Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Device probing and sysfs code.
4 *
5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8#include <linux/bug.h>
9#include <linux/ctype.h>
10#include <linux/delay.h>
11#include <linux/device.h>
12#include <linux/errno.h>
13#include <linux/firewire.h>
14#include <linux/firewire-constants.h>
15#include <linux/idr.h>
16#include <linux/jiffies.h>
17#include <linux/kobject.h>
18#include <linux/list.h>
19#include <linux/mod_devicetable.h>
20#include <linux/module.h>
21#include <linux/mutex.h>
22#include <linux/random.h>
23#include <linux/rwsem.h>
24#include <linux/slab.h>
25#include <linux/spinlock.h>
26#include <linux/string.h>
27#include <linux/workqueue.h>
28
29#include <linux/atomic.h>
30#include <asm/byteorder.h>
31
32#include "core.h"
33
34#define ROOT_DIR_OFFSET 5
35
36void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
37{
38 ci->p = p + 1;
39 ci->end = ci->p + (p[0] >> 16);
40}
41EXPORT_SYMBOL(fw_csr_iterator_init);
42
43int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
44{
45 *key = *ci->p >> 24;
46 *value = *ci->p & 0xffffff;
47
48 return ci->p++ < ci->end;
49}
50EXPORT_SYMBOL(fw_csr_iterator_next);
51
52static const u32 *search_directory(const u32 *directory, int search_key)
53{
54 struct fw_csr_iterator ci;
55 int key, value;
56
57 search_key |= CSR_DIRECTORY;
58
59 fw_csr_iterator_init(&ci, directory);
60 while (fw_csr_iterator_next(&ci, &key, &value)) {
61 if (key == search_key)
62 return ci.p - 1 + value;
63 }
64
65 return NULL;
66}
67
68static const u32 *search_leaf(const u32 *directory, int search_key)
69{
70 struct fw_csr_iterator ci;
71 int last_key = 0, key, value;
72
73 fw_csr_iterator_init(&ci, directory);
74 while (fw_csr_iterator_next(&ci, &key, &value)) {
75 if (last_key == search_key &&
76 key == (CSR_DESCRIPTOR | CSR_LEAF))
77 return ci.p - 1 + value;
78
79 last_key = key;
80 }
81
82 return NULL;
83}
84
85static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
86{
87 unsigned int quadlets, i;
88 char c;
89
90 if (!size || !buf)
91 return -EINVAL;
92
93 quadlets = min(block[0] >> 16, 256U);
94 if (quadlets < 2)
95 return -ENODATA;
96
97 if (block[1] != 0 || block[2] != 0)
98 /* unknown language/character set */
99 return -ENODATA;
100
101 block += 3;
102 quadlets -= 2;
103 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
104 c = block[i / 4] >> (24 - 8 * (i % 4));
105 if (c == '\0')
106 break;
107 buf[i] = c;
108 }
109 buf[i] = '\0';
110
111 return i;
112}
113
114/**
115 * fw_csr_string() - reads a string from the configuration ROM
116 * @directory: e.g. root directory or unit directory
117 * @key: the key of the preceding directory entry
118 * @buf: where to put the string
119 * @size: size of @buf, in bytes
120 *
121 * The string is taken from a minimal ASCII text descriptor leaf just after the entry with the
122 * @key. The string is zero-terminated. An overlong string is silently truncated such that it
123 * and the zero byte fit into @size.
124 *
125 * Returns strlen(buf) or a negative error code.
126 */
127int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
128{
129 const u32 *leaf = search_leaf(directory, key);
130 if (!leaf)
131 return -ENOENT;
132
133 return textual_leaf_to_string(leaf, buf, size);
134}
135EXPORT_SYMBOL(fw_csr_string);
136
137static void get_ids(const u32 *directory, int *id)
138{
139 struct fw_csr_iterator ci;
140 int key, value;
141
142 fw_csr_iterator_init(&ci, directory);
143 while (fw_csr_iterator_next(&ci, &key, &value)) {
144 switch (key) {
145 case CSR_VENDOR: id[0] = value; break;
146 case CSR_MODEL: id[1] = value; break;
147 case CSR_SPECIFIER_ID: id[2] = value; break;
148 case CSR_VERSION: id[3] = value; break;
149 }
150 }
151}
152
153static void get_modalias_ids(const struct fw_unit *unit, int *id)
154{
155 const u32 *root_directory = &fw_parent_device(unit)->config_rom[ROOT_DIR_OFFSET];
156 const u32 *directories[] = {NULL, NULL, NULL};
157 const u32 *vendor_directory;
158 int i;
159
160 directories[0] = root_directory;
161
162 // Legacy layout of configuration ROM described in Annex 1 of 'Configuration ROM for AV/C
163 // Devices 1.0 (December 12, 2000, 1394 Trading Association, TA Document 1999027)'.
164 vendor_directory = search_directory(root_directory, CSR_VENDOR);
165 if (!vendor_directory) {
166 directories[1] = unit->directory;
167 } else {
168 directories[1] = vendor_directory;
169 directories[2] = unit->directory;
170 }
171
172 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i)
173 get_ids(directories[i], id);
174}
175
176static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
177{
178 int match = 0;
179
180 if (id[0] == id_table->vendor_id)
181 match |= IEEE1394_MATCH_VENDOR_ID;
182 if (id[1] == id_table->model_id)
183 match |= IEEE1394_MATCH_MODEL_ID;
184 if (id[2] == id_table->specifier_id)
185 match |= IEEE1394_MATCH_SPECIFIER_ID;
186 if (id[3] == id_table->version)
187 match |= IEEE1394_MATCH_VERSION;
188
189 return (match & id_table->match_flags) == id_table->match_flags;
190}
191
192static const struct ieee1394_device_id *unit_match(struct device *dev,
193 struct device_driver *drv)
194{
195 const struct ieee1394_device_id *id_table =
196 container_of(drv, struct fw_driver, driver)->id_table;
197 int id[] = {0, 0, 0, 0};
198
199 get_modalias_ids(fw_unit(dev), id);
200
201 for (; id_table->match_flags != 0; id_table++)
202 if (match_ids(id_table, id))
203 return id_table;
204
205 return NULL;
206}
207
208static bool is_fw_unit(const struct device *dev);
209
210static int fw_unit_match(struct device *dev, struct device_driver *drv)
211{
212 /* We only allow binding to fw_units. */
213 return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
214}
215
216static int fw_unit_probe(struct device *dev)
217{
218 struct fw_driver *driver =
219 container_of(dev->driver, struct fw_driver, driver);
220
221 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
222}
223
224static void fw_unit_remove(struct device *dev)
225{
226 struct fw_driver *driver =
227 container_of(dev->driver, struct fw_driver, driver);
228
229 driver->remove(fw_unit(dev));
230}
231
232static int get_modalias(const struct fw_unit *unit, char *buffer, size_t buffer_size)
233{
234 int id[] = {0, 0, 0, 0};
235
236 get_modalias_ids(unit, id);
237
238 return snprintf(buffer, buffer_size,
239 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
240 id[0], id[1], id[2], id[3]);
241}
242
243static int fw_unit_uevent(const struct device *dev, struct kobj_uevent_env *env)
244{
245 const struct fw_unit *unit = fw_unit(dev);
246 char modalias[64];
247
248 get_modalias(unit, modalias, sizeof(modalias));
249
250 if (add_uevent_var(env, "MODALIAS=%s", modalias))
251 return -ENOMEM;
252
253 return 0;
254}
255
256const struct bus_type fw_bus_type = {
257 .name = "firewire",
258 .match = fw_unit_match,
259 .probe = fw_unit_probe,
260 .remove = fw_unit_remove,
261};
262EXPORT_SYMBOL(fw_bus_type);
263
264int fw_device_enable_phys_dma(struct fw_device *device)
265{
266 int generation = device->generation;
267
268 /* device->node_id, accessed below, must not be older than generation */
269 smp_rmb();
270
271 return device->card->driver->enable_phys_dma(device->card,
272 device->node_id,
273 generation);
274}
275EXPORT_SYMBOL(fw_device_enable_phys_dma);
276
277struct config_rom_attribute {
278 struct device_attribute attr;
279 u32 key;
280};
281
282static ssize_t show_immediate(struct device *dev,
283 struct device_attribute *dattr, char *buf)
284{
285 struct config_rom_attribute *attr =
286 container_of(dattr, struct config_rom_attribute, attr);
287 struct fw_csr_iterator ci;
288 const u32 *directories[] = {NULL, NULL};
289 int i, value = -1;
290
291 down_read(&fw_device_rwsem);
292
293 if (is_fw_unit(dev)) {
294 directories[0] = fw_unit(dev)->directory;
295 } else {
296 const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
297 const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
298
299 if (!vendor_directory) {
300 directories[0] = root_directory;
301 } else {
302 // Legacy layout of configuration ROM described in Annex 1 of
303 // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 Trading
304 // Association, TA Document 1999027)'.
305 directories[0] = vendor_directory;
306 directories[1] = root_directory;
307 }
308 }
309
310 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
311 int key, val;
312
313 fw_csr_iterator_init(&ci, directories[i]);
314 while (fw_csr_iterator_next(&ci, &key, &val)) {
315 if (attr->key == key)
316 value = val;
317 }
318 }
319
320 up_read(&fw_device_rwsem);
321
322 if (value < 0)
323 return -ENOENT;
324
325 return snprintf(buf, buf ? PAGE_SIZE : 0, "0x%06x\n", value);
326}
327
328#define IMMEDIATE_ATTR(name, key) \
329 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
330
331static ssize_t show_text_leaf(struct device *dev,
332 struct device_attribute *dattr, char *buf)
333{
334 struct config_rom_attribute *attr =
335 container_of(dattr, struct config_rom_attribute, attr);
336 const u32 *directories[] = {NULL, NULL};
337 size_t bufsize;
338 char dummy_buf[2];
339 int i, ret = -ENOENT;
340
341 down_read(&fw_device_rwsem);
342
343 if (is_fw_unit(dev)) {
344 directories[0] = fw_unit(dev)->directory;
345 } else {
346 const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
347 const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
348
349 if (!vendor_directory) {
350 directories[0] = root_directory;
351 } else {
352 // Legacy layout of configuration ROM described in Annex 1 of
353 // 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394
354 // Trading Association, TA Document 1999027)'.
