_SYMBOL(drm_get_edid_switcheroo);
2854
2855/**
2856 * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2857 * @connector: connector we're probing
2858 * @adapter: I2C adapter to use for DDC
2859 *
2860 * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2861 * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2862 * temporarily switch DDC to the GPU which is retrieving EDID.
2863 *
2864 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2865 */
2866const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2867						struct i2c_adapter *adapter)
2868{
2869	struct drm_device *dev = connector->dev;
2870	struct pci_dev *pdev = to_pci_dev(dev->dev);
2871	const struct drm_edid *drm_edid;
2872
2873	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2874		return NULL;
2875
2876	vga_switcheroo_lock_ddc(pdev);
2877	drm_edid = drm_edid_read_ddc(connector, adapter);
2878	vga_switcheroo_unlock_ddc(pdev);
2879
2880	return drm_edid;
2881}
2882EXPORT_SYMBOL(drm_edid_read_switcheroo);
2883
2884/**
2885 * drm_edid_duplicate - duplicate an EDID and the extensions
2886 * @edid: EDID to duplicate
2887 *
2888 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2889 */
2890struct edid *drm_edid_duplicate(const struct edid *edid)
2891{
2892	if (!edid)
2893		return NULL;
2894
2895	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2896}
2897EXPORT_SYMBOL(drm_edid_duplicate);
2898
2899/*** EDID parsing ***/
2900
2901/**
2902 * edid_get_quirks - return quirk flags for a given EDID
2903 * @drm_edid: EDID to process
2904 *
2905 * This tells subsequent routines what fixes they need to apply.
2906 */
2907static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2908{
2909	u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2910	const struct edid_quirk *quirk;
2911	int i;
2912
2913	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2914		quirk = &edid_quirk_list[i];
2915		if (quirk->panel_id == panel_id)
2916			return quirk->quirks;
2917	}
2918
2919	return 0;
2920}
2921
2922#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2923#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2924
2925/*
2926 * Walk the mode list for connector, clearing the preferred status on existing
2927 * modes and setting it anew for the right mode ala quirks.
2928 */
2929static void edid_fixup_preferred(struct drm_connector *connector)
 
2930{
2931	const struct drm_display_info *info = &connector->display_info;
2932	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2933	int target_refresh = 0;
2934	int cur_vrefresh, preferred_vrefresh;
2935
2936	if (list_empty(&connector->probed_modes))
2937		return;
2938
2939	if (info->quirks & EDID_QUIRK_PREFER_LARGE_60)
2940		target_refresh = 60;
2941	if (info->quirks & EDID_QUIRK_PREFER_LARGE_75)
2942		target_refresh = 75;
2943
2944	preferred_mode = list_first_entry(&connector->probed_modes,
2945					  struct drm_display_mode, head);
2946
2947	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2948		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2949
2950		if (cur_mode == preferred_mode)
2951			continue;
2952
2953		/* Largest mode is preferred */
2954		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2955			preferred_mode = cur_mode;
2956
2957		cur_vrefresh = drm_mode_vrefresh(cur_mode);
2958		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2959		/* At a given size, try to get closest to target refresh */
2960		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2961		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2962		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2963			preferred_mode = cur_mode;
2964		}
2965	}
2966
2967	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2968}
2969
2970static bool
2971mode_is_rb(const struct drm_display_mode *mode)
2972{
2973	return (mode->htotal - mode->hdisplay == 160) &&
2974	       (mode->hsync_end - mode->hdisplay == 80) &&
2975	       (mode->hsync_end - mode->hsync_start == 32) &&
2976	       (mode->vsync_start - mode->vdisplay == 3);
2977}
2978
2979/*
2980 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2981 * @dev: Device to duplicate against
2982 * @hsize: Mode width
2983 * @vsize: Mode height
2984 * @fresh: Mode refresh rate
2985 * @rb: Mode reduced-blanking-ness
2986 *
2987 * Walk the DMT mode list looking for a match for the given parameters.
2988 *
2989 * Return: A newly allocated copy of the mode, or NULL if not found.
2990 */
2991struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2992					   int hsize, int vsize, int fresh,
2993					   bool rb)
2994{
2995	int i;
2996
2997	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2998		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2999
3000		if (hsize != ptr->hdisplay)
3001			continue;
3002		if (vsize != ptr->vdisplay)
3003			continue;
3004		if (fresh != drm_mode_vrefresh(ptr))
3005			continue;
3006		if (rb != mode_is_rb(ptr))
3007			continue;
3008
3009		return drm_mode_duplicate(dev, ptr);
3010	}
3011
3012	return NULL;
3013}
3014EXPORT_SYMBOL(drm_mode_find_dmt);
3015
3016static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3017{
3018	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3019	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3020	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3021
3022	return descriptor->pixel_clock == 0 &&
3023		descriptor->data.other_data.pad1 == 0 &&
3024		descriptor->data.other_data.type == type;
3025}
3026
3027static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3028{
3029	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3030
3031	return descriptor->pixel_clock != 0;
3032}
3033
3034typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3035
3036static void
3037cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3038{
3039	int i, n;
3040	u8 d = ext[0x02];
3041	const u8 *det_base = ext + d;
3042
3043	if (d < 4 || d > 127)
3044		return;
3045
3046	n = (127 - d) / 18;
3047	for (i = 0; i < n; i++)
3048		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3049}
3050
3051static void
3052vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3053{
3054	unsigned int i, n = min((int)ext[0x02], 6);
3055	const u8 *det_base = ext + 5;
3056
3057	if (ext[0x01] != 1)
3058		return; /* unknown version */
3059
3060	for (i = 0; i < n; i++)
3061		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3062}
3063
3064static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3065					detailed_cb *cb, void *closure)
3066{
3067	struct drm_edid_iter edid_iter;
3068	const u8 *ext;
3069	int i;
3070
3071	if (!drm_edid)
3072		return;
3073
3074	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3075		cb(&drm_edid->edid->detailed_timings[i], closure);
3076
3077	drm_edid_iter_begin(drm_edid, &edid_iter);
3078	drm_edid_iter_for_each(ext, &edid_iter) {
3079		switch (*ext) {
3080		case CEA_EXT:
3081			cea_for_each_detailed_block(ext, cb, closure);
3082			break;
3083		case VTB_EXT:
3084			vtb_for_each_detailed_block(ext, cb, closure);
3085			break;
3086		default:
3087			break;
3088		}
3089	}
3090	drm_edid_iter_end(&edid_iter);
3091}
3092
3093static void
3094is_rb(const struct detailed_timing *descriptor, void *data)
3095{
3096	bool *res = data;
3097
3098	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3099		return;
3100
3101	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3102	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3103
3104	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3105	    descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3106		*res = true;
3107}
3108
3109/* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3110static bool
3111drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3112{
3113	if (drm_edid->edid->revision >= 4) {
3114		bool ret = false;
3115
3116		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3117		return ret;
3118	}
3119
3120	return drm_edid_is_digital(drm_edid);
3121}
3122
3123static void
3124find_gtf2(const struct detailed_timing *descriptor, void *data)
3125{
3126	const struct detailed_timing **res = data;
3127
3128	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3129		return;
3130
3131	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3132
3133	if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3134		*res = descriptor;
3135}
3136
3137/* Secondary GTF curve kicks in above some break frequency */
3138static int
3139drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3140{
3141	const struct detailed_timing *descriptor = NULL;
3142
3143	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3144
3145	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3146
3147	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3148}
3149
3150static int
3151drm_gtf2_2c(const struct drm_edid *drm_edid)
3152{
3153	const struct detailed_timing *descriptor = NULL;
3154
3155	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3156
3157	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3158
3159	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3160}
3161
3162static int
3163drm_gtf2_m(const struct drm_edid *drm_edid)
3164{
3165	const struct detailed_timing *descriptor = NULL;
3166
3167	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3168
3169	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3170
3171	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3172}
3173
3174static int
3175drm_gtf2_k(const struct drm_edid *drm_edid)
3176{
3177	const struct detailed_timing *descriptor = NULL;
3178
3179	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3180
3181	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3182
3183	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3184}
3185
3186static int
3187drm_gtf2_2j(const struct drm_edid *drm_edid)
3188{
3189	const struct detailed_timing *descriptor = NULL;
3190
3191	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3192
3193	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3194
3195	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3196}
3197
3198static void
3199get_timing_level(const struct detailed_timing *descriptor, void *data)
3200{
3201	int *res = data;
3202
3203	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3204		return;
3205
3206	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3207
3208	switch (descriptor->data.other_data.data.range.flags) {
3209	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3210		*res = LEVEL_GTF;
3211		break;
3212	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3213		*res = LEVEL_GTF2;
3214		break;
3215	case DRM_EDID_CVT_SUPPORT_FLAG:
3216		*res = LEVEL_CVT;
3217		break;
3218	default:
3219		break;
3220	}
3221}
3222
3223/* Get standard timing level (CVT/GTF/DMT). */
3224static int standard_timing_level(const struct drm_edid *drm_edid)
3225{
3226	const struct edid *edid = drm_edid->edid;
3227
3228	if (edid->revision >= 4) {
3229		/*
3230		 * If the range descriptor doesn't
3231		 * indicate otherwise default to CVT
3232		 */
3233		int ret = LEVEL_CVT;
3234
3235		drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3236
3237		return ret;
3238	} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3239		return LEVEL_GTF2;
3240	} else if (edid->revision >= 2) {
3241		return LEVEL_GTF;
3242	} else {
3243		return LEVEL_DMT;
3244	}
3245}
3246
3247/*
3248 * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3249 * monitors fill with ascii space (0x20) instead.
3250 */
3251static int
3252bad_std_timing(u8 a, u8 b)
3253{
3254	return (a == 0x00 && b == 0x00) ||
3255	       (a == 0x01 && b == 0x01) ||
3256	       (a == 0x20 && b == 0x20);
3257}
3258
3259static int drm_mode_hsync(const struct drm_display_mode *mode)
3260{
3261	if (mode->htotal <= 0)
3262		return 0;
3263
3264	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3265}
3266
3267static struct drm_display_mode *
3268drm_gtf2_mode(struct drm_device *dev,
3269	      const struct drm_edid *drm_edid,
3270	      int hsize, int vsize, int vrefresh_rate)
3271{
3272	struct drm_display_mode *mode;
3273
3274	/*
3275	 * This is potentially wrong if there's ever a monitor with
3276	 * more than one ranges section, each claiming a different
3277	 * secondary GTF curve.  Please don't do that.
3278	 */
3279	mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3280	if (!mode)
3281		return NULL;
3282
3283	if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3284		drm_mode_destroy(dev, mode);
3285		mode = drm_gtf_mode_complex(dev, hsize, vsize,
3286					    vrefresh_rate, 0, 0,
3287					    drm_gtf2_m(drm_edid),
3288					    drm_gtf2_2c(drm_edid),
3289					    drm_gtf2_k(drm_edid),
3290					    drm_gtf2_2j(drm_edid));
3291	}
3292
3293	return mode;
3294}
3295
3296/*
3297 * Take the standard timing params (in this case width, aspect, and refresh)
3298 * and convert them into a real mode using CVT/GTF/DMT.
3299 */
3300static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3301					     const struct drm_edid *drm_edid,
3302					     const struct std_timing *t)
3303{
3304	struct drm_device *dev = connector->dev;
3305	struct drm_display_mode *m, *mode = NULL;
3306	int hsize, vsize;
3307	int vrefresh_rate;
3308	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3309		>> EDID_TIMING_ASPECT_SHIFT;
3310	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3311		>> EDID_TIMING_VFREQ_SHIFT;
3312	int timing_level = standard_timing_level(drm_edid);
3313
3314	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3315		return NULL;
3316
3317	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3318	hsize = t->hsize * 8 + 248;
3319	/* vrefresh_rate = vfreq + 60 */
3320	vrefresh_rate = vfreq + 60;
3321	/* the vdisplay is calculated based on the aspect ratio */
3322	if (aspect_ratio == 0) {
3323		if (drm_edid->edid->revision < 3)
3324			vsize = hsize;
3325		else
3326			vsize = (hsize * 10) / 16;
3327	} else if (aspect_ratio == 1)
3328		vsize = (hsize * 3) / 4;
3329	else if (aspect_ratio == 2)
3330		vsize = (hsize * 4) / 5;
3331	else
3332		vsize = (hsize * 9) / 16;
3333
3334	/* HDTV hack, part 1 */
3335	if (vrefresh_rate == 60 &&
3336	    ((hsize == 1360 && vsize == 765) ||
3337	     (hsize == 1368 && vsize == 769))) {
3338		hsize = 1366;
3339		vsize = 768;
3340	}
3341
3342	/*
3343	 * If this connector already has a mode for this size and refresh
3344	 * rate (because it came from detailed or CVT info), use that
3345	 * instead.  This way we don't have to guess at interlace or
3346	 * reduced blanking.
3347	 */
3348	list_for_each_entry(m, &connector->probed_modes, head)
3349		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3350		    drm_mode_vrefresh(m) == vrefresh_rate)
3351			return NULL;
3352
3353	/* HDTV hack, part 2 */
3354	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3355		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3356				    false);
3357		if (!mode)
3358			return NULL;
3359		mode->hdisplay = 1366;
3360		mode->hsync_start = mode->hsync_start - 1;
3361		mode->hsync_end = mode->hsync_end - 1;
3362		return mode;
3363	}
3364
3365	/* check whether it can be found in default mode table */
3366	if (drm_monitor_supports_rb(drm_edid)) {
3367		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3368					 true);
3369		if (mode)
3370			return mode;
3371	}
3372	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3373	if (mode)
3374		return mode;
3375
3376	/* okay, generate it */
3377	switch (timing_level) {
3378	case LEVEL_DMT:
3379		break;
3380	case LEVEL_GTF:
3381		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3382		break;
3383	case LEVEL_GTF2:
3384		mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3385		break;
3386	case LEVEL_CVT:
3387		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3388				    false);
3389		break;
3390	}
3391	return mode;
3392}
3393
3394/*
3395 * EDID is delightfully ambiguous about how interlaced modes are to be
3396 * encoded.  Our internal representation is of frame height, but some
3397 * HDTV detailed timings are encoded as field height.
3398 *
3399 * The format list here is from CEA, in frame size.  Technically we
3400 * should be checking refresh rate too.  Whatever.
3401 */
3402static void
3403drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3404			    const struct detailed_pixel_timing *pt)
3405{
3406	int i;
3407	static const struct {
3408		int w, h;
3409	} cea_interlaced[] = {
3410		{ 1920, 1080 },
3411		{  720,  480 },
3412		{ 1440,  480 },
3413		{ 2880,  480 },
3414		{  720,  576 },
3415		{ 1440,  576 },
3416		{ 2880,  576 },
3417	};
3418
3419	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3420		return;
3421
3422	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3423		if ((mode->hdisplay == cea_interlaced[i].w) &&
3424		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3425			mode->vdisplay *= 2;
3426			mode->vsync_start *= 2;
3427			mode->vsync_end *= 2;
3428			mode->vtotal *= 2;
3429			mode->vtotal |= 1;
3430		}
3431	}
3432
3433	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3434}
3435
3436/*
3437 * Create a new mode from an EDID detailed timing section. An EDID detailed
3438 * timing block contains enough info for us to create and return a new struct
3439 * drm_display_mode.
3440 */
3441static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3442						  const struct drm_edid *drm_edid,
3443						  const struct detailed_timing *timing)
 
3444{
3445	const struct drm_display_info *info = &connector->display_info;
3446	struct drm_device *dev = connector->dev;
3447	struct drm_display_mode *mode;
3448	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3449	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3450	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3451	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3452	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3453	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3454	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3455	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3456	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3457
3458	/* ignore tiny modes */
3459	if (hactive < 64 || vactive < 64)
3460		return NULL;
3461
3462	if (pt->misc & DRM_EDID_PT_STEREO) {
3463		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3464			    connector->base.id, connector->name);
3465		return NULL;
3466	}
3467	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3468		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3469			    connector->base.id, connector->name);
3470	}
3471
3472	/* it is incorrect if hsync/vsync width is zero */
3473	if (!hsync_pulse_width || !vsync_pulse_width) {
3474		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3475			    connector->base.id, connector->name);
3476		return NULL;
3477	}
3478
3479	if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3480		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3481		if (!mode)
3482			return NULL;
3483
3484		goto set_size;
3485	}
3486
3487	mode = drm_mode_create(dev);
3488	if (!mode)
3489		return NULL;
3490
3491	if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3492		mode->clock = 1088 * 10;
3493	else
3494		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3495
3496	mode->hdisplay = hactive;
3497	mode->hsync_start = mode->hdisplay + hsync_offset;
3498	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3499	mode->htotal = mode->hdisplay + hblank;
3500
3501	mode->vdisplay = vactive;
3502	mode->vsync_start = mode->vdisplay + vsync_offset;
3503	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3504	mode->vtotal = mode->vdisplay + vblank;
3505
3506	/* Some EDIDs have bogus h/vsync_end values */
3507	if (mode->hsync_end > mode->htotal) {
3508		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3509			    connector->base.id, connector->name,
3510			    mode->hsync_end, mode->htotal);
3511		mode->hsync_end = mode->htotal;
3512	}
3513	if (mode->vsync_end > mode->vtotal) {
3514		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3515			    connector->base.id, connector->name,
3516			    mode->vsync_end, mode->vtotal);
3517		mode->vsync_end = mode->vtotal;
3518	}
3519
3520	drm_mode_do_interlace_quirk(mode, pt);
3521
3522	if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3523		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3524	} else {
3525		mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3526			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3527		mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3528			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3529	}
3530
3531set_size:
3532	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3533	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3534
3535	if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) {
3536		mode->width_mm *= 10;
3537		mode->height_mm *= 10;
3538	}
3539
3540	if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3541		mode->width_mm = drm_edid->edid->width_cm * 10;
3542		mode->height_mm = drm_edid->edid->height_cm * 10;
3543	}
3544
3545	mode->type = DRM_MODE_TYPE_DRIVER;
3546	drm_mode_set_name(mode);
3547
3548	return mode;
3549}
3550
3551static bool
3552mode_in_hsync_range(const struct drm_display_mode *mode,
3553		    const struct edid *edid, const u8 *t)
3554{
3555	int hsync, hmin, hmax;
3556
3557	hmin = t[7];
3558	if (edid->revision >= 4)
3559	    hmin += ((t[4] & 0x04) ? 255 : 0);
3560	hmax = t[8];
3561	if (edid->revision >= 4)
3562	    hmax += ((t[4] & 0x08) ? 255 : 0);
3563	hsync = drm_mode_hsync(mode);
3564
3565	return (hsync <= hmax && hsync >= hmin);
3566}
3567
3568static bool
3569mode_in_vsync_range(const struct drm_display_mode *mode,
3570		    const struct edid *edid, const u8 *t)
3571{
3572	int vsync, vmin, vmax;
3573
3574	vmin = t[5];
3575	if (edid->revision >= 4)
3576	    vmin += ((t[4] & 0x01) ? 255 : 0);
3577	vmax = t[6];
3578	if (edid->revision >= 4)
3579	    vmax += ((t[4] & 0x02) ? 255 : 0);
3580	vsync = drm_mode_vrefresh(mode);
3581
3582	return (vsync <= vmax && vsync >= vmin);
3583}
3584
3585static u32
3586range_pixel_clock(const struct edid *edid, const u8 *t)
3587{
3588	/* unspecified */
3589	if (t[9] == 0 || t[9] == 255)
3590		return 0;
3591
3592	/* 1.4 with CVT support gives us real precision, yay */
3593	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3594		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3595
3596	/* 1.3 is pathetic, so fuzz up a bit */
3597	return t[9] * 10000 + 5001;
3598}
3599
3600static bool mode_in_range(const struct drm_display_mode *mode,
3601			  const struct drm_edid *drm_edid,
3602			  const struct detailed_timing *timing)
3603{
3604	const struct edid *edid = drm_edid->edid;
3605	u32 max_clock;
3606	const u8 *t = (const u8 *)timing;
3607
3608	if (!mode_in_hsync_range(mode, edid, t))
3609		return false;
3610
3611	if (!mode_in_vsync_range(mode, edid, t))
3612		return false;
3613
3614	if ((max_clock = range_pixel_clock(edid, t)))
3615		if (mode->clock > max_clock)
3616			return false;
3617
3618	/* 1.4 max horizontal check */
3619	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3620		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3621			return false;
3622
3623	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3624		return false;
3625
3626	return true;
3627}
3628
3629static bool valid_inferred_mode(const struct drm_connector *connector,
3630				const struct drm_display_mode *mode)
3631{
3632	const struct drm_display_mode *m;
3633	bool ok = false;
3634
3635	list_for_each_entry(m, &connector->probed_modes, head) {
3636		if (mode->hdisplay == m->hdisplay &&
3637		    mode->vdisplay == m->vdisplay &&
3638		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3639			return false; /* duplicated */
3640		if (mode->hdisplay <= m->hdisplay &&
3641		    mode->vdisplay <= m->vdisplay)
3642			ok = true;
3643	}
3644	return ok;
3645}
3646
3647static int drm_dmt_modes_for_range(struct drm_connector *connector,
3648				   const struct drm_edid *drm_edid,
3649				   const struct detailed_timing *timing)
3650{
3651	int i, modes = 0;
3652	struct drm_display_mode *newmode;
3653	struct drm_device *dev = connector->dev;
3654
3655	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3656		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3657		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3658			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3659			if (newmode) {
3660				drm_mode_probed_add(connector, newmode);
3661				modes++;
3662			}
3663		}
3664	}
3665
3666	return modes;
3667}
3668
3669/* fix up 1366x768 mode from 1368x768;
3670 * GFT/CVT can't express 1366 width which isn't dividable by 8
3671 */
3672void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3673{
3674	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3675		mode->hdisplay = 1366;
3676		mode->hsync_start--;
3677		mode->hsync_end--;
3678		drm_mode_set_name(mode);
3679	}
3680}
3681
3682static int drm_gtf_modes_for_range(struct drm_connector *connector,
3683				   const struct drm_edid *drm_edid,
3684				   const struct detailed_timing *timing)
3685{
3686	int i, modes = 0;
3687	struct drm_display_mode *newmode;
3688	struct drm_device *dev = connector->dev;
3689
3690	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3691		const struct minimode *m = &extra_modes[i];
3692
3693		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3694		if (!newmode)
3695			return modes;
3696
3697		drm_mode_fixup_1366x768(newmode);
3698		if (!mode_in_range(newmode, drm_edid, timing) ||
3699		    !valid_inferred_mode(connector, newmode)) {
3700			drm_mode_destroy(dev, newmode);
3701			continue;
3702		}
3703
3704		drm_mode_probed_add(connector, newmode);
3705		modes++;
3706	}
3707
3708	return modes;
3709}
3710
3711static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3712				    const struct drm_edid *drm_edid,
3713				    const struct detailed_timing *timing)
3714{
3715	int i, modes = 0;
3716	struct drm_display_mode *newmode;
3717	struct drm_device *dev = connector->dev;
3718
3719	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3720		const struct minimode *m = &extra_modes[i];
3721
3722		newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3723		if (!newmode)
3724			return modes;
3725
3726		drm_mode_fixup_1366x768(newmode);
3727		if (!mode_in_range(newmode, drm_edid, timing) ||
3728		    !valid_inferred_mode(connector, newmode)) {
3729			drm_mode_destroy(dev, newmode);
3730			continue;
3731		}
3732
3733		drm_mode_probed_add(connector, newmode);
3734		modes++;
3735	}
3736
3737	return modes;
3738}
3739
3740static int drm_cvt_modes_for_range(struct drm_connector *connector,
3741				   const struct drm_edid *drm_edid,
3742				   const struct detailed_timing *timing)
3743{
3744	int i, modes = 0;
3745	struct drm_display_mode *newmode;
3746	struct drm_device *dev = connector->dev;
3747	bool rb = drm_monitor_supports_rb(drm_edid);
3748
3749	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3750		const struct minimode *m = &extra_modes[i];
3751
3752		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3753		if (!newmode)
3754			return modes;
3755
3756		drm_mode_fixup_1366x768(newmode);
3757		if (!mode_in_range(newmode, drm_edid, timing) ||
3758		    !valid_inferred_mode(connector, newmode)) {
3759			drm_mode_destroy(dev, newmode);
3760			continue;
3761		}
3762
3763		drm_mode_probed_add(connector, newmode);
3764		modes++;
3765	}
3766
3767	return modes;
3768}
3769
3770static void
3771do_inferred_modes(const struct detailed_timing *timing, void *c)
3772{
3773	struct detailed_mode_closure *closure = c;
3774	const struct detailed_non_pixel *data = &timing->data.other_data;
3775	const struct detailed_data_monitor_range *range = &data->data.range;
3776
3777	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3778		return;
3779
3780	closure->modes += drm_dmt_modes_for_range(closure->connector,
3781						  closure->drm_edid,
3782						  timing);
3783
3784	if (closure->drm_edid->edid->revision < 2)
3785		return; /* GTF not defined yet */
3786
3787	switch (range->flags) {
3788	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3789		closure->modes += drm_gtf2_modes_for_range(closure->connector,
3790							   closure->drm_edid,
3791							   timing);
3792		break;
3793	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3794		closure->modes += drm_gtf_modes_for_range(closure->connector,
3795							  closure->drm_edid,
3796							  timing);
3797		break;
3798	case DRM_EDID_CVT_SUPPORT_FLAG:
3799		if (closure->drm_edid->edid->revision < 4)
3800			break;
3801
3802		closure->modes += drm_cvt_modes_for_range(closure->connector,
3803							  closure->drm_edid,
3804							  timing);
3805		break;
3806	case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3807	default:
3808		break;
3809	}
3810}
3811
3812static int add_inferred_modes(struct drm_connector *connector,
3813			      const struct drm_edid *drm_edid)
3814{
3815	struct detailed_mode_closure closure = {
3816		.connector = connector,
3817		.drm_edid = drm_edid,
3818	};
3819
3820	if (drm_edid->edid->revision >= 1)
3821		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3822
3823	return closure.modes;
3824}
3825
3826static int
3827drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3828{
3829	int i, j, m, modes = 0;
3830	struct drm_display_mode *mode;
3831	const u8 *est = ((const u8 *)timing) + 6;
3832
3833	for (i = 0; i < 6; i++) {
3834		for (j = 7; j >= 0; j--) {
3835			m = (i * 8) + (7 - j);
3836			if (m >= ARRAY_SIZE(est3_modes))
3837				break;
3838			if (est[i] & (1 << j)) {
3839				mode = drm_mode_find_dmt(connector->dev,
3840							 est3_modes[m].w,
3841							 est3_modes[m].h,
3842							 est3_modes[m].r,
3843							 est3_modes[m].rb);
3844				if (mode) {
3845					drm_mode_probed_add(connector, mode);
3846					modes++;
3847				}
3848			}
3849		}
3850	}
3851
3852	return modes;
3853}
3854
3855static void
3856do_established_modes(const struct detailed_timing *timing, void *c)
3857{
3858	struct detailed_mode_closure *closure = c;
3859
3860	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3861		return;
3862
3863	closure->modes += drm_est3_modes(closure->connector, timing);
3864}
3865
3866/*
3867 * Get established modes from EDID and add them. Each EDID block contains a
3868 * bitmap of the supported "established modes" list (defined above). Tease them
3869 * out and add them to the global modes list.
3870 */
3871static int add_established_modes(struct drm_connector *connector,
3872				 const struct drm_edid *drm_edid)
3873{
3874	struct drm_device *dev = connector->dev;
3875	const struct edid *edid = drm_edid->edid;
3876	unsigned long est_bits = edid->established_timings.t1 |
3877		(edid->established_timings.t2 << 8) |
3878		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3879	int i, modes = 0;
3880	struct detailed_mode_closure closure = {
3881		.connector = connector,
3882		.drm_edid = drm_edid,
3883	};
3884
3885	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3886		if (est_bits & (1<<i)) {
3887			struct drm_display_mode *newmode;
3888
3889			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3890			if (newmode) {
3891				drm_mode_probed_add(connector, newmode);
3892				modes++;
3893			}
3894		}
3895	}
3896
3897	if (edid->revision >= 1)
3898		drm_for_each_detailed_block(drm_edid, do_established_modes,
3899					    &closure);
3900
3901	return modes + closure.modes;
3902}
3903
3904static void
3905do_standard_modes(const struct detailed_timing *timing, void *c)
3906{
3907	struct detailed_mode_closure *closure = c;
3908	const struct detailed_non_pixel *data = &timing->data.other_data;
3909	struct drm_connector *connector = closure->connector;
3910	int i;
3911
3912	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3913		return;
3914
3915	for (i = 0; i < 6; i++) {
3916		const struct std_timing *std = &data->data.timings[i];
3917		struct drm_display_mode *newmode;
3918
3919		newmode = drm_mode_std(connector, closure->drm_edid, std);
3920		if (newmode) {
3921			drm_mode_probed_add(connector, newmode);
3922			closure->modes++;
3923		}
3924	}
3925}
3926
3927/*
3928 * Get standard modes from EDID and add them. Standard modes can be calculated
3929 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3930 * add them to the list.
3931 */
3932static int add_standard_modes(struct drm_connector *connector,
3933			      const struct drm_edid *drm_edid)
3934{
3935	int i, modes = 0;
3936	struct detailed_mode_closure closure = {
3937		.connector = connector,
3938		.drm_edid = drm_edid,
3939	};
3940
3941	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3942		struct drm_display_mode *newmode;
3943
3944		newmode = drm_mode_std(connector, drm_edid,
3945				       &drm_edid->edid->standard_timings[i]);
3946		if (newmode) {
3947			drm_mode_probed_add(connector, newmode);
3948			modes++;
3949		}
3950	}
3951
3952	if (drm_edid->edid->revision >= 1)
3953		drm_for_each_detailed_block(drm_edid, do_standard_modes,
3954					    &closure);
3955
3956	/* XXX should also look for standard codes in VTB blocks */
3957
3958	return modes + closure.modes;
3959}
3960
3961static int drm_cvt_modes(struct drm_connector *connector,
3962			 const struct detailed_timing *timing)
3963{
3964	int i, j, modes = 0;
3965	struct drm_display_mode *newmode;
3966	struct drm_device *dev = connector->dev;
3967	const struct cvt_timing *cvt;
3968	static const int rates[] = { 60, 85, 75, 60, 50 };
3969	const u8 empty[3] = { 0, 0, 0 };
3970
3971	for (i = 0; i < 4; i++) {
3972		int width, height;
3973
3974		cvt = &(timing->data.other_data.data.cvt[i]);
3975
3976		if (!memcmp(cvt->code, empty, 3))
3977			continue;
3978
3979		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3980		switch (cvt->code[1] & 0x0c) {
3981		/* default - because compiler doesn't see that we've enumerated all cases */
3982		default:
3983		case 0x00:
3984			width = height * 4 / 3;
3985			break;
3986		case 0x04:
3987			width = height * 16 / 9;
3988			break;
3989		case 0x08:
3990			width = height * 16 / 10;
3991			break;
3992		case 0x0c:
3993			width = height * 15 / 9;
3994			break;
3995		}
3996
3997		for (j = 1; j < 5; j++) {
3998			if (cvt->code[2] & (1 << j)) {
3999				newmode = drm_cvt_mode(dev, width, height,
4000						       rates[j], j == 0,
4001						       false, false);
4002				if (newmode) {
4003					drm_mode_probed_add(connector, newmode);
4004					modes++;
4005				}
4006			}
4007		}
4008	}
4009
4010	return modes;
4011}
4012
4013static void
4014do_cvt_mode(const struct detailed_timing *timing, void *c)
4015{
4016	struct detailed_mode_closure *closure = c;
4017
4018	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4019		return;
4020
4021	closure->modes += drm_cvt_modes(closure->connector, timing);
4022}
4023
4024static int
4025add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4026{
4027	struct detailed_mode_closure closure = {
4028		.connector = connector,
4029		.drm_edid = drm_edid,
4030	};
4031
4032	if (drm_edid->edid->revision >= 3)
4033		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4034
4035	/* XXX should also look for CVT codes in VTB blocks */
4036
4037	return closure.modes;
4038}
4039
4040static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4041					  struct drm_display_mode *mode);
4042
4043static void
4044do_detailed_mode(const struct detailed_timing *timing, void *c)
4045{
4046	struct detailed_mode_closure *closure = c;
4047	struct drm_display_mode *newmode;
4048
4049	if (!is_detailed_timing_descriptor(timing))
4050		return;
4051
4052	newmode = drm_mode_detailed(closure->connector,
4053				    closure->drm_edid, timing);
 
4054	if (!newmode)
4055		return;
4056
4057	if (closure->preferred)
4058		newmode->type |= DRM_MODE_TYPE_PREFERRED;
4059
4060	/*
4061	 * Detailed modes are limited to 10kHz pixel clock resolution,
4062	 * so fix up anything that looks like CEA/HDMI mode, but the clock
4063	 * is just slightly off.
4064	 */
4065	fixup_detailed_cea_mode_clock(closure->connector, newmode);
4066
4067	drm_mode_probed_add(closure->connector, newmode);
4068	closure->modes++;
4069	closure->preferred = false;
4070}
4071
4072/*
4073 * add_detailed_modes - Add modes from detailed timings
4074 * @connector: attached connector
4075 * @drm_edid: EDID block to scan
 
4076 */
4077static int add_detailed_modes(struct drm_connector *connector,
4078			      const struct drm_edid *drm_edid)
4079{
4080	struct detailed_mode_closure closure = {
4081		.connector = connector,
4082		.drm_edid = drm_edid,
 
4083	};
4084
4085	if (drm_edid->edid->revision >= 4)
4086		closure.preferred = true; /* first detailed timing is always preferred */
4087	else
4088		closure.preferred =
4089			drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4090
4091	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4092
4093	return closure.modes;
4094}
4095
4096/* CTA-861-H Table 60 - CTA Tag Codes */
4097#define CTA_DB_AUDIO			1
4098#define CTA_DB_VIDEO			2
4099#define CTA_DB_VENDOR			3
4100#define CTA_DB_SPEAKER			4
4101#define CTA_DB_EXTENDED_TAG		7
4102
4103/* CTA-861-H Table 62 - CTA Extended Tag Codes */
4104#define CTA_EXT_DB_VIDEO_CAP		0
4105#define CTA_EXT_DB_VENDOR		1
4106#define CTA_EXT_DB_HDR_STATIC_METADATA	6
4107#define CTA_EXT_DB_420_VIDEO_DATA	14
4108#define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
4109#define CTA_EXT_DB_HF_EEODB		0x78
4110#define CTA_EXT_DB_HF_SCDB		0x79
4111
4112#define EDID_BASIC_AUDIO	(1 << 6)
4113#define EDID_CEA_YCRCB444	(1 << 5)
4114#define EDID_CEA_YCRCB422	(1 << 4)
4115#define EDID_CEA_VCDB_QS	(1 << 6)
4116
4117/*
4118 * Search EDID for CEA extension block.
4119 *
4120 * FIXME: Prefer not returning pointers to raw EDID data.
4121 */
4122const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4123				  int ext_id, int *ext_index)
4124{
4125	const u8 *edid_ext = NULL;
4126	int i;
4127
4128	/* No EDID or EDID extensions */
4129	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4130		return NULL;
4131
4132	/* Find CEA extension */
4133	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4134		edid_ext = drm_edid_extension_block_data(drm_edid, i);
4135		if (edid_block_tag(edid_ext) == ext_id)
4136			break;
4137	}
4138
4139	if (i >= drm_edid_extension_block_count(drm_edid))
4140		return NULL;
4141
4142	*ext_index = i + 1;
4143
4144	return edid_ext;
4145}
4146
4147/* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4148static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4149{
4150	const struct displayid_block *block;
4151	struct displayid_iter iter;
4152	int ext_index = 0;
4153	bool found = false;
4154
4155	/* Look for a top level CEA extension block */
4156	if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4157		return true;
4158
4159	/* CEA blocks can also be found embedded in a DisplayID block */
4160	displayid_iter_edid_begin(drm_edid, &iter);
4161	displayid_iter_for_each(block, &iter) {
4162		if (block->tag == DATA_BLOCK_CTA) {
4163			found = true;
4164			break;
4165		}
4166	}
4167	displayid_iter_end(&iter);
4168
4169	return found;
4170}
4171
4172static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4173{
4174	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4175	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4176
4177	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4178		return &edid_cea_modes_1[vic - 1];
4179	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4180		return &edid_cea_modes_193[vic - 193];
4181	return NULL;
4182}
4183
4184static u8 cea_num_vics(void)
4185{
4186	return 193 + ARRAY_SIZE(edid_cea_modes_193);
4187}
4188
4189static u8 cea_next_vic(u8 vic)
4190{
4191	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4192		vic = 193;
4193	return vic;
4194}
4195
4196/*
4197 * Calculate the alternate clock for the CEA mode
4198 * (60Hz vs. 59.94Hz etc.)
4199 */
4200static unsigned int
4201cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4202{
4203	unsigned int clock = cea_mode->clock;
4204
4205	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4206		return clock;
4207
4208	/*
4209	 * edid_cea_modes contains the 59.94Hz
4210	 * variant for 240 and 480 line modes,
4211	 * and the 60Hz variant otherwise.
4212	 */
4213	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4214		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4215	else
4216		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4217
4218	return clock;
4219}
4220
4221static bool
4222cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4223{
4224	/*
4225	 * For certain VICs the spec allows the vertical
4226	 * front porch to vary by one or two lines.
4227	 *
4228	 * cea_modes[] stores the variant with the shortest
4229	 * vertical front porch. We can adjust the mode to
4230	 * get the other variants by simply increasing the
4231	 * vertical front porch length.
4232	 */
4233	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4234		     cea_mode_for_vic(9)->vtotal != 262 ||
4235		     cea_mode_for_vic(12)->vtotal != 262 ||
4236		     cea_mode_for_vic(13)->vtotal != 262 ||
4237		     cea_mode_for_vic(23)->vtotal != 312 ||
4238		     cea_mode_for_vic(24)->vtotal != 312 ||
4239		     cea_mode_for_vic(27)->vtotal != 312 ||
4240		     cea_mode_for_vic(28)->vtotal != 312);
4241
4242	if (((vic == 8 || vic == 9 ||
4243	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
4244	    ((vic == 23 || vic == 24 ||
4245	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
4246		mode->vsync_start++;
4247		mode->vsync_end++;
4248		mode->vtotal++;
4249
4250		return true;
4251	}
4252
4253	return false;
4254}
4255
4256static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4257					     unsigned int clock_tolerance)
4258{
4259	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4260	u8 vic;
4261
4262	if (!to_match->clock)
4263		return 0;
4264
4265	if (to_match->picture_aspect_ratio)
4266		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4267
4268	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4269		struct drm_display_mode cea_mode;
4270		unsigned int clock1, clock2;
4271
4272		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4273
4274		/* Check both 60Hz and 59.94Hz */
4275		clock1 = cea_mode.clock;
4276		clock2 = cea_mode_alternate_clock(&cea_mode);
4277
4278		if (abs(to_match->clock - clock1) > clock_tolerance &&
4279		    abs(to_match->clock - clock2) > clock_tolerance)
4280			continue;
4281
4282		do {
4283			if (drm_mode_match(to_match, &cea_mode, match_flags))
4284				return vic;
4285		} while (cea_mode_alternate_timings(vic, &cea_mode));
4286	}
4287
4288	return 0;
4289}
4290
4291/**
4292 * drm_match_cea_mode - look for a CEA mode matching given mode
4293 * @to_match: display mode
4294 *
4295 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4296 * mode.
4297 */
4298u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4299{
4300	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4301	u8 vic;
4302
4303	if (!to_match->clock)
4304		return 0;
4305
4306	if (to_match->picture_aspect_ratio)
4307		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4308
4309	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4310		struct drm_display_mode cea_mode;
4311		unsigned int clock1, clock2;
4312
4313		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4314
4315		/* Check both 60Hz and 59.94Hz */
4316		clock1 = cea_mode.clock;
4317		clock2 = cea_mode_alternate_clock(&cea_mode);
4318
4319		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4320		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4321			continue;
4322
4323		do {
4324			if (drm_mode_match(to_match, &cea_mode, match_flags))
4325				return vic;
4326		} while (cea_mode_alternate_timings(vic, &cea_mode));
4327	}
4328
4329	return 0;
4330}
4331EXPORT_SYMBOL(drm_match_cea_mode);
4332
4333static bool drm_valid_cea_vic(u8 vic)
4334{
4335	return cea_mode_for_vic(vic) != NULL;
4336}
4337
4338static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4339{
4340	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4341
4342	if (mode)
4343		return mode->picture_aspect_ratio;
4344
4345	return HDMI_PICTURE_ASPECT_NONE;
4346}
4347
4348static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4349{
4350	return edid_4k_modes[video_code].picture_aspect_ratio;
4351}
4352
4353/*
4354 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4355 * specific block).
4356 */
4357static unsigned int
4358hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4359{
4360	return cea_mode_alternate_clock(hdmi_mode);
4361}
4362
4363static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4364					      unsigned int clock_tolerance)
4365{
4366	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4367	u8 vic;
4368
4369	if (!to_match->clock)
4370		return 0;
4371
4372	if (to_match->picture_aspect_ratio)
4373		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4374
4375	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4376		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4377		unsigned int clock1, clock2;
4378
4379		/* Make sure to also match alternate clocks */
4380		clock1 = hdmi_mode->clock;
4381		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4382
4383		if (abs(to_match->clock - clock1) > clock_tolerance &&
4384		    abs(to_match->clock - clock2) > clock_tolerance)
4385			continue;
4386
4387		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4388			return vic;
4389	}
4390
4391	return 0;
4392}
4393
4394/*
4395 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4396 * @to_match: display mode
4397 *
4398 * An HDMI mode is one defined in the HDMI vendor specific block.
4399 *
4400 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4401 */
4402static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4403{
4404	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4405	u8 vic;
4406
4407	if (!to_match->clock)
4408		return 0;
4409
4410	if (to_match->picture_aspect_ratio)
4411		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4412
4413	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4414		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4415		unsigned int clock1, clock2;
4416
4417		/* Make sure to also match alternate clocks */
4418		clock1 = hdmi_mode->clock;
4419		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4420
4421		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4422		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4423		    drm_mode_match(to_match, hdmi_mode, match_flags))
4424			return vic;
4425	}
4426	return 0;
4427}
4428
4429static bool drm_valid_hdmi_vic(u8 vic)
4430{
4431	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4432}
4433
4434static int add_alternate_cea_modes(struct drm_connector *connector,
4435				   const struct drm_edid *drm_edid)
4436{
4437	struct drm_device *dev = connector->dev;
4438	struct drm_display_mode *mode, *tmp;
4439	LIST_HEAD(list);
4440	int modes = 0;
4441
4442	/* Don't add CTA modes if the CTA extension block is missing */
4443	if (!drm_edid_has_cta_extension(drm_edid))
4444		return 0;
4445
4446	/*
4447	 * Go through all probed modes and create a new mode
4448	 * with the alternate clock for certain CEA modes.
4449	 */
4450	list_for_each_entry(mode, &connector->probed_modes, head) {
4451		const struct drm_display_mode *cea_mode = NULL;
4452		struct drm_display_mode *newmode;
4453		u8 vic = drm_match_cea_mode(mode);
4454		unsigned int clock1, clock2;
4455
4456		if (drm_valid_cea_vic(vic)) {
4457			cea_mode = cea_mode_for_vic(vic);
4458			clock2 = cea_mode_alternate_clock(cea_mode);
4459		} else {
4460			vic = drm_match_hdmi_mode(mode);
4461			if (drm_valid_hdmi_vic(vic)) {
4462				cea_mode = &edid_4k_modes[vic];
4463				clock2 = hdmi_mode_alternate_clock(cea_mode);
4464			}
4465		}
4466
4467		if (!cea_mode)
4468			continue;
4469
4470		clock1 = cea_mode->clock;
4471
4472		if (clock1 == clock2)
4473			continue;
4474
4475		if (mode->clock != clock1 && mode->clock != clock2)
4476			continue;
4477
4478		newmode = drm_mode_duplicate(dev, cea_mode);
4479		if (!newmode)
4480			continue;
4481
4482		/* Carry over the stereo flags */
4483		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4484
4485		/*
4486		 * The current mode could be either variant. Make
4487		 * sure to pick the "other" clock for the new mode.
4488		 */
4489		if (mode->clock != clock1)
4490			newmode->clock = clock1;
4491		else
4492			newmode->clock = clock2;
4493
4494		list_add_tail(&newmode->head, &list);
4495	}
4496
4497	list_for_each_entry_safe(mode, tmp, &list, head) {
4498		list_del(&mode->head);
4499		drm_mode_probed_add(connector, mode);
4500		modes++;
4501	}
4502
4503	return modes;
4504}
4505
4506static u8 svd_to_vic(u8 svd)
4507{
4508	/* 0-6 bit vic, 7th bit native mode indicator */
4509	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4510		return svd & 127;
4511
4512	return svd;
4513}
4514
4515/*
4516 * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4517 * the EDID, or NULL on errors.
4518 */
4519static struct drm_display_mode *
4520drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
 
