Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * BPF JIT compiler
   4 *
   5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
   6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   7 */
   8#include <linux/netdevice.h>
   9#include <linux/filter.h>
  10#include <linux/if_vlan.h>
  11#include <linux/bpf.h>
  12#include <linux/memory.h>
  13#include <linux/sort.h>
  14#include <asm/extable.h>
  15#include <asm/ftrace.h>
  16#include <asm/set_memory.h>
  17#include <asm/nospec-branch.h>
  18#include <asm/text-patching.h>
  19#include <asm/unwind.h>
  20#include <asm/cfi.h>
  21
  22static bool all_callee_regs_used[4] = {true, true, true, true};
  23
  24static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
  25{
  26	if (len == 1)
  27		*ptr = bytes;
  28	else if (len == 2)
  29		*(u16 *)ptr = bytes;
  30	else {
  31		*(u32 *)ptr = bytes;
  32		barrier();
  33	}
  34	return ptr + len;
  35}
  36
  37#define EMIT(bytes, len) \
  38	do { prog = emit_code(prog, bytes, len); } while (0)
  39
  40#define EMIT1(b1)		EMIT(b1, 1)
  41#define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
  42#define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
  43#define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
  44
  45#define EMIT1_off32(b1, off) \
  46	do { EMIT1(b1); EMIT(off, 4); } while (0)
  47#define EMIT2_off32(b1, b2, off) \
  48	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
  49#define EMIT3_off32(b1, b2, b3, off) \
  50	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
  51#define EMIT4_off32(b1, b2, b3, b4, off) \
  52	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
  53
  54#ifdef CONFIG_X86_KERNEL_IBT
  55#define EMIT_ENDBR()		EMIT(gen_endbr(), 4)
  56#define EMIT_ENDBR_POISON()	EMIT(gen_endbr_poison(), 4)
  57#else
  58#define EMIT_ENDBR()
  59#define EMIT_ENDBR_POISON()
  60#endif
  61
  62static bool is_imm8(int value)
  63{
  64	return value <= 127 && value >= -128;
  65}
  66
  67static bool is_simm32(s64 value)
  68{
  69	return value == (s64)(s32)value;
  70}
  71
  72static bool is_uimm32(u64 value)
  73{
  74	return value == (u64)(u32)value;
  75}
  76
  77/* mov dst, src */
  78#define EMIT_mov(DST, SRC)								 \
  79	do {										 \
  80		if (DST != SRC)								 \
  81			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
  82	} while (0)
  83
  84static int bpf_size_to_x86_bytes(int bpf_size)
  85{
  86	if (bpf_size == BPF_W)
  87		return 4;
  88	else if (bpf_size == BPF_H)
  89		return 2;
  90	else if (bpf_size == BPF_B)
  91		return 1;
  92	else if (bpf_size == BPF_DW)
  93		return 4; /* imm32 */
  94	else
  95		return 0;
  96}
  97
  98/*
  99 * List of x86 cond jumps opcodes (. + s8)
 100 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
 101 */
 102#define X86_JB  0x72
 103#define X86_JAE 0x73
 104#define X86_JE  0x74
 105#define X86_JNE 0x75
 106#define X86_JBE 0x76
 107#define X86_JA  0x77
 108#define X86_JL  0x7C
 109#define X86_JGE 0x7D
 110#define X86_JLE 0x7E
 111#define X86_JG  0x7F
 112
 113/* Pick a register outside of BPF range for JIT internal work */
 114#define AUX_REG (MAX_BPF_JIT_REG + 1)
 115#define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
 116
 117/*
 118 * The following table maps BPF registers to x86-64 registers.
 119 *
 120 * x86-64 register R12 is unused, since if used as base address
 121 * register in load/store instructions, it always needs an
 122 * extra byte of encoding and is callee saved.
 123 *
 124 * x86-64 register R9 is not used by BPF programs, but can be used by BPF
 125 * trampoline. x86-64 register R10 is used for blinding (if enabled).
 126 */
 127static const int reg2hex[] = {
 128	[BPF_REG_0] = 0,  /* RAX */
 129	[BPF_REG_1] = 7,  /* RDI */
 130	[BPF_REG_2] = 6,  /* RSI */
 131	[BPF_REG_3] = 2,  /* RDX */
 132	[BPF_REG_4] = 1,  /* RCX */
 133	[BPF_REG_5] = 0,  /* R8  */
 134	[BPF_REG_6] = 3,  /* RBX callee saved */
 135	[BPF_REG_7] = 5,  /* R13 callee saved */
 136	[BPF_REG_8] = 6,  /* R14 callee saved */
 137	[BPF_REG_9] = 7,  /* R15 callee saved */
 138	[BPF_REG_FP] = 5, /* RBP readonly */
 139	[BPF_REG_AX] = 2, /* R10 temp register */
 140	[AUX_REG] = 3,    /* R11 temp register */
 141	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
 142};
 143
 144static const int reg2pt_regs[] = {
 145	[BPF_REG_0] = offsetof(struct pt_regs, ax),
 146	[BPF_REG_1] = offsetof(struct pt_regs, di),
 147	[BPF_REG_2] = offsetof(struct pt_regs, si),
 148	[BPF_REG_3] = offsetof(struct pt_regs, dx),
 149	[BPF_REG_4] = offsetof(struct pt_regs, cx),
 150	[BPF_REG_5] = offsetof(struct pt_regs, r8),
 151	[BPF_REG_6] = offsetof(struct pt_regs, bx),
 152	[BPF_REG_7] = offsetof(struct pt_regs, r13),
 153	[BPF_REG_8] = offsetof(struct pt_regs, r14),
 154	[BPF_REG_9] = offsetof(struct pt_regs, r15),
 155};
 156
 157/*
 158 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
 159 * which need extra byte of encoding.
 160 * rax,rcx,...,rbp have simpler encoding
 161 */
 162static bool is_ereg(u32 reg)
 163{
 164	return (1 << reg) & (BIT(BPF_REG_5) |
 165			     BIT(AUX_REG) |
 166			     BIT(BPF_REG_7) |
 167			     BIT(BPF_REG_8) |
 168			     BIT(BPF_REG_9) |
 169			     BIT(X86_REG_R9) |
 170			     BIT(BPF_REG_AX));
 171}
 172
 173/*
 174 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
 175 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
 176 * of encoding. al,cl,dl,bl have simpler encoding.
 177 */
 178static bool is_ereg_8l(u32 reg)
 179{
 180	return is_ereg(reg) ||
 181	    (1 << reg) & (BIT(BPF_REG_1) |
 182			  BIT(BPF_REG_2) |
 183			  BIT(BPF_REG_FP));
 184}
 185
 186static bool is_axreg(u32 reg)
 187{
 188	return reg == BPF_REG_0;
 189}
 190
 191/* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
 192static u8 add_1mod(u8 byte, u32 reg)
 193{
 194	if (is_ereg(reg))
 195		byte |= 1;
 196	return byte;
 197}
 198
 199static u8 add_2mod(u8 byte, u32 r1, u32 r2)
 200{
 201	if (is_ereg(r1))
 202		byte |= 1;
 203	if (is_ereg(r2))
 204		byte |= 4;
 205	return byte;
 206}
 207
 208/* Encode 'dst_reg' register into x86-64 opcode 'byte' */
 209static u8 add_1reg(u8 byte, u32 dst_reg)
 210{
 211	return byte + reg2hex[dst_reg];
 212}
 213
 214/* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
 215static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
 216{
 217	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
 218}
 219
 220/* Some 1-byte opcodes for binary ALU operations */
 221static u8 simple_alu_opcodes[] = {
 222	[BPF_ADD] = 0x01,
 223	[BPF_SUB] = 0x29,
 224	[BPF_AND] = 0x21,
 225	[BPF_OR] = 0x09,
 226	[BPF_XOR] = 0x31,
 227	[BPF_LSH] = 0xE0,
 228	[BPF_RSH] = 0xE8,
 229	[BPF_ARSH] = 0xF8,
 230};
 231
 232static void jit_fill_hole(void *area, unsigned int size)
 233{
 234	/* Fill whole space with INT3 instructions */
 235	memset(area, 0xcc, size);
 236}
 237
 238int bpf_arch_text_invalidate(void *dst, size_t len)
 239{
 240	return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
 241}
 242
 243struct jit_context {
 244	int cleanup_addr; /* Epilogue code offset */
 245
 246	/*
 247	 * Program specific offsets of labels in the code; these rely on the
 248	 * JIT doing at least 2 passes, recording the position on the first
 249	 * pass, only to generate the correct offset on the second pass.
 250	 */
 251	int tail_call_direct_label;
 252	int tail_call_indirect_label;
 253};
 254
 255/* Maximum number of bytes emitted while JITing one eBPF insn */
 256#define BPF_MAX_INSN_SIZE	128
 257#define BPF_INSN_SAFETY		64
 258
 259/* Number of bytes emit_patch() needs to generate instructions */
 260#define X86_PATCH_SIZE		5
 261/* Number of bytes that will be skipped on tailcall */
 262#define X86_TAIL_CALL_OFFSET	(11 + ENDBR_INSN_SIZE)
 263
 264static void push_r12(u8 **pprog)
 265{
 266	u8 *prog = *pprog;
 267
 268	EMIT2(0x41, 0x54);   /* push r12 */
 269	*pprog = prog;
 270}
 271
 272static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
 273{
 274	u8 *prog = *pprog;
 275
 276	if (callee_regs_used[0])
 277		EMIT1(0x53);         /* push rbx */
 278	if (callee_regs_used[1])
 279		EMIT2(0x41, 0x55);   /* push r13 */
 280	if (callee_regs_used[2])
 281		EMIT2(0x41, 0x56);   /* push r14 */
 282	if (callee_regs_used[3])
 283		EMIT2(0x41, 0x57);   /* push r15 */
 284	*pprog = prog;
 285}
 286
 287static void pop_r12(u8 **pprog)
 288{
 289	u8 *prog = *pprog;
 290
 291	EMIT2(0x41, 0x5C);   /* pop r12 */
 292	*pprog = prog;
 293}
 294
 295static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
 296{
 297	u8 *prog = *pprog;
 298
 299	if (callee_regs_used[3])
 300		EMIT2(0x41, 0x5F);   /* pop r15 */
 301	if (callee_regs_used[2])
 302		EMIT2(0x41, 0x5E);   /* pop r14 */
 303	if (callee_regs_used[1])
 304		EMIT2(0x41, 0x5D);   /* pop r13 */
 305	if (callee_regs_used[0])
 306		EMIT1(0x5B);         /* pop rbx */
 307	*pprog = prog;
 308}
 309
 310static void emit_nops(u8 **pprog, int len)
 311{
 312	u8 *prog = *pprog;
 313	int i, noplen;
 314
 315	while (len > 0) {
 316		noplen = len;
 317
 318		if (noplen > ASM_NOP_MAX)
 319			noplen = ASM_NOP_MAX;
 320
 321		for (i = 0; i < noplen; i++)
 322			EMIT1(x86_nops[noplen][i]);
 323		len -= noplen;
 324	}
 325
 326	*pprog = prog;
 327}
 328
 329/*
 330 * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT
 331 * in arch/x86/kernel/alternative.c
 332 */
 333
 334static void emit_fineibt(u8 **pprog, u32 hash)
 335{
 336	u8 *prog = *pprog;
 337
 338	EMIT_ENDBR();
 339	EMIT3_off32(0x41, 0x81, 0xea, hash);		/* subl $hash, %r10d	*/
 340	EMIT2(0x74, 0x07);				/* jz.d8 +7		*/
 341	EMIT2(0x0f, 0x0b);				/* ud2			*/
 342	EMIT1(0x90);					/* nop			*/
 343	EMIT_ENDBR_POISON();
 344
 345	*pprog = prog;
 346}
 347
 348static void emit_kcfi(u8 **pprog, u32 hash)
 349{
 350	u8 *prog = *pprog;
 351
 352	EMIT1_off32(0xb8, hash);			/* movl $hash, %eax	*/
 353#ifdef CONFIG_CALL_PADDING
 354	EMIT1(0x90);
 355	EMIT1(0x90);
 356	EMIT1(0x90);
 357	EMIT1(0x90);
 358	EMIT1(0x90);
 359	EMIT1(0x90);
 360	EMIT1(0x90);
 361	EMIT1(0x90);
 362	EMIT1(0x90);
 363	EMIT1(0x90);
 364	EMIT1(0x90);
 365#endif
 366	EMIT_ENDBR();
 367
 368	*pprog = prog;
 369}
 370
 371static void emit_cfi(u8 **pprog, u32 hash)
 372{
 373	u8 *prog = *pprog;
 374
 375	switch (cfi_mode) {
 376	case CFI_FINEIBT:
 377		emit_fineibt(&prog, hash);
 378		break;
 379
 380	case CFI_KCFI:
 381		emit_kcfi(&prog, hash);
 382		break;
 383
 384	default:
 385		EMIT_ENDBR();
 386		break;
 387	}
 388
 389	*pprog = prog;
 390}
 391
 392/*
 393 * Emit x86-64 prologue code for BPF program.
 394 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
 395 * while jumping to another program
 396 */
 397static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
 398			  bool tail_call_reachable, bool is_subprog,
 399			  bool is_exception_cb)
 400{
 401	u8 *prog = *pprog;
 402
 403	emit_cfi(&prog, is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash);
 404	/* BPF trampoline can be made to work without these nops,
 405	 * but let's waste 5 bytes for now and optimize later
 406	 */
 407	emit_nops(&prog, X86_PATCH_SIZE);
 
 
 408	if (!ebpf_from_cbpf) {
 409		if (tail_call_reachable && !is_subprog)
 410			/* When it's the entry of the whole tailcall context,
 411			 * zeroing rax means initialising tail_call_cnt.
 412			 */
 413			EMIT2(0x31, 0xC0); /* xor eax, eax */
 414		else
 415			/* Keep the same instruction layout. */
 416			EMIT2(0x66, 0x90); /* nop2 */
 417	}
 418	/* Exception callback receives FP as third parameter */
 419	if (is_exception_cb) {
 420		EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */
 421		EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */
 422		/* The main frame must have exception_boundary as true, so we
 423		 * first restore those callee-saved regs from stack, before
 424		 * reusing the stack frame.
 425		 */
 426		pop_callee_regs(&prog, all_callee_regs_used);
 427		pop_r12(&prog);
 428		/* Reset the stack frame. */
 429		EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */
 430	} else {
 431		EMIT1(0x55);             /* push rbp */
 432		EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
 433	}
 434
 435	/* X86_TAIL_CALL_OFFSET is here */
 436	EMIT_ENDBR();
 437
 438	/* sub rsp, rounded_stack_depth */
 439	if (stack_depth)
 440		EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
 441	if (tail_call_reachable)
 442		EMIT1(0x50);         /* push rax */
 443	*pprog = prog;
 444}
 445
 446static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
 447{
 448	u8 *prog = *pprog;
 449	s64 offset;
 450
 451	offset = func - (ip + X86_PATCH_SIZE);
 452	if (!is_simm32(offset)) {
 453		pr_err("Target call %p is out of range\n", func);
 454		return -ERANGE;
 455	}
 456	EMIT1_off32(opcode, offset);
 457	*pprog = prog;
 458	return 0;
 459}
 460
 461static int emit_call(u8 **pprog, void *func, void *ip)
 462{
 463	return emit_patch(pprog, func, ip, 0xE8);
 464}
 465
 466static int emit_rsb_call(u8 **pprog, void *func, void *ip)
 467{
 468	OPTIMIZER_HIDE_VAR(func);
 469	x86_call_depth_emit_accounting(pprog, func);
 470	return emit_patch(pprog, func, ip, 0xE8);
 471}
 472
 473static int emit_jump(u8 **pprog, void *func, void *ip)
 474{
 475	return emit_patch(pprog, func, ip, 0xE9);
 476}
 477
 478static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
 479				void *old_addr, void *new_addr)
 480{
 481	const u8 *nop_insn = x86_nops[5];
 482	u8 old_insn[X86_PATCH_SIZE];
 483	u8 new_insn[X86_PATCH_SIZE];
 484	u8 *prog;
 485	int ret;
 486
 487	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
 488	if (old_addr) {
 489		prog = old_insn;
 490		ret = t == BPF_MOD_CALL ?
 491		      emit_call(&prog, old_addr, ip) :
 492		      emit_jump(&prog, old_addr, ip);
 493		if (ret)
 494			return ret;
 495	}
 496
 497	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
 498	if (new_addr) {
 499		prog = new_insn;
 500		ret = t == BPF_MOD_CALL ?
 501		      emit_call(&prog, new_addr, ip) :
 502		      emit_jump(&prog, new_addr, ip);
 503		if (ret)
 504			return ret;
 505	}
 506
 507	ret = -EBUSY;
 508	mutex_lock(&text_mutex);
 509	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
 510		goto out;
 511	ret = 1;
 512	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
 513		text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
 514		ret = 0;
 515	}
 516out:
 517	mutex_unlock(&text_mutex);
 518	return ret;
 519}
 520
 521int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
 522		       void *old_addr, void *new_addr)
 523{
 524	if (!is_kernel_text((long)ip) &&
 525	    !is_bpf_text_address((long)ip))
 526		/* BPF poking in modules is not supported */
 527		return -EINVAL;
 528
 529	/*
 530	 * See emit_prologue(), for IBT builds the trampoline hook is preceded
 531	 * with an ENDBR instruction.
 532	 */
 533	if (is_endbr(*(u32 *)ip))
 534		ip += ENDBR_INSN_SIZE;
 535
 536	return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
 537}
 538
 539#define EMIT_LFENCE()	EMIT3(0x0F, 0xAE, 0xE8)
 540
 541static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
 542{
 543	u8 *prog = *pprog;
 544
 545	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
 546		EMIT_LFENCE();
 547		EMIT2(0xFF, 0xE0 + reg);
 548	} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
 549		OPTIMIZER_HIDE_VAR(reg);
 550		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
 551			emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
 552		else
 553			emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
 554	} else {
 555		EMIT2(0xFF, 0xE0 + reg);	/* jmp *%\reg */
 556		if (IS_ENABLED(CONFIG_RETPOLINE) || IS_ENABLED(CONFIG_SLS))
 557			EMIT1(0xCC);		/* int3 */
 558	}
 559
 560	*pprog = prog;
 561}
 562
 563static void emit_return(u8 **pprog, u8 *ip)
 564{
 565	u8 *prog = *pprog;
 566
 567	if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
 568		emit_jump(&prog, x86_return_thunk, ip);
 569	} else {
 570		EMIT1(0xC3);		/* ret */
 571		if (IS_ENABLED(CONFIG_SLS))
 572			EMIT1(0xCC);	/* int3 */
 573	}
 574
 575	*pprog = prog;
 576}
 577
 578/*
 579 * Generate the following code:
 580 *
 581 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
 582 *   if (index >= array->map.max_entries)
 583 *     goto out;
 584 *   if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
 585 *     goto out;
 586 *   prog = array->ptrs[index];
 587 *   if (prog == NULL)
 588 *     goto out;
 589 *   goto *(prog->bpf_func + prologue_size);
 590 * out:
 591 */
 592static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog,
 593					u8 **pprog, bool *callee_regs_used,
 594					u32 stack_depth, u8 *ip,
 595					struct jit_context *ctx)
 596{
 597	int tcc_off = -4 - round_up(stack_depth, 8);
 598	u8 *prog = *pprog, *start = *pprog;
 599	int offset;
 600
 601	/*
 602	 * rdi - pointer to ctx
 603	 * rsi - pointer to bpf_array
 604	 * rdx - index in bpf_array
 605	 */
 606
 607	/*
 608	 * if (index >= array->map.max_entries)
 609	 *	goto out;
 610	 */
 611	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
 612	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
 613	      offsetof(struct bpf_array, map.max_entries));
 614
 615	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
 616	EMIT2(X86_JBE, offset);                   /* jbe out */
 617
 618	/*
 619	 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
 620	 *	goto out;
 621	 */
 622	EMIT2_off32(0x8B, 0x85, tcc_off);         /* mov eax, dword ptr [rbp - tcc_off] */
 623	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
 624
 625	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
 626	EMIT2(X86_JAE, offset);                   /* jae out */
 627	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
 628	EMIT2_off32(0x89, 0x85, tcc_off);         /* mov dword ptr [rbp - tcc_off], eax */
 629
 630	/* prog = array->ptrs[index]; */
 631	EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
 632		    offsetof(struct bpf_array, ptrs));
 633
 634	/*
 635	 * if (prog == NULL)
 636	 *	goto out;
 637	 */
 638	EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
 639
 640	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
 641	EMIT2(X86_JE, offset);                    /* je out */
 642
 643	if (bpf_prog->aux->exception_boundary) {
 644		pop_callee_regs(&prog, all_callee_regs_used);
 645		pop_r12(&prog);
 646	} else {
 647		pop_callee_regs(&prog, callee_regs_used);
 648	}
 649
 650	EMIT1(0x58);                              /* pop rax */
 651	if (stack_depth)
 652		EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
 653			    round_up(stack_depth, 8));
 654
 655	/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
 656	EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
 657	      offsetof(struct bpf_prog, bpf_func));
 658	EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
 659	      X86_TAIL_CALL_OFFSET);
 660	/*
 661	 * Now we're ready to jump into next BPF program
 662	 * rdi == ctx (1st arg)
 663	 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
 664	 */
 665	emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
 666
 667	/* out: */
 668	ctx->tail_call_indirect_label = prog - start;
 669	*pprog = prog;
 670}
 671
 672static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog,
 673				      struct bpf_jit_poke_descriptor *poke,
 674				      u8 **pprog, u8 *ip,
 675				      bool *callee_regs_used, u32 stack_depth,
 676				      struct jit_context *ctx)
 677{
 678	int tcc_off = -4 - round_up(stack_depth, 8);
 679	u8 *prog = *pprog, *start = *pprog;
 680	int offset;
 681
 682	/*
 683	 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
 684	 *	goto out;
 685	 */
 686	EMIT2_off32(0x8B, 0x85, tcc_off);             /* mov eax, dword ptr [rbp - tcc_off] */
 687	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
 688
 689	offset = ctx->tail_call_direct_label - (prog + 2 - start);
 690	EMIT2(X86_JAE, offset);                       /* jae out */
 691	EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
 692	EMIT2_off32(0x89, 0x85, tcc_off);             /* mov dword ptr [rbp - tcc_off], eax */
 693
 694	poke->tailcall_bypass = ip + (prog - start);
 695	poke->adj_off = X86_TAIL_CALL_OFFSET;
 696	poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
 697	poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
 698
 699	emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
 700		  poke->tailcall_bypass);
 701
 702	if (bpf_prog->aux->exception_boundary) {
 703		pop_callee_regs(&prog, all_callee_regs_used);
 704		pop_r12(&prog);
 705	} else {
 706		pop_callee_regs(&prog, callee_regs_used);
 707	}
 708
 709	EMIT1(0x58);                                  /* pop rax */
 710	if (stack_depth)
 711		EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
 712
 713	emit_nops(&prog, X86_PATCH_SIZE);
 