355 directories[0] = root_directory;
356 directories[1] = vendor_directory;
357 }
358 }
359
360 if (buf) {
361 bufsize = PAGE_SIZE - 1;
362 } else {
363 buf = dummy_buf;
364 bufsize = 1;
365 }
366
367 for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
368 int result = fw_csr_string(directories[i], attr->key, buf, bufsize);
369 // Detected.
370 if (result >= 0) {
371 ret = result;
372 } else if (i == 0 && attr->key == CSR_VENDOR) {
373 // Sony DVMC-DA1 has configuration ROM such that the descriptor leaf entry
374 // in the root directory follows to the directory entry for vendor ID
375 // instead of the immediate value for vendor ID.
376 result = fw_csr_string(directories[i], CSR_DIRECTORY | attr->key, buf,
377 bufsize);
378 if (result >= 0)
379 ret = result;
380 }
381 }
382
383 if (ret >= 0) {
384 /* Strip trailing whitespace and add newline. */
385 while (ret > 0 && isspace(buf[ret - 1]))
386 ret--;
387 strcpy(buf + ret, "\n");
388 ret++;
389 }
390
391 up_read(&fw_device_rwsem);
392
393 return ret;
394}
395
396#define TEXT_LEAF_ATTR(name, key) \
397 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
398
399static struct config_rom_attribute config_rom_attributes[] = {
400 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
401 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
402 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
403 IMMEDIATE_ATTR(version, CSR_VERSION),
404 IMMEDIATE_ATTR(model, CSR_MODEL),
405 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
406 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
407 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
408};
409
410static void init_fw_attribute_group(struct device *dev,
411 struct device_attribute *attrs,
412 struct fw_attribute_group *group)
413{
414 struct device_attribute *attr;
415 int i, j;
416
417 for (j = 0; attrs[j].attr.name != NULL; j++)
418 group->attrs[j] = &attrs[j].attr;
419
420 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
421 attr = &config_rom_attributes[i].attr;
422 if (attr->show(dev, attr, NULL) < 0)
423 continue;
424 group->attrs[j++] = &attr->attr;
425 }
426
427 group->attrs[j] = NULL;
428 group->groups[0] = &group->group;
429 group->groups[1] = NULL;
430 group->group.attrs = group->attrs;
431 dev->groups = (const struct attribute_group **) group->groups;
432}
433
434static ssize_t modalias_show(struct device *dev,
435 struct device_attribute *attr, char *buf)
436{
437 struct fw_unit *unit = fw_unit(dev);
438 int length;
439
440 length = get_modalias(unit, buf, PAGE_SIZE);
441 strcpy(buf + length, "\n");
442
443 return length + 1;
444}
445
446static ssize_t rom_index_show(struct device *dev,
447 struct device_attribute *attr, char *buf)
448{
449 struct fw_device *device = fw_device(dev->parent);
450 struct fw_unit *unit = fw_unit(dev);
451
452 return sysfs_emit(buf, "%td\n", unit->directory - device->config_rom);
453}
454
455static struct device_attribute fw_unit_attributes[] = {
456 __ATTR_RO(modalias),
457 __ATTR_RO(rom_index),
458 __ATTR_NULL,
459};
460
461static ssize_t config_rom_show(struct device *dev,
462 struct device_attribute *attr, char *buf)
463{
464 struct fw_device *device = fw_device(dev);
465 size_t length;
466
467 down_read(&fw_device_rwsem);
468 length = device->config_rom_length * 4;
469 memcpy(buf, device->config_rom, length);
470 up_read(&fw_device_rwsem);
471
472 return length;
473}
474
475static ssize_t guid_show(struct device *dev,
476 struct device_attribute *attr, char *buf)
477{
478 struct fw_device *device = fw_device(dev);
479 int ret;
480
481 down_read(&fw_device_rwsem);
482 ret = sysfs_emit(buf, "0x%08x%08x\n", device->config_rom[3], device->config_rom[4]);
483 up_read(&fw_device_rwsem);
484
485 return ret;
486}
487
488static ssize_t is_local_show(struct device *dev,
489 struct device_attribute *attr, char *buf)
490{
491 struct fw_device *device = fw_device(dev);
492
493 return sprintf(buf, "%u\n", device->is_local);
494}
495
496static int units_sprintf(char *buf, const u32 *directory)
497{
498 struct fw_csr_iterator ci;
499 int key, value;
500 int specifier_id = 0;
501 int version = 0;
502
503 fw_csr_iterator_init(&ci, directory);
504 while (fw_csr_iterator_next(&ci, &key, &value)) {
505 switch (key) {
506 case CSR_SPECIFIER_ID:
507 specifier_id = value;
508 break;
509 case CSR_VERSION:
510 version = value;
511 break;
512 }
513 }
514
515 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
516}
517
518static ssize_t units_show(struct device *dev,
519 struct device_attribute *attr, char *buf)
520{
521 struct fw_device *device = fw_device(dev);
522 struct fw_csr_iterator ci;
523 int key, value, i = 0;
524
525 down_read(&fw_device_rwsem);
526 fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
527 while (fw_csr_iterator_next(&ci, &key, &value)) {
528 if (key != (CSR_UNIT | CSR_DIRECTORY))
529 continue;
530 i += units_sprintf(&buf[i], ci.p + value - 1);
531 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
532 break;
533 }
534 up_read(&fw_device_rwsem);
535
536 if (i)
537 buf[i - 1] = '\n';
538
539 return i;
540}
541
542static struct device_attribute fw_device_attributes[] = {
543 __ATTR_RO(config_rom),
544 __ATTR_RO(guid),
545 __ATTR_RO(is_local),
546 __ATTR_RO(units),
547 __ATTR_NULL,
548};
549
550static int read_rom(struct fw_device *device,
551 int generation, int index, u32 *data)
552{
553 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
554 int i, rcode;
555
556 /* device->node_id, accessed below, must not be older than generation */
557 smp_rmb();
558
559 for (i = 10; i < 100; i += 10) {
560 rcode = fw_run_transaction(device->card,
561 TCODE_READ_QUADLET_REQUEST, device->node_id,
562 generation, device->max_speed, offset, data, 4);
563 if (rcode != RCODE_BUSY)
564 break;
565 msleep(i);
566 }
567 be32_to_cpus(data);
568
569 return rcode;
570}
571
572#define MAX_CONFIG_ROM_SIZE 256
573
574/*
575 * Read the bus info block, perform a speed probe, and read all of the rest of
576 * the config ROM. We do all this with a cached bus generation. If the bus
577 * generation changes under us, read_config_rom will fail and get retried.
578 * It's better to start all over in this case because the node from which we
579 * are reading the ROM may have changed the ROM during the reset.
580 * Returns either a result code or a negative error code.
581 */
582static int read_config_rom(struct fw_device *device, int generation)
583{
584 struct fw_card *card = device->card;
585 const u32 *old_rom, *new_rom;
586 u32 *rom, *stack;
587 u32 sp, key;
588 int i, end, length, ret;
589
590 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
591 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
592 if (rom == NULL)
593 return -ENOMEM;
594
595 stack = &rom[MAX_CONFIG_ROM_SIZE];
596 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
597
598 device->max_speed = SCODE_100;
599
600 /* First read the bus info block. */
601 for (i = 0; i < 5; i++) {
602 ret = read_rom(device, generation, i, &rom[i]);
603 if (ret != RCODE_COMPLETE)
604 goto out;
605 /*
606 * As per IEEE1212 7.2, during initialization, devices can
607 * reply with a 0 for the first quadlet of the config
608 * rom to indicate that they are booting (for example,
609 * if the firmware is on the disk of a external
610 * harddisk). In that case we just fail, and the
611 * retry mechanism will try again later.
612 */
613 if (i == 0 && rom[i] == 0) {
614 ret = RCODE_BUSY;
615 goto out;
616 }
617 }
618
619 device->max_speed = device->node->max_speed;
620
621 /*
622 * Determine the speed of
623 * - devices with link speed less than PHY speed,
624 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
625 * - all devices if there are 1394b repeaters.
626 * Note, we cannot use the bus info block's link_spd as starting point
627 * because some buggy firmwares set it lower than necessary and because
628 * 1394-1995 nodes do not have the field.
629 */
630 if ((rom[2] & 0x7) < device->max_speed ||
631 device->max_speed == SCODE_BETA ||
632 card->beta_repeaters_present) {
633 u32 dummy;
634
635 /* for S1600 and S3200 */
636 if (device->max_speed == SCODE_BETA)
637 device->max_speed = card->link_speed;
638
639 while (device->max_speed > SCODE_100) {
640 if (read_rom(device, generation, 0, &dummy) ==
641 RCODE_COMPLETE)
642 break;
643 device->max_speed--;
644 }
645 }
646
647 /*
648 * Now parse the config rom. The config rom is a recursive
649 * directory structure so we parse it using a stack of
650 * references to the blocks that make up the structure. We
651 * push a reference to the root directory on the stack to
652 * start things off.
653 */
654 length = i;
655 sp = 0;
656 stack[sp++] = 0xc0000005;
657 while (sp > 0) {
658 /*
659 * Pop the next block reference of the stack. The
660 * lower 24 bits is the offset into the config rom,
661 * the upper 8 bits are the type of the reference the
662 * block.
663 */
664 key = stack[--sp];
665 i = key & 0xffffff;
666 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
667 ret = -ENXIO;
668 goto out;
669 }
670
671 /* Read header quadlet for the block to get the length. */
672 ret = read_rom(device, generation, i, &rom[i]);
673 if (ret != RCODE_COMPLETE)
674 goto out;
675 end = i + (rom[i] >> 16) + 1;
676 if (end > MAX_CONFIG_ROM_SIZE) {
677 /*
678 * This block extends outside the config ROM which is
679 * a firmware bug. Ignore this whole block, i.e.
680 * simply set a fake block length of 0.