 
4521{
4522	const struct drm_display_info *info = &connector->display_info;
4523	struct drm_device *dev = connector->dev;
 
 
4524
4525	if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4526		return NULL;
4527
4528	return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
 
 
 
 
 
 
 
 
 
4529}
4530
4531/*
4532 * do_y420vdb_modes - Parse YCBCR 420 only modes
4533 * @connector: connector corresponding to the HDMI sink
4534 * @svds: start of the data block of CEA YCBCR 420 VDB
4535 * @len: length of the CEA YCBCR 420 VDB
4536 *
4537 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4538 * which contains modes which can be supported in YCBCR 420
4539 * output format only.
4540 */
4541static int do_y420vdb_modes(struct drm_connector *connector,
4542			    const u8 *svds, u8 svds_len)
4543{
4544	struct drm_device *dev = connector->dev;
4545	int modes = 0, i;
 
 
 
4546
4547	for (i = 0; i < svds_len; i++) {
4548		u8 vic = svd_to_vic(svds[i]);
4549		struct drm_display_mode *newmode;
4550
4551		if (!drm_valid_cea_vic(vic))
4552			continue;
4553
4554		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4555		if (!newmode)
4556			break;
 
4557		drm_mode_probed_add(connector, newmode);
4558		modes++;
4559	}
4560
 
 
4561	return modes;
4562}
4563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4564/**
4565 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4566 * @dev: DRM device
4567 * @video_code: CEA VIC of the mode
4568 *
4569 * Creates a new mode matching the specified CEA VIC.
4570 *
4571 * Returns: A new drm_display_mode on success or NULL on failure
4572 */
4573struct drm_display_mode *
4574drm_display_mode_from_cea_vic(struct drm_device *dev,
4575			      u8 video_code)
4576{
4577	const struct drm_display_mode *cea_mode;
4578	struct drm_display_mode *newmode;
4579
4580	cea_mode = cea_mode_for_vic(video_code);
4581	if (!cea_mode)
4582		return NULL;
4583
4584	newmode = drm_mode_duplicate(dev, cea_mode);
4585	if (!newmode)
4586		return NULL;
4587
4588	return newmode;
4589}
4590EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4591
4592/* Add modes based on VICs parsed in parse_cta_vdb() */
4593static int add_cta_vdb_modes(struct drm_connector *connector)
4594{
4595	const struct drm_display_info *info = &connector->display_info;
4596	int i, modes = 0;
 
4597
4598	if (!info->vics)
4599		return 0;
4600
4601	for (i = 0; i < info->vics_len; i++) {
4602		struct drm_display_mode *mode;
4603
4604		mode = drm_display_mode_from_vic_index(connector, i);
4605		if (mode) {
 
 
 
 
 
 
 
 
 
 
 
 
4606			drm_mode_probed_add(connector, mode);
4607			modes++;
4608		}
4609	}
4610
4611	return modes;
4612}
4613
4614struct stereo_mandatory_mode {
4615	int width, height, vrefresh;
4616	unsigned int flags;
4617};
4618
4619static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4620	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4621	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4622	{ 1920, 1080, 50,
4623	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4624	{ 1920, 1080, 60,
4625	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4626	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4627	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4628	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4629	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4630};
4631
4632static bool
4633stereo_match_mandatory(const struct drm_display_mode *mode,
4634		       const struct stereo_mandatory_mode *stereo_mode)
4635{
4636	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4637
4638	return mode->hdisplay == stereo_mode->width &&
4639	       mode->vdisplay == stereo_mode->height &&
4640	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4641	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4642}
4643
4644static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4645{
4646	struct drm_device *dev = connector->dev;
4647	const struct drm_display_mode *mode;
4648	struct list_head stereo_modes;
4649	int modes = 0, i;
4650
4651	INIT_LIST_HEAD(&stereo_modes);
4652
4653	list_for_each_entry(mode, &connector->probed_modes, head) {
4654		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4655			const struct stereo_mandatory_mode *mandatory;
4656			struct drm_display_mode *new_mode;
4657
4658			if (!stereo_match_mandatory(mode,
4659						    &stereo_mandatory_modes[i]))
4660				continue;
4661
4662			mandatory = &stereo_mandatory_modes[i];
4663			new_mode = drm_mode_duplicate(dev, mode);
4664			if (!new_mode)
4665				continue;
4666
4667			new_mode->flags |= mandatory->flags;
4668			list_add_tail(&new_mode->head, &stereo_modes);
4669			modes++;
4670		}
4671	}
4672
4673	list_splice_tail(&stereo_modes, &connector->probed_modes);
4674
4675	return modes;
4676}
4677
4678static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4679{
4680	struct drm_device *dev = connector->dev;
4681	struct drm_display_mode *newmode;
4682
4683	if (!drm_valid_hdmi_vic(vic)) {
4684		drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4685			connector->base.id, connector->name, vic);
4686		return 0;
4687	}
4688
4689	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4690	if (!newmode)
4691		return 0;
4692
4693	drm_mode_probed_add(connector, newmode);
4694
4695	return 1;
4696}
4697
4698static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4699			       int vic_index)
4700{
4701	struct drm_display_mode *newmode;
4702	int modes = 0;
4703
4704	if (structure & (1 << 0)) {
4705		newmode = drm_display_mode_from_vic_index(connector, vic_index);
 
 
4706		if (newmode) {
4707			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4708			drm_mode_probed_add(connector, newmode);
4709			modes++;
4710		}
4711	}
4712	if (structure & (1 << 6)) {
4713		newmode = drm_display_mode_from_vic_index(connector, vic_index);
 
 
4714		if (newmode) {
4715			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4716			drm_mode_probed_add(connector, newmode);
4717			modes++;
4718		}
4719	}
4720	if (structure & (1 << 8)) {
4721		newmode = drm_display_mode_from_vic_index(connector, vic_index);
 
 
4722		if (newmode) {
4723			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4724			drm_mode_probed_add(connector, newmode);
4725			modes++;
4726		}
4727	}
4728
4729	return modes;
4730}
4731
4732static bool hdmi_vsdb_latency_present(const u8 *db)
4733{
4734	return db[8] & BIT(7);
4735}
4736
4737static bool hdmi_vsdb_i_latency_present(const u8 *db)
4738{
4739	return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4740}
4741
4742static int hdmi_vsdb_latency_length(const u8 *db)
4743{
4744	if (hdmi_vsdb_i_latency_present(db))
4745		return 4;
4746	else if (hdmi_vsdb_latency_present(db))
4747		return 2;
4748	else
4749		return 0;
4750}
4751
4752/*
4753 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4754 * @connector: connector corresponding to the HDMI sink
4755 * @db: start of the CEA vendor specific block
4756 * @len: length of the CEA block payload, ie. one can access up to db[len]
4757 *
4758 * Parses the HDMI VSDB looking for modes to add to @connector. This function
4759 * also adds the stereo 3d modes when applicable.
4760 */
4761static int
4762do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
 
4763{
 
4764	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4765	u8 vic_len, hdmi_3d_len = 0;
4766	u16 mask;
4767	u16 structure_all;
4768
4769	if (len < 8)
4770		goto out;
4771
4772	/* no HDMI_Video_Present */
4773	if (!(db[8] & (1 << 5)))
4774		goto out;
4775
4776	offset += hdmi_vsdb_latency_length(db);
 
 
 
 
 
 
4777
4778	/* the declared length is not long enough for the 2 first bytes
4779	 * of additional video format capabilities */
4780	if (len < (8 + offset + 2))
4781		goto out;
4782
4783	/* 3D_Present */
4784	offset++;
4785	if (db[8 + offset] & (1 << 7)) {
4786		modes += add_hdmi_mandatory_stereo_modes(connector);
4787
4788		/* 3D_Multi_present */
4789		multi_present = (db[8 + offset] & 0x60) >> 5;
4790	}
4791
4792	offset++;
4793	vic_len = db[8 + offset] >> 5;
4794	hdmi_3d_len = db[8 + offset] & 0x1f;
4795
4796	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4797		u8 vic;
4798
4799		vic = db[9 + offset + i];
4800		modes += add_hdmi_mode(connector, vic);
4801	}
4802	offset += 1 + vic_len;
4803
4804	if (multi_present == 1)
4805		multi_len = 2;
4806	else if (multi_present == 2)
4807		multi_len = 4;
4808	else
4809		multi_len = 0;
4810
4811	if (len < (8 + offset + hdmi_3d_len - 1))
4812		goto out;
4813
4814	if (hdmi_3d_len < multi_len)
4815		goto out;
4816
4817	if (multi_present == 1 || multi_present == 2) {
4818		/* 3D_Structure_ALL */
4819		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4820
4821		/* check if 3D_MASK is present */
4822		if (multi_present == 2)
4823			mask = (db[10 + offset] << 8) | db[11 + offset];
4824		else
4825			mask = 0xffff;
4826
4827		for (i = 0; i < 16; i++) {
4828			if (mask & (1 << i))
4829				modes += add_3d_struct_modes(connector,
4830							     structure_all, i);
 
 
4831		}
4832	}
4833
4834	offset += multi_len;
4835
4836	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4837		int vic_index;
4838		struct drm_display_mode *newmode = NULL;
4839		unsigned int newflag = 0;
4840		bool detail_present;
4841
4842		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4843
4844		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4845			break;
4846
4847		/* 2D_VIC_order_X */
4848		vic_index = db[8 + offset + i] >> 4;
4849
4850		/* 3D_Structure_X */
4851		switch (db[8 + offset + i] & 0x0f) {
4852		case 0:
4853			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4854			break;
4855		case 6:
4856			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4857			break;
4858		case 8:
4859			/* 3D_Detail_X */
4860			if ((db[9 + offset + i] >> 4) == 1)
4861				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4862			break;
4863		}
4864
4865		if (newflag != 0) {
4866			newmode = drm_display_mode_from_vic_index(connector,
 
 
4867								  vic_index);
4868
4869			if (newmode) {
4870				newmode->flags |= newflag;
4871				drm_mode_probed_add(connector, newmode);
4872				modes++;
4873			}
4874		}
4875
4876		if (detail_present)
4877			i++;
4878	}
4879
4880out:
 
 
4881	return modes;
4882}
4883
4884static int
4885cea_revision(const u8 *cea)
4886{
4887	/*
4888	 * FIXME is this correct for the DispID variant?
4889	 * The DispID spec doesn't really specify whether
4890	 * this is the revision of the CEA extension or
4891	 * the DispID CEA data block. And the only value
4892	 * given as an example is 0.
4893	 */
4894	return cea[1];
4895}
4896
4897/*
4898 * CTA Data Block iterator.
4899 *
4900 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4901 * CTA Data Blocks.
4902 *
4903 * struct cea_db *db:
4904 * struct cea_db_iter iter;
4905 *
4906 * cea_db_iter_edid_begin(edid, &iter);
4907 * cea_db_iter_for_each(db, &iter) {
4908 *         // do stuff with db
4909 * }
4910 * cea_db_iter_end(&iter);
4911 */
4912struct cea_db_iter {
4913	struct drm_edid_iter edid_iter;
4914	struct displayid_iter displayid_iter;
4915
4916	/* Current Data Block Collection. */
4917	const u8 *collection;
4918
4919	/* Current Data Block index in current collection. */
4920	int index;
4921
4922	/* End index in current collection. */
4923	int end;
4924};
4925
4926/* CTA-861-H section 7.4 CTA Data BLock Collection */
4927struct cea_db {
4928	u8 tag_length;
4929	u8 data[];
4930} __packed;
4931
4932static int cea_db_tag(const struct cea_db *db)
4933{
4934	return db->tag_length >> 5;
4935}
4936
4937static int cea_db_payload_len(const void *_db)
4938{
4939	/* FIXME: Transition to passing struct cea_db * everywhere. */
4940	const struct cea_db *db = _db;
4941
4942	return db->tag_length & 0x1f;
4943}
4944
4945static const void *cea_db_data(const struct cea_db *db)
4946{
4947	return db->data;
4948}
4949
4950static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4951{
4952	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4953		cea_db_payload_len(db) >= 1 &&
4954		db->data[0] == tag;
4955}
4956
4957static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4958{
4959	const u8 *data = cea_db_data(db);
4960
4961	return cea_db_tag(db) == CTA_DB_VENDOR &&
4962		cea_db_payload_len(db) >= 3 &&
4963		oui(data[2], data[1], data[0]) == vendor_oui;
4964}
4965
4966static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4967				   struct cea_db_iter *iter)
4968{
4969	memset(iter, 0, sizeof(*iter));
4970
4971	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4972	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4973}
4974
4975static const struct cea_db *
4976__cea_db_iter_current_block(const struct cea_db_iter *iter)
4977{
4978	const struct cea_db *db;
4979
4980	if (!iter->collection)
4981		return NULL;
4982
4983	db = (const struct cea_db *)&iter->collection[iter->index];
4984
4985	if (iter->index + sizeof(*db) <= iter->end &&
4986	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4987		return db;
4988
4989	return NULL;
4990}
4991
4992/*
4993 * References:
4994 * - CTA-861-H section 7.3.3 CTA Extension Version 3
4995 */
4996static int cea_db_collection_size(const u8 *cta)
4997{
4998	u8 d = cta[2];
4999
5000	if (d < 4 || d > 127)
5001		return 0;
5002
5003	return d - 4;
5004}
5005
5006/*
5007 * References:
5008 * - VESA E-EDID v1.4
5009 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5010 */
5011static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5012{
5013	const u8 *ext;
5014
5015	drm_edid_iter_for_each(ext, &iter->edid_iter) {
5016		int size;
5017
5018		/* Only support CTA Extension revision 3+ */
5019		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5020			continue;
5021
5022		size = cea_db_collection_size(ext);
5023		if (!size)
5024			continue;
5025
5026		iter->index = 4;
5027		iter->end = iter->index + size;
5028
5029		return ext;
5030	}
5031
5032	return NULL;
5033}
5034
5035/*
5036 * References:
5037 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5038 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5039 *
5040 * Note that the above do not specify any connection between DisplayID Data
5041 * Block revision and CTA Extension versions.
5042 */
5043static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5044{
5045	const struct displayid_block *block;
5046
5047	displayid_iter_for_each(block, &iter->displayid_iter) {
5048		if (block->tag != DATA_BLOCK_CTA)
5049			continue;
5050
5051		/*
5052		 * The displayid iterator has already verified the block bounds
5053		 * in displayid_iter_block().
5054		 */
5055		iter->index = sizeof(*block);
5056		iter->end = iter->index + block->num_bytes;
5057
5058		return block;
5059	}
5060
5061	return NULL;
5062}
5063
5064static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5065{
5066	const struct cea_db *db;
5067
5068	if (iter->collection) {
5069		/* Current collection should always be valid. */
5070		db = __cea_db_iter_current_block(iter);
5071		if (WARN_ON(!db)) {
5072			iter->collection = NULL;
5073			return NULL;
5074		}
5075
5076		/* Next block in CTA Data Block Collection */
5077		iter->index += sizeof(*db) + cea_db_payload_len(db);
5078
5079		db = __cea_db_iter_current_block(iter);
5080		if (db)
5081			return db;
5082	}
5083
5084	for (;;) {
5085		/*
5086		 * Find the next CTA Data Block Collection. First iterate all
5087		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5088		 *
5089		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5090		 * Extension, it's recommended that DisplayID extensions are
5091		 * exposed after all of the CTA Extensions.
5092		 */
5093		iter->collection = __cea_db_iter_edid_next(iter);
5094		if (!iter->collection)
5095			iter->collection = __cea_db_iter_displayid_next(iter);
5096
5097		if (!iter->collection)
5098			return NULL;
5099
5100		db = __cea_db_iter_current_block(iter);
5101		if (db)
5102			return db;
5103	}
5104}
5105
5106#define cea_db_iter_for_each(__db, __iter) \
5107	while (((__db) = __cea_db_iter_next(__iter)))
5108
5109static void cea_db_iter_end(struct cea_db_iter *iter)
5110{
5111	displayid_iter_end(&iter->displayid_iter);
5112	drm_edid_iter_end(&iter->edid_iter);
5113
5114	memset(iter, 0, sizeof(*iter));
5115}
5116
5117static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5118{
5119	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5120		cea_db_payload_len(db) >= 5;
5121}
5122
5123static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5124{
5125	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5126		cea_db_payload_len(db) >= 7;
5127}
5128
5129static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5130{
5131	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5132		cea_db_payload_len(db) >= 2;
5133}
5134
5135static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5136{
5137	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5138		cea_db_payload_len(db) == 21;
5139}
5140
5141static bool cea_db_is_vcdb(const struct cea_db *db)
5142{
5143	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5144		cea_db_payload_len(db) == 2;
5145}
5146
5147static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5148{
5149	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5150		cea_db_payload_len(db) >= 7;
5151}
5152
5153static bool cea_db_is_y420cmdb(const struct cea_db *db)
5154{
5155	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5156}
5157
5158static bool cea_db_is_y420vdb(const struct cea_db *db)
5159{
5160	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5161}
5162
5163static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5164{
5165	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5166		cea_db_payload_len(db) >= 3;
5167}
5168
5169/*
5170 * Get the HF-EEODB override extension block count from EDID.
5171 *
5172 * The passed in EDID may be partially read, as long as it has at least two
5173 * blocks (base block and one extension block) if EDID extension count is > 0.
5174 *
5175 * Note that this is *not* how you should parse CTA Data Blocks in general; this
5176 * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5177 * iterators instead.
5178 *
5179 * References:
5180 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5181 */
5182static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5183{
5184	const u8 *cta;
5185
5186	/* No extensions according to base block, no HF-EEODB. */
5187	if (!edid_extension_block_count(edid))
5188		return 0;
5189
5190	/* HF-EEODB is always in the first EDID extension block only */
5191	cta = edid_extension_block_data(edid, 0);
5192	if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5193		return 0;
5194
5195	/* Need to have the data block collection, and at least 3 bytes. */
5196	if (cea_db_collection_size(cta) < 3)
5197		return 0;
5198
5199	/*
5200	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5201	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5202	 * through 6 of Block 1 of the E-EDID.
5203	 */
5204	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5205		return 0;
5206
5207	return cta[4 + 2];
5208}
5209
5210/*
5211 * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5212 *
5213 * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5214 * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5215 * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5216 * support YCBCR420 output too.
5217 */
5218static void parse_cta_y420cmdb(struct drm_connector *connector,
5219			       const struct cea_db *db, u64 *y420cmdb_map)
5220{
5221	struct drm_display_info *info = &connector->display_info;
5222	int i, map_len = cea_db_payload_len(db) - 1;
5223	const u8 *data = cea_db_data(db) + 1;
 
5224	u64 map = 0;
5225
5226	if (map_len == 0) {
5227		/* All CEA modes support ycbcr420 sampling also.*/
5228		map = U64_MAX;
5229		goto out;
 
5230	}
5231
5232	/*
5233	 * This map indicates which of the existing CEA block modes
5234	 * from VDB can support YCBCR420 output too. So if bit=0 is
5235	 * set, first mode from VDB can support YCBCR420 output too.
5236	 * We will parse and keep this map, before parsing VDB itself
5237	 * to avoid going through the same block again and again.
5238	 *
5239	 * Spec is not clear about max possible size of this block.
5240	 * Clamping max bitmap block size at 8 bytes. Every byte can
5241	 * address 8 CEA modes, in this way this map can address
5242	 * 8*8 = first 64 SVDs.
5243	 */
5244	if (WARN_ON_ONCE(map_len > 8))
5245		map_len = 8;
5246
5247	for (i = 0; i < map_len; i++)
5248		map |= (u64)data[i] << (8 * i);
5249
5250out:
5251	if (map)
5252		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5253
5254	*y420cmdb_map = map;
5255}
5256
5257static int add_cea_modes(struct drm_connector *connector,
5258			 const struct drm_edid *drm_edid)
5259{
5260	const struct cea_db *db;
5261	struct cea_db_iter iter;
5262	int modes;
5263
5264	/* CTA VDB block VICs parsed earlier */
5265	modes = add_cta_vdb_modes(connector);
5266
5267	cea_db_iter_edid_begin(drm_edid, &iter);
5268	cea_db_iter_for_each(db, &iter) {
5269		if (cea_db_is_hdmi_vsdb(db)) {
5270			modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5271						    cea_db_payload_len(db));
 
 
 
 
 
 
 
 
5272		} else if (cea_db_is_y420vdb(db)) {
5273			const u8 *vdb420 = cea_db_data(db) + 1;
5274
5275			/* Add 4:2:0(only) modes present in EDID */
5276			modes += do_y420vdb_modes(connector, vdb420,
5277						  cea_db_payload_len(db) - 1);
5278		}
 
 
 
 
 
 
 
 
 
5279	}
5280	cea_db_iter_end(&iter);
5281
5282	return modes;
5283}
5284
5285static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5286					  struct drm_display_mode *mode)
5287{
5288	const struct drm_display_mode *cea_mode;
5289	int clock1, clock2, clock;
5290	u8 vic;
5291	const char *type;
5292
5293	/*
5294	 * allow 5kHz clock difference either way to account for
5295	 * the 10kHz clock resolution limit of detailed timings.
5296	 */
5297	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5298	if (drm_valid_cea_vic(vic)) {
5299		type = "CEA";
5300		cea_mode = cea_mode_for_vic(vic);
5301		clock1 = cea_mode->clock;
5302		clock2 = cea_mode_alternate_clock(cea_mode);
5303	} else {
5304		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5305		if (drm_valid_hdmi_vic(vic)) {
5306			type = "HDMI";
5307			cea_mode = &edid_4k_modes[vic];
5308			clock1 = cea_mode->clock;
5309			clock2 = hdmi_mode_alternate_clock(cea_mode);
5310		} else {
5311			return;
5312		}
5313	}
5314
5315	/* pick whichever is closest */
5316	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5317		clock = clock1;
5318	else
5319		clock = clock2;
5320
5321	if (mode->clock == clock)
5322		return;
5323
5324	drm_dbg_kms(connector->dev,
5325		    "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5326		    connector->base.id, connector->name,
5327		    type, vic, mode->clock, clock);
5328	mode->clock = clock;
5329}
5330
5331static void drm_calculate_luminance_range(struct drm_connector *connector)
5332{
5333	struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5334	struct drm_luminance_range_info *luminance_range =
5335		&connector->display_info.luminance_range;
5336	static const u8 pre_computed_values[] = {
5337		50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5338		71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5339	};
5340	u32 max_avg, min_cll, max, min, q, r;
5341
5342	if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5343		return;
5344
5345	max_avg = hdr_metadata->max_fall;
5346	min_cll = hdr_metadata->min_cll;
5347
5348	/*
5349	 * From the specification (CTA-861-G), for calculating the maximum
5350	 * luminance we need to use:
5351	 *	Luminance = 50*2**(CV/32)
5352	 * Where CV is a one-byte value.
5353	 * For calculating this expression we may need float point precision;
5354	 * to avoid this complexity level, we take advantage that CV is divided
5355	 * by a constant. From the Euclids division algorithm, we know that CV
5356	 * can be written as: CV = 32*q + r. Next, we replace CV in the
5357	 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5358	 * need to pre-compute the value of r/32. For pre-computing the values
5359	 * We just used the following Ruby line:
5360	 *	(0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5361	 * The results of the above expressions can be verified at
5362	 * pre_computed_values.
5363	 */
5364	q = max_avg >> 5;
5365	r = max_avg % 32;
5366	max = (1 << q) * pre_computed_values[r];
5367
5368	/* min luminance: maxLum * (CV/255)^2 / 100 */
5369	q = DIV_ROUND_CLOSEST(min_cll, 255);
5370	min = max * DIV_ROUND_CLOSEST((q * q), 100);
5371
5372	luminance_range->min_luminance = min;
5373	luminance_range->max_luminance = max;
5374}
5375
5376static uint8_t eotf_supported(const u8 *edid_ext)
5377{
5378	return edid_ext[2] &
5379		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5380		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5381		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5382		 BIT(HDMI_EOTF_BT_2100_HLG));
5383}
5384
5385static uint8_t hdr_metadata_type(const u8 *edid_ext)
5386{
5387	return edid_ext[3] &
5388		BIT(HDMI_STATIC_METADATA_TYPE1);
5389}
5390
5391static void
5392drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5393{
5394	u16 len;
5395
5396	len = cea_db_payload_len(db);
5397
5398	connector->hdr_sink_metadata.hdmi_type1.eotf =
5399						eotf_supported(db);
5400	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5401						hdr_metadata_type(db);
5402
5403	if (len >= 4)
5404		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5405	if (len >= 5)
5406		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5407	if (len >= 6) {
5408		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5409
5410		/* Calculate only when all values are available */
5411		drm_calculate_luminance_range(connector);
5412	}
5413}
5414
5415/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5416static void
5417drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5418{
5419	u8 len = cea_db_payload_len(db);
5420
5421	if (len >= 6 && (db[6] & (1 << 7)))
5422		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5423
5424	if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5425		connector->latency_present[0] = true;
 
 
5426		connector->video_latency[0] = db[9];
 
5427		connector->audio_latency[0] = db[10];
5428	}
5429
5430	if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5431		connector->latency_present[1] = true;
5432		connector->video_latency[1] = db[11];
 
5433		connector->audio_latency[1] = db[12];
5434	}
5435
5436	drm_dbg_kms(connector->dev,
5437		    "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5438		    connector->base.id, connector->name,
5439		    connector->latency_present[0], connector->latency_present[1],
5440		    connector->video_latency[0], connector->video_latency[1],
5441		    connector->audio_latency[0], connector->audio_latency[1]);
5442}
5443
5444static void
5445monitor_name(const struct detailed_timing *timing, void *data)
5446{
5447	const char **res = data;
5448
5449	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5450		return;
5451
5452	*res = timing->data.other_data.data.str.str;
5453}
5454
5455static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5456{
5457	const char *edid_name = NULL;
5458	int mnl;
5459
5460	if (!drm_edid || !name)
5461		return 0;
5462
5463	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5464	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5465		if (edid_name[mnl] == 0x0a)
5466			break;
5467
5468		name[mnl] = edid_name[mnl];
5469	}
5470
5471	return mnl;
5472}
5473
5474/**
5475 * drm_edid_get_monitor_name - fetch the monitor name from the edid
5476 * @edid: monitor EDID information
5477 * @name: pointer to a character array to hold the name of the monitor
5478 * @bufsize: The size of the name buffer (should be at least 14 chars.)
5479 *
5480 */
5481void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5482{
5483	int name_length = 0;
5484
5485	if (bufsize <= 0)
5486		return;
5487
5488	if (edid) {
5489		char buf[13];
5490		struct drm_edid drm_edid = {
5491			.edid = edid,
5492			.size = edid_size(edid),
5493		};
5494
5495		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5496		memcpy(name, buf, name_length);
5497	}
5498
5499	name[name_length] = '\0';
5500}
5501EXPORT_SYMBOL(drm_edid_get_monitor_name);
5502
5503static void clear_eld(struct drm_connector *connector)
5504{
5505	memset(connector->eld, 0, sizeof(connector->eld));
5506
5507	connector->latency_present[0] = false;
5508	connector->latency_present[1] = false;
5509	connector->video_latency[0] = 0;
5510	connector->audio_latency[0] = 0;
5511	connector->video_latency[1] = 0;
5512	connector->audio_latency[1] = 0;
5513}
5514
5515/*
5516 * Get 3-byte SAD buffer from struct cea_sad.
5517 */
5518void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad)
5519{
5520	sad[0] = cta_sad->format << 3 | cta_sad->channels;
5521	sad[1] = cta_sad->freq;
5522	sad[2] = cta_sad->byte2;
5523}
5524
5525/*
5526 * Set struct cea_sad from 3-byte SAD buffer.
5527 */
5528void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad)
5529{
5530	cta_sad->format = (sad[0] & 0x78) >> 3;
5531	cta_sad->channels = sad[0] & 0x07;
5532	cta_sad->freq = sad[1] & 0x7f;
5533	cta_sad->byte2 = sad[2];
5534}
5535
5536/*
5537 * drm_edid_to_eld - build ELD from EDID
5538 * @connector: connector corresponding to the HDMI/DP sink
5539 * @drm_edid: EDID to parse
5540 *
5541 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5542 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5543 */
5544static void drm_edid_to_eld(struct drm_connector *connector,
5545			    const struct drm_edid *drm_edid)
5546{
5547	const struct drm_display_info *info = &connector->display_info;
5548	const struct cea_db *db;
5549	struct cea_db_iter iter;
5550	uint8_t *eld = connector->eld;
5551	int total_sad_count = 0;
5552	int mnl;
5553
 
 
5554	if (!drm_edid)
5555		return;
5556
5557	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5558	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5559		    connector->base.id, connector->name,
5560		    &eld[DRM_ELD_MONITOR_NAME_STRING]);
5561
5562	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5563	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5564
5565	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5566
5567	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5568	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5569	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5570	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5571
5572	cea_db_iter_edid_begin(drm_edid, &iter);
5573	cea_db_iter_for_each(db, &iter) {
5574		const u8 *data = cea_db_data(db);
5575		int len = cea_db_payload_len(db);
5576		int sad_count;
5577
5578		switch (cea_db_tag(db)) {
5579		case CTA_DB_AUDIO:
5580			/* Audio Data Block, contains SADs */
5581			sad_count = min(len / 3, 15 - total_sad_count);
5582			if (sad_count >= 1)
5583				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5584				       data, sad_count * 3);
5585			total_sad_count += sad_count;
5586			break;
5587		case CTA_DB_SPEAKER:
5588			/* Speaker Allocation Data Block */
5589			if (len >= 1)
5590				eld[DRM_ELD_SPEAKER] = data[0];
5591			break;
5592		case CTA_DB_VENDOR:
5593			/* HDMI Vendor-Specific Data Block */
5594			if (cea_db_is_hdmi_vsdb(db))
5595				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5596			break;
5597		default:
5598			break;
5599		}
5600	}
5601	cea_db_iter_end(&iter);
5602
5603	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5604
5605	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5606	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5607		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5608	else
5609		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5610
5611	eld[DRM_ELD_BASELINE_ELD_LEN] =
5612		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5613
5614	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5615		    connector->base.id, connector->name,
5616		    drm_eld_size(eld), total_sad_count);
5617}
5618
5619static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5620			    struct cea_sad **psads)
5621{
5622	const struct cea_db *db;
5623	struct cea_db_iter iter;
5624	int count = 0;
5625
5626	cea_db_iter_edid_begin(drm_edid, &iter);
5627	cea_db_iter_for_each(db, &iter) {
5628		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5629			struct cea_sad *sads;
5630			int i;
5631
5632			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5633			sads = kcalloc(count, sizeof(*sads), GFP_KERNEL);
5634			*psads = sads;
5635			if (!sads)
5636				return -ENOMEM;
5637			for (i = 0; i < count; i++)
5638				drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]);
 
 
 
 
 