 714
 715	/* out: */
 716	ctx->tail_call_direct_label = prog - start;
 717
 718	*pprog = prog;
 719}
 720
 721static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
 722{
 723	struct bpf_jit_poke_descriptor *poke;
 724	struct bpf_array *array;
 725	struct bpf_prog *target;
 726	int i, ret;
 727
 728	for (i = 0; i < prog->aux->size_poke_tab; i++) {
 729		poke = &prog->aux->poke_tab[i];
 730		if (poke->aux && poke->aux != prog->aux)
 731			continue;
 732
 733		WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
 734
 735		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
 736			continue;
 737
 738		array = container_of(poke->tail_call.map, struct bpf_array, map);
 739		mutex_lock(&array->aux->poke_mutex);
 740		target = array->ptrs[poke->tail_call.key];
 741		if (target) {
 742			ret = __bpf_arch_text_poke(poke->tailcall_target,
 743						   BPF_MOD_JUMP, NULL,
 744						   (u8 *)target->bpf_func +
 745						   poke->adj_off);
 746			BUG_ON(ret < 0);
 747			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
 748						   BPF_MOD_JUMP,
 749						   (u8 *)poke->tailcall_target +
 750						   X86_PATCH_SIZE, NULL);
 751			BUG_ON(ret < 0);
 752		}
 753		WRITE_ONCE(poke->tailcall_target_stable, true);
 754		mutex_unlock(&array->aux->poke_mutex);
 755	}
 756}
 757
 758static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
 759			   u32 dst_reg, const u32 imm32)
 760{
 761	u8 *prog = *pprog;
 762	u8 b1, b2, b3;
 763
 764	/*
 765	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
 766	 * (which zero-extends imm32) to save 2 bytes.
 767	 */
 768	if (sign_propagate && (s32)imm32 < 0) {
 769		/* 'mov %rax, imm32' sign extends imm32 */
 770		b1 = add_1mod(0x48, dst_reg);
 771		b2 = 0xC7;
 772		b3 = 0xC0;
 773		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
 774		goto done;
 775	}
 776
 777	/*
 778	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
 779	 * to save 3 bytes.
 780	 */
 781	if (imm32 == 0) {
 782		if (is_ereg(dst_reg))
 783			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
 784		b2 = 0x31; /* xor */
 785		b3 = 0xC0;
 786		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
 787		goto done;
 788	}
 789
 790	/* mov %eax, imm32 */
 791	if (is_ereg(dst_reg))
 792		EMIT1(add_1mod(0x40, dst_reg));
 793	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
 794done:
 795	*pprog = prog;
 796}
 797
 798static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
 799			   const u32 imm32_hi, const u32 imm32_lo)
 800{
 801	u8 *prog = *pprog;
 802
 803	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
 804		/*
 805		 * For emitting plain u32, where sign bit must not be
 806		 * propagated LLVM tends to load imm64 over mov32
 807		 * directly, so save couple of bytes by just doing
 808		 * 'mov %eax, imm32' instead.
 809		 */
 810		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
 811	} else {
 812		/* movabsq rax, imm64 */
 813		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
 814		EMIT(imm32_lo, 4);
 815		EMIT(imm32_hi, 4);
 816	}
 817
 818	*pprog = prog;
 819}
 820
 821static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
 822{
 823	u8 *prog = *pprog;
 824
 825	if (is64) {
 826		/* mov dst, src */
 827		EMIT_mov(dst_reg, src_reg);
 828	} else {
 829		/* mov32 dst, src */
 830		if (is_ereg(dst_reg) || is_ereg(src_reg))
 831			EMIT1(add_2mod(0x40, dst_reg, src_reg));
 832		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
 833	}
 834
 835	*pprog = prog;
 836}
 837
 838static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
 839			   u32 src_reg)
 840{
 841	u8 *prog = *pprog;
 842
 843	if (is64) {
 844		/* movs[b,w,l]q dst, src */
 845		if (num_bits == 8)
 846			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
 847			      add_2reg(0xC0, src_reg, dst_reg));
 848		else if (num_bits == 16)
 849			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
 850			      add_2reg(0xC0, src_reg, dst_reg));
 851		else if (num_bits == 32)
 852			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
 853			      add_2reg(0xC0, src_reg, dst_reg));
 854	} else {
 855		/* movs[b,w]l dst, src */
 856		if (num_bits == 8) {
 857			EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
 858			      add_2reg(0xC0, src_reg, dst_reg));
 859		} else if (num_bits == 16) {
 860			if (is_ereg(dst_reg) || is_ereg(src_reg))
 861				EMIT1(add_2mod(0x40, src_reg, dst_reg));
 862			EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
 863			      add_2reg(0xC0, src_reg, dst_reg));
 864		}
 865	}
 866
 867	*pprog = prog;
 868}
 869
 870/* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
 871static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
 872{
 873	u8 *prog = *pprog;
 874
 875	if (is_imm8(off)) {
 876		/* 1-byte signed displacement.
 877		 *
 878		 * If off == 0 we could skip this and save one extra byte, but
 879		 * special case of x86 R13 which always needs an offset is not
 880		 * worth the hassle
 881		 */
 882		EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
 883	} else {
 884		/* 4-byte signed displacement */
 885		EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
 886	}
 887	*pprog = prog;
 888}
 889
 890/*
 891 * Emit a REX byte if it will be necessary to address these registers
 892 */
 893static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
 894{
 895	u8 *prog = *pprog;
 896
 897	if (is64)
 898		EMIT1(add_2mod(0x48, dst_reg, src_reg));
 899	else if (is_ereg(dst_reg) || is_ereg(src_reg))
 900		EMIT1(add_2mod(0x40, dst_reg, src_reg));
 901	*pprog = prog;
 902}
 903
 904/*
 905 * Similar version of maybe_emit_mod() for a single register
 906 */
 907static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
 908{
 909	u8 *prog = *pprog;
 910
 911	if (is64)
 912		EMIT1(add_1mod(0x48, reg));
 913	else if (is_ereg(reg))
 914		EMIT1(add_1mod(0x40, reg));
 915	*pprog = prog;
 916}
 917
 918/* LDX: dst_reg = *(u8*)(src_reg + off) */
 919static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
 920{
 921	u8 *prog = *pprog;
 922
 923	switch (size) {
 924	case BPF_B:
 925		/* Emit 'movzx rax, byte ptr [rax + off]' */
 926		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
 927		break;
 928	case BPF_H:
 929		/* Emit 'movzx rax, word ptr [rax + off]' */
 930		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
 931		break;
 932	case BPF_W:
 933		/* Emit 'mov eax, dword ptr [rax+0x14]' */
 934		if (is_ereg(dst_reg) || is_ereg(src_reg))
 935			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
 936		else
 937			EMIT1(0x8B);
 938		break;
 939	case BPF_DW:
 940		/* Emit 'mov rax, qword ptr [rax+0x14]' */
 941		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
 942		break;
 943	}
 944	emit_insn_suffix(&prog, src_reg, dst_reg, off);
 945	*pprog = prog;
 946}
 947
 948/* LDSX: dst_reg = *(s8*)(src_reg + off) */
 949static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
 950{
 951	u8 *prog = *pprog;
 952
 953	switch (size) {
 954	case BPF_B:
 955		/* Emit 'movsx rax, byte ptr [rax + off]' */
 956		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
 957		break;
 958	case BPF_H:
 959		/* Emit 'movsx rax, word ptr [rax + off]' */
 960		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
 961		break;
 962	case BPF_W:
 963		/* Emit 'movsx rax, dword ptr [rax+0x14]' */
 964		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
 965		break;
 966	}
 967	emit_insn_suffix(&prog, src_reg, dst_reg, off);
 968	*pprog = prog;
 969}
 970
 971/* STX: *(u8*)(dst_reg + off) = src_reg */
 972static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
 973{
 974	u8 *prog = *pprog;
 975
 976	switch (size) {
 977	case BPF_B:
 978		/* Emit 'mov byte ptr [rax + off], al' */
 979		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
 980			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
 981			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
 982		else
 983			EMIT1(0x88);
 984		break;
 985	case BPF_H:
 986		if (is_ereg(dst_reg) || is_ereg(src_reg))
 987			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
 988		else
 989			EMIT2(0x66, 0x89);
 990		break;
 991	case BPF_W:
 992		if (is_ereg(dst_reg) || is_ereg(src_reg))
 993			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
 994		else
 995			EMIT1(0x89);
 996		break;
 997	case BPF_DW:
 998		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
 999		break;
1000	}
1001	emit_insn_suffix(&prog, dst_reg, src_reg, off);
1002	*pprog = prog;
1003}
1004
1005static int emit_atomic(u8 **pprog, u8 atomic_op,
1006		       u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
1007{
1008	u8 *prog = *pprog;
1009
1010	EMIT1(0xF0); /* lock prefix */
1011
1012	maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
1013
1014	/* emit opcode */
1015	switch (atomic_op) {
1016	case BPF_ADD:
1017	case BPF_AND:
1018	case BPF_OR:
1019	case BPF_XOR:
1020		/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
1021		EMIT1(simple_alu_opcodes[atomic_op]);
1022		break;
1023	case BPF_ADD | BPF_FETCH:
1024		/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
1025		EMIT2(0x0F, 0xC1);
1026		break;
1027	case BPF_XCHG:
1028		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
1029		EMIT1(0x87);
1030		break;
1031	case BPF_CMPXCHG:
1032		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
1033		EMIT2(0x0F, 0xB1);
1034		break;
1035	default:
1036		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1037		return -EFAULT;
1038	}
1039
1040	emit_insn_suffix(&prog, dst_reg, src_reg, off);
1041
1042	*pprog = prog;
1043	return 0;
1044}
1045
1046bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
1047{
1048	u32 reg = x->fixup >> 8;
1049
1050	/* jump over faulting load and clear dest register */
1051	*(unsigned long *)((void *)regs + reg) = 0;
1052	regs->ip += x->fixup & 0xff;
1053	return true;
1054}
1055
1056static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
1057			     bool *regs_used, bool *tail_call_seen)
1058{
1059	int i;
1060
1061	for (i = 1; i <= insn_cnt; i++, insn++) {
1062		if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
1063			*tail_call_seen = true;
1064		if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
1065			regs_used[0] = true;
1066		if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
1067			regs_used[1] = true;
1068		if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
1069			regs_used[2] = true;
1070		if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
1071			regs_used[3] = true;
1072	}
1073}
1074
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075/* emit the 3-byte VEX prefix
1076 *
1077 * r: same as rex.r, extra bit for ModRM reg field
1078 * x: same as rex.x, extra bit for SIB index field
1079 * b: same as rex.b, extra bit for ModRM r/m, or SIB base
1080 * m: opcode map select, encoding escape bytes e.g. 0x0f38
1081 * w: same as rex.w (32 bit or 64 bit) or opcode specific
1082 * src_reg2: additional source reg (encoded as BPF reg)
1083 * l: vector length (128 bit or 256 bit) or reserved
1084 * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
1085 */
1086static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
1087		      bool w, u8 src_reg2, bool l, u8 pp)
1088{
1089	u8 *prog = *pprog;
1090	const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
1091	u8 b1, b2;
1092	u8 vvvv = reg2hex[src_reg2];
1093
1094	/* reg2hex gives only the lower 3 bit of vvvv */
1095	if (is_ereg(src_reg2))
1096		vvvv |= 1 << 3;
1097
1098	/*
1099	 * 2nd byte of 3-byte VEX prefix
1100	 * ~ means bit inverted encoding
1101	 *
1102	 *    7                           0
1103	 *  +---+---+---+---+---+---+---+---+
1104	 *  |~R |~X |~B |         m         |
1105	 *  +---+---+---+---+---+---+---+---+
1106	 */
1107	b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
1108	/*
1109	 * 3rd byte of 3-byte VEX prefix
1110	 *
1111	 *    7                           0
1112	 *  +---+---+---+---+---+---+---+---+
1113	 *  | W |     ~vvvv     | L |   pp  |
1114	 *  +---+---+---+---+---+---+---+---+
1115	 */
1116	b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1117
1118	EMIT3(b0, b1, b2);
1119	*pprog = prog;
1120}
1121
1122/* emit BMI2 shift instruction */
1123static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1124{
1125	u8 *prog = *pprog;
1126	bool r = is_ereg(dst_reg);
1127	u8 m = 2; /* escape code 0f38 */
1128
1129	emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1130	EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1131	*pprog = prog;
1132}
1133
1134#define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1135
1136/* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
1137#define RESTORE_TAIL_CALL_CNT(stack)				\
1138	EMIT3_off32(0x48, 0x8B, 0x85, -round_up(stack, 8) - 8)
1139
1140static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1141		  int oldproglen, struct jit_context *ctx, bool jmp_padding)
1142{
1143	bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1144	struct bpf_insn *insn = bpf_prog->insnsi;
1145	bool callee_regs_used[4] = {};
1146	int insn_cnt = bpf_prog->len;
1147	bool tail_call_seen = false;
1148	bool seen_exit = false;
1149	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1150	int i, excnt = 0;
1151	int ilen, proglen = 0;
1152	u8 *prog = temp;
1153	int err;
1154
1155	detect_reg_usage(insn, insn_cnt, callee_regs_used,
1156			 &tail_call_seen);
1157
1158	/* tail call's presence in current prog implies it is reachable */
1159	tail_call_reachable |= tail_call_seen;
1160
1161	emit_prologue(&prog, bpf_prog->aux->stack_depth,
1162		      bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1163		      bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb);
1164	/* Exception callback will clobber callee regs for its own use, and
1165	 * restore the original callee regs from main prog's stack frame.
1166	 */
1167	if (bpf_prog->aux->exception_boundary) {
1168		/* We also need to save r12, which is not mapped to any BPF
1169		 * register, as we throw after entry into the kernel, which may
1170		 * overwrite r12.
1171		 */
1172		push_r12(&prog);
1173		push_callee_regs(&prog, all_callee_regs_used);
1174	} else {
1175		push_callee_regs(&prog, callee_regs_used);
1176	}
1177
1178	ilen = prog - temp;
1179	if (rw_image)
1180		memcpy(rw_image + proglen, temp, ilen);
1181	proglen += ilen;
1182	addrs[0] = proglen;
1183	prog = temp;
1184
1185	for (i = 1; i <= insn_cnt; i++, insn++) {
1186		const s32 imm32 = insn->imm;
1187		u32 dst_reg = insn->dst_reg;
1188		u32 src_reg = insn->src_reg;
1189		u8 b2 = 0, b3 = 0;
1190		u8 *start_of_ldx;
1191		s64 jmp_offset;
1192		s16 insn_off;
1193		u8 jmp_cond;
1194		u8 *func;
1195		int nops;
1196
1197		switch (insn->code) {
1198			/* ALU */
1199		case BPF_ALU | BPF_ADD | BPF_X:
1200		case BPF_ALU | BPF_SUB | BPF_X:
1201		case BPF_ALU | BPF_AND | BPF_X:
1202		case BPF_ALU | BPF_OR | BPF_X:
1203		case BPF_ALU | BPF_XOR | BPF_X:
1204		case BPF_ALU64 | BPF_ADD | BPF_X:
1205		case BPF_ALU64 | BPF_SUB | BPF_X:
1206		case BPF_ALU64 | BPF_AND | BPF_X:
1207		case BPF_ALU64 | BPF_OR | BPF_X:
1208		case BPF_ALU64 | BPF_XOR | BPF_X:
1209			maybe_emit_mod(&prog, dst_reg, src_reg,
1210				       BPF_CLASS(insn->code) == BPF_ALU64);
1211			b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1212			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1213			break;
1214
1215		case BPF_ALU64 | BPF_MOV | BPF_X:
1216		case BPF_ALU | BPF_MOV | BPF_X:
1217			if (insn->off == 0)
1218				emit_mov_reg(&prog,
1219					     BPF_CLASS(insn->code) == BPF_ALU64,
1220					     dst_reg, src_reg);
1221			else
1222				emit_movsx_reg(&prog, insn->off,
1223					       BPF_CLASS(insn->code) == BPF_ALU64,
1224					       dst_reg, src_reg);
1225			break;
1226
1227			/* neg dst */
1228		case BPF_ALU | BPF_NEG:
1229		case BPF_ALU64 | BPF_NEG:
1230			maybe_emit_1mod(&prog, dst_reg,
1231					BPF_CLASS(insn->code) == BPF_ALU64);
1232			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1233			break;
1234
1235		case BPF_ALU | BPF_ADD | BPF_K:
1236		case BPF_ALU | BPF_SUB | BPF_K:
1237		case BPF_ALU | BPF_AND | BPF_K:
1238		case BPF_ALU | BPF_OR | BPF_K:
1239		case BPF_ALU | BPF_XOR | BPF_K:
1240		case BPF_ALU64 | BPF_ADD | BPF_K:
1241		case BPF_ALU64 | BPF_SUB | BPF_K:
1242		case BPF_ALU64 | BPF_AND | BPF_K:
1243		case BPF_ALU64 | BPF_OR | BPF_K:
1244		case BPF_ALU64 | BPF_XOR | BPF_K:
1245			maybe_emit_1mod(&prog, dst_reg,
1246					BPF_CLASS(insn->code) == BPF_ALU64);
1247
1248			/*
1249			 * b3 holds 'normal' opcode, b2 short form only valid
1250			 * in case dst is eax/rax.
1251			 */
1252			switch (BPF_OP(insn->code)) {
1253			case BPF_ADD:
1254				b3 = 0xC0;
1255				b2 = 0x05;
1256				break;
1257			case BPF_SUB:
1258				b3 = 0xE8;
1259				b2 = 0x2D;
1260				break;
1261			case BPF_AND:
1262				b3 = 0xE0;
1263				b2 = 0x25;
1264				break;
1265			case BPF_OR:
1266				b3 = 0xC8;
1267				b2 = 0x0D;
1268				break;
1269			case BPF_XOR:
1270				b3 = 0xF0;
1271				b2 = 0x35;
1272				break;
1273			}
1274
1275			if (is_imm8(imm32))
1276				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1277			else if (is_axreg(dst_reg))
1278				EMIT1_off32(b2, imm32);
1279			else
1280				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1281			break;
1282
1283		case BPF_ALU64 | BPF_MOV | BPF_K:
1284		case BPF_ALU | BPF_MOV | BPF_K:
1285			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1286				       dst_reg, imm32);
1287			break;
1288
1289		case BPF_LD | BPF_IMM | BPF_DW:
1290			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1291			insn++;
1292			i++;
1293			break;
1294
1295			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1296		case BPF_ALU | BPF_MOD | BPF_X:
1297		case BPF_ALU | BPF_DIV | BPF_X:
1298		case BPF_ALU | BPF_MOD | BPF_K:
1299		case BPF_ALU | BPF_DIV | BPF_K:
1300		case BPF_ALU64 | BPF_MOD | BPF_X:
1301		case BPF_ALU64 | BPF_DIV | BPF_X:
1302		case BPF_ALU64 | BPF_MOD | BPF_K:
1303		case BPF_ALU64 | BPF_DIV | BPF_K: {
1304			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1305
1306			if (dst_reg != BPF_REG_0)
1307				EMIT1(0x50); /* push rax */
1308			if (dst_reg != BPF_REG_3)
1309				EMIT1(0x52); /* push rdx */
1310
1311			if (BPF_SRC(insn->code) == BPF_X) {
1312				if (src_reg == BPF_REG_0 ||
1313				    src_reg == BPF_REG_3) {
1314					/* mov r11, src_reg */
1315					EMIT_mov(AUX_REG, src_reg);
1316					src_reg = AUX_REG;
1317				}
1318			} else {
1319				/* mov r11, imm32 */
1320				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1321				src_reg = AUX_REG;
1322			}
1323
1324			if (dst_reg != BPF_REG_0)
1325				/* mov rax, dst_reg */
1326				emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1327
1328			if (insn->off == 0) {
1329				/*
1330				 * xor edx, edx
1331				 * equivalent to 'xor rdx, rdx', but one byte less
1332				 */
1333				EMIT2(0x31, 0xd2);
1334
1335				/* div src_reg */
1336				maybe_emit_1mod(&prog, src_reg, is64);
1337				EMIT2(0xF7, add_1reg(0xF0, src_reg));
1338			} else {
1339				if (BPF_CLASS(insn->code) == BPF_ALU)
1340					EMIT1(0x99); /* cdq */
1341				else
1342					EMIT2(0x48, 0x99); /* cqo */
1343
1344				/* idiv src_reg */
1345				maybe_emit_1mod(&prog, src_reg, is64);
1346				EMIT2(0xF7, add_1reg(0xF8, src_reg));
1347			}
1348
1349			if (BPF_OP(insn->code) == BPF_MOD &&
1350			    dst_reg != BPF_REG_3)
1351				/* mov dst_reg, rdx */
1352				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1353			else if (BPF_OP(insn->code) == BPF_DIV &&
1354				 dst_reg != BPF_REG_0)
1355				/* mov dst_reg, rax */
1356				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1357
1358			if (dst_reg != BPF_REG_3)
1359				EMIT1(0x5A); /* pop rdx */
1360			if (dst_reg != BPF_REG_0)
1361				EMIT1(0x58); /* pop rax */
1362			break;
1363		}
1364
1365		case BPF_ALU | BPF_MUL | BPF_K:
1366		case BPF_ALU64 | BPF_MUL | BPF_K:
1367			maybe_emit_mod(&prog, dst_reg, dst_reg,
1368				       BPF_CLASS(insn->code) == BPF_ALU64);
1369
1370			if (is_imm8(imm32))
1371				/* imul dst_reg, dst_reg, imm8 */
1372				EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1373				      imm32);
1374			else
1375				/* imul dst_reg, dst_reg, imm32 */
1376				EMIT2_off32(0x69,
1377					    add_2reg(0xC0, dst_reg, dst_reg),
1378					    imm32);
1379			break;
1380
1381		case BPF_ALU | BPF_MUL | BPF_X:
1382		case BPF_ALU64 | BPF_MUL | BPF_X:
1383			maybe_emit_mod(&prog, src_reg, dst_reg,
1384				       BPF_CLASS(insn->code) == BPF_ALU64);
1385
1386			/* imul dst_reg, src_reg */
1387			EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1388			break;
1389
1390			/* Shifts */
1391		case BPF_ALU | BPF_LSH | BPF_K:
1392		case BPF_ALU | BPF_RSH | BPF_K:
1393		case BPF_ALU | BPF_ARSH | BPF_K:
1394		case BPF_ALU64 | BPF_LSH | BPF_K:
1395		case BPF_ALU64 | BPF_RSH | BPF_K:
1396		case BPF_ALU64 | BPF_ARSH | BPF_K:
1397			maybe_emit_1mod(&prog, dst_reg,
1398					BPF_CLASS(insn->code) == BPF_ALU64);
1399
1400			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1401			if (imm32 == 1)
1402				EMIT2(0xD1, add_1reg(b3, dst_reg));
1403			else
1404				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1405			break;
1406
1407		case BPF_ALU | BPF_LSH | BPF_X:
1408		case BPF_ALU | BPF_RSH | BPF_X:
1409		case BPF_ALU | BPF_ARSH | BPF_X:
1410		case BPF_ALU64 | BPF_LSH | BPF_X:
1411		case BPF_ALU64 | BPF_RSH | BPF_X:
1412		case BPF_ALU64 | BPF_ARSH | BPF_X:
1413			/* BMI2 shifts aren't better when shift count is already in rcx */
1414			if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1415				/* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1416				bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1417				u8 op;
1418
1419				switch (BPF_OP(insn->code)) {
1420				case BPF_LSH:
1421					op = 1; /* prefix 0x66 */
1422					break;
1423				case BPF_RSH:
1424					op = 3; /* prefix 0xf2 */
1425					break;
1426				case BPF_ARSH:
1427					op = 2; /* prefix 0xf3 */
1428					break;
1429				}
1430
1431				emit_shiftx(&prog, dst_reg, src_reg, w, op);
1432
1433				break;
1434			}
1435
1436			if (src_reg != BPF_REG_4) { /* common case */
1437				/* Check for bad case when dst_reg == rcx */
1438				if (dst_reg == BPF_REG_4) {
1439					/* mov r11, dst_reg */
1440					EMIT_mov(AUX_REG, dst_reg);
1441					dst_reg = AUX_REG;
1442				} else {
1443					EMIT1(0x51); /* push rcx */
1444				}
1445				/* mov rcx, src_reg */
1446				EMIT_mov(BPF_REG_4, src_reg);
1447			}
1448
1449			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1450			maybe_emit_1mod(&prog, dst_reg,
1451					BPF_CLASS(insn->code) == BPF_ALU64);
1452
1453			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1454			EMIT2(0xD3, add_1reg(b3, dst_reg));
1455
1456			if (src_reg != BPF_REG_4) {
1457				if (insn->dst_reg == BPF_REG_4)
1458					/* mov dst_reg, r11 */
1459					EMIT_mov(insn->dst_reg, AUX_REG);
1460				else
1461					EMIT1(0x59); /* pop rcx */
1462			}
1463
1464			break;
1465
1466		case BPF_ALU | BPF_END | BPF_FROM_BE:
1467		case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1468			switch (imm32) {
1469			case 16:
1470				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
1471				EMIT1(0x66);
1472				if (is_ereg(dst_reg))
1473					EMIT1(0x41);
1474				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1475
1476				/* Emit 'movzwl eax, ax' */
1477				if (is_ereg(dst_reg))
1478					EMIT3(0x45, 0x0F, 0xB7);
1479				else
1480					EMIT2(0x0F, 0xB7);
1481				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1482				break;
1483			case 32:
1484				/* Emit 'bswap eax' to swap lower 4 bytes */
1485				if (is_ereg(dst_reg))
1486					EMIT2(0x41, 0x0F);
1487				else
1488					EMIT1(0x0F);
1489				EMIT1(add_1reg(0xC8, dst_reg));
1490				break;
1491			case 64:
1492				/* Emit 'bswap rax' to swap 8 bytes */
1493				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1494				      add_1reg(0xC8, dst_reg));
1495				break;
1496			}
1497			break;
1498
1499		case BPF_ALU | BPF_END | BPF_FROM_LE:
1500			switch (imm32) {
1501			case 16:
1502				/*
1503				 * Emit 'movzwl eax, ax' to zero extend 16-bit
1504				 * into 64 bit
1505				 */
1506				if (is_ereg(dst_reg))
1507					EMIT3(0x45, 0x0F, 0xB7);
1508				else
1509					EMIT2(0x0F, 0xB7);
1510				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1511				break;
1512			case 32:
1513				/* Emit 'mov eax, eax' to clear upper 32-bits */
1514				if (is_ereg(dst_reg))
1515					EMIT1(0x45);
1516				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1517				break;
1518			case 64:
1519				/* nop */
1520				break;
1521			}
1522			break;
1523
1524			/* speculation barrier */
1525		case BPF_ST | BPF_NOSPEC:
1526			EMIT_LFENCE();
1527			break;
1528
1529			/* ST: *(u8*)(dst_reg + off) = imm */
1530		case BPF_ST | BPF_MEM | BPF_B:
1531			if (is_ereg(dst_reg))
1532				EMIT2(0x41, 0xC6);
1533			else
1534				EMIT1(0xC6);
1535			goto st;
1536		case BPF_ST | BPF_MEM | BPF_H:
1537			if (is_ereg(dst_reg))
1538				EMIT3(0x66, 0x41, 0xC7);
1539			else
1540				EMIT2(0x66, 0xC7);
1541			goto st;
1542		case BPF_ST | BPF_MEM | BPF_W:
1543			if (is_ereg(dst_reg))
1544				EMIT2(0x41, 0xC7);
1545			else
1546				EMIT1(0xC7);
1547			goto st;
1548		case BPF_ST | BPF_MEM | BPF_DW:
1549			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1550
1551st:			if (is_imm8(insn->off))
1552				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1553			else
1554				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1555
1556			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1557			break;
1558
1559			/* STX: *(u8*)(dst_reg + off) = src_reg */
1560		case BPF_STX | BPF_MEM | BPF_B:
1561		case BPF_STX | BPF_MEM | BPF_H:
1562		case BPF_STX | BPF_MEM | BPF_W:
1563		case BPF_STX | BPF_MEM | BPF_DW:
1564			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1565			break;
1566
1567			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1568		case BPF_LDX | BPF_MEM | BPF_B:
1569		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1570		case BPF_LDX | BPF_MEM | BPF_H:
1571		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1572		case BPF_LDX | BPF_MEM | BPF_W:
1573		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1574		case BPF_LDX | BPF_MEM | BPF_DW:
1575		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1576			/* LDXS: dst_reg = *(s8*)(src_reg + off) */
1577		case BPF_LDX | BPF_MEMSX | BPF_B:
1578		case BPF_LDX | BPF_MEMSX | BPF_H:
1579		case BPF_LDX | BPF_MEMSX | BPF_W:
1580		case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1581		case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1582		case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1583			insn_off = insn->off;
1584
1585			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1586			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1587				/* Conservatively check that src_reg + insn->off is a kernel address:
1588				 *   src_reg + insn->off >= TASK_SIZE_MAX + PAGE_SIZE
1589				 * src_reg is used as scratch for src_reg += insn->off and restored
1590				 * after emit_ldx if necessary
1591				 */
 