681 */
682 fw_err(card, "skipped invalid ROM block %x at %llx\n",
683 rom[i],
684 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
685 rom[i] = 0;
686 end = i;
687 }
688 i++;
689
690 /*
691 * Now read in the block. If this is a directory
692 * block, check the entries as we read them to see if
693 * it references another block, and push it in that case.
694 */
695 for (; i < end; i++) {
696 ret = read_rom(device, generation, i, &rom[i]);
697 if (ret != RCODE_COMPLETE)
698 goto out;
699
700 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
701 continue;
702 /*
703 * Offset points outside the ROM. May be a firmware
704 * bug or an Extended ROM entry (IEEE 1212-2001 clause
705 * 7.7.18). Simply overwrite this pointer here by a
706 * fake immediate entry so that later iterators over
707 * the ROM don't have to check offsets all the time.
708 */
709 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
710 fw_err(card,
711 "skipped unsupported ROM entry %x at %llx\n",
712 rom[i],
713 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
714 rom[i] = 0;
715 continue;
716 }
717 stack[sp++] = i + rom[i];
718 }
719 if (length < i)
720 length = i;
721 }
722
723 old_rom = device->config_rom;
724 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
725 if (new_rom == NULL) {
726 ret = -ENOMEM;
727 goto out;
728 }
729
730 down_write(&fw_device_rwsem);
731 device->config_rom = new_rom;
732 device->config_rom_length = length;
733 up_write(&fw_device_rwsem);
734
735 kfree(old_rom);
736 ret = RCODE_COMPLETE;
737 device->max_rec = rom[2] >> 12 & 0xf;
738 device->cmc = rom[2] >> 30 & 1;
739 device->irmc = rom[2] >> 31 & 1;
740 out:
741 kfree(rom);
742
743 return ret;
744}
745
746static void fw_unit_release(struct device *dev)
747{
748 struct fw_unit *unit = fw_unit(dev);
749
750 fw_device_put(fw_parent_device(unit));
751 kfree(unit);
752}
753
754static struct device_type fw_unit_type = {
755 .uevent = fw_unit_uevent,
756 .release = fw_unit_release,
757};
758
759static bool is_fw_unit(const struct device *dev)
760{
761 return dev->type == &fw_unit_type;
762}
763
764static void create_units(struct fw_device *device)
765{
766 struct fw_csr_iterator ci;
767 struct fw_unit *unit;
768 int key, value, i;
769
770 i = 0;
771 fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
772 while (fw_csr_iterator_next(&ci, &key, &value)) {
773 if (key != (CSR_UNIT | CSR_DIRECTORY))
774 continue;
775
776 /*
777 * Get the address of the unit directory and try to
778 * match the drivers id_tables against it.
779 */
780 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
781 if (unit == NULL)
782 continue;
783
784 unit->directory = ci.p + value - 1;
785 unit->device.bus = &fw_bus_type;
786 unit->device.type = &fw_unit_type;
787 unit->device.parent = &device->device;
788 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
789
790 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
791 ARRAY_SIZE(fw_unit_attributes) +
792 ARRAY_SIZE(config_rom_attributes));
793 init_fw_attribute_group(&unit->device,
794 fw_unit_attributes,
795 &unit->attribute_group);
796
797 fw_device_get(device);
798 if (device_register(&unit->device) < 0) {
799 put_device(&unit->device);
800 continue;
801 }
802 }
803}
804
805static int shutdown_unit(struct device *device, void *data)
806{
807 device_unregister(device);
808
809 return 0;
810}
811
812/*
813 * fw_device_rwsem acts as dual purpose mutex:
814 * - serializes accesses to fw_device_idr,
815 * - serializes accesses to fw_device.config_rom/.config_rom_length and
816 * fw_unit.directory, unless those accesses happen at safe occasions
817 */
818DECLARE_RWSEM(fw_device_rwsem);
819
820DEFINE_IDR(fw_device_idr);
821int fw_cdev_major;
822
823struct fw_device *fw_device_get_by_devt(dev_t devt)
824{
825 struct fw_device *device;
826
827 down_read(&fw_device_rwsem);
828 device = idr_find(&fw_device_idr, MINOR(devt));
829 if (device)
830 fw_device_get(device);
831 up_read(&fw_device_rwsem);
832
833 return device;
834}
835
836struct workqueue_struct *fw_workqueue;
837EXPORT_SYMBOL(fw_workqueue);
838
839static void fw_schedule_device_work(struct fw_device *device,
840 unsigned long delay)
841{
842 queue_delayed_work(fw_workqueue, &device->work, delay);
843}
844
845/*
846 * These defines control the retry behavior for reading the config
847 * rom. It shouldn't be necessary to tweak these; if the device
848 * doesn't respond to a config rom read within 10 seconds, it's not
849 * going to respond at all. As for the initial delay, a lot of
850 * devices will be able to respond within half a second after bus
851 * reset. On the other hand, it's not really worth being more
852 * aggressive than that, since it scales pretty well; if 10 devices
853 * are plugged in, they're all getting read within one second.
854 */
855
856#define MAX_RETRIES 10
857#define RETRY_DELAY (3 * HZ)
858#define INITIAL_DELAY (HZ / 2)
859#define SHUTDOWN_DELAY (2 * HZ)
860
861static void fw_device_shutdown(struct work_struct *work)
862{
863 struct fw_device *device =
864 container_of(work, struct fw_device, work.work);
865 int minor = MINOR(device->device.devt);
866
867 if (time_before64(get_jiffies_64(),
868 device->card->reset_jiffies + SHUTDOWN_DELAY)
869 && !list_empty(&device->card->link)) {
870 fw_schedule_device_work(device, SHUTDOWN_DELAY);
871 return;
872 }
873
874 if (atomic_cmpxchg(&device->state,
875 FW_DEVICE_GONE,
876 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
877 return;
878
879 fw_device_cdev_remove(device);
880 device_for_each_child(&device->device, NULL, shutdown_unit);
881 device_unregister(&device->device);
882
883 down_write(&fw_device_rwsem);
884 idr_remove(&fw_device_idr, minor);
885 up_write(&fw_device_rwsem);
886
887 fw_device_put(device);
888}
889
890static void fw_device_release(struct device *dev)
891{
892 struct fw_device *device = fw_device(dev);
893 struct fw_card *card = device->card;
894 unsigned long flags;
895
896 /*
897 * Take the card lock so we don't set this to NULL while a
898 * FW_NODE_UPDATED callback is being handled or while the
899 * bus manager work looks at this node.
900 */
901 spin_lock_irqsave(&card->lock, flags);
902 device->node->data = NULL;
903 spin_unlock_irqrestore(&card->lock, flags);
904
905 fw_node_put(device->node);
906 kfree(device->config_rom);
907 kfree(device);
908 fw_card_put(card);
909}
910
911static struct device_type fw_device_type = {
912 .release = fw_device_release,
913};
914
915static bool is_fw_device(const struct device *dev)
916{
917 return dev->type == &fw_device_type;
918}
919
920static int update_unit(struct device *dev, void *data)
921{
922 struct fw_unit *unit = fw_unit(dev);
923 struct fw_driver *driver = (struct fw_driver *)dev->driver;
924
925 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
926 device_lock(dev);
927 driver->update(unit);
928 device_unlock(dev);
929 }
930
931 return 0;
932}
933
934static void fw_device_update(struct work_struct *work)
935{
936 struct fw_device *device =
937 container_of(work, struct fw_device, work.work);
938
939 fw_device_cdev_update(device);
940 device_for_each_child(&device->device, NULL, update_unit);
941}
942
943/*
944 * If a device was pending for deletion because its node went away but its
945 * bus info block and root directory header matches that of a newly discovered
946 * device, revive the existing fw_device.
947 * The newly allocated fw_device becomes obsolete instead.
948 */
949static int lookup_existing_device(struct device *dev, void *data)
950{
951 struct fw_device *old = fw_device(dev);
952 struct fw_device *new = data;
953 struct fw_card *card = new->card;
954 int match = 0;
955
956 if (!is_fw_device(dev))
957 return 0;
958
959 down_read(&fw_device_rwsem); /* serialize config_rom access */
960 spin_lock_irq(&card->lock); /* serialize node access */
961
962 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
963 atomic_cmpxchg(&old->state,
964 FW_DEVICE_GONE,
965 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
966 struct fw_node *current_node = new->node;
967 struct fw_node *obsolete_node = old->node;
968
969 new->node = obsolete_node;
970 new->node->data = new;
971 old->node = current_node;
972 old->node->data = old;
973
974 old->max_speed = new->max_speed;
975 old->node_id = current_node->node_id;
976 smp_wmb(); /* update node_id before generation */
977 old->generation = card->generation;
978 old->config_rom_retries = 0;
979 fw_notice(card, "rediscovered device %s\n", dev_name(dev));
980
981 old->workfn = fw_device_update;
982 fw_schedule_device_work(old, 0);
983
984 if (current_node == card->root_node)
985 fw_schedule_bm_work(card, 0);
986
987 match = 1;
988 }
989
990 spin_unlock_irq(&card->lock);
991 up_read(&fw_device_rwsem);
992
993 return match;
994}
995
996enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
997
998static void set_broadcast_channel(struct fw_device *device, int generation)
999{
1000 struct fw_card *card = device->card;
1001 __be32 data;
1002 int rcode;
1003
1004 if (!card->broadcast_channel_allocated)
1005 return;
1006
1007 /*
1008 * The Broadcast_Channel Valid bit is required by nodes which want to
1009 * transmit on this channel. Such transmissions are practically
1010 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
1011 * to be IRM capable and have a max_rec of 8 or more. We use this fact
1012 * to narrow down to which nodes we send Broadcast_Channel updates.
1013 */
1014 if (!device->irmc || device->max_rec < 8)
1015 return;
1016
1017 /*
1018 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
1019 * Perform a read test first.