 
5639			break;
5640		}
5641	}
5642	cea_db_iter_end(&iter);
5643
5644	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5645
5646	return count;
5647}
5648
5649/**
5650 * drm_edid_to_sad - extracts SADs from EDID
5651 * @edid: EDID to parse
5652 * @sads: pointer that will be set to the extracted SADs
5653 *
5654 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5655 *
5656 * Note: The returned pointer needs to be freed using kfree().
5657 *
5658 * Return: The number of found SADs or negative number on error.
5659 */
5660int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5661{
5662	struct drm_edid drm_edid;
5663
5664	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5665}
5666EXPORT_SYMBOL(drm_edid_to_sad);
5667
5668static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5669					   u8 **sadb)
5670{
5671	const struct cea_db *db;
5672	struct cea_db_iter iter;
5673	int count = 0;
5674
5675	cea_db_iter_edid_begin(drm_edid, &iter);
5676	cea_db_iter_for_each(db, &iter) {
5677		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5678		    cea_db_payload_len(db) == 3) {
5679			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5680					GFP_KERNEL);
5681			if (!*sadb)
5682				return -ENOMEM;
5683			count = cea_db_payload_len(db);
5684			break;
5685		}
5686	}
5687	cea_db_iter_end(&iter);
5688
5689	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5690
5691	return count;
5692}
5693
5694/**
5695 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5696 * @edid: EDID to parse
5697 * @sadb: pointer to the speaker block
5698 *
5699 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5700 *
5701 * Note: The returned pointer needs to be freed using kfree().
5702 *
5703 * Return: The number of found Speaker Allocation Blocks or negative number on
5704 * error.
5705 */
5706int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5707{
5708	struct drm_edid drm_edid;
5709
5710	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5711					       sadb);
5712}
5713EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5714
5715/**
5716 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5717 * @connector: connector associated with the HDMI/DP sink
5718 * @mode: the display mode
5719 *
5720 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5721 * the sink doesn't support audio or video.
5722 */
5723int drm_av_sync_delay(struct drm_connector *connector,
5724		      const struct drm_display_mode *mode)
5725{
5726	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5727	int a, v;
5728
5729	if (!connector->latency_present[0])
5730		return 0;
5731	if (!connector->latency_present[1])
5732		i = 0;
5733
5734	a = connector->audio_latency[i];
5735	v = connector->video_latency[i];
5736
5737	/*
5738	 * HDMI/DP sink doesn't support audio or video?
5739	 */
5740	if (a == 255 || v == 255)
5741		return 0;
5742
5743	/*
5744	 * Convert raw EDID values to millisecond.
5745	 * Treat unknown latency as 0ms.
5746	 */
5747	if (a)
5748		a = min(2 * (a - 1), 500);
5749	if (v)
5750		v = min(2 * (v - 1), 500);
5751
5752	return max(v - a, 0);
5753}
5754EXPORT_SYMBOL(drm_av_sync_delay);
5755
5756static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5757{
5758	const struct cea_db *db;
5759	struct cea_db_iter iter;
5760	bool hdmi = false;
5761
5762	/*
5763	 * Because HDMI identifier is in Vendor Specific Block,
5764	 * search it from all data blocks of CEA extension.
5765	 */
5766	cea_db_iter_edid_begin(drm_edid, &iter);
5767	cea_db_iter_for_each(db, &iter) {
5768		if (cea_db_is_hdmi_vsdb(db)) {
5769			hdmi = true;
5770			break;
5771		}
5772	}
5773	cea_db_iter_end(&iter);
5774
5775	return hdmi;
5776}
5777
5778/**
5779 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5780 * @edid: monitor EDID information
5781 *
5782 * Parse the CEA extension according to CEA-861-B.
5783 *
5784 * Drivers that have added the modes parsed from EDID to drm_display_info
5785 * should use &drm_display_info.is_hdmi instead of calling this function.
5786 *
5787 * Return: True if the monitor is HDMI, false if not or unknown.
5788 */
5789bool drm_detect_hdmi_monitor(const struct edid *edid)
5790{
5791	struct drm_edid drm_edid;
5792
5793	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5794}
5795EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5796
5797static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5798{
5799	struct drm_edid_iter edid_iter;
5800	const struct cea_db *db;
5801	struct cea_db_iter iter;
5802	const u8 *edid_ext;
5803	bool has_audio = false;
5804
5805	drm_edid_iter_begin(drm_edid, &edid_iter);
5806	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5807		if (edid_ext[0] == CEA_EXT) {
5808			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5809			if (has_audio)
5810				break;
5811		}
5812	}
5813	drm_edid_iter_end(&edid_iter);
5814
5815	if (has_audio) {
5816		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5817		goto end;
5818	}
5819
5820	cea_db_iter_edid_begin(drm_edid, &iter);
5821	cea_db_iter_for_each(db, &iter) {
5822		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5823			const u8 *data = cea_db_data(db);
5824			int i;
5825
5826			for (i = 0; i < cea_db_payload_len(db); i += 3)
5827				DRM_DEBUG_KMS("CEA audio format %d\n",
5828					      (data[i] >> 3) & 0xf);
5829			has_audio = true;
5830			break;
5831		}
5832	}
5833	cea_db_iter_end(&iter);
5834
5835end:
5836	return has_audio;
5837}
5838
5839/**
5840 * drm_detect_monitor_audio - check monitor audio capability
5841 * @edid: EDID block to scan
5842 *
5843 * Monitor should have CEA extension block.
5844 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5845 * audio' only. If there is any audio extension block and supported
5846 * audio format, assume at least 'basic audio' support, even if 'basic
5847 * audio' is not defined in EDID.
5848 *
5849 * Return: True if the monitor supports audio, false otherwise.
5850 */
5851bool drm_detect_monitor_audio(const struct edid *edid)
5852{
5853	struct drm_edid drm_edid;
5854
5855	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5856}
5857EXPORT_SYMBOL(drm_detect_monitor_audio);
5858
5859
5860/**
5861 * drm_default_rgb_quant_range - default RGB quantization range
5862 * @mode: display mode
5863 *
5864 * Determine the default RGB quantization range for the mode,
5865 * as specified in CEA-861.
5866 *
5867 * Return: The default RGB quantization range for the mode
5868 */
5869enum hdmi_quantization_range
5870drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5871{
5872	/* All CEA modes other than VIC 1 use limited quantization range. */
5873	return drm_match_cea_mode(mode) > 1 ?
5874		HDMI_QUANTIZATION_RANGE_LIMITED :
5875		HDMI_QUANTIZATION_RANGE_FULL;
5876}
5877EXPORT_SYMBOL(drm_default_rgb_quant_range);
5878
5879/* CTA-861 Video Data Block (CTA VDB) */
5880static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
5881{
5882	struct drm_display_info *info = &connector->display_info;
5883	int i, vic_index, len = cea_db_payload_len(db);
5884	const u8 *svds = cea_db_data(db);
5885	u8 *vics;
5886
5887	if (!len)
5888		return;
5889
5890	/* Gracefully handle multiple VDBs, however unlikely that is */
5891	vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
5892	if (!vics)
5893		return;
5894
5895	vic_index = info->vics_len;
5896	info->vics_len += len;
5897	info->vics = vics;
5898
5899	for (i = 0; i < len; i++) {
5900		u8 vic = svd_to_vic(svds[i]);
5901
5902		if (!drm_valid_cea_vic(vic))
5903			vic = 0;
5904
5905		info->vics[vic_index++] = vic;
5906	}
5907}
5908
5909/*
5910 * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
5911 *
5912 * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
5913 * using the VICs themselves.
5914 */
5915static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
5916{
5917	struct drm_display_info *info = &connector->display_info;
5918	struct drm_hdmi_info *hdmi = &info->hdmi;
5919	int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
5920
5921	for (i = 0; i < len; i++) {
5922		u8 vic = info->vics[i];
5923
5924		if (vic && y420cmdb_map & BIT_ULL(i))
5925			bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
5926	}
5927}
5928
5929static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
5930{
5931	const struct drm_display_info *info = &connector->display_info;
5932	int i;
5933
5934	if (!vic || !info->vics)
5935		return false;
5936
5937	for (i = 0; i < info->vics_len; i++) {
5938		if (info->vics[i] == vic)
5939			return true;
5940	}
5941
5942	return false;
5943}
5944
5945/* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
5946static void parse_cta_y420vdb(struct drm_connector *connector,
5947			      const struct cea_db *db)
5948{
5949	struct drm_display_info *info = &connector->display_info;
5950	struct drm_hdmi_info *hdmi = &info->hdmi;
5951	const u8 *svds = cea_db_data(db) + 1;
5952	int i;
5953
5954	for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
5955		u8 vic = svd_to_vic(svds[i]);
5956
5957		if (!drm_valid_cea_vic(vic))
5958			continue;
5959
5960		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
5961		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5962	}
5963}
5964
5965static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5966{
5967	struct drm_display_info *info = &connector->display_info;
5968
5969	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5970		    connector->base.id, connector->name, db[2]);
5971
5972	if (db[2] & EDID_CEA_VCDB_QS)
5973		info->rgb_quant_range_selectable = true;
5974}
5975
5976static
5977void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5978{
5979	switch (max_frl_rate) {
5980	case 1:
5981		*max_lanes = 3;
5982		*max_rate_per_lane = 3;
5983		break;
5984	case 2:
5985		*max_lanes = 3;
5986		*max_rate_per_lane = 6;
5987		break;
5988	case 3:
5989		*max_lanes = 4;
5990		*max_rate_per_lane = 6;
5991		break;
5992	case 4:
5993		*max_lanes = 4;
5994		*max_rate_per_lane = 8;
5995		break;
5996	case 5:
5997		*max_lanes = 4;
5998		*max_rate_per_lane = 10;
5999		break;
6000	case 6:
6001		*max_lanes = 4;
6002		*max_rate_per_lane = 12;
6003		break;
6004	case 0:
6005	default:
6006		*max_lanes = 0;
6007		*max_rate_per_lane = 0;
6008	}
6009}
6010
6011static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
6012					       const u8 *db)
6013{
6014	u8 dc_mask;
6015	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
6016
6017	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
6018	hdmi->y420_dc_modes = dc_mask;
6019}
6020
6021static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6022			       const u8 *hf_scds)
6023{
6024	hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6025
6026	if (!hdmi_dsc->v_1p2)
6027		return;
6028
6029	hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6030	hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6031
6032	if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6033		hdmi_dsc->bpc_supported = 16;
6034	else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6035		hdmi_dsc->bpc_supported = 12;
6036	else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6037		hdmi_dsc->bpc_supported = 10;
6038	else
6039		/* Supports min 8 BPC if DSC 1.2 is supported*/
6040		hdmi_dsc->bpc_supported = 8;
6041
6042	if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6043		u8 dsc_max_slices;
6044		u8 dsc_max_frl_rate;
6045
6046		dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6047		drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6048				     &hdmi_dsc->max_frl_rate_per_lane);
6049
6050		dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6051
6052		switch (dsc_max_slices) {
6053		case 1:
6054			hdmi_dsc->max_slices = 1;
6055			hdmi_dsc->clk_per_slice = 340;
6056			break;
6057		case 2:
6058			hdmi_dsc->max_slices = 2;
6059			hdmi_dsc->clk_per_slice = 340;
6060			break;
6061		case 3:
6062			hdmi_dsc->max_slices = 4;
6063			hdmi_dsc->clk_per_slice = 340;
6064			break;
6065		case 4:
6066			hdmi_dsc->max_slices = 8;
6067			hdmi_dsc->clk_per_slice = 340;
6068			break;
6069		case 5:
6070			hdmi_dsc->max_slices = 8;
6071			hdmi_dsc->clk_per_slice = 400;
6072			break;
6073		case 6:
6074			hdmi_dsc->max_slices = 12;
6075			hdmi_dsc->clk_per_slice = 400;
6076			break;
6077		case 7:
6078			hdmi_dsc->max_slices = 16;
6079			hdmi_dsc->clk_per_slice = 400;
6080			break;
6081		case 0:
6082		default:
6083			hdmi_dsc->max_slices = 0;
6084			hdmi_dsc->clk_per_slice = 0;
6085		}
6086	}
6087
6088	if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6089		hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6090}
6091
6092/* Sink Capability Data Structure */
6093static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6094				      const u8 *hf_scds)
6095{
6096	struct drm_display_info *info = &connector->display_info;
6097	struct drm_hdmi_info *hdmi = &info->hdmi;
6098	struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6099	int max_tmds_clock = 0;
6100	u8 max_frl_rate = 0;
6101	bool dsc_support = false;
6102
6103	info->has_hdmi_infoframe = true;
6104
6105	if (hf_scds[6] & 0x80) {
6106		hdmi->scdc.supported = true;
6107		if (hf_scds[6] & 0x40)
6108			hdmi->scdc.read_request = true;
6109	}
6110
6111	/*
6112	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6113	 * And as per the spec, three factors confirm this:
6114	 * * Availability of a HF-VSDB block in EDID (check)
6115	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6116	 * * SCDC support available (let's check)
6117	 * Lets check it out.
6118	 */
6119
6120	if (hf_scds[5]) {
6121		struct drm_scdc *scdc = &hdmi->scdc;
6122
6123		/* max clock is 5000 KHz times block value */
6124		max_tmds_clock = hf_scds[5] * 5000;
6125
6126		if (max_tmds_clock > 340000) {
6127			info->max_tmds_clock = max_tmds_clock;
6128		}
6129
6130		if (scdc->supported) {
6131			scdc->scrambling.supported = true;
6132
6133			/* Few sinks support scrambling for clocks < 340M */
6134			if ((hf_scds[6] & 0x8))
6135				scdc->scrambling.low_rates = true;
6136		}
6137	}
6138
6139	if (hf_scds[7]) {
6140		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6141		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6142				     &hdmi->max_frl_rate_per_lane);
6143	}
6144
6145	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6146
6147	if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6148		drm_parse_dsc_info(hdmi_dsc, hf_scds);
6149		dsc_support = true;
6150	}
6151
6152	drm_dbg_kms(connector->dev,
6153		    "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6154		    connector->base.id, connector->name,
6155		    max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6156}
6157
6158static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6159					   const u8 *hdmi)
6160{
6161	struct drm_display_info *info = &connector->display_info;
6162	unsigned int dc_bpc = 0;
6163
6164	/* HDMI supports at least 8 bpc */
6165	info->bpc = 8;
6166
6167	if (cea_db_payload_len(hdmi) < 6)
6168		return;
6169
6170	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6171		dc_bpc = 10;
6172		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6173		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6174			    connector->base.id, connector->name);
6175	}
6176
6177	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6178		dc_bpc = 12;
6179		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6180		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6181			    connector->base.id, connector->name);
6182	}
6183
6184	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6185		dc_bpc = 16;
6186		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6187		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6188			    connector->base.id, connector->name);
6189	}
6190
6191	if (dc_bpc == 0) {
6192		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6193			    connector->base.id, connector->name);
6194		return;
6195	}
6196
6197	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6198		    connector->base.id, connector->name, dc_bpc);
6199	info->bpc = dc_bpc;
6200
6201	/* YCRCB444 is optional according to spec. */
6202	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6203		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6204		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6205			    connector->base.id, connector->name);
6206	}
6207
6208	/*
6209	 * Spec says that if any deep color mode is supported at all,
6210	 * then deep color 36 bit must be supported.
6211	 */
6212	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6213		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6214			    connector->base.id, connector->name);
6215	}
6216}
6217
6218/* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6219static void
6220drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6221{
6222	struct drm_display_info *info = &connector->display_info;
6223	u8 len = cea_db_payload_len(db);
6224
6225	info->is_hdmi = true;
6226
6227	info->source_physical_address = (db[4] << 8) | db[5];
6228
6229	if (len >= 6)
6230		info->dvi_dual = db[6] & 1;
6231	if (len >= 7)
6232		info->max_tmds_clock = db[7] * 5000;
6233
6234	/*
6235	 * Try to infer whether the sink supports HDMI infoframes.
6236	 *
6237	 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6238	 * supports infoframes if HDMI_Video_present is set.
6239	 */
6240	if (len >= 8 && db[8] & BIT(5))
6241		info->has_hdmi_infoframe = true;
6242
6243	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6244		    connector->base.id, connector->name,
6245		    info->dvi_dual, info->max_tmds_clock);
6246
6247	drm_parse_hdmi_deep_color_info(connector, db);
6248}
6249
6250/*
6251 * See EDID extension for head-mounted and specialized monitors, specified at:
6252 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6253 */
6254static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6255				     const u8 *db)
6256{
6257	struct drm_display_info *info = &connector->display_info;
6258	u8 version = db[4];
6259	bool desktop_usage = db[5] & BIT(6);
6260
6261	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6262	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6263		info->non_desktop = true;
6264
6265	drm_dbg_kms(connector->dev,
6266		    "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6267		    connector->base.id, connector->name, version, db[5]);
6268}
6269
6270static void drm_parse_cea_ext(struct drm_connector *connector,
6271			      const struct drm_edid *drm_edid)
6272{
6273	struct drm_display_info *info = &connector->display_info;
6274	struct drm_edid_iter edid_iter;
6275	const struct cea_db *db;
6276	struct cea_db_iter iter;
6277	const u8 *edid_ext;
6278	u64 y420cmdb_map = 0;
6279
6280	drm_edid_iter_begin(drm_edid, &edid_iter);
6281	drm_edid_iter_for_each(edid_ext, &edid_iter) {
6282		if (edid_ext[0] != CEA_EXT)
6283			continue;
6284
6285		if (!info->cea_rev)
6286			info->cea_rev = edid_ext[1];
6287
6288		if (info->cea_rev != edid_ext[1])
6289			drm_dbg_kms(connector->dev,
6290				    "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6291				    connector->base.id, connector->name,
6292				    info->cea_rev, edid_ext[1]);
6293
6294		/* The existence of a CTA extension should imply RGB support */
6295		info->color_formats = DRM_COLOR_FORMAT_RGB444;
6296		if (edid_ext[3] & EDID_CEA_YCRCB444)
6297			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6298		if (edid_ext[3] & EDID_CEA_YCRCB422)
6299			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6300		if (edid_ext[3] & EDID_BASIC_AUDIO)
6301			info->has_audio = true;
6302
6303	}
6304	drm_edid_iter_end(&edid_iter);
6305
6306	cea_db_iter_edid_begin(drm_edid, &iter);
6307	cea_db_iter_for_each(db, &iter) {
6308		/* FIXME: convert parsers to use struct cea_db */
6309		const u8 *data = (const u8 *)db;
6310
6311		if (cea_db_is_hdmi_vsdb(db))
6312			drm_parse_hdmi_vsdb_video(connector, data);
6313		else if (cea_db_is_hdmi_forum_vsdb(db) ||
6314			 cea_db_is_hdmi_forum_scdb(db))
6315			drm_parse_hdmi_forum_scds(connector, data);
6316		else if (cea_db_is_microsoft_vsdb(db))
6317			drm_parse_microsoft_vsdb(connector, data);
6318		else if (cea_db_is_y420cmdb(db))
6319			parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6320		else if (cea_db_is_y420vdb(db))
6321			parse_cta_y420vdb(connector, db);
6322		else if (cea_db_is_vcdb(db))
6323			drm_parse_vcdb(connector, data);
6324		else if (cea_db_is_hdmi_hdr_metadata_block(db))
6325			drm_parse_hdr_metadata_block(connector, data);
6326		else if (cea_db_tag(db) == CTA_DB_VIDEO)
6327			parse_cta_vdb(connector, db);
6328		else if (cea_db_tag(db) == CTA_DB_AUDIO)
6329			info->has_audio = true;
6330	}
6331	cea_db_iter_end(&iter);
6332
6333	if (y420cmdb_map)
6334		update_cta_y420cmdb(connector, y420cmdb_map);
6335}
6336
6337static
6338void get_monitor_range(const struct detailed_timing *timing, void *c)
6339{
6340	struct detailed_mode_closure *closure = c;
6341	struct drm_display_info *info = &closure->connector->display_info;
6342	struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6343	const struct detailed_non_pixel *data = &timing->data.other_data;
6344	const struct detailed_data_monitor_range *range = &data->data.range;
6345	const struct edid *edid = closure->drm_edid->edid;
6346
6347	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6348		return;
6349
6350	/*
6351	 * These limits are used to determine the VRR refresh
6352	 * rate range. Only the "range limits only" variant
6353	 * of the range descriptor seems to guarantee that
6354	 * any and all timings are accepted by the sink, as
6355	 * opposed to just timings conforming to the indicated
6356	 * formula (GTF/GTF2/CVT). Thus other variants of the
6357	 * range descriptor are not accepted here.
6358	 */
6359	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6360		return;
6361
6362	monitor_range->min_vfreq = range->min_vfreq;
6363	monitor_range->max_vfreq = range->max_vfreq;
6364
6365	if (edid->revision >= 4) {
6366		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6367			monitor_range->min_vfreq += 255;
6368		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6369			monitor_range->max_vfreq += 255;
6370	}
6371}
6372
6373static void drm_get_monitor_range(struct drm_connector *connector,
6374				  const struct drm_edid *drm_edid)
6375{
6376	const struct drm_display_info *info = &connector->display_info;
6377	struct detailed_mode_closure closure = {
6378		.connector = connector,
6379		.drm_edid = drm_edid,
6380	};
6381
6382	if (drm_edid->edid->revision < 4)
6383		return;
6384
6385	if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6386		return;
6387
6388	drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6389
6390	drm_dbg_kms(connector->dev,
6391		    "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6392		    connector->base.id, connector->name,
6393		    info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6394}
6395
6396static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6397				    const struct displayid_block *block)
6398{
6399	struct displayid_vesa_vendor_specific_block *vesa =
6400		(struct displayid_vesa_vendor_specific_block *)block;
6401	struct drm_display_info *info = &connector->display_info;
6402
6403	if (block->num_bytes < 3) {
6404		drm_dbg_kms(connector->dev,
6405			    "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6406			    connector->base.id, connector->name, block->num_bytes);
6407		return;
6408	}
6409
6410	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6411		return;
6412
6413	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6414		drm_dbg_kms(connector->dev,
6415			    "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6416			    connector->base.id, connector->name);
6417		return;
6418	}
6419
6420	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6421	default:
6422		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6423			    connector->base.id, connector->name);
6424		fallthrough;
6425	case 0:
6426		info->mso_stream_count = 0;
6427		break;
6428	case 1:
6429		info->mso_stream_count = 2; /* 2 or 4 links */
6430		break;
6431	case 2:
6432		info->mso_stream_count = 4; /* 4 links */
6433		break;
6434	}
6435
6436	if (!info->mso_stream_count) {
6437		info->mso_pixel_overlap = 0;
6438		return;
6439	}
6440
6441	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6442	if (info->mso_pixel_overlap > 8) {
6443		drm_dbg_kms(connector->dev,
6444			    "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6445			    connector->base.id, connector->name,
6446			    info->mso_pixel_overlap);
6447		info->mso_pixel_overlap = 8;
6448	}
6449
6450	drm_dbg_kms(connector->dev,
6451		    "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6452		    connector->base.id, connector->name,
6453		    info->mso_stream_count, info->mso_pixel_overlap);
6454}
6455
6456static void drm_update_mso(struct drm_connector *connector,
6457			   const struct drm_edid *drm_edid)
6458{
6459	const struct displayid_block *block;
6460	struct displayid_iter iter;
6461
6462	displayid_iter_edid_begin(drm_edid, &iter);
6463	displayid_iter_for_each(block, &iter) {
6464		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6465			drm_parse_vesa_mso_data(connector, block);
6466	}
6467	displayid_iter_end(&iter);
6468}
6469
6470/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6471 * all of the values which would have been set from EDID
6472 */
6473static void drm_reset_display_info(struct drm_connector *connector)
6474{
6475	struct drm_display_info *info = &connector->display_info;
6476
6477	info->width_mm = 0;
6478	info->height_mm = 0;
6479
6480	info->bpc = 0;
6481	info->color_formats = 0;
6482	info->cea_rev = 0;
6483	info->max_tmds_clock = 0;
6484	info->dvi_dual = false;
6485	info->is_hdmi = false;
6486	info->has_audio = false;
6487	info->has_hdmi_infoframe = false;
6488	info->rgb_quant_range_selectable = false;
6489	memset(&info->hdmi, 0, sizeof(info->hdmi));
6490
6491	info->edid_hdmi_rgb444_dc_modes = 0;
6492	info->edid_hdmi_ycbcr444_dc_modes = 0;
6493
6494	info->non_desktop = 0;
6495	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6496	memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6497
6498	info->mso_stream_count = 0;
6499	info->mso_pixel_overlap = 0;
6500	info->max_dsc_bpp = 0;
6501
6502	kfree(info->vics);
6503	info->vics = NULL;
6504	info->vics_len = 0;
6505
6506	info->quirks = 0;
6507
6508	info->source_physical_address = CEC_PHYS_ADDR_INVALID;
6509}
6510
6511static void update_displayid_info(struct drm_connector *connector,
6512				  const struct drm_edid *drm_edid)
6513{
6514	struct drm_display_info *info = &connector->display_info;
6515	const struct displayid_block *block;
6516	struct displayid_iter iter;
6517
6518	displayid_iter_edid_begin(drm_edid, &iter);
6519	displayid_iter_for_each(block, &iter) {
6520		if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6521		    (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6522		     displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6523			info->non_desktop = true;
6524
6525		/*
6526		 * We're only interested in the base section here, no need to
6527		 * iterate further.
6528		 */
6529		break;
6530	}
6531	displayid_iter_end(&iter);
6532}
6533
6534static void update_display_info(struct drm_connector *connector,
6535				const struct drm_edid *drm_edid)
6536{
6537	struct drm_display_info *info = &connector->display_info;
6538	const struct edid *edid;
6539
6540	drm_reset_display_info(connector);
6541	clear_eld(connector);
6542
6543	if (!drm_edid)
6544		return;
6545
6546	edid = drm_edid->edid;
6547
6548	info->quirks = edid_get_quirks(drm_edid);
6549
6550	info->width_mm = edid->width_cm * 10;
6551	info->height_mm = edid->height_cm * 10;
6552
6553	drm_get_monitor_range(connector, drm_edid);
6554
6555	if (edid->revision < 3)
6556		goto out;
6557
6558	if (!drm_edid_is_digital(drm_edid))
6559		goto out;
6560
6561	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6562	drm_parse_cea_ext(connector, drm_edid);
6563
6564	update_displayid_info(connector, drm_edid);
6565
6566	/*
6567	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6568	 *
6569	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6570	 * tells us to assume 8 bpc color depth if the EDID doesn't have
6571	 * extensions which tell otherwise.
6572	 */
6573	if (info->bpc == 0 && edid->revision == 3 &&
6574	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6575		info->bpc = 8;
6576		drm_dbg_kms(connector->dev,
6577			    "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6578			    connector->base.id, connector->name, info->bpc);
6579	}
6580
6581	/* Only defined for 1.4 with digital displays */
6582	if (edid->revision < 4)
6583		goto out;
6584
6585	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6586	case DRM_EDID_DIGITAL_DEPTH_6:
6587		info->bpc = 6;
6588		break;
6589	case DRM_EDID_DIGITAL_DEPTH_8:
6590		info->bpc = 8;
6591		break;
6592	case DRM_EDID_DIGITAL_DEPTH_10:
6593		info->bpc = 10;
6594		break;
6595	case DRM_EDID_DIGITAL_DEPTH_12:
6596		info->bpc = 12;
6597		break;
6598	case DRM_EDID_DIGITAL_DEPTH_14:
6599		info->bpc = 14;
6600		break;
6601	case DRM_EDID_DIGITAL_DEPTH_16:
6602		info->bpc = 16;
6603		break;
6604	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6605	default:
6606		info->bpc = 0;
6607		break;
6608	}
6609
6610	drm_dbg_kms(connector->dev,
6611		    "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6612		    connector->base.id, connector->name, info->bpc);
6613
6614	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6615		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6616	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6617		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6618
6619	drm_update_mso(connector, drm_edid);
6620
6621out:
6622	if (info->quirks & EDID_QUIRK_NON_DESKTOP) {
6623		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6624			    connector->base.id, connector->name,
6625			    info->non_desktop ? " (redundant quirk)" : "");
6626		info->non_desktop = true;
6627	}
6628
6629	if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP)
6630		info->max_dsc_bpp = 15;
6631
6632	if (info->quirks & EDID_QUIRK_FORCE_6BPC)
6633		info->bpc = 6;
6634
6635	if (info->quirks & EDID_QUIRK_FORCE_8BPC)
6636		info->bpc = 8;
6637
6638	if (info->quirks & EDID_QUIRK_FORCE_10BPC)
6639		info->bpc = 10;
6640
6641	if (info->quirks & EDID_QUIRK_FORCE_12BPC)
6642		info->bpc = 12;
6643
6644	/* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6645	drm_edid_to_eld(connector, drm_edid);
6646}
6647
6648static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6649							    struct displayid_detailed_timings_1 *timings,
6650							    bool type_7)
6651{
6652	struct drm_display_mode *mode;
6653	unsigned pixel_clock = (timings->pixel_clock[0] |
6654				(timings->pixel_clock[1] << 8) |
6655				(timings->pixel_clock[2] << 16)) + 1;
6656	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6657	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6658	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6659	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6660	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6661	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6662	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6663	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6664	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6665	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6666
6667	mode = drm_mode_create(dev);
6668	if (!mode)
6669		return NULL;
6670
6671	/* resolution is kHz for type VII, and 10 kHz for type I */
6672	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6673	mode->hdisplay = hactive;
6674	mode->hsync_start = mode->hdisplay + hsync;
6675	mode->hsync_end = mode->hsync_start + hsync_width;
6676	mode->htotal = mode->hdisplay + hblank;
6677
6678	mode->vdisplay = vactive;
6679	mode->vsync_start = mode->vdisplay + vsync;
6680	mode->vsync_end = mode->vsync_start + vsync_width;
6681	mode->vtotal = mode->vdisplay + vblank;
6682
6683	mode->flags = 0;
6684	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6685	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6686	mode->type = DRM_MODE_TYPE_DRIVER;
6687
6688	if (timings->flags & 0x80)
6689		mode->type |= DRM_MODE_TYPE_PREFERRED;
6690	drm_mode_set_name(mode);
6691
6692	return mode;
6693}
6694
6695static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6696					  const struct displayid_block *block)
6697{
6698	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6699	int i;
6700	int num_timings;
6701	struct drm_display_mode *newmode;
6702	int num_modes = 0;
6703	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6704	/* blocks must be multiple of 20 bytes length */
6705	if (block->num_bytes % 20)
6706		return 0;
6707
6708	num_timings = block->num_bytes / 20;
6709	for (i = 0; i < num_timings; i++) {
6710		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6711
6712		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6713		if (!newmode)
6714			continue;
6715
6716		drm_mode_probed_add(connector, newmode);
6717		num_modes++;
6718	}
6719	return num_modes;
6720}
6721
6722static int add_displayid_detailed_modes(struct drm_connector *connector,
6723					const struct drm_edid *drm_edid)
6724{
6725	const struct displayid_block *block;
6726	struct displayid_iter iter;
6727	int num_modes = 0;
6728
6729	displayid_iter_edid_begin(drm_edid, &iter);
6730	displayid_iter_for_each(block, &iter) {
6731		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6732		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6733			num_modes += add_displayid_detailed_1_modes(connector, block);
6734	}
6735	displayid_iter_end(&iter);
6736
6737	return num_modes;
6738}
6739
6740static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6741					 const struct drm_edid *drm_edid)
6742{
6743	const struct drm_display_info *info = &connector->display_info;
6744	int num_modes = 0;
 
6745
6746	if (!drm_edid)
 
 
6747		return 0;
 
 
 
 
 
 
 
 
 
 
 
6748
6749	/*
6750	 * EDID spec says modes should be preferred in this order:
6751	 * - preferred detailed mode
6752	 * - other detailed modes from base block
6753	 * - detailed modes from extension blocks
6754	 * - CVT 3-byte code modes
6755	 * - standard timing codes
6756	 * - established timing codes
6757	 * - modes inferred from GTF or CVT range information
6758	 *
6759	 * We get this pretty much right.
6760	 *
6761	 * XXX order for additional mode types in extension blocks?
6762	 */
6763	num_modes += add_detailed_modes(connector, drm_edid);
6764	num_modes += add_cvt_modes(connector, drm_edid);
6765	num_modes += add_standard_modes(connector, drm_edid);
6766	num_modes += add_established_modes(connector, drm_edid);
6767	num_modes += add_cea_modes(connector, drm_edid);
6768	num_modes += add_alternate_cea_modes(connector, drm_edid);
6769	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6770	if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6771		num_modes += add_inferred_modes(connector, drm_edid);
6772
6773	if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6774		edid_fixup_preferred(connector);
 
 
 
 
 
 
 
 
 
 
 
 
6775
6776	return num_modes;
6777}
6778
6779static void _drm_update_tile_info(struct drm_connector *connector,
6780				  const struct drm_edid *drm_edid);
6781
6782static int _drm_edid_connector_property_update(struct drm_connector *connector,
6783					       const struct drm_edid *drm_edid)
6784{
6785	struct drm_device *dev = connector->dev;
6786	int ret;
6787
6788	if (connector->edid_blob_ptr) {
6789		const struct edid *old_edid = connector->edid_blob_ptr->data;
6790
6791		if (old_edid) {
6792			if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6793				connector->epoch_counter++;
6794				drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6795					    connector->base.id, connector->name,
6796					    connector->epoch_counter);
6797			}
6798		}
6799	}
6800
6801	ret = drm_property_replace_global_blob(dev,
6802					       &connector->edid_blob_ptr,
6803					       drm_edid ? drm_edid->size : 0,
6804					       drm_edid ? drm_edid->edid : NULL,
6805					       &connector->base,
6806					       dev->mode_config.edid_property);
6807	if (ret) {
6808		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6809			    connector->base.id, connector->name, ret);
6810		goto out;
6811	}
6812
6813	ret = drm_object_property_set_value(&connector->base,
6814					    dev->mode_config.non_desktop_property,
6815					    connector->display_info.non_desktop);
6816	if (ret) {
6817		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6818			    connector->base.id, connector->name, ret);
6819		goto out;
6820	}
6821
6822	ret = drm_connector_set_tile_property(connector);
6823	if (ret) {
6824		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6825			    connector->base.id, connector->name, ret);
6826		goto out;
6827	}
6828
6829out:
6830	return ret;
6831}
6832
6833/**
6834 * drm_edid_connector_update - Update connector information from EDID
6835 * @connector: Connector
6836 * @drm_edid: EDID
6837 *
6838 * Update the connector display info, ELD, HDR metadata, relevant properties,
6839 * etc. from the passed in EDID.
6840 *
6841 * If EDID is NULL, reset the information.
6842 *
6843 * Must be called before calling drm_edid_connector_add_modes().
6844 *
6845 * Return: 0 on success, negative error on errors.
6846 */
6847int drm_edid_connector_update(struct drm_connector *connector,
6848			      const struct drm_edid *drm_edid)
6849{
6850	update_display_info(connector, drm_edid);
 
 
6851
6852	_drm_update_tile_info(connector, drm_edid);
6853
6854	return _drm_edid_connector_property_update(connector, drm_edid);
 
 
 
6855}
6856EXPORT_SYMBOL(drm_edid_connector_update);
6857
6858/**
6859 * drm_edid_connector_add_modes - Update probed modes from the EDID property
6860 * @connector: Connector
6861 *
6862 * Add the modes from the previously updated EDID property to the connector
6863 * probed modes list.
6864 *
6865 * drm_edid_connector_update() must have been called before this to update the
6866 * EDID property.
6867 *
6868 * Return: The number of modes added, or 0 if we couldn't find any.
6869 */
6870int drm_edid_connector_add_modes(struct drm_connector *connector)
6871{
6872	const struct drm_edid *drm_edid = NULL;
6873	int count;
6874
6875	if (connector->edid_blob_ptr)
6876		drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
6877					  connector->edid_blob_ptr->length);
6878
6879	count = _drm_edid_connector_add_modes(connector, drm_edid);
 
 
 
 
6880
6881	drm_edid_free(drm_edid);
6882
6883	return count;
6884}
6885EXPORT_SYMBOL(drm_edid_connector_add_modes);
6886
6887/**
6888 * drm_connector_update_edid_property - update the edid property of a connector
6889 * @connector: drm connector
6890 * @edid: new value of the edid property
6891 *
6892 * This function creates a new blob modeset object and assigns its id to the
6893 * connector's edid property.
6894 * Since we also parse tile information from EDID's displayID block, we also
6895 * set the connector's tile property here. See drm_connector_set_tile_property()
6896 * for more details.
6897 *
6898 * This function is deprecated. Use drm_edid_connector_update() instead.
6899 *
6900 * Returns:
6901 * Zero on success, negative errno on failure.
6902 */
6903int drm_connector_update_edid_property(struct drm_connector *connector,
6904				       const struct edid *edid)
6905{
6906	struct drm_edid drm_edid;
6907
6908	return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
 
6909}
6910EXPORT_SYMBOL(drm_connector_update_edid_property);
6911
6912/**
6913 * drm_add_edid_modes - add modes from EDID data, if available
6914 * @connector: connector we're probing
6915 * @edid: EDID data
6916 *
6917 * Add the specified modes to the connector's mode list. Also fills out the
6918 * &drm_display_info structure and ELD in @connector with any information which
6919 * can be derived from the edid.
6920 *
6921 * This function is deprecated. Use drm_edid_connector_add_modes() instead.
6922 *
6923 * Return: The number of modes added or 0 if we couldn't find any.
6924 */
6925int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6926{
6927	struct drm_edid _drm_edid;
6928	const struct drm_edid *drm_edid;
6929
6930	if (edid && !drm_edid_is_valid(edid)) {
6931		drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6932			 connector->base.id, connector->name);
6933		edid = NULL;
6934	}
6935
6936	drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
6937
6938	update_display_info(connector, drm_edid);
6939
6940	return _drm_edid_connector_add_modes(connector, drm_edid);
6941}
6942EXPORT_SYMBOL(drm_add_edid_modes);
6943
6944/**
6945 * drm_add_modes_noedid - add modes for the connectors without EDID
6946 * @connector: connector we're probing
6947 * @hdisplay: the horizontal display limit
6948 * @vdisplay: the vertical display limit
6949 *
6950 * Add the specified modes to the connector's mode list. Only when the
6951 * hdisplay/vdisplay is not beyond the given limit, it will be added.
6952 *
6953 * Return: The number of modes added or 0 if we couldn't find any.
6954 */
6955int drm_add_modes_noedid(struct drm_connector *connector,
6956			int hdisplay, int vdisplay)
6957{
6958	int i, count, num_modes = 0;
6959	struct drm_display_mode *mode;
6960	struct drm_device *dev = connector->dev;
6961
6962	count = ARRAY_SIZE(drm_dmt_modes);
6963	if (hdisplay < 0)
6964		hdisplay = 0;
6965	if (vdisplay < 0)
6966		vdisplay = 0;
6967
6968	for (i = 0; i < count; i++) {
6969		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6970
6971		if (hdisplay && vdisplay) {
6972			/*
6973			 * Only when two are valid, they will be used to check
6974			 * whether the mode should be added to the mode list of
6975			 * the connector.
6976			 */
6977			if (ptr->hdisplay > hdisplay ||
6978					ptr->vdisplay > vdisplay)
6979				continue;
6980		}
6981		if (drm_mode_vrefresh(ptr) > 61)
6982			continue;
6983		mode = drm_mode_duplicate(dev, ptr);
6984		if (mode) {
6985			drm_mode_probed_add(connector, mode);
6986			num_modes++;
6987		}
6988	}
6989	return num_modes;
6990}
6991EXPORT_SYMBOL(drm_add_modes_noedid);
6992
6993/**
6994 * drm_set_preferred_mode - Sets the preferred mode of a connector
6995 * @connector: connector whose mode list should be processed
6996 * @hpref: horizontal resolution of preferred mode
6997 * @vpref: vertical resolution of preferred mode
6998 *
6999 * Marks a mode as preferred if it matches the resolution specified by @hpref
7000 * and @vpref.
7001 */
7002void drm_set_preferred_mode(struct drm_connector *connector,
7003			   int hpref, int vpref)
7004{
7005	struct drm_display_mode *mode;
7006
7007	list_for_each_entry(mode, &connector->probed_modes, head) {
7008		if (mode->hdisplay == hpref &&
7009		    mode->vdisplay == vpref)
7010			mode->type |= DRM_MODE_TYPE_PREFERRED;
7011	}
7012}
7013EXPORT_SYMBOL(drm_set_preferred_mode);
7014
7015static bool is_hdmi2_sink(const struct drm_connector *connector)
7016{
7017	/*
7018	 * FIXME: sil-sii8620 doesn't have a connector around when
7019	 * we need one, so we have to be prepared for a NULL connector.
7020	 */
7021	if (!connector)
7022		return true;
7023
7024	return connector->display_info.hdmi.scdc.supported ||
7025		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7026}
7027
7028static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7029			    const struct drm_display_mode *mode)
7030{
7031	bool has_hdmi_infoframe = connector ?
7032		connector->display_info.has_hdmi_infoframe : false;
7033
7034	if (!has_hdmi_infoframe)
7035		return 0;
7036
7037	/* No HDMI VIC when signalling 3D video format */
7038	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7039		return 0;
7040
7041	return drm_match_hdmi_mode(mode);
7042}
7043
7044static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7045			   const struct drm_display_mode *mode)
7046{
 
 
7047	/*
7048	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7049	 * we should send its VIC in vendor infoframes, else send the
7050	 * VIC in AVI infoframes. Lets check if this mode is present in
7051	 * HDMI 1.4b 4K modes
7052	 */
7053	if (drm_mode_hdmi_vic(connector, mode))
7054		return 0;
7055
7056	return drm_match_cea_mode(mode);
7057}
7058
7059/*
7060 * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7061 * conform to HDMI 1.4.
7062 *
7063 * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7064 * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7065 *
7066 * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7067 * version.
7068 */
7069static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7070{
7071	if (!is_hdmi2_sink(connector) && vic > 64 &&
7072	    !cta_vdb_has_vic(connector, vic))
7073		return 0;
7074
7075	return vic;
7076}
7077
7078/**
7079 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7080 *                                              data from a DRM display mode
7081 * @frame: HDMI AVI infoframe
7082 * @connector: the connector
7083 * @mode: DRM display mode
7084 *
7085 * Return: 0 on success or a negative error code on failure.
7086 */
7087int
7088drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7089					 const struct drm_connector *connector,
7090					 const struct drm_display_mode *mode)
7091{
7092	enum hdmi_picture_aspect picture_aspect;
7093	u8 vic, hdmi_vic;
7094
7095	if (!frame || !mode)
7096		return -EINVAL;
7097
7098	hdmi_avi_infoframe_init(frame);
7099
7100	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7101		frame->pixel_repeat = 1;
7102
7103	vic = drm_mode_cea_vic(connector, mode);
7104	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7105
7106	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7107
7108	/*
7109	 * As some drivers don't support atomic, we can't use connector state.
7110	 * So just initialize the frame with default values, just the same way
7111	 * as it's done with other properties here.
7112	 */
7113	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7114	frame->itc = 0;
7115
7116	/*
7117	 * Populate picture aspect ratio from either
7118	 * user input (if specified) or from the CEA/HDMI mode lists.
7119	 */
7120	picture_aspect = mode->picture_aspect_ratio;
7121	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7122		if (vic)
7123			picture_aspect = drm_get_cea_aspect_ratio(vic);
7124		else if (hdmi_vic)
7125			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7126	}
7127
7128	/*
7129	 * The infoframe can't convey anything but none, 4:3
7130	 * and 16:9, so if the user has asked for anything else
7131	 * we can only satisfy it by specifying the right VIC.
7132	 */
7133	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7134		if (vic) {
7135			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7136				return -EINVAL;
7137		} else if (hdmi_vic) {
7138			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7139				return -EINVAL;
7140		} else {
7141			return -EINVAL;
7142		}
7143
7144		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7145	}
7146
7147	frame->video_code = vic_for_avi_infoframe(connector, vic);
7148	frame->picture_aspect = picture_aspect;
7149	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7150	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7151
7152	return 0;
7153}
7154EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7155
7156/**
7157 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7158 *                                        quantization range information
7159 * @frame: HDMI AVI infoframe
7160 * @connector: the connector
7161 * @mode: DRM display mode
7162 * @rgb_quant_range: RGB quantization range (Q)
7163 */
7164void
7165drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7166				   const struct drm_connector *connector,
7167				   const struct drm_display_mode *mode,
7168				   enum hdmi_quantization_range rgb_quant_range)
7169{
7170	const struct drm_display_info *info = &connector->display_info;
7171
7172	/*
7173	 * CEA-861:
7174	 * "A Source shall not send a non-zero Q value that does not correspond
7175	 *  to the default RGB Quantization Range for the transmitted Picture
7176	 *  unless the Sink indicates support for the Q bit in a Video
7177	 *  Capabilities Data Block."
7178	 *
7179	 * HDMI 2.0 recommends sending non-zero Q when it does match the
7180	 * default RGB quantization range for the mode, even when QS=0.
7181	 */
7182	if (info->rgb_quant_range_selectable ||
7183	    rgb_quant_range == drm_default_rgb_quant_range(mode))
7184		frame->quantization_range = rgb_quant_range;
7185	else
7186		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7187
7188	/*
7189	 * CEA-861-F:
7190	 * "When transmitting any RGB colorimetry, the Source should set the
7191	 *  YQ-field to match the RGB Quantization Range being transmitted
7192	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7193	 *  set YQ=1) and the Sink shall ignore the YQ-field."
7194	 *
7195	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7196	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7197	 * good way to tell which version of CEA-861 the sink supports, so
7198	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7199	 * on CEA-861-F.
7200	 */
7201	if (!is_hdmi2_sink(connector) ||
7202	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7203		frame->ycc_quantization_range =
7204			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7205	else
7206		frame->ycc_quantization_range =
7207			HDMI_YCC_QUANTIZATION_RANGE_FULL;
7208}
7209EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7210
7211static enum hdmi_3d_structure
7212s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7213{
7214	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7215
7216	switch (layout) {
7217	case DRM_MODE_FLAG_3D_FRAME_PACKING:
7218		return HDMI_3D_STRUCTURE_FRAME_PACKING;
7219	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7220		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7221	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7222		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7223	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7224		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7225	case DRM_MODE_FLAG_3D_L_DEPTH:
7226		return HDMI_3D_STRUCTURE_L_DEPTH;
7227	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7228		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7229	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7230		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7231	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7232		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7233	default:
7234		return HDMI_3D_STRUCTURE_INVALID;
7235	}
7236}
7237
7238/**
7239 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7240 * data from a DRM display mode
7241 * @frame: HDMI vendor infoframe
7242 * @connector: the connector
7243 * @mode: DRM display mode
7244 *
7245 * Note that there's is a need to send HDMI vendor infoframes only when using a
7246 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7247 * function will return -EINVAL, error that can be safely ignored.
7248 *
7249 * Return: 0 on success or a negative error code on failure.
7250 */
7251int
7252drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7253					    const struct drm_connector *connector,
7254					    const struct drm_display_mode *mode)
7255{
7256	/*
7257	 * FIXME: sil-sii8620 doesn't have a connector around when
7258	 * we need one, so we have to be prepared for a NULL connector.
7259	 */
7260	bool has_hdmi_infoframe = connector ?
7261		connector->display_info.has_hdmi_infoframe : false;
7262	int err;
7263
7264	if (!frame || !mode)
7265		return -EINVAL;
7266
7267	if (!has_hdmi_infoframe)
7268		return -EINVAL;
7269
7270	err = hdmi_vendor_infoframe_init(frame);
7271	if (err < 0)
7272		return err;
7273
7274	/*
7275	 * Even if it's not absolutely necessary to send the infoframe
7276	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7277	 * know that the sink can handle it. This is based on a
7278	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7279	 * have trouble realizing that they should switch from 3D to 2D
7280	 * mode if the source simply stops sending the infoframe when
7281	 * it wants to switch from 3D to 2D.
7282	 */
7283	frame->vic = drm_mode_hdmi_vic(connector, mode);
7284	frame->s3d_struct = s3d_structure_from_display_mode(mode);
7285
7286	return 0;
7287}
7288EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7289
7290static void drm_parse_tiled_block(struct drm_connector *connector,
7291				  const struct displayid_block *block)
7292{
7293	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7294	u16 w, h;
7295	u8 tile_v_loc, tile_h_loc;
7296	u8 num_v_tile, num_h_tile;
7297	struct drm_tile_group *tg;
7298
7299	w = tile->tile_size[0] | tile->tile_size[1] << 8;
7300	h = tile->tile_size[2] | tile->tile_size[3] << 8;
7301
7302	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7303	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7304	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7305	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7306
7307	connector->has_tile = true;
7308	if (tile->tile_cap & 0x80)
7309		connector->tile_is_single_monitor = true;
7310
7311	connector->num_h_tile = num_h_tile + 1;
7312	connector->num_v_tile = num_v_tile + 1;
7313	connector->tile_h_loc = tile_h_loc;
7314	connector->tile_v_loc = tile_v_loc;
7315	connector->tile_h_size = w + 1;
7316	connector->tile_v_size = h + 1;
7317
7318	drm_dbg_kms(connector->dev,
7319		    "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7320		    connector->base.id, connector->name,
7321		    tile->tile_cap,
7322		    connector->tile_h_size, connector->tile_v_size,
7323		    connector->num_h_tile, connector->num_v_tile,
7324		    connector->tile_h_loc, connector->tile_v_loc,
7325		    tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7326
7327	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7328	if (!tg)
7329		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7330	if (!tg)
7331		return;
7332
7333	if (connector->tile_group != tg) {
7334		/* if we haven't got a pointer,
7335		   take the reference, drop ref to old tile group */
7336		if (connector->tile_group)
7337			drm_mode_put_tile_group(connector->dev, connector->tile_group);
7338		connector->tile_group = tg;
7339	} else {
7340		/* if same tile group, then release the ref we just took. */
7341		drm_mode_put_tile_group(connector->dev, tg);
7342	}
7343}
7344
7345static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7346				     const struct displayid_block *block)
7347{
7348	return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 &&
7349		block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7350		(displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7351		 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7352}
7353
7354static void _drm_update_tile_info(struct drm_connector *connector,
7355				  const struct drm_edid *drm_edid)
7356{
7357	const struct displayid_block *block;
7358	struct displayid_iter iter;
7359
7360	connector->has_tile = false;
7361
7362	displayid_iter_edid_begin(drm_edid, &iter);
7363	displayid_iter_for_each(block, &iter) {
7364		if (displayid_is_tiled_block(&iter, block))
7365			drm_parse_tiled_block(connector, block);
7366	}
7367	displayid_iter_end(&iter);
7368
7369	if (!connector->has_tile && connector->tile_group) {
7370		drm_mode_put_tile_group(connector->dev, connector->tile_group);
7371		connector->tile_group = NULL;
7372	}
7373}
7374
7375/**
7376 * drm_edid_is_digital - is digital?
7377 * @drm_edid: The EDID
7378 *
7379 * Return true if input is digital.
7380 */
7381bool drm_edid_is_digital(const struct drm_edid *drm_edid)
7382{
7383	return drm_edid && drm_edid->edid &&
7384		drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL;
7385}
7386EXPORT_SYMBOL(drm_edid_is_digital);
v6.2
   1/*
   2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
   3 * Copyright (c) 2007-2008 Intel Corporation
   4 *   Jesse Barnes <jesse.barnes@intel.com>
   5 * Copyright 2010 Red Hat, Inc.
   6 *
   7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
   8 * FB layer.
   9 *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
  10 *
  11 * Permission is hereby granted, free of charge, to any person obtaining a
  12 * copy of this software and associated documentation files (the "Software"),
  13 * to deal in the Software without restriction, including without limitation
  14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
  15 * and/or sell copies of the Software, and to permit persons to whom the
  16 * Software is furnished to do so, subject to the following conditions:
  17 *
  18 * The above copyright notice and this permission notice (including the
  19 * next paragraph) shall be included in all copies or substantial portions
  20 * of the Software.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  28 * DEALINGS IN THE SOFTWARE.
  29 */
  30
  31#include <linux/bitfield.h>
 