 
1592
1593				u64 limit = TASK_SIZE_MAX + PAGE_SIZE;
1594				u8 *end_of_jmp;
1595
1596				/* At end of these emitted checks, insn->off will have been added
1597				 * to src_reg, so no need to do relative load with insn->off offset
1598				 */
1599				insn_off = 0;
1600
1601				/* movabsq r11, limit */
1602				EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG));
1603				EMIT((u32)limit, 4);
1604				EMIT(limit >> 32, 4);
1605
1606				if (insn->off) {
1607					/* add src_reg, insn->off */
1608					maybe_emit_1mod(&prog, src_reg, true);
1609					EMIT2_off32(0x81, add_1reg(0xC0, src_reg), insn->off);
1610				}
1611
1612				/* cmp src_reg, r11 */
1613				maybe_emit_mod(&prog, src_reg, AUX_REG, true);
1614				EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG));
1615
1616				/* if unsigned '>=', goto load */
1617				EMIT2(X86_JAE, 0);
1618				end_of_jmp = prog;
 
 
 
 
 
 
 
 
 
 
 
1619
1620				/* xor dst_reg, dst_reg */
1621				emit_mov_imm32(&prog, false, dst_reg, 0);
1622				/* jmp byte_after_ldx */
1623				EMIT2(0xEB, 0);
1624
1625				/* populate jmp_offset for JAE above to jump to start_of_ldx */
 
 
1626				start_of_ldx = prog;
1627				end_of_jmp[-1] = start_of_ldx - end_of_jmp;
1628			}
1629			if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
1630			    BPF_MODE(insn->code) == BPF_MEMSX)
1631				emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1632			else
1633				emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
1634			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1635			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1636				struct exception_table_entry *ex;
1637				u8 *_insn = image + proglen + (start_of_ldx - temp);
1638				s64 delta;
1639
1640				/* populate jmp_offset for JMP above */
1641				start_of_ldx[-1] = prog - start_of_ldx;
1642
1643				if (insn->off && src_reg != dst_reg) {
1644					/* sub src_reg, insn->off
1645					 * Restore src_reg after "add src_reg, insn->off" in prev
1646					 * if statement. But if src_reg == dst_reg, emit_ldx
1647					 * above already clobbered src_reg, so no need to restore.
1648					 * If add src_reg, insn->off was unnecessary, no need to
1649					 * restore either.
1650					 */
1651					maybe_emit_1mod(&prog, src_reg, true);
1652					EMIT2_off32(0x81, add_1reg(0xE8, src_reg), insn->off);
1653				}
1654
1655				if (!bpf_prog->aux->extable)
1656					break;
1657
1658				if (excnt >= bpf_prog->aux->num_exentries) {
1659					pr_err("ex gen bug\n");
1660					return -EFAULT;
1661				}
1662				ex = &bpf_prog->aux->extable[excnt++];
1663
1664				delta = _insn - (u8 *)&ex->insn;
1665				if (!is_simm32(delta)) {
1666					pr_err("extable->insn doesn't fit into 32-bit\n");
1667					return -EFAULT;
1668				}
1669				/* switch ex to rw buffer for writes */
1670				ex = (void *)rw_image + ((void *)ex - (void *)image);
1671
1672				ex->insn = delta;
1673
1674				ex->data = EX_TYPE_BPF;
1675
1676				if (dst_reg > BPF_REG_9) {
1677					pr_err("verifier error\n");
1678					return -EFAULT;
1679				}
1680				/*
1681				 * Compute size of x86 insn and its target dest x86 register.
1682				 * ex_handler_bpf() will use lower 8 bits to adjust
1683				 * pt_regs->ip to jump over this x86 instruction
1684				 * and upper bits to figure out which pt_regs to zero out.
1685				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1686				 * of 4 bytes will be ignored and rbx will be zero inited.
1687				 */
1688				ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
1689			}
1690			break;
1691
1692		case BPF_STX | BPF_ATOMIC | BPF_W:
1693		case BPF_STX | BPF_ATOMIC | BPF_DW:
1694			if (insn->imm == (BPF_AND | BPF_FETCH) ||
1695			    insn->imm == (BPF_OR | BPF_FETCH) ||
1696			    insn->imm == (BPF_XOR | BPF_FETCH)) {
1697				bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1698				u32 real_src_reg = src_reg;
1699				u32 real_dst_reg = dst_reg;
1700				u8 *branch_target;
1701
1702				/*
1703				 * Can't be implemented with a single x86 insn.
1704				 * Need to do a CMPXCHG loop.
1705				 */
1706
1707				/* Will need RAX as a CMPXCHG operand so save R0 */
1708				emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1709				if (src_reg == BPF_REG_0)
1710					real_src_reg = BPF_REG_AX;
1711				if (dst_reg == BPF_REG_0)
1712					real_dst_reg = BPF_REG_AX;
1713
1714				branch_target = prog;
1715				/* Load old value */
1716				emit_ldx(&prog, BPF_SIZE(insn->code),
1717					 BPF_REG_0, real_dst_reg, insn->off);
1718				/*
1719				 * Perform the (commutative) operation locally,
1720				 * put the result in the AUX_REG.
1721				 */
1722				emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1723				maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1724				EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1725				      add_2reg(0xC0, AUX_REG, real_src_reg));
1726				/* Attempt to swap in new value */
1727				err = emit_atomic(&prog, BPF_CMPXCHG,
1728						  real_dst_reg, AUX_REG,
1729						  insn->off,
1730						  BPF_SIZE(insn->code));
1731				if (WARN_ON(err))
1732					return err;
1733				/*
1734				 * ZF tells us whether we won the race. If it's
1735				 * cleared we need to try again.
1736				 */
1737				EMIT2(X86_JNE, -(prog - branch_target) - 2);
1738				/* Return the pre-modification value */
1739				emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1740				/* Restore R0 after clobbering RAX */
1741				emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1742				break;
1743			}
1744
1745			err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1746					  insn->off, BPF_SIZE(insn->code));
1747			if (err)
1748				return err;
1749			break;
1750
1751			/* call */
1752		case BPF_JMP | BPF_CALL: {
1753			int offs;
1754
1755			func = (u8 *) __bpf_call_base + imm32;
1756			if (tail_call_reachable) {
1757				RESTORE_TAIL_CALL_CNT(bpf_prog->aux->stack_depth);
 
 
1758				if (!imm32)
1759					return -EINVAL;
1760				offs = 7 + x86_call_depth_emit_accounting(&prog, func);
1761			} else {
1762				if (!imm32)
1763					return -EINVAL;
1764				offs = x86_call_depth_emit_accounting(&prog, func);
1765			}
1766			if (emit_call(&prog, func, image + addrs[i - 1] + offs))
1767				return -EINVAL;
1768			break;
1769		}
1770
1771		case BPF_JMP | BPF_TAIL_CALL:
1772			if (imm32)
1773				emit_bpf_tail_call_direct(bpf_prog,
1774							  &bpf_prog->aux->poke_tab[imm32 - 1],
1775							  &prog, image + addrs[i - 1],
1776							  callee_regs_used,
1777							  bpf_prog->aux->stack_depth,
1778							  ctx);
1779			else
1780				emit_bpf_tail_call_indirect(bpf_prog,
1781							    &prog,
1782							    callee_regs_used,
1783							    bpf_prog->aux->stack_depth,
1784							    image + addrs[i - 1],
1785							    ctx);
1786			break;
1787
1788			/* cond jump */
1789		case BPF_JMP | BPF_JEQ | BPF_X:
1790		case BPF_JMP | BPF_JNE | BPF_X:
1791		case BPF_JMP | BPF_JGT | BPF_X:
1792		case BPF_JMP | BPF_JLT | BPF_X:
1793		case BPF_JMP | BPF_JGE | BPF_X:
1794		case BPF_JMP | BPF_JLE | BPF_X:
1795		case BPF_JMP | BPF_JSGT | BPF_X:
1796		case BPF_JMP | BPF_JSLT | BPF_X:
1797		case BPF_JMP | BPF_JSGE | BPF_X:
1798		case BPF_JMP | BPF_JSLE | BPF_X:
1799		case BPF_JMP32 | BPF_JEQ | BPF_X:
1800		case BPF_JMP32 | BPF_JNE | BPF_X:
1801		case BPF_JMP32 | BPF_JGT | BPF_X:
1802		case BPF_JMP32 | BPF_JLT | BPF_X:
1803		case BPF_JMP32 | BPF_JGE | BPF_X:
1804		case BPF_JMP32 | BPF_JLE | BPF_X:
1805		case BPF_JMP32 | BPF_JSGT | BPF_X:
1806		case BPF_JMP32 | BPF_JSLT | BPF_X:
1807		case BPF_JMP32 | BPF_JSGE | BPF_X:
1808		case BPF_JMP32 | BPF_JSLE | BPF_X:
1809			/* cmp dst_reg, src_reg */
1810			maybe_emit_mod(&prog, dst_reg, src_reg,
1811				       BPF_CLASS(insn->code) == BPF_JMP);
1812			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1813			goto emit_cond_jmp;
1814
1815		case BPF_JMP | BPF_JSET | BPF_X:
1816		case BPF_JMP32 | BPF_JSET | BPF_X:
1817			/* test dst_reg, src_reg */
1818			maybe_emit_mod(&prog, dst_reg, src_reg,
1819				       BPF_CLASS(insn->code) == BPF_JMP);
1820			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1821			goto emit_cond_jmp;
1822
1823		case BPF_JMP | BPF_JSET | BPF_K:
1824		case BPF_JMP32 | BPF_JSET | BPF_K:
1825			/* test dst_reg, imm32 */
1826			maybe_emit_1mod(&prog, dst_reg,
1827					BPF_CLASS(insn->code) == BPF_JMP);
1828			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1829			goto emit_cond_jmp;
1830
1831		case BPF_JMP | BPF_JEQ | BPF_K:
1832		case BPF_JMP | BPF_JNE | BPF_K:
1833		case BPF_JMP | BPF_JGT | BPF_K:
1834		case BPF_JMP | BPF_JLT | BPF_K:
1835		case BPF_JMP | BPF_JGE | BPF_K:
1836		case BPF_JMP | BPF_JLE | BPF_K:
1837		case BPF_JMP | BPF_JSGT | BPF_K:
1838		case BPF_JMP | BPF_JSLT | BPF_K:
1839		case BPF_JMP | BPF_JSGE | BPF_K:
1840		case BPF_JMP | BPF_JSLE | BPF_K:
1841		case BPF_JMP32 | BPF_JEQ | BPF_K:
1842		case BPF_JMP32 | BPF_JNE | BPF_K:
1843		case BPF_JMP32 | BPF_JGT | BPF_K:
1844		case BPF_JMP32 | BPF_JLT | BPF_K:
1845		case BPF_JMP32 | BPF_JGE | BPF_K:
1846		case BPF_JMP32 | BPF_JLE | BPF_K:
1847		case BPF_JMP32 | BPF_JSGT | BPF_K:
1848		case BPF_JMP32 | BPF_JSLT | BPF_K:
1849		case BPF_JMP32 | BPF_JSGE | BPF_K:
1850		case BPF_JMP32 | BPF_JSLE | BPF_K:
1851			/* test dst_reg, dst_reg to save one extra byte */
1852			if (imm32 == 0) {
1853				maybe_emit_mod(&prog, dst_reg, dst_reg,
1854					       BPF_CLASS(insn->code) == BPF_JMP);
1855				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1856				goto emit_cond_jmp;
1857			}
1858
1859			/* cmp dst_reg, imm8/32 */
1860			maybe_emit_1mod(&prog, dst_reg,
1861					BPF_CLASS(insn->code) == BPF_JMP);
1862
1863			if (is_imm8(imm32))
1864				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1865			else
1866				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1867
1868emit_cond_jmp:		/* Convert BPF opcode to x86 */
1869			switch (BPF_OP(insn->code)) {
1870			case BPF_JEQ:
1871				jmp_cond = X86_JE;
1872				break;
1873			case BPF_JSET:
1874			case BPF_JNE:
1875				jmp_cond = X86_JNE;
1876				break;
1877			case BPF_JGT:
1878				/* GT is unsigned '>', JA in x86 */
1879				jmp_cond = X86_JA;
1880				break;
1881			case BPF_JLT:
1882				/* LT is unsigned '<', JB in x86 */
1883				jmp_cond = X86_JB;
1884				break;
1885			case BPF_JGE:
1886				/* GE is unsigned '>=', JAE in x86 */
1887				jmp_cond = X86_JAE;
1888				break;
1889			case BPF_JLE:
1890				/* LE is unsigned '<=', JBE in x86 */
1891				jmp_cond = X86_JBE;
1892				break;
1893			case BPF_JSGT:
1894				/* Signed '>', GT in x86 */
1895				jmp_cond = X86_JG;
1896				break;
1897			case BPF_JSLT:
1898				/* Signed '<', LT in x86 */
1899				jmp_cond = X86_JL;
1900				break;
1901			case BPF_JSGE:
1902				/* Signed '>=', GE in x86 */
1903				jmp_cond = X86_JGE;
1904				break;
1905			case BPF_JSLE:
1906				/* Signed '<=', LE in x86 */
1907				jmp_cond = X86_JLE;
1908				break;
1909			default: /* to silence GCC warning */
1910				return -EFAULT;
1911			}
1912			jmp_offset = addrs[i + insn->off] - addrs[i];
1913			if (is_imm8(jmp_offset)) {
1914				if (jmp_padding) {
1915					/* To keep the jmp_offset valid, the extra bytes are
1916					 * padded before the jump insn, so we subtract the
1917					 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1918					 *
1919					 * If the previous pass already emits an imm8
1920					 * jmp_cond, then this BPF insn won't shrink, so
1921					 * "nops" is 0.
1922					 *
1923					 * On the other hand, if the previous pass emits an
1924					 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1925					 * keep the image from shrinking further.
1926					 *
1927					 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1928					 *     is 2 bytes, so the size difference is 4 bytes.
1929					 */
1930					nops = INSN_SZ_DIFF - 2;
1931					if (nops != 0 && nops != 4) {
1932						pr_err("unexpected jmp_cond padding: %d bytes\n",
1933						       nops);
1934						return -EFAULT;
1935					}
1936					emit_nops(&prog, nops);
1937				}
1938				EMIT2(jmp_cond, jmp_offset);
1939			} else if (is_simm32(jmp_offset)) {
1940				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1941			} else {
1942				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1943				return -EFAULT;
1944			}
1945
1946			break;
1947
1948		case BPF_JMP | BPF_JA:
1949		case BPF_JMP32 | BPF_JA:
1950			if (BPF_CLASS(insn->code) == BPF_JMP) {
1951				if (insn->off == -1)
1952					/* -1 jmp instructions will always jump
1953					 * backwards two bytes. Explicitly handling
1954					 * this case avoids wasting too many passes
1955					 * when there are long sequences of replaced
1956					 * dead code.
1957					 */
1958					jmp_offset = -2;
1959				else
1960					jmp_offset = addrs[i + insn->off] - addrs[i];
1961			} else {
1962				if (insn->imm == -1)
1963					jmp_offset = -2;
1964				else
1965					jmp_offset = addrs[i + insn->imm] - addrs[i];
1966			}
1967
1968			if (!jmp_offset) {
1969				/*
1970				 * If jmp_padding is enabled, the extra nops will
1971				 * be inserted. Otherwise, optimize out nop jumps.
1972				 */
1973				if (jmp_padding) {
1974					/* There are 3 possible conditions.
1975					 * (1) This BPF_JA is already optimized out in
1976					 *     the previous run, so there is no need
1977					 *     to pad any extra byte (0 byte).
1978					 * (2) The previous pass emits an imm8 jmp,
1979					 *     so we pad 2 bytes to match the previous
1980					 *     insn size.
1981					 * (3) Similarly, the previous pass emits an
1982					 *     imm32 jmp, and 5 bytes is padded.
1983					 */
1984					nops = INSN_SZ_DIFF;
1985					if (nops != 0 && nops != 2 && nops != 5) {
1986						pr_err("unexpected nop jump padding: %d bytes\n",
1987						       nops);
1988						return -EFAULT;
1989					}
1990					emit_nops(&prog, nops);
1991				}
1992				break;
1993			}
1994emit_jmp:
1995			if (is_imm8(jmp_offset)) {
1996				if (jmp_padding) {
1997					/* To avoid breaking jmp_offset, the extra bytes
1998					 * are padded before the actual jmp insn, so
1999					 * 2 bytes is subtracted from INSN_SZ_DIFF.
2000					 *
2001					 * If the previous pass already emits an imm8
2002					 * jmp, there is nothing to pad (0 byte).
2003					 *
2004					 * If it emits an imm32 jmp (5 bytes) previously
2005					 * and now an imm8 jmp (2 bytes), then we pad
2006					 * (5 - 2 = 3) bytes to stop the image from
2007					 * shrinking further.
2008					 */
2009					nops = INSN_SZ_DIFF - 2;
2010					if (nops != 0 && nops != 3) {
2011						pr_err("unexpected jump padding: %d bytes\n",
2012						       nops);
2013						return -EFAULT;
2014					}
2015					emit_nops(&prog, INSN_SZ_DIFF - 2);
2016				}
2017				EMIT2(0xEB, jmp_offset);
2018			} else if (is_simm32(jmp_offset)) {
2019				EMIT1_off32(0xE9, jmp_offset);
2020			} else {
2021				pr_err("jmp gen bug %llx\n", jmp_offset);
2022				return -EFAULT;
2023			}
2024			break;
2025
2026		case BPF_JMP | BPF_EXIT:
2027			if (seen_exit) {
2028				jmp_offset = ctx->cleanup_addr - addrs[i];
2029				goto emit_jmp;
2030			}
2031			seen_exit = true;
2032			/* Update cleanup_addr */
2033			ctx->cleanup_addr = proglen;
2034			if (bpf_prog->aux->exception_boundary) {
2035				pop_callee_regs(&prog, all_callee_regs_used);
2036				pop_r12(&prog);
2037			} else {
2038				pop_callee_regs(&prog, callee_regs_used);
2039			}
2040			EMIT1(0xC9);         /* leave */
2041			emit_return(&prog, image + addrs[i - 1] + (prog - temp));
2042			break;
2043
2044		default:
2045			/*
2046			 * By design x86-64 JIT should support all BPF instructions.
2047			 * This error will be seen if new instruction was added
2048			 * to the interpreter, but not to the JIT, or if there is
2049			 * junk in bpf_prog.
2050			 */
2051			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
2052			return -EINVAL;
2053		}
2054
2055		ilen = prog - temp;
2056		if (ilen > BPF_MAX_INSN_SIZE) {
2057			pr_err("bpf_jit: fatal insn size error\n");
2058			return -EFAULT;
2059		}
2060
2061		if (image) {
2062			/*
2063			 * When populating the image, assert that:
2064			 *
2065			 *  i) We do not write beyond the allocated space, and
2066			 * ii) addrs[i] did not change from the prior run, in order
2067			 *     to validate assumptions made for computing branch
2068			 *     displacements.
2069			 */
2070			if (unlikely(proglen + ilen > oldproglen ||
2071				     proglen + ilen != addrs[i])) {
2072				pr_err("bpf_jit: fatal error\n");
2073				return -EFAULT;
2074			}
2075			memcpy(rw_image + proglen, temp, ilen);
2076		}
2077		proglen += ilen;
2078		addrs[i] = proglen;
2079		prog = temp;
2080	}
2081
2082	if (image && excnt != bpf_prog->aux->num_exentries) {
2083		pr_err("extable is not populated\n");
2084		return -EFAULT;
2085	}
2086	return proglen;
2087}
2088
2089static void clean_stack_garbage(const struct btf_func_model *m,
2090				u8 **pprog, int nr_stack_slots,
2091				int stack_size)
2092{
2093	int arg_size, off;
2094	u8 *prog;
2095
2096	/* Generally speaking, the compiler will pass the arguments
2097	 * on-stack with "push" instruction, which will take 8-byte
2098	 * on the stack. In this case, there won't be garbage values
2099	 * while we copy the arguments from origin stack frame to current
2100	 * in BPF_DW.
2101	 *
2102	 * However, sometimes the compiler will only allocate 4-byte on
2103	 * the stack for the arguments. For now, this case will only
2104	 * happen if there is only one argument on-stack and its size
2105	 * not more than 4 byte. In this case, there will be garbage
2106	 * values on the upper 4-byte where we store the argument on
2107	 * current stack frame.
2108	 *
2109	 * arguments on origin stack:
2110	 *
2111	 * stack_arg_1(4-byte) xxx(4-byte)
2112	 *
2113	 * what we copy:
2114	 *
2115	 * stack_arg_1(8-byte): stack_arg_1(origin) xxx
2116	 *
2117	 * and the xxx is the garbage values which we should clean here.
2118	 */
2119	if (nr_stack_slots != 1)
2120		return;
2121
2122	/* the size of the last argument */
2123	arg_size = m->arg_size[m->nr_args - 1];
2124	if (arg_size <= 4) {
2125		off = -(stack_size - 4);
2126		prog = *pprog;
2127		/* mov DWORD PTR [rbp + off], 0 */
2128		if (!is_imm8(off))
2129			EMIT2_off32(0xC7, 0x85, off);
2130		else
2131			EMIT3(0xC7, 0x45, off);
2132		EMIT(0, 4);
2133		*pprog = prog;
2134	}
2135}
2136
2137/* get the count of the regs that are used to pass arguments */
2138static int get_nr_used_regs(const struct btf_func_model *m)
2139{
2140	int i, arg_regs, nr_used_regs = 0;
2141
2142	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2143		arg_regs = (m->arg_size[i] + 7) / 8;
2144		if (nr_used_regs + arg_regs <= 6)
2145			nr_used_regs += arg_regs;
2146
2147		if (nr_used_regs >= 6)
2148			break;
2149	}
2150
2151	return nr_used_regs;
2152}
2153
2154static void save_args(const struct btf_func_model *m, u8 **prog,
2155		      int stack_size, bool for_call_origin)
2156{
2157	int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2158	int i, j;
2159
2160	/* Store function arguments to stack.
2161	 * For a function that accepts two pointers the sequence will be:
2162	 * mov QWORD PTR [rbp-0x10],rdi
2163	 * mov QWORD PTR [rbp-0x8],rsi
2164	 */
2165	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2166		arg_regs = (m->arg_size[i] + 7) / 8;
2167
2168		/* According to the research of Yonghong, struct members
2169		 * should be all in register or all on the stack.
2170		 * Meanwhile, the compiler will pass the argument on regs
2171		 * if the remaining regs can hold the argument.
2172		 *
2173		 * Disorder of the args can happen. For example:
2174		 *
2175		 * struct foo_struct {
2176		 *     long a;
2177		 *     int b;
2178		 * };
2179		 * int foo(char, char, char, char, char, struct foo_struct,
2180		 *         char);
2181		 *
2182		 * the arg1-5,arg7 will be passed by regs, and arg6 will
2183		 * by stack.
2184		 */
2185		if (nr_regs + arg_regs > 6) {
2186			/* copy function arguments from origin stack frame
2187			 * into current stack frame.
2188			 *
2189			 * The starting address of the arguments on-stack
2190			 * is:
2191			 *   rbp + 8(push rbp) +
2192			 *   8(return addr of origin call) +
2193			 *   8(return addr of the caller)
2194			 * which means: rbp + 24
2195			 */
2196			for (j = 0; j < arg_regs; j++) {
2197				emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2198					 nr_stack_slots * 8 + 0x18);
2199				emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2200					 -stack_size);
2201
2202				if (!nr_stack_slots)
2203					first_off = stack_size;
2204				stack_size -= 8;
2205				nr_stack_slots++;
2206			}
2207		} else {
2208			/* Only copy the arguments on-stack to current
2209			 * 'stack_size' and ignore the regs, used to
2210			 * prepare the arguments on-stack for origin call.
2211			 */
2212			if (for_call_origin) {
2213				nr_regs += arg_regs;
2214				continue;
2215			}
2216
2217			/* copy the arguments from regs into stack */
2218			for (j = 0; j < arg_regs; j++) {
2219				emit_stx(prog, BPF_DW, BPF_REG_FP,
2220					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2221					 -stack_size);
2222				stack_size -= 8;
2223				nr_regs++;
2224			}
2225		}
2226	}
2227
2228	clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2229}
2230
2231static void restore_regs(const struct btf_func_model *m, u8 **prog,
2232			 int stack_size)
2233{
2234	int i, j, arg_regs, nr_regs = 0;
2235
2236	/* Restore function arguments from stack.
2237	 * For a function that accepts two pointers the sequence will be:
2238	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2239	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2240	 *
2241	 * The logic here is similar to what we do in save_args()
2242	 */
2243	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2244		arg_regs = (m->arg_size[i] + 7) / 8;
2245		if (nr_regs + arg_regs <= 6) {
2246			for (j = 0; j < arg_regs; j++) {
2247				emit_ldx(prog, BPF_DW,
2248					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2249					 BPF_REG_FP,
2250					 -stack_size);
2251				stack_size -= 8;
2252				nr_regs++;
2253			}
2254		} else {
2255			stack_size -= 8 * arg_regs;
 