1020 */
1021 if (device->bc_implemented == BC_UNKNOWN) {
1022 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
1023 device->node_id, generation, device->max_speed,
1024 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
1025 &data, 4);
1026 switch (rcode) {
1027 case RCODE_COMPLETE:
1028 if (data & cpu_to_be32(1 << 31)) {
1029 device->bc_implemented = BC_IMPLEMENTED;
1030 break;
1031 }
1032 fallthrough; /* to case address error */
1033 case RCODE_ADDRESS_ERROR:
1034 device->bc_implemented = BC_UNIMPLEMENTED;
1035 }
1036 }
1037
1038 if (device->bc_implemented == BC_IMPLEMENTED) {
1039 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
1040 BROADCAST_CHANNEL_VALID);
1041 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
1042 device->node_id, generation, device->max_speed,
1043 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
1044 &data, 4);
1045 }
1046}
1047
1048int fw_device_set_broadcast_channel(struct device *dev, void *gen)
1049{
1050 if (is_fw_device(dev))
1051 set_broadcast_channel(fw_device(dev), (long)gen);
1052
1053 return 0;
1054}
1055
1056static void fw_device_init(struct work_struct *work)
1057{
1058 struct fw_device *device =
1059 container_of(work, struct fw_device, work.work);
1060 struct fw_card *card = device->card;
1061 struct device *revived_dev;
1062 int minor, ret;
1063
1064 /*
1065 * All failure paths here set node->data to NULL, so that we
1066 * don't try to do device_for_each_child() on a kfree()'d
1067 * device.
1068 */
1069
1070 ret = read_config_rom(device, device->generation);
1071 if (ret != RCODE_COMPLETE) {
1072 if (device->config_rom_retries < MAX_RETRIES &&
1073 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1074 device->config_rom_retries++;
1075 fw_schedule_device_work(device, RETRY_DELAY);
1076 } else {
1077 if (device->node->link_on)
1078 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1079 device->node_id,
1080 fw_rcode_string(ret));
1081 if (device->node == card->root_node)
1082 fw_schedule_bm_work(card, 0);
1083 fw_device_release(&device->device);
1084 }
1085 return;
1086 }
1087
1088 revived_dev = device_find_child(card->device,
1089 device, lookup_existing_device);
1090 if (revived_dev) {
1091 put_device(revived_dev);
1092 fw_device_release(&device->device);
1093
1094 return;
1095 }
1096
1097 device_initialize(&device->device);
1098
1099 fw_device_get(device);
1100 down_write(&fw_device_rwsem);
1101 minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1102 GFP_KERNEL);
1103 up_write(&fw_device_rwsem);
1104
1105 if (minor < 0)
1106 goto error;
1107
1108 device->device.bus = &fw_bus_type;
1109 device->device.type = &fw_device_type;
1110 device->device.parent = card->device;
1111 device->device.devt = MKDEV(fw_cdev_major, minor);
1112 dev_set_name(&device->device, "fw%d", minor);
1113
1114 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1115 ARRAY_SIZE(fw_device_attributes) +
1116 ARRAY_SIZE(config_rom_attributes));
1117 init_fw_attribute_group(&device->device,
1118 fw_device_attributes,
1119 &device->attribute_group);
1120
1121 if (device_add(&device->device)) {
1122 fw_err(card, "failed to add device\n");
1123 goto error_with_cdev;
1124 }
1125
1126 create_units(device);
1127
1128 /*
1129 * Transition the device to running state. If it got pulled
1130 * out from under us while we did the initialization work, we
1131 * have to shut down the device again here. Normally, though,
1132 * fw_node_event will be responsible for shutting it down when
1133 * necessary. We have to use the atomic cmpxchg here to avoid
1134 * racing with the FW_NODE_DESTROYED case in
1135 * fw_node_event().
1136 */
1137 if (atomic_cmpxchg(&device->state,
1138 FW_DEVICE_INITIALIZING,
1139 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1140 device->workfn = fw_device_shutdown;
1141 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1142 } else {
1143 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1144 dev_name(&device->device),
1145 device->config_rom[3], device->config_rom[4],
1146 1 << device->max_speed);
1147 device->config_rom_retries = 0;
1148
1149 set_broadcast_channel(device, device->generation);
1150
1151 add_device_randomness(&device->config_rom[3], 8);
1152 }
1153
1154 /*
1155 * Reschedule the IRM work if we just finished reading the
1156 * root node config rom. If this races with a bus reset we
1157 * just end up running the IRM work a couple of extra times -
1158 * pretty harmless.
1159 */
1160 if (device->node == card->root_node)
1161 fw_schedule_bm_work(card, 0);
1162
1163 return;
1164
1165 error_with_cdev:
1166 down_write(&fw_device_rwsem);
1167 idr_remove(&fw_device_idr, minor);
1168 up_write(&fw_device_rwsem);
1169 error:
1170 fw_device_put(device); /* fw_device_idr's reference */
1171
1172 put_device(&device->device); /* our reference */
1173}
1174
1175/* Reread and compare bus info block and header of root directory */
1176static int reread_config_rom(struct fw_device *device, int generation,
1177 bool *changed)
1178{
1179 u32 q;
1180 int i, rcode;
1181
1182 for (i = 0; i < 6; i++) {
1183 rcode = read_rom(device, generation, i, &q);
1184 if (rcode != RCODE_COMPLETE)
1185 return rcode;
1186
1187 if (i == 0 && q == 0)
1188 /* inaccessible (see read_config_rom); retry later */
1189 return RCODE_BUSY;
1190
1191 if (q != device->config_rom[i]) {
1192 *changed = true;
1193 return RCODE_COMPLETE;
1194 }
1195 }
1196
1197 *changed = false;
1198 return RCODE_COMPLETE;
1199}
1200
1201static void fw_device_refresh(struct work_struct *work)
1202{
1203 struct fw_device *device =
1204 container_of(work, struct fw_device, work.work);
1205 struct fw_card *card = device->card;
1206 int ret, node_id = device->node_id;
1207 bool changed;
1208
1209 ret = reread_config_rom(device, device->generation, &changed);
1210 if (ret != RCODE_COMPLETE)
1211 goto failed_config_rom;
1212
1213 if (!changed) {
1214 if (atomic_cmpxchg(&device->state,
1215 FW_DEVICE_INITIALIZING,
1216 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1217 goto gone;
1218
1219 fw_device_update(work);
1220 device->config_rom_retries = 0;
1221 goto out;
1222 }
1223
1224 /*
1225 * Something changed. We keep things simple and don't investigate
1226 * further. We just destroy all previous units and create new ones.
1227 */
1228 device_for_each_child(&device->device, NULL, shutdown_unit);
1229
1230 ret = read_config_rom(device, device->generation);
1231 if (ret != RCODE_COMPLETE)
1232 goto failed_config_rom;
1233
1234 fw_device_cdev_update(device);
1235 create_units(device);
1236
1237 /* Userspace may want to re-read attributes. */
1238 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1239
1240 if (atomic_cmpxchg(&device->state,
1241 FW_DEVICE_INITIALIZING,
1242 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1243 goto gone;
1244
1245 fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1246 device->config_rom_retries = 0;
1247 goto out;
1248
1249 failed_config_rom:
1250 if (device->config_rom_retries < MAX_RETRIES &&
1251 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1252 device->config_rom_retries++;
1253 fw_schedule_device_work(device, RETRY_DELAY);
1254 return;
1255 }
1256
1257 fw_notice(card, "giving up on refresh of device %s: %s\n",
1258 dev_name(&device->device), fw_rcode_string(ret));
1259 gone:
1260 atomic_set(&device->state, FW_DEVICE_GONE);
1261 device->workfn = fw_device_shutdown;
1262 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1263 out:
1264 if (node_id == card->root_node->node_id)
1265 fw_schedule_bm_work(card, 0);
1266}
1267
1268static void fw_device_workfn(struct work_struct *work)
1269{
1270 struct fw_device *device = container_of(to_delayed_work(work),
1271 struct fw_device, work);
1272 device->workfn(work);
1273}
1274
1275void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1276{
1277 struct fw_device *device;
1278
1279 switch (event) {
1280 case FW_NODE_CREATED:
1281 /*
1282 * Attempt to scan the node, regardless whether its self ID has
1283 * the L (link active) flag set or not. Some broken devices
1284 * send L=0 but have an up-and-running link; others send L=1
1285 * without actually having a link.
1286 */
1287 create:
1288 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1289 if (device == NULL)
1290 break;
1291
1292 /*
1293 * Do minimal initialization of the device here, the
1294 * rest will happen in fw_device_init().
1295 *
1296 * Attention: A lot of things, even fw_device_get(),
1297 * cannot be done before fw_device_init() finished!
1298 * You can basically just check device->state and
1299 * schedule work until then, but only while holding
1300 * card->lock.
1301 */
1302 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1303 device->card = fw_card_get(card);
1304 device->node = fw_node_get(node);
1305 device->node_id = node->node_id;
1306 device->generation = card->generation;
1307 device->is_local = node == card->local_node;
1308 mutex_init(&device->client_list_mutex);
1309 INIT_LIST_HEAD(&device->client_list);
1310
1311 /*
1312 * Set the node data to point back to this device so
1313 * FW_NODE_UPDATED callbacks can update the node_id
1314 * and generation for the device.
1315 */
1316 node->data = device;
1317
1318 /*
1319 * Many devices are slow to respond after bus resets,
1320 * especially if they are bus powered and go through
1321 * power-up after getting plugged in. We schedule the
1322 * first config rom scan half a second after bus reset.