  32#include <linux/hdmi.h>
  33#include <linux/i2c.h>
  34#include <linux/kernel.h>
  35#include <linux/module.h>
  36#include <linux/pci.h>
  37#include <linux/slab.h>
  38#include <linux/vga_switcheroo.h>
  39
  40#include <drm/drm_displayid.h>
  41#include <drm/drm_drv.h>
  42#include <drm/drm_edid.h>
 
  43#include <drm/drm_encoder.h>
  44#include <drm/drm_print.h>
  45
  46#include "drm_crtc_internal.h"
 
  47
  48static int oui(u8 first, u8 second, u8 third)
  49{
  50	return (first << 16) | (second << 8) | third;
  51}
  52
  53#define EDID_EST_TIMINGS 16
  54#define EDID_STD_TIMINGS 8
  55#define EDID_DETAILED_TIMINGS 4
  56
  57/*
  58 * EDID blocks out in the wild have a variety of bugs, try to collect
  59 * them here (note that userspace may work around broken monitors first,
  60 * but fixes should make their way here so that the kernel "just works"
  61 * on as many displays as possible).
  62 */
  63
  64/* First detailed mode wrong, use largest 60Hz mode */
  65#define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
  66/* Reported 135MHz pixel clock is too high, needs adjustment */
  67#define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
  68/* Prefer the largest mode at 75 Hz */
  69#define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
  70/* Detail timing is in cm not mm */
  71#define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
  72/* Detailed timing descriptors have bogus size values, so just take the
  73 * maximum size and use that.
  74 */
  75#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
  76/* use +hsync +vsync for detailed mode */
  77#define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
  78/* Force reduced-blanking timings for detailed modes */
  79#define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
  80/* Force 8bpc */
  81#define EDID_QUIRK_FORCE_8BPC			(1 << 8)
  82/* Force 12bpc */
  83#define EDID_QUIRK_FORCE_12BPC			(1 << 9)
  84/* Force 6bpc */
  85#define EDID_QUIRK_FORCE_6BPC			(1 << 10)
  86/* Force 10bpc */
  87#define EDID_QUIRK_FORCE_10BPC			(1 << 11)
  88/* Non desktop display (i.e. HMD) */
  89#define EDID_QUIRK_NON_DESKTOP			(1 << 12)
  90/* Cap the DSC target bitrate to 15bpp */
  91#define EDID_QUIRK_CAP_DSC_15BPP		(1 << 13)
  92
  93#define MICROSOFT_IEEE_OUI	0xca125c
  94
  95struct detailed_mode_closure {
  96	struct drm_connector *connector;
  97	const struct drm_edid *drm_edid;
  98	bool preferred;
  99	u32 quirks;
 100	int modes;
 101};
 102
 103#define LEVEL_DMT	0
 104#define LEVEL_GTF	1
 105#define LEVEL_GTF2	2
 106#define LEVEL_CVT	3
 107
 108#define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
 109{ \
 110	.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
 111					     product_id), \
 112	.quirks = _quirks \
 113}
 114
 115static const struct edid_quirk {
 116	u32 panel_id;
 117	u32 quirks;
 118} edid_quirk_list[] = {
 119	/* Acer AL1706 */
 120	EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
 121	/* Acer F51 */
 122	EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
 123
 124	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
 125	EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
 126
 
 
 
 127	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
 128	EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
 129
 130	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
 131	EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
 132
 133	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
 134	EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
 135
 136	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
 137	EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
 138
 139	/* Belinea 10 15 55 */
 140	EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
 141	EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
 142
 143	/* Envision Peripherals, Inc. EN-7100e */
 144	EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
 145	/* Envision EN2028 */
 146	EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
 147
 148	/* Funai Electronics PM36B */
 149	EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
 150				       EDID_QUIRK_DETAILED_IN_CM),
 151
 152	/* LG 27GP950 */
 153	EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
 154
 155	/* LG 27GN950 */
 156	EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
 157
 158	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
 159	EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
 160
 161	/* LG Philips LCD LP154W01-A5 */
 162	EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
 163	EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
 164
 165	/* Samsung SyncMaster 205BW.  Note: irony */
 166	EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
 167	/* Samsung SyncMaster 22[5-6]BW */
 168	EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
 169	EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
 170
 171	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
 172	EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
 173
 174	/* ViewSonic VA2026w */
 175	EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
 176
 177	/* Medion MD 30217 PG */
 178	EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
 179
 180	/* Lenovo G50 */
 181	EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
 182
 183	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
 184	EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
 185
 186	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
 187	EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
 188
 189	/* Valve Index Headset */
 190	EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
 191	EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
 192	EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
 193	EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
 194	EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
 195	EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
 196	EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
 197	EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
 198	EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
 199	EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
 200	EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
 201	EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
 202	EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
 203	EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
 204	EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
 205	EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
 206	EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
 207
 208	/* HTC Vive and Vive Pro VR Headsets */
 209	EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
 210	EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
 211
 212	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
 213	EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
 214	EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
 215	EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
 216	EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
 217
 218	/* Windows Mixed Reality Headsets */
 219	EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
 220	EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
 221	EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
 222	EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
 223	EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
 224	EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
 225
 226	/* Sony PlayStation VR Headset */
 227	EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
 228
 229	/* Sensics VR Headsets */
 230	EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
 231
 232	/* OSVR HDK and HDK2 VR Headsets */
 233	EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
 
 234};
 235
 236/*
 237 * Autogenerated from the DMT spec.
 238 * This table is copied from xfree86/modes/xf86EdidModes.c.
 239 */
 240static const struct drm_display_mode drm_dmt_modes[] = {
 241	/* 0x01 - 640x350@85Hz */
 242	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 243		   736, 832, 0, 350, 382, 385, 445, 0,
 244		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 245	/* 0x02 - 640x400@85Hz */
 246	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
 247		   736, 832, 0, 400, 401, 404, 445, 0,
 248		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 249	/* 0x03 - 720x400@85Hz */
 250	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
 251		   828, 936, 0, 400, 401, 404, 446, 0,
 252		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 253	/* 0x04 - 640x480@60Hz */
 254	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 255		   752, 800, 0, 480, 490, 492, 525, 0,
 256		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 257	/* 0x05 - 640x480@72Hz */
 258	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 259		   704, 832, 0, 480, 489, 492, 520, 0,
 260		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 261	/* 0x06 - 640x480@75Hz */
 262	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 263		   720, 840, 0, 480, 481, 484, 500, 0,
 264		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 265	/* 0x07 - 640x480@85Hz */
 266	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
 267		   752, 832, 0, 480, 481, 484, 509, 0,
 268		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 269	/* 0x08 - 800x600@56Hz */
 270	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 271		   896, 1024, 0, 600, 601, 603, 625, 0,
 272		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 273	/* 0x09 - 800x600@60Hz */
 274	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 275		   968, 1056, 0, 600, 601, 605, 628, 0,
 276		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 277	/* 0x0a - 800x600@72Hz */
 278	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 279		   976, 1040, 0, 600, 637, 643, 666, 0,
 280		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 281	/* 0x0b - 800x600@75Hz */
 282	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 283		   896, 1056, 0, 600, 601, 604, 625, 0,
 284		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 285	/* 0x0c - 800x600@85Hz */
 286	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
 287		   896, 1048, 0, 600, 601, 604, 631, 0,
 288		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 289	/* 0x0d - 800x600@120Hz RB */
 290	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
 291		   880, 960, 0, 600, 603, 607, 636, 0,
 292		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 293	/* 0x0e - 848x480@60Hz */
 294	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
 295		   976, 1088, 0, 480, 486, 494, 517, 0,
 296		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 297	/* 0x0f - 1024x768@43Hz, interlace */
 298	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
 299		   1208, 1264, 0, 768, 768, 776, 817, 0,
 300		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 301		   DRM_MODE_FLAG_INTERLACE) },
 302	/* 0x10 - 1024x768@60Hz */
 303	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 304		   1184, 1344, 0, 768, 771, 777, 806, 0,
 305		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 306	/* 0x11 - 1024x768@70Hz */
 307	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 308		   1184, 1328, 0, 768, 771, 777, 806, 0,
 309		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 310	/* 0x12 - 1024x768@75Hz */
 311	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 312		   1136, 1312, 0, 768, 769, 772, 800, 0,
 313		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 314	/* 0x13 - 1024x768@85Hz */
 315	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
 316		   1168, 1376, 0, 768, 769, 772, 808, 0,
 317		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 318	/* 0x14 - 1024x768@120Hz RB */
 319	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
 320		   1104, 1184, 0, 768, 771, 775, 813, 0,
 321		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 322	/* 0x15 - 1152x864@75Hz */
 323	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 324		   1344, 1600, 0, 864, 865, 868, 900, 0,
 325		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 326	/* 0x55 - 1280x720@60Hz */
 327	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 328		   1430, 1650, 0, 720, 725, 730, 750, 0,
 329		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 330	/* 0x16 - 1280x768@60Hz RB */
 331	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
 332		   1360, 1440, 0, 768, 771, 778, 790, 0,
 333		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 334	/* 0x17 - 1280x768@60Hz */
 335	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
 336		   1472, 1664, 0, 768, 771, 778, 798, 0,
 337		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 338	/* 0x18 - 1280x768@75Hz */
 339	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
 340		   1488, 1696, 0, 768, 771, 778, 805, 0,
 341		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 342	/* 0x19 - 1280x768@85Hz */
 343	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
 344		   1496, 1712, 0, 768, 771, 778, 809, 0,
 345		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 346	/* 0x1a - 1280x768@120Hz RB */
 347	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
 348		   1360, 1440, 0, 768, 771, 778, 813, 0,
 349		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 350	/* 0x1b - 1280x800@60Hz RB */
 351	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
 352		   1360, 1440, 0, 800, 803, 809, 823, 0,
 353		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 354	/* 0x1c - 1280x800@60Hz */
 355	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
 356		   1480, 1680, 0, 800, 803, 809, 831, 0,
 357		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 358	/* 0x1d - 1280x800@75Hz */
 359	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
 360		   1488, 1696, 0, 800, 803, 809, 838, 0,
 361		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 362	/* 0x1e - 1280x800@85Hz */
 363	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
 364		   1496, 1712, 0, 800, 803, 809, 843, 0,
 365		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 366	/* 0x1f - 1280x800@120Hz RB */
 367	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
 368		   1360, 1440, 0, 800, 803, 809, 847, 0,
 369		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 370	/* 0x20 - 1280x960@60Hz */
 371	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
 372		   1488, 1800, 0, 960, 961, 964, 1000, 0,
 373		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 374	/* 0x21 - 1280x960@85Hz */
 375	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
 376		   1504, 1728, 0, 960, 961, 964, 1011, 0,
 377		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 378	/* 0x22 - 1280x960@120Hz RB */
 379	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
 380		   1360, 1440, 0, 960, 963, 967, 1017, 0,
 381		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 382	/* 0x23 - 1280x1024@60Hz */
 383	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
 384		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 385		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 386	/* 0x24 - 1280x1024@75Hz */
 387	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 388		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 389		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 390	/* 0x25 - 1280x1024@85Hz */
 391	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
 392		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
 393		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 394	/* 0x26 - 1280x1024@120Hz RB */
 395	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
 396		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
 397		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 398	/* 0x27 - 1360x768@60Hz */
 399	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
 400		   1536, 1792, 0, 768, 771, 777, 795, 0,
 401		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 402	/* 0x28 - 1360x768@120Hz RB */
 403	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
 404		   1440, 1520, 0, 768, 771, 776, 813, 0,
 405		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 406	/* 0x51 - 1366x768@60Hz */
 407	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
 408		   1579, 1792, 0, 768, 771, 774, 798, 0,
 409		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 410	/* 0x56 - 1366x768@60Hz */
 411	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
 412		   1436, 1500, 0, 768, 769, 772, 800, 0,
 413		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 414	/* 0x29 - 1400x1050@60Hz RB */
 415	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
 416		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
 417		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 418	/* 0x2a - 1400x1050@60Hz */
 419	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
 420		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
 421		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 422	/* 0x2b - 1400x1050@75Hz */
 423	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
 424		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
 425		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 426	/* 0x2c - 1400x1050@85Hz */
 427	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
 428		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
 429		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 430	/* 0x2d - 1400x1050@120Hz RB */
 431	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
 432		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
 433		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 434	/* 0x2e - 1440x900@60Hz RB */
 435	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
 436		   1520, 1600, 0, 900, 903, 909, 926, 0,
 437		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 438	/* 0x2f - 1440x900@60Hz */
 439	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
 440		   1672, 1904, 0, 900, 903, 909, 934, 0,
 441		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 442	/* 0x30 - 1440x900@75Hz */
 443	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
 444		   1688, 1936, 0, 900, 903, 909, 942, 0,
 445		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 446	/* 0x31 - 1440x900@85Hz */
 447	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
 448		   1696, 1952, 0, 900, 903, 909, 948, 0,
 449		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 450	/* 0x32 - 1440x900@120Hz RB */
 451	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
 452		   1520, 1600, 0, 900, 903, 909, 953, 0,
 453		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 454	/* 0x53 - 1600x900@60Hz */
 455	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
 456		   1704, 1800, 0, 900, 901, 904, 1000, 0,
 457		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 458	/* 0x33 - 1600x1200@60Hz */
 459	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
 460		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 461		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 462	/* 0x34 - 1600x1200@65Hz */
 463	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
 464		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 465		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 466	/* 0x35 - 1600x1200@70Hz */
 467	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
 468		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 469		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 470	/* 0x36 - 1600x1200@75Hz */
 471	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
 472		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 473		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 474	/* 0x37 - 1600x1200@85Hz */
 475	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
 476		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
 477		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 478	/* 0x38 - 1600x1200@120Hz RB */
 479	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
 480		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
 481		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 482	/* 0x39 - 1680x1050@60Hz RB */
 483	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
 484		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
 485		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 486	/* 0x3a - 1680x1050@60Hz */
 487	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
 488		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
 489		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 490	/* 0x3b - 1680x1050@75Hz */
 491	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
 492		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
 493		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 494	/* 0x3c - 1680x1050@85Hz */
 495	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
 496		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
 497		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 498	/* 0x3d - 1680x1050@120Hz RB */
 499	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
 500		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
 501		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 502	/* 0x3e - 1792x1344@60Hz */
 503	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
 504		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
 505		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 506	/* 0x3f - 1792x1344@75Hz */
 507	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
 508		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
 509		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 510	/* 0x40 - 1792x1344@120Hz RB */
 511	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
 512		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
 513		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 514	/* 0x41 - 1856x1392@60Hz */
 515	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
 516		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
 517		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 518	/* 0x42 - 1856x1392@75Hz */
 519	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
 520		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
 521		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 522	/* 0x43 - 1856x1392@120Hz RB */
 523	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
 524		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
 525		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 526	/* 0x52 - 1920x1080@60Hz */
 527	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 528		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 529		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
 530	/* 0x44 - 1920x1200@60Hz RB */
 531	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
 532		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
 533		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 534	/* 0x45 - 1920x1200@60Hz */
 535	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
 536		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
 537		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 538	/* 0x46 - 1920x1200@75Hz */
 539	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
 540		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
 541		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 542	/* 0x47 - 1920x1200@85Hz */
 543	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
 544		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
 545		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 546	/* 0x48 - 1920x1200@120Hz RB */
 547	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
 548		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
 549		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 550	/* 0x49 - 1920x1440@60Hz */
 551	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
 552		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
 553		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 554	/* 0x4a - 1920x1440@75Hz */
 555	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
 556		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
 557		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 558	/* 0x4b - 1920x1440@120Hz RB */
 559	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
 560		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
 561		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 562	/* 0x54 - 2048x1152@60Hz */
 563	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
 564		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
 565		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
 566	/* 0x4c - 2560x1600@60Hz RB */
 567	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
 568		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
 569		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 570	/* 0x4d - 2560x1600@60Hz */
 571	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
 572		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
 573		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 574	/* 0x4e - 2560x1600@75Hz */
 575	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
 576		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
 577		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 578	/* 0x4f - 2560x1600@85Hz */
 579	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
 580		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
 581		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
 582	/* 0x50 - 2560x1600@120Hz RB */
 583	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
 584		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
 585		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 586	/* 0x57 - 4096x2160@60Hz RB */
 587	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
 588		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 589		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 590	/* 0x58 - 4096x2160@59.94Hz RB */
 591	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
 592		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
 593		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
 594};
 595
 596/*
 597 * These more or less come from the DMT spec.  The 720x400 modes are
 598 * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
 599 * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
 600 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
 601 * mode.
 602 *
 603 * The DMT modes have been fact-checked; the rest are mild guesses.
 604 */
 605static const struct drm_display_mode edid_est_modes[] = {
 606	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
 607		   968, 1056, 0, 600, 601, 605, 628, 0,
 608		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
 609	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
 610		   896, 1024, 0, 600, 601, 603,  625, 0,
 611		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
 612	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
 613		   720, 840, 0, 480, 481, 484, 500, 0,
 614		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
 615	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
 616		   704,  832, 0, 480, 489, 492, 520, 0,
 617		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
 618	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
 619		   768,  864, 0, 480, 483, 486, 525, 0,
 620		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
 621	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 622		   752, 800, 0, 480, 490, 492, 525, 0,
 623		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
 624	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
 625		   846, 900, 0, 400, 421, 423,  449, 0,
 626		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
 627	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
 628		   846,  900, 0, 400, 412, 414, 449, 0,
 629		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
 630	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
 631		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
 632		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
 633	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
 634		   1136, 1312, 0,  768, 769, 772, 800, 0,
 635		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
 636	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
 637		   1184, 1328, 0,  768, 771, 777, 806, 0,
 638		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
 639	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
 640		   1184, 1344, 0,  768, 771, 777, 806, 0,
 641		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
 642	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
 643		   1208, 1264, 0, 768, 768, 776, 817, 0,
 644		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
 645	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
 646		   928, 1152, 0, 624, 625, 628, 667, 0,
 647		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
 648	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
 649		   896, 1056, 0, 600, 601, 604,  625, 0,
 650		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
 651	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
 652		   976, 1040, 0, 600, 637, 643, 666, 0,
 653		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
 654	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
 655		   1344, 1600, 0,  864, 865, 868, 900, 0,
 656		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
 657};
 658
 659struct minimode {
 660	short w;
 661	short h;
 662	short r;
 663	short rb;
 664};
 665
 666static const struct minimode est3_modes[] = {
 667	/* byte 6 */
 668	{ 640, 350, 85, 0 },
 669	{ 640, 400, 85, 0 },
 670	{ 720, 400, 85, 0 },
 671	{ 640, 480, 85, 0 },
 672	{ 848, 480, 60, 0 },
 673	{ 800, 600, 85, 0 },
 674	{ 1024, 768, 85, 0 },
 675	{ 1152, 864, 75, 0 },
 676	/* byte 7 */
 677	{ 1280, 768, 60, 1 },
 678	{ 1280, 768, 60, 0 },
 679	{ 1280, 768, 75, 0 },
 680	{ 1280, 768, 85, 0 },
 681	{ 1280, 960, 60, 0 },
 682	{ 1280, 960, 85, 0 },
 683	{ 1280, 1024, 60, 0 },
 684	{ 1280, 1024, 85, 0 },
 685	/* byte 8 */
 686	{ 1360, 768, 60, 0 },
 687	{ 1440, 900, 60, 1 },
 688	{ 1440, 900, 60, 0 },
 689	{ 1440, 900, 75, 0 },
 690	{ 1440, 900, 85, 0 },
 691	{ 1400, 1050, 60, 1 },
 692	{ 1400, 1050, 60, 0 },
 693	{ 1400, 1050, 75, 0 },
 694	/* byte 9 */
 695	{ 1400, 1050, 85, 0 },
 696	{ 1680, 1050, 60, 1 },
 697	{ 1680, 1050, 60, 0 },
 698	{ 1680, 1050, 75, 0 },
 699	{ 1680, 1050, 85, 0 },
 700	{ 1600, 1200, 60, 0 },
 701	{ 1600, 1200, 65, 0 },
 702	{ 1600, 1200, 70, 0 },
 703	/* byte 10 */
 704	{ 1600, 1200, 75, 0 },
 705	{ 1600, 1200, 85, 0 },
 706	{ 1792, 1344, 60, 0 },
 707	{ 1792, 1344, 75, 0 },
 708	{ 1856, 1392, 60, 0 },
 709	{ 1856, 1392, 75, 0 },
 710	{ 1920, 1200, 60, 1 },
 711	{ 1920, 1200, 60, 0 },
 712	/* byte 11 */
 713	{ 1920, 1200, 75, 0 },
 714	{ 1920, 1200, 85, 0 },
 715	{ 1920, 1440, 60, 0 },
 716	{ 1920, 1440, 75, 0 },
 717};
 718
 719static const struct minimode extra_modes[] = {
 720	{ 1024, 576,  60, 0 },
 721	{ 1366, 768,  60, 0 },
 722	{ 1600, 900,  60, 0 },
 723	{ 1680, 945,  60, 0 },
 724	{ 1920, 1080, 60, 0 },
 725	{ 2048, 1152, 60, 0 },
 726	{ 2048, 1536, 60, 0 },
 727};
 728
 729/*
 730 * From CEA/CTA-861 spec.
 731 *
 732 * Do not access directly, instead always use cea_mode_for_vic().
 733 */
 734static const struct drm_display_mode edid_cea_modes_1[] = {
 735	/* 1 - 640x480@60Hz 4:3 */
 736	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
 737		   752, 800, 0, 480, 490, 492, 525, 0,
 738		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 739	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 740	/* 2 - 720x480@60Hz 4:3 */
 741	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 742		   798, 858, 0, 480, 489, 495, 525, 0,
 743		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 744	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 745	/* 3 - 720x480@60Hz 16:9 */
 746	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
 747		   798, 858, 0, 480, 489, 495, 525, 0,
 748		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 749	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 750	/* 4 - 1280x720@60Hz 16:9 */
 751	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
 752		   1430, 1650, 0, 720, 725, 730, 750, 0,
 753		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 754	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 755	/* 5 - 1920x1080i@60Hz 16:9 */
 756	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 757		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 758		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 759		   DRM_MODE_FLAG_INTERLACE),
 760	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 761	/* 6 - 720(1440)x480i@60Hz 4:3 */
 762	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 763		   801, 858, 0, 480, 488, 494, 525, 0,
 764		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 765		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 766	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 767	/* 7 - 720(1440)x480i@60Hz 16:9 */
 768	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 769		   801, 858, 0, 480, 488, 494, 525, 0,
 770		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 771		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 772	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 773	/* 8 - 720(1440)x240@60Hz 4:3 */
 774	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 775		   801, 858, 0, 240, 244, 247, 262, 0,
 776		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 777		   DRM_MODE_FLAG_DBLCLK),
 778	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 779	/* 9 - 720(1440)x240@60Hz 16:9 */
 780	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
 781		   801, 858, 0, 240, 244, 247, 262, 0,
 782		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 783		   DRM_MODE_FLAG_DBLCLK),
 784	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 785	/* 10 - 2880x480i@60Hz 4:3 */
 786	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 787		   3204, 3432, 0, 480, 488, 494, 525, 0,
 788		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 789		   DRM_MODE_FLAG_INTERLACE),
 790	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 791	/* 11 - 2880x480i@60Hz 16:9 */
 792	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 793		   3204, 3432, 0, 480, 488, 494, 525, 0,
 794		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 795		   DRM_MODE_FLAG_INTERLACE),
 796	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 797	/* 12 - 2880x240@60Hz 4:3 */
 798	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 799		   3204, 3432, 0, 240, 244, 247, 262, 0,
 800		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 801	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 802	/* 13 - 2880x240@60Hz 16:9 */
 803	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
 804		   3204, 3432, 0, 240, 244, 247, 262, 0,
 805		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 806	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 807	/* 14 - 1440x480@60Hz 4:3 */
 808	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 809		   1596, 1716, 0, 480, 489, 495, 525, 0,
 810		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 811	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 812	/* 15 - 1440x480@60Hz 16:9 */
 813	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
 814		   1596, 1716, 0, 480, 489, 495, 525, 0,
 815		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 816	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 817	/* 16 - 1920x1080@60Hz 16:9 */
 818	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 819		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 820		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 821	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 822	/* 17 - 720x576@50Hz 4:3 */
 823	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 824		   796, 864, 0, 576, 581, 586, 625, 0,
 825		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 826	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 827	/* 18 - 720x576@50Hz 16:9 */
 828	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 829		   796, 864, 0, 576, 581, 586, 625, 0,
 830		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 831	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 832	/* 19 - 1280x720@50Hz 16:9 */
 833	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
 834		   1760, 1980, 0, 720, 725, 730, 750, 0,
 835		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 836	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 837	/* 20 - 1920x1080i@50Hz 16:9 */
 838	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 839		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 840		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 841		   DRM_MODE_FLAG_INTERLACE),
 842	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 843	/* 21 - 720(1440)x576i@50Hz 4:3 */
 844	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 845		   795, 864, 0, 576, 580, 586, 625, 0,
 846		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 847		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 848	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 849	/* 22 - 720(1440)x576i@50Hz 16:9 */
 850	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 851		   795, 864, 0, 576, 580, 586, 625, 0,
 852		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 853		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 854	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 855	/* 23 - 720(1440)x288@50Hz 4:3 */
 856	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 857		   795, 864, 0, 288, 290, 293, 312, 0,
 858		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 859		   DRM_MODE_FLAG_DBLCLK),
 860	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 861	/* 24 - 720(1440)x288@50Hz 16:9 */
 862	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
 863		   795, 864, 0, 288, 290, 293, 312, 0,
 864		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 865		   DRM_MODE_FLAG_DBLCLK),
 866	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 867	/* 25 - 2880x576i@50Hz 4:3 */
 868	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 869		   3180, 3456, 0, 576, 580, 586, 625, 0,
 870		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 871		   DRM_MODE_FLAG_INTERLACE),
 872	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 873	/* 26 - 2880x576i@50Hz 16:9 */
 874	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 875		   3180, 3456, 0, 576, 580, 586, 625, 0,
 876		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 877		   DRM_MODE_FLAG_INTERLACE),
 878	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 879	/* 27 - 2880x288@50Hz 4:3 */
 880	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 881		   3180, 3456, 0, 288, 290, 293, 312, 0,
 882		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 883	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 884	/* 28 - 2880x288@50Hz 16:9 */
 885	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
 886		   3180, 3456, 0, 288, 290, 293, 312, 0,
 887		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 888	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 889	/* 29 - 1440x576@50Hz 4:3 */
 890	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 891		   1592, 1728, 0, 576, 581, 586, 625, 0,
 892		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 893	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 894	/* 30 - 1440x576@50Hz 16:9 */
 895	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
 896		   1592, 1728, 0, 576, 581, 586, 625, 0,
 897		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 898	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 899	/* 31 - 1920x1080@50Hz 16:9 */
 900	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 901		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 902		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 903	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 904	/* 32 - 1920x1080@24Hz 16:9 */
 905	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
 906		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
 907		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 908	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 909	/* 33 - 1920x1080@25Hz 16:9 */
 910	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
 911		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
 912		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 913	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 914	/* 34 - 1920x1080@30Hz 16:9 */
 915	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
 916		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
 917		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 918	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 919	/* 35 - 2880x480@60Hz 4:3 */
 920	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 921		   3192, 3432, 0, 480, 489, 495, 525, 0,
 922		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 923	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 924	/* 36 - 2880x480@60Hz 16:9 */
 925	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
 926		   3192, 3432, 0, 480, 489, 495, 525, 0,
 927		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 928	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 929	/* 37 - 2880x576@50Hz 4:3 */
 930	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 931		   3184, 3456, 0, 576, 581, 586, 625, 0,
 932		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 933	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 934	/* 38 - 2880x576@50Hz 16:9 */
 935	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
 936		   3184, 3456, 0, 576, 581, 586, 625, 0,
 937		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 938	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 939	/* 39 - 1920x1080i@50Hz 16:9 */
 940	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
 941		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
 942		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
 943		   DRM_MODE_FLAG_INTERLACE),
 944	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 945	/* 40 - 1920x1080i@100Hz 16:9 */
 946	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
 947		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
 948		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 949		   DRM_MODE_FLAG_INTERLACE),
 950	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 951	/* 41 - 1280x720@100Hz 16:9 */
 952	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
 953		   1760, 1980, 0, 720, 725, 730, 750, 0,
 954		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 955	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 956	/* 42 - 720x576@100Hz 4:3 */
 957	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 958		   796, 864, 0, 576, 581, 586, 625, 0,
 959		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 960	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 961	/* 43 - 720x576@100Hz 16:9 */
 962	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
 963		   796, 864, 0, 576, 581, 586, 625, 0,
 964		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 965	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 966	/* 44 - 720(1440)x576i@100Hz 4:3 */
 967	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 968		   795, 864, 0, 576, 580, 586, 625, 0,
 969		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 970		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 971	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 972	/* 45 - 720(1440)x576i@100Hz 16:9 */
 973	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
 974		   795, 864, 0, 576, 580, 586, 625, 0,
 975		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
 976		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
 977	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 978	/* 46 - 1920x1080i@120Hz 16:9 */
 979	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
 980		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
 981		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
 982		   DRM_MODE_FLAG_INTERLACE),
 983	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 984	/* 47 - 1280x720@120Hz 16:9 */
 985	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
 986		   1430, 1650, 0, 720, 725, 730, 750, 0,
 987		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
 988	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 989	/* 48 - 720x480@120Hz 4:3 */
 990	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
 991		   798, 858, 0, 480, 489, 495, 525, 0,
 992		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 993	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
 994	/* 49 - 720x480@120Hz 16:9 */
 995	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
 996		   798, 858, 0, 480, 489, 495, 525, 0,
 997		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
 998	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
 999	/* 50 - 720(1440)x480i@120Hz 4:3 */
1000	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1001		   801, 858, 0, 480, 488, 494, 525, 0,
1002		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1003		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1004	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1005	/* 51 - 720(1440)x480i@120Hz 16:9 */
1006	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1007		   801, 858, 0, 480, 488, 494, 525, 0,
1008		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1011	/* 52 - 720x576@200Hz 4:3 */
1012	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1013		   796, 864, 0, 576, 581, 586, 625, 0,
1014		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1015	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1016	/* 53 - 720x576@200Hz 16:9 */
1017	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1018		   796, 864, 0, 576, 581, 586, 625, 0,
1019		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1020	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1021	/* 54 - 720(1440)x576i@200Hz 4:3 */
1022	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1023		   795, 864, 0, 576, 580, 586, 625, 0,
1024		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1025		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1026	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1027	/* 55 - 720(1440)x576i@200Hz 16:9 */
1028	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1029		   795, 864, 0, 576, 580, 586, 625, 0,
1030		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1033	/* 56 - 720x480@240Hz 4:3 */
1034	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1035		   798, 858, 0, 480, 489, 495, 525, 0,
1036		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1037	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1038	/* 57 - 720x480@240Hz 16:9 */
1039	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1040		   798, 858, 0, 480, 489, 495, 525, 0,
1041		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1042	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1043	/* 58 - 720(1440)x480i@240Hz 4:3 */
1044	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1045		   801, 858, 0, 480, 488, 494, 525, 0,
1046		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1047		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1048	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1049	/* 59 - 720(1440)x480i@240Hz 16:9 */
1050	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1051		   801, 858, 0, 480, 488, 494, 525, 0,
1052		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1053		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1054	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1055	/* 60 - 1280x720@24Hz 16:9 */
1056	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1057		   3080, 3300, 0, 720, 725, 730, 750, 0,
1058		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1059	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1060	/* 61 - 1280x720@25Hz 16:9 */
1061	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1062		   3740, 3960, 0, 720, 725, 730, 750, 0,
1063		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1064	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1065	/* 62 - 1280x720@30Hz 16:9 */
1066	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1067		   3080, 3300, 0, 720, 725, 730, 750, 0,
1068		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1069	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1070	/* 63 - 1920x1080@120Hz 16:9 */
1071	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1072		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1073		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1074	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1075	/* 64 - 1920x1080@100Hz 16:9 */
1076	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1077		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1078		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1079	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1080	/* 65 - 1280x720@24Hz 64:27 */
1081	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1082		   3080, 3300, 0, 720, 725, 730, 750, 0,
1083		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1084	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1085	/* 66 - 1280x720@25Hz 64:27 */
1086	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1087		   3740, 3960, 0, 720, 725, 730, 750, 0,
1088		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1089	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1090	/* 67 - 1280x720@30Hz 64:27 */
1091	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1092		   3080, 3300, 0, 720, 725, 730, 750, 0,
1093		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1094	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1095	/* 68 - 1280x720@50Hz 64:27 */
1096	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1097		   1760, 1980, 0, 720, 725, 730, 750, 0,
1098		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1099	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1100	/* 69 - 1280x720@60Hz 64:27 */
1101	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1102		   1430, 1650, 0, 720, 725, 730, 750, 0,
1103		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1104	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1105	/* 70 - 1280x720@100Hz 64:27 */
1106	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1107		   1760, 1980, 0, 720, 725, 730, 750, 0,
1108		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1109	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1110	/* 71 - 1280x720@120Hz 64:27 */
1111	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1112		   1430, 1650, 0, 720, 725, 730, 750, 0,
1113		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1114	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1115	/* 72 - 1920x1080@24Hz 64:27 */
1116	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1117		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1118		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1119	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1120	/* 73 - 1920x1080@25Hz 64:27 */
1121	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1122		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1123		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1124	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1125	/* 74 - 1920x1080@30Hz 64:27 */
1126	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1127		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1128		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1129	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1130	/* 75 - 1920x1080@50Hz 64:27 */
1131	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1132		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1133		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1134	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1135	/* 76 - 1920x1080@60Hz 64:27 */
1136	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1137		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1138		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1139	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1140	/* 77 - 1920x1080@100Hz 64:27 */
1141	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1142		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1143		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1144	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1145	/* 78 - 1920x1080@120Hz 64:27 */
1146	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1147		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1148		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1149	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1150	/* 79 - 1680x720@24Hz 64:27 */
1151	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1152		   3080, 3300, 0, 720, 725, 730, 750, 0,
1153		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1154	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1155	/* 80 - 1680x720@25Hz 64:27 */
1156	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1157		   2948, 3168, 0, 720, 725, 730, 750, 0,
1158		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1159	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1160	/* 81 - 1680x720@30Hz 64:27 */
1161	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1162		   2420, 2640, 0, 720, 725, 730, 750, 0,
1163		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1164	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1165	/* 82 - 1680x720@50Hz 64:27 */
1166	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1167		   1980, 2200, 0, 720, 725, 730, 750, 0,
1168		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1169	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1170	/* 83 - 1680x720@60Hz 64:27 */
1171	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1172		   1980, 2200, 0, 720, 725, 730, 750, 0,
1173		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1174	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1175	/* 84 - 1680x720@100Hz 64:27 */
1176	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1177		   1780, 2000, 0, 720, 725, 730, 825, 0,
1178		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1179	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1180	/* 85 - 1680x720@120Hz 64:27 */
1181	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1182		   1780, 2000, 0, 720, 725, 730, 825, 0,
1183		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1184	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1185	/* 86 - 2560x1080@24Hz 64:27 */
1186	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1187		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1188		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1189	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1190	/* 87 - 2560x1080@25Hz 64:27 */
1191	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1192		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1193		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1194	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1195	/* 88 - 2560x1080@30Hz 64:27 */
1196	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1197		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1198		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1199	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1200	/* 89 - 2560x1080@50Hz 64:27 */
1201	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1202		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1203		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1204	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1205	/* 90 - 2560x1080@60Hz 64:27 */
1206	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1207		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1208		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1209	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1210	/* 91 - 2560x1080@100Hz 64:27 */
1211	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1212		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1213		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1214	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1215	/* 92 - 2560x1080@120Hz 64:27 */
1216	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1217		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1218		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1219	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1220	/* 93 - 3840x2160@24Hz 16:9 */
1221	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1222		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1223		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1224	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1225	/* 94 - 3840x2160@25Hz 16:9 */
1226	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1227		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1228		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1229	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1230	/* 95 - 3840x2160@30Hz 16:9 */
1231	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1232		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1233		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1234	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1235	/* 96 - 3840x2160@50Hz 16:9 */
1236	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1237		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1238		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1239	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1240	/* 97 - 3840x2160@60Hz 16:9 */
1241	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1242		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1243		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1244	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1245	/* 98 - 4096x2160@24Hz 256:135 */
1246	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1247		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1248		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1249	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1250	/* 99 - 4096x2160@25Hz 256:135 */
1251	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1252		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1253		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1254	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1255	/* 100 - 4096x2160@30Hz 256:135 */
1256	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1257		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1258		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1259	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1260	/* 101 - 4096x2160@50Hz 256:135 */
1261	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1262		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1263		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1264	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1265	/* 102 - 4096x2160@60Hz 256:135 */
1266	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1267		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1268		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1269	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1270	/* 103 - 3840x2160@24Hz 64:27 */
1271	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1272		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1273		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1274	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1275	/* 104 - 3840x2160@25Hz 64:27 */
1276	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1277		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1278		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1279	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1280	/* 105 - 3840x2160@30Hz 64:27 */
1281	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1282		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1283		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1284	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1285	/* 106 - 3840x2160@50Hz 64:27 */
1286	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1287		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1288		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1289	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1290	/* 107 - 3840x2160@60Hz 64:27 */
1291	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1292		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1293		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1294	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1295	/* 108 - 1280x720@48Hz 16:9 */
1296	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1297		   2280, 2500, 0, 720, 725, 730, 750, 0,
1298		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1299	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1300	/* 109 - 1280x720@48Hz 64:27 */
1301	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1302		   2280, 2500, 0, 720, 725, 730, 750, 0,
1303		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1304	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1305	/* 110 - 1680x720@48Hz 64:27 */
1306	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1307		   2530, 2750, 0, 720, 725, 730, 750, 0,
1308		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1309	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1310	/* 111 - 1920x1080@48Hz 16:9 */
1311	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1312		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1313		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1314	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1315	/* 112 - 1920x1080@48Hz 64:27 */
1316	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1317		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1318		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1319	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1320	/* 113 - 2560x1080@48Hz 64:27 */
1321	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1322		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1323		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1324	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1325	/* 114 - 3840x2160@48Hz 16:9 */
1326	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1327		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1328		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1329	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1330	/* 115 - 4096x2160@48Hz 256:135 */
1331	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1332		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1333		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1334	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1335	/* 116 - 3840x2160@48Hz 64:27 */
1336	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1337		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1338		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1339	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1340	/* 117 - 3840x2160@100Hz 16:9 */
1341	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1342		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1343		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1344	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1345	/* 118 - 3840x2160@120Hz 16:9 */
1346	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1347		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1348		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1349	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1350	/* 119 - 3840x2160@100Hz 64:27 */
1351	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1352		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1353		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1354	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1355	/* 120 - 3840x2160@120Hz 64:27 */
1356	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1357		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1358		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1359	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1360	/* 121 - 5120x2160@24Hz 64:27 */
1361	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1362		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1363		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1364	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1365	/* 122 - 5120x2160@25Hz 64:27 */
1366	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1367		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1368		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1369	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1370	/* 123 - 5120x2160@30Hz 64:27 */
1371	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1372		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1373		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1374	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1375	/* 124 - 5120x2160@48Hz 64:27 */
1376	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1377		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1378		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1379	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1380	/* 125 - 5120x2160@50Hz 64:27 */
1381	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1382		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1383		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1384	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1385	/* 126 - 5120x2160@60Hz 64:27 */
1386	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1387		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1388		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1389	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1390	/* 127 - 5120x2160@100Hz 64:27 */
1391	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1392		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1393		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1394	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1395};
1396
1397/*
1398 * From CEA/CTA-861 spec.
1399 *
1400 * Do not access directly, instead always use cea_mode_for_vic().
1401 */
1402static const struct drm_display_mode edid_cea_modes_193[] = {
1403	/* 193 - 5120x2160@120Hz 64:27 */
1404	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1405		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1406		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1407	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1408	/* 194 - 7680x4320@24Hz 16:9 */
1409	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1410		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1411		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1412	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1413	/* 195 - 7680x4320@25Hz 16:9 */
1414	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1415		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1416		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1417	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1418	/* 196 - 7680x4320@30Hz 16:9 */
1419	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1420		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1421		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1422	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1423	/* 197 - 7680x4320@48Hz 16:9 */
1424	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1425		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1426		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1427	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1428	/* 198 - 7680x4320@50Hz 16:9 */
1429	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1430		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1431		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1432	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1433	/* 199 - 7680x4320@60Hz 16:9 */
1434	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1435		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1436		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1437	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1438	/* 200 - 7680x4320@100Hz 16:9 */
1439	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1440		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1441		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1442	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1443	/* 201 - 7680x4320@120Hz 16:9 */
1444	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1445		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1446		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1447	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1448	/* 202 - 7680x4320@24Hz 64:27 */
1449	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1450		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1451		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1452	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1453	/* 203 - 7680x4320@25Hz 64:27 */
1454	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1455		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1456		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1457	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1458	/* 204 - 7680x4320@30Hz 64:27 */
1459	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1460		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1461		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1462	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1463	/* 205 - 7680x4320@48Hz 64:27 */
1464	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1465		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1466		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1467	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1468	/* 206 - 7680x4320@50Hz 64:27 */
1469	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1470		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1471		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1472	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1473	/* 207 - 7680x4320@60Hz 64:27 */
1474	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1475		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1476		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1477	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1478	/* 208 - 7680x4320@100Hz 64:27 */
1479	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1480		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1481		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1482	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1483	/* 209 - 7680x4320@120Hz 64:27 */
1484	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1485		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1486		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1487	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1488	/* 210 - 10240x4320@24Hz 64:27 */
1489	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1490		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1491		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1492	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1493	/* 211 - 10240x4320@25Hz 64:27 */
1494	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1495		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1496		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1497	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1498	/* 212 - 10240x4320@30Hz 64:27 */
1499	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1500		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1501		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1502	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1503	/* 213 - 10240x4320@48Hz 64:27 */
1504	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1505		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1506		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1507	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1508	/* 214 - 10240x4320@50Hz 64:27 */
1509	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1510		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1511		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1512	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1513	/* 215 - 10240x4320@60Hz 64:27 */
1514	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1515		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1516		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1517	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1518	/* 216 - 10240x4320@100Hz 64:27 */
1519	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1520		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1521		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1522	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1523	/* 217 - 10240x4320@120Hz 64:27 */
1524	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1525		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1526		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1527	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1528	/* 218 - 4096x2160@100Hz 256:135 */
1529	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1530		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1531		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1532	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1533	/* 219 - 4096x2160@120Hz 256:135 */
1534	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1535		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1536		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1537	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1538};
1539
1540/*
1541 * HDMI 1.4 4k modes. Index using the VIC.
1542 */
1543static const struct drm_display_mode edid_4k_modes[] = {
1544	/* 0 - dummy, VICs start at 1 */
1545	{ },
1546	/* 1 - 3840x2160@30Hz */
1547	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1548		   3840, 4016, 4104, 4400, 0,
1549		   2160, 2168, 2178, 2250, 0,
1550		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1551	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1552	/* 2 - 3840x2160@25Hz */
1553	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1554		   3840, 4896, 4984, 5280, 0,
1555		   2160, 2168, 2178, 2250, 0,
1556		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1557	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1558	/* 3 - 3840x2160@24Hz */
1559	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1560		   3840, 5116, 5204, 5500, 0,
1561		   2160, 2168, 2178, 2250, 0,
1562		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564	/* 4 - 4096x2160@24Hz (SMPTE) */
1565	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1566		   4096, 5116, 5204, 5500, 0,
1567		   2160, 2168, 2178, 2250, 0,
1568		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1569	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1570};
1571
1572/*** DDC fetch and block validation ***/
1573
1574/*
1575 * The opaque EDID type, internal to drm_edid.c.
1576 */
1577struct drm_edid {
1578	/* Size allocated for edid */
1579	size_t size;
1580	const struct edid *edid;
1581};
1582
1583static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1584
1585static int edid_hfeeodb_block_count(const struct edid *edid)
1586{
1587	int eeodb = edid_hfeeodb_extension_block_count(edid);
1588
1589	return eeodb ? eeodb + 1 : 0;
1590}
1591
1592static int edid_extension_block_count(const struct edid *edid)
1593{
1594	return edid->extensions;
1595}
1596
1597static int edid_block_count(const struct edid *edid)
1598{
1599	return edid_extension_block_count(edid) + 1;
1600}
1601
1602static int edid_size_by_blocks(int num_blocks)
1603{
1604	return num_blocks * EDID_LENGTH;
1605}
1606
1607static int edid_size(const struct edid *edid)
1608{
1609	return edid_size_by_blocks(edid_block_count(edid));
1610}
1611
1612static const void *edid_block_data(const struct edid *edid, int index)
1613{
1614	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1615
1616	return edid + index;
1617}
1618
1619static const void *edid_extension_block_data(const struct edid *edid, int index)
1620{
1621	return edid_block_data(edid, index + 1);
1622}
1623
1624/* EDID block count indicated in EDID, may exceed allocated size */
1625static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1626{
1627	int num_blocks;
1628
1629	/* Starting point */
1630	num_blocks = edid_block_count(drm_edid->edid);
1631
1632	/* HF-EEODB override */
1633	if (drm_edid->size >= edid_size_by_blocks(2)) {
1634		int eeodb;
1635
1636		/*
1637		 * Note: HF-EEODB may specify a smaller extension count than the
1638		 * regular one. Unlike in buffer allocation, here we can use it.
1639		 */
1640		eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1641		if (eeodb)
1642			num_blocks = eeodb;
1643	}
1644
1645	return num_blocks;
1646}
1647
1648/* EDID block count, limited by allocated size */
1649static int drm_edid_block_count(const struct drm_edid *drm_edid)
1650{
1651	/* Limit by allocated size */
1652	return min(__drm_edid_block_count(drm_edid),
1653		   (int)drm_edid->size / EDID_LENGTH);
1654}
1655
1656/* EDID extension block count, limited by allocated size */
1657static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1658{
1659	return drm_edid_block_count(drm_edid) - 1;
1660}
1661
1662static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1663{
1664	return edid_block_data(drm_edid->edid, index);
1665}
1666
1667static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1668						 int index)
1669{
1670	return edid_extension_block_data(drm_edid->edid, index);
1671}
1672
1673/*
1674 * Initializer helper for legacy interfaces, where we have no choice but to
1675 * trust edid size. Not for general purpose use.
1676 */
1677static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1678						   const struct edid *edid)
1679{
1680	if (!edid)
1681		return NULL;
1682
1683	memset(drm_edid, 0, sizeof(*drm_edid));
1684
1685	drm_edid->edid = edid;
1686	drm_edid->size = edid_size(edid);
1687
1688	return drm_edid;
1689}
1690
1691/*
1692 * EDID base and extension block iterator.
1693 *
1694 * struct drm_edid_iter iter;
1695 * const u8 *block;
1696 *
1697 * drm_edid_iter_begin(drm_edid, &iter);
1698 * drm_edid_iter_for_each(block, &iter) {
1699 *         // do stuff with block
1700 * }
1701 * drm_edid_iter_end(&iter);
1702 */
1703struct drm_edid_iter {
1704	const struct drm_edid *drm_edid;
1705
1706	/* Current block index. */
1707	int index;
1708};
1709
1710static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1711				struct drm_edid_iter *iter)
1712{
1713	memset(iter, 0, sizeof(*iter));
1714
1715	iter->drm_edid = drm_edid;
1716}
1717
1718static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1719{
1720	const void *block = NULL;
1721
1722	if (!iter->drm_edid)
1723		return NULL;
1724
1725	if (iter->index < drm_edid_block_count(iter->drm_edid))
1726		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1727
1728	return block;
1729}
1730
1731#define drm_edid_iter_for_each(__block, __iter)			\
1732	while (((__block) = __drm_edid_iter_next(__iter)))
1733
1734static void drm_edid_iter_end(struct drm_edid_iter *iter)
1735{
1736	memset(iter, 0, sizeof(*iter));
1737}
1738
1739static const u8 edid_header[] = {
1740	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1741};
1742
1743static void edid_header_fix(void *edid)
1744{
1745	memcpy(edid, edid_header, sizeof(edid_header));
1746}
1747
1748/**
1749 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1750 * @_edid: pointer to raw base EDID block
1751 *
1752 * Sanity check the header of the base EDID block.
1753 *
1754 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1755 */
1756int drm_edid_header_is_valid(const void *_edid)
1757{
1758	const struct edid *edid = _edid;
1759	int i, score = 0;
1760
1761	for (i = 0; i < sizeof(edid_header); i++) {
1762		if (edid->header[i] == edid_header[i])
1763			score++;
1764	}
1765
1766	return score;
1767}
1768EXPORT_SYMBOL(drm_edid_header_is_valid);
1769
1770static int edid_fixup __read_mostly = 6;
1771module_param_named(edid_fixup, edid_fixup, int, 0400);
1772MODULE_PARM_DESC(edid_fixup,
1773		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1774
1775static int edid_block_compute_checksum(const void *_block)
1776{
1777	const u8 *block = _block;
1778	int i;
1779	u8 csum = 0, crc = 0;
1780
1781	for (i = 0; i < EDID_LENGTH - 1; i++)
1782		csum += block[i];
1783
1784	crc = 0x100 - csum;
1785
1786	return crc;
1787}
1788
1789static int edid_block_get_checksum(const void *_block)
1790{
1791	const struct edid *block = _block;
1792
1793	return block->checksum;
1794}
1795
1796static int edid_block_tag(const void *_block)
1797{
1798	const u8 *block = _block;
1799
1800	return block[0];
1801}
1802
1803static bool edid_block_is_zero(const void *edid)
1804{
1805	return !memchr_inv(edid, 0, EDID_LENGTH);
1806}
1807
1808/**
1809 * drm_edid_are_equal - compare two edid blobs.
1810 * @edid1: pointer to first blob
1811 * @edid2: pointer to second blob
1812 * This helper can be used during probing to determine if
1813 * edid had changed.
1814 */
1815bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1816{
1817	int edid1_len, edid2_len;
1818	bool edid1_present = edid1 != NULL;
1819	bool edid2_present = edid2 != NULL;
1820
1821	if (edid1_present != edid2_present)
1822		return false;
1823
1824	if (edid1) {
1825		edid1_len = edid_size(edid1);
1826		edid2_len = edid_size(edid2);
1827
1828		if (edid1_len != edid2_len)
1829			return false;
1830
1831		if (memcmp(edid1, edid2, edid1_len))
1832			return false;
1833	}
1834
1835	return true;
1836}
1837EXPORT_SYMBOL(drm_edid_are_equal);
1838
1839enum edid_block_status {
1840	EDID_BLOCK_OK = 0,
1841	EDID_BLOCK_READ_FAIL,
1842	EDID_BLOCK_NULL,
1843	EDID_BLOCK_ZERO,
1844	EDID_BLOCK_HEADER_CORRUPT,
1845	EDID_BLOCK_HEADER_REPAIR,
1846	EDID_BLOCK_HEADER_FIXED,
1847	EDID_BLOCK_CHECKSUM,
1848	EDID_BLOCK_VERSION,
1849};
1850
1851static enum edid_block_status edid_block_check(const void *_block,
1852					       bool is_base_block)
1853{
1854	const struct edid *block = _block;
1855
1856	if (!block)
1857		return EDID_BLOCK_NULL;
1858
1859	if (is_base_block) {
1860		int score = drm_edid_header_is_valid(block);
1861
1862		if (score < clamp(edid_fixup, 0, 8)) {
1863			if (edid_block_is_zero(block))
1864				return EDID_BLOCK_ZERO;
1865			else
1866				return EDID_BLOCK_HEADER_CORRUPT;
1867		}
1868
1869		if (score < 8)
1870			return EDID_BLOCK_HEADER_REPAIR;
1871	}
1872
1873	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1874		if (edid_block_is_zero(block))
1875			return EDID_BLOCK_ZERO;
1876		else
1877			return EDID_BLOCK_CHECKSUM;
1878	}
1879
1880	if (is_base_block) {
1881		if (block->version != 1)
1882			return EDID_BLOCK_VERSION;
1883	}
1884
1885	return EDID_BLOCK_OK;
1886}
1887
1888static bool edid_block_status_valid(enum edid_block_status status, int tag)
1889{
1890	return status == EDID_BLOCK_OK ||
1891		status == EDID_BLOCK_HEADER_FIXED ||
1892		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1893}
1894
1895static bool edid_block_valid(const void *block, bool base)
1896{
1897	return edid_block_status_valid(edid_block_check(block, base),
1898				       edid_block_tag(block));
1899}
1900
1901static void edid_block_status_print(enum edid_block_status status,
1902				    const struct edid *block,
1903				    int block_num)
1904{
1905	switch (status) {
1906	case EDID_BLOCK_OK:
1907		break;
1908	case EDID_BLOCK_READ_FAIL:
1909		pr_debug("EDID block %d read failed\n", block_num);
1910		break;
1911	case EDID_BLOCK_NULL:
1912		pr_debug("EDID block %d pointer is NULL\n", block_num);
1913		break;
1914	case EDID_BLOCK_ZERO:
1915		pr_notice("EDID block %d is all zeroes\n", block_num);
1916		break;
1917	case EDID_BLOCK_HEADER_CORRUPT:
1918		pr_notice("EDID has corrupt header\n");
1919		break;
1920	case EDID_BLOCK_HEADER_REPAIR:
1921		pr_debug("EDID corrupt header needs repair\n");
1922		break;
1923	case EDID_BLOCK_HEADER_FIXED:
1924		pr_debug("EDID corrupt header fixed\n");
1925		break;
1926	case EDID_BLOCK_CHECKSUM:
1927		if (edid_block_status_valid(status, edid_block_tag(block))) {
1928			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1929				 block_num, edid_block_tag(block),
1930				 edid_block_compute_checksum(block));
1931		} else {
1932			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1933				  block_num, edid_block_tag(block),
1934				  edid_block_compute_checksum(block));
1935		}
1936		break;
1937	case EDID_BLOCK_VERSION:
1938		pr_notice("EDID has major version %d, instead of 1\n",
1939			  block->version);
1940		break;
1941	default:
1942		WARN(1, "EDID block %d unknown edid block status code %d\n",
1943		     block_num, status);
1944		break;
1945	}
1946}
1947
1948static void edid_block_dump(const char *level, const void *block, int block_num)
1949{
1950	enum edid_block_status status;
1951	char prefix[20];
1952
1953	status = edid_block_check(block, block_num == 0);
1954	if (status == EDID_BLOCK_ZERO)
1955		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1956	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1957		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1958	else
1959		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1960
1961	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1962		       block, EDID_LENGTH, false);
1963}
1964
1965/**
1966 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1967 * @_block: pointer to raw EDID block
1968 * @block_num: type of block to validate (0 for base, extension otherwise)
1969 * @print_bad_edid: if true, dump bad EDID blocks to the console
1970 * @edid_corrupt: if true, the header or checksum is invalid
1971 *
1972 * Validate a base or extension EDID block and optionally dump bad blocks to
1973 * the console.
1974 *
1975 * Return: True if the block is valid, false otherwise.
1976 */
1977bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1978			  bool *edid_corrupt)
1979{
1980	struct edid *block = (struct edid *)_block;
1981	enum edid_block_status status;
1982	bool is_base_block = block_num == 0;
1983	bool valid;
1984
1985	if (WARN_ON(!block))
1986		return false;
1987
1988	status = edid_block_check(block, is_base_block);
1989	if (status == EDID_BLOCK_HEADER_REPAIR) {
1990		DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1991		edid_header_fix(block);
1992
1993		/* Retry with fixed header, update status if that worked. */
1994		status = edid_block_check(block, is_base_block);
1995		if (status == EDID_BLOCK_OK)
1996			status = EDID_BLOCK_HEADER_FIXED;
1997	}
1998
1999	if (edid_corrupt) {
2000		/*
2001		 * Unknown major version isn't corrupt but we can't use it. Only
2002		 * the base block can reset edid_corrupt to false.
2003		 */
2004		if (is_base_block &&
2005		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2006			*edid_corrupt = false;
2007		else if (status != EDID_BLOCK_OK)
2008			*edid_corrupt = true;
2009	}
2010
2011	edid_block_status_print(status, block, block_num);
2012
2013	/* Determine whether we can use this block with this status. */
2014	valid = edid_block_status_valid(status, edid_block_tag(block));
2015
2016	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2017		pr_notice("Raw EDID:\n");
2018		edid_block_dump(KERN_NOTICE, block, block_num);
2019	}
2020
2021	return valid;
2022}
2023EXPORT_SYMBOL(drm_edid_block_valid);
2024
2025/**
2026 * drm_edid_is_valid - sanity check EDID data
2027 * @edid: EDID data
2028 *
2029 * Sanity-check an entire EDID record (including extensions)
2030 *
2031 * Return: True if the EDID data is valid, false otherwise.
2032 */
2033bool drm_edid_is_valid(struct edid *edid)
2034{
2035	int i;
2036
2037	if (!edid)
2038		return false;
2039
2040	for (i = 0; i < edid_block_count(edid); i++) {
2041		void *block = (void *)edid_block_data(edid, i);
2042
2043		if (!drm_edid_block_valid(block, i, true, NULL))
2044			return false;
2045	}
2046
2047	return true;
2048}
2049EXPORT_SYMBOL(drm_edid_is_valid);
2050
2051/**
2052 * drm_edid_valid - sanity check EDID data
2053 * @drm_edid: EDID data
2054 *
2055 * Sanity check an EDID. Cross check block count against allocated size and
2056 * checksum the blocks.
2057 *
2058 * Return: True if the EDID data is valid, false otherwise.
2059 */
2060bool drm_edid_valid(const struct drm_edid *drm_edid)
2061{
2062	int i;
2063
2064	if (!drm_edid)
2065		return false;
2066
2067	if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2068		return false;
2069
2070	for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2071		const void *block = drm_edid_block_data(drm_edid, i);
2072
2073		if (!edid_block_valid(block, i == 0))
2074			return false;
2075	}
2076
2077	return true;
2078}
2079EXPORT_SYMBOL(drm_edid_valid);
2080
2081static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2082					       size_t *alloc_size)
2083{
2084	struct edid *new;
2085	int i, valid_blocks = 0;
2086
2087	/*
2088	 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2089	 * back to regular extension count here. We don't want to start
2090	 * modifying the HF-EEODB extension too.
2091	 */
2092	for (i = 0; i < edid_block_count(edid); i++) {
2093		const void *src_block = edid_block_data(edid, i);
2094
2095		if (edid_block_valid(src_block, i == 0)) {
2096			void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2097
2098			memmove(dst_block, src_block, EDID_LENGTH);
2099			valid_blocks++;
2100		}
2101	}
2102
2103	/* We already trusted the base block to be valid here... */
2104	if (WARN_ON(!valid_blocks)) {
2105		kfree(edid);
2106		return NULL;
2107	}
2108
2109	edid->extensions = valid_blocks - 1;
2110	edid->checksum = edid_block_compute_checksum(edid);
2111
2112	*alloc_size = edid_size_by_blocks(valid_blocks);
2113
2114	new = krealloc(edid, *alloc_size, GFP_KERNEL);
2115	if (!new)
2116		kfree(edid);
2117
2118	return new;
2119}
2120
2121#define DDC_SEGMENT_ADDR 0x30
2122/**
2123 * drm_do_probe_ddc_edid() - get EDID information via I2C
2124 * @data: I2C device adapter
2125 * @buf: EDID data buffer to be filled
2126 * @block: 128 byte EDID block to start fetching from
2127 * @len: EDID data buffer length to fetch
2128 *
2129 * Try to fetch EDID information by calling I2C driver functions.
2130 *
2131 * Return: 0 on success or -1 on failure.
2132 */
2133static int
2134drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2135{
2136	struct i2c_adapter *adapter = data;
2137	unsigned char start = block * EDID_LENGTH;
2138	unsigned char segment = block >> 1;
2139	unsigned char xfers = segment ? 3 : 2;
2140	int ret, retries = 5;
2141
2142	/*
2143	 * The core I2C driver will automatically retry the transfer if the
2144	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2145	 * are susceptible to errors under a heavily loaded machine and
2146	 * generate spurious NAKs and timeouts. Retrying the transfer
2147	 * of the individual block a few times seems to overcome this.
2148	 */
2149	do {
2150		struct i2c_msg msgs[] = {
2151			{
2152				.addr	= DDC_SEGMENT_ADDR,
2153				.flags	= 0,
2154				.len	= 1,
2155				.buf	= &segment,
2156			}, {
2157				.addr	= DDC_ADDR,
2158				.flags	= 0,
2159				.len	= 1,
2160				.buf	= &start,
2161			}, {
2162				.addr	= DDC_ADDR,
2163				.flags	= I2C_M_RD,
2164				.len	= len,
2165				.buf	= buf,
2166			}
2167		};
2168
2169		/*
2170		 * Avoid sending the segment addr to not upset non-compliant
2171		 * DDC monitors.
2172		 */
2173		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2174
2175		if (ret == -ENXIO) {
2176			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2177					adapter->name);
2178			break;
2179		}
2180	} while (ret != xfers && --retries);
2181
2182	return ret == xfers ? 0 : -1;
2183}
2184
2185static void connector_bad_edid(struct drm_connector *connector,
2186			       const struct edid *edid, int num_blocks)
2187{
2188	int i;
2189	u8 last_block;
2190
2191	/*
2192	 * 0x7e in the EDID is the number of extension blocks. The EDID
2193	 * is 1 (base block) + num_ext_blocks big. That means we can think
2194	 * of 0x7e in the EDID of the _index_ of the last block in the
2195	 * combined chunk of memory.
2196	 */
2197	last_block = edid->extensions;
2198
2199	/* Calculate real checksum for the last edid extension block data */
2200	if (last_block < num_blocks)
2201		connector->real_edid_checksum =
2202			edid_block_compute_checksum(edid + last_block);
2203
2204	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2205		return;
2206
2207	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2208		    connector->base.id, connector->name);
2209	for (i = 0; i < num_blocks; i++)
2210		edid_block_dump(KERN_DEBUG, edid + i, i);
2211}
2212
2213/* Get override or firmware EDID */
2214static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2215{
2216	const struct drm_edid *override = NULL;
2217
2218	mutex_lock(&connector->edid_override_mutex);
2219
2220	if (connector->edid_override)
2221		override = drm_edid_dup(connector->edid_override);
2222
2223	mutex_unlock(&connector->edid_override_mutex);
2224
2225	if (!override)
2226		override = drm_edid_load_firmware(connector);
2227
2228	return IS_ERR(override) ? NULL : override;
2229}
2230
2231/* For debugfs edid_override implementation */
2232int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2233{
2234	const struct drm_edid *drm_edid;
2235
2236	mutex_lock(&connector->edid_override_mutex);
2237
2238	drm_edid = connector->edid_override;
2239	if (drm_edid)
2240		seq_write(m, drm_edid->edid, drm_edid->size);
2241
2242	mutex_unlock(&connector->edid_override_mutex);
2243
2244	return 0;
2245}
2246
2247/* For debugfs edid_override implementation */
2248int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2249			  size_t size)
2250{
2251	const struct drm_edid *drm_edid;
2252
2253	drm_edid = drm_edid_alloc(edid, size);
2254	if (!drm_edid_valid(drm_edid)) {
2255		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2256			    connector->base.id, connector->name);
2257		drm_edid_free(drm_edid);
2258		return -EINVAL;
2259	}
2260
2261	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2262		    connector->base.id, connector->name);
2263
2264	mutex_lock(&connector->edid_override_mutex);
2265
2266	drm_edid_free(connector->edid_override);
2267	connector->edid_override = drm_edid;
2268
2269	mutex_unlock(&connector->edid_override_mutex);
2270
2271	return 0;
2272}
2273
2274/* For debugfs edid_override implementation */
2275int drm_edid_override_reset(struct drm_connector *connector)
2276{
2277	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2278		    connector->base.id, connector->name);
2279
2280	mutex_lock(&connector->edid_override_mutex);
2281
2282	drm_edid_free(connector->edid_override);
2283	connector->edid_override = NULL;
2284
2285	mutex_unlock(&connector->edid_override_mutex);
2286
2287	return 0;
2288}
2289
2290/**
2291 * drm_edid_override_connector_update - add modes from override/firmware EDID
2292 * @connector: connector we're probing
2293 *
2294 * Add modes from the override/firmware EDID, if available. Only to be used from
2295 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2296 * failed during drm_get_edid() and caused the override/firmware EDID to be
2297 * skipped.
2298 *
2299 * Return: The number of modes added or 0 if we couldn't find any.
2300 */
2301int drm_edid_override_connector_update(struct drm_connector *connector)
2302{
2303	const struct drm_edid *override;
2304	int num_modes = 0;
2305
2306	override = drm_edid_override_get(connector);
2307	if (override) {
2308		num_modes = drm_edid_connector_update(connector, override);
 