2256		}
2257
2258		if (nr_regs >= 6)
2259			break;
 
 
 
 
 
 
2260	}
2261}
2262
2263static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2264			   struct bpf_tramp_link *l, int stack_size,
2265			   int run_ctx_off, bool save_ret,
2266			   void *image, void *rw_image)
2267{
2268	u8 *prog = *pprog;
2269	u8 *jmp_insn;
2270	int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2271	struct bpf_prog *p = l->link.prog;
2272	u64 cookie = l->cookie;
2273
2274	/* mov rdi, cookie */
2275	emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2276
2277	/* Prepare struct bpf_tramp_run_ctx.
2278	 *
2279	 * bpf_tramp_run_ctx is already preserved by
2280	 * arch_prepare_bpf_trampoline().
2281	 *
2282	 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2283	 */
2284	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2285
2286	/* arg1: mov rdi, progs[i] */
2287	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2288	/* arg2: lea rsi, [rbp - ctx_cookie_off] */
2289	if (!is_imm8(-run_ctx_off))
2290		EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2291	else
2292		EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2293
2294	if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image)))
2295		return -EINVAL;
2296	/* remember prog start time returned by __bpf_prog_enter */
2297	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2298
2299	/* if (__bpf_prog_enter*(prog) == 0)
2300	 *	goto skip_exec_of_prog;
2301	 */
2302	EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
2303	/* emit 2 nops that will be replaced with JE insn */
2304	jmp_insn = prog;
2305	emit_nops(&prog, 2);
2306
2307	/* arg1: lea rdi, [rbp - stack_size] */
2308	if (!is_imm8(-stack_size))
2309		EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2310	else
2311		EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2312	/* arg2: progs[i]->insnsi for interpreter */
2313	if (!p->jited)
2314		emit_mov_imm64(&prog, BPF_REG_2,
2315			       (long) p->insnsi >> 32,
2316			       (u32) (long) p->insnsi);
2317	/* call JITed bpf program or interpreter */
2318	if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image)))
2319		return -EINVAL;
2320
2321	/*
2322	 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
2323	 * of the previous call which is then passed on the stack to
2324	 * the next BPF program.
2325	 *
2326	 * BPF_TRAMP_FENTRY trampoline may need to return the return
2327	 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
2328	 */
2329	if (save_ret)
2330		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2331
2332	/* replace 2 nops with JE insn, since jmp target is known */
2333	jmp_insn[0] = X86_JE;
2334	jmp_insn[1] = prog - jmp_insn - 2;
2335
2336	/* arg1: mov rdi, progs[i] */
2337	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2338	/* arg2: mov rsi, rbx <- start time in nsec */
2339	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
2340	/* arg3: lea rdx, [rbp - run_ctx_off] */
2341	if (!is_imm8(-run_ctx_off))
2342		EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
2343	else
2344		EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
2345	if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image)))
2346		return -EINVAL;
2347
2348	*pprog = prog;
2349	return 0;
2350}
2351
2352static void emit_align(u8 **pprog, u32 align)
2353{
2354	u8 *target, *prog = *pprog;
2355
2356	target = PTR_ALIGN(prog, align);
2357	if (target != prog)
2358		emit_nops(&prog, target - prog);
2359
2360	*pprog = prog;
2361}
2362
2363static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2364{
2365	u8 *prog = *pprog;
2366	s64 offset;
2367
2368	offset = func - (ip + 2 + 4);
2369	if (!is_simm32(offset)) {
2370		pr_err("Target %p is out of range\n", func);
2371		return -EINVAL;
2372	}
2373	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2374	*pprog = prog;
2375	return 0;
2376}
2377
2378static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2379		      struct bpf_tramp_links *tl, int stack_size,
2380		      int run_ctx_off, bool save_ret,
2381		      void *image, void *rw_image)
2382{
2383	int i;
2384	u8 *prog = *pprog;
2385
2386	for (i = 0; i < tl->nr_links; i++) {
2387		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2388				    run_ctx_off, save_ret, image, rw_image))
2389			return -EINVAL;
2390	}
2391	*pprog = prog;
2392	return 0;
2393}
2394
2395static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2396			      struct bpf_tramp_links *tl, int stack_size,
2397			      int run_ctx_off, u8 **branches,
2398			      void *image, void *rw_image)
2399{
2400	u8 *prog = *pprog;
2401	int i;
2402
2403	/* The first fmod_ret program will receive a garbage return value.
2404	 * Set this to 0 to avoid confusing the program.
2405	 */
2406	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2407	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2408	for (i = 0; i < tl->nr_links; i++) {
2409		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true,
2410				    image, rw_image))
2411			return -EINVAL;
2412
2413		/* mod_ret prog stored return value into [rbp - 8]. Emit:
2414		 * if (*(u64 *)(rbp - 8) !=  0)
2415		 *	goto do_fexit;
2416		 */
2417		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
2418		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2419
2420		/* Save the location of the branch and Generate 6 nops
2421		 * (4 bytes for an offset and 2 bytes for the jump) These nops
2422		 * are replaced with a conditional jump once do_fexit (i.e. the
2423		 * start of the fexit invocation) is finalized.
2424		 */
2425		branches[i] = prog;
2426		emit_nops(&prog, 4 + 2);
2427	}
2428
2429	*pprog = prog;
2430	return 0;
2431}
2432
2433/* Example:
2434 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2435 * its 'struct btf_func_model' will be nr_args=2
2436 * The assembly code when eth_type_trans is executing after trampoline:
2437 *
2438 * push rbp
2439 * mov rbp, rsp
2440 * sub rsp, 16                     // space for skb and dev
2441 * push rbx                        // temp regs to pass start time
2442 * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
2443 * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
2444 * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2445 * mov rbx, rax                    // remember start time in bpf stats are enabled
2446 * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
2447 * call addr_of_jited_FENTRY_prog
2448 * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2449 * mov rsi, rbx                    // prog start time
2450 * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2451 * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
2452 * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
2453 * pop rbx
2454 * leave
2455 * ret
2456 *
2457 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2458 * replaced with 'call generated_bpf_trampoline'. When it returns
2459 * eth_type_trans will continue executing with original skb and dev pointers.
2460 *
2461 * The assembly code when eth_type_trans is called from trampoline:
2462 *
2463 * push rbp
2464 * mov rbp, rsp
2465 * sub rsp, 24                     // space for skb, dev, return value
2466 * push rbx                        // temp regs to pass start time
2467 * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
2468 * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
2469 * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2470 * mov rbx, rax                    // remember start time if bpf stats are enabled
2471 * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2472 * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
2473 * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2474 * mov rsi, rbx                    // prog start time
2475 * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2476 * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
2477 * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
2478 * call eth_type_trans+5           // execute body of eth_type_trans
2479 * mov qword ptr [rbp - 8], rax    // save return value
2480 * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2481 * mov rbx, rax                    // remember start time in bpf stats are enabled
2482 * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2483 * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
2484 * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2485 * mov rsi, rbx                    // prog start time
2486 * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2487 * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
2488 * pop rbx
2489 * leave
2490 * add rsp, 8                      // skip eth_type_trans's frame
2491 * ret                             // return to its caller
2492 */
2493static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image,
2494					 void *rw_image_end, void *image,
2495					 const struct btf_func_model *m, u32 flags,
2496					 struct bpf_tramp_links *tlinks,
2497					 void *func_addr)
2498{
2499	int i, ret, nr_regs = m->nr_args, stack_size = 0;
2500	int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
2501	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2502	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2503	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2504	void *orig_call = func_addr;
2505	u8 **branches = NULL;
2506	u8 *prog;
2507	bool save_ret;
2508
2509	/*
2510	 * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is
2511	 * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG
2512	 * because @func_addr.
2513	 */
2514	WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) &&
2515		     (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET)));
2516
2517	/* extra registers for struct arguments */
2518	for (i = 0; i < m->nr_args; i++) {
2519		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2520			nr_regs += (m->arg_size[i] + 7) / 8 - 1;
2521	}
2522
2523	/* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
2524	 * are passed through regs, the remains are through stack.
2525	 */
2526	if (nr_regs > MAX_BPF_FUNC_ARGS)
2527		return -ENOTSUPP;
 
2528
2529	/* Generated trampoline stack layout:
2530	 *
2531	 * RBP + 8         [ return address  ]
2532	 * RBP + 0         [ RBP             ]
2533	 *
2534	 * RBP - 8         [ return value    ]  BPF_TRAMP_F_CALL_ORIG or
2535	 *                                      BPF_TRAMP_F_RET_FENTRY_RET flags
2536	 *
2537	 *                 [ reg_argN        ]  always
2538	 *                 [ ...             ]
2539	 * RBP - regs_off  [ reg_arg1        ]  program's ctx pointer
2540	 *
2541	 * RBP - nregs_off [ regs count	     ]  always
2542	 *
2543	 * RBP - ip_off    [ traced function ]  BPF_TRAMP_F_IP_ARG flag
2544	 *
2545	 * RBP - rbx_off   [ rbx value       ]  always
2546	 *
2547	 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2548	 *
2549	 *                     [ stack_argN ]  BPF_TRAMP_F_CALL_ORIG
2550	 *                     [ ...        ]
2551	 *                     [ stack_arg2 ]
2552	 * RBP - arg_stack_off [ stack_arg1 ]
2553	 * RSP                 [ tail_call_cnt ] BPF_TRAMP_F_TAIL_CALL_CTX
2554	 */
2555
2556	/* room for return value of orig_call or fentry prog */
2557	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2558	if (save_ret)
2559		stack_size += 8;
2560
2561	stack_size += nr_regs * 8;
2562	regs_off = stack_size;
2563
2564	/* regs count  */
2565	stack_size += 8;
2566	nregs_off = stack_size;
2567
2568	if (flags & BPF_TRAMP_F_IP_ARG)
2569		stack_size += 8; /* room for IP address argument */
2570
2571	ip_off = stack_size;
2572
2573	stack_size += 8;
2574	rbx_off = stack_size;
2575
2576	stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2577	run_ctx_off = stack_size;
2578
2579	if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
2580		/* the space that used to pass arguments on-stack */
2581		stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
2582		/* make sure the stack pointer is 16-byte aligned if we
2583		 * need pass arguments on stack, which means
2584		 *  [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
2585		 * should be 16-byte aligned. Following code depend on
2586		 * that stack_size is already 8-byte aligned.
2587		 */
2588		stack_size += (stack_size % 16) ? 0 : 8;
2589	}
2590
2591	arg_stack_off = stack_size;
2592
2593	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2594		/* skip patched call instruction and point orig_call to actual
2595		 * body of the kernel function.
2596		 */
2597		if (is_endbr(*(u32 *)orig_call))
2598			orig_call += ENDBR_INSN_SIZE;
2599		orig_call += X86_PATCH_SIZE;
2600	}
2601
2602	prog = rw_image;
2603
2604	if (flags & BPF_TRAMP_F_INDIRECT) {
2605		/*
2606		 * Indirect call for bpf_struct_ops
2607		 */
2608		emit_cfi(&prog, cfi_get_func_hash(func_addr));
2609	} else {
2610		/*
2611		 * Direct-call fentry stub, as such it needs accounting for the
2612		 * __fentry__ call.
2613		 */
2614		x86_call_depth_emit_accounting(&prog, NULL);
2615	}
2616	EMIT1(0x55);		 /* push rbp */
2617	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2618	if (!is_imm8(stack_size)) {
2619		/* sub rsp, stack_size */
2620		EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
2621	} else {
2622		/* sub rsp, stack_size */
2623		EMIT4(0x48, 0x83, 0xEC, stack_size);
2624	}
2625	if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
2626		EMIT1(0x50);		/* push rax */
2627	/* mov QWORD PTR [rbp - rbx_off], rbx */
2628	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
2629
2630	/* Store number of argument registers of the traced function:
2631	 *   mov rax, nr_regs
2632	 *   mov QWORD PTR [rbp - nregs_off], rax
2633	 */
2634	emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
2635	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
2636
2637	if (flags & BPF_TRAMP_F_IP_ARG) {
2638		/* Store IP address of the traced function:
2639		 * movabsq rax, func_addr
2640		 * mov QWORD PTR [rbp - ip_off], rax
2641		 */
2642		emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
2643		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
2644	}
2645
2646	save_args(m, &prog, regs_off, false);
2647
2648	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2649		/* arg1: mov rdi, im */
2650		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2651		if (emit_rsb_call(&prog, __bpf_tramp_enter,
2652				  image + (prog - (u8 *)rw_image))) {
2653			ret = -EINVAL;
2654			goto cleanup;
2655		}
2656	}
2657
2658	if (fentry->nr_links) {
2659		if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
2660			       flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image))
2661			return -EINVAL;
2662	}
2663
2664	if (fmod_ret->nr_links) {
2665		branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
2666				   GFP_KERNEL);
2667		if (!branches)
2668			return -ENOMEM;
2669
2670		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
2671				       run_ctx_off, branches, image, rw_image)) {
2672			ret = -EINVAL;
2673			goto cleanup;
2674		}
2675	}
2676
2677	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2678		restore_regs(m, &prog, regs_off);
2679		save_args(m, &prog, arg_stack_off, true);
2680
2681		if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
2682			/* Before calling the original function, restore the
2683			 * tail_call_cnt from stack to rax.
2684			 */
2685			RESTORE_TAIL_CALL_CNT(stack_size);
2686		}
2687
2688		if (flags & BPF_TRAMP_F_ORIG_STACK) {
2689			emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
2690			EMIT2(0xff, 0xd3); /* call *rbx */
2691		} else {
2692			/* call original function */
2693			if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) {
2694				ret = -EINVAL;
2695				goto cleanup;
2696			}
2697		}
2698		/* remember return value in a stack for bpf prog to access */
2699		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2700		im->ip_after_call = image + (prog - (u8 *)rw_image);
2701		emit_nops(&prog, X86_PATCH_SIZE);
 