1323 */
1324 device->workfn = fw_device_init;
1325 INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1326 fw_schedule_device_work(device, INITIAL_DELAY);
1327 break;
1328
1329 case FW_NODE_INITIATED_RESET:
1330 case FW_NODE_LINK_ON:
1331 device = node->data;
1332 if (device == NULL)
1333 goto create;
1334
1335 device->node_id = node->node_id;
1336 smp_wmb(); /* update node_id before generation */
1337 device->generation = card->generation;
1338 if (atomic_cmpxchg(&device->state,
1339 FW_DEVICE_RUNNING,
1340 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1341 device->workfn = fw_device_refresh;
1342 fw_schedule_device_work(device,
1343 device->is_local ? 0 : INITIAL_DELAY);
1344 }
1345 break;
1346
1347 case FW_NODE_UPDATED:
1348 device = node->data;
1349 if (device == NULL)
1350 break;
1351
1352 device->node_id = node->node_id;
1353 smp_wmb(); /* update node_id before generation */
1354 device->generation = card->generation;
1355 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1356 device->workfn = fw_device_update;
1357 fw_schedule_device_work(device, 0);
1358 }
1359 break;
1360
1361 case FW_NODE_DESTROYED:
1362 case FW_NODE_LINK_OFF:
1363 if (!node->data)
1364 break;
1365
1366 /*
1367 * Destroy the device associated with the node. There
1368 * are two cases here: either the device is fully
1369 * initialized (FW_DEVICE_RUNNING) or we're in the
1370 * process of reading its config rom
1371 * (FW_DEVICE_INITIALIZING). If it is fully
1372 * initialized we can reuse device->work to schedule a
1373 * full fw_device_shutdown(). If not, there's work
1374 * scheduled to read it's config rom, and we just put
1375 * the device in shutdown state to have that code fail
1376 * to create the device.
1377 */
1378 device = node->data;
1379 if (atomic_xchg(&device->state,
1380 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1381 device->workfn = fw_device_shutdown;
1382 fw_schedule_device_work(device,
1383 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1384 }
1385 break;
1386 }
1387}
1388
1389#ifdef CONFIG_FIREWIRE_KUNIT_DEVICE_ATTRIBUTE_TEST
1390#include "device-attribute-test.c"
1391#endif
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Device probing and sysfs code.
4 *
5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8#include <linux/bug.h>
9#include <linux/ctype.h>
10#include <linux/delay.h>
11#include <linux/device.h>
12#include <linux/errno.h>
13#include <linux/firewire.h>
14#include <linux/firewire-constants.h>
15#include <linux/idr.h>
16#include <linux/jiffies.h>
17#include <linux/kobject.h>
18#include <linux/list.h>
19#include <linux/mod_devicetable.h>
20#include <linux/module.h>
21#include <linux/mutex.h>
22#include <linux/random.h>
23#include <linux/rwsem.h>
24#include <linux/slab.h>
25#include <linux/spinlock.h>
26#include <linux/string.h>
27#include <linux/workqueue.h>
28
29#include <linux/atomic.h>
30#include <asm/byteorder.h>
31
32#include "core.h"
33
34void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
35{
36 ci->p = p + 1;
37 ci->end = ci->p + (p[0] >> 16);
38}
39EXPORT_SYMBOL(fw_csr_iterator_init);
40
41int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
42{
43 *key = *ci->p >> 24;
44 *value = *ci->p & 0xffffff;
45
46 return ci->p++ < ci->end;
47}
48EXPORT_SYMBOL(fw_csr_iterator_next);
49
50static const u32 *search_leaf(const u32 *directory, int search_key)
51{
52 struct fw_csr_iterator ci;
53 int last_key = 0, key, value;
54
55 fw_csr_iterator_init(&ci, directory);
56 while (fw_csr_iterator_next(&ci, &key, &value)) {
57 if (last_key == search_key &&
58 key == (CSR_DESCRIPTOR | CSR_LEAF))
59 return ci.p - 1 + value;
60
61 last_key = key;
62 }
63
64 return NULL;
65}
66
67static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
68{
69 unsigned int quadlets, i;
70 char c;
71
72 if (!size || !buf)
73 return -EINVAL;
74
75 quadlets = min(block[0] >> 16, 256U);
76 if (quadlets < 2)
77 return -ENODATA;
78
79 if (block[1] != 0 || block[2] != 0)
80 /* unknown language/character set */
81 return -ENODATA;
82
83 block += 3;
84 quadlets -= 2;
85 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
86 c = block[i / 4] >> (24 - 8 * (i % 4));
87 if (c == '\0')
88 break;
89 buf[i] = c;
90 }
91 buf[i] = '\0';
92
93 return i;
94}
95
96/**
97 * fw_csr_string() - reads a string from the configuration ROM
98 * @directory: e.g. root directory or unit directory
99 * @key: the key of the preceding directory entry
100 * @buf: where to put the string
101 * @size: size of @buf, in bytes
102 *
103 * The string is taken from a minimal ASCII text descriptor leaf after
104 * the immediate entry with @key. The string is zero-terminated.
105 * An overlong string is silently truncated such that it and the
106 * zero byte fit into @size.
107 *
108 * Returns strlen(buf) or a negative error code.
109 */
110int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
111{
112 const u32 *leaf = search_leaf(directory, key);
113 if (!leaf)
114 return -ENOENT;
115
116 return textual_leaf_to_string(leaf, buf, size);
117}
118EXPORT_SYMBOL(fw_csr_string);
119
120static void get_ids(const u32 *directory, int *id)
121{
122 struct fw_csr_iterator ci;
123 int key, value;
124
125 fw_csr_iterator_init(&ci, directory);
126 while (fw_csr_iterator_next(&ci, &key, &value)) {
127 switch (key) {
128 case CSR_VENDOR: id[0] = value; break;
129 case CSR_MODEL: id[1] = value; break;
130 case CSR_SPECIFIER_ID: id[2] = value; break;
131 case CSR_VERSION: id[3] = value; break;
132 }
133 }
134}
135
136static void get_modalias_ids(struct fw_unit *unit, int *id)
137{
138 get_ids(&fw_parent_device(unit)->config_rom[5], id);
139 get_ids(unit->directory, id);
140}
141
142static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
143{
144 int match = 0;
145
146 if (id[0] == id_table->vendor_id)
147 match |= IEEE1394_MATCH_VENDOR_ID;
148 if (id[1] == id_table->model_id)
149 match |= IEEE1394_MATCH_MODEL_ID;
150 if (id[2] == id_table->specifier_id)
151 match |= IEEE1394_MATCH_SPECIFIER_ID;
152 if (id[3] == id_table->version)
153 match |= IEEE1394_MATCH_VERSION;
154
155 return (match & id_table->match_flags) == id_table->match_flags;
156}
157
158static const struct ieee1394_device_id *unit_match(struct device *dev,
159 struct device_driver *drv)
160{
161 const struct ieee1394_device_id *id_table =
162 container_of(drv, struct fw_driver, driver)->id_table;
163 int id[] = {0, 0, 0, 0};
164
165 get_modalias_ids(fw_unit(dev), id);
166
167 for (; id_table->match_flags != 0; id_table++)
168 if (match_ids(id_table, id))
169 return id_table;
170
171 return NULL;
172}
173
174static bool is_fw_unit(struct device *dev);
175
176static int fw_unit_match(struct device *dev, struct device_driver *drv)
177{
178 /* We only allow binding to fw_units. */
179 return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
180}
181
182static int fw_unit_probe(struct device *dev)
183{
184 struct fw_driver *driver =
185 container_of(dev->driver, struct fw_driver, driver);
186
187 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
188}
189
190static void fw_unit_remove(struct device *dev)
191{
192 struct fw_driver *driver =
193 container_of(dev->driver, struct fw_driver, driver);
194
195 driver->remove(fw_unit(dev));
196}
197
198static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
199{
200 int id[] = {0, 0, 0, 0};
201
202 get_modalias_ids(unit, id);
203
204 return snprintf(buffer, buffer_size,
205 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
206 id[0], id[1], id[2], id[3]);
207}
208
209static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
210{
211 struct fw_unit *unit = fw_unit(dev);
212 char modalias[64];
213
214 get_modalias(unit, modalias, sizeof(modalias));
215
216 if (add_uevent_var(env, "MODALIAS=%s", modalias))
217 return -ENOMEM;
218
219 return 0;
220}
221
222struct bus_type fw_bus_type = {
223 .name = "firewire",
224 .match = fw_unit_match,
225 .probe = fw_unit_probe,
226 .remove = fw_unit_remove,
227};
228EXPORT_SYMBOL(fw_bus_type);
229
230int fw_device_enable_phys_dma(struct fw_device *device)
231{
232 int generation = device->generation;
233
234 /* device->node_id, accessed below, must not be older than generation */
235 smp_rmb();
236
237 return device->card->driver->enable_phys_dma(device->card,
238 device->node_id,
239 generation);
240}
241EXPORT_SYMBOL(fw_device_enable_phys_dma);
242
243struct config_rom_attribute {
244 struct device_attribute attr;
245 u32 key;
246};
247
248static ssize_t show_immediate(struct device *dev,
249 struct device_attribute *dattr, char *buf)
250{
251 struct config_rom_attribute *attr =
252 container_of(dattr, struct config_rom_attribute, attr);
253 struct fw_csr_iterator ci;
254 const u32 *dir;
255 int key, value, ret = -ENOENT;
256
257 down_read(&fw_device_rwsem);
258
259 if (is_fw_unit(dev))
260 dir = fw_unit(dev)->directory;
261 else
262 dir = fw_device(dev)->config_rom + 5;
263
264 fw_csr_iterator_init(&ci, dir);
265 while (fw_csr_iterator_next(&ci, &key, &value))
266 if (attr->key == key) {
267 ret = snprintf(buf, buf ? PAGE_SIZE : 0,
268 "0x%06x\n", value);
269 break;
270 }
271
272 up_read(&fw_device_rwsem);
273
274 return ret;
275}
276
277#define IMMEDIATE_ATTR(name, key) \
278 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
279
280static ssize_t show_text_leaf(struct device *dev,
281 struct device_attribute *dattr, char *buf)
282{
283 struct config_rom_attribute *attr =
284 container_of(dattr, struct config_rom_attribute, attr);
285 const u32 *dir;
286 size_t bufsize;
287 char dummy_buf[2];
288 int ret;
289
290 down_read(&fw_device_rwsem);
291
292 if (is_fw_unit(dev))
293 dir = fw_unit(dev)->directory;
294 else
295 dir = fw_device(dev)->config_rom + 5;
