Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Driver for Intel client SoC with integrated memory controller using IBECC
   4 *
   5 * Copyright (C) 2020 Intel Corporation
   6 *
   7 * The In-Band ECC (IBECC) IP provides ECC protection to all or specific
   8 * regions of the physical memory space. It's used for memory controllers
   9 * that don't support the out-of-band ECC which often needs an additional
  10 * storage device to each channel for storing ECC data.
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/pci.h>
  16#include <linux/slab.h>
  17#include <linux/irq_work.h>
  18#include <linux/llist.h>
  19#include <linux/genalloc.h>
  20#include <linux/edac.h>
  21#include <linux/bits.h>
  22#include <linux/io.h>
  23#include <asm/mach_traps.h>
  24#include <asm/nmi.h>
  25#include <asm/mce.h>
  26
  27#include "edac_mc.h"
  28#include "edac_module.h"
  29
  30#define IGEN6_REVISION	"v2.5.1"
  31
  32#define EDAC_MOD_STR	"igen6_edac"
  33#define IGEN6_NMI_NAME	"igen6_ibecc"
  34
  35/* Debug macros */
  36#define igen6_printk(level, fmt, arg...)		\
  37	edac_printk(level, "igen6", fmt, ##arg)
  38
  39#define igen6_mc_printk(mci, level, fmt, arg...)	\
  40	edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg)
  41
  42#define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
  43
  44#define NUM_IMC				2 /* Max memory controllers */
  45#define NUM_CHANNELS			2 /* Max channels */
  46#define NUM_DIMMS			2 /* Max DIMMs per channel */
  47
  48#define _4GB				BIT_ULL(32)
  49
  50/* Size of physical memory */
  51#define TOM_OFFSET			0xa0
  52/* Top of low usable DRAM */
  53#define TOLUD_OFFSET			0xbc
  54/* Capability register C */
  55#define CAPID_C_OFFSET			0xec
  56#define CAPID_C_IBECC			BIT(15)
  57
  58/* Capability register E */
  59#define CAPID_E_OFFSET			0xf0
  60#define CAPID_E_IBECC			BIT(12)
  61#define CAPID_E_IBECC_BIT18		BIT(18)
  62
  63/* Error Status */
  64#define ERRSTS_OFFSET			0xc8
  65#define ERRSTS_CE			BIT_ULL(6)
  66#define ERRSTS_UE			BIT_ULL(7)
  67
  68/* Error Command */
  69#define ERRCMD_OFFSET			0xca
  70#define ERRCMD_CE			BIT_ULL(6)
  71#define ERRCMD_UE			BIT_ULL(7)
  72
  73/* IBECC MMIO base address */
  74#define IBECC_BASE			(res_cfg->ibecc_base)
  75#define IBECC_ACTIVATE_OFFSET		IBECC_BASE
  76#define IBECC_ACTIVATE_EN		BIT(0)
  77
  78/* IBECC error log */
  79#define ECC_ERROR_LOG_OFFSET		(IBECC_BASE + res_cfg->ibecc_error_log_offset)
  80#define ECC_ERROR_LOG_CE		BIT_ULL(62)
  81#define ECC_ERROR_LOG_UE		BIT_ULL(63)
  82#define ECC_ERROR_LOG_ADDR_SHIFT	5
  83#define ECC_ERROR_LOG_ADDR(v)		GET_BITFIELD(v, 5, 38)
  84#define ECC_ERROR_LOG_ADDR45(v)		GET_BITFIELD(v, 5, 45)
  85#define ECC_ERROR_LOG_SYND(v)		GET_BITFIELD(v, 46, 61)
  86
  87/* Host MMIO base address */
  88#define MCHBAR_OFFSET			0x48
  89#define MCHBAR_EN			BIT_ULL(0)
  90#define MCHBAR_BASE(v)			(GET_BITFIELD(v, 16, 38) << 16)
  91#define MCHBAR_SIZE			0x10000
  92
  93/* Parameters for the channel decode stage */
  94#define IMC_BASE			(res_cfg->imc_base)
  95#define MAD_INTER_CHANNEL_OFFSET	IMC_BASE
  96#define MAD_INTER_CHANNEL_DDR_TYPE(v)	GET_BITFIELD(v, 0, 2)
  97#define MAD_INTER_CHANNEL_ECHM(v)	GET_BITFIELD(v, 3, 3)
  98#define MAD_INTER_CHANNEL_CH_L_MAP(v)	GET_BITFIELD(v, 4, 4)
  99#define MAD_INTER_CHANNEL_CH_S_SIZE(v)	((u64)GET_BITFIELD(v, 12, 19) << 29)
 100
 101/* Parameters for DRAM decode stage */
 102#define MAD_INTRA_CH0_OFFSET		(IMC_BASE + 4)
 103#define MAD_INTRA_CH_DIMM_L_MAP(v)	GET_BITFIELD(v, 0, 0)
 104
 105/* DIMM characteristics */
 106#define MAD_DIMM_CH0_OFFSET		(IMC_BASE + 0xc)
 107#define MAD_DIMM_CH_DIMM_L_SIZE(v)	((u64)GET_BITFIELD(v, 0, 6) << 29)
 108#define MAD_DIMM_CH_DLW(v)		GET_BITFIELD(v, 7, 8)
 109#define MAD_DIMM_CH_DIMM_S_SIZE(v)	((u64)GET_BITFIELD(v, 16, 22) << 29)
 110#define MAD_DIMM_CH_DSW(v)		GET_BITFIELD(v, 24, 25)
 111
 112/* Hash for memory controller selection */
 113#define MAD_MC_HASH_OFFSET		(IMC_BASE + 0x1b8)
 114#define MAC_MC_HASH_LSB(v)		GET_BITFIELD(v, 1, 3)
 115
 116/* Hash for channel selection */
 117#define CHANNEL_HASH_OFFSET		(IMC_BASE + 0x24)
 118/* Hash for enhanced channel selection */
 119#define CHANNEL_EHASH_OFFSET		(IMC_BASE + 0x28)
 120#define CHANNEL_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
 121#define CHANNEL_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
 122#define CHANNEL_HASH_MODE(v)		GET_BITFIELD(v, 28, 28)
 123
 124/* Parameters for memory slice decode stage */
 125#define MEM_SLICE_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
 126#define MEM_SLICE_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
 127
 128static struct res_config {
 129	bool machine_check;
 130	int num_imc;
 131	u32 imc_base;
 132	u32 cmf_base;
 133	u32 cmf_size;
 134	u32 ms_hash_offset;
 135	u32 ibecc_base;
 136	u32 ibecc_error_log_offset;
 137	bool (*ibecc_available)(struct pci_dev *pdev);
 138	/* Extract error address logged in IBECC */
 139	u64 (*err_addr)(u64 ecclog);
 140	/* Convert error address logged in IBECC to system physical address */
 141	u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc);
 142	/* Convert error address logged in IBECC to integrated memory controller address */
 143	u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc);
 144} *res_cfg;
 145
 146struct igen6_imc {
 147	int mc;
 148	struct mem_ctl_info *mci;
 149	struct pci_dev *pdev;
 150	struct device dev;
 151	void __iomem *window;
 152	u64 size;
 153	u64 ch_s_size;
 154	int ch_l_map;
 155	u64 dimm_s_size[NUM_CHANNELS];
 156	u64 dimm_l_size[NUM_CHANNELS];
 157	int dimm_l_map[NUM_CHANNELS];
 158};
 159
 160static struct igen6_pvt {
 161	struct igen6_imc imc[NUM_IMC];
 162	u64 ms_hash;
 163	u64 ms_s_size;
 164	int ms_l_map;
 165} *igen6_pvt;
 166
 167/* The top of low usable DRAM */
 168static u32 igen6_tolud;
 169/* The size of physical memory */
 170static u64 igen6_tom;
 171
 172struct decoded_addr {
 173	int mc;
 174	u64 imc_addr;
 175	u64 sys_addr;
 176	int channel_idx;
 177	u64 channel_addr;
 178	int sub_channel_idx;
 179	u64 sub_channel_addr;
 180};
 181
 182struct ecclog_node {
 183	struct llist_node llnode;
 184	int mc;
 185	u64 ecclog;
 186};
 187
 188/*
 189 * In the NMI handler, the driver uses the lock-less memory allocator
 190 * to allocate memory to store the IBECC error logs and links the logs
 191 * to the lock-less list. Delay printk() and the work of error reporting
 192 * to EDAC core in a worker.
 193 */
 194#define ECCLOG_POOL_SIZE	PAGE_SIZE
 195static LLIST_HEAD(ecclog_llist);
 196static struct gen_pool *ecclog_pool;
 197static char ecclog_buf[ECCLOG_POOL_SIZE];
 198static struct irq_work ecclog_irq_work;
 199static struct work_struct ecclog_work;
 200
 201/* Compute die IDs for Elkhart Lake with IBECC */
 202#define DID_EHL_SKU5	0x4514
 203#define DID_EHL_SKU6	0x4528
 204#define DID_EHL_SKU7	0x452a
 205#define DID_EHL_SKU8	0x4516
 206#define DID_EHL_SKU9	0x452c
 207#define DID_EHL_SKU10	0x452e
 208#define DID_EHL_SKU11	0x4532
 209#define DID_EHL_SKU12	0x4518
 210#define DID_EHL_SKU13	0x451a
 211#define DID_EHL_SKU14	0x4534
 212#define DID_EHL_SKU15	0x4536
 213
 214/* Compute die IDs for ICL-NNPI with IBECC */
 215#define DID_ICL_SKU8	0x4581
 216#define DID_ICL_SKU10	0x4585
 217#define DID_ICL_SKU11	0x4589
 218#define DID_ICL_SKU12	0x458d
 219
 220/* Compute die IDs for Tiger Lake with IBECC */
 221#define DID_TGL_SKU	0x9a14
 222
 223/* Compute die IDs for Alder Lake with IBECC */
 224#define DID_ADL_SKU1	0x4601
 225#define DID_ADL_SKU2	0x4602
 226#define DID_ADL_SKU3	0x4621
 227#define DID_ADL_SKU4	0x4641
 228
 229/* Compute die IDs for Alder Lake-N with IBECC */
 230#define DID_ADL_N_SKU1	0x4614
 231#define DID_ADL_N_SKU2	0x4617
 232#define DID_ADL_N_SKU3	0x461b
 233#define DID_ADL_N_SKU4	0x461c
 234#define DID_ADL_N_SKU5	0x4673
 235#define DID_ADL_N_SKU6	0x4674
 236#define DID_ADL_N_SKU7	0x4675
 237#define DID_ADL_N_SKU8	0x4677
 238#define DID_ADL_N_SKU9	0x4678
 239#define DID_ADL_N_SKU10	0x4679
 240#define DID_ADL_N_SKU11	0x467c
 241
 242/* Compute die IDs for Raptor Lake-P with IBECC */
 243#define DID_RPL_P_SKU1	0xa706
 244#define DID_RPL_P_SKU2	0xa707
 245#define DID_RPL_P_SKU3	0xa708
 246#define DID_RPL_P_SKU4	0xa716
 247#define DID_RPL_P_SKU5	0xa718
 248
 249/* Compute die IDs for Meteor Lake-PS with IBECC */
 250#define DID_MTL_PS_SKU1	0x7d21
 251#define DID_MTL_PS_SKU2	0x7d22
 252#define DID_MTL_PS_SKU3	0x7d23
 253#define DID_MTL_PS_SKU4	0x7d24
 254
 255/* Compute die IDs for Meteor Lake-P with IBECC */
 256#define DID_MTL_P_SKU1	0x7d01
 257#define DID_MTL_P_SKU2	0x7d02
 258#define DID_MTL_P_SKU3	0x7d14
 259
 260static int get_mchbar(struct pci_dev *pdev, u64 *mchbar)
 261{
 262	union  {
 263		u64 v;
 264		struct {
 265			u32 v_lo;
 266			u32 v_hi;
 267		};
 268	} u;
 269
 270	if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) {
 271		igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n");
 272		return -ENODEV;
 273	}
 274
 275	if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) {
 276		igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n");
 277		return -ENODEV;
 278	}
 279
 280	if (!(u.v & MCHBAR_EN)) {
 281		igen6_printk(KERN_ERR, "MCHBAR is disabled\n");
 282		return -ENODEV;
 283	}
 284
 285	*mchbar = MCHBAR_BASE(u.v);
 286
 287	return 0;
 288}
 289
 290static bool ehl_ibecc_available(struct pci_dev *pdev)
 291{
 292	u32 v;
 293
 294	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
 295		return false;
 296
 297	return !!(CAPID_C_IBECC & v);
 298}
 299
 300static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc)
 301{
 302	return eaddr;
 303}
 304
 305static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc)
 306{
 307	if (eaddr < igen6_tolud)
 308		return eaddr;
 309
 310	if (igen6_tom <= _4GB)
 311		return eaddr + igen6_tolud - _4GB;
 312
 313	if (eaddr < _4GB)
 314		return eaddr + igen6_tolud - igen6_tom;
 315
 316	return eaddr;
 317}
 318
 319static bool icl_ibecc_available(struct pci_dev *pdev)
 320{
 321	u32 v;
 322
 323	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
 324		return false;
 325
 326	return !(CAPID_C_IBECC & v) &&
 327		(boot_cpu_data.x86_stepping >= 1);
 328}
 329
 330static bool tgl_ibecc_available(struct pci_dev *pdev)
 331{
 332	u32 v;
 333
 334	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
 335		return false;
 336
 337	return !(CAPID_E_IBECC & v);
 338}
 339
 340static bool mtl_p_ibecc_available(struct pci_dev *pdev)
 341{
 342	u32 v;
 343
 344	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
 345		return false;
 346
 347	return !(CAPID_E_IBECC_BIT18 & v);
 348}
 349
 350static bool mtl_ps_ibecc_available(struct pci_dev *pdev)
 351{
 352#define MCHBAR_MEMSS_IBECCDIS	0x13c00
 353	void __iomem *window;
 354	u64 mchbar;
 355	u32 val;
 356
 357	if (get_mchbar(pdev, &mchbar))
 358		return false;
 359
 360	window = ioremap(mchbar, MCHBAR_SIZE * 2);
 361	if (!window) {
 362		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
 363		return false;
 364	}
 365
 366	val = readl(window + MCHBAR_MEMSS_IBECCDIS);
 367	iounmap(window);
 368
 369	/* Bit6: 1 - IBECC is disabled, 0 - IBECC isn't disabled */
 370	return !GET_BITFIELD(val, 6, 6);
 371}
 372
 373static u64 mem_addr_to_sys_addr(u64 maddr)
 374{
 375	if (maddr < igen6_tolud)
 376		return maddr;
 377
 378	if (igen6_tom <= _4GB)
 379		return maddr - igen6_tolud + _4GB;
 380
 381	if (maddr < _4GB)
 382		return maddr - igen6_tolud + igen6_tom;
 383
 384	return maddr;
 385}
 386
 387static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit)
 388{
 389	u64 hash_addr = addr & mask, hash = hash_init;
 390	u64 intlv = (addr >> intlv_bit) & 1;
 391	int i;
 392
 393	for (i = 6; i < 20; i++)
 394		hash ^= (hash_addr >> i) & 1;
 395
 396	return hash ^ intlv;
 397}
 398
 399static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc)
 400{
 401	u64 maddr, hash, mask, ms_s_size;