2702	}
2703
2704	if (fmod_ret->nr_links) {
2705		/* From Intel 64 and IA-32 Architectures Optimization
2706		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2707		 * Coding Rule 11: All branch targets should be 16-byte
2708		 * aligned.
2709		 */
2710		emit_align(&prog, 16);
2711		/* Update the branches saved in invoke_bpf_mod_ret with the
2712		 * aligned address of do_fexit.
2713		 */
2714		for (i = 0; i < fmod_ret->nr_links; i++) {
2715			emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image),
2716					    image + (branches[i] - (u8 *)rw_image), X86_JNE);
2717		}
2718	}
2719
2720	if (fexit->nr_links) {
2721		if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off,
2722			       false, image, rw_image)) {
2723			ret = -EINVAL;
2724			goto cleanup;
2725		}
2726	}
2727
2728	if (flags & BPF_TRAMP_F_RESTORE_REGS)
2729		restore_regs(m, &prog, regs_off);
2730
2731	/* This needs to be done regardless. If there were fmod_ret programs,
2732	 * the return value is only updated on the stack and still needs to be
2733	 * restored to R0.
2734	 */
2735	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2736		im->ip_epilogue = image + (prog - (u8 *)rw_image);
2737		/* arg1: mov rdi, im */
2738		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2739		if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) {
2740			ret = -EINVAL;
2741			goto cleanup;
2742		}
2743	} else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
2744		/* Before running the original function, restore the
2745		 * tail_call_cnt from stack to rax.
2746		 */
2747		RESTORE_TAIL_CALL_CNT(stack_size);
2748	}
2749
2750	/* restore return value of orig_call or fentry prog back into RAX */
2751	if (save_ret)
2752		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2753
2754	emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
2755	EMIT1(0xC9); /* leave */
2756	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2757		/* skip our return address and return to parent */
2758		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2759	}
2760	emit_return(&prog, image + (prog - (u8 *)rw_image));
2761	/* Make sure the trampoline generation logic doesn't overflow */
2762	if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) {
2763		ret = -EFAULT;
2764		goto cleanup;
2765	}
2766	ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY;
2767
2768cleanup:
2769	kfree(branches);
2770	return ret;
2771}
2772
2773void *arch_alloc_bpf_trampoline(unsigned int size)
2774{
2775	return bpf_prog_pack_alloc(size, jit_fill_hole);
2776}
2777
2778void arch_free_bpf_trampoline(void *image, unsigned int size)
2779{
2780	bpf_prog_pack_free(image, size);
2781}
2782
2783void arch_protect_bpf_trampoline(void *image, unsigned int size)
2784{
2785}
2786
2787void arch_unprotect_bpf_trampoline(void *image, unsigned int size)
2788{
2789}
2790
2791int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
2792				const struct btf_func_model *m, u32 flags,
2793				struct bpf_tramp_links *tlinks,
2794				void *func_addr)
2795{
2796	void *rw_image, *tmp;
2797	int ret;
2798	u32 size = image_end - image;
2799
2800	/* rw_image doesn't need to be in module memory range, so we can
2801	 * use kvmalloc.
2802	 */
2803	rw_image = kvmalloc(size, GFP_KERNEL);
2804	if (!rw_image)
2805		return -ENOMEM;
2806
2807	ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m,
2808					    flags, tlinks, func_addr);
2809	if (ret < 0)
2810		goto out;
2811
2812	tmp = bpf_arch_text_copy(image, rw_image, size);
2813	if (IS_ERR(tmp))
2814		ret = PTR_ERR(tmp);
2815out:
2816	kvfree(rw_image);
2817	return ret;
2818}
2819
2820int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2821			     struct bpf_tramp_links *tlinks, void *func_addr)
2822{
2823	struct bpf_tramp_image im;
2824	void *image;
2825	int ret;
2826
2827	/* Allocate a temporary buffer for __arch_prepare_bpf_trampoline().
2828	 * This will NOT cause fragmentation in direct map, as we do not
2829	 * call set_memory_*() on this buffer.
2830	 *
2831	 * We cannot use kvmalloc here, because we need image to be in
2832	 * module memory range.
2833	 */
2834	image = bpf_jit_alloc_exec(PAGE_SIZE);
2835	if (!image)
2836		return -ENOMEM;
2837
2838	ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image,
2839					    m, flags, tlinks, func_addr);
2840	bpf_jit_free_exec(image);
2841	return ret;
2842}
2843
2844static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
2845{
2846	u8 *jg_reloc, *prog = *pprog;
2847	int pivot, err, jg_bytes = 1;
2848	s64 jg_offset;
2849
2850	if (a == b) {
2851		/* Leaf node of recursion, i.e. not a range of indices
2852		 * anymore.
2853		 */
2854		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
2855		if (!is_simm32(progs[a]))
2856			return -1;
2857		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2858			    progs[a]);
2859		err = emit_cond_near_jump(&prog,	/* je func */
2860					  (void *)progs[a], image + (prog - buf),
2861					  X86_JE);
2862		if (err)
2863			return err;
2864
2865		emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
2866
2867		*pprog = prog;
2868		return 0;
2869	}
2870
2871	/* Not a leaf node, so we pivot, and recursively descend into
2872	 * the lower and upper ranges.
2873	 */
2874	pivot = (b - a) / 2;
2875	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
2876	if (!is_simm32(progs[a + pivot]))
2877		return -1;
2878	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2879
2880	if (pivot > 2) {				/* jg upper_part */
2881		/* Require near jump. */
2882		jg_bytes = 4;
2883		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2884	} else {
2885		EMIT2(X86_JG, 0);
2886	}
2887	jg_reloc = prog;
2888
2889	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
2890				  progs, image, buf);
2891	if (err)
2892		return err;
2893
2894	/* From Intel 64 and IA-32 Architectures Optimization
2895	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2896	 * Coding Rule 11: All branch targets should be 16-byte
2897	 * aligned.
2898	 */
2899	emit_align(&prog, 16);
2900	jg_offset = prog - jg_reloc;
2901	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2902
2903	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
2904				  b, progs, image, buf);
2905	if (err)
2906		return err;
2907
2908	*pprog = prog;
2909	return 0;
2910}
2911
2912static int cmp_ips(const void *a, const void *b)
2913{
2914	const s64 *ipa = a;
2915	const s64 *ipb = b;
2916
2917	if (*ipa > *ipb)
2918		return 1;
2919	if (*ipa < *ipb)
2920		return -1;
2921	return 0;
2922}
2923
2924int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
2925{
2926	u8 *prog = buf;
2927
2928	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2929	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
2930}
2931
2932struct x64_jit_data {
2933	struct bpf_binary_header *rw_header;
2934	struct bpf_binary_header *header;
2935	int *addrs;
2936	u8 *image;
2937	int proglen;
2938	struct jit_context ctx;
2939};
2940
2941#define MAX_PASSES 20
2942#define PADDING_PASSES (MAX_PASSES - 5)
2943
2944struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2945{
2946	struct bpf_binary_header *rw_header = NULL;
2947	struct bpf_binary_header *header = NULL;
2948	struct bpf_prog *tmp, *orig_prog = prog;
2949	struct x64_jit_data *jit_data;
2950	int proglen, oldproglen = 0;
2951	struct jit_context ctx = {};
2952	bool tmp_blinded = false;
2953	bool extra_pass = false;
2954	bool padding = false;
2955	u8 *rw_image = NULL;
2956	u8 *image = NULL;
2957	int *addrs;
2958	int pass;
2959	int i;
2960
2961	if (!prog->jit_requested)
2962		return orig_prog;
2963
2964	tmp = bpf_jit_blind_constants(prog);
2965	/*
2966	 * If blinding was requested and we failed during blinding,
2967	 * we must fall back to the interpreter.
2968	 */
2969	if (IS_ERR(tmp))
2970		return orig_prog;
2971	if (tmp != prog) {
2972		tmp_blinded = true;
2973		prog = tmp;
2974	}
2975
2976	jit_data = prog->aux->jit_data;
2977	if (!jit_data) {
2978		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2979		if (!jit_data) {
2980			prog = orig_prog;
2981			goto out;
2982		}
2983		prog->aux->jit_data = jit_data;
2984	}
2985	addrs = jit_data->addrs;
2986	if (addrs) {
2987		ctx = jit_data->ctx;
2988		oldproglen = jit_data->proglen;
2989		image = jit_data->image;
2990		header = jit_data->header;
2991		rw_header = jit_data->rw_header;
2992		rw_image = (void *)rw_header + ((void *)image - (void *)header);
2993		extra_pass = true;
2994		padding = true;
2995		goto skip_init_addrs;
2996	}
2997	addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2998	if (!addrs) {
2999		prog = orig_prog;
3000		goto out_addrs;
3001	}
3002
3003	/*
3004	 * Before first pass, make a rough estimation of addrs[]
3005	 * each BPF instruction is translated to less than 64 bytes
3006	 */
3007	for (proglen = 0, i = 0; i <= prog->len; i++) {
3008		proglen += 64;
3009		addrs[i] = proglen;
3010	}
3011	ctx.cleanup_addr = proglen;
3012skip_init_addrs:
3013
3014	/*
3015	 * JITed image shrinks with every pass and the loop iterates
3016	 * until the image stops shrinking. Very large BPF programs
3017	 * may converge on the last pass. In such case do one more
3018	 * pass to emit the final image.
3019	 */
3020	for (pass = 0; pass < MAX_PASSES || image; pass++) {
3021		if (!padding && pass >= PADDING_PASSES)
3022			padding = true;
3023		proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
3024		if (proglen <= 0) {
3025out_image:
3026			image = NULL;
3027			if (header) {
3028				bpf_arch_text_copy(&header->size, &rw_header->size,
3029						   sizeof(rw_header->size));
3030				bpf_jit_binary_pack_free(header, rw_header);
3031			}
3032			/* Fall back to interpreter mode */
3033			prog = orig_prog;
3034			if (extra_pass) {
3035				prog->bpf_func = NULL;
3036				prog->jited = 0;
3037				prog->jited_len = 0;
3038			}
3039			goto out_addrs;
3040		}
3041		if (image) {
3042			if (proglen != oldproglen) {
3043				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
3044				       proglen, oldproglen);
3045				goto out_image;
3046			}
3047			break;
3048		}
3049		if (proglen == oldproglen) {
3050			/*
3051			 * The number of entries in extable is the number of BPF_LDX
3052			 * insns that access kernel memory via "pointer to BTF type".
3053			 * The verifier changed their opcode from LDX|MEM|size
3054			 * to LDX|PROBE_MEM|size to make JITing easier.
3055			 */
3056			u32 align = __alignof__(struct exception_table_entry);
3057			u32 extable_size = prog->aux->num_exentries *
3058				sizeof(struct exception_table_entry);
3059
3060			/* allocate module memory for x86 insns and extable */
3061			header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
3062							   &image, align, &rw_header, &rw_image,
3063							   jit_fill_hole);
3064			if (!header) {
3065				prog = orig_prog;
3066				goto out_addrs;
3067			}
3068			prog->aux->extable = (void *) image + roundup(proglen, align);
3069		}
3070		oldproglen = proglen;
3071		cond_resched();
3072	}
3073
3074	if (bpf_jit_enable > 1)
3075		bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
3076
3077	if (image) {
3078		if (!prog->is_func || extra_pass) {
3079			/*
3080			 * bpf_jit_binary_pack_finalize fails in two scenarios:
3081			 *   1) header is not pointing to proper module memory;
3082			 *   2) the arch doesn't support bpf_arch_text_copy().
3083			 *
3084			 * Both cases are serious bugs and justify WARN_ON.
3085			 */
3086			if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
3087				/* header has been freed */
3088				header = NULL;
3089				goto out_image;
3090			}
3091
3092			bpf_tail_call_direct_fixup(prog);
3093		} else {
3094			jit_data->addrs = addrs;
3095			jit_data->ctx = ctx;
3096			jit_data->proglen = proglen;
3097			jit_data->image = image;
3098			jit_data->header = header;
3099			jit_data->rw_header = rw_header;
3100		}
3101		/*
3102		 * ctx.prog_offset is used when CFI preambles put code *before*
3103		 * the function. See emit_cfi(). For FineIBT specifically this code
3104		 * can also be executed and bpf_prog_kallsyms_add() will
3105		 * generate an additional symbol to cover this, hence also
3106		 * decrement proglen.
3107		 */
3108		prog->bpf_func = (void *)image + cfi_get_offset();
3109		prog->jited = 1;
3110		prog->jited_len = proglen - cfi_get_offset();
3111	} else {
3112		prog = orig_prog;
3113	}
3114
3115	if (!image || !prog->is_func || extra_pass) {
3116		if (image)
3117			bpf_prog_fill_jited_linfo(prog, addrs + 1);
3118out_addrs:
3119		kvfree(addrs);
3120		kfree(jit_data);
3121		prog->aux->jit_data = NULL;
3122	}
3123out:
3124	if (tmp_blinded)
3125		bpf_jit_prog_release_other(prog, prog == orig_prog ?
3126					   tmp : orig_prog);
3127	return prog;
3128}
3129
3130bool bpf_jit_supports_kfunc_call(void)
3131{
3132	return true;
3133}
3134
3135void *bpf_arch_text_copy(void *dst, void *src, size_t len)
3136{
3137	if (text_poke_copy(dst, src, len) == NULL)
3138		return ERR_PTR(-EINVAL);
3139	return dst;
3140}
3141
3142/* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
3143bool bpf_jit_supports_subprog_tailcalls(void)
3144{
3145	return true;
3146}
3147
3148void bpf_jit_free(struct bpf_prog *prog)
3149{
3150	if (prog->jited) {
3151		struct x64_jit_data *jit_data = prog->aux->jit_data;
3152		struct bpf_binary_header *hdr;
3153
3154		/*
3155		 * If we fail the final pass of JIT (from jit_subprogs),
3156		 * the program may not be finalized yet. Call finalize here
3157		 * before freeing it.
3158		 */
3159		if (jit_data) {
3160			bpf_jit_binary_pack_finalize(prog, jit_data->header,
3161						     jit_data->rw_header);
3162			kvfree(jit_data->addrs);
3163			kfree(jit_data);
3164		}
3165		prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset();
3166		hdr = bpf_jit_binary_pack_hdr(prog);
3167		bpf_jit_binary_pack_free(hdr, NULL);
3168		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
3169	}
3170
3171	bpf_prog_unlock_free(prog);
3172}
3173
3174bool bpf_jit_supports_exceptions(void)
3175{
3176	/* We unwind through both kernel frames (starting from within bpf_throw
3177	 * call) and BPF frames. Therefore we require ORC unwinder to be enabled
3178	 * to walk kernel frames and reach BPF frames in the stack trace.
3179	 */
3180	return IS_ENABLED(CONFIG_UNWINDER_ORC);
3181}
3182
3183void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3184{
3185#if defined(CONFIG_UNWINDER_ORC)
3186	struct unwind_state state;
3187	unsigned long addr;
3188
3189	for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state);
3190	     unwind_next_frame(&state)) {
3191		addr = unwind_get_return_address(&state);
3192		if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp))
3193			break;
3194	}
3195	return;
3196#endif
3197	WARN(1, "verification of programs using bpf_throw should have failed\n");
3198}
3199
3200void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3201			       struct bpf_prog *new, struct bpf_prog *old)
3202{
3203	u8 *old_addr, *new_addr, *old_bypass_addr;
3204	int ret;
3205
3206	old_bypass_addr = old ? NULL : poke->bypass_addr;
3207	old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
3208	new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
3209
3210	/*
3211	 * On program loading or teardown, the program's kallsym entry
3212	 * might not be in place, so we use __bpf_arch_text_poke to skip
3213	 * the kallsyms check.
3214	 */
3215	if (new) {
3216		ret = __bpf_arch_text_poke(poke->tailcall_target,
3217					   BPF_MOD_JUMP,
3218					   old_addr, new_addr);
3219		BUG_ON(ret < 0);
3220		if (!old) {
3221			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3222						   BPF_MOD_JUMP,
3223						   poke->bypass_addr,
3224						   NULL);
3225			BUG_ON(ret < 0);
3226		}
3227	} else {
3228		ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3229					   BPF_MOD_JUMP,
3230					   old_bypass_addr,
3231					   poke->bypass_addr);
3232		BUG_ON(ret < 0);
3233		/* let other CPUs finish the execution of program
3234		 * so that it will not possible to expose them
3235		 * to invalid nop, stack unwind, nop state
3236		 */
3237		if (!ret)
3238			synchronize_rcu();
3239		ret = __bpf_arch_text_poke(poke->tailcall_target,
3240					   BPF_MOD_JUMP,
3241					   old_addr, NULL);
3242		BUG_ON(ret < 0);
3243	}
3244}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * BPF JIT compiler
   4 *
   5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
   6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   7 */
   8#include <linux/netdevice.h>
   9#include <linux/filter.h>
  10#include <linux/if_vlan.h>
  11#include <linux/bpf.h>
  12#include <linux/memory.h>
  13#include <linux/sort.h>
  14#include <asm/extable.h>
  15#include <asm/ftrace.h>
  16#include <asm/set_memory.h>
  17#include <asm/nospec-branch.h>
  18#include <asm/text-patching.h>
 
 
 
 
  19
  20static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
  21{
  22	if (len == 1)
  23		*ptr = bytes;
  24	else if (len == 2)
  25		*(u16 *)ptr = bytes;
  26	else {
  27		*(u32 *)ptr = bytes;
  28		barrier();
  29	}
  30	return ptr + len;
  31}
  32
  33#define EMIT(bytes, len) \
  34	do { prog = emit_code(prog, bytes, len); } while (0)
  35
  36#define EMIT1(b1)		EMIT(b1, 1)
  37#define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
  38#define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
  39#define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
  40
  41#define EMIT1_off32(b1, off) \
  42	do { EMIT1(b1); EMIT(off, 4); } while (0)
  43#define EMIT2_off32(b1, b2, off) \
  44	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
  45#define EMIT3_off32(b1, b2, b3, off) \
  46	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
  47#define EMIT4_off32(b1, b2, b3, b4, off) \
  48	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
  49
  50#ifdef CONFIG_X86_KERNEL_IBT
  51#define EMIT_ENDBR()	EMIT(gen_endbr(), 4)
 
  52#else
  53#define EMIT_ENDBR()
 
  54#endif
  55
  56static bool is_imm8(int value)
  57{
  58	return value <= 127 && value >= -128;
  59}
  60
  61static bool is_simm32(s64 value)
  62{
  63	return value == (s64)(s32)value;
  64}
  65
  66static bool is_uimm32(u64 value)
  67{
  68	return value == (u64)(u32)value;
  69}
  70
  71/* mov dst, src */
  72#define EMIT_mov(DST, SRC)								 \
  73	do {										 \
  74		if (DST != SRC)								 \
  75			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
  76	} while (0)
  77
  78static int bpf_size_to_x86_bytes(int bpf_size)
  79{
  80	if (bpf_size == BPF_W)
  81		return 4;
  82	else if (bpf_size == BPF_H)
  83		return 2;
  84	else if (bpf_size == BPF_B)
  85		return 1;
  86	else if (bpf_size == BPF_DW)
  87		return 4; /* imm32 */
  88	else
  89		return 0;
  90}
  91
  92/*
  93 * List of x86 cond jumps opcodes (. + s8)
  94 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
  95 */
  96#define X86_JB  0x72
  97#define X86_JAE 0x73
  98#define X86_JE  0x74
  99#define X86_JNE 0x75
 100#define X86_JBE 0x76
 101#define X86_JA  0x77
 102#define X86_JL  0x7C
 103#define X86_JGE 0x7D
 104#define X86_JLE 0x7E
 105#define X86_JG  0x7F
 106
 107/* Pick a register outside of BPF range for JIT internal work */
 108#define AUX_REG (MAX_BPF_JIT_REG + 1)
 109#define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
 110
 111/*
 112 * The following table maps BPF registers to x86-64 registers.
 113 *
 114 * x86-64 register R12 is unused, since if used as base address
 115 * register in load/store instructions, it always needs an
 116 * extra byte of encoding and is callee saved.
 117 *
 118 * x86-64 register R9 is not used by BPF programs, but can be used by BPF
 119 * trampoline. x86-64 register R10 is used for blinding (if enabled).
 120 */
 121static const int reg2hex[] = {
 122	[BPF_REG_0] = 0,  /* RAX */
 123	[BPF_REG_1] = 7,  /* RDI */
 124	[BPF_REG_2] = 6,  /* RSI */
 125	[BPF_REG_3] = 2,  /* RDX */
 126	[BPF_REG_4] = 1,  /* RCX */
 127	[BPF_REG_5] = 0,  /* R8  */
 128	[BPF_REG_6] = 3,  /* RBX callee saved */
 129	[BPF_REG_7] = 5,  /* R13 callee saved */
 130	[BPF_REG_8] = 6,  /* R14 callee saved */
 131	[BPF_REG_9] = 7,  /* R15 callee saved */
 132	[BPF_REG_FP] = 5, /* RBP readonly */
 133	[BPF_REG_AX] = 2, /* R10 temp register */
 134	[AUX_REG] = 3,    /* R11 temp register */
 135	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
 136};
 137
 138static const int reg2pt_regs[] = {
 139	[BPF_REG_0] = offsetof(struct pt_regs, ax),
 140	[BPF_REG_1] = offsetof(struct pt_regs, di),
 141	[BPF_REG_2] = offsetof(struct pt_regs, si),
 142	[BPF_REG_3] = offsetof(struct pt_regs, dx),
 143	[BPF_REG_4] = offsetof(struct pt_regs, cx),
 144	[BPF_REG_5] = offsetof(struct pt_regs, r8),
 145	[BPF_REG_6] = offsetof(struct pt_regs, bx),
 146	[BPF_REG_7] = offsetof(struct pt_regs, r13),
 147	[BPF_REG_8] = offsetof(struct pt_regs, r14),
 148	[BPF_REG_9] = offsetof(struct pt_regs, r15),
 149};
 150
 151/*
 152 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
 153 * which need extra byte of encoding.
 154 * rax,rcx,...,rbp have simpler encoding
 155 */
 156static bool is_ereg(u32 reg)
 157{
 158	return (1 << reg) & (BIT(BPF_REG_5) |
 159			     BIT(AUX_REG) |
 160			     BIT(BPF_REG_7) |
 161			     BIT(BPF_REG_8) |
 162			     BIT(BPF_REG_9) |
 163			     BIT(X86_REG_R9) |
 164			     BIT(BPF_REG_AX));
 165}
 166
 167/*
 168 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
 169 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
 170 * of encoding. al,cl,dl,bl have simpler encoding.
 171 */
 172static bool is_ereg_8l(u32 reg)
 173{
 174	return is_ereg(reg) ||
 175	    (1 << reg) & (BIT(BPF_REG_1) |
 176			  BIT(BPF_REG_2) |
 177			  BIT(BPF_REG_FP));
 178}
 179
 180static bool is_axreg(u32 reg)
 181{
 182	return reg == BPF_REG_0;
 183}
 184
 185/* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
 186static u8 add_1mod(u8 byte, u32 reg)
 187{
 188	if (is_ereg(reg))
 189		byte |= 1;
 190	return byte;
 191}
 192
 193static u8 add_2mod(u8 byte, u32 r1, u32 r2)
 194{
 195	if (is_ereg(r1))
 196		byte |= 1;
 197	if (is_ereg(r2))
 198		byte |= 4;
 199	return byte;
 200}
 201
 202/* Encode 'dst_reg' register into x86-64 opcode 'byte' */
 203static u8 add_1reg(u8 byte, u32 dst_reg)
 204{
 205	return byte + reg2hex[dst_reg];
 206}
 207
 208/* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
 209static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
 210{
 211	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
 212}
 213
 214/* Some 1-byte opcodes for binary ALU operations */
 215static u8 simple_alu_opcodes[] = {
 216	[BPF_ADD] = 0x01,
 217	[BPF_SUB] = 0x29,
 218	[BPF_AND] = 0x21,
 219	[BPF_OR] = 0x09,
 220	[BPF_XOR] = 0x31,
 221	[BPF_LSH] = 0xE0,
 222	[BPF_RSH] = 0xE8,
 223	[BPF_ARSH] = 0xF8,
 224};
 225
 226static void jit_fill_hole(void *area, unsigned int size)
 227{
 228	/* Fill whole space with INT3 instructions */
 229	memset(area, 0xcc, size);
 230}
 231
 232int bpf_arch_text_invalidate(void *dst, size_t len)
 233{
 234	return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
 235}
 236
 237struct jit_context {
 238	int cleanup_addr; /* Epilogue code offset */
 239
 240	/*
 241	 * Program specific offsets of labels in the code; these rely on the
 242	 * JIT doing at least 2 passes, recording the position on the first
 243	 * pass, only to generate the correct offset on the second pass.
 244	 */
 245	int tail_call_direct_label;
 246	int tail_call_indirect_label;
 247};
 248
 249/* Maximum number of bytes emitted while JITing one eBPF insn */
 250#define BPF_MAX_INSN_SIZE	128
 251#define BPF_INSN_SAFETY		64
 252
 253/* Number of bytes emit_patch() needs to generate instructions */
 254#define X86_PATCH_SIZE		5
 255/* Number of bytes that will be skipped on tailcall */
 256#define X86_TAIL_CALL_OFFSET	(11 + ENDBR_INSN_SIZE)
 257
 
 
 
 
 
 
 
 
 258static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
 259{
 260	u8 *prog = *pprog;
 261
 262	if (callee_regs_used[0])
 263		EMIT1(0x53);         /* push rbx */
 264	if (callee_regs_used[1])
 265		EMIT2(0x41, 0x55);   /* push r13 */
 266	if (callee_regs_used[2])
 267		EMIT2(0x41, 0x56);   /* push r14 */
 268	if (callee_regs_used[3])
 269		EMIT2(0x41, 0x57);   /* push r15 */
 270	*pprog = prog;
 271}
 272
 
 
 
 
 
 
 
 
 273static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
 274{
 275	u8 *prog = *pprog;
 276
 277	if (callee_regs_used[3])
 278		EMIT2(0x41, 0x5F);   /* pop r15 */
 279	if (callee_regs_used[2])
 280		EMIT2(0x41, 0x5E);   /* pop r14 */
 281	if (callee_regs_used[1])
 282		EMIT2(0x41, 0x5D);   /* pop r13 */
 283	if (callee_regs_used[0])
 284		EMIT1(0x5B);         /* pop rbx */
 285	*pprog = prog;
 286}
 287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 288/*
 289 * Emit x86-64 prologue code for BPF program.
 290 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
 291 * while jumping to another program
 292 */
 293static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
 294			  bool tail_call_reachable, bool is_subprog)
 
 295{
 296	u8 *prog = *pprog;
 297
 
 298	/* BPF trampoline can be made to work without these nops,
 299	 * but let's waste 5 bytes for now and optimize later
 300	 */
 301	EMIT_ENDBR();
 302	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
 303	prog += X86_PATCH_SIZE;
 304	if (!ebpf_from_cbpf) {
 305		if (tail_call_reachable && !is_subprog)
 
 
 
 306			EMIT2(0x31, 0xC0); /* xor eax, eax */
 307		else
 
 308			EMIT2(0x66, 0x90); /* nop2 */
 309	}
 310	EMIT1(0x55);             /* push rbp */
 311	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 312
 313	/* X86_TAIL_CALL_OFFSET is here */
 314	EMIT_ENDBR();
 315
 316	/* sub rsp, rounded_stack_depth */
 317	if (stack_depth)
 318		EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
 319	if (tail_call_reachable)
 320		EMIT1(0x50);         /* push rax */
 321	*pprog = prog;
 322}
 323
 324static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
 325{
 326	u8 *prog = *pprog;
 327	s64 offset;
 328
 329	offset = func - (ip + X86_PATCH_SIZE);
 330	if (!is_simm32(offset)) {
 331		pr_err("Target call %p is out of range\n", func);
 332		return -ERANGE;
 333	}
 334	EMIT1_off32(opcode, offset);
 335	*pprog = prog;
 336	return 0;
 337}
 338
 339static int emit_call(u8 **pprog, void *func, void *ip)
 340{
 341	return emit_patch(pprog, func, ip, 0xE8);
 342}
 343
 344static int emit_rsb_call(u8 **pprog, void *func, void *ip)
 345{
 346	OPTIMIZER_HIDE_VAR(func);
 347	x86_call_depth_emit_accounting(pprog, func);
 348	return emit_patch(pprog, func, ip, 0xE8);
 349}
 350
 351static int emit_jump(u8 **pprog, void *func, void *ip)
 352{
 353	return emit_patch(pprog, func, ip, 0xE9);
 354}
 355
 356static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
 357				void *old_addr, void *new_addr)
 358{
 359	const u8 *nop_insn = x86_nops[5];
 360	u8 old_insn[X86_PATCH_SIZE];
 361	u8 new_insn[X86_PATCH_SIZE];
 362	u8 *prog;
 363	int ret;
 364
 365	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
 366	if (old_addr) {
 367		prog = old_insn;
 368		ret = t == BPF_MOD_CALL ?
 369		      emit_call(&prog, old_addr, ip) :
 370		      emit_jump(&prog, old_addr, ip);
 371		if (ret)
 372			return ret;
 373	}
 374
 375	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
 376	if (new_addr) {
 377		prog = new_insn;
 378		ret = t == BPF_MOD_CALL ?
 379		      emit_call(&prog, new_addr, ip) :
 380		      emit_jump(&prog, new_addr, ip);
 381		if (ret)
 382			return ret;
 383	}
 384
 385	ret = -EBUSY;
 386	mutex_lock(&text_mutex);
 387	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
 388		goto out;
 389	ret = 1;
 390	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
 391		text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
 392		ret = 0;
 393	}
 394out:
 395	mutex_unlock(&text_mutex);
 396	return ret;
 397}
 398
 399int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
 400		       void *old_addr, void *new_addr)
 401{
 402	if (!is_kernel_text((long)ip) &&
 403	    !is_bpf_text_address((long)ip))
 404		/* BPF poking in modules is not supported */
 405		return -EINVAL;
 406
 407	/*
 408	 * See emit_prologue(), for IBT builds the trampoline hook is preceded
 409	 * with an ENDBR instruction.
 410	 */
 411	if (is_endbr(*(u32 *)ip))
 412		ip += ENDBR_INSN_SIZE;
 413
 414	return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
 415}
 416
 417#define EMIT_LFENCE()	EMIT3(0x0F, 0xAE, 0xE8)
 418
 419static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
 420{
 421	u8 *prog = *pprog;
 422
 423	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
 424		EMIT_LFENCE();
 425		EMIT2(0xFF, 0xE0 + reg);
 426	} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
 427		OPTIMIZER_HIDE_VAR(reg);
 428		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
 429			emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
 430		else
 431			emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
 432	} else {
 433		EMIT2(0xFF, 0xE0 + reg);	/* jmp *%\reg */
 434		if (IS_ENABLED(CONFIG_RETPOLINE) || IS_ENABLED(CONFIG_SLS))
 435			EMIT1(0xCC);		/* int3 */
 436	}
 437
 438	*pprog = prog;
 439}
 440
 441static void emit_return(u8 **pprog, u8 *ip)
 442{
 443	u8 *prog = *pprog;
 444
 445	if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
 446		emit_jump(&prog, x86_return_thunk, ip);
 447	} else {
 448		EMIT1(0xC3);		/* ret */
 449		if (IS_ENABLED(CONFIG_SLS))
 450			EMIT1(0xCC);	/* int3 */
 451	}
 452
 453	*pprog = prog;
 454}
 455
 456/*
 457 * Generate the following code:
 458 *
 459 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
 460 *   if (index >= array->map.max_entries)
 461 *     goto out;
 462 *   if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
 463 *     goto out;
 464 *   prog = array->ptrs[index];
 465 *   if (prog == NULL)
 466 *     goto out;
 467 *   goto *(prog->bpf_func + prologue_size);
 468 * out:
 469 */
 470static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
 