2309
2310		drm_edid_free(override);
2311
2312		drm_dbg_kms(connector->dev,
2313			    "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2314			    connector->base.id, connector->name, num_modes);
2315	}
2316
2317	return num_modes;
2318}
2319EXPORT_SYMBOL(drm_edid_override_connector_update);
2320
2321typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2322
2323static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2324					      read_block_fn read_block,
2325					      void *context)
2326{
2327	enum edid_block_status status;
2328	bool is_base_block = block_num == 0;
2329	int try;
2330
2331	for (try = 0; try < 4; try++) {
2332		if (read_block(context, block, block_num, EDID_LENGTH))
2333			return EDID_BLOCK_READ_FAIL;
2334
2335		status = edid_block_check(block, is_base_block);
2336		if (status == EDID_BLOCK_HEADER_REPAIR) {
2337			edid_header_fix(block);
2338
2339			/* Retry with fixed header, update status if that worked. */
2340			status = edid_block_check(block, is_base_block);
2341			if (status == EDID_BLOCK_OK)
2342				status = EDID_BLOCK_HEADER_FIXED;
2343		}
2344
2345		if (edid_block_status_valid(status, edid_block_tag(block)))
2346			break;
2347
2348		/* Fail early for unrepairable base block all zeros. */
2349		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2350			break;
2351	}
2352
2353	return status;
2354}
2355
2356static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2357				     read_block_fn read_block, void *context,
2358				     size_t *size)
2359{
2360	enum edid_block_status status;
2361	int i, num_blocks, invalid_blocks = 0;
2362	const struct drm_edid *override;
2363	struct edid *edid, *new;
2364	size_t alloc_size = EDID_LENGTH;
2365
2366	override = drm_edid_override_get(connector);
2367	if (override) {
2368		alloc_size = override->size;
2369		edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2370		drm_edid_free(override);
2371		if (!edid)
2372			return NULL;
2373		goto ok;
2374	}
2375
2376	edid = kmalloc(alloc_size, GFP_KERNEL);
2377	if (!edid)
2378		return NULL;
2379
2380	status = edid_block_read(edid, 0, read_block, context);
2381
2382	edid_block_status_print(status, edid, 0);
2383
2384	if (status == EDID_BLOCK_READ_FAIL)
2385		goto fail;
2386
2387	/* FIXME: Clarify what a corrupt EDID actually means. */
2388	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2389		connector->edid_corrupt = false;
2390	else
2391		connector->edid_corrupt = true;
2392
2393	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2394		if (status == EDID_BLOCK_ZERO)
2395			connector->null_edid_counter++;
2396
2397		connector_bad_edid(connector, edid, 1);
2398		goto fail;
2399	}
2400
2401	if (!edid_extension_block_count(edid))
2402		goto ok;
2403
2404	alloc_size = edid_size(edid);
2405	new = krealloc(edid, alloc_size, GFP_KERNEL);
2406	if (!new)
2407		goto fail;
2408	edid = new;
2409
2410	num_blocks = edid_block_count(edid);
2411	for (i = 1; i < num_blocks; i++) {
2412		void *block = (void *)edid_block_data(edid, i);
2413
2414		status = edid_block_read(block, i, read_block, context);
2415
2416		edid_block_status_print(status, block, i);
2417
2418		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2419			if (status == EDID_BLOCK_READ_FAIL)
2420				goto fail;
2421			invalid_blocks++;
2422		} else if (i == 1) {
2423			/*
2424			 * If the first EDID extension is a CTA extension, and
2425			 * the first Data Block is HF-EEODB, override the
2426			 * extension block count.
2427			 *
2428			 * Note: HF-EEODB could specify a smaller extension
2429			 * count too, but we can't risk allocating a smaller
2430			 * amount.
2431			 */
2432			int eeodb = edid_hfeeodb_block_count(edid);
2433
2434			if (eeodb > num_blocks) {
2435				num_blocks = eeodb;
2436				alloc_size = edid_size_by_blocks(num_blocks);
2437				new = krealloc(edid, alloc_size, GFP_KERNEL);
2438				if (!new)
2439					goto fail;
2440				edid = new;
2441			}
2442		}
2443	}
2444
2445	if (invalid_blocks) {
2446		connector_bad_edid(connector, edid, num_blocks);
2447
2448		edid = edid_filter_invalid_blocks(edid, &alloc_size);
2449	}
2450
2451ok:
2452	if (size)
2453		*size = alloc_size;
2454
2455	return edid;
2456
2457fail:
2458	kfree(edid);
2459	return NULL;
2460}
2461
2462/**
2463 * drm_do_get_edid - get EDID data using a custom EDID block read function
2464 * @connector: connector we're probing
2465 * @read_block: EDID block read function
2466 * @context: private data passed to the block read function
2467 *
2468 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2469 * exposes a different interface to read EDID blocks this function can be used
2470 * to get EDID data using a custom block read function.
2471 *
2472 * As in the general case the DDC bus is accessible by the kernel at the I2C
2473 * level, drivers must make all reasonable efforts to expose it as an I2C
2474 * adapter and use drm_get_edid() instead of abusing this function.
2475 *
2476 * The EDID may be overridden using debugfs override_edid or firmware EDID
2477 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2478 * order. Having either of them bypasses actual EDID reads.
2479 *
2480 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2481 */
2482struct edid *drm_do_get_edid(struct drm_connector *connector,
2483			     read_block_fn read_block,
2484			     void *context)
2485{
2486	return _drm_do_get_edid(connector, read_block, context, NULL);
2487}
2488EXPORT_SYMBOL_GPL(drm_do_get_edid);
2489
2490/**
2491 * drm_edid_raw - Get a pointer to the raw EDID data.
2492 * @drm_edid: drm_edid container
2493 *
2494 * Get a pointer to the raw EDID data.
2495 *
2496 * This is for transition only. Avoid using this like the plague.
2497 *
2498 * Return: Pointer to raw EDID data.
2499 */
2500const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2501{
2502	if (!drm_edid || !drm_edid->size)
2503		return NULL;
2504
2505	/*
2506	 * Do not return pointers where relying on EDID extension count would
2507	 * lead to buffer overflow.
2508	 */
2509	if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2510		return NULL;
2511
2512	return drm_edid->edid;
2513}
2514EXPORT_SYMBOL(drm_edid_raw);
2515
2516/* Allocate struct drm_edid container *without* duplicating the edid data */
2517static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2518{
2519	struct drm_edid *drm_edid;
2520
2521	if (!edid || !size || size < EDID_LENGTH)
2522		return NULL;
2523
2524	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2525	if (drm_edid) {
2526		drm_edid->edid = edid;
2527		drm_edid->size = size;
2528	}
2529
2530	return drm_edid;
2531}
2532
2533/**
2534 * drm_edid_alloc - Allocate a new drm_edid container
2535 * @edid: Pointer to raw EDID data
2536 * @size: Size of memory allocated for EDID
2537 *
2538 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2539 * the actual size that has been allocated for the data. There is no validation
2540 * of the raw EDID data against the size, but at least the EDID base block must
2541 * fit in the buffer.
2542 *
2543 * The returned pointer must be freed using drm_edid_free().
2544 *
2545 * Return: drm_edid container, or NULL on errors
2546 */
2547const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2548{
2549	const struct drm_edid *drm_edid;
2550
2551	if (!edid || !size || size < EDID_LENGTH)
2552		return NULL;
2553
2554	edid = kmemdup(edid, size, GFP_KERNEL);
2555	if (!edid)
2556		return NULL;
2557
2558	drm_edid = _drm_edid_alloc(edid, size);
2559	if (!drm_edid)
2560		kfree(edid);
2561
2562	return drm_edid;
2563}
2564EXPORT_SYMBOL(drm_edid_alloc);
2565
2566/**
2567 * drm_edid_dup - Duplicate a drm_edid container
2568 * @drm_edid: EDID to duplicate
2569 *
2570 * The returned pointer must be freed using drm_edid_free().
2571 *
2572 * Returns: drm_edid container copy, or NULL on errors
2573 */
2574const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2575{
2576	if (!drm_edid)
2577		return NULL;
2578
2579	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2580}
2581EXPORT_SYMBOL(drm_edid_dup);
2582
2583/**
2584 * drm_edid_free - Free the drm_edid container
2585 * @drm_edid: EDID to free
2586 */
2587void drm_edid_free(const struct drm_edid *drm_edid)
2588{
2589	if (!drm_edid)
2590		return;
2591
2592	kfree(drm_edid->edid);
2593	kfree(drm_edid);
2594}
2595EXPORT_SYMBOL(drm_edid_free);
2596
2597/**
2598 * drm_probe_ddc() - probe DDC presence
2599 * @adapter: I2C adapter to probe
2600 *
2601 * Return: True on success, false on failure.
2602 */
2603bool
2604drm_probe_ddc(struct i2c_adapter *adapter)
2605{
2606	unsigned char out;
2607
2608	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2609}
2610EXPORT_SYMBOL(drm_probe_ddc);
2611
2612/**
2613 * drm_get_edid - get EDID data, if available
2614 * @connector: connector we're probing
2615 * @adapter: I2C adapter to use for DDC
2616 *
2617 * Poke the given I2C channel to grab EDID data if possible.  If found,
2618 * attach it to the connector.
2619 *
2620 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2621 */
2622struct edid *drm_get_edid(struct drm_connector *connector,
2623			  struct i2c_adapter *adapter)
2624{
2625	struct edid *edid;
2626
2627	if (connector->force == DRM_FORCE_OFF)
2628		return NULL;
2629
2630	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2631		return NULL;
2632
2633	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2634	drm_connector_update_edid_property(connector, edid);
2635	return edid;
2636}
2637EXPORT_SYMBOL(drm_get_edid);
2638
2639/**
2640 * drm_edid_read_custom - Read EDID data using given EDID block read function
2641 * @connector: Connector to use
2642 * @read_block: EDID block read function
2643 * @context: Private data passed to the block read function
2644 *
2645 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2646 * exposes a different interface to read EDID blocks this function can be used
2647 * to get EDID data using a custom block read function.
2648 *
2649 * As in the general case the DDC bus is accessible by the kernel at the I2C
2650 * level, drivers must make all reasonable efforts to expose it as an I2C
2651 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2652 * this function.
2653 *
2654 * The EDID may be overridden using debugfs override_edid or firmware EDID
2655 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2656 * order. Having either of them bypasses actual EDID reads.
2657 *
2658 * The returned pointer must be freed using drm_edid_free().
2659 *
2660 * Return: Pointer to EDID, or NULL if probe/read failed.
2661 */
2662const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2663					    read_block_fn read_block,
2664					    void *context)
2665{
2666	const struct drm_edid *drm_edid;
2667	struct edid *edid;
2668	size_t size = 0;
2669
2670	edid = _drm_do_get_edid(connector, read_block, context, &size);
2671	if (!edid)
2672		return NULL;
2673
2674	/* Sanity check for now */
2675	drm_WARN_ON(connector->dev, !size);
2676
2677	drm_edid = _drm_edid_alloc(edid, size);
2678	if (!drm_edid)
2679		kfree(edid);
2680
2681	return drm_edid;
2682}
2683EXPORT_SYMBOL(drm_edid_read_custom);
2684
2685/**
2686 * drm_edid_read_ddc - Read EDID data using given I2C adapter
2687 * @connector: Connector to use
2688 * @adapter: I2C adapter to use for DDC
2689 *
2690 * Read EDID using the given I2C adapter.
2691 *
2692 * The EDID may be overridden using debugfs override_edid or firmware EDID
2693 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2694 * order. Having either of them bypasses actual EDID reads.
2695 *
2696 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2697 * using drm_edid_read() instead of this function.
2698 *
2699 * The returned pointer must be freed using drm_edid_free().
2700 *
2701 * Return: Pointer to EDID, or NULL if probe/read failed.
2702 */
2703const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2704					 struct i2c_adapter *adapter)
2705{
2706	const struct drm_edid *drm_edid;
2707
2708	if (connector->force == DRM_FORCE_OFF)
2709		return NULL;
2710
2711	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2712		return NULL;
2713
2714	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2715
2716	/* Note: Do *not* call connector updates here. */
2717
2718	return drm_edid;
2719}
2720EXPORT_SYMBOL(drm_edid_read_ddc);
2721
2722/**
2723 * drm_edid_read - Read EDID data using connector's I2C adapter
2724 * @connector: Connector to use
2725 *
2726 * Read EDID using the connector's I2C adapter.
2727 *
2728 * The EDID may be overridden using debugfs override_edid or firmware EDID
2729 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2730 * order. Having either of them bypasses actual EDID reads.
2731 *
2732 * The returned pointer must be freed using drm_edid_free().
2733 *
2734 * Return: Pointer to EDID, or NULL if probe/read failed.
2735 */
2736const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2737{
2738	if (drm_WARN_ON(connector->dev, !connector->ddc))
2739		return NULL;
2740
2741	return drm_edid_read_ddc(connector, connector->ddc);
2742}
2743EXPORT_SYMBOL(drm_edid_read);
2744
2745static u32 edid_extract_panel_id(const struct edid *edid)
2746{
2747	/*
2748	 * We represent the ID as a 32-bit number so it can easily be compared
2749	 * with "==".
2750	 *
2751	 * NOTE that we deal with endianness differently for the top half
2752	 * of this ID than for the bottom half. The bottom half (the product
2753	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2754	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2755	 * gets stored as big endian because that makes
2756	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2757	 * to write (it's easier to extract the ASCII). It doesn't really
2758	 * matter, though, as long as the number here is unique.
2759	 */
2760	return (u32)edid->mfg_id[0] << 24   |
2761	       (u32)edid->mfg_id[1] << 16   |
2762	       (u32)EDID_PRODUCT_ID(edid);
2763}
2764
2765/**
2766 * drm_edid_get_panel_id - Get a panel's ID through DDC
2767 * @adapter: I2C adapter to use for DDC
2768 *
2769 * This function reads the first block of the EDID of a panel and (assuming
2770 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2771 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2772 * supposed to be different for each different modem of panel.
2773 *
2774 * This function is intended to be used during early probing on devices where
2775 * more than one panel might be present. Because of its intended use it must
2776 * assume that the EDID of the panel is correct, at least as far as the ID
2777 * is concerned (in other words, we don't process any overrides here).
2778 *
2779 * NOTE: it's expected that this function and drm_do_get_edid() will both
2780 * be read the EDID, but there is no caching between them. Since we're only
2781 * reading the first block, hopefully this extra overhead won't be too big.
2782 *
2783 * Return: A 32-bit ID that should be different for each make/model of panel.
2784 *         See the functions drm_edid_encode_panel_id() and
2785 *         drm_edid_decode_panel_id() for some details on the structure of this
2786 *         ID.
2787 */
2788
2789u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2790{
2791	enum edid_block_status status;
2792	void *base_block;
2793	u32 panel_id = 0;
2794
2795	/*
2796	 * There are no manufacturer IDs of 0, so if there is a problem reading
2797	 * the EDID then we'll just return 0.
2798	 */
2799
2800	base_block = kmalloc(EDID_LENGTH, GFP_KERNEL);
2801	if (!base_block)
2802		return 0;
2803
2804	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2805
2806	edid_block_status_print(status, base_block, 0);
2807
2808	if (edid_block_status_valid(status, edid_block_tag(base_block)))
2809		panel_id = edid_extract_panel_id(base_block);
2810	else
2811		edid_block_dump(KERN_NOTICE, base_block, 0);
2812
2813	kfree(base_block);
2814
2815	return panel_id;
2816}
2817EXPORT_SYMBOL(drm_edid_get_panel_id);
2818
2819/**
2820 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2821 * @connector: connector we're probing
2822 * @adapter: I2C adapter to use for DDC
2823 *
2824 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2825 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2826 * switch DDC to the GPU which is retrieving EDID.
2827 *
2828 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2829 */
2830struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2831				     struct i2c_adapter *adapter)
2832{
2833	struct drm_device *dev = connector->dev;
2834	struct pci_dev *pdev = to_pci_dev(dev->dev);
2835	struct edid *edid;
2836
2837	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2838		return NULL;
2839
2840	vga_switcheroo_lock_ddc(pdev);
2841	edid = drm_get_edid(connector, adapter);
2842	vga_switcheroo_unlock_ddc(pdev);
2843
2844	return edid;
2845}
2846EXPORT_SYMBOL(drm_get_edid_switcheroo);
2847
2848/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2849 * drm_edid_duplicate - duplicate an EDID and the extensions
2850 * @edid: EDID to duplicate
2851 *
2852 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2853 */
2854struct edid *drm_edid_duplicate(const struct edid *edid)
2855{
 