 402	int intlv_bit;
 403	u32 ms_hash;
 404
 405	ms_s_size = igen6_pvt->ms_s_size;
 406	if (eaddr >= ms_s_size)
 407		return eaddr + ms_s_size;
 408
 409	ms_hash = igen6_pvt->ms_hash;
 410
 411	mask = MEM_SLICE_HASH_MASK(ms_hash);
 412	intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6;
 413
 414	maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) |
 415		GET_BITFIELD(eaddr, 0, intlv_bit - 1);
 416
 417	hash = mem_slice_hash(maddr, mask, mc, intlv_bit);
 418
 419	return maddr | (hash << intlv_bit);
 420}
 421
 422static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc)
 423{
 424	u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc);
 425
 426	return mem_addr_to_sys_addr(maddr);
 427}
 428
 429static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc)
 430{
 431	return eaddr;
 432}
 433
 434static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc)
 435{
 436	return mem_addr_to_sys_addr(eaddr);
 437}
 438
 439static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc)
 440{
 441	u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size;
 442	struct igen6_imc *imc = &igen6_pvt->imc[mc];
 443	int intlv_bit;
 444	u32 mc_hash;
 445
 446	if (eaddr >= 2 * ms_s_size)
 447		return eaddr - ms_s_size;
 448
 449	mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET);
 450
 451	intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6;
 452
 453	imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit |
 454		   GET_BITFIELD(eaddr, 0, intlv_bit - 1);
 455
 456	return imc_addr;
 457}
 458
 459static u64 rpl_p_err_addr(u64 ecclog)
 460{
 461	return ECC_ERROR_LOG_ADDR45(ecclog);
 462}
 463
 464static struct res_config ehl_cfg = {
 465	.num_imc		= 1,
 466	.imc_base		= 0x5000,
 467	.ibecc_base		= 0xdc00,
 468	.ibecc_available	= ehl_ibecc_available,
 469	.ibecc_error_log_offset	= 0x170,
 470	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
 471	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
 472};
 473
 474static struct res_config icl_cfg = {
 475	.num_imc		= 1,
 476	.imc_base		= 0x5000,
 477	.ibecc_base		= 0xd800,
 478	.ibecc_error_log_offset	= 0x170,
 479	.ibecc_available	= icl_ibecc_available,
 480	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
 481	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
 482};
 483
 484static struct res_config tgl_cfg = {
 485	.machine_check		= true,
 486	.num_imc		= 2,
 487	.imc_base		= 0x5000,
 488	.cmf_base		= 0x11000,
 489	.cmf_size		= 0x800,
 490	.ms_hash_offset		= 0xac,
 491	.ibecc_base		= 0xd400,
 492	.ibecc_error_log_offset	= 0x170,
 493	.ibecc_available	= tgl_ibecc_available,
 494	.err_addr_to_sys_addr	= tgl_err_addr_to_sys_addr,
 495	.err_addr_to_imc_addr	= tgl_err_addr_to_imc_addr,
 496};
 497
 498static struct res_config adl_cfg = {
 499	.machine_check		= true,
 500	.num_imc		= 2,
 501	.imc_base		= 0xd800,
 502	.ibecc_base		= 0xd400,
 503	.ibecc_error_log_offset	= 0x68,
 504	.ibecc_available	= tgl_ibecc_available,
 505	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
 506	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
 507};
 508
 509static struct res_config adl_n_cfg = {
 510	.machine_check		= true,
 511	.num_imc		= 1,
 512	.imc_base		= 0xd800,
 513	.ibecc_base		= 0xd400,
 514	.ibecc_error_log_offset	= 0x68,
 515	.ibecc_available	= tgl_ibecc_available,
 516	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
 517	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
 518};
 519
 520static struct res_config rpl_p_cfg = {
 521	.machine_check		= true,
 522	.num_imc		= 2,
 523	.imc_base		= 0xd800,
 524	.ibecc_base		= 0xd400,
 525	.ibecc_error_log_offset	= 0x68,
 526	.ibecc_available	= tgl_ibecc_available,
 527	.err_addr		= rpl_p_err_addr,
 528	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
 529	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
 530};
 531
 532static struct res_config mtl_ps_cfg = {
 533	.machine_check		= true,
 534	.num_imc		= 2,
 535	.imc_base		= 0xd800,
 536	.ibecc_base		= 0xd400,
 537	.ibecc_error_log_offset	= 0x170,
 538	.ibecc_available	= mtl_ps_ibecc_available,
 539	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
 540	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
 541};
 542
 543static struct res_config mtl_p_cfg = {
 544	.machine_check		= true,
 545	.num_imc		= 2,
 546	.imc_base		= 0xd800,
 547	.ibecc_base		= 0xd400,
 548	.ibecc_error_log_offset	= 0x170,
 549	.ibecc_available	= mtl_p_ibecc_available,
 550	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
 551	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
 552};
 553
 554static const struct pci_device_id igen6_pci_tbl[] = {
 555	{ PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg },
 556	{ PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg },
 557	{ PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg },
 558	{ PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg },
 559	{ PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg },
 560	{ PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg },
 561	{ PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg },
 562	{ PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg },
 563	{ PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg },
 564	{ PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg },
 565	{ PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg },
 566	{ PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg },
 567	{ PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg },
 568	{ PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg },
 569	{ PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg },
 570	{ PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg },
 571	{ PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg },
 572	{ PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg },
 573	{ PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg },
 574	{ PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg },
 575	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU1), (kernel_ulong_t)&adl_n_cfg },
 576	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU2), (kernel_ulong_t)&adl_n_cfg },
 577	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU3), (kernel_ulong_t)&adl_n_cfg },
 578	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU4), (kernel_ulong_t)&adl_n_cfg },
 579	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU5), (kernel_ulong_t)&adl_n_cfg },
 580	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU6), (kernel_ulong_t)&adl_n_cfg },
 581	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU7), (kernel_ulong_t)&adl_n_cfg },
 582	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU8), (kernel_ulong_t)&adl_n_cfg },
 583	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU9), (kernel_ulong_t)&adl_n_cfg },
 584	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU10), (kernel_ulong_t)&adl_n_cfg },
 585	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU11), (kernel_ulong_t)&adl_n_cfg },
 586	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU1), (kernel_ulong_t)&rpl_p_cfg },
 587	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU2), (kernel_ulong_t)&rpl_p_cfg },
 588	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU3), (kernel_ulong_t)&rpl_p_cfg },
 589	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU4), (kernel_ulong_t)&rpl_p_cfg },
 590	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU5), (kernel_ulong_t)&rpl_p_cfg },
 591	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU1), (kernel_ulong_t)&mtl_ps_cfg },
 592	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU2), (kernel_ulong_t)&mtl_ps_cfg },
 593	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU3), (kernel_ulong_t)&mtl_ps_cfg },
 594	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU4), (kernel_ulong_t)&mtl_ps_cfg },
 595	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU1), (kernel_ulong_t)&mtl_p_cfg },
 596	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU2), (kernel_ulong_t)&mtl_p_cfg },
 597	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU3), (kernel_ulong_t)&mtl_p_cfg },
 598	{ },
 599};
 600MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
 601
 602static enum dev_type get_width(int dimm_l, u32 mad_dimm)
 603{
 604	u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) :
 605			 MAD_DIMM_CH_DSW(mad_dimm);
 606
 607	switch (w) {
 608	case 0:
 609		return DEV_X8;
 610	case 1:
 611		return DEV_X16;
 612	case 2:
 613		return DEV_X32;
 614	default:
 615		return DEV_UNKNOWN;
 616	}
 617}
 618
 619static enum mem_type get_memory_type(u32 mad_inter)
 620{
 621	u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter);
 622
 623	switch (t) {
 624	case 0:
 625		return MEM_DDR4;
 626	case 1:
 627		return MEM_DDR3;
 628	case 2:
 629		return MEM_LPDDR3;
 630	case 3:
 631		return MEM_LPDDR4;
 632	case 4:
 633		return MEM_WIO2;
 634	default:
 635		return MEM_UNKNOWN;
 636	}
 637}
 638
 639static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit)
 640{
 641	u64 hash_addr = addr & mask, hash = 0;
 642	u64 intlv = (addr >> intlv_bit) & 1;
 643	int i;
 644
 645	for (i = 6; i < 20; i++)
 646		hash ^= (hash_addr >> i) & 1;
 647
 648	return (int)hash ^ intlv;
 649}
 650
 651static u64 decode_channel_addr(u64 addr, int intlv_bit)
 652{
 653	u64 channel_addr;
 654
 655	/* Remove the interleave bit and shift upper part down to fill gap */
 656	channel_addr  = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit;
 657	channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1);
 658
 659	return channel_addr;
 660}
 661
 662static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map,
 663			int *idx, u64 *sub_addr)
 664{
 665	int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6;
 666
 667	if (addr > 2 * s_size) {
 668		*sub_addr = addr - s_size;
 669		*idx = l_map;
 670		return;
 671	}
 672
 673	if (CHANNEL_HASH_MODE(hash)) {
 674		*sub_addr = decode_channel_addr(addr, intlv_bit);
 675		*idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit);
 676	} else {
 677		*sub_addr = decode_channel_addr(addr, 6);
 678		*idx = GET_BITFIELD(addr, 6, 6);
 679	}
 680}
 681
 682static int igen6_decode(struct decoded_addr *res)
 683{
 684	struct igen6_imc *imc = &igen6_pvt->imc[res->mc];
 685	u64 addr = res->imc_addr, sub_addr, s_size;
 686	int idx, l_map;
 687	u32 hash;
 688
 689	if (addr >= igen6_tom) {
 690		edac_dbg(0, "Address 0x%llx out of range\n", addr);
 691		return -EINVAL;
 692	}
 693
 694	/* Decode channel */
 695	hash   = readl(imc->window + CHANNEL_HASH_OFFSET);
 696	s_size = imc->ch_s_size;
 697	l_map  = imc->ch_l_map;
 698	decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr);
 699	res->channel_idx  = idx;
 700	res->channel_addr = sub_addr;
 701
 702	/* Decode sub-channel/DIMM */
 703	hash   = readl(imc->window + CHANNEL_EHASH_OFFSET);
 704	s_size = imc->dimm_s_size[idx];
 705	l_map  = imc->dimm_l_map[idx];
 706	decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr);
 707	res->sub_channel_idx  = idx;
 708	res->sub_channel_addr = sub_addr;
 709
 710	return 0;
 711}
 712
 713static void igen6_output_error(struct decoded_addr *res,
 714			       struct mem_ctl_info *mci, u64 ecclog)
 715{
 716	enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ?
 717					 HW_EVENT_ERR_UNCORRECTED :
 718					 HW_EVENT_ERR_CORRECTED;
 719
 720	edac_mc_handle_error(type, mci, 1,
 721			     res->sys_addr >> PAGE_SHIFT,
 722			     res->sys_addr & ~PAGE_MASK,
 723			     ECC_ERROR_LOG_SYND(ecclog),
 724			     res->channel_idx, res->sub_channel_idx,
 725			     -1, "", "");
 726}
 727
 728static struct gen_pool *ecclog_gen_pool_create(void)
 729{
 730	struct gen_pool *pool;
 731
 732	pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1);
 733	if (!pool)
 734		return NULL;
 735
 736	if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) {
 737		gen_pool_destroy(pool);