 471					u32 stack_depth, u8 *ip,
 472					struct jit_context *ctx)
 473{
 474	int tcc_off = -4 - round_up(stack_depth, 8);
 475	u8 *prog = *pprog, *start = *pprog;
 476	int offset;
 477
 478	/*
 479	 * rdi - pointer to ctx
 480	 * rsi - pointer to bpf_array
 481	 * rdx - index in bpf_array
 482	 */
 483
 484	/*
 485	 * if (index >= array->map.max_entries)
 486	 *	goto out;
 487	 */
 488	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
 489	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
 490	      offsetof(struct bpf_array, map.max_entries));
 491
 492	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
 493	EMIT2(X86_JBE, offset);                   /* jbe out */
 494
 495	/*
 496	 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
 497	 *	goto out;
 498	 */
 499	EMIT2_off32(0x8B, 0x85, tcc_off);         /* mov eax, dword ptr [rbp - tcc_off] */
 500	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
 501
 502	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
 503	EMIT2(X86_JAE, offset);                   /* jae out */
 504	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
 505	EMIT2_off32(0x89, 0x85, tcc_off);         /* mov dword ptr [rbp - tcc_off], eax */
 506
 507	/* prog = array->ptrs[index]; */
 508	EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
 509		    offsetof(struct bpf_array, ptrs));
 510
 511	/*
 512	 * if (prog == NULL)
 513	 *	goto out;
 514	 */
 515	EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
 516
 517	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
 518	EMIT2(X86_JE, offset);                    /* je out */
 519
 520	pop_callee_regs(&prog, callee_regs_used);
 
 
 
 
 
 521
 522	EMIT1(0x58);                              /* pop rax */
 523	if (stack_depth)
 524		EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
 525			    round_up(stack_depth, 8));
 526
 527	/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
 528	EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
 529	      offsetof(struct bpf_prog, bpf_func));
 530	EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
 531	      X86_TAIL_CALL_OFFSET);
 532	/*
 533	 * Now we're ready to jump into next BPF program
 534	 * rdi == ctx (1st arg)
 535	 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
 536	 */
 537	emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
 538
 539	/* out: */
 540	ctx->tail_call_indirect_label = prog - start;
 541	*pprog = prog;
 542}
 543
 544static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
 
 545				      u8 **pprog, u8 *ip,
 546				      bool *callee_regs_used, u32 stack_depth,
 547				      struct jit_context *ctx)
 548{
 549	int tcc_off = -4 - round_up(stack_depth, 8);
 550	u8 *prog = *pprog, *start = *pprog;
 551	int offset;
 552
 553	/*
 554	 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
 555	 *	goto out;
 556	 */
 557	EMIT2_off32(0x8B, 0x85, tcc_off);             /* mov eax, dword ptr [rbp - tcc_off] */
 558	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
 559
 560	offset = ctx->tail_call_direct_label - (prog + 2 - start);
 561	EMIT2(X86_JAE, offset);                       /* jae out */
 562	EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
 563	EMIT2_off32(0x89, 0x85, tcc_off);             /* mov dword ptr [rbp - tcc_off], eax */
 564
 565	poke->tailcall_bypass = ip + (prog - start);
 566	poke->adj_off = X86_TAIL_CALL_OFFSET;
 567	poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
 568	poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
 569
 570	emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
 571		  poke->tailcall_bypass);
 572
 573	pop_callee_regs(&prog, callee_regs_used);
 
 
 
 
 
 
 574	EMIT1(0x58);                                  /* pop rax */
 575	if (stack_depth)
 576		EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
 577
 578	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
 579	prog += X86_PATCH_SIZE;
 580
 581	/* out: */
 582	ctx->tail_call_direct_label = prog - start;
 583
 584	*pprog = prog;
 585}
 586
 587static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
 588{
 589	struct bpf_jit_poke_descriptor *poke;
 590	struct bpf_array *array;
 591	struct bpf_prog *target;
 592	int i, ret;
 593
 594	for (i = 0; i < prog->aux->size_poke_tab; i++) {
 595		poke = &prog->aux->poke_tab[i];
 596		if (poke->aux && poke->aux != prog->aux)
 597			continue;
 598
 599		WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
 600
 601		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
 602			continue;
 603
 604		array = container_of(poke->tail_call.map, struct bpf_array, map);
 605		mutex_lock(&array->aux->poke_mutex);
 606		target = array->ptrs[poke->tail_call.key];
 607		if (target) {
 608			ret = __bpf_arch_text_poke(poke->tailcall_target,
 609						   BPF_MOD_JUMP, NULL,
 610						   (u8 *)target->bpf_func +
 611						   poke->adj_off);
 612			BUG_ON(ret < 0);
 613			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
 614						   BPF_MOD_JUMP,
 615						   (u8 *)poke->tailcall_target +
 616						   X86_PATCH_SIZE, NULL);
 617			BUG_ON(ret < 0);
 618		}
 619		WRITE_ONCE(poke->tailcall_target_stable, true);
 620		mutex_unlock(&array->aux->poke_mutex);
 621	}
 622}
 623
 624static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
 625			   u32 dst_reg, const u32 imm32)
 626{
 627	u8 *prog = *pprog;
 628	u8 b1, b2, b3;
 629
 630	/*
 631	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
 632	 * (which zero-extends imm32) to save 2 bytes.
 633	 */
 634	if (sign_propagate && (s32)imm32 < 0) {
 635		/* 'mov %rax, imm32' sign extends imm32 */
 636		b1 = add_1mod(0x48, dst_reg);
 637		b2 = 0xC7;
 638		b3 = 0xC0;
 639		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
 640		goto done;
 641	}
 642
 643	/*
 644	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
 645	 * to save 3 bytes.
 646	 */
 647	if (imm32 == 0) {
 648		if (is_ereg(dst_reg))
 649			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
 650		b2 = 0x31; /* xor */
 651		b3 = 0xC0;
 652		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
 653		goto done;
 654	}
 655
 656	/* mov %eax, imm32 */
 657	if (is_ereg(dst_reg))
 658		EMIT1(add_1mod(0x40, dst_reg));
 659	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
 660done:
 661	*pprog = prog;
 662}
 663
 664static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
 665			   const u32 imm32_hi, const u32 imm32_lo)
 666{
 667	u8 *prog = *pprog;
 668
 669	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
 670		/*
 671		 * For emitting plain u32, where sign bit must not be
 672		 * propagated LLVM tends to load imm64 over mov32
 673		 * directly, so save couple of bytes by just doing
 674		 * 'mov %eax, imm32' instead.
 675		 */
 676		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
 677	} else {
 678		/* movabsq rax, imm64 */
 679		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
 680		EMIT(imm32_lo, 4);
 681		EMIT(imm32_hi, 4);
 682	}
 683
 684	*pprog = prog;
 685}
 686
 687static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
 688{
 689	u8 *prog = *pprog;
 690
 691	if (is64) {
 692		/* mov dst, src */
 693		EMIT_mov(dst_reg, src_reg);
 694	} else {
 695		/* mov32 dst, src */
 696		if (is_ereg(dst_reg) || is_ereg(src_reg))
 697			EMIT1(add_2mod(0x40, dst_reg, src_reg));
 698		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
 699	}
 700
 701	*pprog = prog;
 702}
 703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 704/* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
 705static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
 706{
 707	u8 *prog = *pprog;
 708
 709	if (is_imm8(off)) {
 710		/* 1-byte signed displacement.
 711		 *
 712		 * If off == 0 we could skip this and save one extra byte, but
 713		 * special case of x86 R13 which always needs an offset is not
 714		 * worth the hassle
 715		 */
 716		EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
 717	} else {
 718		/* 4-byte signed displacement */
 719		EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
 720	}
 721	*pprog = prog;
 722}
 723
 724/*
 725 * Emit a REX byte if it will be necessary to address these registers
 726 */
 727static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
 728{
 729	u8 *prog = *pprog;
 730
 731	if (is64)
 732		EMIT1(add_2mod(0x48, dst_reg, src_reg));
 733	else if (is_ereg(dst_reg) || is_ereg(src_reg))
 734		EMIT1(add_2mod(0x40, dst_reg, src_reg));
 735	*pprog = prog;
 736}
 737
 738/*
 739 * Similar version of maybe_emit_mod() for a single register
 740 */
 741static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
 742{
 743	u8 *prog = *pprog;
 744
 745	if (is64)
 746		EMIT1(add_1mod(0x48, reg));
 747	else if (is_ereg(reg))
 748		EMIT1(add_1mod(0x40, reg));
 749	*pprog = prog;
 750}
 751
 752/* LDX: dst_reg = *(u8*)(src_reg + off) */
 753static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
 754{
 755	u8 *prog = *pprog;
 756
 757	switch (size) {
 758	case BPF_B:
 759		/* Emit 'movzx rax, byte ptr [rax + off]' */
 760		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
 761		break;
 762	case BPF_H:
 763		/* Emit 'movzx rax, word ptr [rax + off]' */
 764		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
 765		break;
 766	case BPF_W:
 767		/* Emit 'mov eax, dword ptr [rax+0x14]' */
 768		if (is_ereg(dst_reg) || is_ereg(src_reg))
 769			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
 770		else
 771			EMIT1(0x8B);
 772		break;
 773	case BPF_DW:
 774		/* Emit 'mov rax, qword ptr [rax+0x14]' */
 775		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
 776		break;
 777	}
 778	emit_insn_suffix(&prog, src_reg, dst_reg, off);
 779	*pprog = prog;
 780}
 781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 782/* STX: *(u8*)(dst_reg + off) = src_reg */
 783static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
 784{
 785	u8 *prog = *pprog;
 786
 787	switch (size) {
 788	case BPF_B:
 789		/* Emit 'mov byte ptr [rax + off], al' */
 790		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
 791			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
 792			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
 793		else
 794			EMIT1(0x88);
 795		break;
 796	case BPF_H:
 797		if (is_ereg(dst_reg) || is_ereg(src_reg))
 798			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
 799		else
 800			EMIT2(0x66, 0x89);
 801		break;
 802	case BPF_W:
 803		if (is_ereg(dst_reg) || is_ereg(src_reg))
 804			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
 805		else
 806			EMIT1(0x89);
 807		break;
 808	case BPF_DW:
 809		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
 810		break;
 811	}
 812	emit_insn_suffix(&prog, dst_reg, src_reg, off);
 813	*pprog = prog;
 814}
 815
 816static int emit_atomic(u8 **pprog, u8 atomic_op,
 817		       u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
 818{
 819	u8 *prog = *pprog;
 820
 821	EMIT1(0xF0); /* lock prefix */
 822
 823	maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
 824
 825	/* emit opcode */
 826	switch (atomic_op) {
 827	case BPF_ADD:
 828	case BPF_AND:
 829	case BPF_OR:
 830	case BPF_XOR:
 831		/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
 832		EMIT1(simple_alu_opcodes[atomic_op]);
 833		break;
 834	case BPF_ADD | BPF_FETCH:
 835		/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
 836		EMIT2(0x0F, 0xC1);
 837		break;
 838	case BPF_XCHG:
 839		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
 840		EMIT1(0x87);
 841		break;
 842	case BPF_CMPXCHG:
 843		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
 844		EMIT2(0x0F, 0xB1);
 845		break;
 846	default:
 847		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
 848		return -EFAULT;
 849	}
 850
 851	emit_insn_suffix(&prog, dst_reg, src_reg, off);
 852
 853	*pprog = prog;
 854	return 0;
 855}
 856
 857bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
 858{
 859	u32 reg = x->fixup >> 8;
 860
 861	/* jump over faulting load and clear dest register */
 862	*(unsigned long *)((void *)regs + reg) = 0;
 863	regs->ip += x->fixup & 0xff;
 864	return true;
 865}
 866
 867static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
 868			     bool *regs_used, bool *tail_call_seen)
 869{
 870	int i;
 871
 872	for (i = 1; i <= insn_cnt; i++, insn++) {
 873		if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
 874			*tail_call_seen = true;
 875		if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
 876			regs_used[0] = true;
 877		if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
 878			regs_used[1] = true;
 879		if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
 880			regs_used[2] = true;
 881		if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
 882			regs_used[3] = true;
 883	}
 884}
 885
 886static void emit_nops(u8 **pprog, int len)
 887{
 888	u8 *prog = *pprog;
 889	int i, noplen;
 890
 891	while (len > 0) {
 892		noplen = len;
 893
 894		if (noplen > ASM_NOP_MAX)
 895			noplen = ASM_NOP_MAX;
 896
 897		for (i = 0; i < noplen; i++)
 898			EMIT1(x86_nops[noplen][i]);
 899		len -= noplen;
 900	}
 901
 902	*pprog = prog;
 903}
 904
 905/* emit the 3-byte VEX prefix
 906 *
 907 * r: same as rex.r, extra bit for ModRM reg field
 908 * x: same as rex.x, extra bit for SIB index field
 909 * b: same as rex.b, extra bit for ModRM r/m, or SIB base
 910 * m: opcode map select, encoding escape bytes e.g. 0x0f38
 911 * w: same as rex.w (32 bit or 64 bit) or opcode specific
 912 * src_reg2: additional source reg (encoded as BPF reg)
 913 * l: vector length (128 bit or 256 bit) or reserved
 914 * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
 915 */
 916static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
 917		      bool w, u8 src_reg2, bool l, u8 pp)
 918{
 919	u8 *prog = *pprog;
 920	const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
 921	u8 b1, b2;
 922	u8 vvvv = reg2hex[src_reg2];
 923
 924	/* reg2hex gives only the lower 3 bit of vvvv */
 925	if (is_ereg(src_reg2))
 926		vvvv |= 1 << 3;
 927
 928	/*
 929	 * 2nd byte of 3-byte VEX prefix
 930	 * ~ means bit inverted encoding
 931	 *
 932	 *    7                           0
 933	 *  +---+---+---+---+---+---+---+---+
 934	 *  |~R |~X |~B |         m         |
 935	 *  +---+---+---+---+---+---+---+---+
 936	 */
 937	b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
 938	/*
 939	 * 3rd byte of 3-byte VEX prefix
 940	 *
 941	 *    7                           0
 942	 *  +---+---+---+---+---+---+---+---+
 943	 *  | W |     ~vvvv     | L |   pp  |
 944	 *  +---+---+---+---+---+---+---+---+
 945	 */
 946	b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
 947
 948	EMIT3(b0, b1, b2);
 949	*pprog = prog;
 950}
 951
 952/* emit BMI2 shift instruction */
 953static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
 954{
 955	u8 *prog = *pprog;
 956	bool r = is_ereg(dst_reg);
 957	u8 m = 2; /* escape code 0f38 */
 958
 959	emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
 960	EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
 961	*pprog = prog;
 962}
 963
 964#define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
 965
 
 
 
 
 966static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
 967		  int oldproglen, struct jit_context *ctx, bool jmp_padding)
 968{
 969	bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
 970	struct bpf_insn *insn = bpf_prog->insnsi;
 971	bool callee_regs_used[4] = {};
 972	int insn_cnt = bpf_prog->len;
 973	bool tail_call_seen = false;
 974	bool seen_exit = false;
 975	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
 976	int i, excnt = 0;
 977	int ilen, proglen = 0;
 978	u8 *prog = temp;
 979	int err;
 980
 981	detect_reg_usage(insn, insn_cnt, callee_regs_used,
 982			 &tail_call_seen);
 983
 984	/* tail call's presence in current prog implies it is reachable */
 985	tail_call_reachable |= tail_call_seen;
 986
 987	emit_prologue(&prog, bpf_prog->aux->stack_depth,
 988		      bpf_prog_was_classic(bpf_prog), tail_call_reachable,
 989		      bpf_prog->aux->func_idx != 0);
 990	push_callee_regs(&prog, callee_regs_used);
 
 
 
 
 
 
 
 
 
 
 
 
 991
 992	ilen = prog - temp;
 993	if (rw_image)
 994		memcpy(rw_image + proglen, temp, ilen);
 995	proglen += ilen;
 996	addrs[0] = proglen;
 997	prog = temp;
 998
 999	for (i = 1; i <= insn_cnt; i++, insn++) {
1000		const s32 imm32 = insn->imm;
1001		u32 dst_reg = insn->dst_reg;
1002		u32 src_reg = insn->src_reg;
1003		u8 b2 = 0, b3 = 0;
1004		u8 *start_of_ldx;
1005		s64 jmp_offset;
 
1006		u8 jmp_cond;
1007		u8 *func;
1008		int nops;
1009
1010		switch (insn->code) {
1011			/* ALU */
1012		case BPF_ALU | BPF_ADD | BPF_X:
1013		case BPF_ALU | BPF_SUB | BPF_X:
1014		case BPF_ALU | BPF_AND | BPF_X:
1015		case BPF_ALU | BPF_OR | BPF_X:
1016		case BPF_ALU | BPF_XOR | BPF_X:
1017		case BPF_ALU64 | BPF_ADD | BPF_X:
1018		case BPF_ALU64 | BPF_SUB | BPF_X:
1019		case BPF_ALU64 | BPF_AND | BPF_X:
1020		case BPF_ALU64 | BPF_OR | BPF_X:
1021		case BPF_ALU64 | BPF_XOR | BPF_X:
1022			maybe_emit_mod(&prog, dst_reg, src_reg,
1023				       BPF_CLASS(insn->code) == BPF_ALU64);
1024			b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1025			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1026			break;
1027
1028		case BPF_ALU64 | BPF_MOV | BPF_X:
1029		case BPF_ALU | BPF_MOV | BPF_X:
1030			emit_mov_reg(&prog,
1031				     BPF_CLASS(insn->code) == BPF_ALU64,
1032				     dst_reg, src_reg);
 
 
 
 
 
1033			break;
1034
1035			/* neg dst */
1036		case BPF_ALU | BPF_NEG:
1037		case BPF_ALU64 | BPF_NEG:
1038			maybe_emit_1mod(&prog, dst_reg,
1039					BPF_CLASS(insn->code) == BPF_ALU64);
1040			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1041			break;
1042
1043		case BPF_ALU | BPF_ADD | BPF_K:
1044		case BPF_ALU | BPF_SUB | BPF_K:
1045		case BPF_ALU | BPF_AND | BPF_K:
1046		case BPF_ALU | BPF_OR | BPF_K:
1047		case BPF_ALU | BPF_XOR | BPF_K:
1048		case BPF_ALU64 | BPF_ADD | BPF_K:
1049		case BPF_ALU64 | BPF_SUB | BPF_K:
1050		case BPF_ALU64 | BPF_AND | BPF_K:
1051		case BPF_ALU64 | BPF_OR | BPF_K:
1052		case BPF_ALU64 | BPF_XOR | BPF_K:
1053			maybe_emit_1mod(&prog, dst_reg,
1054					BPF_CLASS(insn->code) == BPF_ALU64);
1055
1056			/*
1057			 * b3 holds 'normal' opcode, b2 short form only valid
1058			 * in case dst is eax/rax.
1059			 */
1060			switch (BPF_OP(insn->code)) {
1061			case BPF_ADD:
1062				b3 = 0xC0;
1063				b2 = 0x05;
1064				break;
1065			case BPF_SUB:
1066				b3 = 0xE8;
1067				b2 = 0x2D;
1068				break;
1069			case BPF_AND:
1070				b3 = 0xE0;
1071				b2 = 0x25;
1072				break;
1073			case BPF_OR:
1074				b3 = 0xC8;
1075				b2 = 0x0D;
1076				break;
1077			case BPF_XOR:
1078				b3 = 0xF0;
1079				b2 = 0x35;
1080				break;
1081			}
1082
1083			if (is_imm8(imm32))
1084				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1085			else if (is_axreg(dst_reg))
1086				EMIT1_off32(b2, imm32);
1087			else
1088				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1089			break;
1090
1091		case BPF_ALU64 | BPF_MOV | BPF_K:
1092		case BPF_ALU | BPF_MOV | BPF_K:
1093			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1094				       dst_reg, imm32);
1095			break;
1096
1097		case BPF_LD | BPF_IMM | BPF_DW:
1098			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1099			insn++;
1100			i++;
1101			break;
1102
1103			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1104		case BPF_ALU | BPF_MOD | BPF_X:
1105		case BPF_ALU | BPF_DIV | BPF_X:
1106		case BPF_ALU | BPF_MOD | BPF_K:
1107		case BPF_ALU | BPF_DIV | BPF_K:
1108		case BPF_ALU64 | BPF_MOD | BPF_X:
1109		case BPF_ALU64 | BPF_DIV | BPF_X:
1110		case BPF_ALU64 | BPF_MOD | BPF_K:
1111		case BPF_ALU64 | BPF_DIV | BPF_K: {
1112			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1113
1114			if (dst_reg != BPF_REG_0)
1115				EMIT1(0x50); /* push rax */
1116			if (dst_reg != BPF_REG_3)
1117				EMIT1(0x52); /* push rdx */
1118
1119			if (BPF_SRC(insn->code) == BPF_X) {
1120				if (src_reg == BPF_REG_0 ||
1121				    src_reg == BPF_REG_3) {
1122					/* mov r11, src_reg */
1123					EMIT_mov(AUX_REG, src_reg);
1124					src_reg = AUX_REG;
1125				}
1126			} else {
1127				/* mov r11, imm32 */
1128				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1129				src_reg = AUX_REG;
1130			}
1131
1132			if (dst_reg != BPF_REG_0)
1133				/* mov rax, dst_reg */
1134				emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1135
1136			/*
1137			 * xor edx, edx
1138			 * equivalent to 'xor rdx, rdx', but one byte less
1139			 */
1140			EMIT2(0x31, 0xd2);
 
 
 
 
 
 
 
 
 
 
1141
1142			/* div src_reg */
1143			maybe_emit_1mod(&prog, src_reg, is64);
1144			EMIT2(0xF7, add_1reg(0xF0, src_reg));
 
1145
1146			if (BPF_OP(insn->code) == BPF_MOD &&
1147			    dst_reg != BPF_REG_3)
1148				/* mov dst_reg, rdx */
1149				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1150			else if (BPF_OP(insn->code) == BPF_DIV &&
1151				 dst_reg != BPF_REG_0)
1152				/* mov dst_reg, rax */
1153				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1154
1155			if (dst_reg != BPF_REG_3)
1156				EMIT1(0x5A); /* pop rdx */
1157			if (dst_reg != BPF_REG_0)
1158				EMIT1(0x58); /* pop rax */
1159			break;
1160		}
1161
1162		case BPF_ALU | BPF_MUL | BPF_K:
1163		case BPF_ALU64 | BPF_MUL | BPF_K:
1164			maybe_emit_mod(&prog, dst_reg, dst_reg,
1165				       BPF_CLASS(insn->code) == BPF_ALU64);
1166
1167			if (is_imm8(imm32))
1168				/* imul dst_reg, dst_reg, imm8 */
1169				EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1170				      imm32);
1171			else
1172				/* imul dst_reg, dst_reg, imm32 */
1173				EMIT2_off32(0x69,
1174					    add_2reg(0xC0, dst_reg, dst_reg),
1175					    imm32);
1176			break;
1177
1178		case BPF_ALU | BPF_MUL | BPF_X:
1179		case BPF_ALU64 | BPF_MUL | BPF_X:
1180			maybe_emit_mod(&prog, src_reg, dst_reg,
1181				       BPF_CLASS(insn->code) == BPF_ALU64);
1182
1183			/* imul dst_reg, src_reg */
1184			EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1185			break;
1186
1187			/* Shifts */
1188		case BPF_ALU | BPF_LSH | BPF_K:
1189		case BPF_ALU | BPF_RSH | BPF_K:
1190		case BPF_ALU | BPF_ARSH | BPF_K:
1191		case BPF_ALU64 | BPF_LSH | BPF_K:
1192		case BPF_ALU64 | BPF_RSH | BPF_K:
1193		case BPF_ALU64 | BPF_ARSH | BPF_K:
1194			maybe_emit_1mod(&prog, dst_reg,
1195					BPF_CLASS(insn->code) == BPF_ALU64);
1196
1197			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1198			if (imm32 == 1)
1199				EMIT2(0xD1, add_1reg(b3, dst_reg));
1200			else
1201				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1202			break;
1203
1204		case BPF_ALU | BPF_LSH | BPF_X:
1205		case BPF_ALU | BPF_RSH | BPF_X:
1206		case BPF_ALU | BPF_ARSH | BPF_X:
1207		case BPF_ALU64 | BPF_LSH | BPF_X:
1208		case BPF_ALU64 | BPF_RSH | BPF_X:
1209		case BPF_ALU64 | BPF_ARSH | BPF_X:
1210			/* BMI2 shifts aren't better when shift count is already in rcx */
1211			if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1212				/* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1213				bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1214				u8 op;
1215
1216				switch (BPF_OP(insn->code)) {
1217				case BPF_LSH:
1218					op = 1; /* prefix 0x66 */
1219					break;
1220				case BPF_RSH:
1221					op = 3; /* prefix 0xf2 */
1222					break;
1223				case BPF_ARSH:
1224					op = 2; /* prefix 0xf3 */
1225					break;
1226				}
1227
1228				emit_shiftx(&prog, dst_reg, src_reg, w, op);
1229
1230				break;
1231			}
1232
1233			if (src_reg != BPF_REG_4) { /* common case */
1234				/* Check for bad case when dst_reg == rcx */
1235				if (dst_reg == BPF_REG_4) {
1236					/* mov r11, dst_reg */
1237					EMIT_mov(AUX_REG, dst_reg);
1238					dst_reg = AUX_REG;
1239				} else {
1240					EMIT1(0x51); /* push rcx */
1241				}
1242				/* mov rcx, src_reg */
1243				EMIT_mov(BPF_REG_4, src_reg);
1244			}
1245
1246			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1247			maybe_emit_1mod(&prog, dst_reg,
1248					BPF_CLASS(insn->code) == BPF_ALU64);
1249
1250			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1251			EMIT2(0xD3, add_1reg(b3, dst_reg));
1252
1253			if (src_reg != BPF_REG_4) {
1254				if (insn->dst_reg == BPF_REG_4)
1255					/* mov dst_reg, r11 */
1256					EMIT_mov(insn->dst_reg, AUX_REG);
1257				else
1258					EMIT1(0x59); /* pop rcx */
1259			}
1260
1261			break;
1262
1263		case BPF_ALU | BPF_END | BPF_FROM_BE:
 