 
 
2856	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2857}
2858EXPORT_SYMBOL(drm_edid_duplicate);
2859
2860/*** EDID parsing ***/
2861
2862/**
2863 * edid_get_quirks - return quirk flags for a given EDID
2864 * @drm_edid: EDID to process
2865 *
2866 * This tells subsequent routines what fixes they need to apply.
2867 */
2868static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2869{
2870	u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2871	const struct edid_quirk *quirk;
2872	int i;
2873
2874	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2875		quirk = &edid_quirk_list[i];
2876		if (quirk->panel_id == panel_id)
2877			return quirk->quirks;
2878	}
2879
2880	return 0;
2881}
2882
2883#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2884#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2885
2886/*
2887 * Walk the mode list for connector, clearing the preferred status on existing
2888 * modes and setting it anew for the right mode ala quirks.
2889 */
2890static void edid_fixup_preferred(struct drm_connector *connector,
2891				 u32 quirks)
2892{
 
2893	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2894	int target_refresh = 0;
2895	int cur_vrefresh, preferred_vrefresh;
2896
2897	if (list_empty(&connector->probed_modes))
2898		return;
2899
2900	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
2901		target_refresh = 60;
2902	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
2903		target_refresh = 75;
2904
2905	preferred_mode = list_first_entry(&connector->probed_modes,
2906					  struct drm_display_mode, head);
2907
2908	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2909		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2910
2911		if (cur_mode == preferred_mode)
2912			continue;
2913
2914		/* Largest mode is preferred */
2915		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2916			preferred_mode = cur_mode;
2917
2918		cur_vrefresh = drm_mode_vrefresh(cur_mode);
2919		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2920		/* At a given size, try to get closest to target refresh */
2921		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2922		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2923		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2924			preferred_mode = cur_mode;
2925		}
2926	}
2927
2928	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2929}
2930
2931static bool
2932mode_is_rb(const struct drm_display_mode *mode)
2933{
2934	return (mode->htotal - mode->hdisplay == 160) &&
2935	       (mode->hsync_end - mode->hdisplay == 80) &&
2936	       (mode->hsync_end - mode->hsync_start == 32) &&
2937	       (mode->vsync_start - mode->vdisplay == 3);
2938}
2939
2940/*
2941 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2942 * @dev: Device to duplicate against
2943 * @hsize: Mode width
2944 * @vsize: Mode height
2945 * @fresh: Mode refresh rate
2946 * @rb: Mode reduced-blanking-ness
2947 *
2948 * Walk the DMT mode list looking for a match for the given parameters.
2949 *
2950 * Return: A newly allocated copy of the mode, or NULL if not found.
2951 */
2952struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2953					   int hsize, int vsize, int fresh,
2954					   bool rb)
2955{
2956	int i;
2957
2958	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2959		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2960
2961		if (hsize != ptr->hdisplay)
2962			continue;
2963		if (vsize != ptr->vdisplay)
2964			continue;
2965		if (fresh != drm_mode_vrefresh(ptr))
2966			continue;
2967		if (rb != mode_is_rb(ptr))
2968			continue;
2969
2970		return drm_mode_duplicate(dev, ptr);
2971	}
2972
2973	return NULL;
2974}
2975EXPORT_SYMBOL(drm_mode_find_dmt);
2976
2977static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
2978{
2979	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
2980	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
2981	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
2982
2983	return descriptor->pixel_clock == 0 &&
2984		descriptor->data.other_data.pad1 == 0 &&
2985		descriptor->data.other_data.type == type;
2986}
2987
2988static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
2989{
2990	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
2991
2992	return descriptor->pixel_clock != 0;
2993}
2994
2995typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
2996
2997static void
2998cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
2999{
3000	int i, n;
3001	u8 d = ext[0x02];
3002	const u8 *det_base = ext + d;
3003
3004	if (d < 4 || d > 127)
3005		return;
3006
3007	n = (127 - d) / 18;
3008	for (i = 0; i < n; i++)
3009		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3010}
3011
3012static void
3013vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3014{
3015	unsigned int i, n = min((int)ext[0x02], 6);
3016	const u8 *det_base = ext + 5;
3017
3018	if (ext[0x01] != 1)
3019		return; /* unknown version */
3020
3021	for (i = 0; i < n; i++)
3022		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3023}
3024
3025static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3026					detailed_cb *cb, void *closure)
3027{
3028	struct drm_edid_iter edid_iter;
3029	const u8 *ext;
3030	int i;
3031
3032	if (!drm_edid)
3033		return;
3034
3035	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3036		cb(&drm_edid->edid->detailed_timings[i], closure);
3037
3038	drm_edid_iter_begin(drm_edid, &edid_iter);
3039	drm_edid_iter_for_each(ext, &edid_iter) {
3040		switch (*ext) {
3041		case CEA_EXT:
3042			cea_for_each_detailed_block(ext, cb, closure);
3043			break;
3044		case VTB_EXT:
3045			vtb_for_each_detailed_block(ext, cb, closure);
3046			break;
3047		default:
3048			break;
3049		}
3050	}
3051	drm_edid_iter_end(&edid_iter);
3052}
3053
3054static void
3055is_rb(const struct detailed_timing *descriptor, void *data)
3056{
3057	bool *res = data;
3058
3059	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3060		return;
3061
3062	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3063	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3064
3065	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3066	    descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3067		*res = true;
3068}
3069
3070/* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3071static bool
3072drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3073{
3074	if (drm_edid->edid->revision >= 4) {
3075		bool ret = false;
3076
3077		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3078		return ret;
3079	}
3080
3081	return ((drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
3082}
3083
3084static void
3085find_gtf2(const struct detailed_timing *descriptor, void *data)
3086{
3087	const struct detailed_timing **res = data;
3088
3089	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3090		return;
3091
3092	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3093
3094	if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3095		*res = descriptor;
3096}
3097
3098/* Secondary GTF curve kicks in above some break frequency */
3099static int
3100drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3101{
3102	const struct detailed_timing *descriptor = NULL;
3103
3104	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3105
3106	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3107
3108	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3109}
3110
3111static int
3112drm_gtf2_2c(const struct drm_edid *drm_edid)
3113{
3114	const struct detailed_timing *descriptor = NULL;
3115
3116	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3117
3118	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3119
3120	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3121}
3122
3123static int
3124drm_gtf2_m(const struct drm_edid *drm_edid)
3125{
3126	const struct detailed_timing *descriptor = NULL;
3127
3128	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3129
3130	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3131
3132	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3133}
3134
3135static int
3136drm_gtf2_k(const struct drm_edid *drm_edid)
3137{
3138	const struct detailed_timing *descriptor = NULL;
3139
3140	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3141
3142	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3143
3144	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3145}
3146
3147static int
3148drm_gtf2_2j(const struct drm_edid *drm_edid)
3149{
3150	const struct detailed_timing *descriptor = NULL;
3151
3152	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3153
3154	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3155
3156	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3157}
3158
3159static void
3160get_timing_level(const struct detailed_timing *descriptor, void *data)
3161{
3162	int *res = data;
3163
3164	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3165		return;
3166
3167	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3168
3169	switch (descriptor->data.other_data.data.range.flags) {
3170	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3171		*res = LEVEL_GTF;
3172		break;
3173	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3174		*res = LEVEL_GTF2;
3175		break;
3176	case DRM_EDID_CVT_SUPPORT_FLAG:
3177		*res = LEVEL_CVT;
3178		break;
3179	default:
3180		break;
3181	}
3182}
3183
3184/* Get standard timing level (CVT/GTF/DMT). */
3185static int standard_timing_level(const struct drm_edid *drm_edid)
3186{
3187	const struct edid *edid = drm_edid->edid;
3188
3189	if (edid->revision >= 4) {
3190		/*
3191		 * If the range descriptor doesn't
3192		 * indicate otherwise default to CVT
3193		 */
3194		int ret = LEVEL_CVT;
3195
3196		drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3197
3198		return ret;
3199	} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3200		return LEVEL_GTF2;
3201	} else if (edid->revision >= 2) {
3202		return LEVEL_GTF;
3203	} else {
3204		return LEVEL_DMT;
3205	}
3206}
3207
3208/*
3209 * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3210 * monitors fill with ascii space (0x20) instead.
3211 */
3212static int
3213bad_std_timing(u8 a, u8 b)
3214{
3215	return (a == 0x00 && b == 0x00) ||
3216	       (a == 0x01 && b == 0x01) ||
3217	       (a == 0x20 && b == 0x20);
3218}
3219
3220static int drm_mode_hsync(const struct drm_display_mode *mode)
3221{
3222	if (mode->htotal <= 0)
3223		return 0;
3224
3225	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3226}
3227
3228static struct drm_display_mode *
3229drm_gtf2_mode(struct drm_device *dev,
3230	      const struct drm_edid *drm_edid,
3231	      int hsize, int vsize, int vrefresh_rate)
3232{
3233	struct drm_display_mode *mode;
3234
3235	/*
3236	 * This is potentially wrong if there's ever a monitor with
3237	 * more than one ranges section, each claiming a different
3238	 * secondary GTF curve.  Please don't do that.
3239	 */
3240	mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3241	if (!mode)
3242		return NULL;
3243
3244	if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3245		drm_mode_destroy(dev, mode);
3246		mode = drm_gtf_mode_complex(dev, hsize, vsize,
3247					    vrefresh_rate, 0, 0,
3248					    drm_gtf2_m(drm_edid),
3249					    drm_gtf2_2c(drm_edid),
3250					    drm_gtf2_k(drm_edid),
3251					    drm_gtf2_2j(drm_edid));
3252	}
3253
3254	return mode;
3255}
3256
3257/*
3258 * Take the standard timing params (in this case width, aspect, and refresh)
3259 * and convert them into a real mode using CVT/GTF/DMT.
3260 */
3261static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3262					     const struct drm_edid *drm_edid,
3263					     const struct std_timing *t)
3264{
3265	struct drm_device *dev = connector->dev;
3266	struct drm_display_mode *m, *mode = NULL;
3267	int hsize, vsize;
3268	int vrefresh_rate;
3269	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3270		>> EDID_TIMING_ASPECT_SHIFT;
3271	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3272		>> EDID_TIMING_VFREQ_SHIFT;
3273	int timing_level = standard_timing_level(drm_edid);
3274
3275	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3276		return NULL;
3277
3278	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3279	hsize = t->hsize * 8 + 248;
3280	/* vrefresh_rate = vfreq + 60 */
3281	vrefresh_rate = vfreq + 60;
3282	/* the vdisplay is calculated based on the aspect ratio */
3283	if (aspect_ratio == 0) {
3284		if (drm_edid->edid->revision < 3)
3285			vsize = hsize;
3286		else
3287			vsize = (hsize * 10) / 16;
3288	} else if (aspect_ratio == 1)
3289		vsize = (hsize * 3) / 4;
3290	else if (aspect_ratio == 2)
3291		vsize = (hsize * 4) / 5;
3292	else
3293		vsize = (hsize * 9) / 16;
3294
3295	/* HDTV hack, part 1 */
3296	if (vrefresh_rate == 60 &&
3297	    ((hsize == 1360 && vsize == 765) ||
3298	     (hsize == 1368 && vsize == 769))) {
3299		hsize = 1366;
3300		vsize = 768;
3301	}
3302
3303	/*
3304	 * If this connector already has a mode for this size and refresh
3305	 * rate (because it came from detailed or CVT info), use that
3306	 * instead.  This way we don't have to guess at interlace or
3307	 * reduced blanking.
3308	 */
3309	list_for_each_entry(m, &connector->probed_modes, head)
3310		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3311		    drm_mode_vrefresh(m) == vrefresh_rate)
3312			return NULL;
3313
3314	/* HDTV hack, part 2 */
3315	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3316		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3317				    false);
3318		if (!mode)
3319			return NULL;
3320		mode->hdisplay = 1366;
3321		mode->hsync_start = mode->hsync_start - 1;
3322		mode->hsync_end = mode->hsync_end - 1;
3323		return mode;
3324	}
3325
3326	/* check whether it can be found in default mode table */
3327	if (drm_monitor_supports_rb(drm_edid)) {
3328		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3329					 true);
3330		if (mode)
3331			return mode;
3332	}
3333	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3334	if (mode)
3335		return mode;
3336
3337	/* okay, generate it */
3338	switch (timing_level) {
3339	case LEVEL_DMT:
3340		break;
3341	case LEVEL_GTF:
3342		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3343		break;
3344	case LEVEL_GTF2:
3345		mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3346		break;
3347	case LEVEL_CVT:
3348		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3349				    false);
3350		break;
3351	}
3352	return mode;
3353}
3354
3355/*
3356 * EDID is delightfully ambiguous about how interlaced modes are to be
3357 * encoded.  Our internal representation is of frame height, but some
3358 * HDTV detailed timings are encoded as field height.
3359 *
3360 * The format list here is from CEA, in frame size.  Technically we
3361 * should be checking refresh rate too.  Whatever.
3362 */
3363static void
3364drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3365			    const struct detailed_pixel_timing *pt)
3366{
3367	int i;
3368	static const struct {
3369		int w, h;
3370	} cea_interlaced[] = {
3371		{ 1920, 1080 },
3372		{  720,  480 },
3373		{ 1440,  480 },
3374		{ 2880,  480 },
3375		{  720,  576 },
3376		{ 1440,  576 },
3377		{ 2880,  576 },
3378	};
3379
3380	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3381		return;
3382
3383	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3384		if ((mode->hdisplay == cea_interlaced[i].w) &&
3385		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3386			mode->vdisplay *= 2;
3387			mode->vsync_start *= 2;
3388			mode->vsync_end *= 2;
3389			mode->vtotal *= 2;
3390			mode->vtotal |= 1;
3391		}
3392	}
3393
3394	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3395}
3396
3397/*
3398 * Create a new mode from an EDID detailed timing section. An EDID detailed
3399 * timing block contains enough info for us to create and return a new struct
3400 * drm_display_mode.
3401 */
3402static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3403						  const struct drm_edid *drm_edid,
3404						  const struct detailed_timing *timing,
3405						  u32 quirks)
3406{
 
3407	struct drm_device *dev = connector->dev;
3408	struct drm_display_mode *mode;
3409	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3410	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3411	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3412	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3413	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3414	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3415	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3416	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3417	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3418
3419	/* ignore tiny modes */
3420	if (hactive < 64 || vactive < 64)
3421		return NULL;
3422
3423	if (pt->misc & DRM_EDID_PT_STEREO) {
3424		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3425			    connector->base.id, connector->name);
3426		return NULL;
3427	}
3428	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3429		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3430			    connector->base.id, connector->name);
3431	}
3432
3433	/* it is incorrect if hsync/vsync width is zero */
3434	if (!hsync_pulse_width || !vsync_pulse_width) {
3435		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3436			    connector->base.id, connector->name);
3437		return NULL;
3438	}
3439
3440	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3441		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3442		if (!mode)
3443			return NULL;
3444
3445		goto set_size;
3446	}
3447
3448	mode = drm_mode_create(dev);
3449	if (!mode)
3450		return NULL;
3451
3452	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3453		mode->clock = 1088 * 10;
3454	else
3455		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3456
3457	mode->hdisplay = hactive;
3458	mode->hsync_start = mode->hdisplay + hsync_offset;
3459	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3460	mode->htotal = mode->hdisplay + hblank;
3461
3462	mode->vdisplay = vactive;
3463	mode->vsync_start = mode->vdisplay + vsync_offset;
3464	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3465	mode->vtotal = mode->vdisplay + vblank;
3466
3467	/* Some EDIDs have bogus h/vtotal values */
3468	if (mode->hsync_end > mode->htotal)
3469		mode->htotal = mode->hsync_end + 1;
3470	if (mode->vsync_end > mode->vtotal)
3471		mode->vtotal = mode->vsync_end + 1;
 
 
 
 
 
 
 
 
3472
3473	drm_mode_do_interlace_quirk(mode, pt);
3474
3475	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3476		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3477	} else {
3478		mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3479			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3480		mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3481			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3482	}
3483
3484set_size:
3485	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3486	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3487
3488	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
3489		mode->width_mm *= 10;
3490		mode->height_mm *= 10;
3491	}
3492
3493	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3494		mode->width_mm = drm_edid->edid->width_cm * 10;
3495		mode->height_mm = drm_edid->edid->height_cm * 10;
3496	}
3497
3498	mode->type = DRM_MODE_TYPE_DRIVER;
3499	drm_mode_set_name(mode);
3500
3501	return mode;
3502}
3503
3504static bool
3505mode_in_hsync_range(const struct drm_display_mode *mode,
3506		    const struct edid *edid, const u8 *t)
3507{
3508	int hsync, hmin, hmax;
3509
3510	hmin = t[7];
3511	if (edid->revision >= 4)
3512	    hmin += ((t[4] & 0x04) ? 255 : 0);
3513	hmax = t[8];
3514	if (edid->revision >= 4)
3515	    hmax += ((t[4] & 0x08) ? 255 : 0);
3516	hsync = drm_mode_hsync(mode);
3517
3518	return (hsync <= hmax && hsync >= hmin);
3519}
3520
3521static bool
3522mode_in_vsync_range(const struct drm_display_mode *mode,
3523		    const struct edid *edid, const u8 *t)
3524{
3525	int vsync, vmin, vmax;
3526
3527	vmin = t[5];
3528	if (edid->revision >= 4)
3529	    vmin += ((t[4] & 0x01) ? 255 : 0);
3530	vmax = t[6];
3531	if (edid->revision >= 4)
3532	    vmax += ((t[4] & 0x02) ? 255 : 0);
3533	vsync = drm_mode_vrefresh(mode);
3534
3535	return (vsync <= vmax && vsync >= vmin);
3536}
3537
3538static u32
3539range_pixel_clock(const struct edid *edid, const u8 *t)
3540{
3541	/* unspecified */
3542	if (t[9] == 0 || t[9] == 255)
3543		return 0;
3544
3545	/* 1.4 with CVT support gives us real precision, yay */
3546	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3547		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3548
3549	/* 1.3 is pathetic, so fuzz up a bit */
3550	return t[9] * 10000 + 5001;
3551}
3552
3553static bool mode_in_range(const struct drm_display_mode *mode,
3554			  const struct drm_edid *drm_edid,
3555			  const struct detailed_timing *timing)
3556{
3557	const struct edid *edid = drm_edid->edid;
3558	u32 max_clock;
3559	const u8 *t = (const u8 *)timing;
3560
3561	if (!mode_in_hsync_range(mode, edid, t))
3562		return false;
3563
3564	if (!mode_in_vsync_range(mode, edid, t))
3565		return false;
3566
3567	if ((max_clock = range_pixel_clock(edid, t)))
3568		if (mode->clock > max_clock)
3569			return false;
3570
3571	/* 1.4 max horizontal check */
3572	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3573		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3574			return false;
3575
3576	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3577		return false;
3578
3579	return true;
3580}
3581
3582static bool valid_inferred_mode(const struct drm_connector *connector,
3583				const struct drm_display_mode *mode)
3584{
3585	const struct drm_display_mode *m;
3586	bool ok = false;
3587
3588	list_for_each_entry(m, &connector->probed_modes, head) {
3589		if (mode->hdisplay == m->hdisplay &&
3590		    mode->vdisplay == m->vdisplay &&
3591		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3592			return false; /* duplicated */
3593		if (mode->hdisplay <= m->hdisplay &&
3594		    mode->vdisplay <= m->vdisplay)
3595			ok = true;
3596	}
3597	return ok;
3598}
3599
3600static int drm_dmt_modes_for_range(struct drm_connector *connector,
3601				   const struct drm_edid *drm_edid,
3602				   const struct detailed_timing *timing)
3603{
3604	int i, modes = 0;
3605	struct drm_display_mode *newmode;
3606	struct drm_device *dev = connector->dev;
3607
3608	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3609		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3610		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3611			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3612			if (newmode) {
3613				drm_mode_probed_add(connector, newmode);
3614				modes++;
3615			}
3616		}
3617	}
3618
3619	return modes;
3620}
3621
3622/* fix up 1366x768 mode from 1368x768;
3623 * GFT/CVT can't express 1366 width which isn't dividable by 8
3624 */
3625void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3626{
3627	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3628		mode->hdisplay = 1366;
3629		mode->hsync_start--;
3630		mode->hsync_end--;
3631		drm_mode_set_name(mode);
3632	}
3633}
3634
3635static int drm_gtf_modes_for_range(struct drm_connector *connector,
3636				   const struct drm_edid *drm_edid,
3637				   const struct detailed_timing *timing)
3638{
3639	int i, modes = 0;
3640	struct drm_display_mode *newmode;
3641	struct drm_device *dev = connector->dev;
3642
3643	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3644		const struct minimode *m = &extra_modes[i];
3645
3646		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3647		if (!newmode)
3648			return modes;
3649
3650		drm_mode_fixup_1366x768(newmode);
3651		if (!mode_in_range(newmode, drm_edid, timing) ||
3652		    !valid_inferred_mode(connector, newmode)) {
3653			drm_mode_destroy(dev, newmode);
3654			continue;
3655		}
3656
3657		drm_mode_probed_add(connector, newmode);
3658		modes++;
3659	}
3660
3661	return modes;
3662}
3663
3664static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3665				    const struct drm_edid *drm_edid,
3666				    const struct detailed_timing *timing)
3667{
3668	int i, modes = 0;
3669	struct drm_display_mode *newmode;
3670	struct drm_device *dev = connector->dev;
3671
3672	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3673		const struct minimode *m = &extra_modes[i];
3674
3675		newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3676		if (!newmode)
3677			return modes;
3678
3679		drm_mode_fixup_1366x768(newmode);
3680		if (!mode_in_range(newmode, drm_edid, timing) ||
3681		    !valid_inferred_mode(connector, newmode)) {
3682			drm_mode_destroy(dev, newmode);
3683			continue;
3684		}
3685
3686		drm_mode_probed_add(connector, newmode);
3687		modes++;
3688	}
3689
3690	return modes;
3691}
3692
3693static int drm_cvt_modes_for_range(struct drm_connector *connector,
3694				   const struct drm_edid *drm_edid,
3695				   const struct detailed_timing *timing)
3696{
3697	int i, modes = 0;
3698	struct drm_display_mode *newmode;
3699	struct drm_device *dev = connector->dev;
3700	bool rb = drm_monitor_supports_rb(drm_edid);
3701
3702	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3703		const struct minimode *m = &extra_modes[i];
3704
3705		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3706		if (!newmode)
3707			return modes;
3708
3709		drm_mode_fixup_1366x768(newmode);
3710		if (!mode_in_range(newmode, drm_edid, timing) ||
3711		    !valid_inferred_mode(connector, newmode)) {
3712			drm_mode_destroy(dev, newmode);
3713			continue;
3714		}
3715
3716		drm_mode_probed_add(connector, newmode);
3717		modes++;
3718	}
3719
3720	return modes;
3721}
3722
3723static void
3724do_inferred_modes(const struct detailed_timing *timing, void *c)
3725{
3726	struct detailed_mode_closure *closure = c;
3727	const struct detailed_non_pixel *data = &timing->data.other_data;
3728	const struct detailed_data_monitor_range *range = &data->data.range;
3729
3730	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3731		return;
3732
3733	closure->modes += drm_dmt_modes_for_range(closure->connector,
3734						  closure->drm_edid,
3735						  timing);
3736
3737	if (closure->drm_edid->edid->revision < 2)
3738		return; /* GTF not defined yet */
3739
3740	switch (range->flags) {
3741	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3742		closure->modes += drm_gtf2_modes_for_range(closure->connector,
3743							   closure->drm_edid,
3744							   timing);
3745		break;
3746	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3747		closure->modes += drm_gtf_modes_for_range(closure->connector,
3748							  closure->drm_edid,
3749							  timing);
3750		break;
3751	case DRM_EDID_CVT_SUPPORT_FLAG:
3752		if (closure->drm_edid->edid->revision < 4)
3753			break;
3754
3755		closure->modes += drm_cvt_modes_for_range(closure->connector,
3756							  closure->drm_edid,
3757							  timing);
3758		break;
3759	case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3760	default:
3761		break;
3762	}
3763}
3764
3765static int add_inferred_modes(struct drm_connector *connector,
3766			      const struct drm_edid *drm_edid)
3767{
3768	struct detailed_mode_closure closure = {
3769		.connector = connector,
3770		.drm_edid = drm_edid,
3771	};
3772
3773	if (drm_edid->edid->revision >= 1)
3774		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3775
3776	return closure.modes;
3777}
3778
3779static int
3780drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3781{
3782	int i, j, m, modes = 0;
3783	struct drm_display_mode *mode;
3784	const u8 *est = ((const u8 *)timing) + 6;
3785
3786	for (i = 0; i < 6; i++) {
3787		for (j = 7; j >= 0; j--) {
3788			m = (i * 8) + (7 - j);
3789			if (m >= ARRAY_SIZE(est3_modes))
3790				break;
3791			if (est[i] & (1 << j)) {
3792				mode = drm_mode_find_dmt(connector->dev,
3793							 est3_modes[m].w,
3794							 est3_modes[m].h,
3795							 est3_modes[m].r,
3796							 est3_modes[m].rb);
3797				if (mode) {
3798					drm_mode_probed_add(connector, mode);
3799					modes++;
3800				}
3801			}
3802		}
3803	}
3804
3805	return modes;
3806}
3807
3808static void
3809do_established_modes(const struct detailed_timing *timing, void *c)
3810{
3811	struct detailed_mode_closure *closure = c;
3812
3813	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3814		return;
3815
3816	closure->modes += drm_est3_modes(closure->connector, timing);
3817}
3818
3819/*
3820 * Get established modes from EDID and add them. Each EDID block contains a
3821 * bitmap of the supported "established modes" list (defined above). Tease them
3822 * out and add them to the global modes list.
3823 */
3824static int add_established_modes(struct drm_connector *connector,
3825				 const struct drm_edid *drm_edid)
3826{
3827	struct drm_device *dev = connector->dev;
3828	const struct edid *edid = drm_edid->edid;
3829	unsigned long est_bits = edid->established_timings.t1 |
3830		(edid->established_timings.t2 << 8) |
3831		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3832	int i, modes = 0;
3833	struct detailed_mode_closure closure = {
3834		.connector = connector,
3835		.drm_edid = drm_edid,
3836	};
3837
3838	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3839		if (est_bits & (1<<i)) {
3840			struct drm_display_mode *newmode;
3841
3842			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3843			if (newmode) {
3844				drm_mode_probed_add(connector, newmode);
3845				modes++;
3846			}
3847		}
3848	}
3849
3850	if (edid->revision >= 1)
3851		drm_for_each_detailed_block(drm_edid, do_established_modes,
3852					    &closure);
3853
3854	return modes + closure.modes;
3855}
3856
3857static void
3858do_standard_modes(const struct detailed_timing *timing, void *c)
3859{
3860	struct detailed_mode_closure *closure = c;
3861	const struct detailed_non_pixel *data = &timing->data.other_data;
3862	struct drm_connector *connector = closure->connector;
3863	int i;
3864
3865	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3866		return;
3867
3868	for (i = 0; i < 6; i++) {
3869		const struct std_timing *std = &data->data.timings[i];
3870		struct drm_display_mode *newmode;
3871
3872		newmode = drm_mode_std(connector, closure->drm_edid, std);
3873		if (newmode) {
3874			drm_mode_probed_add(connector, newmode);
3875			closure->modes++;
3876		}
3877	}
3878}
3879
3880/*
3881 * Get standard modes from EDID and add them. Standard modes can be calculated
3882 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3883 * add them to the list.
3884 */
3885static int add_standard_modes(struct drm_connector *connector,
3886			      const struct drm_edid *drm_edid)
3887{
3888	int i, modes = 0;
3889	struct detailed_mode_closure closure = {
3890		.connector = connector,
3891		.drm_edid = drm_edid,
3892	};
3893
3894	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3895		struct drm_display_mode *newmode;
3896
3897		newmode = drm_mode_std(connector, drm_edid,
3898				       &drm_edid->edid->standard_timings[i]);
3899		if (newmode) {
3900			drm_mode_probed_add(connector, newmode);
3901			modes++;
3902		}
3903	}
3904
3905	if (drm_edid->edid->revision >= 1)
3906		drm_for_each_detailed_block(drm_edid, do_standard_modes,
3907					    &closure);
3908
3909	/* XXX should also look for standard codes in VTB blocks */
3910
3911	return modes + closure.modes;
3912}
3913
3914static int drm_cvt_modes(struct drm_connector *connector,
3915			 const struct detailed_timing *timing)
3916{
3917	int i, j, modes = 0;
3918	struct drm_display_mode *newmode;
3919	struct drm_device *dev = connector->dev;
3920	const struct cvt_timing *cvt;
3921	const int rates[] = { 60, 85, 75, 60, 50 };
3922	const u8 empty[3] = { 0, 0, 0 };
3923
3924	for (i = 0; i < 4; i++) {
3925		int width, height;
3926
3927		cvt = &(timing->data.other_data.data.cvt[i]);
3928
3929		if (!memcmp(cvt->code, empty, 3))
3930			continue;
3931
3932		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3933		switch (cvt->code[1] & 0x0c) {
3934		/* default - because compiler doesn't see that we've enumerated all cases */
3935		default:
3936		case 0x00:
3937			width = height * 4 / 3;
3938			break;
3939		case 0x04:
3940			width = height * 16 / 9;
3941			break;
3942		case 0x08:
3943			width = height * 16 / 10;
3944			break;
3945		case 0x0c:
3946			width = height * 15 / 9;
3947			break;
3948		}
3949
3950		for (j = 1; j < 5; j++) {
3951			if (cvt->code[2] & (1 << j)) {
3952				newmode = drm_cvt_mode(dev, width, height,
3953						       rates[j], j == 0,
3954						       false, false);
3955				if (newmode) {
3956					drm_mode_probed_add(connector, newmode);
3957					modes++;
3958				}
3959			}
3960		}
3961	}
3962
3963	return modes;
3964}
3965
3966static void
3967do_cvt_mode(const struct detailed_timing *timing, void *c)
3968{
3969	struct detailed_mode_closure *closure = c;
3970
3971	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
3972		return;
3973
3974	closure->modes += drm_cvt_modes(closure->connector, timing);
3975}
3976
3977static int
3978add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
3979{
3980	struct detailed_mode_closure closure = {
3981		.connector = connector,
3982		.drm_edid = drm_edid,
3983	};
3984
3985	if (drm_edid->edid->revision >= 3)
3986		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
3987
3988	/* XXX should also look for CVT codes in VTB blocks */
3989
3990	return closure.modes;
3991}
3992
3993static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
3994					  struct drm_display_mode *mode);
3995
3996static void
3997do_detailed_mode(const struct detailed_timing *timing, void *c)
3998{
3999	struct detailed_mode_closure *closure = c;
4000	struct drm_display_mode *newmode;
4001
4002	if (!is_detailed_timing_descriptor(timing))
4003		return;
4004
4005	newmode = drm_mode_detailed(closure->connector,
4006				    closure->drm_edid, timing,
4007				    closure->quirks);
4008	if (!newmode)
4009		return;
4010
4011	if (closure->preferred)
4012		newmode->type |= DRM_MODE_TYPE_PREFERRED;
4013
4014	/*
4015	 * Detailed modes are limited to 10kHz pixel clock resolution,
4016	 * so fix up anything that looks like CEA/HDMI mode, but the clock
4017	 * is just slightly off.
4018	 */
4019	fixup_detailed_cea_mode_clock(closure->connector, newmode);
4020
4021	drm_mode_probed_add(closure->connector, newmode);
4022	closure->modes++;
4023	closure->preferred = false;
4024}
4025
4026/*
4027 * add_detailed_modes - Add modes from detailed timings
4028 * @connector: attached connector
4029 * @drm_edid: EDID block to scan
4030 * @quirks: quirks to apply
4031 */
4032static int add_detailed_modes(struct drm_connector *connector,
4033			      const struct drm_edid *drm_edid, u32 quirks)
4034{
4035	struct detailed_mode_closure closure = {
4036		.connector = connector,
4037		.drm_edid = drm_edid,
4038		.quirks = quirks,
4039	};
4040
4041	if (drm_edid->edid->revision >= 4)
4042		closure.preferred = true; /* first detailed timing is always preferred */
4043	else
4044		closure.preferred =
4045			drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4046
4047	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4048
4049	return closure.modes;
4050}
4051
4052/* CTA-861-H Table 60 - CTA Tag Codes */
4053#define CTA_DB_AUDIO			1
4054#define CTA_DB_VIDEO			2
4055#define CTA_DB_VENDOR			3
4056#define CTA_DB_SPEAKER			4
4057#define CTA_DB_EXTENDED_TAG		7
4058
4059/* CTA-861-H Table 62 - CTA Extended Tag Codes */
4060#define CTA_EXT_DB_VIDEO_CAP		0
4061#define CTA_EXT_DB_VENDOR		1
4062#define CTA_EXT_DB_HDR_STATIC_METADATA	6
4063#define CTA_EXT_DB_420_VIDEO_DATA	14
4064#define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
4065#define CTA_EXT_DB_HF_EEODB		0x78
4066#define CTA_EXT_DB_HF_SCDB		0x79
4067
4068#define EDID_BASIC_AUDIO	(1 << 6)
4069#define EDID_CEA_YCRCB444	(1 << 5)
4070#define EDID_CEA_YCRCB422	(1 << 4)
4071#define EDID_CEA_VCDB_QS	(1 << 6)
4072
4073/*
4074 * Search EDID for CEA extension block.
4075 *
4076 * FIXME: Prefer not returning pointers to raw EDID data.
4077 */
4078const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4079				  int ext_id, int *ext_index)
4080{
4081	const u8 *edid_ext = NULL;
4082	int i;
4083
4084	/* No EDID or EDID extensions */
4085	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4086		return NULL;
4087
4088	/* Find CEA extension */
4089	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4090		edid_ext = drm_edid_extension_block_data(drm_edid, i);
4091		if (edid_block_tag(edid_ext) == ext_id)
4092			break;
4093	}
4094
4095	if (i >= drm_edid_extension_block_count(drm_edid))
4096		return NULL;
4097
4098	*ext_index = i + 1;
4099
4100	return edid_ext;
4101}
4102
4103/* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4104static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4105{
4106	const struct displayid_block *block;
4107	struct displayid_iter iter;
4108	int ext_index = 0;
4109	bool found = false;
4110
4111	/* Look for a top level CEA extension block */
4112	if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4113		return true;
4114
4115	/* CEA blocks can also be found embedded in a DisplayID block */
4116	displayid_iter_edid_begin(drm_edid, &iter);
4117	displayid_iter_for_each(block, &iter) {
4118		if (block->tag == DATA_BLOCK_CTA) {
4119			found = true;
4120			break;
4121		}
4122	}
4123	displayid_iter_end(&iter);
4124
4125	return found;
4126}
4127
4128static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4129{
4130	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4131	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4132
4133	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4134		return &edid_cea_modes_1[vic - 1];
4135	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4136		return &edid_cea_modes_193[vic - 193];
4137	return NULL;
4138}
4139
4140static u8 cea_num_vics(void)
4141{
4142	return 193 + ARRAY_SIZE(edid_cea_modes_193);
4143}
4144
4145static u8 cea_next_vic(u8 vic)
4146{
4147	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4148		vic = 193;
4149	return vic;
4150}
4151
4152/*
4153 * Calculate the alternate clock for the CEA mode
4154 * (60Hz vs. 59.94Hz etc.)
4155 */
4156static unsigned int
4157cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4158{
4159	unsigned int clock = cea_mode->clock;
4160
4161	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4162		return clock;
4163
4164	/*
4165	 * edid_cea_modes contains the 59.94Hz
4166	 * variant for 240 and 480 line modes,
4167	 * and the 60Hz variant otherwise.
4168	 */
4169	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4170		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4171	else
4172		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4173
4174	return clock;
4175}
4176
4177static bool
4178cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4179{
4180	/*
4181	 * For certain VICs the spec allows the vertical
4182	 * front porch to vary by one or two lines.
4183	 *
4184	 * cea_modes[] stores the variant with the shortest
4185	 * vertical front porch. We can adjust the mode to
4186	 * get the other variants by simply increasing the
4187	 * vertical front porch length.
4188	 */
4189	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4190		     cea_mode_for_vic(9)->vtotal != 262 ||
4191		     cea_mode_for_vic(12)->vtotal != 262 ||
4192		     cea_mode_for_vic(13)->vtotal != 262 ||
4193		     cea_mode_for_vic(23)->vtotal != 312 ||
4194		     cea_mode_for_vic(24)->vtotal != 312 ||
4195		     cea_mode_for_vic(27)->vtotal != 312 ||
4196		     cea_mode_for_vic(28)->vtotal != 312);
4197
4198	if (((vic == 8 || vic == 9 ||
4199	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
4200	    ((vic == 23 || vic == 24 ||
4201	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
4202		mode->vsync_start++;
4203		mode->vsync_end++;
4204		mode->vtotal++;
4205
4206		return true;
4207	}
4208
4209	return false;
4210}
4211
4212static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4213					     unsigned int clock_tolerance)
4214{
4215	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4216	u8 vic;
4217
4218	if (!to_match->clock)
4219		return 0;
4220
4221	if (to_match->picture_aspect_ratio)
4222		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4223
4224	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4225		struct drm_display_mode cea_mode;
4226		unsigned int clock1, clock2;
4227
4228		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4229
4230		/* Check both 60Hz and 59.94Hz */
4231		clock1 = cea_mode.clock;
4232		clock2 = cea_mode_alternate_clock(&cea_mode);
4233
4234		if (abs(to_match->clock - clock1) > clock_tolerance &&
4235		    abs(to_match->clock - clock2) > clock_tolerance)
4236			continue;
4237
4238		do {
4239			if (drm_mode_match(to_match, &cea_mode, match_flags))
4240				return vic;
4241		} while (cea_mode_alternate_timings(vic, &cea_mode));
4242	}
4243
4244	return 0;
4245}
4246
4247/**
4248 * drm_match_cea_mode - look for a CEA mode matching given mode
4249 * @to_match: display mode
4250 *
4251 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4252 * mode.
4253 */
4254u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4255{
4256	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4257	u8 vic;
4258
4259	if (!to_match->clock)
4260		return 0;
4261
4262	if (to_match->picture_aspect_ratio)
4263		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4264
4265	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4266		struct drm_display_mode cea_mode;
4267		unsigned int clock1, clock2;
4268
4269		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4270
4271		/* Check both 60Hz and 59.94Hz */
4272		clock1 = cea_mode.clock;
4273		clock2 = cea_mode_alternate_clock(&cea_mode);
4274
4275		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4276		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4277			continue;
4278
4279		do {
4280			if (drm_mode_match(to_match, &cea_mode, match_flags))
4281				return vic;
4282		} while (cea_mode_alternate_timings(vic, &cea_mode));
4283	}
4284
4285	return 0;
4286}
4287EXPORT_SYMBOL(drm_match_cea_mode);
4288
4289static bool drm_valid_cea_vic(u8 vic)
4290{
4291	return cea_mode_for_vic(vic) != NULL;
4292}
4293
4294static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4295{
4296	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4297
4298	if (mode)
4299		return mode->picture_aspect_ratio;
4300
4301	return HDMI_PICTURE_ASPECT_NONE;
4302}
4303
4304static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4305{
4306	return edid_4k_modes[video_code].picture_aspect_ratio;
4307}
4308
4309/*
4310 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4311 * specific block).
4312 */
4313static unsigned int
4314hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4315{
4316	return cea_mode_alternate_clock(hdmi_mode);
4317}
4318
4319static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4320					      unsigned int clock_tolerance)
4321{
4322	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4323	u8 vic;
4324
4325	if (!to_match->clock)
4326		return 0;
4327
4328	if (to_match->picture_aspect_ratio)
4329		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4330
4331	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4332		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4333		unsigned int clock1, clock2;
4334
4335		/* Make sure to also match alternate clocks */
4336		clock1 = hdmi_mode->clock;
4337		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4338
4339		if (abs(to_match->clock - clock1) > clock_tolerance &&
4340		    abs(to_match->clock - clock2) > clock_tolerance)
4341			continue;
4342
4343		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4344			return vic;
4345	}
4346
4347	return 0;
4348}
4349
4350/*
4351 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4352 * @to_match: display mode
4353 *
4354 * An HDMI mode is one defined in the HDMI vendor specific block.
4355 *
4356 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4357 */
4358static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4359{
4360	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4361	u8 vic;
4362
4363	if (!to_match->clock)
4364		return 0;
4365
4366	if (to_match->picture_aspect_ratio)
4367		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4368
4369	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4370		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4371		unsigned int clock1, clock2;
4372
4373		/* Make sure to also match alternate clocks */
4374		clock1 = hdmi_mode->clock;
4375		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4376
4377		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4378		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4379		    drm_mode_match(to_match, hdmi_mode, match_flags))
4380			return vic;
4381	}
4382	return 0;
4383}
4384
4385static bool drm_valid_hdmi_vic(u8 vic)
4386{
4387	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4388}
4389
4390static int add_alternate_cea_modes(struct drm_connector *connector,
4391				   const struct drm_edid *drm_edid)
4392{
4393	struct drm_device *dev = connector->dev;
4394	struct drm_display_mode *mode, *tmp;
4395	LIST_HEAD(list);
4396	int modes = 0;
4397
4398	/* Don't add CTA modes if the CTA extension block is missing */
4399	if (!drm_edid_has_cta_extension(drm_edid))
4400		return 0;
4401
4402	/*
4403	 * Go through all probed modes and create a new mode
4404	 * with the alternate clock for certain CEA modes.
4405	 */
4406	list_for_each_entry(mode, &connector->probed_modes, head) {
4407		const struct drm_display_mode *cea_mode = NULL;
4408		struct drm_display_mode *newmode;
4409		u8 vic = drm_match_cea_mode(mode);
4410		unsigned int clock1, clock2;
4411
4412		if (drm_valid_cea_vic(vic)) {
4413			cea_mode = cea_mode_for_vic(vic);
4414			clock2 = cea_mode_alternate_clock(cea_mode);
4415		} else {
4416			vic = drm_match_hdmi_mode(mode);
4417			if (drm_valid_hdmi_vic(vic)) {
4418				cea_mode = &edid_4k_modes[vic];
4419				clock2 = hdmi_mode_alternate_clock(cea_mode);
4420			}
4421		}
4422
4423		if (!cea_mode)
4424			continue;
4425
4426		clock1 = cea_mode->clock;
4427
4428		if (clock1 == clock2)
4429			continue;
4430
4431		if (mode->clock != clock1 && mode->clock != clock2)
4432			continue;
4433
4434		newmode = drm_mode_duplicate(dev, cea_mode);
4435		if (!newmode)
4436			continue;
4437
4438		/* Carry over the stereo flags */
4439		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4440
4441		/*
4442		 * The current mode could be either variant. Make
4443		 * sure to pick the "other" clock for the new mode.
4444		 */
4445		if (mode->clock != clock1)
4446			newmode->clock = clock1;
4447		else
4448			newmode->clock = clock2;
4449
4450		list_add_tail(&newmode->head, &list);
4451	}
4452
4453	list_for_each_entry_safe(mode, tmp, &list, head) {
4454		list_del(&mode->head);
4455		drm_mode_probed_add(connector, mode);
4456		modes++;
4457	}
4458
4459	return modes;
4460}
4461
4462static u8 svd_to_vic(u8 svd)
4463{
4464	/* 0-6 bit vic, 7th bit native mode indicator */
4465	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4466		return svd & 127;
4467
4468	return svd;
4469}
4470
 