 738		return NULL;
 739	}
 740
 741	return pool;
 742}
 743
 744static int ecclog_gen_pool_add(int mc, u64 ecclog)
 745{
 746	struct ecclog_node *node;
 747
 748	node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node));
 749	if (!node)
 750		return -ENOMEM;
 751
 752	node->mc = mc;
 753	node->ecclog = ecclog;
 754	llist_add(&node->llnode, &ecclog_llist);
 755
 756	return 0;
 757}
 758
 759/*
 760 * Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI
 761 * configuration space status register ERRSTS can indicate whether a
 762 * correctable error or an uncorrectable error occurred. We only use the
 763 * ECC_ERROR_LOG register to check error type, but need to clear both
 764 * registers to enable future error events.
 765 */
 766static u64 ecclog_read_and_clear(struct igen6_imc *imc)
 767{
 768	u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET);
 769
 770	if (ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)) {
 771		/* Clear CE/UE bits by writing 1s */
 772		writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET);
 773		return ecclog;
 774	}
 775
 776	return 0;
 777}
 778
 779static void errsts_clear(struct igen6_imc *imc)
 780{
 781	u16 errsts;
 782
 783	if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) {
 784		igen6_printk(KERN_ERR, "Failed to read ERRSTS\n");
 785		return;
 786	}
 787
 788	/* Clear CE/UE bits by writing 1s */
 789	if (errsts & (ERRSTS_CE | ERRSTS_UE))
 790		pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts);
 791}
 792
 793static int errcmd_enable_error_reporting(bool enable)
 794{
 795	struct igen6_imc *imc = &igen6_pvt->imc[0];
 796	u16 errcmd;
 797	int rc;
 798
 799	rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd);
 800	if (rc)
 801		return rc;
 802
 803	if (enable)
 804		errcmd |= ERRCMD_CE | ERRSTS_UE;
 805	else
 806		errcmd &= ~(ERRCMD_CE | ERRSTS_UE);
 807
 808	rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd);
 809	if (rc)
 810		return rc;
 811
 812	return 0;
 813}
 814
 815static int ecclog_handler(void)
 816{
 817	struct igen6_imc *imc;
 818	int i, n = 0;
 819	u64 ecclog;
 820
 821	for (i = 0; i < res_cfg->num_imc; i++) {
 822		imc = &igen6_pvt->imc[i];
 823
 824		/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
 825
 826		ecclog = ecclog_read_and_clear(imc);
 827		if (!ecclog)
 828			continue;
 829
 830		if (!ecclog_gen_pool_add(i, ecclog))
 831			irq_work_queue(&ecclog_irq_work);
 832
 833		n++;
 834	}
 835
 836	return n;
 837}
 838
 839static void ecclog_work_cb(struct work_struct *work)
 840{
 841	struct ecclog_node *node, *tmp;
 842	struct mem_ctl_info *mci;
 843	struct llist_node *head;
 844	struct decoded_addr res;
 845	u64 eaddr;
 846
 847	head = llist_del_all(&ecclog_llist);
 848	if (!head)
 849		return;
 850
 851	llist_for_each_entry_safe(node, tmp, head, llnode) {
 852		memset(&res, 0, sizeof(res));
 853		if (res_cfg->err_addr)
 854			eaddr = res_cfg->err_addr(node->ecclog);
 855		else
 856			eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) <<
 857				ECC_ERROR_LOG_ADDR_SHIFT;
 858		res.mc	     = node->mc;
 859		res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc);
 860		res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc);
 861
 862		mci = igen6_pvt->imc[res.mc].mci;
 863
 864		edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog);
 865		igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n");
 866		igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr);
 867
 868		if (!igen6_decode(&res))
 869			igen6_output_error(&res, mci, node->ecclog);
 870
 871		gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node));
 872	}
 873}
 874
 875static void ecclog_irq_work_cb(struct irq_work *irq_work)
 876{
 877	int i;
 878
 879	for (i = 0; i < res_cfg->num_imc; i++)
 880		errsts_clear(&igen6_pvt->imc[i]);
 881
 882	if (!llist_empty(&ecclog_llist))
 883		schedule_work(&ecclog_work);
 884}
 885
 886static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs)
 887{
 888	unsigned char reason;
 889
 890	if (!ecclog_handler())
 891		return NMI_DONE;
 892
 893	/*
 894	 * Both In-Band ECC correctable error and uncorrectable error are
 895	 * reported by SERR# NMI. The NMI generic code (see pci_serr_error())
 896	 * doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to
 897	 * re-enable the SERR# NMI after NMI handling. So clear this bit here
 898	 * to re-enable SERR# NMI for receiving future In-Band ECC errors.
 899	 */
 900	reason  = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK;
 901	reason |= NMI_REASON_CLEAR_SERR;
 902	outb(reason, NMI_REASON_PORT);
 903	reason &= ~NMI_REASON_CLEAR_SERR;
 904	outb(reason, NMI_REASON_PORT);
 905
 906	return NMI_HANDLED;
 907}
 908
 909static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val,
 910			      void *data)
 911{
 912	struct mce *mce = (struct mce *)data;
 913	char *type;
 914
 915	if (mce->kflags & MCE_HANDLED_CEC)
 916		return NOTIFY_DONE;
 917
 918	/*
 919	 * Ignore unless this is a memory related error.
 920	 * We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here,
 921	 * since this bit isn't set on some CPU (e.g., Tiger Lake UP3).
 922	 */
 923	if ((mce->status & 0xefff) >> 7 != 1)
 924		return NOTIFY_DONE;
 925
 926	if (mce->mcgstatus & MCG_STATUS_MCIP)
 927		type = "Exception";
 928	else
 929		type = "Event";
 930
 931	edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n",
 932		 mce->extcpu, type, mce->mcgstatus,
 933		 mce->bank, mce->status);
 934	edac_dbg(0, "TSC 0x%llx\n", mce->tsc);
 935	edac_dbg(0, "ADDR 0x%llx\n", mce->addr);
 936	edac_dbg(0, "MISC 0x%llx\n", mce->misc);
 937	edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n",
 938		 mce->cpuvendor, mce->cpuid, mce->time,
 939		 mce->socketid, mce->apicid);
 940	/*
 941	 * We just use the Machine Check for the memory error notification.
 942	 * Each memory controller is associated with an IBECC instance.
 943	 * Directly read and clear the error information(error address and
 944	 * error type) on all the IBECC instances so that we know on which
 945	 * memory controller the memory error(s) occurred.
 946	 */
 947	if (!ecclog_handler())
 948		return NOTIFY_DONE;
 949
 950	mce->kflags |= MCE_HANDLED_EDAC;
 951
 952	return NOTIFY_DONE;
 953}
 954
 955static struct notifier_block ecclog_mce_dec = {
 956	.notifier_call	= ecclog_mce_handler,
 957	.priority	= MCE_PRIO_EDAC,
 958};
 959
 960static bool igen6_check_ecc(struct igen6_imc *imc)
 961{
 962	u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET);
 963
 964	return !!(activate & IBECC_ACTIVATE_EN);
 965}
 966
 967static int igen6_get_dimm_config(struct mem_ctl_info *mci)
 968{
 969	struct igen6_imc *imc = mci->pvt_info;
 970	u32 mad_inter, mad_intra, mad_dimm;
 971	int i, j, ndimms, mc = imc->mc;
 972	struct dimm_info *dimm;
 973	enum mem_type mtype;
 974	enum dev_type dtype;
 975	u64 dsize;
 976	bool ecc;
 977
 978	edac_dbg(2, "\n");
 979
 980	mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET);
 981	mtype = get_memory_type(mad_inter);
 982	ecc = igen6_check_ecc(imc);
 983	imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter);
 984	imc->ch_l_map  = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter);
 985
 986	for (i = 0; i < NUM_CHANNELS; i++) {
 987		mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4);
 988		mad_dimm  = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4);
 989
 990		imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm);
 991		imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm);
 992		imc->dimm_l_map[i]  = MAD_INTRA_CH_DIMM_L_MAP(mad_intra);
 993		imc->size += imc->dimm_s_size[i];
 994		imc->size += imc->dimm_l_size[i];
 995		ndimms = 0;
 996
 997		for (j = 0; j < NUM_DIMMS; j++) {
 998			dimm = edac_get_dimm(mci, i, j, 0);
 999
1000			if (j ^ imc->dimm_l_map[i]) {
1001				dtype = get_width(0, mad_dimm);
1002				dsize = imc->dimm_s_size[i];
1003			} else {
1004				dtype = get_width(1, mad_dimm);
1005				dsize = imc->dimm_l_size[i];
1006			}
1007
1008			if (!dsize)
1009				continue;
1010
1011			dimm->grain = 64;
1012			dimm->mtype = mtype;
1013			dimm->dtype = dtype;
1014			dimm->nr_pages  = MiB_TO_PAGES(dsize >> 20);
1015			dimm->edac_mode = EDAC_SECDED;
1016			snprintf(dimm->label, sizeof(dimm->label),
1017				 "MC#%d_Chan#%d_DIMM#%d", mc, i, j);
1018			edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n",
1019				 mc, i, j, dsize >> 20, dimm->nr_pages);
1020
1021			ndimms++;
1022		}
1023
1024		if (ndimms && !ecc) {
1025			igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc);
1026			return -ENODEV;
1027		}
1028	}
1029
1030	edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20);
1031
1032	return 0;
1033}
1034
1035#ifdef CONFIG_EDAC_DEBUG
1036/* Top of upper usable DRAM */
1037static u64 igen6_touud;
1038#define TOUUD_OFFSET	0xa8
1039
1040static void igen6_reg_dump(struct igen6_imc *imc)
1041{
1042	int i;
1043
1044	edac_dbg(2, "CHANNEL_HASH     : 0x%x\n",
1045		 readl(imc->window + CHANNEL_HASH_OFFSET));
1046	edac_dbg(2, "CHANNEL_EHASH    : 0x%x\n",
1047		 readl(imc->window + CHANNEL_EHASH_OFFSET));
1048	edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n",
1049		 readl(imc->window + MAD_INTER_CHANNEL_OFFSET));
1050	edac_dbg(2, "ECC_ERROR_LOG    : 0x%llx\n",
1051		 readq(imc->window + ECC_ERROR_LOG_OFFSET));
1052
1053	for (i = 0; i < NUM_CHANNELS; i++) {
1054		edac_dbg(2, "MAD_INTRA_CH%d    : 0x%x\n", i,
1055			 readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4));
1056		edac_dbg(2, "MAD_DIMM_CH%d     : 0x%x\n", i,
1057			 readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4));
1058	}
1059	edac_dbg(2, "TOLUD            : 0x%x", igen6_tolud);
1060	edac_dbg(2, "TOUUD            : 0x%llx", igen6_touud);
1061	edac_dbg(2, "TOM              : 0x%llx", igen6_tom);
1062}
1063
1064static struct dentry *igen6_test;
1065
1066static int debugfs_u64_set(void *data, u64 val)
1067{
1068	u64 ecclog;
1069
1070	if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) {
1071		edac_dbg(0, "Address 0x%llx out of range\n", val);
1072		return 0;
1073	}
1074
1075	pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
1076
1077	val  >>= ECC_ERROR_LOG_ADDR_SHIFT;
1078	ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE;
1079
1080	if (!ecclog_gen_pool_add(0, ecclog))
1081		irq_work_queue(&ecclog_irq_work);
1082
1083	return 0;
1084}
1085DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
1086
1087static void igen6_debug_setup(void)
1088{
1089	igen6_test = edac_debugfs_create_dir("igen6_test");
1090	if (!igen6_test)
1091		return;
1092
1093	if (!edac_debugfs_create_file("addr", 0200, igen6_test,
1094				      NULL, &fops_u64_wo)) {
1095		debugfs_remove(igen6_test);
1096		igen6_test = NULL;
1097	}
1098}
1099
1100static void igen6_debug_teardown(void)
1101{
1102	debugfs_remove_recursive(igen6_test);
1103}
1104#else
1105static void igen6_reg_dump(struct igen6_imc *imc) {}
1106static void igen6_debug_setup(void) {}
1107static void igen6_debug_teardown(void) {}
1108#endif
1109
1110static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar)
1111{
1112	union  {
1113		u64 v;
1114		struct {
1115			u32 v_lo;
1116			u32 v_hi;
1117		};
1118	} u;
1119
1120	edac_dbg(2, "\n");
1121
1122	if (!res_cfg->ibecc_available(pdev)) {
1123		edac_dbg(2, "No In-Band ECC IP\n");
1124		goto fail;
1125	}
1126
1127	if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) {
1128		igen6_printk(KERN_ERR, "Failed to read TOLUD\n");
1129		goto fail;
1130	}
1131
1132	igen6_tolud &= GENMASK(31, 20);
1133
1134	if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) {
1135		igen6_printk(KERN_ERR, "Failed to read lower TOM\n");
1136		goto fail;
1137	}
1138
1139	if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) {
1140		igen6_printk(KERN_ERR, "Failed to read upper TOM\n");
1141		goto fail;
1142	}
1143
1144	igen6_tom = u.v & GENMASK_ULL(38, 20);
1145
1146	if (get_mchbar(pdev, mchbar))
 