296
297 if (buf) {
298 bufsize = PAGE_SIZE - 1;
299 } else {
300 buf = dummy_buf;
301 bufsize = 1;
302 }
303
304 ret = fw_csr_string(dir, attr->key, buf, bufsize);
305
306 if (ret >= 0) {
307 /* Strip trailing whitespace and add newline. */
308 while (ret > 0 && isspace(buf[ret - 1]))
309 ret--;
310 strcpy(buf + ret, "\n");
311 ret++;
312 }
313
314 up_read(&fw_device_rwsem);
315
316 return ret;
317}
318
319#define TEXT_LEAF_ATTR(name, key) \
320 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
321
322static struct config_rom_attribute config_rom_attributes[] = {
323 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
324 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
325 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
326 IMMEDIATE_ATTR(version, CSR_VERSION),
327 IMMEDIATE_ATTR(model, CSR_MODEL),
328 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
329 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
330 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
331};
332
333static void init_fw_attribute_group(struct device *dev,
334 struct device_attribute *attrs,
335 struct fw_attribute_group *group)
336{
337 struct device_attribute *attr;
338 int i, j;
339
340 for (j = 0; attrs[j].attr.name != NULL; j++)
341 group->attrs[j] = &attrs[j].attr;
342
343 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
344 attr = &config_rom_attributes[i].attr;
345 if (attr->show(dev, attr, NULL) < 0)
346 continue;
347 group->attrs[j++] = &attr->attr;
348 }
349
350 group->attrs[j] = NULL;
351 group->groups[0] = &group->group;
352 group->groups[1] = NULL;
353 group->group.attrs = group->attrs;
354 dev->groups = (const struct attribute_group **) group->groups;
355}
356
357static ssize_t modalias_show(struct device *dev,
358 struct device_attribute *attr, char *buf)
359{
360 struct fw_unit *unit = fw_unit(dev);
361 int length;
362
363 length = get_modalias(unit, buf, PAGE_SIZE);
364 strcpy(buf + length, "\n");
365
366 return length + 1;
367}
368
369static ssize_t rom_index_show(struct device *dev,
370 struct device_attribute *attr, char *buf)
371{
372 struct fw_device *device = fw_device(dev->parent);
373 struct fw_unit *unit = fw_unit(dev);
374
375 return sysfs_emit(buf, "%td\n", unit->directory - device->config_rom);
376}
377
378static struct device_attribute fw_unit_attributes[] = {
379 __ATTR_RO(modalias),
380 __ATTR_RO(rom_index),
381 __ATTR_NULL,
382};
383
384static ssize_t config_rom_show(struct device *dev,
385 struct device_attribute *attr, char *buf)
386{
387 struct fw_device *device = fw_device(dev);
388 size_t length;
389
390 down_read(&fw_device_rwsem);
391 length = device->config_rom_length * 4;
392 memcpy(buf, device->config_rom, length);
393 up_read(&fw_device_rwsem);
394
395 return length;
396}
397
398static ssize_t guid_show(struct device *dev,
399 struct device_attribute *attr, char *buf)
400{
401 struct fw_device *device = fw_device(dev);
402 int ret;
403
404 down_read(&fw_device_rwsem);
405 ret = sysfs_emit(buf, "0x%08x%08x\n", device->config_rom[3], device->config_rom[4]);
406 up_read(&fw_device_rwsem);
407
408 return ret;
409}
410
411static ssize_t is_local_show(struct device *dev,
412 struct device_attribute *attr, char *buf)
413{
414 struct fw_device *device = fw_device(dev);
415
416 return sprintf(buf, "%u\n", device->is_local);
417}
418
419static int units_sprintf(char *buf, const u32 *directory)
420{
421 struct fw_csr_iterator ci;
422 int key, value;
423 int specifier_id = 0;
424 int version = 0;
425
426 fw_csr_iterator_init(&ci, directory);
427 while (fw_csr_iterator_next(&ci, &key, &value)) {
428 switch (key) {
429 case CSR_SPECIFIER_ID:
430 specifier_id = value;
431 break;
432 case CSR_VERSION:
433 version = value;
434 break;
435 }
436 }
437
438 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
439}
440
441static ssize_t units_show(struct device *dev,
442 struct device_attribute *attr, char *buf)
443{
444 struct fw_device *device = fw_device(dev);
445 struct fw_csr_iterator ci;
446 int key, value, i = 0;
447
448 down_read(&fw_device_rwsem);
449 fw_csr_iterator_init(&ci, &device->config_rom[5]);
450 while (fw_csr_iterator_next(&ci, &key, &value)) {
451 if (key != (CSR_UNIT | CSR_DIRECTORY))
452 continue;
453 i += units_sprintf(&buf[i], ci.p + value - 1);
454 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
455 break;
456 }
457 up_read(&fw_device_rwsem);
458
459 if (i)
460 buf[i - 1] = '\n';
461
462 return i;
463}
464
465static struct device_attribute fw_device_attributes[] = {
466 __ATTR_RO(config_rom),
467 __ATTR_RO(guid),
468 __ATTR_RO(is_local),
469 __ATTR_RO(units),
470 __ATTR_NULL,
471};
472
473static int read_rom(struct fw_device *device,
474 int generation, int index, u32 *data)
475{
476 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
477 int i, rcode;
478
479 /* device->node_id, accessed below, must not be older than generation */
480 smp_rmb();
481
482 for (i = 10; i < 100; i += 10) {
483 rcode = fw_run_transaction(device->card,
484 TCODE_READ_QUADLET_REQUEST, device->node_id,
485 generation, device->max_speed, offset, data, 4);
486 if (rcode != RCODE_BUSY)
487 break;
488 msleep(i);
489 }
490 be32_to_cpus(data);
491
492 return rcode;
493}
494
495#define MAX_CONFIG_ROM_SIZE 256
496
497/*
498 * Read the bus info block, perform a speed probe, and read all of the rest of
499 * the config ROM. We do all this with a cached bus generation. If the bus
500 * generation changes under us, read_config_rom will fail and get retried.
501 * It's better to start all over in this case because the node from which we
502 * are reading the ROM may have changed the ROM during the reset.
503 * Returns either a result code or a negative error code.
504 */
505static int read_config_rom(struct fw_device *device, int generation)
506{
507 struct fw_card *card = device->card;
508 const u32 *old_rom, *new_rom;
509 u32 *rom, *stack;
510 u32 sp, key;
511 int i, end, length, ret;
512
513 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
514 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
515 if (rom == NULL)
516 return -ENOMEM;
517
518 stack = &rom[MAX_CONFIG_ROM_SIZE];
519 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
520
521 device->max_speed = SCODE_100;
522
523 /* First read the bus info block. */
524 for (i = 0; i < 5; i++) {
525 ret = read_rom(device, generation, i, &rom[i]);
526 if (ret != RCODE_COMPLETE)
527 goto out;
528 /*
529 * As per IEEE1212 7.2, during initialization, devices can
530 * reply with a 0 for the first quadlet of the config
531 * rom to indicate that they are booting (for example,
532 * if the firmware is on the disk of a external
533 * harddisk). In that case we just fail, and the
534 * retry mechanism will try again later.
535 */
536 if (i == 0 && rom[i] == 0) {
537 ret = RCODE_BUSY;
538 goto out;
539 }
540 }
541
542 device->max_speed = device->node->max_speed;
543
544 /*
545 * Determine the speed of
546 * - devices with link speed less than PHY speed,
547 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
548 * - all devices if there are 1394b repeaters.
549 * Note, we cannot use the bus info block's link_spd as starting point
550 * because some buggy firmwares set it lower than necessary and because
551 * 1394-1995 nodes do not have the field.
552 */
553 if ((rom[2] & 0x7) < device->max_speed ||
554 device->max_speed == SCODE_BETA ||
555 card->beta_repeaters_present) {
556 u32 dummy;
557
558 /* for S1600 and S3200 */
559 if (device->max_speed == SCODE_BETA)
560 device->max_speed = card->link_speed;
561
562 while (device->max_speed > SCODE_100) {
563 if (read_rom(device, generation, 0, &dummy) ==
564 RCODE_COMPLETE)
565 break;
566 device->max_speed--;
567 }
568 }
569
570 /*
571 * Now parse the config rom. The config rom is a recursive
572 * directory structure so we parse it using a stack of
573 * references to the blocks that make up the structure. We
574 * push a reference to the root directory on the stack to
575 * start things off.
576 */
577 length = i;
578 sp = 0;
579 stack[sp++] = 0xc0000005;
580 while (sp > 0) {
581 /*
582 * Pop the next block reference of the stack. The
583 * lower 24 bits is the offset into the config rom,
584 * the upper 8 bits are the type of the reference the
585 * block.
586 */
587 key = stack[--sp];
588 i = key & 0xffffff;
589 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
590 ret = -ENXIO;
591 goto out;
592 }
593
594 /* Read header quadlet for the block to get the length. */
595 ret = read_rom(device, generation, i, &rom[i]);
596 if (ret != RCODE_COMPLETE)
597 goto out;
598 end = i + (rom[i] >> 16) + 1;
599 if (end > MAX_CONFIG_ROM_SIZE) {
600 /*
601 * This block extends outside the config ROM which is
602 * a firmware bug. Ignore this whole block, i.e.
603 * simply set a fake block length of 0.
604 */
605 fw_err(card, "skipped invalid ROM block %x at %llx\n",
606 rom[i],
607 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
608 rom[i] = 0;
609 end = i;
610 }
611 i++;
612
613 /*
614 * Now read in the block. If this is a directory
615 * block, check the entries as we read them to see if
616 * it references another block, and push it in that case.
617 */
618 for (; i < end; i++) {
619 ret = read_rom(device, generation, i, &rom[i]);
620 if (ret != RCODE_COMPLETE)
621 goto out;
622
623 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
624 continue;
625 /*
626 * Offset points outside the ROM. May be a firmware
627 * bug or an Extended ROM entry (IEEE 1212-2001 clause
628 * 7.7.18). Simply overwrite this pointer here by a
629 * fake immediate entry so that later iterators over
630 * the ROM don't have to check offsets all the time.