 
 
 
4471static struct drm_display_mode *
4472drm_display_mode_from_vic_index(struct drm_connector *connector,
4473				const u8 *video_db, u8 video_len,
4474				u8 video_index)
4475{
 
4476	struct drm_device *dev = connector->dev;
4477	struct drm_display_mode *newmode;
4478	u8 vic;
4479
4480	if (video_db == NULL || video_index >= video_len)
4481		return NULL;
4482
4483	/* CEA modes are numbered 1..127 */
4484	vic = svd_to_vic(video_db[video_index]);
4485	if (!drm_valid_cea_vic(vic))
4486		return NULL;
4487
4488	newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4489	if (!newmode)
4490		return NULL;
4491
4492	return newmode;
4493}
4494
4495/*
4496 * do_y420vdb_modes - Parse YCBCR 420 only modes
4497 * @connector: connector corresponding to the HDMI sink
4498 * @svds: start of the data block of CEA YCBCR 420 VDB
4499 * @len: length of the CEA YCBCR 420 VDB
4500 *
4501 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4502 * which contains modes which can be supported in YCBCR 420
4503 * output format only.
4504 */
4505static int do_y420vdb_modes(struct drm_connector *connector,
4506			    const u8 *svds, u8 svds_len)
4507{
 
4508	int modes = 0, i;
4509	struct drm_device *dev = connector->dev;
4510	struct drm_display_info *info = &connector->display_info;
4511	struct drm_hdmi_info *hdmi = &info->hdmi;
4512
4513	for (i = 0; i < svds_len; i++) {
4514		u8 vic = svd_to_vic(svds[i]);
4515		struct drm_display_mode *newmode;
4516
4517		if (!drm_valid_cea_vic(vic))
4518			continue;
4519
4520		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4521		if (!newmode)
4522			break;
4523		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
4524		drm_mode_probed_add(connector, newmode);
4525		modes++;
4526	}
4527
4528	if (modes > 0)
4529		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
4530	return modes;
4531}
4532
4533/*
4534 * drm_add_cmdb_modes - Add a YCBCR 420 mode into bitmap
4535 * @connector: connector corresponding to the HDMI sink
4536 * @vic: CEA vic for the video mode to be added in the map
4537 *
4538 * Makes an entry for a videomode in the YCBCR 420 bitmap
4539 */
4540static void
4541drm_add_cmdb_modes(struct drm_connector *connector, u8 svd)
4542{
4543	u8 vic = svd_to_vic(svd);
4544	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4545
4546	if (!drm_valid_cea_vic(vic))
4547		return;
4548
4549	bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
4550}
4551
4552/**
4553 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4554 * @dev: DRM device
4555 * @video_code: CEA VIC of the mode
4556 *
4557 * Creates a new mode matching the specified CEA VIC.
4558 *
4559 * Returns: A new drm_display_mode on success or NULL on failure
4560 */
4561struct drm_display_mode *
4562drm_display_mode_from_cea_vic(struct drm_device *dev,
4563			      u8 video_code)
4564{
4565	const struct drm_display_mode *cea_mode;
4566	struct drm_display_mode *newmode;
4567
4568	cea_mode = cea_mode_for_vic(video_code);
4569	if (!cea_mode)
4570		return NULL;
4571
4572	newmode = drm_mode_duplicate(dev, cea_mode);
4573	if (!newmode)
4574		return NULL;
4575
4576	return newmode;
4577}
4578EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4579
4580static int
4581do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
4582{
 
4583	int i, modes = 0;
4584	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4585
4586	for (i = 0; i < len; i++) {
 
 
 
4587		struct drm_display_mode *mode;
4588
4589		mode = drm_display_mode_from_vic_index(connector, db, len, i);
4590		if (mode) {
4591			/*
4592			 * YCBCR420 capability block contains a bitmap which
4593			 * gives the index of CEA modes from CEA VDB, which
4594			 * can support YCBCR 420 sampling output also (apart
4595			 * from RGB/YCBCR444 etc).
4596			 * For example, if the bit 0 in bitmap is set,
4597			 * first mode in VDB can support YCBCR420 output too.
4598			 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
4599			 */
4600			if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
4601				drm_add_cmdb_modes(connector, db[i]);
4602
4603			drm_mode_probed_add(connector, mode);
4604			modes++;
4605		}
4606	}
4607
4608	return modes;
4609}
4610
4611struct stereo_mandatory_mode {
4612	int width, height, vrefresh;
4613	unsigned int flags;
4614};
4615
4616static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4617	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4618	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4619	{ 1920, 1080, 50,
4620	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4621	{ 1920, 1080, 60,
4622	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4623	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4624	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4625	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4626	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4627};
4628
4629static bool
4630stereo_match_mandatory(const struct drm_display_mode *mode,
4631		       const struct stereo_mandatory_mode *stereo_mode)
4632{
4633	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4634
4635	return mode->hdisplay == stereo_mode->width &&
4636	       mode->vdisplay == stereo_mode->height &&
4637	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4638	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4639}
4640
4641static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4642{
4643	struct drm_device *dev = connector->dev;
4644	const struct drm_display_mode *mode;
4645	struct list_head stereo_modes;
4646	int modes = 0, i;
4647
4648	INIT_LIST_HEAD(&stereo_modes);
4649
4650	list_for_each_entry(mode, &connector->probed_modes, head) {
4651		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4652			const struct stereo_mandatory_mode *mandatory;
4653			struct drm_display_mode *new_mode;
4654
4655			if (!stereo_match_mandatory(mode,
4656						    &stereo_mandatory_modes[i]))
4657				continue;
4658
4659			mandatory = &stereo_mandatory_modes[i];
4660			new_mode = drm_mode_duplicate(dev, mode);
4661			if (!new_mode)
4662				continue;
4663
4664			new_mode->flags |= mandatory->flags;
4665			list_add_tail(&new_mode->head, &stereo_modes);
4666			modes++;
4667		}
4668	}
4669
4670	list_splice_tail(&stereo_modes, &connector->probed_modes);
4671
4672	return modes;
4673}
4674
4675static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4676{
4677	struct drm_device *dev = connector->dev;
4678	struct drm_display_mode *newmode;
4679
4680	if (!drm_valid_hdmi_vic(vic)) {
4681		drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4682			connector->base.id, connector->name, vic);
4683		return 0;
4684	}
4685
4686	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4687	if (!newmode)
4688		return 0;
4689
4690	drm_mode_probed_add(connector, newmode);
4691
4692	return 1;
4693}
4694
4695static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4696			       const u8 *video_db, u8 video_len, u8 video_index)
4697{
4698	struct drm_display_mode *newmode;
4699	int modes = 0;
4700
4701	if (structure & (1 << 0)) {
4702		newmode = drm_display_mode_from_vic_index(connector, video_db,
4703							  video_len,
4704							  video_index);
4705		if (newmode) {
4706			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4707			drm_mode_probed_add(connector, newmode);
4708			modes++;
4709		}
4710	}
4711	if (structure & (1 << 6)) {
4712		newmode = drm_display_mode_from_vic_index(connector, video_db,
4713							  video_len,
4714							  video_index);
4715		if (newmode) {
4716			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4717			drm_mode_probed_add(connector, newmode);
4718			modes++;
4719		}
4720	}
4721	if (structure & (1 << 8)) {
4722		newmode = drm_display_mode_from_vic_index(connector, video_db,
4723							  video_len,
4724							  video_index);
4725		if (newmode) {
4726			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4727			drm_mode_probed_add(connector, newmode);
4728			modes++;
4729		}
4730	}
4731
4732	return modes;
4733}
4734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4735/*
4736 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4737 * @connector: connector corresponding to the HDMI sink
4738 * @db: start of the CEA vendor specific block
4739 * @len: length of the CEA block payload, ie. one can access up to db[len]
4740 *
4741 * Parses the HDMI VSDB looking for modes to add to @connector. This function
4742 * also adds the stereo 3d modes when applicable.
4743 */
4744static int
4745do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
4746		   const u8 *video_db, u8 video_len)
4747{
4748	struct drm_display_info *info = &connector->display_info;
4749	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4750	u8 vic_len, hdmi_3d_len = 0;
4751	u16 mask;
4752	u16 structure_all;
4753
4754	if (len < 8)
4755		goto out;
4756
4757	/* no HDMI_Video_Present */
4758	if (!(db[8] & (1 << 5)))
4759		goto out;
4760
4761	/* Latency_Fields_Present */
4762	if (db[8] & (1 << 7))
4763		offset += 2;
4764
4765	/* I_Latency_Fields_Present */
4766	if (db[8] & (1 << 6))
4767		offset += 2;
4768
4769	/* the declared length is not long enough for the 2 first bytes
4770	 * of additional video format capabilities */
4771	if (len < (8 + offset + 2))
4772		goto out;
4773
4774	/* 3D_Present */
4775	offset++;
4776	if (db[8 + offset] & (1 << 7)) {
4777		modes += add_hdmi_mandatory_stereo_modes(connector);
4778
4779		/* 3D_Multi_present */
4780		multi_present = (db[8 + offset] & 0x60) >> 5;
4781	}
4782
4783	offset++;
4784	vic_len = db[8 + offset] >> 5;
4785	hdmi_3d_len = db[8 + offset] & 0x1f;
4786
4787	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4788		u8 vic;
4789
4790		vic = db[9 + offset + i];
4791		modes += add_hdmi_mode(connector, vic);
4792	}
4793	offset += 1 + vic_len;
4794
4795	if (multi_present == 1)
4796		multi_len = 2;
4797	else if (multi_present == 2)
4798		multi_len = 4;
4799	else
4800		multi_len = 0;
4801
4802	if (len < (8 + offset + hdmi_3d_len - 1))
4803		goto out;
4804
4805	if (hdmi_3d_len < multi_len)
4806		goto out;
4807
4808	if (multi_present == 1 || multi_present == 2) {
4809		/* 3D_Structure_ALL */
4810		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4811
4812		/* check if 3D_MASK is present */
4813		if (multi_present == 2)
4814			mask = (db[10 + offset] << 8) | db[11 + offset];
4815		else
4816			mask = 0xffff;
4817
4818		for (i = 0; i < 16; i++) {
4819			if (mask & (1 << i))
4820				modes += add_3d_struct_modes(connector,
4821						structure_all,
4822						video_db,
4823						video_len, i);
4824		}
4825	}
4826
4827	offset += multi_len;
4828
4829	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4830		int vic_index;
4831		struct drm_display_mode *newmode = NULL;
4832		unsigned int newflag = 0;
4833		bool detail_present;
4834
4835		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4836
4837		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4838			break;
4839
4840		/* 2D_VIC_order_X */
4841		vic_index = db[8 + offset + i] >> 4;
4842
4843		/* 3D_Structure_X */
4844		switch (db[8 + offset + i] & 0x0f) {
4845		case 0:
4846			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4847			break;
4848		case 6:
4849			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4850			break;
4851		case 8:
4852			/* 3D_Detail_X */
4853			if ((db[9 + offset + i] >> 4) == 1)
4854				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4855			break;
4856		}
4857
4858		if (newflag != 0) {
4859			newmode = drm_display_mode_from_vic_index(connector,
4860								  video_db,
4861								  video_len,
4862								  vic_index);
4863
4864			if (newmode) {
4865				newmode->flags |= newflag;
4866				drm_mode_probed_add(connector, newmode);
4867				modes++;
4868			}
4869		}
4870
4871		if (detail_present)
4872			i++;
4873	}
4874
4875out:
4876	if (modes > 0)
4877		info->has_hdmi_infoframe = true;
4878	return modes;
4879}
4880
4881static int
4882cea_revision(const u8 *cea)
4883{
4884	/*
4885	 * FIXME is this correct for the DispID variant?
4886	 * The DispID spec doesn't really specify whether
4887	 * this is the revision of the CEA extension or
4888	 * the DispID CEA data block. And the only value
4889	 * given as an example is 0.
4890	 */
4891	return cea[1];
4892}
4893
4894/*
4895 * CTA Data Block iterator.
4896 *
4897 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4898 * CTA Data Blocks.
4899 *
4900 * struct cea_db *db:
4901 * struct cea_db_iter iter;
4902 *
4903 * cea_db_iter_edid_begin(edid, &iter);
4904 * cea_db_iter_for_each(db, &iter) {
4905 *         // do stuff with db
4906 * }
4907 * cea_db_iter_end(&iter);
4908 */
4909struct cea_db_iter {
4910	struct drm_edid_iter edid_iter;
4911	struct displayid_iter displayid_iter;
4912
4913	/* Current Data Block Collection. */
4914	const u8 *collection;
4915
4916	/* Current Data Block index in current collection. */
4917	int index;
4918
4919	/* End index in current collection. */
4920	int end;
4921};
4922
4923/* CTA-861-H section 7.4 CTA Data BLock Collection */
4924struct cea_db {
4925	u8 tag_length;
4926	u8 data[];
4927} __packed;
4928
4929static int cea_db_tag(const struct cea_db *db)
4930{
4931	return db->tag_length >> 5;
4932}
4933
4934static int cea_db_payload_len(const void *_db)
4935{
4936	/* FIXME: Transition to passing struct cea_db * everywhere. */
4937	const struct cea_db *db = _db;
4938
4939	return db->tag_length & 0x1f;
4940}
4941
4942static const void *cea_db_data(const struct cea_db *db)
4943{
4944	return db->data;
4945}
4946
4947static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4948{
4949	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4950		cea_db_payload_len(db) >= 1 &&
4951		db->data[0] == tag;
4952}
4953
4954static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4955{
4956	const u8 *data = cea_db_data(db);
4957
4958	return cea_db_tag(db) == CTA_DB_VENDOR &&
4959		cea_db_payload_len(db) >= 3 &&
4960		oui(data[2], data[1], data[0]) == vendor_oui;
4961}
4962
4963static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4964				   struct cea_db_iter *iter)
4965{
4966	memset(iter, 0, sizeof(*iter));
4967
4968	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4969	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4970}
4971
4972static const struct cea_db *
4973__cea_db_iter_current_block(const struct cea_db_iter *iter)
4974{
4975	const struct cea_db *db;
4976
4977	if (!iter->collection)
4978		return NULL;
4979
4980	db = (const struct cea_db *)&iter->collection[iter->index];
4981
4982	if (iter->index + sizeof(*db) <= iter->end &&
4983	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4984		return db;
4985
4986	return NULL;
4987}
4988
4989/*
4990 * References:
4991 * - CTA-861-H section 7.3.3 CTA Extension Version 3
4992 */
4993static int cea_db_collection_size(const u8 *cta)
4994{
4995	u8 d = cta[2];
4996
4997	if (d < 4 || d > 127)
4998		return 0;
4999
5000	return d - 4;
5001}
5002
5003/*
5004 * References:
5005 * - VESA E-EDID v1.4
5006 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5007 */
5008static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5009{
5010	const u8 *ext;
5011
5012	drm_edid_iter_for_each(ext, &iter->edid_iter) {
5013		int size;
5014
5015		/* Only support CTA Extension revision 3+ */
5016		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5017			continue;
5018
5019		size = cea_db_collection_size(ext);
5020		if (!size)
5021			continue;
5022
5023		iter->index = 4;
5024		iter->end = iter->index + size;
5025
5026		return ext;
5027	}
5028
5029	return NULL;
5030}
5031
5032/*
5033 * References:
5034 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5035 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5036 *
5037 * Note that the above do not specify any connection between DisplayID Data
5038 * Block revision and CTA Extension versions.
5039 */
5040static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5041{
5042	const struct displayid_block *block;
5043
5044	displayid_iter_for_each(block, &iter->displayid_iter) {
5045		if (block->tag != DATA_BLOCK_CTA)
5046			continue;
5047
5048		/*
5049		 * The displayid iterator has already verified the block bounds
5050		 * in displayid_iter_block().
5051		 */
5052		iter->index = sizeof(*block);
5053		iter->end = iter->index + block->num_bytes;
5054
5055		return block;
5056	}
5057
5058	return NULL;
5059}
5060
5061static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5062{
5063	const struct cea_db *db;
5064
5065	if (iter->collection) {
5066		/* Current collection should always be valid. */
5067		db = __cea_db_iter_current_block(iter);
5068		if (WARN_ON(!db)) {
5069			iter->collection = NULL;
5070			return NULL;
5071		}
5072
5073		/* Next block in CTA Data Block Collection */
5074		iter->index += sizeof(*db) + cea_db_payload_len(db);
5075
5076		db = __cea_db_iter_current_block(iter);
5077		if (db)
5078			return db;
5079	}
5080
5081	for (;;) {
5082		/*
5083		 * Find the next CTA Data Block Collection. First iterate all
5084		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5085		 *
5086		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5087		 * Extension, it's recommended that DisplayID extensions are
5088		 * exposed after all of the CTA Extensions.
5089		 */
5090		iter->collection = __cea_db_iter_edid_next(iter);
5091		if (!iter->collection)
5092			iter->collection = __cea_db_iter_displayid_next(iter);
5093
5094		if (!iter->collection)
5095			return NULL;
5096
5097		db = __cea_db_iter_current_block(iter);
5098		if (db)
5099			return db;
5100	}
5101}
5102
5103#define cea_db_iter_for_each(__db, __iter) \
5104	while (((__db) = __cea_db_iter_next(__iter)))
5105
5106static void cea_db_iter_end(struct cea_db_iter *iter)
5107{
5108	displayid_iter_end(&iter->displayid_iter);
5109	drm_edid_iter_end(&iter->edid_iter);
5110
5111	memset(iter, 0, sizeof(*iter));
5112}
5113
5114static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5115{
5116	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5117		cea_db_payload_len(db) >= 5;
5118}
5119
5120static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5121{
5122	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5123		cea_db_payload_len(db) >= 7;
5124}
5125
5126static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5127{
5128	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5129		cea_db_payload_len(db) >= 2;
5130}
5131
5132static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5133{
5134	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5135		cea_db_payload_len(db) == 21;
5136}
5137
5138static bool cea_db_is_vcdb(const struct cea_db *db)
5139{
5140	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5141		cea_db_payload_len(db) == 2;
5142}
5143
5144static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5145{
5146	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5147		cea_db_payload_len(db) >= 7;
5148}
5149
5150static bool cea_db_is_y420cmdb(const struct cea_db *db)
5151{
5152	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5153}
5154
5155static bool cea_db_is_y420vdb(const struct cea_db *db)
5156{
5157	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5158}
5159
5160static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5161{
5162	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5163		cea_db_payload_len(db) >= 3;
5164}
5165
5166/*
5167 * Get the HF-EEODB override extension block count from EDID.
5168 *
5169 * The passed in EDID may be partially read, as long as it has at least two
5170 * blocks (base block and one extension block) if EDID extension count is > 0.
5171 *
5172 * Note that this is *not* how you should parse CTA Data Blocks in general; this
5173 * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5174 * iterators instead.
5175 *
5176 * References:
5177 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5178 */
5179static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5180{
5181	const u8 *cta;
5182
5183	/* No extensions according to base block, no HF-EEODB. */
5184	if (!edid_extension_block_count(edid))
5185		return 0;
5186
5187	/* HF-EEODB is always in the first EDID extension block only */
5188	cta = edid_extension_block_data(edid, 0);
5189	if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5190		return 0;
5191
5192	/* Need to have the data block collection, and at least 3 bytes. */
5193	if (cea_db_collection_size(cta) < 3)
5194		return 0;
5195
5196	/*
5197	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5198	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5199	 * through 6 of Block 1 of the E-EDID.
5200	 */
5201	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5202		return 0;
5203
5204	return cta[4 + 2];
5205}
5206
5207static void drm_parse_y420cmdb_bitmap(struct drm_connector *connector,
5208				      const u8 *db)
 
 
 
 
 
 
 
 
5209{
5210	struct drm_display_info *info = &connector->display_info;
5211	struct drm_hdmi_info *hdmi = &info->hdmi;
5212	u8 map_len = cea_db_payload_len(db) - 1;
5213	u8 count;
5214	u64 map = 0;
5215
5216	if (map_len == 0) {
5217		/* All CEA modes support ycbcr420 sampling also.*/
5218		hdmi->y420_cmdb_map = U64_MAX;
5219		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5220		return;
5221	}
5222
5223	/*
5224	 * This map indicates which of the existing CEA block modes
5225	 * from VDB can support YCBCR420 output too. So if bit=0 is
5226	 * set, first mode from VDB can support YCBCR420 output too.
5227	 * We will parse and keep this map, before parsing VDB itself
5228	 * to avoid going through the same block again and again.
5229	 *
5230	 * Spec is not clear about max possible size of this block.
5231	 * Clamping max bitmap block size at 8 bytes. Every byte can
5232	 * address 8 CEA modes, in this way this map can address
5233	 * 8*8 = first 64 SVDs.
5234	 */
5235	if (WARN_ON_ONCE(map_len > 8))
5236		map_len = 8;
5237
5238	for (count = 0; count < map_len; count++)
5239		map |= (u64)db[2 + count] << (8 * count);
5240
 
5241	if (map)
5242		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5243
5244	hdmi->y420_cmdb_map = map;
5245}
5246
5247static int add_cea_modes(struct drm_connector *connector,
5248			 const struct drm_edid *drm_edid)
5249{
5250	const struct cea_db *db;
5251	struct cea_db_iter iter;
5252	int modes = 0;
 
 
 
5253
5254	cea_db_iter_edid_begin(drm_edid, &iter);
5255	cea_db_iter_for_each(db, &iter) {
5256		const u8 *hdmi = NULL, *video = NULL;
5257		u8 hdmi_len = 0, video_len = 0;
5258
5259		if (cea_db_tag(db) == CTA_DB_VIDEO) {
5260			video = cea_db_data(db);
5261			video_len = cea_db_payload_len(db);
5262			modes += do_cea_modes(connector, video, video_len);
5263		} else if (cea_db_is_hdmi_vsdb(db)) {
5264			/* FIXME: Switch to use cea_db_data() */
5265			hdmi = (const u8 *)db;
5266			hdmi_len = cea_db_payload_len(db);
5267		} else if (cea_db_is_y420vdb(db)) {
5268			const u8 *vdb420 = cea_db_data(db) + 1;
5269
5270			/* Add 4:2:0(only) modes present in EDID */
5271			modes += do_y420vdb_modes(connector, vdb420,
5272						  cea_db_payload_len(db) - 1);
5273		}
5274
5275		/*
5276		 * We parse the HDMI VSDB after having added the cea modes as we
5277		 * will be patching their flags when the sink supports stereo
5278		 * 3D.
5279		 */
5280		if (hdmi)
5281			modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len,
5282						    video, video_len);
5283	}
5284	cea_db_iter_end(&iter);
5285
5286	return modes;
5287}
5288
5289static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5290					  struct drm_display_mode *mode)
5291{
5292	const struct drm_display_mode *cea_mode;
5293	int clock1, clock2, clock;
5294	u8 vic;
5295	const char *type;
5296
5297	/*
5298	 * allow 5kHz clock difference either way to account for
5299	 * the 10kHz clock resolution limit of detailed timings.
5300	 */
5301	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5302	if (drm_valid_cea_vic(vic)) {
5303		type = "CEA";
5304		cea_mode = cea_mode_for_vic(vic);
5305		clock1 = cea_mode->clock;
5306		clock2 = cea_mode_alternate_clock(cea_mode);
5307	} else {
5308		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5309		if (drm_valid_hdmi_vic(vic)) {
5310			type = "HDMI";
5311			cea_mode = &edid_4k_modes[vic];
5312			clock1 = cea_mode->clock;
5313			clock2 = hdmi_mode_alternate_clock(cea_mode);
5314		} else {
5315			return;
5316		}
5317	}
5318
5319	/* pick whichever is closest */
5320	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5321		clock = clock1;
5322	else
5323		clock = clock2;
5324
5325	if (mode->clock == clock)
5326		return;
5327
5328	drm_dbg_kms(connector->dev,
5329		    "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5330		    connector->base.id, connector->name,
5331		    type, vic, mode->clock, clock);
5332	mode->clock = clock;
5333}
5334
5335static void drm_calculate_luminance_range(struct drm_connector *connector)
5336{
5337	struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5338	struct drm_luminance_range_info *luminance_range =
5339		&connector->display_info.luminance_range;
5340	static const u8 pre_computed_values[] = {
5341		50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5342		71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5343	};
5344	u32 max_avg, min_cll, max, min, q, r;
5345
5346	if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5347		return;
5348
5349	max_avg = hdr_metadata->max_fall;
5350	min_cll = hdr_metadata->min_cll;
5351
5352	/*
5353	 * From the specification (CTA-861-G), for calculating the maximum
5354	 * luminance we need to use:
5355	 *	Luminance = 50*2**(CV/32)
5356	 * Where CV is a one-byte value.
5357	 * For calculating this expression we may need float point precision;
5358	 * to avoid this complexity level, we take advantage that CV is divided
5359	 * by a constant. From the Euclids division algorithm, we know that CV
5360	 * can be written as: CV = 32*q + r. Next, we replace CV in the
5361	 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5362	 * need to pre-compute the value of r/32. For pre-computing the values
5363	 * We just used the following Ruby line:
5364	 *	(0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5365	 * The results of the above expressions can be verified at
5366	 * pre_computed_values.
5367	 */
5368	q = max_avg >> 5;
5369	r = max_avg % 32;
5370	max = (1 << q) * pre_computed_values[r];
5371
5372	/* min luminance: maxLum * (CV/255)^2 / 100 */
5373	q = DIV_ROUND_CLOSEST(min_cll, 255);
5374	min = max * DIV_ROUND_CLOSEST((q * q), 100);
5375
5376	luminance_range->min_luminance = min;
5377	luminance_range->max_luminance = max;
5378}
5379
5380static uint8_t eotf_supported(const u8 *edid_ext)
5381{
5382	return edid_ext[2] &
5383		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5384		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5385		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5386		 BIT(HDMI_EOTF_BT_2100_HLG));
5387}
5388
5389static uint8_t hdr_metadata_type(const u8 *edid_ext)
5390{
5391	return edid_ext[3] &
5392		BIT(HDMI_STATIC_METADATA_TYPE1);
5393}
5394
5395static void
5396drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5397{
5398	u16 len;
5399
5400	len = cea_db_payload_len(db);
5401
5402	connector->hdr_sink_metadata.hdmi_type1.eotf =
5403						eotf_supported(db);
5404	connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5405						hdr_metadata_type(db);
5406
5407	if (len >= 4)
5408		connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5409	if (len >= 5)
5410		connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5411	if (len >= 6) {
5412		connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5413
5414		/* Calculate only when all values are available */
5415		drm_calculate_luminance_range(connector);
5416	}
5417}
5418
 
5419static void
5420drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5421{
5422	u8 len = cea_db_payload_len(db);
5423
5424	if (len >= 6 && (db[6] & (1 << 7)))
5425		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5426	if (len >= 8) {
5427		connector->latency_present[0] = db[8] >> 7;
5428		connector->latency_present[1] = (db[8] >> 6) & 1;
5429	}
5430	if (len >= 9)
5431		connector->video_latency[0] = db[9];
5432	if (len >= 10)
5433		connector->audio_latency[0] = db[10];
5434	if (len >= 11)
 
 
 
5435		connector->video_latency[1] = db[11];
5436	if (len >= 12)
5437		connector->audio_latency[1] = db[12];
 
5438
5439	drm_dbg_kms(connector->dev,
5440		    "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5441		    connector->base.id, connector->name,
5442		    connector->latency_present[0], connector->latency_present[1],
5443		    connector->video_latency[0], connector->video_latency[1],
5444		    connector->audio_latency[0], connector->audio_latency[1]);
5445}
5446
5447static void
5448monitor_name(const struct detailed_timing *timing, void *data)
5449{
5450	const char **res = data;
5451
5452	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5453		return;
5454
5455	*res = timing->data.other_data.data.str.str;
5456}
5457
5458static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5459{
5460	const char *edid_name = NULL;
5461	int mnl;
5462
5463	if (!drm_edid || !name)
5464		return 0;
5465
5466	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5467	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5468		if (edid_name[mnl] == 0x0a)
5469			break;
5470
5471		name[mnl] = edid_name[mnl];
5472	}
5473
5474	return mnl;
5475}
5476
5477/**
5478 * drm_edid_get_monitor_name - fetch the monitor name from the edid
5479 * @edid: monitor EDID information
5480 * @name: pointer to a character array to hold the name of the monitor
5481 * @bufsize: The size of the name buffer (should be at least 14 chars.)
5482 *
5483 */
5484void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5485{
5486	int name_length = 0;
5487
5488	if (bufsize <= 0)
5489		return;
5490
5491	if (edid) {
5492		char buf[13];
5493		struct drm_edid drm_edid = {
5494			.edid = edid,
5495			.size = edid_size(edid),
5496		};
5497
5498		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5499		memcpy(name, buf, name_length);
5500	}
5501
5502	name[name_length] = '\0';
5503}
5504EXPORT_SYMBOL(drm_edid_get_monitor_name);
5505
5506static void clear_eld(struct drm_connector *connector)
5507{
5508	memset(connector->eld, 0, sizeof(connector->eld));
5509
5510	connector->latency_present[0] = false;
5511	connector->latency_present[1] = false;
5512	connector->video_latency[0] = 0;
5513	connector->audio_latency[0] = 0;
5514	connector->video_latency[1] = 0;
5515	connector->audio_latency[1] = 0;
5516}
5517
5518/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5519 * drm_edid_to_eld - build ELD from EDID
5520 * @connector: connector corresponding to the HDMI/DP sink
5521 * @drm_edid: EDID to parse
5522 *
5523 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5524 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5525 */
5526static void drm_edid_to_eld(struct drm_connector *connector,
5527			    const struct drm_edid *drm_edid)
5528{
5529	const struct drm_display_info *info = &connector->display_info;
5530	const struct cea_db *db;
5531	struct cea_db_iter iter;
5532	uint8_t *eld = connector->eld;
5533	int total_sad_count = 0;
5534	int mnl;
5535
5536	clear_eld(connector);
5537
5538	if (!drm_edid)
5539		return;
5540
5541	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5542	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5543		    connector->base.id, connector->name,
5544		    &eld[DRM_ELD_MONITOR_NAME_STRING]);
5545
5546	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5547	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5548
5549	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5550
5551	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5552	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5553	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5554	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5555
5556	cea_db_iter_edid_begin(drm_edid, &iter);
5557	cea_db_iter_for_each(db, &iter) {
5558		const u8 *data = cea_db_data(db);
5559		int len = cea_db_payload_len(db);
5560		int sad_count;
5561
5562		switch (cea_db_tag(db)) {
5563		case CTA_DB_AUDIO:
5564			/* Audio Data Block, contains SADs */
5565			sad_count = min(len / 3, 15 - total_sad_count);
5566			if (sad_count >= 1)
5567				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5568				       data, sad_count * 3);
5569			total_sad_count += sad_count;
5570			break;
5571		case CTA_DB_SPEAKER:
5572			/* Speaker Allocation Data Block */
5573			if (len >= 1)
5574				eld[DRM_ELD_SPEAKER] = data[0];
5575			break;
5576		case CTA_DB_VENDOR:
5577			/* HDMI Vendor-Specific Data Block */
5578			if (cea_db_is_hdmi_vsdb(db))
5579				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5580			break;
5581		default:
5582			break;
5583		}
5584	}
5585	cea_db_iter_end(&iter);
5586
5587	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5588
5589	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5590	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5591		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5592	else
5593		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5594
5595	eld[DRM_ELD_BASELINE_ELD_LEN] =
5596		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5597
5598	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5599		    connector->base.id, connector->name,
5600		    drm_eld_size(eld), total_sad_count);
5601}
5602
5603static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5604			    struct cea_sad **sads)
5605{
5606	const struct cea_db *db;
5607	struct cea_db_iter iter;
5608	int count = 0;
5609
5610	cea_db_iter_edid_begin(drm_edid, &iter);
5611	cea_db_iter_for_each(db, &iter) {
5612		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5613			int j;
 
5614
5615			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5616			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
5617			if (!*sads)
 