 
 
 
 
 
 
 
 
 
 
1147		goto fail;
 
 
 
1148
1149#ifdef CONFIG_EDAC_DEBUG
1150	if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo))
1151		edac_dbg(2, "Failed to read lower TOUUD\n");
1152	else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi))
1153		edac_dbg(2, "Failed to read upper TOUUD\n");
1154	else
1155		igen6_touud = u.v & GENMASK_ULL(38, 20);
1156#endif
1157
1158	return 0;
1159fail:
1160	return -ENODEV;
1161}
1162
1163static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
1164{
1165	struct edac_mc_layer layers[2];
1166	struct mem_ctl_info *mci;
1167	struct igen6_imc *imc;
1168	void __iomem *window;
1169	int rc;
1170
1171	edac_dbg(2, "\n");
1172
1173	mchbar += mc * MCHBAR_SIZE;
1174	window = ioremap(mchbar, MCHBAR_SIZE);
1175	if (!window) {
1176		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
1177		return -ENODEV;
1178	}
1179
1180	layers[0].type = EDAC_MC_LAYER_CHANNEL;
1181	layers[0].size = NUM_CHANNELS;
1182	layers[0].is_virt_csrow = false;
1183	layers[1].type = EDAC_MC_LAYER_SLOT;
1184	layers[1].size = NUM_DIMMS;
1185	layers[1].is_virt_csrow = true;
1186
1187	mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0);
1188	if (!mci) {
1189		rc = -ENOMEM;
1190		goto fail;
1191	}
1192
1193	mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc);
1194	if (!mci->ctl_name) {
1195		rc = -ENOMEM;
1196		goto fail2;
1197	}
1198
1199	mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4;
1200	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
1201	mci->edac_cap = EDAC_FLAG_SECDED;
1202	mci->mod_name = EDAC_MOD_STR;
1203	mci->dev_name = pci_name(pdev);
1204	mci->pvt_info = &igen6_pvt->imc[mc];
1205
1206	imc = mci->pvt_info;
1207	device_initialize(&imc->dev);
1208	/*
1209	 * EDAC core uses mci->pdev(pointer of structure device) as
1210	 * memory controller ID. The client SoCs attach one or more
1211	 * memory controllers to single pci_dev (single pci_dev->dev
1212	 * can be for multiple memory controllers).
1213	 *
1214	 * To make mci->pdev unique, assign pci_dev->dev to mci->pdev
1215	 * for the first memory controller and assign a unique imc->dev
1216	 * to mci->pdev for each non-first memory controller.
1217	 */
1218	mci->pdev = mc ? &imc->dev : &pdev->dev;
1219	imc->mc	= mc;
1220	imc->pdev = pdev;
1221	imc->window = window;
1222
1223	igen6_reg_dump(imc);
1224
1225	rc = igen6_get_dimm_config(mci);
1226	if (rc)
1227		goto fail3;
1228
1229	rc = edac_mc_add_mc(mci);
1230	if (rc) {
1231		igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc);
1232		goto fail3;
1233	}
1234
1235	imc->mci = mci;
1236	return 0;
1237fail3:
1238	kfree(mci->ctl_name);
1239fail2:
1240	edac_mc_free(mci);
1241fail:
1242	iounmap(window);
1243	return rc;
1244}
1245
1246static void igen6_unregister_mcis(void)
1247{
1248	struct mem_ctl_info *mci;
1249	struct igen6_imc *imc;
1250	int i;
1251
1252	edac_dbg(2, "\n");
1253
1254	for (i = 0; i < res_cfg->num_imc; i++) {
1255		imc = &igen6_pvt->imc[i];
1256		mci = imc->mci;
1257		if (!mci)
1258			continue;
1259
1260		edac_mc_del_mc(mci->pdev);
1261		kfree(mci->ctl_name);
1262		edac_mc_free(mci);
1263		iounmap(imc->window);
1264	}
1265}
1266
1267static int igen6_mem_slice_setup(u64 mchbar)
1268{
1269	struct igen6_imc *imc = &igen6_pvt->imc[0];
1270	u64 base = mchbar + res_cfg->cmf_base;
1271	u32 offset = res_cfg->ms_hash_offset;
1272	u32 size = res_cfg->cmf_size;
1273	u64 ms_s_size, ms_hash;
1274	void __iomem *cmf;
1275	int ms_l_map;
1276
1277	edac_dbg(2, "\n");
1278
1279	if (imc[0].size < imc[1].size) {
1280		ms_s_size = imc[0].size;
1281		ms_l_map  = 1;
1282	} else {
1283		ms_s_size = imc[1].size;
1284		ms_l_map  = 0;
1285	}
1286
1287	igen6_pvt->ms_s_size = ms_s_size;
1288	igen6_pvt->ms_l_map  = ms_l_map;
1289
1290	edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n",
1291		 ms_s_size >> 20, ms_l_map);
1292
1293	if (!size)
1294		return 0;
1295
1296	cmf = ioremap(base, size);
1297	if (!cmf) {
1298		igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base);
1299		return -ENODEV;
1300	}
1301
1302	ms_hash = readq(cmf + offset);
1303	igen6_pvt->ms_hash = ms_hash;
1304
1305	edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash);
1306
1307	iounmap(cmf);
1308
1309	return 0;
1310}
1311
1312static int register_err_handler(void)
1313{
1314	int rc;
1315
1316	if (res_cfg->machine_check) {
1317		mce_register_decode_chain(&ecclog_mce_dec);
1318		return 0;
1319	}
1320
1321	rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler,
1322				  0, IGEN6_NMI_NAME);
1323	if (rc) {
1324		igen6_printk(KERN_ERR, "Failed to register NMI handler\n");
1325		return rc;
1326	}
1327
1328	return 0;
1329}
1330
1331static void unregister_err_handler(void)
1332{
1333	if (res_cfg->machine_check) {
1334		mce_unregister_decode_chain(&ecclog_mce_dec);
1335		return;
1336	}
1337
1338	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1339}
1340
1341static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1342{
1343	u64 mchbar;
1344	int i, rc;
1345
1346	edac_dbg(2, "\n");
1347
1348	igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL);
1349	if (!igen6_pvt)
1350		return -ENOMEM;
1351
1352	res_cfg = (struct res_config *)ent->driver_data;
1353
1354	rc = igen6_pci_setup(pdev, &mchbar);
1355	if (rc)
1356		goto fail;
1357
1358	for (i = 0; i < res_cfg->num_imc; i++) {
1359		rc = igen6_register_mci(i, mchbar, pdev);
1360		if (rc)
1361			goto fail2;
1362	}
1363
1364	if (res_cfg->num_imc > 1) {
1365		rc = igen6_mem_slice_setup(mchbar);
1366		if (rc)
1367			goto fail2;
1368	}
1369
1370	ecclog_pool = ecclog_gen_pool_create();
1371	if (!ecclog_pool) {
1372		rc = -ENOMEM;
1373		goto fail2;
1374	}
1375
1376	INIT_WORK(&ecclog_work, ecclog_work_cb);
1377	init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb);
1378
 