631 */
632 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
633 fw_err(card,
634 "skipped unsupported ROM entry %x at %llx\n",
635 rom[i],
636 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
637 rom[i] = 0;
638 continue;
639 }
640 stack[sp++] = i + rom[i];
641 }
642 if (length < i)
643 length = i;
644 }
645
646 old_rom = device->config_rom;
647 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
648 if (new_rom == NULL) {
649 ret = -ENOMEM;
650 goto out;
651 }
652
653 down_write(&fw_device_rwsem);
654 device->config_rom = new_rom;
655 device->config_rom_length = length;
656 up_write(&fw_device_rwsem);
657
658 kfree(old_rom);
659 ret = RCODE_COMPLETE;
660 device->max_rec = rom[2] >> 12 & 0xf;
661 device->cmc = rom[2] >> 30 & 1;
662 device->irmc = rom[2] >> 31 & 1;
663 out:
664 kfree(rom);
665
666 return ret;
667}
668
669static void fw_unit_release(struct device *dev)
670{
671 struct fw_unit *unit = fw_unit(dev);
672
673 fw_device_put(fw_parent_device(unit));
674 kfree(unit);
675}
676
677static struct device_type fw_unit_type = {
678 .uevent = fw_unit_uevent,
679 .release = fw_unit_release,
680};
681
682static bool is_fw_unit(struct device *dev)
683{
684 return dev->type == &fw_unit_type;
685}
686
687static void create_units(struct fw_device *device)
688{
689 struct fw_csr_iterator ci;
690 struct fw_unit *unit;
691 int key, value, i;
692
693 i = 0;
694 fw_csr_iterator_init(&ci, &device->config_rom[5]);
695 while (fw_csr_iterator_next(&ci, &key, &value)) {
696 if (key != (CSR_UNIT | CSR_DIRECTORY))
697 continue;
698
699 /*
700 * Get the address of the unit directory and try to
701 * match the drivers id_tables against it.
702 */
703 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
704 if (unit == NULL)
705 continue;
706
707 unit->directory = ci.p + value - 1;
708 unit->device.bus = &fw_bus_type;
709 unit->device.type = &fw_unit_type;
710 unit->device.parent = &device->device;
711 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
712
713 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
714 ARRAY_SIZE(fw_unit_attributes) +
715 ARRAY_SIZE(config_rom_attributes));
716 init_fw_attribute_group(&unit->device,
717 fw_unit_attributes,
718 &unit->attribute_group);
719
720 if (device_register(&unit->device) < 0)
721 goto skip_unit;
722
723 fw_device_get(device);
724 continue;
725
726 skip_unit:
727 kfree(unit);
728 }
729}
730
731static int shutdown_unit(struct device *device, void *data)
732{
733 device_unregister(device);
734
735 return 0;
736}
737
738/*
739 * fw_device_rwsem acts as dual purpose mutex:
740 * - serializes accesses to fw_device_idr,
741 * - serializes accesses to fw_device.config_rom/.config_rom_length and
742 * fw_unit.directory, unless those accesses happen at safe occasions
743 */
744DECLARE_RWSEM(fw_device_rwsem);
745
746DEFINE_IDR(fw_device_idr);
747int fw_cdev_major;
748
749struct fw_device *fw_device_get_by_devt(dev_t devt)
750{
751 struct fw_device *device;
752
753 down_read(&fw_device_rwsem);
754 device = idr_find(&fw_device_idr, MINOR(devt));
755 if (device)
756 fw_device_get(device);
757 up_read(&fw_device_rwsem);
758
759 return device;
760}
761
762struct workqueue_struct *fw_workqueue;
763EXPORT_SYMBOL(fw_workqueue);
764
765static void fw_schedule_device_work(struct fw_device *device,
766 unsigned long delay)
767{
768 queue_delayed_work(fw_workqueue, &device->work, delay);
769}
770
771/*
772 * These defines control the retry behavior for reading the config
773 * rom. It shouldn't be necessary to tweak these; if the device
774 * doesn't respond to a config rom read within 10 seconds, it's not
775 * going to respond at all. As for the initial delay, a lot of
776 * devices will be able to respond within half a second after bus
777 * reset. On the other hand, it's not really worth being more
778 * aggressive than that, since it scales pretty well; if 10 devices
779 * are plugged in, they're all getting read within one second.
780 */
781
782#define MAX_RETRIES 10
783#define RETRY_DELAY (3 * HZ)
784#define INITIAL_DELAY (HZ / 2)
785#define SHUTDOWN_DELAY (2 * HZ)
786
787static void fw_device_shutdown(struct work_struct *work)
788{
789 struct fw_device *device =
790 container_of(work, struct fw_device, work.work);
791 int minor = MINOR(device->device.devt);
792
793 if (time_before64(get_jiffies_64(),
794 device->card->reset_jiffies + SHUTDOWN_DELAY)
795 && !list_empty(&device->card->link)) {
796 fw_schedule_device_work(device, SHUTDOWN_DELAY);
797 return;
798 }
799
800 if (atomic_cmpxchg(&device->state,
801 FW_DEVICE_GONE,
802 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
803 return;
804
805 fw_device_cdev_remove(device);
806 device_for_each_child(&device->device, NULL, shutdown_unit);
807 device_unregister(&device->device);
808
809 down_write(&fw_device_rwsem);
810 idr_remove(&fw_device_idr, minor);
811 up_write(&fw_device_rwsem);
812
813 fw_device_put(device);
814}
815
816static void fw_device_release(struct device *dev)
817{
818 struct fw_device *device = fw_device(dev);
819 struct fw_card *card = device->card;
820 unsigned long flags;
821
822 /*
823 * Take the card lock so we don't set this to NULL while a
824 * FW_NODE_UPDATED callback is being handled or while the
825 * bus manager work looks at this node.
826 */
827 spin_lock_irqsave(&card->lock, flags);
828 device->node->data = NULL;
829 spin_unlock_irqrestore(&card->lock, flags);
830
831 fw_node_put(device->node);
832 kfree(device->config_rom);
833 kfree(device);
834 fw_card_put(card);
835}
836
837static struct device_type fw_device_type = {
838 .release = fw_device_release,
839};
840
841static bool is_fw_device(struct device *dev)
842{
843 return dev->type == &fw_device_type;
844}
845
846static int update_unit(struct device *dev, void *data)
847{
848 struct fw_unit *unit = fw_unit(dev);
849 struct fw_driver *driver = (struct fw_driver *)dev->driver;
850
851 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
852 device_lock(dev);
853 driver->update(unit);
854 device_unlock(dev);
855 }
856
857 return 0;
858}
859
860static void fw_device_update(struct work_struct *work)
861{
862 struct fw_device *device =
863 container_of(work, struct fw_device, work.work);
864
865 fw_device_cdev_update(device);
866 device_for_each_child(&device->device, NULL, update_unit);
867}
868
869/*
870 * If a device was pending for deletion because its node went away but its
871 * bus info block and root directory header matches that of a newly discovered
872 * device, revive the existing fw_device.
873 * The newly allocated fw_device becomes obsolete instead.
874 */
875static int lookup_existing_device(struct device *dev, void *data)
876{
877 struct fw_device *old = fw_device(dev);
878 struct fw_device *new = data;
879 struct fw_card *card = new->card;
880 int match = 0;
881
882 if (!is_fw_device(dev))
883 return 0;
884
885 down_read(&fw_device_rwsem); /* serialize config_rom access */
886 spin_lock_irq(&card->lock); /* serialize node access */
887
888 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
889 atomic_cmpxchg(&old->state,
890 FW_DEVICE_GONE,
891 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
892 struct fw_node *current_node = new->node;
893 struct fw_node *obsolete_node = old->node;
894
895 new->node = obsolete_node;
896 new->node->data = new;
897 old->node = current_node;
898 old->node->data = old;
899
900 old->max_speed = new->max_speed;
901 old->node_id = current_node->node_id;
902 smp_wmb(); /* update node_id before generation */
903 old->generation = card->generation;
904 old->config_rom_retries = 0;
905 fw_notice(card, "rediscovered device %s\n", dev_name(dev));
906
907 old->workfn = fw_device_update;
908 fw_schedule_device_work(old, 0);
909
910 if (current_node == card->root_node)
911 fw_schedule_bm_work(card, 0);
912
913 match = 1;
914 }
915
916 spin_unlock_irq(&card->lock);
917 up_read(&fw_device_rwsem);
918
919 return match;
920}
921
922enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
923
924static void set_broadcast_channel(struct fw_device *device, int generation)
925{
926 struct fw_card *card = device->card;
927 __be32 data;
928 int rcode;
929
930 if (!card->broadcast_channel_allocated)
931 return;
932
933 /*
934 * The Broadcast_Channel Valid bit is required by nodes which want to
935 * transmit on this channel. Such transmissions are practically
936 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
937 * to be IRM capable and have a max_rec of 8 or more. We use this fact
938 * to narrow down to which nodes we send Broadcast_Channel updates.
939 */
940 if (!device->irmc || device->max_rec < 8)
941 return;
942
943 /*
944 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
945 * Perform a read test first.
946 */
947 if (device->bc_implemented == BC_UNKNOWN) {
948 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
949 device->node_id, generation, device->max_speed,
950 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
951 &data, 4);
952 switch (rcode) {
953 case RCODE_COMPLETE:
954 if (data & cpu_to_be32(1 << 31)) {
955 device->bc_implemented = BC_IMPLEMENTED;
956 break;
957 }
958 fallthrough; /* to case address error */
959 case RCODE_ADDRESS_ERROR:
960 device->bc_implemented = BC_UNIMPLEMENTED;
961 }
962 }
963
964 if (device->bc_implemented == BC_IMPLEMENTED) {
965 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
966 BROADCAST_CHANNEL_VALID);
967 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
968 device->node_id, generation, device->max_speed,
969 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
970 &data, 4);
971 }
972}
973
974int fw_device_set_broadcast_channel(struct device *dev, void *gen)
975{
976 if (is_fw_device(dev))
977 set_broadcast_channel(fw_device(dev), (long)gen);
978
979 return 0;
980}
981
982static void fw_device_init(struct work_struct *work)
983{
984 struct fw_device *device =
985 container_of(work, struct fw_device, work.work);
986 struct fw_card *card = device->card;
987 struct device *revived_dev;
988 int minor, ret;
989
990 /*
991 * All failure paths here set node->data to NULL, so that we
992 * don't try to do device_for_each_child() on a kfree()'d
993 * device.