5618				return -ENOMEM;
5619			for (j = 0; j < count; j++) {
5620				const u8 *sad = &db->data[j * 3];
5621
5622				(*sads)[j].format = (sad[0] & 0x78) >> 3;
5623				(*sads)[j].channels = sad[0] & 0x7;
5624				(*sads)[j].freq = sad[1] & 0x7F;
5625				(*sads)[j].byte2 = sad[2];
5626			}
5627			break;
5628		}
5629	}
5630	cea_db_iter_end(&iter);
5631
5632	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5633
5634	return count;
5635}
5636
5637/**
5638 * drm_edid_to_sad - extracts SADs from EDID
5639 * @edid: EDID to parse
5640 * @sads: pointer that will be set to the extracted SADs
5641 *
5642 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5643 *
5644 * Note: The returned pointer needs to be freed using kfree().
5645 *
5646 * Return: The number of found SADs or negative number on error.
5647 */
5648int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5649{
5650	struct drm_edid drm_edid;
5651
5652	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5653}
5654EXPORT_SYMBOL(drm_edid_to_sad);
5655
5656static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5657					   u8 **sadb)
5658{
5659	const struct cea_db *db;
5660	struct cea_db_iter iter;
5661	int count = 0;
5662
5663	cea_db_iter_edid_begin(drm_edid, &iter);
5664	cea_db_iter_for_each(db, &iter) {
5665		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5666		    cea_db_payload_len(db) == 3) {
5667			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5668					GFP_KERNEL);
5669			if (!*sadb)
5670				return -ENOMEM;
5671			count = cea_db_payload_len(db);
5672			break;
5673		}
5674	}
5675	cea_db_iter_end(&iter);
5676
5677	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5678
5679	return count;
5680}
5681
5682/**
5683 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5684 * @edid: EDID to parse
5685 * @sadb: pointer to the speaker block
5686 *
5687 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5688 *
5689 * Note: The returned pointer needs to be freed using kfree().
5690 *
5691 * Return: The number of found Speaker Allocation Blocks or negative number on
5692 * error.
5693 */
5694int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5695{
5696	struct drm_edid drm_edid;
5697
5698	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5699					       sadb);
5700}
5701EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5702
5703/**
5704 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5705 * @connector: connector associated with the HDMI/DP sink
5706 * @mode: the display mode
5707 *
5708 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5709 * the sink doesn't support audio or video.
5710 */
5711int drm_av_sync_delay(struct drm_connector *connector,
5712		      const struct drm_display_mode *mode)
5713{
5714	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5715	int a, v;
5716
5717	if (!connector->latency_present[0])
5718		return 0;
5719	if (!connector->latency_present[1])
5720		i = 0;
5721
5722	a = connector->audio_latency[i];
5723	v = connector->video_latency[i];
5724
5725	/*
5726	 * HDMI/DP sink doesn't support audio or video?
5727	 */
5728	if (a == 255 || v == 255)
5729		return 0;
5730
5731	/*
5732	 * Convert raw EDID values to millisecond.
5733	 * Treat unknown latency as 0ms.
5734	 */
5735	if (a)
5736		a = min(2 * (a - 1), 500);
5737	if (v)
5738		v = min(2 * (v - 1), 500);
5739
5740	return max(v - a, 0);
5741}
5742EXPORT_SYMBOL(drm_av_sync_delay);
5743
5744static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5745{
5746	const struct cea_db *db;
5747	struct cea_db_iter iter;
5748	bool hdmi = false;
5749
5750	/*
5751	 * Because HDMI identifier is in Vendor Specific Block,
5752	 * search it from all data blocks of CEA extension.
5753	 */
5754	cea_db_iter_edid_begin(drm_edid, &iter);
5755	cea_db_iter_for_each(db, &iter) {
5756		if (cea_db_is_hdmi_vsdb(db)) {
5757			hdmi = true;
5758			break;
5759		}
5760	}
5761	cea_db_iter_end(&iter);
5762
5763	return hdmi;
5764}
5765
5766/**
5767 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5768 * @edid: monitor EDID information
5769 *
5770 * Parse the CEA extension according to CEA-861-B.
5771 *
5772 * Drivers that have added the modes parsed from EDID to drm_display_info
5773 * should use &drm_display_info.is_hdmi instead of calling this function.
5774 *
5775 * Return: True if the monitor is HDMI, false if not or unknown.
5776 */
5777bool drm_detect_hdmi_monitor(const struct edid *edid)
5778{
5779	struct drm_edid drm_edid;
5780
5781	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5782}
5783EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5784
5785static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5786{
5787	struct drm_edid_iter edid_iter;
5788	const struct cea_db *db;
5789	struct cea_db_iter iter;
5790	const u8 *edid_ext;
5791	bool has_audio = false;
5792
5793	drm_edid_iter_begin(drm_edid, &edid_iter);
5794	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5795		if (edid_ext[0] == CEA_EXT) {
5796			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5797			if (has_audio)
5798				break;
5799		}
5800	}
5801	drm_edid_iter_end(&edid_iter);
5802
5803	if (has_audio) {
5804		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5805		goto end;
5806	}
5807
5808	cea_db_iter_edid_begin(drm_edid, &iter);
5809	cea_db_iter_for_each(db, &iter) {
5810		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5811			const u8 *data = cea_db_data(db);
5812			int i;
5813
5814			for (i = 0; i < cea_db_payload_len(db); i += 3)
5815				DRM_DEBUG_KMS("CEA audio format %d\n",
5816					      (data[i] >> 3) & 0xf);
5817			has_audio = true;
5818			break;
5819		}
5820	}
5821	cea_db_iter_end(&iter);
5822
5823end:
5824	return has_audio;
5825}
5826
5827/**
5828 * drm_detect_monitor_audio - check monitor audio capability
5829 * @edid: EDID block to scan
5830 *
5831 * Monitor should have CEA extension block.
5832 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5833 * audio' only. If there is any audio extension block and supported
5834 * audio format, assume at least 'basic audio' support, even if 'basic
5835 * audio' is not defined in EDID.
5836 *
5837 * Return: True if the monitor supports audio, false otherwise.
5838 */
5839bool drm_detect_monitor_audio(const struct edid *edid)
5840{
5841	struct drm_edid drm_edid;
5842
5843	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5844}
5845EXPORT_SYMBOL(drm_detect_monitor_audio);
5846
5847
5848/**
5849 * drm_default_rgb_quant_range - default RGB quantization range
5850 * @mode: display mode
5851 *
5852 * Determine the default RGB quantization range for the mode,
5853 * as specified in CEA-861.
5854 *
5855 * Return: The default RGB quantization range for the mode
5856 */
5857enum hdmi_quantization_range
5858drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5859{
5860	/* All CEA modes other than VIC 1 use limited quantization range. */
5861	return drm_match_cea_mode(mode) > 1 ?
5862		HDMI_QUANTIZATION_RANGE_LIMITED :
5863		HDMI_QUANTIZATION_RANGE_FULL;
5864}
5865EXPORT_SYMBOL(drm_default_rgb_quant_range);
5866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5867static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5868{
5869	struct drm_display_info *info = &connector->display_info;
5870
5871	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5872		    connector->base.id, connector->name, db[2]);
5873
5874	if (db[2] & EDID_CEA_VCDB_QS)
5875		info->rgb_quant_range_selectable = true;
5876}
5877
5878static
5879void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5880{
5881	switch (max_frl_rate) {
5882	case 1:
5883		*max_lanes = 3;
5884		*max_rate_per_lane = 3;
5885		break;
5886	case 2:
5887		*max_lanes = 3;
5888		*max_rate_per_lane = 6;
5889		break;
5890	case 3:
5891		*max_lanes = 4;
5892		*max_rate_per_lane = 6;
5893		break;
5894	case 4:
5895		*max_lanes = 4;
5896		*max_rate_per_lane = 8;
5897		break;
5898	case 5:
5899		*max_lanes = 4;
5900		*max_rate_per_lane = 10;
5901		break;
5902	case 6:
5903		*max_lanes = 4;
5904		*max_rate_per_lane = 12;
5905		break;
5906	case 0:
5907	default:
5908		*max_lanes = 0;
5909		*max_rate_per_lane = 0;
5910	}
5911}
5912
5913static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
5914					       const u8 *db)
5915{
5916	u8 dc_mask;
5917	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
5918
5919	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
5920	hdmi->y420_dc_modes = dc_mask;
5921}
5922
5923static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
5924			       const u8 *hf_scds)
5925{
5926	hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
5927
5928	if (!hdmi_dsc->v_1p2)
5929		return;
5930
5931	hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
5932	hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
5933
5934	if (hf_scds[11] & DRM_EDID_DSC_16BPC)
5935		hdmi_dsc->bpc_supported = 16;
5936	else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
5937		hdmi_dsc->bpc_supported = 12;
5938	else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
5939		hdmi_dsc->bpc_supported = 10;
5940	else
5941		/* Supports min 8 BPC if DSC 1.2 is supported*/
5942		hdmi_dsc->bpc_supported = 8;
5943
5944	if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
5945		u8 dsc_max_slices;
5946		u8 dsc_max_frl_rate;
5947
5948		dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
5949		drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
5950				     &hdmi_dsc->max_frl_rate_per_lane);
5951
5952		dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
5953
5954		switch (dsc_max_slices) {
5955		case 1:
5956			hdmi_dsc->max_slices = 1;
5957			hdmi_dsc->clk_per_slice = 340;
5958			break;
5959		case 2:
5960			hdmi_dsc->max_slices = 2;
5961			hdmi_dsc->clk_per_slice = 340;
5962			break;
5963		case 3:
5964			hdmi_dsc->max_slices = 4;
5965			hdmi_dsc->clk_per_slice = 340;
5966			break;
5967		case 4:
5968			hdmi_dsc->max_slices = 8;
5969			hdmi_dsc->clk_per_slice = 340;
5970			break;
5971		case 5:
5972			hdmi_dsc->max_slices = 8;
5973			hdmi_dsc->clk_per_slice = 400;
5974			break;
5975		case 6:
5976			hdmi_dsc->max_slices = 12;
5977			hdmi_dsc->clk_per_slice = 400;
5978			break;
5979		case 7:
5980			hdmi_dsc->max_slices = 16;
5981			hdmi_dsc->clk_per_slice = 400;
5982			break;
5983		case 0:
5984		default:
5985			hdmi_dsc->max_slices = 0;
5986			hdmi_dsc->clk_per_slice = 0;
5987		}
5988	}
5989
5990	if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
5991		hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
5992}
5993
5994/* Sink Capability Data Structure */
5995static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
5996				      const u8 *hf_scds)
5997{
5998	struct drm_display_info *display = &connector->display_info;
5999	struct drm_hdmi_info *hdmi = &display->hdmi;
6000	struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6001	int max_tmds_clock = 0;
6002	u8 max_frl_rate = 0;
6003	bool dsc_support = false;
6004
6005	display->has_hdmi_infoframe = true;
6006
6007	if (hf_scds[6] & 0x80) {
6008		hdmi->scdc.supported = true;
6009		if (hf_scds[6] & 0x40)
6010			hdmi->scdc.read_request = true;
6011	}
6012
6013	/*
6014	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6015	 * And as per the spec, three factors confirm this:
6016	 * * Availability of a HF-VSDB block in EDID (check)
6017	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6018	 * * SCDC support available (let's check)
6019	 * Lets check it out.
6020	 */
6021
6022	if (hf_scds[5]) {
6023		struct drm_scdc *scdc = &hdmi->scdc;
6024
6025		/* max clock is 5000 KHz times block value */
6026		max_tmds_clock = hf_scds[5] * 5000;
6027
6028		if (max_tmds_clock > 340000) {
6029			display->max_tmds_clock = max_tmds_clock;
6030		}
6031
6032		if (scdc->supported) {
6033			scdc->scrambling.supported = true;
6034
6035			/* Few sinks support scrambling for clocks < 340M */
6036			if ((hf_scds[6] & 0x8))
6037				scdc->scrambling.low_rates = true;
6038		}
6039	}
6040
6041	if (hf_scds[7]) {
6042		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6043		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6044				     &hdmi->max_frl_rate_per_lane);
6045	}
6046
6047	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6048
6049	if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6050		drm_parse_dsc_info(hdmi_dsc, hf_scds);
6051		dsc_support = true;
6052	}
6053
6054	drm_dbg_kms(connector->dev,
6055		    "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6056		    connector->base.id, connector->name,
6057		    max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6058}
6059
6060static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6061					   const u8 *hdmi)
6062{
6063	struct drm_display_info *info = &connector->display_info;
6064	unsigned int dc_bpc = 0;
6065
6066	/* HDMI supports at least 8 bpc */
6067	info->bpc = 8;
6068
6069	if (cea_db_payload_len(hdmi) < 6)
6070		return;
6071
6072	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6073		dc_bpc = 10;
6074		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6075		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6076			    connector->base.id, connector->name);
6077	}
6078
6079	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6080		dc_bpc = 12;
6081		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6082		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6083			    connector->base.id, connector->name);
6084	}
6085
6086	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6087		dc_bpc = 16;
6088		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6089		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6090			    connector->base.id, connector->name);
6091	}
6092
6093	if (dc_bpc == 0) {
6094		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6095			    connector->base.id, connector->name);
6096		return;
6097	}
6098
6099	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6100		    connector->base.id, connector->name, dc_bpc);
6101	info->bpc = dc_bpc;
6102
6103	/* YCRCB444 is optional according to spec. */
6104	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6105		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6106		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6107			    connector->base.id, connector->name);
6108	}
6109
6110	/*
6111	 * Spec says that if any deep color mode is supported at all,
6112	 * then deep color 36 bit must be supported.
6113	 */
6114	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6115		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6116			    connector->base.id, connector->name);
6117	}
6118}
6119
 
6120static void
6121drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6122{
6123	struct drm_display_info *info = &connector->display_info;
6124	u8 len = cea_db_payload_len(db);
6125
6126	info->is_hdmi = true;
6127
 
 
6128	if (len >= 6)
6129		info->dvi_dual = db[6] & 1;
6130	if (len >= 7)
6131		info->max_tmds_clock = db[7] * 5000;
6132
 
 
 
 
 
 
 
 
 
6133	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6134		    connector->base.id, connector->name,
6135		    info->dvi_dual, info->max_tmds_clock);
6136
6137	drm_parse_hdmi_deep_color_info(connector, db);
6138}
6139
6140/*
6141 * See EDID extension for head-mounted and specialized monitors, specified at:
6142 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6143 */
6144static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6145				     const u8 *db)
6146{
6147	struct drm_display_info *info = &connector->display_info;
6148	u8 version = db[4];
6149	bool desktop_usage = db[5] & BIT(6);
6150
6151	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6152	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6153		info->non_desktop = true;
6154
6155	drm_dbg_kms(connector->dev,
6156		    "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6157		    connector->base.id, connector->name, version, db[5]);
6158}
6159
6160static void drm_parse_cea_ext(struct drm_connector *connector,
6161			      const struct drm_edid *drm_edid)
6162{
6163	struct drm_display_info *info = &connector->display_info;
6164	struct drm_edid_iter edid_iter;
6165	const struct cea_db *db;
6166	struct cea_db_iter iter;
6167	const u8 *edid_ext;
 
6168
6169	drm_edid_iter_begin(drm_edid, &edid_iter);
6170	drm_edid_iter_for_each(edid_ext, &edid_iter) {
6171		if (edid_ext[0] != CEA_EXT)
6172			continue;
6173
6174		if (!info->cea_rev)
6175			info->cea_rev = edid_ext[1];
6176
6177		if (info->cea_rev != edid_ext[1])
6178			drm_dbg_kms(connector->dev,
6179				    "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6180				    connector->base.id, connector->name,
6181				    info->cea_rev, edid_ext[1]);
6182
6183		/* The existence of a CTA extension should imply RGB support */
6184		info->color_formats = DRM_COLOR_FORMAT_RGB444;
6185		if (edid_ext[3] & EDID_CEA_YCRCB444)
6186			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6187		if (edid_ext[3] & EDID_CEA_YCRCB422)
6188			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
 
 
 
6189	}
6190	drm_edid_iter_end(&edid_iter);
6191
6192	cea_db_iter_edid_begin(drm_edid, &iter);
6193	cea_db_iter_for_each(db, &iter) {
6194		/* FIXME: convert parsers to use struct cea_db */
6195		const u8 *data = (const u8 *)db;
6196
6197		if (cea_db_is_hdmi_vsdb(db))
6198			drm_parse_hdmi_vsdb_video(connector, data);
6199		else if (cea_db_is_hdmi_forum_vsdb(db) ||
6200			 cea_db_is_hdmi_forum_scdb(db))
6201			drm_parse_hdmi_forum_scds(connector, data);
6202		else if (cea_db_is_microsoft_vsdb(db))
6203			drm_parse_microsoft_vsdb(connector, data);
6204		else if (cea_db_is_y420cmdb(db))
6205			drm_parse_y420cmdb_bitmap(connector, data);
 
 
6206		else if (cea_db_is_vcdb(db))
6207			drm_parse_vcdb(connector, data);
6208		else if (cea_db_is_hdmi_hdr_metadata_block(db))
6209			drm_parse_hdr_metadata_block(connector, data);
 
 
 
 
6210	}
6211	cea_db_iter_end(&iter);
 
 
 
6212}
6213
6214static
6215void get_monitor_range(const struct detailed_timing *timing, void *c)
6216{
6217	struct detailed_mode_closure *closure = c;
6218	struct drm_display_info *info = &closure->connector->display_info;
6219	struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6220	const struct detailed_non_pixel *data = &timing->data.other_data;
6221	const struct detailed_data_monitor_range *range = &data->data.range;
6222	const struct edid *edid = closure->drm_edid->edid;
6223
6224	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6225		return;
6226
6227	/*
6228	 * These limits are used to determine the VRR refresh
6229	 * rate range. Only the "range limits only" variant
6230	 * of the range descriptor seems to guarantee that
6231	 * any and all timings are accepted by the sink, as
6232	 * opposed to just timings conforming to the indicated
6233	 * formula (GTF/GTF2/CVT). Thus other variants of the
6234	 * range descriptor are not accepted here.
6235	 */
6236	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6237		return;
6238
6239	monitor_range->min_vfreq = range->min_vfreq;
6240	monitor_range->max_vfreq = range->max_vfreq;
6241
6242	if (edid->revision >= 4) {
6243		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6244			monitor_range->min_vfreq += 255;
6245		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6246			monitor_range->max_vfreq += 255;
6247	}
6248}
6249
6250static void drm_get_monitor_range(struct drm_connector *connector,
6251				  const struct drm_edid *drm_edid)
6252{
6253	const struct drm_display_info *info = &connector->display_info;
6254	struct detailed_mode_closure closure = {
6255		.connector = connector,
6256		.drm_edid = drm_edid,
6257	};
6258
6259	if (drm_edid->edid->revision < 4)
6260		return;
6261
6262	if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6263		return;
6264
6265	drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6266
6267	drm_dbg_kms(connector->dev,
6268		    "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6269		    connector->base.id, connector->name,
6270		    info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6271}
6272
6273static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6274				    const struct displayid_block *block)
6275{
6276	struct displayid_vesa_vendor_specific_block *vesa =
6277		(struct displayid_vesa_vendor_specific_block *)block;
6278	struct drm_display_info *info = &connector->display_info;
6279
6280	if (block->num_bytes < 3) {
6281		drm_dbg_kms(connector->dev,
6282			    "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6283			    connector->base.id, connector->name, block->num_bytes);
6284		return;
6285	}
6286
6287	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6288		return;
6289
6290	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6291		drm_dbg_kms(connector->dev,
6292			    "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6293			    connector->base.id, connector->name);
6294		return;
6295	}
6296
6297	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6298	default:
6299		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6300			    connector->base.id, connector->name);
6301		fallthrough;
6302	case 0:
6303		info->mso_stream_count = 0;
6304		break;
6305	case 1:
6306		info->mso_stream_count = 2; /* 2 or 4 links */
6307		break;
6308	case 2:
6309		info->mso_stream_count = 4; /* 4 links */
6310		break;
6311	}
6312
6313	if (!info->mso_stream_count) {
6314		info->mso_pixel_overlap = 0;
6315		return;
6316	}
6317
6318	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6319	if (info->mso_pixel_overlap > 8) {
6320		drm_dbg_kms(connector->dev,
6321			    "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6322			    connector->base.id, connector->name,
6323			    info->mso_pixel_overlap);
6324		info->mso_pixel_overlap = 8;
6325	}
6326
6327	drm_dbg_kms(connector->dev,
6328		    "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6329		    connector->base.id, connector->name,
6330		    info->mso_stream_count, info->mso_pixel_overlap);
6331}
6332
6333static void drm_update_mso(struct drm_connector *connector,
6334			   const struct drm_edid *drm_edid)
6335{
6336	const struct displayid_block *block;
6337	struct displayid_iter iter;
6338
6339	displayid_iter_edid_begin(drm_edid, &iter);
6340	displayid_iter_for_each(block, &iter) {
6341		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6342			drm_parse_vesa_mso_data(connector, block);
6343	}
6344	displayid_iter_end(&iter);
6345}
6346
6347/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6348 * all of the values which would have been set from EDID
6349 */
6350static void drm_reset_display_info(struct drm_connector *connector)
6351{
6352	struct drm_display_info *info = &connector->display_info;
6353
6354	info->width_mm = 0;
6355	info->height_mm = 0;
6356
6357	info->bpc = 0;
6358	info->color_formats = 0;
6359	info->cea_rev = 0;
6360	info->max_tmds_clock = 0;
6361	info->dvi_dual = false;
6362	info->is_hdmi = false;
 
6363	info->has_hdmi_infoframe = false;
6364	info->rgb_quant_range_selectable = false;
6365	memset(&info->hdmi, 0, sizeof(info->hdmi));
6366
6367	info->edid_hdmi_rgb444_dc_modes = 0;
6368	info->edid_hdmi_ycbcr444_dc_modes = 0;
6369
6370	info->non_desktop = 0;
6371	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6372	memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6373
6374	info->mso_stream_count = 0;
6375	info->mso_pixel_overlap = 0;
6376	info->max_dsc_bpp = 0;
 
 
 
 
 
 
 
 
6377}
6378
6379static u32 update_display_info(struct drm_connector *connector,
6380			       const struct drm_edid *drm_edid)
6381{
6382	struct drm_display_info *info = &connector->display_info;
6383	const struct edid *edid = drm_edid->edid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6384
6385	u32 quirks = edid_get_quirks(drm_edid);
 
 
 
 
6386
6387	drm_reset_display_info(connector);
 
 
 
 
 
 
 
 
6388
6389	info->width_mm = edid->width_cm * 10;
6390	info->height_mm = edid->height_cm * 10;
6391
6392	drm_get_monitor_range(connector, drm_edid);
6393
6394	if (edid->revision < 3)
6395		goto out;
6396
6397	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
6398		goto out;
6399
6400	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6401	drm_parse_cea_ext(connector, drm_edid);
6402
 
 
6403	/*
6404	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6405	 *
6406	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6407	 * tells us to assume 8 bpc color depth if the EDID doesn't have
6408	 * extensions which tell otherwise.
6409	 */
6410	if (info->bpc == 0 && edid->revision == 3 &&
6411	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6412		info->bpc = 8;
6413		drm_dbg_kms(connector->dev,
6414			    "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6415			    connector->base.id, connector->name, info->bpc);
6416	}
6417
6418	/* Only defined for 1.4 with digital displays */
6419	if (edid->revision < 4)
6420		goto out;
6421
6422	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6423	case DRM_EDID_DIGITAL_DEPTH_6:
6424		info->bpc = 6;
6425		break;
6426	case DRM_EDID_DIGITAL_DEPTH_8:
6427		info->bpc = 8;
6428		break;
6429	case DRM_EDID_DIGITAL_DEPTH_10:
6430		info->bpc = 10;
6431		break;
6432	case DRM_EDID_DIGITAL_DEPTH_12:
6433		info->bpc = 12;
6434		break;
6435	case DRM_EDID_DIGITAL_DEPTH_14:
6436		info->bpc = 14;
6437		break;
6438	case DRM_EDID_DIGITAL_DEPTH_16:
6439		info->bpc = 16;
6440		break;
6441	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6442	default:
6443		info->bpc = 0;
6444		break;
6445	}
6446
6447	drm_dbg_kms(connector->dev,
6448		    "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6449		    connector->base.id, connector->name, info->bpc);
6450
6451	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6452		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6453	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6454		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6455
6456	drm_update_mso(connector, drm_edid);
6457
6458out:
6459	if (quirks & EDID_QUIRK_NON_DESKTOP) {
6460		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6461			    connector->base.id, connector->name,
6462			    info->non_desktop ? " (redundant quirk)" : "");
6463		info->non_desktop = true;
6464	}
6465
6466	if (quirks & EDID_QUIRK_CAP_DSC_15BPP)
6467		info->max_dsc_bpp = 15;
6468
6469	return quirks;
 
 
 
 
 
 
 
 
 
 
 
 
 
6470}
6471
6472static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6473							    struct displayid_detailed_timings_1 *timings,
6474							    bool type_7)
6475{
6476	struct drm_display_mode *mode;
6477	unsigned pixel_clock = (timings->pixel_clock[0] |
6478				(timings->pixel_clock[1] << 8) |
6479				(timings->pixel_clock[2] << 16)) + 1;
6480	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6481	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6482	unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6483	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6484	unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6485	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6486	unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6487	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6488	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6489	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6490
6491	mode = drm_mode_create(dev);
6492	if (!mode)
6493		return NULL;
6494
6495	/* resolution is kHz for type VII, and 10 kHz for type I */
6496	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6497	mode->hdisplay = hactive;
6498	mode->hsync_start = mode->hdisplay + hsync;
6499	mode->hsync_end = mode->hsync_start + hsync_width;
6500	mode->htotal = mode->hdisplay + hblank;
6501
6502	mode->vdisplay = vactive;
6503	mode->vsync_start = mode->vdisplay + vsync;
6504	mode->vsync_end = mode->vsync_start + vsync_width;
6505	mode->vtotal = mode->vdisplay + vblank;
6506
6507	mode->flags = 0;
6508	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6509	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6510	mode->type = DRM_MODE_TYPE_DRIVER;
6511
6512	if (timings->flags & 0x80)
6513		mode->type |= DRM_MODE_TYPE_PREFERRED;
6514	drm_mode_set_name(mode);
6515
6516	return mode;
6517}
6518
6519static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6520					  const struct displayid_block *block)
6521{
6522	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6523	int i;
6524	int num_timings;
6525	struct drm_display_mode *newmode;
6526	int num_modes = 0;
6527	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6528	/* blocks must be multiple of 20 bytes length */
6529	if (block->num_bytes % 20)
6530		return 0;
6531
6532	num_timings = block->num_bytes / 20;
6533	for (i = 0; i < num_timings; i++) {
6534		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6535
6536		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6537		if (!newmode)
6538			continue;
6539
6540		drm_mode_probed_add(connector, newmode);
6541		num_modes++;
6542	}
6543	return num_modes;
6544}
6545
6546static int add_displayid_detailed_modes(struct drm_connector *connector,
6547					const struct drm_edid *drm_edid)
6548{
6549	const struct displayid_block *block;
6550	struct displayid_iter iter;
6551	int num_modes = 0;
6552
6553	displayid_iter_edid_begin(drm_edid, &iter);
6554	displayid_iter_for_each(block, &iter) {
6555		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6556		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6557			num_modes += add_displayid_detailed_1_modes(connector, block);
6558	}
6559	displayid_iter_end(&iter);
6560
6561	return num_modes;
6562}
6563
6564static int _drm_edid_connector_update(struct drm_connector *connector,
6565				      const struct drm_edid *drm_edid)
6566{
 
6567	int num_modes = 0;
6568	u32 quirks;
6569
6570	if (!drm_edid) {
6571		drm_reset_display_info(connector);
6572		clear_eld(connector);
6573		return 0;
6574	}
6575
6576	/*
6577	 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
6578	 * To avoid multiple parsing of same block, lets parse that map
6579	 * from sink info, before parsing CEA modes.
6580	 */
6581	quirks = update_display_info(connector, drm_edid);
6582
6583	/* Depends on info->cea_rev set by update_display_info() above */
6584	drm_edid_to_eld(connector, drm_edid);
6585
6586	/*
6587	 * EDID spec says modes should be preferred in this order:
6588	 * - preferred detailed mode
6589	 * - other detailed modes from base block
6590	 * - detailed modes from extension blocks
6591	 * - CVT 3-byte code modes
6592	 * - standard timing codes
6593	 * - established timing codes
6594	 * - modes inferred from GTF or CVT range information
6595	 *
6596	 * We get this pretty much right.
6597	 *
6598	 * XXX order for additional mode types in extension blocks?
6599	 */
6600	num_modes += add_detailed_modes(connector, drm_edid, quirks);
6601	num_modes += add_cvt_modes(connector, drm_edid);
6602	num_modes += add_standard_modes(connector, drm_edid);
6603	num_modes += add_established_modes(connector, drm_edid);
6604	num_modes += add_cea_modes(connector, drm_edid);
6605	num_modes += add_alternate_cea_modes(connector, drm_edid);
6606	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6607	if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6608		num_modes += add_inferred_modes(connector, drm_edid);
6609
6610	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6611		edid_fixup_preferred(connector, quirks);
6612
6613	if (quirks & EDID_QUIRK_FORCE_6BPC)
6614		connector->display_info.bpc = 6;
6615
6616	if (quirks & EDID_QUIRK_FORCE_8BPC)
6617		connector->display_info.bpc = 8;
6618
6619	if (quirks & EDID_QUIRK_FORCE_10BPC)
6620		connector->display_info.bpc = 10;
6621
6622	if (quirks & EDID_QUIRK_FORCE_12BPC)
6623		connector->display_info.bpc = 12;
6624
6625	return num_modes;
6626}
6627
6628static void _drm_update_tile_info(struct drm_connector *connector,
6629				  const struct drm_edid *drm_edid);
6630
6631static int _drm_edid_connector_property_update(struct drm_connector *connector,
6632					       const struct drm_edid *drm_edid)
6633{
6634	struct drm_device *dev = connector->dev;
6635	int ret;
6636
6637	if (connector->edid_blob_ptr) {
6638		const struct edid *old_edid = connector->edid_blob_ptr->data;
6639
6640		if (old_edid) {
6641			if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6642				connector->epoch_counter++;
6643				drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6644					    connector->base.id, connector->name,
6645					    connector->epoch_counter);
6646			}
6647		}
6648	}
6649
6650	ret = drm_property_replace_global_blob(dev,
6651					       &connector->edid_blob_ptr,
6652					       drm_edid ? drm_edid->size : 0,
6653					       drm_edid ? drm_edid->edid : NULL,
6654					       &connector->base,
6655					       dev->mode_config.edid_property);
6656	if (ret) {
6657		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6658			    connector->base.id, connector->name, ret);
6659		goto out;
6660	}
6661
6662	ret = drm_object_property_set_value(&connector->base,
6663					    dev->mode_config.non_desktop_property,
6664					    connector->display_info.non_desktop);
6665	if (ret) {
6666		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6667			    connector->base.id, connector->name, ret);
6668		goto out;
6669	}
6670
6671	ret = drm_connector_set_tile_property(connector);
6672	if (ret) {
6673		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6674			    connector->base.id, connector->name, ret);
6675		goto out;
6676	}
6677
6678out:
6679	return ret;
6680}
6681
6682/**
6683 * drm_edid_connector_update - Update connector information from EDID
6684 * @connector: Connector
6685 * @drm_edid: EDID
6686 *
6687 * Update the connector mode list, display info, ELD, HDR metadata, relevant
6688 * properties, etc. from the passed in EDID.
6689 *
6690 * If EDID is NULL, reset the information.
6691 *
6692 * Return: The number of modes added or 0 if we couldn't find any.
 
 
6693 */
6694int drm_edid_connector_update(struct drm_connector *connector,
6695			      const struct drm_edid *drm_edid)
6696{
6697	int count;
6698
6699	count = _drm_edid_connector_update(connector, drm_edid);
6700
6701	_drm_update_tile_info(connector, drm_edid);
6702
6703	/* Note: Ignore errors for now. */
6704	_drm_edid_connector_property_update(connector, drm_edid);
6705
6706	return count;
6707}
6708EXPORT_SYMBOL(drm_edid_connector_update);
6709
6710static int _drm_connector_update_edid_property(struct drm_connector *connector,
6711					       const struct drm_edid *drm_edid)
 
 
 
 
 
 
 
 
 
 
 
6712{
6713	/*
6714	 * Set the display info, using edid if available, otherwise resetting
6715	 * the values to defaults. This duplicates the work done in
6716	 * drm_add_edid_modes, but that function is not consistently called
6717	 * before this one in all drivers and the computation is cheap enough
6718	 * that it seems better to duplicate it rather than attempt to ensure
6719	 * some arbitrary ordering of calls.
6720	 */
6721	if (drm_edid)
6722		update_display_info(connector, drm_edid);
6723	else
6724		drm_reset_display_info(connector);
6725
6726	_drm_update_tile_info(connector, drm_edid);
6727
6728	return _drm_edid_connector_property_update(connector, drm_edid);
6729}
 
6730
6731/**
6732 * drm_connector_update_edid_property - update the edid property of a connector
6733 * @connector: drm connector
6734 * @edid: new value of the edid property
6735 *
6736 * This function creates a new blob modeset object and assigns its id to the
6737 * connector's edid property.
6738 * Since we also parse tile information from EDID's displayID block, we also
6739 * set the connector's tile property here. See drm_connector_set_tile_property()
6740 * for more details.
6741 *
6742 * This function is deprecated. Use drm_edid_connector_update() instead.
6743 *
6744 * Returns:
6745 * Zero on success, negative errno on failure.
6746 */
6747int drm_connector_update_edid_property(struct drm_connector *connector,
6748				       const struct edid *edid)
6749{
6750	struct drm_edid drm_edid;
6751
6752	return _drm_connector_update_edid_property(connector,
6753						   drm_edid_legacy_init(&drm_edid, edid));
6754}
6755EXPORT_SYMBOL(drm_connector_update_edid_property);
6756
6757/**
6758 * drm_add_edid_modes - add modes from EDID data, if available
6759 * @connector: connector we're probing
6760 * @edid: EDID data
6761 *
6762 * Add the specified modes to the connector's mode list. Also fills out the
6763 * &drm_display_info structure and ELD in @connector with any information which
6764 * can be derived from the edid.
6765 *
6766 * This function is deprecated. Use drm_edid_connector_update() instead.
6767 *
6768 * Return: The number of modes added or 0 if we couldn't find any.
6769 */
6770int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6771{
6772	struct drm_edid drm_edid;
 
6773
6774	if (edid && !drm_edid_is_valid(edid)) {
6775		drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6776			 connector->base.id, connector->name);
6777		edid = NULL;
6778	}
6779
6780	return _drm_edid_connector_update(connector,
6781					  drm_edid_legacy_init(&drm_edid, edid));
 
 
 
6782}
6783EXPORT_SYMBOL(drm_add_edid_modes);
6784
6785/**
6786 * drm_add_modes_noedid - add modes for the connectors without EDID
6787 * @connector: connector we're probing
6788 * @hdisplay: the horizontal display limit
6789 * @vdisplay: the vertical display limit
6790 *
6791 * Add the specified modes to the connector's mode list. Only when the
6792 * hdisplay/vdisplay is not beyond the given limit, it will be added.
6793 *
6794 * Return: The number of modes added or 0 if we couldn't find any.
6795 */
6796int drm_add_modes_noedid(struct drm_connector *connector,
6797			int hdisplay, int vdisplay)
6798{
6799	int i, count, num_modes = 0;
6800	struct drm_display_mode *mode;
6801	struct drm_device *dev = connector->dev;
6802
6803	count = ARRAY_SIZE(drm_dmt_modes);
6804	if (hdisplay < 0)
6805		hdisplay = 0;
6806	if (vdisplay < 0)
6807		vdisplay = 0;
6808
6809	for (i = 0; i < count; i++) {
6810		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6811
6812		if (hdisplay && vdisplay) {
6813			/*
6814			 * Only when two are valid, they will be used to check
6815			 * whether the mode should be added to the mode list of
6816			 * the connector.
6817			 */
6818			if (ptr->hdisplay > hdisplay ||
6819					ptr->vdisplay > vdisplay)
6820				continue;
6821		}
6822		if (drm_mode_vrefresh(ptr) > 61)
6823			continue;
6824		mode = drm_mode_duplicate(dev, ptr);
6825		if (mode) {
6826			drm_mode_probed_add(connector, mode);
6827			num_modes++;
6828		}
6829	}
6830	return num_modes;
6831}
6832EXPORT_SYMBOL(drm_add_modes_noedid);
6833
6834/**
6835 * drm_set_preferred_mode - Sets the preferred mode of a connector
6836 * @connector: connector whose mode list should be processed
6837 * @hpref: horizontal resolution of preferred mode
6838 * @vpref: vertical resolution of preferred mode
6839 *
6840 * Marks a mode as preferred if it matches the resolution specified by @hpref
6841 * and @vpref.
6842 */
6843void drm_set_preferred_mode(struct drm_connector *connector,
6844			   int hpref, int vpref)
6845{
6846	struct drm_display_mode *mode;
6847
6848	list_for_each_entry(mode, &connector->probed_modes, head) {
6849		if (mode->hdisplay == hpref &&
6850		    mode->vdisplay == vpref)
6851			mode->type |= DRM_MODE_TYPE_PREFERRED;
6852	}
6853}
6854EXPORT_SYMBOL(drm_set_preferred_mode);
6855
6856static bool is_hdmi2_sink(const struct drm_connector *connector)
6857{
6858	/*
6859	 * FIXME: sil-sii8620 doesn't have a connector around when
6860	 * we need one, so we have to be prepared for a NULL connector.
6861	 */
6862	if (!connector)
6863		return true;
6864
6865	return connector->display_info.hdmi.scdc.supported ||
6866		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
6867}
6868
6869static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
6870			    const struct drm_display_mode *mode)
6871{
6872	bool has_hdmi_infoframe = connector ?
6873		connector->display_info.has_hdmi_infoframe : false;
6874
6875	if (!has_hdmi_infoframe)
6876		return 0;
6877
6878	/* No HDMI VIC when signalling 3D video format */
6879	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
6880		return 0;
6881
6882	return drm_match_hdmi_mode(mode);
6883}
6884
6885static u8 drm_mode_cea_vic(const struct drm_connector *connector,
6886			   const struct drm_display_mode *mode)
6887{
6888	u8 vic;
6889
6890	/*
6891	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
6892	 * we should send its VIC in vendor infoframes, else send the
6893	 * VIC in AVI infoframes. Lets check if this mode is present in
6894	 * HDMI 1.4b 4K modes
6895	 */
6896	if (drm_mode_hdmi_vic(connector, mode))
6897		return 0;
6898
6899	vic = drm_match_cea_mode(mode);
 
6900
6901	/*
6902	 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
6903	 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
6904	 * have to make sure we dont break HDMI 1.4 sinks.
6905	 */
6906	if (!is_hdmi2_sink(connector) && vic > 64)
 
 
 
 
 
 
 
 
6907		return 0;
6908
6909	return vic;
6910}
6911
6912/**
6913 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
6914 *                                              data from a DRM display mode
6915 * @frame: HDMI AVI infoframe
6916 * @connector: the connector
6917 * @mode: DRM display mode
6918 *
6919 * Return: 0 on success or a negative error code on failure.
6920 */
6921int
6922drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
6923					 const struct drm_connector *connector,
6924					 const struct drm_display_mode *mode)
6925{
6926	enum hdmi_picture_aspect picture_aspect;
6927	u8 vic, hdmi_vic;
6928
6929	if (!frame || !mode)
6930		return -EINVAL;
6931
6932	hdmi_avi_infoframe_init(frame);
6933
6934	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
6935		frame->pixel_repeat = 1;
6936
6937	vic = drm_mode_cea_vic(connector, mode);
6938	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
6939
6940	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
6941
6942	/*
6943	 * As some drivers don't support atomic, we can't use connector state.
6944	 * So just initialize the frame with default values, just the same way
6945	 * as it's done with other properties here.
6946	 */
6947	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
6948	frame->itc = 0;
6949
6950	/*
6951	 * Populate picture aspect ratio from either
6952	 * user input (if specified) or from the CEA/HDMI mode lists.
6953	 */
6954	picture_aspect = mode->picture_aspect_ratio;
6955	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
6956		if (vic)
6957			picture_aspect = drm_get_cea_aspect_ratio(vic);
6958		else if (hdmi_vic)
6959			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
6960	}
6961
6962	/*
6963	 * The infoframe can't convey anything but none, 4:3
6964	 * and 16:9, so if the user has asked for anything else
6965	 * we can only satisfy it by specifying the right VIC.
6966	 */
6967	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
6968		if (vic) {
6969			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
6970				return -EINVAL;
6971		} else if (hdmi_vic) {
6972			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
6973				return -EINVAL;
6974		} else {
6975			return -EINVAL;
6976		}
6977
6978		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
6979	}
6980
6981	frame->video_code = vic;
6982	frame->picture_aspect = picture_aspect;
6983	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
6984	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
6985
6986	return 0;
6987}
6988EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
6989
6990/**
6991 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
6992 *                                        quantization range information
6993 * @frame: HDMI AVI infoframe
6994 * @connector: the connector
6995 * @mode: DRM display mode
6996 * @rgb_quant_range: RGB quantization range (Q)
6997 */
6998void
6999drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7000				   const struct drm_connector *connector,
7001				   const struct drm_display_mode *mode,
7002				   enum hdmi_quantization_range rgb_quant_range)
7003{
7004	const struct drm_display_info *info = &connector->display_info;
7005
7006	/*
7007	 * CEA-861:
7008	 * "A Source shall not send a non-zero Q value that does not correspond
7009	 *  to the default RGB Quantization Range for the transmitted Picture
7010	 *  unless the Sink indicates support for the Q bit in a Video
7011	 *  Capabilities Data Block."
7012	 *
7013	 * HDMI 2.0 recommends sending non-zero Q when it does match the
7014	 * default RGB quantization range for the mode, even when QS=0.
7015	 */
7016	if (info->rgb_quant_range_selectable ||
7017	    rgb_quant_range == drm_default_rgb_quant_range(mode))
7018		frame->quantization_range = rgb_quant_range;
7019	else
7020		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7021
7022	/*
7023	 * CEA-861-F:
7024	 * "When transmitting any RGB colorimetry, the Source should set the
7025	 *  YQ-field to match the RGB Quantization Range being transmitted
7026	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7027	 *  set YQ=1) and the Sink shall ignore the YQ-field."
7028	 *
7029	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7030	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7031	 * good way to tell which version of CEA-861 the sink supports, so
7032	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7033	 * on CEA-861-F.
7034	 */
7035	if (!is_hdmi2_sink(connector) ||
7036	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7037		frame->ycc_quantization_range =
7038			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7039	else
7040		frame->ycc_quantization_range =
7041			HDMI_YCC_QUANTIZATION_RANGE_FULL;
7042}
7043EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7044
7045static enum hdmi_3d_structure
7046s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7047{
7048	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7049
7050	switch (layout) {
7051	case DRM_MODE_FLAG_3D_FRAME_PACKING:
7052		return HDMI_3D_STRUCTURE_FRAME_PACKING;
7053	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7054		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7055	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7056		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7057	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7058		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7059	case DRM_MODE_FLAG_3D_L_DEPTH:
7060		return HDMI_3D_STRUCTURE_L_DEPTH;
7061	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7062		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7063	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7064		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7065	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7066		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7067	default:
7068		return HDMI_3D_STRUCTURE_INVALID;
7069	}
7070}
7071
7072/**
7073 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7074 * data from a DRM display mode
7075 * @frame: HDMI vendor infoframe
7076 * @connector: the connector
7077 * @mode: DRM display mode
7078 *
7079 * Note that there's is a need to send HDMI vendor infoframes only when using a
7080 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7081 * function will return -EINVAL, error that can be safely ignored.
7082 *
7083 * Return: 0 on success or a negative error code on failure.
7084 */
7085int
7086drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7087					    const struct drm_connector *connector,
7088					    const struct drm_display_mode *mode)
7089{
7090	/*
7091	 * FIXME: sil-sii8620 doesn't have a connector around when
7092	 * we need one, so we have to be prepared for a NULL connector.
7093	 */
7094	bool has_hdmi_infoframe = connector ?
7095		connector->display_info.has_hdmi_infoframe : false;
7096	int err;
7097
7098	if (!frame || !mode)
7099		return -EINVAL;
7100
7101	if (!has_hdmi_infoframe)
7102		return -EINVAL;
7103
7104	err = hdmi_vendor_infoframe_init(frame);
7105	if (err < 0)
7106		return err;
7107
7108	/*
7109	 * Even if it's not absolutely necessary to send the infoframe
7110	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7111	 * know that the sink can handle it. This is based on a
7112	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7113	 * have trouble realizing that they should switch from 3D to 2D
7114	 * mode if the source simply stops sending the infoframe when
7115	 * it wants to switch from 3D to 2D.
7116	 */
7117	frame->vic = drm_mode_hdmi_vic(connector, mode);
7118	frame->s3d_struct = s3d_structure_from_display_mode(mode);
7119
7120	return 0;
7121}
7122EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7123
7124static void drm_parse_tiled_block(struct drm_connector *connector,
7125				  const struct displayid_block *block)
7126{
7127	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7128	u16 w, h;
7129	u8 tile_v_loc, tile_h_loc;
7130	u8 num_v_tile, num_h_tile;
7131	struct drm_tile_group *tg;
7132
7133	w = tile->tile_size[0] | tile->tile_size[1] << 8;
7134	h = tile->tile_size[2] | tile->tile_size[3] << 8;
7135
7136	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7137	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7138	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7139	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7140
7141	connector->has_tile = true;
7142	if (tile->tile_cap & 0x80)
7143		connector->tile_is_single_monitor = true;
7144
7145	connector->num_h_tile = num_h_tile + 1;
7146	connector->num_v_tile = num_v_tile + 1;
7147	connector->tile_h_loc = tile_h_loc;
7148	connector->tile_v_loc = tile_v_loc;
7149	connector->tile_h_size = w + 1;
7150	connector->tile_v_size = h + 1;
7151
7152	drm_dbg_kms(connector->dev,
7153		    "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7154		    connector->base.id, connector->name,
7155		    tile->tile_cap,
7156		    connector->tile_h_size, connector->tile_v_size,
7157		    connector->num_h_tile, connector->num_v_tile,
7158		    connector->tile_h_loc, connector->tile_v_loc,
7159		    tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7160
7161	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7162	if (!tg)
7163		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7164	if (!tg)
7165		return;
7166
7167	if (connector->tile_group != tg) {
7168		/* if we haven't got a pointer,
7169		   take the reference, drop ref to old tile group */
7170		if (connector->tile_group)
7171			drm_mode_put_tile_group(connector->dev, connector->tile_group);
7172		connector->tile_group = tg;
7173	} else {
7174		/* if same tile group, then release the ref we just took. */
7175		drm_mode_put_tile_group(connector->dev, tg);
7176	}
7177}
7178
 
 
 
 
 
 
 
 
 
7179static void _drm_update_tile_info(struct drm_connector *connector,
7180				  const struct drm_edid *drm_edid)
7181{
7182	const struct displayid_block *block;
7183	struct displayid_iter iter;
7184
7185	connector->has_tile = false;
7186
7187	displayid_iter_edid_begin(drm_edid, &iter);
7188	displayid_iter_for_each(block, &iter) {
7189		if (block->tag == DATA_BLOCK_TILED_DISPLAY)
7190			drm_parse_tiled_block(connector, block);
7191	}
7192	displayid_iter_end(&iter);
7193
7194	if (!connector->has_tile && connector->tile_group) {
7195		drm_mode_put_tile_group(connector->dev, connector->tile_group);
7196		connector->tile_group = NULL;
7197	}
7198}