 
 
1379	rc = register_err_handler();
1380	if (rc)
1381		goto fail3;
1382
1383	/* Enable error reporting */
1384	rc = errcmd_enable_error_reporting(true);
1385	if (rc) {
1386		igen6_printk(KERN_ERR, "Failed to enable error reporting\n");
1387		goto fail4;
1388	}
1389
1390	/* Check if any pending errors before/during the registration of the error handler */
1391	ecclog_handler();
1392
1393	igen6_debug_setup();
1394	return 0;
1395fail4:
1396	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1397fail3:
1398	gen_pool_destroy(ecclog_pool);
1399fail2:
1400	igen6_unregister_mcis();
1401fail:
1402	kfree(igen6_pvt);
1403	return rc;
1404}
1405
1406static void igen6_remove(struct pci_dev *pdev)
1407{
1408	edac_dbg(2, "\n");
1409
1410	igen6_debug_teardown();
1411	errcmd_enable_error_reporting(false);
1412	unregister_err_handler();
1413	irq_work_sync(&ecclog_irq_work);
1414	flush_work(&ecclog_work);
1415	gen_pool_destroy(ecclog_pool);
1416	igen6_unregister_mcis();
1417	kfree(igen6_pvt);
1418}
1419
1420static struct pci_driver igen6_driver = {
1421	.name     = EDAC_MOD_STR,
1422	.probe    = igen6_probe,
1423	.remove   = igen6_remove,
1424	.id_table = igen6_pci_tbl,
1425};
1426
1427static int __init igen6_init(void)
1428{
1429	const char *owner;
1430	int rc;
1431
1432	edac_dbg(2, "\n");
1433
1434	if (ghes_get_devices())
1435		return -EBUSY;
1436
1437	owner = edac_get_owner();
1438	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1439		return -EBUSY;
1440
1441	edac_op_state = EDAC_OPSTATE_NMI;
1442
1443	rc = pci_register_driver(&igen6_driver);
1444	if (rc)
1445		return rc;
1446
1447	igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION);
1448
1449	return 0;
1450}
1451
1452static void __exit igen6_exit(void)
1453{
1454	edac_dbg(2, "\n");
1455
1456	pci_unregister_driver(&igen6_driver);
1457}
1458
1459module_init(igen6_init);
1460module_exit(igen6_exit);
1461
1462MODULE_LICENSE("GPL v2");
1463MODULE_AUTHOR("Qiuxu Zhuo");
1464MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC");
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Driver for Intel client SoC with integrated memory controller using IBECC
   4 *
   5 * Copyright (C) 2020 Intel Corporation
   6 *
   7 * The In-Band ECC (IBECC) IP provides ECC protection to all or specific
   8 * regions of the physical memory space. It's used for memory controllers
   9 * that don't support the out-of-band ECC which often needs an additional
  10 * storage device to each channel for storing ECC data.
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/pci.h>
  16#include <linux/slab.h>
  17#include <linux/irq_work.h>
  18#include <linux/llist.h>
  19#include <linux/genalloc.h>
  20#include <linux/edac.h>
  21#include <linux/bits.h>
  22#include <linux/io.h>
  23#include <asm/mach_traps.h>
  24#include <asm/nmi.h>
  25#include <asm/mce.h>
  26
  27#include "edac_mc.h"
  28#include "edac_module.h"
  29
  30#define IGEN6_REVISION	"v2.5"
  31
  32#define EDAC_MOD_STR	"igen6_edac"
  33#define IGEN6_NMI_NAME	"igen6_ibecc"
  34
  35/* Debug macros */
  36#define igen6_printk(level, fmt, arg...)		\
  37	edac_printk(level, "igen6", fmt, ##arg)
  38
  39#define igen6_mc_printk(mci, level, fmt, arg...)	\
  40	edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg)
  41
  42#define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
  43
  44#define NUM_IMC				2 /* Max memory controllers */
  45#define NUM_CHANNELS			2 /* Max channels */
  46#define NUM_DIMMS			2 /* Max DIMMs per channel */
  47
  48#define _4GB				BIT_ULL(32)
  49
  50/* Size of physical memory */
  51#define TOM_OFFSET			0xa0
  52/* Top of low usable DRAM */
  53#define TOLUD_OFFSET			0xbc
  54/* Capability register C */
  55#define CAPID_C_OFFSET			0xec
  56#define CAPID_C_IBECC			BIT(15)
  57
  58/* Capability register E */
  59#define CAPID_E_OFFSET			0xf0
  60#define CAPID_E_IBECC			BIT(12)
 
  61
  62/* Error Status */
  63#define ERRSTS_OFFSET			0xc8
  64#define ERRSTS_CE			BIT_ULL(6)
  65#define ERRSTS_UE			BIT_ULL(7)
  66
  67/* Error Command */
  68#define ERRCMD_OFFSET			0xca
  69#define ERRCMD_CE			BIT_ULL(6)
  70#define ERRCMD_UE			BIT_ULL(7)
  71
  72/* IBECC MMIO base address */
  73#define IBECC_BASE			(res_cfg->ibecc_base)
  74#define IBECC_ACTIVATE_OFFSET		IBECC_BASE
  75#define IBECC_ACTIVATE_EN		BIT(0)
  76
  77/* IBECC error log */
  78#define ECC_ERROR_LOG_OFFSET		(IBECC_BASE + res_cfg->ibecc_error_log_offset)
  79#define ECC_ERROR_LOG_CE		BIT_ULL(62)
  80#define ECC_ERROR_LOG_UE		BIT_ULL(63)
  81#define ECC_ERROR_LOG_ADDR_SHIFT	5
  82#define ECC_ERROR_LOG_ADDR(v)		GET_BITFIELD(v, 5, 38)
 
  83#define ECC_ERROR_LOG_SYND(v)		GET_BITFIELD(v, 46, 61)
  84
  85/* Host MMIO base address */
  86#define MCHBAR_OFFSET			0x48
  87#define MCHBAR_EN			BIT_ULL(0)
  88#define MCHBAR_BASE(v)			(GET_BITFIELD(v, 16, 38) << 16)
  89#define MCHBAR_SIZE			0x10000
  90
  91/* Parameters for the channel decode stage */
  92#define IMC_BASE			(res_cfg->imc_base)
  93#define MAD_INTER_CHANNEL_OFFSET	IMC_BASE
  94#define MAD_INTER_CHANNEL_DDR_TYPE(v)	GET_BITFIELD(v, 0, 2)
  95#define MAD_INTER_CHANNEL_ECHM(v)	GET_BITFIELD(v, 3, 3)
  96#define MAD_INTER_CHANNEL_CH_L_MAP(v)	GET_BITFIELD(v, 4, 4)
  97#define MAD_INTER_CHANNEL_CH_S_SIZE(v)	((u64)GET_BITFIELD(v, 12, 19) << 29)
  98
  99/* Parameters for DRAM decode stage */
 100#define MAD_INTRA_CH0_OFFSET		(IMC_BASE + 4)
 101#define MAD_INTRA_CH_DIMM_L_MAP(v)	GET_BITFIELD(v, 0, 0)
 102
 103/* DIMM characteristics */
 104#define MAD_DIMM_CH0_OFFSET		(IMC_BASE + 0xc)
 105#define MAD_DIMM_CH_DIMM_L_SIZE(v)	((u64)GET_BITFIELD(v, 0, 6) << 29)
 106#define MAD_DIMM_CH_DLW(v)		GET_BITFIELD(v, 7, 8)
 107#define MAD_DIMM_CH_DIMM_S_SIZE(v)	((u64)GET_BITFIELD(v, 16, 22) << 29)
 108#define MAD_DIMM_CH_DSW(v)		GET_BITFIELD(v, 24, 25)
 109
 110/* Hash for memory controller selection */
 111#define MAD_MC_HASH_OFFSET		(IMC_BASE + 0x1b8)
 112#define MAC_MC_HASH_LSB(v)		GET_BITFIELD(v, 1, 3)
 113
 114/* Hash for channel selection */
 115#define CHANNEL_HASH_OFFSET		(IMC_BASE + 0x24)
 116/* Hash for enhanced channel selection */
 117#define CHANNEL_EHASH_OFFSET		(IMC_BASE + 0x28)
 118#define CHANNEL_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
 119#define CHANNEL_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
 120#define CHANNEL_HASH_MODE(v)		GET_BITFIELD(v, 28, 28)
 121
 122/* Parameters for memory slice decode stage */
 123#define MEM_SLICE_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
 124#define MEM_SLICE_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
 125
 126static struct res_config {
 127	bool machine_check;
 128	int num_imc;
 129	u32 imc_base;
 130	u32 cmf_base;
 131	u32 cmf_size;
 132	u32 ms_hash_offset;
 133	u32 ibecc_base;
 134	u32 ibecc_error_log_offset;
 135	bool (*ibecc_available)(struct pci_dev *pdev);
 