1264			switch (imm32) {
1265			case 16:
1266				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
1267				EMIT1(0x66);
1268				if (is_ereg(dst_reg))
1269					EMIT1(0x41);
1270				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1271
1272				/* Emit 'movzwl eax, ax' */
1273				if (is_ereg(dst_reg))
1274					EMIT3(0x45, 0x0F, 0xB7);
1275				else
1276					EMIT2(0x0F, 0xB7);
1277				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1278				break;
1279			case 32:
1280				/* Emit 'bswap eax' to swap lower 4 bytes */
1281				if (is_ereg(dst_reg))
1282					EMIT2(0x41, 0x0F);
1283				else
1284					EMIT1(0x0F);
1285				EMIT1(add_1reg(0xC8, dst_reg));
1286				break;
1287			case 64:
1288				/* Emit 'bswap rax' to swap 8 bytes */
1289				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1290				      add_1reg(0xC8, dst_reg));
1291				break;
1292			}
1293			break;
1294
1295		case BPF_ALU | BPF_END | BPF_FROM_LE:
1296			switch (imm32) {
1297			case 16:
1298				/*
1299				 * Emit 'movzwl eax, ax' to zero extend 16-bit
1300				 * into 64 bit
1301				 */
1302				if (is_ereg(dst_reg))
1303					EMIT3(0x45, 0x0F, 0xB7);
1304				else
1305					EMIT2(0x0F, 0xB7);
1306				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1307				break;
1308			case 32:
1309				/* Emit 'mov eax, eax' to clear upper 32-bits */
1310				if (is_ereg(dst_reg))
1311					EMIT1(0x45);
1312				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1313				break;
1314			case 64:
1315				/* nop */
1316				break;
1317			}
1318			break;
1319
1320			/* speculation barrier */
1321		case BPF_ST | BPF_NOSPEC:
1322			EMIT_LFENCE();
1323			break;
1324
1325			/* ST: *(u8*)(dst_reg + off) = imm */
1326		case BPF_ST | BPF_MEM | BPF_B:
1327			if (is_ereg(dst_reg))
1328				EMIT2(0x41, 0xC6);
1329			else
1330				EMIT1(0xC6);
1331			goto st;
1332		case BPF_ST | BPF_MEM | BPF_H:
1333			if (is_ereg(dst_reg))
1334				EMIT3(0x66, 0x41, 0xC7);
1335			else
1336				EMIT2(0x66, 0xC7);
1337			goto st;
1338		case BPF_ST | BPF_MEM | BPF_W:
1339			if (is_ereg(dst_reg))
1340				EMIT2(0x41, 0xC7);
1341			else
1342				EMIT1(0xC7);
1343			goto st;
1344		case BPF_ST | BPF_MEM | BPF_DW:
1345			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1346
1347st:			if (is_imm8(insn->off))
1348				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1349			else
1350				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1351
1352			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1353			break;
1354
1355			/* STX: *(u8*)(dst_reg + off) = src_reg */
1356		case BPF_STX | BPF_MEM | BPF_B:
1357		case BPF_STX | BPF_MEM | BPF_H:
1358		case BPF_STX | BPF_MEM | BPF_W:
1359		case BPF_STX | BPF_MEM | BPF_DW:
1360			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1361			break;
1362
1363			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1364		case BPF_LDX | BPF_MEM | BPF_B:
1365		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1366		case BPF_LDX | BPF_MEM | BPF_H:
1367		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1368		case BPF_LDX | BPF_MEM | BPF_W:
1369		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1370		case BPF_LDX | BPF_MEM | BPF_DW:
1371		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1372			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1373				/* Though the verifier prevents negative insn->off in BPF_PROBE_MEM
1374				 * add abs(insn->off) to the limit to make sure that negative
1375				 * offset won't be an issue.
1376				 * insn->off is s16, so it won't affect valid pointers.
 
 
 
 
 
 
 
 
 
 
1377				 */
1378				u64 limit = TASK_SIZE_MAX + PAGE_SIZE + abs(insn->off);
1379				u8 *end_of_jmp1, *end_of_jmp2;
1380
1381				/* Conservatively check that src_reg + insn->off is a kernel address:
1382				 * 1. src_reg + insn->off >= limit
1383				 * 2. src_reg + insn->off doesn't become small positive.
1384				 * Cannot do src_reg + insn->off >= limit in one branch,
1385				 * since it needs two spare registers, but JIT has only one.
1386				 */
 
1387
1388				/* movabsq r11, limit */
1389				EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG));
1390				EMIT((u32)limit, 4);
1391				EMIT(limit >> 32, 4);
 
 
 
 
 
 
 
1392				/* cmp src_reg, r11 */
1393				maybe_emit_mod(&prog, src_reg, AUX_REG, true);
1394				EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG));
1395				/* if unsigned '<' goto end_of_jmp2 */
1396				EMIT2(X86_JB, 0);
1397				end_of_jmp1 = prog;
1398
1399				/* mov r11, src_reg */
1400				emit_mov_reg(&prog, true, AUX_REG, src_reg);
1401				/* add r11, insn->off */
1402				maybe_emit_1mod(&prog, AUX_REG, true);
1403				EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
1404				/* jmp if not carry to start_of_ldx
1405				 * Otherwise ERR_PTR(-EINVAL) + 128 will be the user addr
1406				 * that has to be rejected.
1407				 */
1408				EMIT2(0x73 /* JNC */, 0);
1409				end_of_jmp2 = prog;
1410
1411				/* xor dst_reg, dst_reg */
1412				emit_mov_imm32(&prog, false, dst_reg, 0);
1413				/* jmp byte_after_ldx */
1414				EMIT2(0xEB, 0);
1415
1416				/* populate jmp_offset for JB above to jump to xor dst_reg */
1417				end_of_jmp1[-1] = end_of_jmp2 - end_of_jmp1;
1418				/* populate jmp_offset for JNC above to jump to start_of_ldx */
1419				start_of_ldx = prog;
1420				end_of_jmp2[-1] = start_of_ldx - end_of_jmp2;
1421			}
1422			emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1423			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
 
 
 
 
 
1424				struct exception_table_entry *ex;
1425				u8 *_insn = image + proglen + (start_of_ldx - temp);
1426				s64 delta;
1427
1428				/* populate jmp_offset for JMP above */
1429				start_of_ldx[-1] = prog - start_of_ldx;
1430
 
 
 
 
 
 
 
 
 
 
 
 
1431				if (!bpf_prog->aux->extable)
1432					break;
1433
1434				if (excnt >= bpf_prog->aux->num_exentries) {
1435					pr_err("ex gen bug\n");
1436					return -EFAULT;
1437				}
1438				ex = &bpf_prog->aux->extable[excnt++];
1439
1440				delta = _insn - (u8 *)&ex->insn;
1441				if (!is_simm32(delta)) {
1442					pr_err("extable->insn doesn't fit into 32-bit\n");
1443					return -EFAULT;
1444				}
1445				/* switch ex to rw buffer for writes */
1446				ex = (void *)rw_image + ((void *)ex - (void *)image);
1447
1448				ex->insn = delta;
1449
1450				ex->data = EX_TYPE_BPF;
1451
1452				if (dst_reg > BPF_REG_9) {
1453					pr_err("verifier error\n");
1454					return -EFAULT;
1455				}
1456				/*
1457				 * Compute size of x86 insn and its target dest x86 register.
1458				 * ex_handler_bpf() will use lower 8 bits to adjust
1459				 * pt_regs->ip to jump over this x86 instruction
1460				 * and upper bits to figure out which pt_regs to zero out.
1461				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1462				 * of 4 bytes will be ignored and rbx will be zero inited.
1463				 */
1464				ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
1465			}
1466			break;
1467
1468		case BPF_STX | BPF_ATOMIC | BPF_W:
1469		case BPF_STX | BPF_ATOMIC | BPF_DW:
1470			if (insn->imm == (BPF_AND | BPF_FETCH) ||
1471			    insn->imm == (BPF_OR | BPF_FETCH) ||
1472			    insn->imm == (BPF_XOR | BPF_FETCH)) {
1473				bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1474				u32 real_src_reg = src_reg;
1475				u32 real_dst_reg = dst_reg;
1476				u8 *branch_target;
1477
1478				/*
1479				 * Can't be implemented with a single x86 insn.
1480				 * Need to do a CMPXCHG loop.
1481				 */
1482
1483				/* Will need RAX as a CMPXCHG operand so save R0 */
1484				emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1485				if (src_reg == BPF_REG_0)
1486					real_src_reg = BPF_REG_AX;
1487				if (dst_reg == BPF_REG_0)
1488					real_dst_reg = BPF_REG_AX;
1489
1490				branch_target = prog;
1491				/* Load old value */
1492				emit_ldx(&prog, BPF_SIZE(insn->code),
1493					 BPF_REG_0, real_dst_reg, insn->off);
1494				/*
1495				 * Perform the (commutative) operation locally,
1496				 * put the result in the AUX_REG.
1497				 */
1498				emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1499				maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1500				EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1501				      add_2reg(0xC0, AUX_REG, real_src_reg));
1502				/* Attempt to swap in new value */
1503				err = emit_atomic(&prog, BPF_CMPXCHG,
1504						  real_dst_reg, AUX_REG,
1505						  insn->off,
1506						  BPF_SIZE(insn->code));
1507				if (WARN_ON(err))
1508					return err;
1509				/*
1510				 * ZF tells us whether we won the race. If it's
1511				 * cleared we need to try again.
1512				 */
1513				EMIT2(X86_JNE, -(prog - branch_target) - 2);
1514				/* Return the pre-modification value */
1515				emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1516				/* Restore R0 after clobbering RAX */
1517				emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1518				break;
1519			}
1520
1521			err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1522					  insn->off, BPF_SIZE(insn->code));
1523			if (err)
1524				return err;
1525			break;
1526
1527			/* call */
1528		case BPF_JMP | BPF_CALL: {
1529			int offs;
1530
1531			func = (u8 *) __bpf_call_base + imm32;
1532			if (tail_call_reachable) {
1533				/* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
1534				EMIT3_off32(0x48, 0x8B, 0x85,
1535					    -round_up(bpf_prog->aux->stack_depth, 8) - 8);
1536				if (!imm32)
1537					return -EINVAL;
1538				offs = 7 + x86_call_depth_emit_accounting(&prog, func);
1539			} else {
1540				if (!imm32)
1541					return -EINVAL;
1542				offs = x86_call_depth_emit_accounting(&prog, func);
1543			}
1544			if (emit_call(&prog, func, image + addrs[i - 1] + offs))
1545				return -EINVAL;
1546			break;
1547		}
1548
1549		case BPF_JMP | BPF_TAIL_CALL:
1550			if (imm32)
1551				emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
 
1552							  &prog, image + addrs[i - 1],
1553							  callee_regs_used,
1554							  bpf_prog->aux->stack_depth,
1555							  ctx);
1556			else
1557				emit_bpf_tail_call_indirect(&prog,
 
1558							    callee_regs_used,
1559							    bpf_prog->aux->stack_depth,
1560							    image + addrs[i - 1],
1561							    ctx);
1562			break;
1563
1564			/* cond jump */
1565		case BPF_JMP | BPF_JEQ | BPF_X:
1566		case BPF_JMP | BPF_JNE | BPF_X:
1567		case BPF_JMP | BPF_JGT | BPF_X:
1568		case BPF_JMP | BPF_JLT | BPF_X:
1569		case BPF_JMP | BPF_JGE | BPF_X:
1570		case BPF_JMP | BPF_JLE | BPF_X:
1571		case BPF_JMP | BPF_JSGT | BPF_X:
1572		case BPF_JMP | BPF_JSLT | BPF_X:
1573		case BPF_JMP | BPF_JSGE | BPF_X:
1574		case BPF_JMP | BPF_JSLE | BPF_X:
1575		case BPF_JMP32 | BPF_JEQ | BPF_X:
1576		case BPF_JMP32 | BPF_JNE | BPF_X:
1577		case BPF_JMP32 | BPF_JGT | BPF_X:
1578		case BPF_JMP32 | BPF_JLT | BPF_X:
1579		case BPF_JMP32 | BPF_JGE | BPF_X:
1580		case BPF_JMP32 | BPF_JLE | BPF_X:
1581		case BPF_JMP32 | BPF_JSGT | BPF_X:
1582		case BPF_JMP32 | BPF_JSLT | BPF_X:
1583		case BPF_JMP32 | BPF_JSGE | BPF_X:
1584		case BPF_JMP32 | BPF_JSLE | BPF_X:
1585			/* cmp dst_reg, src_reg */
1586			maybe_emit_mod(&prog, dst_reg, src_reg,
1587				       BPF_CLASS(insn->code) == BPF_JMP);
1588			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1589			goto emit_cond_jmp;
1590
1591		case BPF_JMP | BPF_JSET | BPF_X:
1592		case BPF_JMP32 | BPF_JSET | BPF_X:
1593			/* test dst_reg, src_reg */
1594			maybe_emit_mod(&prog, dst_reg, src_reg,
1595				       BPF_CLASS(insn->code) == BPF_JMP);
1596			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1597			goto emit_cond_jmp;
1598
1599		case BPF_JMP | BPF_JSET | BPF_K:
1600		case BPF_JMP32 | BPF_JSET | BPF_K:
1601			/* test dst_reg, imm32 */
1602			maybe_emit_1mod(&prog, dst_reg,
1603					BPF_CLASS(insn->code) == BPF_JMP);
1604			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1605			goto emit_cond_jmp;
1606
1607		case BPF_JMP | BPF_JEQ | BPF_K:
1608		case BPF_JMP | BPF_JNE | BPF_K:
1609		case BPF_JMP | BPF_JGT | BPF_K:
1610		case BPF_JMP | BPF_JLT | BPF_K:
1611		case BPF_JMP | BPF_JGE | BPF_K:
1612		case BPF_JMP | BPF_JLE | BPF_K:
1613		case BPF_JMP | BPF_JSGT | BPF_K:
1614		case BPF_JMP | BPF_JSLT | BPF_K:
1615		case BPF_JMP | BPF_JSGE | BPF_K:
1616		case BPF_JMP | BPF_JSLE | BPF_K:
1617		case BPF_JMP32 | BPF_JEQ | BPF_K:
1618		case BPF_JMP32 | BPF_JNE | BPF_K:
1619		case BPF_JMP32 | BPF_JGT | BPF_K:
1620		case BPF_JMP32 | BPF_JLT | BPF_K:
1621		case BPF_JMP32 | BPF_JGE | BPF_K:
1622		case BPF_JMP32 | BPF_JLE | BPF_K:
1623		case BPF_JMP32 | BPF_JSGT | BPF_K:
1624		case BPF_JMP32 | BPF_JSLT | BPF_K:
1625		case BPF_JMP32 | BPF_JSGE | BPF_K:
1626		case BPF_JMP32 | BPF_JSLE | BPF_K:
1627			/* test dst_reg, dst_reg to save one extra byte */
1628			if (imm32 == 0) {
1629				maybe_emit_mod(&prog, dst_reg, dst_reg,
1630					       BPF_CLASS(insn->code) == BPF_JMP);
1631				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1632				goto emit_cond_jmp;
1633			}
1634
1635			/* cmp dst_reg, imm8/32 */
1636			maybe_emit_1mod(&prog, dst_reg,
1637					BPF_CLASS(insn->code) == BPF_JMP);
1638
1639			if (is_imm8(imm32))
1640				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1641			else
1642				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1643
1644emit_cond_jmp:		/* Convert BPF opcode to x86 */
1645			switch (BPF_OP(insn->code)) {
1646			case BPF_JEQ:
1647				jmp_cond = X86_JE;
1648				break;
1649			case BPF_JSET:
1650			case BPF_JNE:
1651				jmp_cond = X86_JNE;
1652				break;
1653			case BPF_JGT:
1654				/* GT is unsigned '>', JA in x86 */
1655				jmp_cond = X86_JA;
1656				break;
1657			case BPF_JLT:
1658				/* LT is unsigned '<', JB in x86 */
1659				jmp_cond = X86_JB;
1660				break;
1661			case BPF_JGE:
1662				/* GE is unsigned '>=', JAE in x86 */
1663				jmp_cond = X86_JAE;
1664				break;
1665			case BPF_JLE:
1666				/* LE is unsigned '<=', JBE in x86 */
1667				jmp_cond = X86_JBE;
1668				break;
1669			case BPF_JSGT:
1670				/* Signed '>', GT in x86 */
1671				jmp_cond = X86_JG;
1672				break;
1673			case BPF_JSLT:
1674				/* Signed '<', LT in x86 */
1675				jmp_cond = X86_JL;
1676				break;
1677			case BPF_JSGE:
1678				/* Signed '>=', GE in x86 */
1679				jmp_cond = X86_JGE;
1680				break;
1681			case BPF_JSLE:
1682				/* Signed '<=', LE in x86 */
1683				jmp_cond = X86_JLE;
1684				break;
1685			default: /* to silence GCC warning */
1686				return -EFAULT;
1687			}
1688			jmp_offset = addrs[i + insn->off] - addrs[i];
1689			if (is_imm8(jmp_offset)) {
1690				if (jmp_padding) {
1691					/* To keep the jmp_offset valid, the extra bytes are
1692					 * padded before the jump insn, so we subtract the
1693					 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1694					 *
1695					 * If the previous pass already emits an imm8
1696					 * jmp_cond, then this BPF insn won't shrink, so
1697					 * "nops" is 0.
1698					 *
1699					 * On the other hand, if the previous pass emits an
1700					 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1701					 * keep the image from shrinking further.
1702					 *
1703					 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1704					 *     is 2 bytes, so the size difference is 4 bytes.
1705					 */
1706					nops = INSN_SZ_DIFF - 2;
1707					if (nops != 0 && nops != 4) {
1708						pr_err("unexpected jmp_cond padding: %d bytes\n",
1709						       nops);
1710						return -EFAULT;
1711					}
1712					emit_nops(&prog, nops);
1713				}
1714				EMIT2(jmp_cond, jmp_offset);
1715			} else if (is_simm32(jmp_offset)) {
1716				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1717			} else {
1718				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1719				return -EFAULT;
1720			}
1721
1722			break;
1723
1724		case BPF_JMP | BPF_JA:
1725			if (insn->off == -1)
1726				/* -1 jmp instructions will always jump
1727				 * backwards two bytes. Explicitly handling
1728				 * this case avoids wasting too many passes
1729				 * when there are long sequences of replaced
1730				 * dead code.
1731				 */
1732				jmp_offset = -2;
1733			else
1734				jmp_offset = addrs[i + insn->off] - addrs[i];
 
 
 
 
 
 
 
 
1735
1736			if (!jmp_offset) {
1737				/*
1738				 * If jmp_padding is enabled, the extra nops will
1739				 * be inserted. Otherwise, optimize out nop jumps.
1740				 */
1741				if (jmp_padding) {
1742					/* There are 3 possible conditions.
1743					 * (1) This BPF_JA is already optimized out in
1744					 *     the previous run, so there is no need
1745					 *     to pad any extra byte (0 byte).
1746					 * (2) The previous pass emits an imm8 jmp,
1747					 *     so we pad 2 bytes to match the previous
1748					 *     insn size.
1749					 * (3) Similarly, the previous pass emits an
1750					 *     imm32 jmp, and 5 bytes is padded.
1751					 */
1752					nops = INSN_SZ_DIFF;
1753					if (nops != 0 && nops != 2 && nops != 5) {
1754						pr_err("unexpected nop jump padding: %d bytes\n",
1755						       nops);
1756						return -EFAULT;
1757					}
1758					emit_nops(&prog, nops);
1759				}
1760				break;
1761			}
1762emit_jmp:
1763			if (is_imm8(jmp_offset)) {
1764				if (jmp_padding) {
1765					/* To avoid breaking jmp_offset, the extra bytes
1766					 * are padded before the actual jmp insn, so
1767					 * 2 bytes is subtracted from INSN_SZ_DIFF.
1768					 *
1769					 * If the previous pass already emits an imm8
1770					 * jmp, there is nothing to pad (0 byte).
1771					 *
1772					 * If it emits an imm32 jmp (5 bytes) previously
1773					 * and now an imm8 jmp (2 bytes), then we pad
1774					 * (5 - 2 = 3) bytes to stop the image from
1775					 * shrinking further.
1776					 */
1777					nops = INSN_SZ_DIFF - 2;
1778					if (nops != 0 && nops != 3) {
1779						pr_err("unexpected jump padding: %d bytes\n",
1780						       nops);
1781						return -EFAULT;
1782					}
1783					emit_nops(&prog, INSN_SZ_DIFF - 2);
1784				}
1785				EMIT2(0xEB, jmp_offset);
1786			} else if (is_simm32(jmp_offset)) {
1787				EMIT1_off32(0xE9, jmp_offset);
1788			} else {
1789				pr_err("jmp gen bug %llx\n", jmp_offset);
1790				return -EFAULT;
1791			}
1792			break;
1793
1794		case BPF_JMP | BPF_EXIT:
1795			if (seen_exit) {
1796				jmp_offset = ctx->cleanup_addr - addrs[i];
1797				goto emit_jmp;
1798			}
1799			seen_exit = true;
1800			/* Update cleanup_addr */
1801			ctx->cleanup_addr = proglen;
1802			pop_callee_regs(&prog, callee_regs_used);
 
 
 
 
 
1803			EMIT1(0xC9);         /* leave */
1804			emit_return(&prog, image + addrs[i - 1] + (prog - temp));
1805			break;
1806
1807		default:
1808			/*
1809			 * By design x86-64 JIT should support all BPF instructions.
1810			 * This error will be seen if new instruction was added
1811			 * to the interpreter, but not to the JIT, or if there is
1812			 * junk in bpf_prog.
1813			 */
1814			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1815			return -EINVAL;
1816		}
1817
1818		ilen = prog - temp;
1819		if (ilen > BPF_MAX_INSN_SIZE) {
1820			pr_err("bpf_jit: fatal insn size error\n");
1821			return -EFAULT;
1822		}
1823
1824		if (image) {
1825			/*
1826			 * When populating the image, assert that:
1827			 *
1828			 *  i) We do not write beyond the allocated space, and
1829			 * ii) addrs[i] did not change from the prior run, in order
1830			 *     to validate assumptions made for computing branch
1831			 *     displacements.
1832			 */
1833			if (unlikely(proglen + ilen > oldproglen ||
1834				     proglen + ilen != addrs[i])) {
1835				pr_err("bpf_jit: fatal error\n");
1836				return -EFAULT;
1837			}
1838			memcpy(rw_image + proglen, temp, ilen);
1839		}
1840		proglen += ilen;
1841		addrs[i] = proglen;
1842		prog = temp;
1843	}
1844
1845	if (image && excnt != bpf_prog->aux->num_exentries) {
1846		pr_err("extable is not populated\n");
1847		return -EFAULT;
1848	}
1849	return proglen;
1850}
1851
1852static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1853		      int stack_size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1854{
1855	int i, j, arg_size, nr_regs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1856	/* Store function arguments to stack.
1857	 * For a function that accepts two pointers the sequence will be:
1858	 * mov QWORD PTR [rbp-0x10],rdi
1859	 * mov QWORD PTR [rbp-0x8],rsi
1860	 */
1861	for (i = 0, j = 0; i < min(nr_args, 6); i++) {
1862		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) {
1863			nr_regs = (m->arg_size[i] + 7) / 8;
1864			arg_size = 8;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1865		} else {
1866			nr_regs = 1;
1867			arg_size = m->arg_size[i];
1868		}
 
 
 
 
 
1869
1870		while (nr_regs) {
1871			emit_stx(prog, bytes_to_bpf_size(arg_size),
1872				 BPF_REG_FP,
1873				 j == 5 ? X86_REG_R9 : BPF_REG_1 + j,
1874				 -(stack_size - j * 8));
1875			nr_regs--;
1876			j++;
 
1877		}
1878	}
 
 
1879}
1880
1881static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1882			 int stack_size)
1883{
1884	int i, j, arg_size, nr_regs;
1885
1886	/* Restore function arguments from stack.
1887	 * For a function that accepts two pointers the sequence will be:
1888	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1889	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
 
 
1890	 */
1891	for (i = 0, j = 0; i < min(nr_args, 6); i++) {
1892		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) {
1893			nr_regs = (m->arg_size[i] + 7) / 8;
1894			arg_size = 8;
 
 
 
 
 
 
 
1895		} else {
1896			nr_regs = 1;
1897			arg_size = m->arg_size[i];
1898		}
1899
1900		while (nr_regs) {
1901			emit_ldx(prog, bytes_to_bpf_size(arg_size),
1902				 j == 5 ? X86_REG_R9 : BPF_REG_1 + j,
1903				 BPF_REG_FP,
1904				 -(stack_size - j * 8));
1905			nr_regs--;
1906			j++;
1907		}
1908	}
1909}
1910
1911static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
1912			   struct bpf_tramp_link *l, int stack_size,
1913			   int run_ctx_off, bool save_ret)
 
1914{
1915	u8 *prog = *pprog;
1916	u8 *jmp_insn;
1917	int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
1918	struct bpf_prog *p = l->link.prog;
1919	u64 cookie = l->cookie;
1920
1921	/* mov rdi, cookie */
1922	emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
1923
1924	/* Prepare struct bpf_tramp_run_ctx.
1925	 *
1926	 * bpf_tramp_run_ctx is already preserved by
1927	 * arch_prepare_bpf_trampoline().
1928	 *
1929	 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
1930	 */
1931	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
1932
1933	/* arg1: mov rdi, progs[i] */
1934	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1935	/* arg2: lea rsi, [rbp - ctx_cookie_off] */
1936	EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
 
 
 
1937
1938	if (emit_rsb_call(&prog, bpf_trampoline_enter(p), prog))
1939		return -EINVAL;
1940	/* remember prog start time returned by __bpf_prog_enter */
1941	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1942
1943	/* if (__bpf_prog_enter*(prog) == 0)
1944	 *	goto skip_exec_of_prog;
1945	 */
1946	EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
1947	/* emit 2 nops that will be replaced with JE insn */
1948	jmp_insn = prog;
1949	emit_nops(&prog, 2);
1950
1951	/* arg1: lea rdi, [rbp - stack_size] */
1952	EMIT4(0x48, 0x8D, 0x7D, -stack_size);
 
 
 
1953	/* arg2: progs[i]->insnsi for interpreter */
1954	if (!p->jited)
1955		emit_mov_imm64(&prog, BPF_REG_2,
1956			       (long) p->insnsi >> 32,
1957			       (u32) (long) p->insnsi);
1958	/* call JITed bpf program or interpreter */
1959	if (emit_rsb_call(&prog, p->bpf_func, prog))
1960		return -EINVAL;
1961
1962	/*
1963	 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
1964	 * of the previous call which is then passed on the stack to
1965	 * the next BPF program.
1966	 *
1967	 * BPF_TRAMP_FENTRY trampoline may need to return the return
1968	 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
1969	 */
1970	if (save_ret)
1971		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1972
1973	/* replace 2 nops with JE insn, since jmp target is known */
1974	jmp_insn[0] = X86_JE;
1975	jmp_insn[1] = prog - jmp_insn - 2;
1976
1977	/* arg1: mov rdi, progs[i] */
1978	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1979	/* arg2: mov rsi, rbx <- start time in nsec */
1980	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1981	/* arg3: lea rdx, [rbp - run_ctx_off] */
1982	EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
1983	if (emit_rsb_call(&prog, bpf_trampoline_exit(p), prog))
 
 
 
1984		return -EINVAL;
1985
1986	*pprog = prog;
1987	return 0;
1988}
1989
1990static void emit_align(u8 **pprog, u32 align)
1991{
1992	u8 *target, *prog = *pprog;
1993
1994	target = PTR_ALIGN(prog, align);
1995	if (target != prog)
1996		emit_nops(&prog, target - prog);
1997
1998	*pprog = prog;
1999}
2000
2001static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2002{
2003	u8 *prog = *pprog;
2004	s64 offset;
2005
2006	offset = func - (ip + 2 + 4);
2007	if (!is_simm32(offset)) {
2008		pr_err("Target %p is out of range\n", func);
2009		return -EINVAL;
2010	}
2011	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2012	*pprog = prog;
2013	return 0;
2014}
2015
2016static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2017		      struct bpf_tramp_links *tl, int stack_size,
2018		      int run_ctx_off, bool save_ret)
 
2019{
2020	int i;
2021	u8 *prog = *pprog;
2022
2023	for (i = 0; i < tl->nr_links; i++) {
2024		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2025				    run_ctx_off, save_ret))
2026			return -EINVAL;
2027	}
2028	*pprog = prog;
2029	return 0;
2030}
2031
2032static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2033			      struct bpf_tramp_links *tl, int stack_size,
2034			      int run_ctx_off, u8 **branches)
 
2035{
2036	u8 *prog = *pprog;
2037	int i;
2038
2039	/* The first fmod_ret program will receive a garbage return value.
2040	 * Set this to 0 to avoid confusing the program.
2041	 */
2042	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2043	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2044	for (i = 0; i < tl->nr_links; i++) {
2045		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true))
 
2046			return -EINVAL;
2047
2048		/* mod_ret prog stored return value into [rbp - 8]. Emit:
2049		 * if (*(u64 *)(rbp - 8) !=  0)
2050		 *	goto do_fexit;
2051		 */
2052		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
2053		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2054
2055		/* Save the location of the branch and Generate 6 nops
2056		 * (4 bytes for an offset and 2 bytes for the jump) These nops
2057		 * are replaced with a conditional jump once do_fexit (i.e. the
2058		 * start of the fexit invocation) is finalized.
2059		 */
2060		branches[i] = prog;
2061		emit_nops(&prog, 4 + 2);
2062	}
2063
2064	*pprog = prog;
2065	return 0;
2066}
2067
2068/* Example:
2069 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2070 * its 'struct btf_func_model' will be nr_args=2
2071 * The assembly code when eth_type_trans is executing after trampoline:
2072 *
2073 * push rbp
2074 * mov rbp, rsp
2075 * sub rsp, 16                     // space for skb and dev
2076 * push rbx                        // temp regs to pass start time
2077 * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
2078 * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
2079 * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2080 * mov rbx, rax                    // remember start time in bpf stats are enabled
2081 * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
2082 * call addr_of_jited_FENTRY_prog
2083 * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2084 * mov rsi, rbx                    // prog start time
2085 * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2086 * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
2087 * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
2088 * pop rbx
2089 * leave
2090 * ret
2091 *
2092 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2093 * replaced with 'call generated_bpf_trampoline'. When it returns
2094 * eth_type_trans will continue executing with original skb and dev pointers.
2095 *
2096 * The assembly code when eth_type_trans is called from trampoline:
2097 *
2098 * push rbp
2099 * mov rbp, rsp
2100 * sub rsp, 24                     // space for skb, dev, return value
2101 * push rbx                        // temp regs to pass start time
2102 * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
2103 * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
2104 * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2105 * mov rbx, rax                    // remember start time if bpf stats are enabled
2106 * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2107 * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
2108 * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2109 * mov rsi, rbx                    // prog start time
2110 * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2111 * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
2112 * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
2113 * call eth_type_trans+5           // execute body of eth_type_trans
2114 * mov qword ptr [rbp - 8], rax    // save return value
2115 * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2116 * mov rbx, rax                    // remember start time in bpf stats are enabled
2117 * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2118 * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
2119 * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2120 * mov rsi, rbx                    // prog start time
2121 * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2122 * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
2123 * pop rbx
2124 * leave
2125 * add rsp, 8                      // skip eth_type_trans's frame
2126 * ret                             // return to its caller
2127 */
2128int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
2129				const struct btf_func_model *m, u32 flags,
2130				struct bpf_tramp_links *tlinks,
2131				void *func_addr)
 
2132{
2133	int ret, i, nr_args = m->nr_args, extra_nregs = 0;
2134	int regs_off, ip_off, args_off, stack_size = nr_args * 8, run_ctx_off;
2135	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2136	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2137	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2138	void *orig_call = func_addr;
2139	u8 **branches = NULL;
2140	u8 *prog;
2141	bool save_ret;
2142
2143	/* x86-64 supports up to 6 arguments. 7+ can be added in the future */
2144	if (nr_args > 6)
2145		return -ENOTSUPP;
 
 
 
 
2146
2147	for (i = 0; i < MAX_BPF_FUNC_ARGS; i++) {
 
2148		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2149			extra_nregs += (m->arg_size[i] + 7) / 8 - 1;
2150	}
2151	if (nr_args + extra_nregs > 6)
 
 
 
 
2152		return -ENOTSUPP;
2153	stack_size += extra_nregs * 8;
2154
2155	/* Generated trampoline stack layout:
2156	 *
2157	 * RBP + 8         [ return address  ]
2158	 * RBP + 0         [ RBP             ]
2159	 *
2160	 * RBP - 8         [ return value    ]  BPF_TRAMP_F_CALL_ORIG or
2161	 *                                      BPF_TRAMP_F_RET_FENTRY_RET flags
2162	 *
2163	 *                 [ reg_argN        ]  always
2164	 *                 [ ...             ]
2165	 * RBP - regs_off  [ reg_arg1        ]  program's ctx pointer
2166	 *
2167	 * RBP - args_off  [ arg regs count  ]  always
2168	 *
2169	 * RBP - ip_off    [ traced function ]  BPF_TRAMP_F_IP_ARG flag
2170	 *
 
 
2171	 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
 
 
 
 
 
 
2172	 */
2173
2174	/* room for return value of orig_call or fentry prog */
2175	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2176	if (save_ret)
2177		stack_size += 8;
2178
 
2179	regs_off = stack_size;
2180
2181	/* args count  */
2182	stack_size += 8;
2183	args_off = stack_size;
2184
2185	if (flags & BPF_TRAMP_F_IP_ARG)
2186		stack_size += 8; /* room for IP address argument */
2187
2188	ip_off = stack_size;
2189
 
 
 
2190	stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2191	run_ctx_off = stack_size;
2192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2193	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2194		/* skip patched call instruction and point orig_call to actual
2195		 * body of the kernel function.
2196		 */
2197		if (is_endbr(*(u32 *)orig_call))
2198			orig_call += ENDBR_INSN_SIZE;
2199		orig_call += X86_PATCH_SIZE;
2200	}
2201
2202	prog = image;
2203
2204	EMIT_ENDBR();
2205	/*
2206	 * This is the direct-call trampoline, as such it needs accounting
2207	 * for the __fentry__ call.
2208	 */
2209	x86_call_depth_emit_accounting(&prog, NULL);
 
 
 
 
 
 
2210	EMIT1(0x55);		 /* push rbp */
2211	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2212	EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
2213	EMIT1(0x53);		 /* push rbx */
 
 
 
 
 
 
 
 
 
2214
2215	/* Store number of argument registers of the traced function:
2216	 *   mov rax, nr_args + extra_nregs
2217	 *   mov QWORD PTR [rbp - args_off], rax
2218	 */
2219	emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_args + extra_nregs);
2220	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -args_off);
2221
2222	if (flags & BPF_TRAMP_F_IP_ARG) {
2223		/* Store IP address of the traced function:
2224		 * movabsq rax, func_addr
2225		 * mov QWORD PTR [rbp - ip_off], rax
2226		 */
2227		emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
2228		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
2229	}
2230
2231	save_regs(m, &prog, nr_args, regs_off);
2232
2233	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2234		/* arg1: mov rdi, im */
2235		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2236		if (emit_rsb_call(&prog, __bpf_tramp_enter, prog)) {
 
2237			ret = -EINVAL;
2238			goto cleanup;
2239		}
2240	}
2241
2242	if (fentry->nr_links)
2243		if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
2244			       flags & BPF_TRAMP_F_RET_FENTRY_RET))
2245			return -EINVAL;
 
2246
2247	if (fmod_ret->nr_links) {
2248		branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
2249				   GFP_KERNEL);
2250		if (!branches)
2251			return -ENOMEM;
2252
2253		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
2254				       run_ctx_off, branches)) {
2255			ret = -EINVAL;
2256			goto cleanup;
2257		}
2258	}
2259
2260	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2261		restore_regs(m, &prog, nr_args, regs_off);
 
 
 
 
 
 
 
 
2262
2263		if (flags & BPF_TRAMP_F_ORIG_STACK) {
2264			emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 8);
2265			EMIT2(0xff, 0xd0); /* call *rax */
2266		} else {
2267			/* call original function */
2268			if (emit_rsb_call(&prog, orig_call, prog)) {
2269				ret = -EINVAL;
2270				goto cleanup;
2271			}
2272		}
2273		/* remember return value in a stack for bpf prog to access */
2274		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2275		im->ip_after_call = prog;
2276		memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2277		prog += X86_PATCH_SIZE;
2278	}
2279
2280	if (fmod_ret->nr_links) {
2281		/* From Intel 64 and IA-32 Architectures Optimization
2282		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2283		 * Coding Rule 11: All branch targets should be 16-byte
2284		 * aligned.
2285		 */
2286		emit_align(&prog, 16);
2287		/* Update the branches saved in invoke_bpf_mod_ret with the
2288		 * aligned address of do_fexit.
2289		 */
2290		for (i = 0; i < fmod_ret->nr_links; i++)
2291			emit_cond_near_jump(&branches[i], prog, branches[i],
2292					    X86_JNE);
 
2293	}
2294
2295	if (fexit->nr_links)
2296		if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, false)) {
 
2297			ret = -EINVAL;
2298			goto cleanup;
2299		}
 
2300
2301	if (flags & BPF_TRAMP_F_RESTORE_REGS)
2302		restore_regs(m, &prog, nr_args, regs_off);
2303
2304	/* This needs to be done regardless. If there were fmod_ret programs,
2305	 * the return value is only updated on the stack and still needs to be
2306	 * restored to R0.
2307	 */
2308	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2309		im->ip_epilogue = prog;
2310		/* arg1: mov rdi, im */
2311		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2312		if (emit_rsb_call(&prog, __bpf_tramp_exit, prog)) {
2313			ret = -EINVAL;
2314			goto cleanup;
2315		}
 
 
 
 
 
2316	}
 
2317	/* restore return value of orig_call or fentry prog back into RAX */
2318	if (save_ret)
2319		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2320
2321	EMIT1(0x5B); /* pop rbx */
2322	EMIT1(0xC9); /* leave */
2323	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2324		/* skip our return address and return to parent */
2325		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2326	emit_return(&prog, prog);
 
2327	/* Make sure the trampoline generation logic doesn't overflow */
2328	if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2329		ret = -EFAULT;
2330		goto cleanup;
2331	}
2332	ret = prog - (u8 *)image;
2333
2334cleanup:
2335	kfree(branches);
2336	return ret;
2337}
2338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
2340{
2341	u8 *jg_reloc, *prog = *pprog;
2342	int pivot, err, jg_bytes = 1;
2343	s64 jg_offset;
2344
2345	if (a == b) {
2346		/* Leaf node of recursion, i.e. not a range of indices
2347		 * anymore.
2348		 */
2349		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
2350		if (!is_simm32(progs[a]))
2351			return -1;
2352		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2353			    progs[a]);
2354		err = emit_cond_near_jump(&prog,	/* je func */
2355					  (void *)progs[a], image + (prog - buf),
2356					  X86_JE);
2357		if (err)
2358			return err;
2359
2360		emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
2361
2362		*pprog = prog;
2363		return 0;
2364	}
2365
2366	/* Not a leaf node, so we pivot, and recursively descend into
2367	 * the lower and upper ranges.
2368	 */
2369	pivot = (b - a) / 2;
2370	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
2371	if (!is_simm32(progs[a + pivot]))
2372		return -1;
2373	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2374
2375	if (pivot > 2) {				/* jg upper_part */
2376		/* Require near jump. */
2377		jg_bytes = 4;
2378		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2379	} else {
2380		EMIT2(X86_JG, 0);
2381	}
2382	jg_reloc = prog;
2383
2384	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
2385				  progs, image, buf);
2386	if (err)
2387		return err;
2388
2389	/* From Intel 64 and IA-32 Architectures Optimization
2390	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2391	 * Coding Rule 11: All branch targets should be 16-byte
2392	 * aligned.
2393	 */
2394	emit_align(&prog, 16);
2395	jg_offset = prog - jg_reloc;
2396	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2397
2398	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
2399				  b, progs, image, buf);
2400	if (err)
2401		return err;
2402
2403	*pprog = prog;
2404	return 0;
2405}
2406
2407static int cmp_ips(const void *a, const void *b)
2408{
2409	const s64 *ipa = a;
2410	const s64 *ipb = b;
2411
2412	if (*ipa > *ipb)
2413		return 1;
2414	if (*ipa < *ipb)
2415		return -1;
2416	return 0;
2417}
2418
2419int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
2420{
2421	u8 *prog = buf;
2422
2423	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2424	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
2425}
2426
2427struct x64_jit_data {
2428	struct bpf_binary_header *rw_header;
2429	struct bpf_binary_header *header;
2430	int *addrs;
2431	u8 *image;
2432	int proglen;
2433	struct jit_context ctx;
2434};
2435
2436#define MAX_PASSES 20
2437#define PADDING_PASSES (MAX_PASSES - 5)
2438
2439struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2440{
2441	struct bpf_binary_header *rw_header = NULL;
2442	struct bpf_binary_header *header = NULL;
2443	struct bpf_prog *tmp, *orig_prog = prog;
2444	struct x64_jit_data *jit_data;
2445	int proglen, oldproglen = 0;
2446	struct jit_context ctx = {};
2447	bool tmp_blinded = false;
2448	bool extra_pass = false;
2449	bool padding = false;
2450	u8 *rw_image = NULL;
2451	u8 *image = NULL;
2452	int *addrs;
2453	int pass;
2454	int i;
2455
2456	if (!prog->jit_requested)
2457		return orig_prog;
2458
2459	tmp = bpf_jit_blind_constants(prog);
2460	/*
2461	 * If blinding was requested and we failed during blinding,
2462	 * we must fall back to the interpreter.
2463	 */
2464	if (IS_ERR(tmp))
2465		return orig_prog;
2466	if (tmp != prog) {
2467		tmp_blinded = true;
2468		prog = tmp;
2469	}
2470
2471	jit_data = prog->aux->jit_data;
2472	if (!jit_data) {
2473		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2474		if (!jit_data) {
2475			prog = orig_prog;
2476			goto out;
2477		}
2478		prog->aux->jit_data = jit_data;
2479	}
2480	addrs = jit_data->addrs;
2481	if (addrs) {
2482		ctx = jit_data->ctx;
2483		oldproglen = jit_data->proglen;
2484		image = jit_data->image;
2485		header = jit_data->header;
2486		rw_header = jit_data->rw_header;
2487		rw_image = (void *)rw_header + ((void *)image - (void *)header);
2488		extra_pass = true;
2489		padding = true;
2490		goto skip_init_addrs;
2491	}
2492	addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2493	if (!addrs) {
2494		prog = orig_prog;
2495		goto out_addrs;
2496	}
2497
2498	/*
2499	 * Before first pass, make a rough estimation of addrs[]
2500	 * each BPF instruction is translated to less than 64 bytes
2501	 */
2502	for (proglen = 0, i = 0; i <= prog->len; i++) {
2503		proglen += 64;
2504		addrs[i] = proglen;
2505	}
2506	ctx.cleanup_addr = proglen;
2507skip_init_addrs:
2508
2509	/*
2510	 * JITed image shrinks with every pass and the loop iterates
2511	 * until the image stops shrinking. Very large BPF programs
2512	 * may converge on the last pass. In such case do one more
2513	 * pass to emit the final image.
2514	 */
2515	for (pass = 0; pass < MAX_PASSES || image; pass++) {
2516		if (!padding && pass >= PADDING_PASSES)
2517			padding = true;
2518		proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
2519		if (proglen <= 0) {
2520out_image:
2521			image = NULL;
2522			if (header) {
2523				bpf_arch_text_copy(&header->size, &rw_header->size,
2524						   sizeof(rw_header->size));
2525				bpf_jit_binary_pack_free(header, rw_header);
2526			}
2527			/* Fall back to interpreter mode */
2528			prog = orig_prog;
2529			if (extra_pass) {
2530				prog->bpf_func = NULL;
2531				prog->jited = 0;
2532				prog->jited_len = 0;
2533			}
2534			goto out_addrs;
2535		}
2536		if (image) {
2537			if (proglen != oldproglen) {
2538				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2539				       proglen, oldproglen);
2540				goto out_image;
2541			}
2542			break;
2543		}
2544		if (proglen == oldproglen) {
2545			/*
2546			 * The number of entries in extable is the number of BPF_LDX
2547			 * insns that access kernel memory via "pointer to BTF type".
2548			 * The verifier changed their opcode from LDX|MEM|size
2549			 * to LDX|PROBE_MEM|size to make JITing easier.
2550			 */
2551			u32 align = __alignof__(struct exception_table_entry);
2552			u32 extable_size = prog->aux->num_exentries *
2553				sizeof(struct exception_table_entry);
2554
2555			/* allocate module memory for x86 insns and extable */
2556			header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
2557							   &image, align, &rw_header, &rw_image,
2558							   jit_fill_hole);
2559			if (!header) {
2560				prog = orig_prog;
2561				goto out_addrs;
2562			}
2563			prog->aux->extable = (void *) image + roundup(proglen, align);
2564		}
2565		oldproglen = proglen;
2566		cond_resched();
2567	}
2568
2569	if (bpf_jit_enable > 1)
2570		bpf_jit_dump(prog->len, proglen, pass + 1, image);
2571
2572	if (image) {
2573		if (!prog->is_func || extra_pass) {
2574			/*
2575			 * bpf_jit_binary_pack_finalize fails in two scenarios:
2576			 *   1) header is not pointing to proper module memory;
2577			 *   2) the arch doesn't support bpf_arch_text_copy().
2578			 *
2579			 * Both cases are serious bugs and justify WARN_ON.
2580			 */
2581			if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
2582				/* header has been freed */
2583				header = NULL;
2584				goto out_image;
2585			}
2586
2587			bpf_tail_call_direct_fixup(prog);
2588		} else {
2589			jit_data->addrs = addrs;
2590			jit_data->ctx = ctx;
2591			jit_data->proglen = proglen;
2592			jit_data->image = image;
2593			jit_data->header = header;
2594			jit_data->rw_header = rw_header;
2595		}
2596		prog->bpf_func = (void *)image;
 
 
 
 
 
 
 
2597		prog->jited = 1;
2598		prog->jited_len = proglen;
2599	} else {
2600		prog = orig_prog;
2601	}
2602
2603	if (!image || !prog->is_func || extra_pass) {
2604		if (image)
2605			bpf_prog_fill_jited_linfo(prog, addrs + 1);
2606out_addrs:
2607		kvfree(addrs);
2608		kfree(jit_data);
2609		prog->aux->jit_data = NULL;
2610	}
2611out:
2612	if (tmp_blinded)
2613		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2614					   tmp : orig_prog);
2615	return prog;
2616}
2617
2618bool bpf_jit_supports_kfunc_call(void)
2619{
2620	return true;
2621}
2622
2623void *bpf_arch_text_copy(void *dst, void *src, size_t len)
2624{
2625	if (text_poke_copy(dst, src, len) == NULL)
2626		return ERR_PTR(-EINVAL);
2627	return dst;
2628}
2629
2630/* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
2631bool bpf_jit_supports_subprog_tailcalls(void)
2632{
2633	return true;
2634}
2635
2636void bpf_jit_free(struct bpf_prog *prog)
2637{
2638	if (prog->jited) {
2639		struct x64_jit_data *jit_data = prog->aux->jit_data;
2640		struct bpf_binary_header *hdr;
2641
2642		/*
2643		 * If we fail the final pass of JIT (from jit_subprogs),
2644		 * the program may not be finalized yet. Call finalize here
2645		 * before freeing it.
2646		 */
2647		if (jit_data) {
2648			bpf_jit_binary_pack_finalize(prog, jit_data->header,
2649						     jit_data->rw_header);
2650			kvfree(jit_data->addrs);
2651			kfree(jit_data);
2652		}
 
2653		hdr = bpf_jit_binary_pack_hdr(prog);
2654		bpf_jit_binary_pack_free(hdr, NULL);
2655		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
2656	}
2657
2658	bpf_prog_unlock_free(prog);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2659}