994 */
995
996 ret = read_config_rom(device, device->generation);
997 if (ret != RCODE_COMPLETE) {
998 if (device->config_rom_retries < MAX_RETRIES &&
999 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1000 device->config_rom_retries++;
1001 fw_schedule_device_work(device, RETRY_DELAY);
1002 } else {
1003 if (device->node->link_on)
1004 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1005 device->node_id,
1006 fw_rcode_string(ret));
1007 if (device->node == card->root_node)
1008 fw_schedule_bm_work(card, 0);
1009 fw_device_release(&device->device);
1010 }
1011 return;
1012 }
1013
1014 revived_dev = device_find_child(card->device,
1015 device, lookup_existing_device);
1016 if (revived_dev) {
1017 put_device(revived_dev);
1018 fw_device_release(&device->device);
1019
1020 return;
1021 }
1022
1023 device_initialize(&device->device);
1024
1025 fw_device_get(device);
1026 down_write(&fw_device_rwsem);
1027 minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1028 GFP_KERNEL);
1029 up_write(&fw_device_rwsem);
1030
1031 if (minor < 0)
1032 goto error;
1033
1034 device->device.bus = &fw_bus_type;
1035 device->device.type = &fw_device_type;
1036 device->device.parent = card->device;
1037 device->device.devt = MKDEV(fw_cdev_major, minor);
1038 dev_set_name(&device->device, "fw%d", minor);
1039
1040 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1041 ARRAY_SIZE(fw_device_attributes) +
1042 ARRAY_SIZE(config_rom_attributes));
1043 init_fw_attribute_group(&device->device,
1044 fw_device_attributes,
1045 &device->attribute_group);
1046
1047 if (device_add(&device->device)) {
1048 fw_err(card, "failed to add device\n");
1049 goto error_with_cdev;
1050 }
1051
1052 create_units(device);
1053
1054 /*
1055 * Transition the device to running state. If it got pulled
1056 * out from under us while we did the initialization work, we
1057 * have to shut down the device again here. Normally, though,
1058 * fw_node_event will be responsible for shutting it down when
1059 * necessary. We have to use the atomic cmpxchg here to avoid
1060 * racing with the FW_NODE_DESTROYED case in
1061 * fw_node_event().
1062 */
1063 if (atomic_cmpxchg(&device->state,
1064 FW_DEVICE_INITIALIZING,
1065 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1066 device->workfn = fw_device_shutdown;
1067 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1068 } else {
1069 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1070 dev_name(&device->device),
1071 device->config_rom[3], device->config_rom[4],
1072 1 << device->max_speed);
1073 device->config_rom_retries = 0;
1074
1075 set_broadcast_channel(device, device->generation);
1076
1077 add_device_randomness(&device->config_rom[3], 8);
1078 }
1079
1080 /*
1081 * Reschedule the IRM work if we just finished reading the
1082 * root node config rom. If this races with a bus reset we
1083 * just end up running the IRM work a couple of extra times -
1084 * pretty harmless.
1085 */
1086 if (device->node == card->root_node)
1087 fw_schedule_bm_work(card, 0);
1088
1089 return;
1090
1091 error_with_cdev:
1092 down_write(&fw_device_rwsem);
1093 idr_remove(&fw_device_idr, minor);
1094 up_write(&fw_device_rwsem);
1095 error:
1096 fw_device_put(device); /* fw_device_idr's reference */
1097
1098 put_device(&device->device); /* our reference */
1099}
1100
1101/* Reread and compare bus info block and header of root directory */
1102static int reread_config_rom(struct fw_device *device, int generation,
1103 bool *changed)
1104{
1105 u32 q;
1106 int i, rcode;
1107
1108 for (i = 0; i < 6; i++) {
1109 rcode = read_rom(device, generation, i, &q);
1110 if (rcode != RCODE_COMPLETE)
1111 return rcode;
1112
1113 if (i == 0 && q == 0)
1114 /* inaccessible (see read_config_rom); retry later */
1115 return RCODE_BUSY;
1116
1117 if (q != device->config_rom[i]) {
1118 *changed = true;
1119 return RCODE_COMPLETE;
1120 }
1121 }
1122
1123 *changed = false;
1124 return RCODE_COMPLETE;
1125}
1126
1127static void fw_device_refresh(struct work_struct *work)
1128{
1129 struct fw_device *device =
1130 container_of(work, struct fw_device, work.work);
1131 struct fw_card *card = device->card;
1132 int ret, node_id = device->node_id;
1133 bool changed;
1134
1135 ret = reread_config_rom(device, device->generation, &changed);
1136 if (ret != RCODE_COMPLETE)
1137 goto failed_config_rom;
1138
1139 if (!changed) {
1140 if (atomic_cmpxchg(&device->state,
1141 FW_DEVICE_INITIALIZING,
1142 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1143 goto gone;
1144
1145 fw_device_update(work);
1146 device->config_rom_retries = 0;
1147 goto out;
1148 }
1149
1150 /*
1151 * Something changed. We keep things simple and don't investigate
1152 * further. We just destroy all previous units and create new ones.
1153 */
1154 device_for_each_child(&device->device, NULL, shutdown_unit);
1155
1156 ret = read_config_rom(device, device->generation);
1157 if (ret != RCODE_COMPLETE)
1158 goto failed_config_rom;
1159
1160 fw_device_cdev_update(device);
1161 create_units(device);
1162
1163 /* Userspace may want to re-read attributes. */
1164 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1165
1166 if (atomic_cmpxchg(&device->state,
1167 FW_DEVICE_INITIALIZING,
1168 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1169 goto gone;
1170
1171 fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1172 device->config_rom_retries = 0;
1173 goto out;
1174
1175 failed_config_rom:
1176 if (device->config_rom_retries < MAX_RETRIES &&
1177 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1178 device->config_rom_retries++;
1179 fw_schedule_device_work(device, RETRY_DELAY);
1180 return;
1181 }
1182
1183 fw_notice(card, "giving up on refresh of device %s: %s\n",
1184 dev_name(&device->device), fw_rcode_string(ret));
1185 gone:
1186 atomic_set(&device->state, FW_DEVICE_GONE);
1187 device->workfn = fw_device_shutdown;
1188 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1189 out:
1190 if (node_id == card->root_node->node_id)
1191 fw_schedule_bm_work(card, 0);
1192}
1193
1194static void fw_device_workfn(struct work_struct *work)
1195{
1196 struct fw_device *device = container_of(to_delayed_work(work),
1197 struct fw_device, work);
1198 device->workfn(work);
1199}
1200
1201void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1202{
1203 struct fw_device *device;
1204
1205 switch (event) {
1206 case FW_NODE_CREATED:
1207 /*
1208 * Attempt to scan the node, regardless whether its self ID has
1209 * the L (link active) flag set or not. Some broken devices
1210 * send L=0 but have an up-and-running link; others send L=1
1211 * without actually having a link.
1212 */
1213 create:
1214 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1215 if (device == NULL)
1216 break;
1217
1218 /*
1219 * Do minimal initialization of the device here, the
1220 * rest will happen in fw_device_init().
1221 *
1222 * Attention: A lot of things, even fw_device_get(),
1223 * cannot be done before fw_device_init() finished!
1224 * You can basically just check device->state and
1225 * schedule work until then, but only while holding
1226 * card->lock.
1227 */
1228 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1229 device->card = fw_card_get(card);
1230 device->node = fw_node_get(node);
1231 device->node_id = node->node_id;
1232 device->generation = card->generation;
1233 device->is_local = node == card->local_node;
1234 mutex_init(&device->client_list_mutex);
1235 INIT_LIST_HEAD(&device->client_list);
1236
1237 /*
1238 * Set the node data to point back to this device so
1239 * FW_NODE_UPDATED callbacks can update the node_id
1240 * and generation for the device.
1241 */
1242 node->data = device;
1243
1244 /*
1245 * Many devices are slow to respond after bus resets,
1246 * especially if they are bus powered and go through
1247 * power-up after getting plugged in. We schedule the
1248 * first config rom scan half a second after bus reset.
1249 */
1250 device->workfn = fw_device_init;
1251 INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1252 fw_schedule_device_work(device, INITIAL_DELAY);
1253 break;
1254
1255 case FW_NODE_INITIATED_RESET:
1256 case FW_NODE_LINK_ON:
1257 device = node->data;
1258 if (device == NULL)
1259 goto create;
1260
1261 device->node_id = node->node_id;
1262 smp_wmb(); /* update node_id before generation */
1263 device->generation = card->generation;
1264 if (atomic_cmpxchg(&device->state,
1265 FW_DEVICE_RUNNING,
1266 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1267 device->workfn = fw_device_refresh;
1268 fw_schedule_device_work(device,
1269 device->is_local ? 0 : INITIAL_DELAY);
1270 }
1271 break;
1272
1273 case FW_NODE_UPDATED:
1274 device = node->data;
1275 if (device == NULL)
1276 break;
1277
1278 device->node_id = node->node_id;
1279 smp_wmb(); /* update node_id before generation */
1280 device->generation = card->generation;
1281 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1282 device->workfn = fw_device_update;
1283 fw_schedule_device_work(device, 0);
1284 }
1285 break;
1286
1287 case FW_NODE_DESTROYED:
1288 case FW_NODE_LINK_OFF:
1289 if (!node->data)
1290 break;
1291
1292 /*
1293 * Destroy the device associated with the node. There
1294 * are two cases here: either the device is fully
1295 * initialized (FW_DEVICE_RUNNING) or we're in the
1296 * process of reading its config rom
1297 * (FW_DEVICE_INITIALIZING). If it is fully
1298 * initialized we can reuse device->work to schedule a
1299 * full fw_device_shutdown(). If not, there's work
1300 * scheduled to read it's config rom, and we just put
1301 * the device in shutdown state to have that code fail
1302 * to create the device.
1303 */
1304 device = node->data;
1305 if (atomic_xchg(&device->state,
1306 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1307 device->workfn = fw_device_shutdown;
1308 fw_schedule_device_work(device,
1309 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1310 }
1311 break;
1312 }
1313}