 
 136	/* Convert error address logged in IBECC to system physical address */
 137	u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc);
 138	/* Convert error address logged in IBECC to integrated memory controller address */
 139	u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc);
 140} *res_cfg;
 141
 142struct igen6_imc {
 143	int mc;
 144	struct mem_ctl_info *mci;
 145	struct pci_dev *pdev;
 146	struct device dev;
 147	void __iomem *window;
 148	u64 size;
 149	u64 ch_s_size;
 150	int ch_l_map;
 151	u64 dimm_s_size[NUM_CHANNELS];
 152	u64 dimm_l_size[NUM_CHANNELS];
 153	int dimm_l_map[NUM_CHANNELS];
 154};
 155
 156static struct igen6_pvt {
 157	struct igen6_imc imc[NUM_IMC];
 158	u64 ms_hash;
 159	u64 ms_s_size;
 160	int ms_l_map;
 161} *igen6_pvt;
 162
 163/* The top of low usable DRAM */
 164static u32 igen6_tolud;
 165/* The size of physical memory */
 166static u64 igen6_tom;
 167
 168struct decoded_addr {
 169	int mc;
 170	u64 imc_addr;
 171	u64 sys_addr;
 172	int channel_idx;
 173	u64 channel_addr;
 174	int sub_channel_idx;
 175	u64 sub_channel_addr;
 176};
 177
 178struct ecclog_node {
 179	struct llist_node llnode;
 180	int mc;
 181	u64 ecclog;
 182};
 183
 184/*
 185 * In the NMI handler, the driver uses the lock-less memory allocator
 186 * to allocate memory to store the IBECC error logs and links the logs
 187 * to the lock-less list. Delay printk() and the work of error reporting
 188 * to EDAC core in a worker.
 189 */
 190#define ECCLOG_POOL_SIZE	PAGE_SIZE
 191static LLIST_HEAD(ecclog_llist);
 192static struct gen_pool *ecclog_pool;
 193static char ecclog_buf[ECCLOG_POOL_SIZE];
 194static struct irq_work ecclog_irq_work;
 195static struct work_struct ecclog_work;
 196
 197/* Compute die IDs for Elkhart Lake with IBECC */
 198#define DID_EHL_SKU5	0x4514
 199#define DID_EHL_SKU6	0x4528
 200#define DID_EHL_SKU7	0x452a
 201#define DID_EHL_SKU8	0x4516
 202#define DID_EHL_SKU9	0x452c
 203#define DID_EHL_SKU10	0x452e
 204#define DID_EHL_SKU11	0x4532
 205#define DID_EHL_SKU12	0x4518
 206#define DID_EHL_SKU13	0x451a
 207#define DID_EHL_SKU14	0x4534
 208#define DID_EHL_SKU15	0x4536
 209
 210/* Compute die IDs for ICL-NNPI with IBECC */
 211#define DID_ICL_SKU8	0x4581
 212#define DID_ICL_SKU10	0x4585
 213#define DID_ICL_SKU11	0x4589
 214#define DID_ICL_SKU12	0x458d
 215
 216/* Compute die IDs for Tiger Lake with IBECC */
 217#define DID_TGL_SKU	0x9a14
 218
 219/* Compute die IDs for Alder Lake with IBECC */
 220#define DID_ADL_SKU1	0x4601
 221#define DID_ADL_SKU2	0x4602
 222#define DID_ADL_SKU3	0x4621
 223#define DID_ADL_SKU4	0x4641
 224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225static bool ehl_ibecc_available(struct pci_dev *pdev)
 226{
 227	u32 v;
 228
 229	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
 230		return false;
 231
 232	return !!(CAPID_C_IBECC & v);
 233}
 234
 235static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc)
 236{
 237	return eaddr;
 238}
 239
 240static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc)
 241{
 242	if (eaddr < igen6_tolud)
 243		return eaddr;
 244
 245	if (igen6_tom <= _4GB)
 246		return eaddr + igen6_tolud - _4GB;
 247
 248	if (eaddr < _4GB)
 249		return eaddr + igen6_tolud - igen6_tom;
 250
 251	return eaddr;
 252}
 253
 254static bool icl_ibecc_available(struct pci_dev *pdev)
 255{
 256	u32 v;
 257
 258	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
 259		return false;
 260
 261	return !(CAPID_C_IBECC & v) &&
 262		(boot_cpu_data.x86_stepping >= 1);
 263}
 264
 265static bool tgl_ibecc_available(struct pci_dev *pdev)
 266{
 267	u32 v;
 268
 269	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
 270		return false;
 271
 272	return !(CAPID_E_IBECC & v);
 273}
 274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275static u64 mem_addr_to_sys_addr(u64 maddr)
 276{
 277	if (maddr < igen6_tolud)
 278		return maddr;
 279
 280	if (igen6_tom <= _4GB)
 281		return maddr - igen6_tolud + _4GB;
 282
 283	if (maddr < _4GB)
 284		return maddr - igen6_tolud + igen6_tom;
 285
 286	return maddr;
 287}
 288
 289static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit)
 290{
 291	u64 hash_addr = addr & mask, hash = hash_init;
 292	u64 intlv = (addr >> intlv_bit) & 1;
 293	int i;
 294
 295	for (i = 6; i < 20; i++)
 296		hash ^= (hash_addr >> i) & 1;
 297
 298	return hash ^ intlv;
 299}
 300
 301static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc)
 302{
 303	u64 maddr, hash, mask, ms_s_size;
 304	int intlv_bit;
 305	u32 ms_hash;
 306
 307	ms_s_size = igen6_pvt->ms_s_size;
 308	if (eaddr >= ms_s_size)
 309		return eaddr + ms_s_size;
 310
 311	ms_hash = igen6_pvt->ms_hash;
 312
 313	mask = MEM_SLICE_HASH_MASK(ms_hash);
 314	intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6;
 315
 316	maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) |
 317		GET_BITFIELD(eaddr, 0, intlv_bit - 1);
 318
 319	hash = mem_slice_hash(maddr, mask, mc, intlv_bit);
 320
 321	return maddr | (hash << intlv_bit);
 322}
 323
 324static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc)
 325{
 326	u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc);
 327
 328	return mem_addr_to_sys_addr(maddr);
 329}
 330
 331static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc)
 332{
 333	return eaddr;
 334}
 335
 336static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc)
 337{
 338	return mem_addr_to_sys_addr(eaddr);
 339}
 340
 341static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc)
 342{
 343	u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size;
 344	struct igen6_imc *imc = &igen6_pvt->imc[mc];
 345	int intlv_bit;
 346	u32 mc_hash;
 347
 348	if (eaddr >= 2 * ms_s_size)
 349		return eaddr - ms_s_size;
 350
 351	mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET);
 352
 353	intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6;
 354
 355	imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit |
 356		   GET_BITFIELD(eaddr, 0, intlv_bit - 1);
 357
 358	return imc_addr;
 359}
 360
 
 
 
 
 
 361static struct res_config ehl_cfg = {
 362	.num_imc		= 1,
 363	.imc_base		= 0x5000,
 364	.ibecc_base		= 0xdc00,
 365	.ibecc_available	= ehl_ibecc_available,
 366	.ibecc_error_log_offset	= 0x170,
 367	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
 368	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
 369};
 370
 371static struct res_config icl_cfg = {
 372	.num_imc		= 1,
 373	.imc_base		= 0x5000,
 374	.ibecc_base		= 0xd800,
 375	.ibecc_error_log_offset	= 0x170,
 376	.ibecc_available	= icl_ibecc_available,
 377	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
 378	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
 379};
 380
 381static struct res_config tgl_cfg = {
 382	.machine_check		= true,
 383	.num_imc		= 2,
 384	.imc_base		= 0x5000,
 385	.cmf_base		= 0x11000,
 386	.cmf_size		= 0x800,
 387	.ms_hash_offset		= 0xac,
 388	.ibecc_base		= 0xd400,
 389	.ibecc_error_log_offset	= 0x170,
 390	.ibecc_available	= tgl_ibecc_available,
 391	.err_addr_to_sys_addr	= tgl_err_addr_to_sys_addr,
 392	.err_addr_to_imc_addr	= tgl_err_addr_to_imc_addr,
 393};
 394
 395static struct res_config adl_cfg = {
 396	.machine_check		= true,
 397	.num_imc		= 2,
 398	.imc_base		= 0xd800,
 399	.ibecc_base		= 0xd400,
 400	.ibecc_error_log_offset	= 0x68,
 401	.ibecc_available	= tgl_ibecc_available,
 402	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
 403	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
 404};
 405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406static const struct pci_device_id igen6_pci_tbl[] = {
 407	{ PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg },
 408	{ PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg },
 409	{ PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg },
 410	{ PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg },
 411	{ PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg },
 412	{ PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg },
 413	{ PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg },
 414	{ PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg },
 415	{ PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg },
 416	{ PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg },
 417	{ PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg },
 418	{ PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg },
 419	{ PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg },
 420	{ PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg },
 421	{ PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg },
 422	{ PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg },
 423	{ PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg },
 424	{ PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg },
 425	{ PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg },
 426	{ PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427	{ },
 428};
 429MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
 430
 431static enum dev_type get_width(int dimm_l, u32 mad_dimm)
 432{
 433	u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) :
 434			 MAD_DIMM_CH_DSW(mad_dimm);
 435
 436	switch (w) {
 437	case 0:
 438		return DEV_X8;
 439	case 1:
 440		return DEV_X16;
 441	case 2:
 442		return DEV_X32;
 443	default:
 444		return DEV_UNKNOWN;
 445	}
 446}
 447
 448static enum mem_type get_memory_type(u32 mad_inter)
 449{
 450	u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter);
 451
 452	switch (t) {
 453	case 0:
 454		return MEM_DDR4;
 455	case 1:
 456		return MEM_DDR3;
 457	case 2:
 458		return MEM_LPDDR3;
 459	case 3:
 460		return MEM_LPDDR4;
 461	case 4:
 462		return MEM_WIO2;
 463	default:
 464		return MEM_UNKNOWN;
 465	}
 466}
 467
 468static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit)
 469{
 470	u64 hash_addr = addr & mask, hash = 0;
 471	u64 intlv = (addr >> intlv_bit) & 1;
 472	int i;
 473
 474	for (i = 6; i < 20; i++)
 475		hash ^= (hash_addr >> i) & 1;
 476
 477	return (int)hash ^ intlv;
 478}
 479
 480static u64 decode_channel_addr(u64 addr, int intlv_bit)
 481{
 482	u64 channel_addr;
 483
 484	/* Remove the interleave bit and shift upper part down to fill gap */
 485	channel_addr  = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit;
 486	channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1);
 487
 488	return channel_addr;
 489}
 490
 491static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map,
 492			int *idx, u64 *sub_addr)
 493{
 494	int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6;
 495
 496	if (addr > 2 * s_size) {
 497		*sub_addr = addr - s_size;
 498		*idx = l_map;
 499		return;
 500	}
 501
 502	if (CHANNEL_HASH_MODE(hash)) {
 503		*sub_addr = decode_channel_addr(addr, intlv_bit);
 504		*idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit);
 505	} else {
 506		*sub_addr = decode_channel_addr(addr, 6);
 507		*idx = GET_BITFIELD(addr, 6, 6);
 508	}
 509}
 510
 511static int igen6_decode(struct decoded_addr *res)
 512{
 513	struct igen6_imc *imc = &igen6_pvt->imc[res->mc];
 514	u64 addr = res->imc_addr, sub_addr, s_size;
 515	int idx, l_map;
 516	u32 hash;
 517
 518	if (addr >= igen6_tom) {
 519		edac_dbg(0, "Address 0x%llx out of range\n", addr);
 520		return -EINVAL;
 521	}
 522
 523	/* Decode channel */
 524	hash   = readl(imc->window + CHANNEL_HASH_OFFSET);
 525	s_size = imc->ch_s_size;
 526	l_map  = imc->ch_l_map;
 527	decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr);
 528	res->channel_idx  = idx;
 529	res->channel_addr = sub_addr;
 530
 531	/* Decode sub-channel/DIMM */
 532	hash   = readl(imc->window + CHANNEL_EHASH_OFFSET);
 533	s_size = imc->dimm_s_size[idx];
 534	l_map  = imc->dimm_l_map[idx];
 535	decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr);
 536	res->sub_channel_idx  = idx;
 537	res->sub_channel_addr = sub_addr;
 538
 539	return 0;
 540}
 541
 542static void igen6_output_error(struct decoded_addr *res,
 543			       struct mem_ctl_info *mci, u64 ecclog)
 544{
 545	enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ?
 546					 HW_EVENT_ERR_UNCORRECTED :
 547					 HW_EVENT_ERR_CORRECTED;
 548
 549	edac_mc_handle_error(type, mci, 1,
 550			     res->sys_addr >> PAGE_SHIFT,
 551			     res->sys_addr & ~PAGE_MASK,
 552			     ECC_ERROR_LOG_SYND(ecclog),
 553			     res->channel_idx, res->sub_channel_idx,
 554			     -1, "", "");
 555}
 556
 557static struct gen_pool *ecclog_gen_pool_create(void)
 558{
 559	struct gen_pool *pool;
 560
 561	pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1);
 562	if (!pool)
 563		return NULL;
 564
 565	if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) {
 566		gen_pool_destroy(pool);
 567		return NULL;
 568	}
 569
 570	return pool;
 571}
 572
 573static int ecclog_gen_pool_add(int mc, u64 ecclog)
 574{
 575	struct ecclog_node *node;
 576
 577	node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node));
 578	if (!node)
 579		return -ENOMEM;
 580
 581	node->mc = mc;
 582	node->ecclog = ecclog;
 583	llist_add(&node->llnode, &ecclog_llist);
 584
 585	return 0;
 586}
 587
 588/*
 589 * Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI
 590 * configuration space status register ERRSTS can indicate whether a
 591 * correctable error or an uncorrectable error occurred. We only use the
 592 * ECC_ERROR_LOG register to check error type, but need to clear both
 593 * registers to enable future error events.
 594 */
 595static u64 ecclog_read_and_clear(struct igen6_imc *imc)
 596{
 597	u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET);
 598
 599	if (ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)) {
 600		/* Clear CE/UE bits by writing 1s */
 601		writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET);
 602		return ecclog;
 603	}
 604
 605	return 0;
 606}
 607
 608static void errsts_clear(struct igen6_imc *imc)
 609{
 610	u16 errsts;
 611
 612	if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) {
 613		igen6_printk(KERN_ERR, "Failed to read ERRSTS\n");
 614		return;
 615	}
 616
 617	/* Clear CE/UE bits by writing 1s */
 618	if (errsts & (ERRSTS_CE | ERRSTS_UE))
 619		pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts);
 620}
 621
 622static int errcmd_enable_error_reporting(bool enable)
 623{
 624	struct igen6_imc *imc = &igen6_pvt->imc[0];
 625	u16 errcmd;
 626	int rc;
 627
 628	rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd);
 629	if (rc)
 630		return rc;
 631
 632	if (enable)
 633		errcmd |= ERRCMD_CE | ERRSTS_UE;
 634	else
 635		errcmd &= ~(ERRCMD_CE | ERRSTS_UE);
 636
 637	rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd);
 638	if (rc)
 639		return rc;
 640
 641	return 0;
 642}
 643
 644static int ecclog_handler(void)
 645{
 646	struct igen6_imc *imc;
 647	int i, n = 0;
 648	u64 ecclog;
 649
 650	for (i = 0; i < res_cfg->num_imc; i++) {
 651		imc = &igen6_pvt->imc[i];
 652
 653		/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
 654
 655		ecclog = ecclog_read_and_clear(imc);
 656		if (!ecclog)
 657			continue;
 658
 659		if (!ecclog_gen_pool_add(i, ecclog))
 660			irq_work_queue(&ecclog_irq_work);
 661
 662		n++;
 663	}
 664
 665	return n;
 666}
 667
 668static void ecclog_work_cb(struct work_struct *work)
 669{
 670	struct ecclog_node *node, *tmp;
 671	struct mem_ctl_info *mci;
 672	struct llist_node *head;
 673	struct decoded_addr res;
 674	u64 eaddr;
 675
 676	head = llist_del_all(&ecclog_llist);
 677	if (!head)
 678		return;
 679
 680	llist_for_each_entry_safe(node, tmp, head, llnode) {
 681		memset(&res, 0, sizeof(res));
 682		eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) <<
 683			ECC_ERROR_LOG_ADDR_SHIFT;
 
 
 
 684		res.mc	     = node->mc;
 685		res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc);
 686		res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc);
 687
 688		mci = igen6_pvt->imc[res.mc].mci;
 689
 690		edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog);
 691		igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n");
 692		igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr);
 693
 694		if (!igen6_decode(&res))
 695			igen6_output_error(&res, mci, node->ecclog);
 696
 697		gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node));
 698	}
 699}
 700
 701static void ecclog_irq_work_cb(struct irq_work *irq_work)
 702{
 703	int i;
 704
 705	for (i = 0; i < res_cfg->num_imc; i++)
 706		errsts_clear(&igen6_pvt->imc[i]);
 707
 708	if (!llist_empty(&ecclog_llist))
 709		schedule_work(&ecclog_work);
 710}
 711
 712static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs)
 713{
 714	unsigned char reason;
 715
 716	if (!ecclog_handler())
 717		return NMI_DONE;
 718
 719	/*
 720	 * Both In-Band ECC correctable error and uncorrectable error are
 721	 * reported by SERR# NMI. The NMI generic code (see pci_serr_error())
 722	 * doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to
 723	 * re-enable the SERR# NMI after NMI handling. So clear this bit here
 724	 * to re-enable SERR# NMI for receiving future In-Band ECC errors.
 725	 */
 726	reason  = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK;
 727	reason |= NMI_REASON_CLEAR_SERR;
 728	outb(reason, NMI_REASON_PORT);
 729	reason &= ~NMI_REASON_CLEAR_SERR;
 730	outb(reason, NMI_REASON_PORT);
 731
 732	return NMI_HANDLED;
 733}
 734
 735static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val,
 736			      void *data)
 737{
 738	struct mce *mce = (struct mce *)data;
 739	char *type;
 740
 741	if (mce->kflags & MCE_HANDLED_CEC)
 742		return NOTIFY_DONE;
 743
 744	/*
 745	 * Ignore unless this is a memory related error.
 746	 * We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here,
 747	 * since this bit isn't set on some CPU (e.g., Tiger Lake UP3).
 748	 */
 749	if ((mce->status & 0xefff) >> 7 != 1)
 750		return NOTIFY_DONE;
 751
 752	if (mce->mcgstatus & MCG_STATUS_MCIP)
 753		type = "Exception";
 754	else
 755		type = "Event";
 756
 757	edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n",
 758		 mce->extcpu, type, mce->mcgstatus,
 759		 mce->bank, mce->status);
 760	edac_dbg(0, "TSC 0x%llx\n", mce->tsc);
 761	edac_dbg(0, "ADDR 0x%llx\n", mce->addr);
 762	edac_dbg(0, "MISC 0x%llx\n", mce->misc);
 763	edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n",
 764		 mce->cpuvendor, mce->cpuid, mce->time,
 765		 mce->socketid, mce->apicid);
 766	/*
 767	 * We just use the Machine Check for the memory error notification.
 768	 * Each memory controller is associated with an IBECC instance.
 769	 * Directly read and clear the error information(error address and
 770	 * error type) on all the IBECC instances so that we know on which
 771	 * memory controller the memory error(s) occurred.
 772	 */
 773	if (!ecclog_handler())
 774		return NOTIFY_DONE;
 775
 776	mce->kflags |= MCE_HANDLED_EDAC;
 777
 778	return NOTIFY_DONE;
 779}
 780
 781static struct notifier_block ecclog_mce_dec = {
 782	.notifier_call	= ecclog_mce_handler,
 783	.priority	= MCE_PRIO_EDAC,
 784};
 785
 786static bool igen6_check_ecc(struct igen6_imc *imc)
 787{
 788	u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET);
 789
 790	return !!(activate & IBECC_ACTIVATE_EN);
 791}
 792
 793static int igen6_get_dimm_config(struct mem_ctl_info *mci)
 794{
 795	struct igen6_imc *imc = mci->pvt_info;
 796	u32 mad_inter, mad_intra, mad_dimm;
 797	int i, j, ndimms, mc = imc->mc;
 798	struct dimm_info *dimm;
 799	enum mem_type mtype;
 800	enum dev_type dtype;
 801	u64 dsize;
 802	bool ecc;
 803
 804	edac_dbg(2, "\n");
 805
 806	mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET);
 807	mtype = get_memory_type(mad_inter);
 808	ecc = igen6_check_ecc(imc);
 809	imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter);
 810	imc->ch_l_map  = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter);
 811
 812	for (i = 0; i < NUM_CHANNELS; i++) {
 813		mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4);
 814		mad_dimm  = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4);
 815
 816		imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm);
 817		imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm);
 818		imc->dimm_l_map[i]  = MAD_INTRA_CH_DIMM_L_MAP(mad_intra);
 819		imc->size += imc->dimm_s_size[i];
 820		imc->size += imc->dimm_l_size[i];
 821		ndimms = 0;
 822
 823		for (j = 0; j < NUM_DIMMS; j++) {
 824			dimm = edac_get_dimm(mci, i, j, 0);
 825
 826			if (j ^ imc->dimm_l_map[i]) {
 827				dtype = get_width(0, mad_dimm);
 828				dsize = imc->dimm_s_size[i];
 829			} else {
 830				dtype = get_width(1, mad_dimm);
 831				dsize = imc->dimm_l_size[i];
 832			}
 833
 834			if (!dsize)
 835				continue;
 836
 837			dimm->grain = 64;
 838			dimm->mtype = mtype;
 839			dimm->dtype = dtype;
 840			dimm->nr_pages  = MiB_TO_PAGES(dsize >> 20);
 841			dimm->edac_mode = EDAC_SECDED;
 842			snprintf(dimm->label, sizeof(dimm->label),
 843				 "MC#%d_Chan#%d_DIMM#%d", mc, i, j);
 844			edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n",
 845				 mc, i, j, dsize >> 20, dimm->nr_pages);
 846
 847			ndimms++;
 848		}
 849
 850		if (ndimms && !ecc) {
 851			igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc);
 852			return -ENODEV;
 853		}
 854	}
 855
 856	edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20);
 857
 858	return 0;
 859}
 860
 861#ifdef CONFIG_EDAC_DEBUG
 862/* Top of upper usable DRAM */
 863static u64 igen6_touud;
 864#define TOUUD_OFFSET	0xa8
 865
 866static void igen6_reg_dump(struct igen6_imc *imc)
 867{
 868	int i;
 869
 870	edac_dbg(2, "CHANNEL_HASH     : 0x%x\n",
 871		 readl(imc->window + CHANNEL_HASH_OFFSET));
 872	edac_dbg(2, "CHANNEL_EHASH    : 0x%x\n",
 873		 readl(imc->window + CHANNEL_EHASH_OFFSET));
 874	edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n",
 875		 readl(imc->window + MAD_INTER_CHANNEL_OFFSET));
 876	edac_dbg(2, "ECC_ERROR_LOG    : 0x%llx\n",
 877		 readq(imc->window + ECC_ERROR_LOG_OFFSET));
 878
 879	for (i = 0; i < NUM_CHANNELS; i++) {
 880		edac_dbg(2, "MAD_INTRA_CH%d    : 0x%x\n", i,
 881			 readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4));
 882		edac_dbg(2, "MAD_DIMM_CH%d     : 0x%x\n", i,
 883			 readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4));
 884	}
 885	edac_dbg(2, "TOLUD            : 0x%x", igen6_tolud);
 886	edac_dbg(2, "TOUUD            : 0x%llx", igen6_touud);
 887	edac_dbg(2, "TOM              : 0x%llx", igen6_tom);
 888}
 889
 890static struct dentry *igen6_test;
 891
 892static int debugfs_u64_set(void *data, u64 val)
 893{
 894	u64 ecclog;
 895
 896	if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) {
 897		edac_dbg(0, "Address 0x%llx out of range\n", val);
 898		return 0;
 899	}
 900
 901	pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
 902
 903	val  >>= ECC_ERROR_LOG_ADDR_SHIFT;
 904	ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE;
 905
 906	if (!ecclog_gen_pool_add(0, ecclog))
 907		irq_work_queue(&ecclog_irq_work);
 908
 909	return 0;
 910}
 911DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
 912
 913static void igen6_debug_setup(void)
 914{
 915	igen6_test = edac_debugfs_create_dir("igen6_test");
 916	if (!igen6_test)
 917		return;
 918
 919	if (!edac_debugfs_create_file("addr", 0200, igen6_test,
 920				      NULL, &fops_u64_wo)) {
 921		debugfs_remove(igen6_test);
 922		igen6_test = NULL;
 923	}
 924}
 925
 926static void igen6_debug_teardown(void)
 927{
 928	debugfs_remove_recursive(igen6_test);
 929}
 930#else
 931static void igen6_reg_dump(struct igen6_imc *imc) {}
 932static void igen6_debug_setup(void) {}
 933static void igen6_debug_teardown(void) {}
 934#endif
 935
 936static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar)
 937{
 938	union  {
 939		u64 v;
 940		struct {
 941			u32 v_lo;
 942			u32 v_hi;
 943		};
 944	} u;
 945
 946	edac_dbg(2, "\n");
 947
 948	if (!res_cfg->ibecc_available(pdev)) {
 949		edac_dbg(2, "No In-Band ECC IP\n");
 950		goto fail;
 951	}
 952
 953	if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) {
 954		igen6_printk(KERN_ERR, "Failed to read TOLUD\n");
 955		goto fail;
 956	}
 957
 958	igen6_tolud &= GENMASK(31, 20);
 959
 960	if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) {
 961		igen6_printk(KERN_ERR, "Failed to read lower TOM\n");
 962		goto fail;
 963	}
 964
 965	if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) {
 966		igen6_printk(KERN_ERR, "Failed to read upper TOM\n");
 967		goto fail;
 968	}
 969
 970	igen6_tom = u.v & GENMASK_ULL(38, 20);
 971
 972	if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) {
 973		igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n");
 974		goto fail;
 975	}
 976
 977	if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) {
 978		igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n");
 979		goto fail;
 980	}
 981
 982	if (!(u.v & MCHBAR_EN)) {
 983		igen6_printk(KERN_ERR, "MCHBAR is disabled\n");
 984		goto fail;
 985	}
 986
 987	*mchbar = MCHBAR_BASE(u.v);
 988
 989#ifdef CONFIG_EDAC_DEBUG
 990	if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo))
 991		edac_dbg(2, "Failed to read lower TOUUD\n");
 992	else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi))
 993		edac_dbg(2, "Failed to read upper TOUUD\n");
 994	else
 995		igen6_touud = u.v & GENMASK_ULL(38, 20);
 996#endif
 997
 998	return 0;
 999fail:
1000	return -ENODEV;
1001}
1002
1003static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
1004{
1005	struct edac_mc_layer layers[2];
1006	struct mem_ctl_info *mci;
1007	struct igen6_imc *imc;
1008	void __iomem *window;
1009	int rc;
1010
1011	edac_dbg(2, "\n");
1012
1013	mchbar += mc * MCHBAR_SIZE;
1014	window = ioremap(mchbar, MCHBAR_SIZE);
1015	if (!window) {
1016		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
1017		return -ENODEV;
1018	}
1019
1020	layers[0].type = EDAC_MC_LAYER_CHANNEL;
1021	layers[0].size = NUM_CHANNELS;
1022	layers[0].is_virt_csrow = false;
1023	layers[1].type = EDAC_MC_LAYER_SLOT;
1024	layers[1].size = NUM_DIMMS;
1025	layers[1].is_virt_csrow = true;
1026
1027	mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0);
1028	if (!mci) {
1029		rc = -ENOMEM;
1030		goto fail;
1031	}
1032
1033	mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc);
1034	if (!mci->ctl_name) {
1035		rc = -ENOMEM;
1036		goto fail2;
1037	}
1038
1039	mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4;
1040	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
1041	mci->edac_cap = EDAC_FLAG_SECDED;
1042	mci->mod_name = EDAC_MOD_STR;
1043	mci->dev_name = pci_name(pdev);
1044	mci->pvt_info = &igen6_pvt->imc[mc];
1045
1046	imc = mci->pvt_info;
1047	device_initialize(&imc->dev);
1048	/*
1049	 * EDAC core uses mci->pdev(pointer of structure device) as
1050	 * memory controller ID. The client SoCs attach one or more
1051	 * memory controllers to single pci_dev (single pci_dev->dev
1052	 * can be for multiple memory controllers).
1053	 *
1054	 * To make mci->pdev unique, assign pci_dev->dev to mci->pdev
1055	 * for the first memory controller and assign a unique imc->dev
1056	 * to mci->pdev for each non-first memory controller.
1057	 */
1058	mci->pdev = mc ? &imc->dev : &pdev->dev;
1059	imc->mc	= mc;
1060	imc->pdev = pdev;
1061	imc->window = window;
1062
1063	igen6_reg_dump(imc);
1064
1065	rc = igen6_get_dimm_config(mci);
1066	if (rc)
1067		goto fail3;
1068
1069	rc = edac_mc_add_mc(mci);
1070	if (rc) {
1071		igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc);
1072		goto fail3;
1073	}
1074
1075	imc->mci = mci;
1076	return 0;
1077fail3:
1078	kfree(mci->ctl_name);
1079fail2:
1080	edac_mc_free(mci);
1081fail:
1082	iounmap(window);
1083	return rc;
1084}
1085
1086static void igen6_unregister_mcis(void)
1087{
1088	struct mem_ctl_info *mci;
1089	struct igen6_imc *imc;
1090	int i;
1091
1092	edac_dbg(2, "\n");
1093
1094	for (i = 0; i < res_cfg->num_imc; i++) {
1095		imc = &igen6_pvt->imc[i];
1096		mci = imc->mci;
1097		if (!mci)
1098			continue;
1099
1100		edac_mc_del_mc(mci->pdev);
1101		kfree(mci->ctl_name);
1102		edac_mc_free(mci);
1103		iounmap(imc->window);
1104	}
1105}
1106
1107static int igen6_mem_slice_setup(u64 mchbar)
1108{
1109	struct igen6_imc *imc = &igen6_pvt->imc[0];
1110	u64 base = mchbar + res_cfg->cmf_base;
1111	u32 offset = res_cfg->ms_hash_offset;
1112	u32 size = res_cfg->cmf_size;
1113	u64 ms_s_size, ms_hash;
1114	void __iomem *cmf;
1115	int ms_l_map;
1116
1117	edac_dbg(2, "\n");
1118
1119	if (imc[0].size < imc[1].size) {
1120		ms_s_size = imc[0].size;
1121		ms_l_map  = 1;
1122	} else {
1123		ms_s_size = imc[1].size;
1124		ms_l_map  = 0;
1125	}
1126
1127	igen6_pvt->ms_s_size = ms_s_size;
1128	igen6_pvt->ms_l_map  = ms_l_map;
1129
1130	edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n",
1131		 ms_s_size >> 20, ms_l_map);
1132
1133	if (!size)
1134		return 0;
1135
1136	cmf = ioremap(base, size);
1137	if (!cmf) {
1138		igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base);
1139		return -ENODEV;
1140	}
1141
1142	ms_hash = readq(cmf + offset);
1143	igen6_pvt->ms_hash = ms_hash;
1144
1145	edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash);
1146
1147	iounmap(cmf);
1148
1149	return 0;
1150}
1151
1152static int register_err_handler(void)
1153{
1154	int rc;
1155
1156	if (res_cfg->machine_check) {
1157		mce_register_decode_chain(&ecclog_mce_dec);
1158		return 0;
1159	}
1160
1161	rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler,
1162				  0, IGEN6_NMI_NAME);
1163	if (rc) {
1164		igen6_printk(KERN_ERR, "Failed to register NMI handler\n");
1165		return rc;
1166	}
1167
1168	return 0;
1169}
1170
1171static void unregister_err_handler(void)
1172{
1173	if (res_cfg->machine_check) {
1174		mce_unregister_decode_chain(&ecclog_mce_dec);
1175		return;
1176	}
1177
1178	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1179}
1180
1181static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1182{
1183	u64 mchbar;
1184	int i, rc;
1185
1186	edac_dbg(2, "\n");
1187
1188	igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL);
1189	if (!igen6_pvt)
1190		return -ENOMEM;
1191
1192	res_cfg = (struct res_config *)ent->driver_data;
1193
1194	rc = igen6_pci_setup(pdev, &mchbar);
1195	if (rc)
1196		goto fail;
1197
1198	for (i = 0; i < res_cfg->num_imc; i++) {
1199		rc = igen6_register_mci(i, mchbar, pdev);
1200		if (rc)
1201			goto fail2;
1202	}
1203
1204	if (res_cfg->num_imc > 1) {
1205		rc = igen6_mem_slice_setup(mchbar);
1206		if (rc)
1207			goto fail2;
1208	}
1209
1210	ecclog_pool = ecclog_gen_pool_create();
1211	if (!ecclog_pool) {
1212		rc = -ENOMEM;
1213		goto fail2;
1214	}
1215
1216	INIT_WORK(&ecclog_work, ecclog_work_cb);
1217	init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb);
1218
1219	/* Check if any pending errors before registering the NMI handler */
1220	ecclog_handler();
1221
1222	rc = register_err_handler();
1223	if (rc)
1224		goto fail3;
1225
1226	/* Enable error reporting */
1227	rc = errcmd_enable_error_reporting(true);
1228	if (rc) {
1229		igen6_printk(KERN_ERR, "Failed to enable error reporting\n");
1230		goto fail4;
1231	}
 
 
 
1232
1233	igen6_debug_setup();
1234	return 0;
1235fail4:
1236	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1237fail3:
1238	gen_pool_destroy(ecclog_pool);
1239fail2:
1240	igen6_unregister_mcis();
1241fail:
1242	kfree(igen6_pvt);
1243	return rc;
1244}
1245
1246static void igen6_remove(struct pci_dev *pdev)
1247{
1248	edac_dbg(2, "\n");
1249
1250	igen6_debug_teardown();
1251	errcmd_enable_error_reporting(false);
1252	unregister_err_handler();
1253	irq_work_sync(&ecclog_irq_work);
1254	flush_work(&ecclog_work);
1255	gen_pool_destroy(ecclog_pool);
1256	igen6_unregister_mcis();
1257	kfree(igen6_pvt);
1258}
1259
1260static struct pci_driver igen6_driver = {
1261	.name     = EDAC_MOD_STR,
1262	.probe    = igen6_probe,
1263	.remove   = igen6_remove,
1264	.id_table = igen6_pci_tbl,
1265};
1266
1267static int __init igen6_init(void)
1268{
1269	const char *owner;
1270	int rc;
1271
1272	edac_dbg(2, "\n");
1273
1274	if (ghes_get_devices())
1275		return -EBUSY;
1276
1277	owner = edac_get_owner();
1278	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1279		return -EBUSY;
1280
1281	edac_op_state = EDAC_OPSTATE_NMI;
1282
1283	rc = pci_register_driver(&igen6_driver);
1284	if (rc)
1285		return rc;
1286
1287	igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION);
1288
1289	return 0;
1290}
1291
1292static void __exit igen6_exit(void)
1293{
1294	edac_dbg(2, "\n");
1295
1296	pci_unregister_driver(&igen6_driver);
1297}
1298
1299module_init(igen6_init);
1300module_exit(igen6_exit);
1301
1302MODULE_LICENSE("GPL v2");
1303MODULE_AUTHOR("Qiuxu Zhuo");
1304MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC");