Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <asm/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 110#include <linux/udp.h>
 111#include <linux/init.h>
 112#include <linux/highmem.h>
 113#include <linux/user_namespace.h>
 114#include <linux/static_key.h>
 115#include <linux/memcontrol.h>
 116#include <linux/prefetch.h>
 117#include <linux/compat.h>
 118#include <linux/mroute.h>
 119#include <linux/mroute6.h>
 120#include <linux/icmpv6.h>
 121
 122#include <linux/uaccess.h>
 123
 124#include <linux/netdevice.h>
 125#include <net/protocol.h>
 126#include <linux/skbuff.h>
 
 127#include <net/net_namespace.h>
 128#include <net/request_sock.h>
 129#include <net/sock.h>
 
 130#include <linux/net_tstamp.h>
 131#include <net/xfrm.h>
 132#include <linux/ipsec.h>
 133#include <net/cls_cgroup.h>
 134#include <net/netprio_cgroup.h>
 135#include <linux/sock_diag.h>
 136
 137#include <linux/filter.h>
 138#include <net/sock_reuseport.h>
 139#include <net/bpf_sk_storage.h>
 140
 141#include <trace/events/sock.h>
 142
 143#include <net/tcp.h>
 144#include <net/busy_poll.h>
 145#include <net/phonet/phonet.h>
 146
 147#include <linux/ethtool.h>
 148
 149#include "dev.h"
 150
 151static DEFINE_MUTEX(proto_list_mutex);
 152static LIST_HEAD(proto_list);
 153
 154static void sock_def_write_space_wfree(struct sock *sk);
 155static void sock_def_write_space(struct sock *sk);
 156
 157/**
 158 * sk_ns_capable - General socket capability test
 159 * @sk: Socket to use a capability on or through
 160 * @user_ns: The user namespace of the capability to use
 161 * @cap: The capability to use
 162 *
 163 * Test to see if the opener of the socket had when the socket was
 164 * created and the current process has the capability @cap in the user
 165 * namespace @user_ns.
 166 */
 167bool sk_ns_capable(const struct sock *sk,
 168		   struct user_namespace *user_ns, int cap)
 169{
 170	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 171		ns_capable(user_ns, cap);
 172}
 173EXPORT_SYMBOL(sk_ns_capable);
 174
 175/**
 176 * sk_capable - Socket global capability test
 177 * @sk: Socket to use a capability on or through
 178 * @cap: The global capability to use
 179 *
 180 * Test to see if the opener of the socket had when the socket was
 181 * created and the current process has the capability @cap in all user
 182 * namespaces.
 183 */
 184bool sk_capable(const struct sock *sk, int cap)
 185{
 186	return sk_ns_capable(sk, &init_user_ns, cap);
 187}
 188EXPORT_SYMBOL(sk_capable);
 189
 190/**
 191 * sk_net_capable - Network namespace socket capability test
 192 * @sk: Socket to use a capability on or through
 193 * @cap: The capability to use
 194 *
 195 * Test to see if the opener of the socket had when the socket was created
 196 * and the current process has the capability @cap over the network namespace
 197 * the socket is a member of.
 198 */
 199bool sk_net_capable(const struct sock *sk, int cap)
 200{
 201	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 202}
 203EXPORT_SYMBOL(sk_net_capable);
 204
 205/*
 206 * Each address family might have different locking rules, so we have
 207 * one slock key per address family and separate keys for internal and
 208 * userspace sockets.
 209 */
 210static struct lock_class_key af_family_keys[AF_MAX];
 211static struct lock_class_key af_family_kern_keys[AF_MAX];
 212static struct lock_class_key af_family_slock_keys[AF_MAX];
 213static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 214
 215/*
 216 * Make lock validator output more readable. (we pre-construct these
 217 * strings build-time, so that runtime initialization of socket
 218 * locks is fast):
 219 */
 220
 221#define _sock_locks(x)						  \
 222  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 223  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 224  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 225  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 226  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 227  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 228  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 229  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 230  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 231  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 232  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 233  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 234  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 235  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 236  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 237  x "AF_MCTP"  , \
 238  x "AF_MAX"
 239
 240static const char *const af_family_key_strings[AF_MAX+1] = {
 241	_sock_locks("sk_lock-")
 242};
 243static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 244	_sock_locks("slock-")
 245};
 246static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 247	_sock_locks("clock-")
 248};
 249
 250static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 251	_sock_locks("k-sk_lock-")
 252};
 253static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 254	_sock_locks("k-slock-")
 255};
 256static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 257	_sock_locks("k-clock-")
 258};
 259static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 260	_sock_locks("rlock-")
 261};
 262static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 263	_sock_locks("wlock-")
 264};
 265static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 266	_sock_locks("elock-")
 267};
 268
 269/*
 270 * sk_callback_lock and sk queues locking rules are per-address-family,
 271 * so split the lock classes by using a per-AF key:
 272 */
 273static struct lock_class_key af_callback_keys[AF_MAX];
 274static struct lock_class_key af_rlock_keys[AF_MAX];
 275static struct lock_class_key af_wlock_keys[AF_MAX];
 276static struct lock_class_key af_elock_keys[AF_MAX];
 277static struct lock_class_key af_kern_callback_keys[AF_MAX];
 278
 279/* Run time adjustable parameters. */
 280__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 281EXPORT_SYMBOL(sysctl_wmem_max);
 282__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 283EXPORT_SYMBOL(sysctl_rmem_max);
 284__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 285__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 286
 287int sysctl_tstamp_allow_data __read_mostly = 1;
 288
 289DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 290EXPORT_SYMBOL_GPL(memalloc_socks_key);
 291
 292/**
 293 * sk_set_memalloc - sets %SOCK_MEMALLOC
 294 * @sk: socket to set it on
 295 *
 296 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 297 * It's the responsibility of the admin to adjust min_free_kbytes
 298 * to meet the requirements
 299 */
 300void sk_set_memalloc(struct sock *sk)
 301{
 302	sock_set_flag(sk, SOCK_MEMALLOC);
 303	sk->sk_allocation |= __GFP_MEMALLOC;
 304	static_branch_inc(&memalloc_socks_key);
 305}
 306EXPORT_SYMBOL_GPL(sk_set_memalloc);
 307
 308void sk_clear_memalloc(struct sock *sk)
 309{
 310	sock_reset_flag(sk, SOCK_MEMALLOC);
 311	sk->sk_allocation &= ~__GFP_MEMALLOC;
 312	static_branch_dec(&memalloc_socks_key);
 313
 314	/*
 315	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 316	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 317	 * it has rmem allocations due to the last swapfile being deactivated
 318	 * but there is a risk that the socket is unusable due to exceeding
 319	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 320	 */
 321	sk_mem_reclaim(sk);
 322}
 323EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 324
 325int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 326{
 327	int ret;
 328	unsigned int noreclaim_flag;
 329
 330	/* these should have been dropped before queueing */
 331	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 332
 333	noreclaim_flag = memalloc_noreclaim_save();
 334	ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
 335				 tcp_v6_do_rcv,
 336				 tcp_v4_do_rcv,
 337				 sk, skb);
 338	memalloc_noreclaim_restore(noreclaim_flag);
 339
 340	return ret;
 341}
 342EXPORT_SYMBOL(__sk_backlog_rcv);
 343
 344void sk_error_report(struct sock *sk)
 345{
 346	sk->sk_error_report(sk);
 347
 348	switch (sk->sk_family) {
 349	case AF_INET:
 350		fallthrough;
 351	case AF_INET6:
 352		trace_inet_sk_error_report(sk);
 353		break;
 354	default:
 355		break;
 356	}
 357}
 358EXPORT_SYMBOL(sk_error_report);
 359
 360int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 361{
 362	struct __kernel_sock_timeval tv;
 363
 364	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 365		tv.tv_sec = 0;
 366		tv.tv_usec = 0;
 367	} else {
 368		tv.tv_sec = timeo / HZ;
 369		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 370	}
 371
 372	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 373		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 374		*(struct old_timeval32 *)optval = tv32;
 375		return sizeof(tv32);
 376	}
 377
 378	if (old_timeval) {
 379		struct __kernel_old_timeval old_tv;
 380		old_tv.tv_sec = tv.tv_sec;
 381		old_tv.tv_usec = tv.tv_usec;
 382		*(struct __kernel_old_timeval *)optval = old_tv;
 383		return sizeof(old_tv);
 384	}
 385
 386	*(struct __kernel_sock_timeval *)optval = tv;
 387	return sizeof(tv);
 388}
 389EXPORT_SYMBOL(sock_get_timeout);
 390
 391int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
 392			   sockptr_t optval, int optlen, bool old_timeval)
 393{
 394	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 395		struct old_timeval32 tv32;
 396
 397		if (optlen < sizeof(tv32))
 398			return -EINVAL;
 399
 400		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
 401			return -EFAULT;
 402		tv->tv_sec = tv32.tv_sec;
 403		tv->tv_usec = tv32.tv_usec;
 404	} else if (old_timeval) {
 405		struct __kernel_old_timeval old_tv;
 406
 407		if (optlen < sizeof(old_tv))
 408			return -EINVAL;
 409		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
 410			return -EFAULT;
 411		tv->tv_sec = old_tv.tv_sec;
 412		tv->tv_usec = old_tv.tv_usec;
 413	} else {
 414		if (optlen < sizeof(*tv))
 415			return -EINVAL;
 416		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
 417			return -EFAULT;
 418	}
 419
 420	return 0;
 421}
 422EXPORT_SYMBOL(sock_copy_user_timeval);
 423
 424static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
 425			    bool old_timeval)
 426{
 427	struct __kernel_sock_timeval tv;
 428	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
 429	long val;
 430
 431	if (err)
 432		return err;
 433
 434	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 435		return -EDOM;
 436
 437	if (tv.tv_sec < 0) {
 438		static int warned __read_mostly;
 439
 440		WRITE_ONCE(*timeo_p, 0);
 441		if (warned < 10 && net_ratelimit()) {
 442			warned++;
 443			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 444				__func__, current->comm, task_pid_nr(current));
 445		}
 446		return 0;
 447	}
 448	val = MAX_SCHEDULE_TIMEOUT;
 449	if ((tv.tv_sec || tv.tv_usec) &&
 450	    (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)))
 451		val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec,
 452						    USEC_PER_SEC / HZ);
 453	WRITE_ONCE(*timeo_p, val);
 454	return 0;
 455}
 456
 457static bool sock_needs_netstamp(const struct sock *sk)
 458{
 459	switch (sk->sk_family) {
 460	case AF_UNSPEC:
 461	case AF_UNIX:
 462		return false;
 463	default:
 464		return true;
 465	}
 466}
 467
 468static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 469{
 470	if (sk->sk_flags & flags) {
 471		sk->sk_flags &= ~flags;
 472		if (sock_needs_netstamp(sk) &&
 473		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 474			net_disable_timestamp();
 475	}
 476}
 477
 478
 479int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 480{
 481	unsigned long flags;
 482	struct sk_buff_head *list = &sk->sk_receive_queue;
 483
 484	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
 485		atomic_inc(&sk->sk_drops);
 486		trace_sock_rcvqueue_full(sk, skb);
 487		return -ENOMEM;
 488	}
 489
 490	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 491		atomic_inc(&sk->sk_drops);
 492		return -ENOBUFS;
 493	}
 494
 495	skb->dev = NULL;
 496	skb_set_owner_r(skb, sk);
 497
 498	/* we escape from rcu protected region, make sure we dont leak
 499	 * a norefcounted dst
 500	 */
 501	skb_dst_force(skb);
 502
 503	spin_lock_irqsave(&list->lock, flags);
 504	sock_skb_set_dropcount(sk, skb);
 505	__skb_queue_tail(list, skb);
 506	spin_unlock_irqrestore(&list->lock, flags);
 507
 508	if (!sock_flag(sk, SOCK_DEAD))
 509		sk->sk_data_ready(sk);
 510	return 0;
 511}
 512EXPORT_SYMBOL(__sock_queue_rcv_skb);
 513
 514int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
 515			      enum skb_drop_reason *reason)
 516{
 517	enum skb_drop_reason drop_reason;
 518	int err;
 519
 520	err = sk_filter(sk, skb);
 521	if (err) {
 522		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
 523		goto out;
 524	}
 525	err = __sock_queue_rcv_skb(sk, skb);
 526	switch (err) {
 527	case -ENOMEM:
 528		drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
 529		break;
 530	case -ENOBUFS:
 531		drop_reason = SKB_DROP_REASON_PROTO_MEM;
 532		break;
 533	default:
 534		drop_reason = SKB_NOT_DROPPED_YET;
 535		break;
 536	}
 537out:
 538	if (reason)
 539		*reason = drop_reason;
 540	return err;
 541}
 542EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
 543
 544int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 545		     const int nested, unsigned int trim_cap, bool refcounted)
 546{
 547	int rc = NET_RX_SUCCESS;
 548
 549	if (sk_filter_trim_cap(sk, skb, trim_cap))
 550		goto discard_and_relse;
 551
 552	skb->dev = NULL;
 553
 554	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
 555		atomic_inc(&sk->sk_drops);
 556		goto discard_and_relse;
 557	}
 558	if (nested)
 559		bh_lock_sock_nested(sk);
 560	else
 561		bh_lock_sock(sk);
 562	if (!sock_owned_by_user(sk)) {
 563		/*
 564		 * trylock + unlock semantics:
 565		 */
 566		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 567
 568		rc = sk_backlog_rcv(sk, skb);
 569
 570		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
 571	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 572		bh_unlock_sock(sk);
 573		atomic_inc(&sk->sk_drops);
 574		goto discard_and_relse;
 575	}
 576
 577	bh_unlock_sock(sk);
 578out:
 579	if (refcounted)
 580		sock_put(sk);
 581	return rc;
 582discard_and_relse:
 583	kfree_skb(skb);
 584	goto out;
 585}
 586EXPORT_SYMBOL(__sk_receive_skb);
 587
 588INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
 589							  u32));
 590INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
 591							   u32));
 592struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 593{
 594	struct dst_entry *dst = __sk_dst_get(sk);
 595
 596	if (dst && dst->obsolete &&
 597	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 598			       dst, cookie) == NULL) {
 599		sk_tx_queue_clear(sk);
 600		WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
 601		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 602		dst_release(dst);
 603		return NULL;
 604	}
 605
 606	return dst;
 607}
 608EXPORT_SYMBOL(__sk_dst_check);
 609
 610struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 611{
 612	struct dst_entry *dst = sk_dst_get(sk);
 613
 614	if (dst && dst->obsolete &&
 615	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 616			       dst, cookie) == NULL) {
 617		sk_dst_reset(sk);
 618		dst_release(dst);
 619		return NULL;
 620	}
 621
 622	return dst;
 623}
 624EXPORT_SYMBOL(sk_dst_check);
 625
 626static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
 627{
 628	int ret = -ENOPROTOOPT;
 629#ifdef CONFIG_NETDEVICES
 630	struct net *net = sock_net(sk);
 631
 632	/* Sorry... */
 633	ret = -EPERM;
 634	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
 635		goto out;
 636
 637	ret = -EINVAL;
 638	if (ifindex < 0)
 639		goto out;
 640
 641	/* Paired with all READ_ONCE() done locklessly. */
 642	WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
 643
 644	if (sk->sk_prot->rehash)
 645		sk->sk_prot->rehash(sk);
 646	sk_dst_reset(sk);
 647
 648	ret = 0;
 649
 650out:
 651#endif
 652
 653	return ret;
 654}
 655
 656int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
 657{
 658	int ret;
 659
 660	if (lock_sk)
 661		lock_sock(sk);
 662	ret = sock_bindtoindex_locked(sk, ifindex);
 663	if (lock_sk)
 664		release_sock(sk);
 665
 666	return ret;
 667}
 668EXPORT_SYMBOL(sock_bindtoindex);
 669
 670static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
 671{
 672	int ret = -ENOPROTOOPT;
 673#ifdef CONFIG_NETDEVICES
 674	struct net *net = sock_net(sk);
 675	char devname[IFNAMSIZ];
 676	int index;
 677
 678	ret = -EINVAL;
 679	if (optlen < 0)
 680		goto out;
 681
 682	/* Bind this socket to a particular device like "eth0",
 683	 * as specified in the passed interface name. If the
 684	 * name is "" or the option length is zero the socket
 685	 * is not bound.
 686	 */
 687	if (optlen > IFNAMSIZ - 1)
 688		optlen = IFNAMSIZ - 1;
 689	memset(devname, 0, sizeof(devname));
 690
 691	ret = -EFAULT;
 692	if (copy_from_sockptr(devname, optval, optlen))
 693		goto out;
 694
 695	index = 0;
 696	if (devname[0] != '\0') {
 697		struct net_device *dev;
 698
 699		rcu_read_lock();
 700		dev = dev_get_by_name_rcu(net, devname);
 701		if (dev)
 702			index = dev->ifindex;
 703		rcu_read_unlock();
 704		ret = -ENODEV;
 705		if (!dev)
 706			goto out;
 707	}
 708
 709	sockopt_lock_sock(sk);
 710	ret = sock_bindtoindex_locked(sk, index);
 711	sockopt_release_sock(sk);
 712out:
 713#endif
 714
 715	return ret;
 716}
 717
 718static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
 719				sockptr_t optlen, int len)
 720{
 721	int ret = -ENOPROTOOPT;
 722#ifdef CONFIG_NETDEVICES
 723	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
 724	struct net *net = sock_net(sk);
 725	char devname[IFNAMSIZ];
 726
 727	if (bound_dev_if == 0) {
 728		len = 0;
 729		goto zero;
 730	}
 731
 732	ret = -EINVAL;
 733	if (len < IFNAMSIZ)
 734		goto out;
 735
 736	ret = netdev_get_name(net, devname, bound_dev_if);
 737	if (ret)
 738		goto out;
 739
 740	len = strlen(devname) + 1;
 741
 742	ret = -EFAULT;
 743	if (copy_to_sockptr(optval, devname, len))
 744		goto out;
 745
 746zero:
 747	ret = -EFAULT;
 748	if (copy_to_sockptr(optlen, &len, sizeof(int)))
 749		goto out;
 750
 751	ret = 0;
 752
 753out:
 754#endif
 755
 756	return ret;
 757}
 758
 759bool sk_mc_loop(const struct sock *sk)
 760{
 761	if (dev_recursion_level())
 762		return false;
 763	if (!sk)
 764		return true;
 765	/* IPV6_ADDRFORM can change sk->sk_family under us. */
 766	switch (READ_ONCE(sk->sk_family)) {
 767	case AF_INET:
 768		return inet_test_bit(MC_LOOP, sk);
 769#if IS_ENABLED(CONFIG_IPV6)
 770	case AF_INET6:
 771		return inet6_test_bit(MC6_LOOP, sk);
 772#endif
 773	}
 774	WARN_ON_ONCE(1);
 775	return true;
 776}
 777EXPORT_SYMBOL(sk_mc_loop);
 778
 779void sock_set_reuseaddr(struct sock *sk)
 780{
 781	lock_sock(sk);
 782	sk->sk_reuse = SK_CAN_REUSE;
 783	release_sock(sk);
 784}
 785EXPORT_SYMBOL(sock_set_reuseaddr);
 786
 787void sock_set_reuseport(struct sock *sk)
 788{
 789	lock_sock(sk);
 790	sk->sk_reuseport = true;
 791	release_sock(sk);
 792}
 793EXPORT_SYMBOL(sock_set_reuseport);
 794
 795void sock_no_linger(struct sock *sk)
 796{
 797	lock_sock(sk);
 798	WRITE_ONCE(sk->sk_lingertime, 0);
 799	sock_set_flag(sk, SOCK_LINGER);
 800	release_sock(sk);
 801}
 802EXPORT_SYMBOL(sock_no_linger);
 803
 804void sock_set_priority(struct sock *sk, u32 priority)
 805{
 806	WRITE_ONCE(sk->sk_priority, priority);
 807}
 808EXPORT_SYMBOL(sock_set_priority);
 809
 810void sock_set_sndtimeo(struct sock *sk, s64 secs)
 811{
 812	lock_sock(sk);
 813	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
 814		WRITE_ONCE(sk->sk_sndtimeo, secs * HZ);
 815	else
 816		WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT);
 817	release_sock(sk);
 818}
 819EXPORT_SYMBOL(sock_set_sndtimeo);
 820
 821static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
 822{
 
 
 823	if (val)  {
 824		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
 825		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
 826		sock_set_flag(sk, SOCK_RCVTSTAMP);
 827		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 828	} else {
 829		sock_reset_flag(sk, SOCK_RCVTSTAMP);
 830		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
 831	}
 832}
 833
 834void sock_enable_timestamps(struct sock *sk)
 835{
 836	lock_sock(sk);
 837	__sock_set_timestamps(sk, true, false, true);
 838	release_sock(sk);
 839}
 840EXPORT_SYMBOL(sock_enable_timestamps);
 841
 842void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
 843{
 844	switch (optname) {
 845	case SO_TIMESTAMP_OLD:
 846		__sock_set_timestamps(sk, valbool, false, false);
 847		break;
 848	case SO_TIMESTAMP_NEW:
 849		__sock_set_timestamps(sk, valbool, true, false);
 850		break;
 851	case SO_TIMESTAMPNS_OLD:
 852		__sock_set_timestamps(sk, valbool, false, true);
 853		break;
 854	case SO_TIMESTAMPNS_NEW:
 855		__sock_set_timestamps(sk, valbool, true, true);
 856		break;
 857	}
 858}
 859
 860static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
 861{
 862	struct net *net = sock_net(sk);
 863	struct net_device *dev = NULL;
 864	bool match = false;
 865	int *vclock_index;
 866	int i, num;
 867
 868	if (sk->sk_bound_dev_if)
 869		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
 870
 871	if (!dev) {
 872		pr_err("%s: sock not bind to device\n", __func__);
 873		return -EOPNOTSUPP;
 874	}
 875
 876	num = ethtool_get_phc_vclocks(dev, &vclock_index);
 877	dev_put(dev);
 878
 879	for (i = 0; i < num; i++) {
 880		if (*(vclock_index + i) == phc_index) {
 881			match = true;
 882			break;
 883		}
 884	}
 885
 886	if (num > 0)
 887		kfree(vclock_index);
 888
 889	if (!match)
 890		return -EINVAL;
 891
 892	WRITE_ONCE(sk->sk_bind_phc, phc_index);
 893
 894	return 0;
 895}
 896
 897int sock_set_timestamping(struct sock *sk, int optname,
 898			  struct so_timestamping timestamping)
 899{
 900	int val = timestamping.flags;
 901	int ret;
 902
 903	if (val & ~SOF_TIMESTAMPING_MASK)
 904		return -EINVAL;
 905
 906	if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
 907	    !(val & SOF_TIMESTAMPING_OPT_ID))
 908		return -EINVAL;
 909
 910	if (val & SOF_TIMESTAMPING_OPT_ID &&
 911	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 912		if (sk_is_tcp(sk)) {
 913			if ((1 << sk->sk_state) &
 914			    (TCPF_CLOSE | TCPF_LISTEN))
 915				return -EINVAL;
 916			if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
 917				atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
 918			else
 919				atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
 920		} else {
 921			atomic_set(&sk->sk_tskey, 0);
 922		}
 923	}
 924
 925	if (val & SOF_TIMESTAMPING_OPT_STATS &&
 926	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
 927		return -EINVAL;
 928
 929	if (val & SOF_TIMESTAMPING_BIND_PHC) {
 930		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
 931		if (ret)
 932			return ret;
 933	}
 934
 935	WRITE_ONCE(sk->sk_tsflags, val);
 936	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
 937
 938	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 939		sock_enable_timestamp(sk,
 940				      SOCK_TIMESTAMPING_RX_SOFTWARE);
 941	else
 942		sock_disable_timestamp(sk,
 943				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 944	return 0;
 945}
 946
 947void sock_set_keepalive(struct sock *sk)
 948{
 949	lock_sock(sk);
 950	if (sk->sk_prot->keepalive)
 951		sk->sk_prot->keepalive(sk, true);
 952	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
 953	release_sock(sk);
 954}
 955EXPORT_SYMBOL(sock_set_keepalive);
 956
 957static void __sock_set_rcvbuf(struct sock *sk, int val)
 958{
 959	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
 960	 * as a negative value.
 961	 */
 962	val = min_t(int, val, INT_MAX / 2);
 963	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 964
 965	/* We double it on the way in to account for "struct sk_buff" etc.
 966	 * overhead.   Applications assume that the SO_RCVBUF setting they make
 967	 * will allow that much actual data to be received on that socket.
 968	 *
 969	 * Applications are unaware that "struct sk_buff" and other overheads
 970	 * allocate from the receive buffer during socket buffer allocation.
 971	 *
 972	 * And after considering the possible alternatives, returning the value
 973	 * we actually used in getsockopt is the most desirable behavior.
 974	 */
 975	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
 976}
 977
 978void sock_set_rcvbuf(struct sock *sk, int val)
 979{
 980	lock_sock(sk);
 981	__sock_set_rcvbuf(sk, val);
 982	release_sock(sk);
 983}
 984EXPORT_SYMBOL(sock_set_rcvbuf);
 985
 986static void __sock_set_mark(struct sock *sk, u32 val)
 987{
 988	if (val != sk->sk_mark) {
 989		WRITE_ONCE(sk->sk_mark, val);
 990		sk_dst_reset(sk);
 991	}
 992}
 993
 994void sock_set_mark(struct sock *sk, u32 val)
 995{
 996	lock_sock(sk);
 997	__sock_set_mark(sk, val);
 998	release_sock(sk);
 999}
1000EXPORT_SYMBOL(sock_set_mark);
1001
1002static void sock_release_reserved_memory(struct sock *sk, int bytes)
1003{
1004	/* Round down bytes to multiple of pages */
1005	bytes = round_down(bytes, PAGE_SIZE);
1006
1007	WARN_ON(bytes > sk->sk_reserved_mem);
1008	WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes);
1009	sk_mem_reclaim(sk);
1010}
1011
1012static int sock_reserve_memory(struct sock *sk, int bytes)
1013{
1014	long allocated;
1015	bool charged;
1016	int pages;
1017
1018	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1019		return -EOPNOTSUPP;
1020
1021	if (!bytes)
1022		return 0;
1023
1024	pages = sk_mem_pages(bytes);
1025
1026	/* pre-charge to memcg */
1027	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1028					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1029	if (!charged)
1030		return -ENOMEM;
1031
1032	/* pre-charge to forward_alloc */
1033	sk_memory_allocated_add(sk, pages);
1034	allocated = sk_memory_allocated(sk);
1035	/* If the system goes into memory pressure with this
1036	 * precharge, give up and return error.
1037	 */
1038	if (allocated > sk_prot_mem_limits(sk, 1)) {
1039		sk_memory_allocated_sub(sk, pages);
1040		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1041		return -ENOMEM;
1042	}
1043	sk_forward_alloc_add(sk, pages << PAGE_SHIFT);
1044
1045	WRITE_ONCE(sk->sk_reserved_mem,
1046		   sk->sk_reserved_mem + (pages << PAGE_SHIFT));
1047
1048	return 0;
1049}
1050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051void sockopt_lock_sock(struct sock *sk)
1052{
1053	/* When current->bpf_ctx is set, the setsockopt is called from
1054	 * a bpf prog.  bpf has ensured the sk lock has been
1055	 * acquired before calling setsockopt().
1056	 */
1057	if (has_current_bpf_ctx())
1058		return;
1059
1060	lock_sock(sk);
1061}
1062EXPORT_SYMBOL(sockopt_lock_sock);
1063
1064void sockopt_release_sock(struct sock *sk)
1065{
1066	if (has_current_bpf_ctx())
1067		return;
1068
1069	release_sock(sk);
1070}
1071EXPORT_SYMBOL(sockopt_release_sock);
1072
1073bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1074{
1075	return has_current_bpf_ctx() || ns_capable(ns, cap);
1076}
1077EXPORT_SYMBOL(sockopt_ns_capable);
1078
1079bool sockopt_capable(int cap)
1080{
1081	return has_current_bpf_ctx() || capable(cap);
1082}
1083EXPORT_SYMBOL(sockopt_capable);
1084
 
 
 
 
 
 
 
 
 
 
 
1085/*
1086 *	This is meant for all protocols to use and covers goings on
1087 *	at the socket level. Everything here is generic.
1088 */
1089
1090int sk_setsockopt(struct sock *sk, int level, int optname,
1091		  sockptr_t optval, unsigned int optlen)
1092{
1093	struct so_timestamping timestamping;
1094	struct socket *sock = sk->sk_socket;
1095	struct sock_txtime sk_txtime;
1096	int val;
1097	int valbool;
1098	struct linger ling;
1099	int ret = 0;
1100
1101	/*
1102	 *	Options without arguments
1103	 */
1104
1105	if (optname == SO_BINDTODEVICE)
1106		return sock_setbindtodevice(sk, optval, optlen);
1107
1108	if (optlen < sizeof(int))
1109		return -EINVAL;
1110
1111	if (copy_from_sockptr(&val, optval, sizeof(val)))
1112		return -EFAULT;
1113
1114	valbool = val ? 1 : 0;
1115
1116	/* handle options which do not require locking the socket. */
1117	switch (optname) {
1118	case SO_PRIORITY:
1119		if ((val >= 0 && val <= 6) ||
1120		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1121		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1122			sock_set_priority(sk, val);
1123			return 0;
1124		}
1125		return -EPERM;
1126	case SO_PASSSEC:
1127		assign_bit(SOCK_PASSSEC, &sock->flags, valbool);
1128		return 0;
1129	case SO_PASSCRED:
1130		assign_bit(SOCK_PASSCRED, &sock->flags, valbool);
1131		return 0;
1132	case SO_PASSPIDFD:
1133		assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool);
1134		return 0;
1135	case SO_TYPE:
1136	case SO_PROTOCOL:
1137	case SO_DOMAIN:
1138	case SO_ERROR:
1139		return -ENOPROTOOPT;
1140#ifdef CONFIG_NET_RX_BUSY_POLL
1141	case SO_BUSY_POLL:
1142		if (val < 0)
1143			return -EINVAL;
1144		WRITE_ONCE(sk->sk_ll_usec, val);
1145		return 0;
1146	case SO_PREFER_BUSY_POLL:
1147		if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1148			return -EPERM;
1149		WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1150		return 0;
1151	case SO_BUSY_POLL_BUDGET:
1152		if (val > READ_ONCE(sk->sk_busy_poll_budget) &&
1153		    !sockopt_capable(CAP_NET_ADMIN))
1154			return -EPERM;
1155		if (val < 0 || val > U16_MAX)
1156			return -EINVAL;
1157		WRITE_ONCE(sk->sk_busy_poll_budget, val);
1158		return 0;
1159#endif
1160	case SO_MAX_PACING_RATE:
1161		{
1162		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1163		unsigned long pacing_rate;
1164
1165		if (sizeof(ulval) != sizeof(val) &&
1166		    optlen >= sizeof(ulval) &&
1167		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1168			return -EFAULT;
1169		}
1170		if (ulval != ~0UL)
1171			cmpxchg(&sk->sk_pacing_status,
1172				SK_PACING_NONE,
1173				SK_PACING_NEEDED);
1174		/* Pairs with READ_ONCE() from sk_getsockopt() */
1175		WRITE_ONCE(sk->sk_max_pacing_rate, ulval);
1176		pacing_rate = READ_ONCE(sk->sk_pacing_rate);
1177		if (ulval < pacing_rate)
1178			WRITE_ONCE(sk->sk_pacing_rate, ulval);
1179		return 0;
1180		}
1181	case SO_TXREHASH:
1182		if (val < -1 || val > 1)
1183			return -EINVAL;
1184		if ((u8)val == SOCK_TXREHASH_DEFAULT)
1185			val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1186		/* Paired with READ_ONCE() in tcp_rtx_synack()
1187		 * and sk_getsockopt().
1188		 */
1189		WRITE_ONCE(sk->sk_txrehash, (u8)val);
1190		return 0;
1191	case SO_PEEK_OFF:
1192		{
1193		int (*set_peek_off)(struct sock *sk, int val);
1194
1195		set_peek_off = READ_ONCE(sock->ops)->set_peek_off;
1196		if (set_peek_off)
1197			ret = set_peek_off(sk, val);
1198		else
1199			ret = -EOPNOTSUPP;
1200		return ret;
1201		}
 
 
 
 
1202	}
1203
1204	sockopt_lock_sock(sk);
1205
1206	switch (optname) {
1207	case SO_DEBUG:
1208		if (val && !sockopt_capable(CAP_NET_ADMIN))
1209			ret = -EACCES;
1210		else
1211			sock_valbool_flag(sk, SOCK_DBG, valbool);
1212		break;
1213	case SO_REUSEADDR:
1214		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1215		break;
1216	case SO_REUSEPORT:
1217		sk->sk_reuseport = valbool;
 
 
 
1218		break;
1219	case SO_DONTROUTE:
1220		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1221		sk_dst_reset(sk);
1222		break;
1223	case SO_BROADCAST:
1224		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1225		break;
1226	case SO_SNDBUF:
1227		/* Don't error on this BSD doesn't and if you think
1228		 * about it this is right. Otherwise apps have to
1229		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1230		 * are treated in BSD as hints
1231		 */
1232		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1233set_sndbuf:
1234		/* Ensure val * 2 fits into an int, to prevent max_t()
1235		 * from treating it as a negative value.
1236		 */
1237		val = min_t(int, val, INT_MAX / 2);
1238		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1239		WRITE_ONCE(sk->sk_sndbuf,
1240			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1241		/* Wake up sending tasks if we upped the value. */
1242		sk->sk_write_space(sk);
1243		break;
1244
1245	case SO_SNDBUFFORCE:
1246		if (!sockopt_capable(CAP_NET_ADMIN)) {
1247			ret = -EPERM;
1248			break;
1249		}
1250
1251		/* No negative values (to prevent underflow, as val will be
1252		 * multiplied by 2).
1253		 */
1254		if (val < 0)
1255			val = 0;
1256		goto set_sndbuf;
1257
1258	case SO_RCVBUF:
1259		/* Don't error on this BSD doesn't and if you think
1260		 * about it this is right. Otherwise apps have to
1261		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1262		 * are treated in BSD as hints
1263		 */
1264		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1265		break;
1266
1267	case SO_RCVBUFFORCE:
1268		if (!sockopt_capable(CAP_NET_ADMIN)) {
1269			ret = -EPERM;
1270			break;
1271		}
1272
1273		/* No negative values (to prevent underflow, as val will be
1274		 * multiplied by 2).
1275		 */
1276		__sock_set_rcvbuf(sk, max(val, 0));
1277		break;
1278
1279	case SO_KEEPALIVE:
1280		if (sk->sk_prot->keepalive)
1281			sk->sk_prot->keepalive(sk, valbool);
1282		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1283		break;
1284
1285	case SO_OOBINLINE:
1286		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1287		break;
1288
1289	case SO_NO_CHECK:
1290		sk->sk_no_check_tx = valbool;
1291		break;
1292
1293	case SO_LINGER:
1294		if (optlen < sizeof(ling)) {
1295			ret = -EINVAL;	/* 1003.1g */
1296			break;
1297		}
1298		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1299			ret = -EFAULT;
1300			break;
1301		}
1302		if (!ling.l_onoff) {
1303			sock_reset_flag(sk, SOCK_LINGER);
1304		} else {
1305			unsigned long t_sec = ling.l_linger;
1306
1307			if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ)
1308				WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT);
1309			else
1310				WRITE_ONCE(sk->sk_lingertime, t_sec * HZ);
1311			sock_set_flag(sk, SOCK_LINGER);
1312		}
1313		break;
1314
1315	case SO_BSDCOMPAT:
1316		break;
1317
1318	case SO_TIMESTAMP_OLD:
1319	case SO_TIMESTAMP_NEW:
1320	case SO_TIMESTAMPNS_OLD:
1321	case SO_TIMESTAMPNS_NEW:
1322		sock_set_timestamp(sk, optname, valbool);
1323		break;
1324
1325	case SO_TIMESTAMPING_NEW:
1326	case SO_TIMESTAMPING_OLD:
1327		if (optlen == sizeof(timestamping)) {
1328			if (copy_from_sockptr(&timestamping, optval,
1329					      sizeof(timestamping))) {
1330				ret = -EFAULT;
1331				break;
1332			}
1333		} else {
1334			memset(&timestamping, 0, sizeof(timestamping));
1335			timestamping.flags = val;
1336		}
1337		ret = sock_set_timestamping(sk, optname, timestamping);
1338		break;
1339
1340	case SO_RCVLOWAT:
1341		{
1342		int (*set_rcvlowat)(struct sock *sk, int val) = NULL;
1343
1344		if (val < 0)
1345			val = INT_MAX;
1346		if (sock)
1347			set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat;
1348		if (set_rcvlowat)
1349			ret = set_rcvlowat(sk, val);
1350		else
1351			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1352		break;
1353		}
1354	case SO_RCVTIMEO_OLD:
1355	case SO_RCVTIMEO_NEW:
1356		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1357				       optlen, optname == SO_RCVTIMEO_OLD);
1358		break;
1359
1360	case SO_SNDTIMEO_OLD:
1361	case SO_SNDTIMEO_NEW:
1362		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1363				       optlen, optname == SO_SNDTIMEO_OLD);
1364		break;
1365
1366	case SO_ATTACH_FILTER: {
1367		struct sock_fprog fprog;
1368
1369		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1370		if (!ret)
1371			ret = sk_attach_filter(&fprog, sk);
1372		break;
1373	}
1374	case SO_ATTACH_BPF:
1375		ret = -EINVAL;
1376		if (optlen == sizeof(u32)) {
1377			u32 ufd;
1378
1379			ret = -EFAULT;
1380			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1381				break;
1382
1383			ret = sk_attach_bpf(ufd, sk);
1384		}
1385		break;
1386
1387	case SO_ATTACH_REUSEPORT_CBPF: {
1388		struct sock_fprog fprog;
1389
1390		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1391		if (!ret)
1392			ret = sk_reuseport_attach_filter(&fprog, sk);
1393		break;
1394	}
1395	case SO_ATTACH_REUSEPORT_EBPF:
1396		ret = -EINVAL;
1397		if (optlen == sizeof(u32)) {
1398			u32 ufd;
1399
1400			ret = -EFAULT;
1401			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1402				break;
1403
1404			ret = sk_reuseport_attach_bpf(ufd, sk);
1405		}
1406		break;
1407
1408	case SO_DETACH_REUSEPORT_BPF:
1409		ret = reuseport_detach_prog(sk);
1410		break;
1411
1412	case SO_DETACH_FILTER:
1413		ret = sk_detach_filter(sk);
1414		break;
1415
1416	case SO_LOCK_FILTER:
1417		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1418			ret = -EPERM;
1419		else
1420			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1421		break;
1422
1423	case SO_MARK:
1424		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1425		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1426			ret = -EPERM;
1427			break;
1428		}
1429
1430		__sock_set_mark(sk, val);
1431		break;
1432	case SO_RCVMARK:
1433		sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1434		break;
1435
1436	case SO_RXQ_OVFL:
1437		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1438		break;
1439
1440	case SO_WIFI_STATUS:
1441		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1442		break;
1443
1444	case SO_NOFCS:
1445		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1446		break;
1447
1448	case SO_SELECT_ERR_QUEUE:
1449		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1450		break;
1451
1452
1453	case SO_INCOMING_CPU:
1454		reuseport_update_incoming_cpu(sk, val);
1455		break;
1456
1457	case SO_CNX_ADVICE:
1458		if (val == 1)
1459			dst_negative_advice(sk);
1460		break;
1461
1462	case SO_ZEROCOPY:
1463		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1464			if (!(sk_is_tcp(sk) ||
1465			      (sk->sk_type == SOCK_DGRAM &&
1466			       sk->sk_protocol == IPPROTO_UDP)))
1467				ret = -EOPNOTSUPP;
1468		} else if (sk->sk_family != PF_RDS) {
1469			ret = -EOPNOTSUPP;
1470		}
1471		if (!ret) {
1472			if (val < 0 || val > 1)
1473				ret = -EINVAL;
1474			else
1475				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1476		}
1477		break;
1478
1479	case SO_TXTIME:
1480		if (optlen != sizeof(struct sock_txtime)) {
1481			ret = -EINVAL;
1482			break;
1483		} else if (copy_from_sockptr(&sk_txtime, optval,
1484			   sizeof(struct sock_txtime))) {
1485			ret = -EFAULT;
1486			break;
1487		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1488			ret = -EINVAL;
1489			break;
1490		}
1491		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1492		 * scheduler has enough safe guards.
1493		 */
1494		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1495		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1496			ret = -EPERM;
1497			break;
1498		}
 
 
 
 
 
1499		sock_valbool_flag(sk, SOCK_TXTIME, true);
1500		sk->sk_clockid = sk_txtime.clockid;
1501		sk->sk_txtime_deadline_mode =
1502			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1503		sk->sk_txtime_report_errors =
1504			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1505		break;
1506
1507	case SO_BINDTOIFINDEX:
1508		ret = sock_bindtoindex_locked(sk, val);
1509		break;
1510
1511	case SO_BUF_LOCK:
1512		if (val & ~SOCK_BUF_LOCK_MASK) {
1513			ret = -EINVAL;
1514			break;
1515		}
1516		sk->sk_userlocks = val | (sk->sk_userlocks &
1517					  ~SOCK_BUF_LOCK_MASK);
1518		break;
1519
1520	case SO_RESERVE_MEM:
1521	{
1522		int delta;
1523
1524		if (val < 0) {
1525			ret = -EINVAL;
1526			break;
1527		}
1528
1529		delta = val - sk->sk_reserved_mem;
1530		if (delta < 0)
1531			sock_release_reserved_memory(sk, -delta);
1532		else
1533			ret = sock_reserve_memory(sk, delta);
1534		break;
1535	}
1536
1537	default:
1538		ret = -ENOPROTOOPT;
1539		break;
1540	}
1541	sockopt_release_sock(sk);
1542	return ret;
1543}
1544
1545int sock_setsockopt(struct socket *sock, int level, int optname,
1546		    sockptr_t optval, unsigned int optlen)
1547{
1548	return sk_setsockopt(sock->sk, level, optname,
1549			     optval, optlen);
1550}
1551EXPORT_SYMBOL(sock_setsockopt);
1552
1553static const struct cred *sk_get_peer_cred(struct sock *sk)
1554{
1555	const struct cred *cred;
1556
1557	spin_lock(&sk->sk_peer_lock);
1558	cred = get_cred(sk->sk_peer_cred);
1559	spin_unlock(&sk->sk_peer_lock);
1560
1561	return cred;
1562}
1563
1564static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1565			  struct ucred *ucred)
1566{
1567	ucred->pid = pid_vnr(pid);
1568	ucred->uid = ucred->gid = -1;
1569	if (cred) {
1570		struct user_namespace *current_ns = current_user_ns();
1571
1572		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1573		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1574	}
1575}
1576
1577static int groups_to_user(sockptr_t dst, const struct group_info *src)
1578{
1579	struct user_namespace *user_ns = current_user_ns();
1580	int i;
1581
1582	for (i = 0; i < src->ngroups; i++) {
1583		gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1584
1585		if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1586			return -EFAULT;
1587	}
1588
1589	return 0;
1590}
1591
1592int sk_getsockopt(struct sock *sk, int level, int optname,
1593		  sockptr_t optval, sockptr_t optlen)
1594{
1595	struct socket *sock = sk->sk_socket;
1596
1597	union {
1598		int val;
1599		u64 val64;
1600		unsigned long ulval;
1601		struct linger ling;
1602		struct old_timeval32 tm32;
1603		struct __kernel_old_timeval tm;
1604		struct  __kernel_sock_timeval stm;
1605		struct sock_txtime txtime;
1606		struct so_timestamping timestamping;
1607	} v;
1608
1609	int lv = sizeof(int);
1610	int len;
1611
1612	if (copy_from_sockptr(&len, optlen, sizeof(int)))
1613		return -EFAULT;
1614	if (len < 0)
1615		return -EINVAL;
1616
1617	memset(&v, 0, sizeof(v));
1618
1619	switch (optname) {
1620	case SO_DEBUG:
1621		v.val = sock_flag(sk, SOCK_DBG);
1622		break;
1623
1624	case SO_DONTROUTE:
1625		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1626		break;
1627
1628	case SO_BROADCAST:
1629		v.val = sock_flag(sk, SOCK_BROADCAST);
1630		break;
1631
1632	case SO_SNDBUF:
1633		v.val = READ_ONCE(sk->sk_sndbuf);
1634		break;
1635
1636	case SO_RCVBUF:
1637		v.val = READ_ONCE(sk->sk_rcvbuf);
1638		break;
1639
1640	case SO_REUSEADDR:
1641		v.val = sk->sk_reuse;
1642		break;
1643
1644	case SO_REUSEPORT:
1645		v.val = sk->sk_reuseport;
1646		break;
1647
1648	case SO_KEEPALIVE:
1649		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1650		break;
1651
1652	case SO_TYPE:
1653		v.val = sk->sk_type;
1654		break;
1655
1656	case SO_PROTOCOL:
1657		v.val = sk->sk_protocol;
1658		break;
1659
1660	case SO_DOMAIN:
1661		v.val = sk->sk_family;
1662		break;
1663
1664	case SO_ERROR:
1665		v.val = -sock_error(sk);
1666		if (v.val == 0)
1667			v.val = xchg(&sk->sk_err_soft, 0);
1668		break;
1669
1670	case SO_OOBINLINE:
1671		v.val = sock_flag(sk, SOCK_URGINLINE);
1672		break;
1673
1674	case SO_NO_CHECK:
1675		v.val = sk->sk_no_check_tx;
1676		break;
1677
1678	case SO_PRIORITY:
1679		v.val = READ_ONCE(sk->sk_priority);
1680		break;
1681
1682	case SO_LINGER:
1683		lv		= sizeof(v.ling);
1684		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1685		v.ling.l_linger	= READ_ONCE(sk->sk_lingertime) / HZ;
1686		break;
1687
1688	case SO_BSDCOMPAT:
1689		break;
1690
1691	case SO_TIMESTAMP_OLD:
1692		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1693				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1694				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1695		break;
1696
1697	case SO_TIMESTAMPNS_OLD:
1698		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1699		break;
1700
1701	case SO_TIMESTAMP_NEW:
1702		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1703		break;
1704
1705	case SO_TIMESTAMPNS_NEW:
1706		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1707		break;
1708
1709	case SO_TIMESTAMPING_OLD:
1710	case SO_TIMESTAMPING_NEW:
1711		lv = sizeof(v.timestamping);
1712		/* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only
1713		 * returning the flags when they were set through the same option.
1714		 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD.
1715		 */
1716		if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) {
1717			v.timestamping.flags = READ_ONCE(sk->sk_tsflags);
1718			v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc);
1719		}
1720		break;
1721
1722	case SO_RCVTIMEO_OLD:
1723	case SO_RCVTIMEO_NEW:
1724		lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v,
1725				      SO_RCVTIMEO_OLD == optname);
1726		break;
1727
1728	case SO_SNDTIMEO_OLD:
1729	case SO_SNDTIMEO_NEW:
1730		lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v,
1731				      SO_SNDTIMEO_OLD == optname);
1732		break;
1733
1734	case SO_RCVLOWAT:
1735		v.val = READ_ONCE(sk->sk_rcvlowat);
1736		break;
1737
1738	case SO_SNDLOWAT:
1739		v.val = 1;
1740		break;
1741
1742	case SO_PASSCRED:
1743		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1744		break;
1745
1746	case SO_PASSPIDFD:
1747		v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags);
1748		break;
1749
1750	case SO_PEERCRED:
1751	{
1752		struct ucred peercred;
1753		if (len > sizeof(peercred))
1754			len = sizeof(peercred);
1755
1756		spin_lock(&sk->sk_peer_lock);
1757		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1758		spin_unlock(&sk->sk_peer_lock);
1759
1760		if (copy_to_sockptr(optval, &peercred, len))
1761			return -EFAULT;
1762		goto lenout;
1763	}
1764
1765	case SO_PEERPIDFD:
1766	{
1767		struct pid *peer_pid;
1768		struct file *pidfd_file = NULL;
1769		int pidfd;
1770
1771		if (len > sizeof(pidfd))
1772			len = sizeof(pidfd);
1773
1774		spin_lock(&sk->sk_peer_lock);
1775		peer_pid = get_pid(sk->sk_peer_pid);
1776		spin_unlock(&sk->sk_peer_lock);
1777
1778		if (!peer_pid)
1779			return -ENODATA;
1780
1781		pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file);
1782		put_pid(peer_pid);
1783		if (pidfd < 0)
1784			return pidfd;
1785
1786		if (copy_to_sockptr(optval, &pidfd, len) ||
1787		    copy_to_sockptr(optlen, &len, sizeof(int))) {
1788			put_unused_fd(pidfd);
1789			fput(pidfd_file);
1790
1791			return -EFAULT;
1792		}
1793
1794		fd_install(pidfd, pidfd_file);
1795		return 0;
1796	}
1797
1798	case SO_PEERGROUPS:
1799	{
1800		const struct cred *cred;
1801		int ret, n;
1802
1803		cred = sk_get_peer_cred(sk);
1804		if (!cred)
1805			return -ENODATA;
1806
1807		n = cred->group_info->ngroups;
1808		if (len < n * sizeof(gid_t)) {
1809			len = n * sizeof(gid_t);
1810			put_cred(cred);
1811			return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1812		}
1813		len = n * sizeof(gid_t);
1814
1815		ret = groups_to_user(optval, cred->group_info);
1816		put_cred(cred);
1817		if (ret)
1818			return ret;
1819		goto lenout;
1820	}
1821
1822	case SO_PEERNAME:
1823	{
1824		struct sockaddr_storage address;
1825
1826		lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2);
1827		if (lv < 0)
1828			return -ENOTCONN;
1829		if (lv < len)
1830			return -EINVAL;
1831		if (copy_to_sockptr(optval, &address, len))
1832			return -EFAULT;
1833		goto lenout;
1834	}
1835
1836	/* Dubious BSD thing... Probably nobody even uses it, but
1837	 * the UNIX standard wants it for whatever reason... -DaveM
1838	 */
1839	case SO_ACCEPTCONN:
1840		v.val = sk->sk_state == TCP_LISTEN;
1841		break;
1842
1843	case SO_PASSSEC:
1844		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1845		break;
1846
1847	case SO_PEERSEC:
1848		return security_socket_getpeersec_stream(sock,
1849							 optval, optlen, len);
1850
1851	case SO_MARK:
1852		v.val = READ_ONCE(sk->sk_mark);
1853		break;
1854
1855	case SO_RCVMARK:
1856		v.val = sock_flag(sk, SOCK_RCVMARK);
1857		break;
1858
1859	case SO_RXQ_OVFL:
1860		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1861		break;
1862
1863	case SO_WIFI_STATUS:
1864		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1865		break;
1866
1867	case SO_PEEK_OFF:
1868		if (!READ_ONCE(sock->ops)->set_peek_off)
1869			return -EOPNOTSUPP;
1870
1871		v.val = READ_ONCE(sk->sk_peek_off);
1872		break;
1873	case SO_NOFCS:
1874		v.val = sock_flag(sk, SOCK_NOFCS);
1875		break;
1876
1877	case SO_BINDTODEVICE:
1878		return sock_getbindtodevice(sk, optval, optlen, len);
1879
1880	case SO_GET_FILTER:
1881		len = sk_get_filter(sk, optval, len);
1882		if (len < 0)
1883			return len;
1884
1885		goto lenout;
1886
1887	case SO_LOCK_FILTER:
1888		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1889		break;
1890
1891	case SO_BPF_EXTENSIONS:
1892		v.val = bpf_tell_extensions();
1893		break;
1894
1895	case SO_SELECT_ERR_QUEUE:
1896		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1897		break;
1898
1899#ifdef CONFIG_NET_RX_BUSY_POLL
1900	case SO_BUSY_POLL:
1901		v.val = READ_ONCE(sk->sk_ll_usec);
1902		break;
1903	case SO_PREFER_BUSY_POLL:
1904		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1905		break;
1906#endif
1907
1908	case SO_MAX_PACING_RATE:
1909		/* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */
1910		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1911			lv = sizeof(v.ulval);
1912			v.ulval = READ_ONCE(sk->sk_max_pacing_rate);
1913		} else {
1914			/* 32bit version */
1915			v.val = min_t(unsigned long, ~0U,
1916				      READ_ONCE(sk->sk_max_pacing_rate));
1917		}
1918		break;
1919
1920	case SO_INCOMING_CPU:
1921		v.val = READ_ONCE(sk->sk_incoming_cpu);
1922		break;
1923
1924	case SO_MEMINFO:
1925	{
1926		u32 meminfo[SK_MEMINFO_VARS];
1927
1928		sk_get_meminfo(sk, meminfo);
1929
1930		len = min_t(unsigned int, len, sizeof(meminfo));
1931		if (copy_to_sockptr(optval, &meminfo, len))
1932			return -EFAULT;
1933
1934		goto lenout;
1935	}
1936
1937#ifdef CONFIG_NET_RX_BUSY_POLL
1938	case SO_INCOMING_NAPI_ID:
1939		v.val = READ_ONCE(sk->sk_napi_id);
1940
1941		/* aggregate non-NAPI IDs down to 0 */
1942		if (v.val < MIN_NAPI_ID)
1943			v.val = 0;
1944
1945		break;
1946#endif
1947
1948	case SO_COOKIE:
1949		lv = sizeof(u64);
1950		if (len < lv)
1951			return -EINVAL;
1952		v.val64 = sock_gen_cookie(sk);
1953		break;
1954
1955	case SO_ZEROCOPY:
1956		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1957		break;
1958
1959	case SO_TXTIME:
1960		lv = sizeof(v.txtime);
1961		v.txtime.clockid = sk->sk_clockid;
1962		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1963				  SOF_TXTIME_DEADLINE_MODE : 0;
1964		v.txtime.flags |= sk->sk_txtime_report_errors ?
1965				  SOF_TXTIME_REPORT_ERRORS : 0;
1966		break;
1967
1968	case SO_BINDTOIFINDEX:
1969		v.val = READ_ONCE(sk->sk_bound_dev_if);
1970		break;
1971
1972	case SO_NETNS_COOKIE:
1973		lv = sizeof(u64);
1974		if (len != lv)
1975			return -EINVAL;
1976		v.val64 = sock_net(sk)->net_cookie;
1977		break;
1978
1979	case SO_BUF_LOCK:
1980		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1981		break;
1982
1983	case SO_RESERVE_MEM:
1984		v.val = READ_ONCE(sk->sk_reserved_mem);
1985		break;
1986
1987	case SO_TXREHASH:
1988		/* Paired with WRITE_ONCE() in sk_setsockopt() */
1989		v.val = READ_ONCE(sk->sk_txrehash);
1990		break;
1991
1992	default:
1993		/* We implement the SO_SNDLOWAT etc to not be settable
1994		 * (1003.1g 7).
1995		 */
1996		return -ENOPROTOOPT;
1997	}
1998
1999	if (len > lv)
2000		len = lv;
2001	if (copy_to_sockptr(optval, &v, len))
2002		return -EFAULT;
2003lenout:
2004	if (copy_to_sockptr(optlen, &len, sizeof(int)))
2005		return -EFAULT;
2006	return 0;
2007}
2008
2009/*
2010 * Initialize an sk_lock.
2011 *
2012 * (We also register the sk_lock with the lock validator.)
2013 */
2014static inline void sock_lock_init(struct sock *sk)
2015{
2016	if (sk->sk_kern_sock)
2017		sock_lock_init_class_and_name(
2018			sk,
2019			af_family_kern_slock_key_strings[sk->sk_family],
2020			af_family_kern_slock_keys + sk->sk_family,
2021			af_family_kern_key_strings[sk->sk_family],
2022			af_family_kern_keys + sk->sk_family);
2023	else
2024		sock_lock_init_class_and_name(
2025			sk,
2026			af_family_slock_key_strings[sk->sk_family],
2027			af_family_slock_keys + sk->sk_family,
2028			af_family_key_strings[sk->sk_family],
2029			af_family_keys + sk->sk_family);
2030}
2031
2032/*
2033 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
2034 * even temporarly, because of RCU lookups. sk_node should also be left as is.
2035 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
2036 */
2037static void sock_copy(struct sock *nsk, const struct sock *osk)
2038{
2039	const struct proto *prot = READ_ONCE(osk->sk_prot);
2040#ifdef CONFIG_SECURITY_NETWORK
2041	void *sptr = nsk->sk_security;
2042#endif
2043
2044	/* If we move sk_tx_queue_mapping out of the private section,
2045	 * we must check if sk_tx_queue_clear() is called after
2046	 * sock_copy() in sk_clone_lock().
2047	 */
2048	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2049		     offsetof(struct sock, sk_dontcopy_begin) ||
2050		     offsetof(struct sock, sk_tx_queue_mapping) >=
2051		     offsetof(struct sock, sk_dontcopy_end));
2052
2053	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2054
2055	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2056	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
 
2057
2058#ifdef CONFIG_SECURITY_NETWORK
2059	nsk->sk_security = sptr;
2060	security_sk_clone(osk, nsk);
2061#endif
2062}
2063
2064static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2065		int family)
2066{
2067	struct sock *sk;
2068	struct kmem_cache *slab;
2069
2070	slab = prot->slab;
2071	if (slab != NULL) {
2072		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2073		if (!sk)
2074			return sk;
2075		if (want_init_on_alloc(priority))
2076			sk_prot_clear_nulls(sk, prot->obj_size);
2077	} else
2078		sk = kmalloc(prot->obj_size, priority);
2079
2080	if (sk != NULL) {
2081		if (security_sk_alloc(sk, family, priority))
2082			goto out_free;
2083
2084		if (!try_module_get(prot->owner))
2085			goto out_free_sec;
2086	}
2087
2088	return sk;
2089
2090out_free_sec:
2091	security_sk_free(sk);
2092out_free:
2093	if (slab != NULL)
2094		kmem_cache_free(slab, sk);
2095	else
2096		kfree(sk);
2097	return NULL;
2098}
2099
2100static void sk_prot_free(struct proto *prot, struct sock *sk)
2101{
2102	struct kmem_cache *slab;
2103	struct module *owner;
2104
2105	owner = prot->owner;
2106	slab = prot->slab;
2107
2108	cgroup_sk_free(&sk->sk_cgrp_data);
2109	mem_cgroup_sk_free(sk);
2110	security_sk_free(sk);
2111	if (slab != NULL)
2112		kmem_cache_free(slab, sk);
2113	else
2114		kfree(sk);
2115	module_put(owner);
2116}
2117
2118/**
2119 *	sk_alloc - All socket objects are allocated here
2120 *	@net: the applicable net namespace
2121 *	@family: protocol family
2122 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2123 *	@prot: struct proto associated with this new sock instance
2124 *	@kern: is this to be a kernel socket?
2125 */
2126struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2127		      struct proto *prot, int kern)
2128{
2129	struct sock *sk;
2130
2131	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2132	if (sk) {
2133		sk->sk_family = family;
2134		/*
2135		 * See comment in struct sock definition to understand
2136		 * why we need sk_prot_creator -acme
2137		 */
2138		sk->sk_prot = sk->sk_prot_creator = prot;
2139		sk->sk_kern_sock = kern;
2140		sock_lock_init(sk);
2141		sk->sk_net_refcnt = kern ? 0 : 1;
2142		if (likely(sk->sk_net_refcnt)) {
2143			get_net_track(net, &sk->ns_tracker, priority);
2144			sock_inuse_add(net, 1);
2145		} else {
 
2146			__netns_tracker_alloc(net, &sk->ns_tracker,
2147					      false, priority);
2148		}
2149
2150		sock_net_set(sk, net);
2151		refcount_set(&sk->sk_wmem_alloc, 1);
2152
2153		mem_cgroup_sk_alloc(sk);
2154		cgroup_sk_alloc(&sk->sk_cgrp_data);
2155		sock_update_classid(&sk->sk_cgrp_data);
2156		sock_update_netprioidx(&sk->sk_cgrp_data);
2157		sk_tx_queue_clear(sk);
2158	}
2159
2160	return sk;
2161}
2162EXPORT_SYMBOL(sk_alloc);
2163
2164/* Sockets having SOCK_RCU_FREE will call this function after one RCU
2165 * grace period. This is the case for UDP sockets and TCP listeners.
2166 */
2167static void __sk_destruct(struct rcu_head *head)
2168{
2169	struct sock *sk = container_of(head, struct sock, sk_rcu);
 
2170	struct sk_filter *filter;
2171
2172	if (sk->sk_destruct)
2173		sk->sk_destruct(sk);
2174
2175	filter = rcu_dereference_check(sk->sk_filter,
2176				       refcount_read(&sk->sk_wmem_alloc) == 0);
2177	if (filter) {
2178		sk_filter_uncharge(sk, filter);
2179		RCU_INIT_POINTER(sk->sk_filter, NULL);
2180	}
2181
2182	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2183
2184#ifdef CONFIG_BPF_SYSCALL
2185	bpf_sk_storage_free(sk);
2186#endif
2187
2188	if (atomic_read(&sk->sk_omem_alloc))
2189		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2190			 __func__, atomic_read(&sk->sk_omem_alloc));
2191
2192	if (sk->sk_frag.page) {
2193		put_page(sk->sk_frag.page);
2194		sk->sk_frag.page = NULL;
2195	}
2196
2197	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2198	put_cred(sk->sk_peer_cred);
2199	put_pid(sk->sk_peer_pid);
2200
2201	if (likely(sk->sk_net_refcnt))
2202		put_net_track(sock_net(sk), &sk->ns_tracker);
2203	else
2204		__netns_tracker_free(sock_net(sk), &sk->ns_tracker, false);
2205
 
2206	sk_prot_free(sk->sk_prot_creator, sk);
2207}
2208
 
 
 
 
 
 
 
 
 
 
 
 
 
2209void sk_destruct(struct sock *sk)
2210{
2211	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2212
2213	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2214		reuseport_detach_sock(sk);
2215		use_call_rcu = true;
2216	}
2217
2218	if (use_call_rcu)
2219		call_rcu(&sk->sk_rcu, __sk_destruct);
2220	else
2221		__sk_destruct(&sk->sk_rcu);
2222}
2223
2224static void __sk_free(struct sock *sk)
2225{
2226	if (likely(sk->sk_net_refcnt))
2227		sock_inuse_add(sock_net(sk), -1);
2228
2229	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2230		sock_diag_broadcast_destroy(sk);
2231	else
2232		sk_destruct(sk);
2233}
2234
2235void sk_free(struct sock *sk)
2236{
2237	/*
2238	 * We subtract one from sk_wmem_alloc and can know if
2239	 * some packets are still in some tx queue.
2240	 * If not null, sock_wfree() will call __sk_free(sk) later
2241	 */
2242	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2243		__sk_free(sk);
2244}
2245EXPORT_SYMBOL(sk_free);
2246
2247static void sk_init_common(struct sock *sk)
2248{
2249	skb_queue_head_init(&sk->sk_receive_queue);
2250	skb_queue_head_init(&sk->sk_write_queue);
2251	skb_queue_head_init(&sk->sk_error_queue);
2252
2253	rwlock_init(&sk->sk_callback_lock);
2254	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2255			af_rlock_keys + sk->sk_family,
2256			af_family_rlock_key_strings[sk->sk_family]);
2257	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2258			af_wlock_keys + sk->sk_family,
2259			af_family_wlock_key_strings[sk->sk_family]);
2260	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2261			af_elock_keys + sk->sk_family,
2262			af_family_elock_key_strings[sk->sk_family]);
2263	lockdep_set_class_and_name(&sk->sk_callback_lock,
 
 
 
 
 
2264			af_callback_keys + sk->sk_family,
2265			af_family_clock_key_strings[sk->sk_family]);
2266}
2267
2268/**
2269 *	sk_clone_lock - clone a socket, and lock its clone
2270 *	@sk: the socket to clone
2271 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2272 *
2273 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2274 */
2275struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2276{
2277	struct proto *prot = READ_ONCE(sk->sk_prot);
2278	struct sk_filter *filter;
2279	bool is_charged = true;
2280	struct sock *newsk;
2281
2282	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2283	if (!newsk)
2284		goto out;
2285
2286	sock_copy(newsk, sk);
2287
2288	newsk->sk_prot_creator = prot;
2289
2290	/* SANITY */
2291	if (likely(newsk->sk_net_refcnt)) {
2292		get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2293		sock_inuse_add(sock_net(newsk), 1);
2294	} else {
2295		/* Kernel sockets are not elevating the struct net refcount.
2296		 * Instead, use a tracker to more easily detect if a layer
2297		 * is not properly dismantling its kernel sockets at netns
2298		 * destroy time.
2299		 */
 
2300		__netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2301				      false, priority);
2302	}
2303	sk_node_init(&newsk->sk_node);
2304	sock_lock_init(newsk);
2305	bh_lock_sock(newsk);
2306	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2307	newsk->sk_backlog.len = 0;
2308
2309	atomic_set(&newsk->sk_rmem_alloc, 0);
2310
2311	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2312	refcount_set(&newsk->sk_wmem_alloc, 1);
2313
2314	atomic_set(&newsk->sk_omem_alloc, 0);
2315	sk_init_common(newsk);
2316
2317	newsk->sk_dst_cache	= NULL;
2318	newsk->sk_dst_pending_confirm = 0;
2319	newsk->sk_wmem_queued	= 0;
2320	newsk->sk_forward_alloc = 0;
2321	newsk->sk_reserved_mem  = 0;
2322	atomic_set(&newsk->sk_drops, 0);
2323	newsk->sk_send_head	= NULL;
2324	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2325	atomic_set(&newsk->sk_zckey, 0);
2326
2327	sock_reset_flag(newsk, SOCK_DONE);
2328
2329	/* sk->sk_memcg will be populated at accept() time */
2330	newsk->sk_memcg = NULL;
2331
2332	cgroup_sk_clone(&newsk->sk_cgrp_data);
2333
2334	rcu_read_lock();
2335	filter = rcu_dereference(sk->sk_filter);
2336	if (filter != NULL)
2337		/* though it's an empty new sock, the charging may fail
2338		 * if sysctl_optmem_max was changed between creation of
2339		 * original socket and cloning
2340		 */
2341		is_charged = sk_filter_charge(newsk, filter);
2342	RCU_INIT_POINTER(newsk->sk_filter, filter);
2343	rcu_read_unlock();
2344
2345	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2346		/* We need to make sure that we don't uncharge the new
2347		 * socket if we couldn't charge it in the first place
2348		 * as otherwise we uncharge the parent's filter.
2349		 */
2350		if (!is_charged)
2351			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2352		sk_free_unlock_clone(newsk);
2353		newsk = NULL;
2354		goto out;
2355	}
2356	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2357
2358	if (bpf_sk_storage_clone(sk, newsk)) {
2359		sk_free_unlock_clone(newsk);
2360		newsk = NULL;
2361		goto out;
2362	}
2363
2364	/* Clear sk_user_data if parent had the pointer tagged
2365	 * as not suitable for copying when cloning.
2366	 */
2367	if (sk_user_data_is_nocopy(newsk))
2368		newsk->sk_user_data = NULL;
2369
2370	newsk->sk_err	   = 0;
2371	newsk->sk_err_soft = 0;
2372	newsk->sk_priority = 0;
2373	newsk->sk_incoming_cpu = raw_smp_processor_id();
2374
2375	/* Before updating sk_refcnt, we must commit prior changes to memory
2376	 * (Documentation/RCU/rculist_nulls.rst for details)
2377	 */
2378	smp_wmb();
2379	refcount_set(&newsk->sk_refcnt, 2);
2380
2381	sk_set_socket(newsk, NULL);
2382	sk_tx_queue_clear(newsk);
2383	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2384
2385	if (newsk->sk_prot->sockets_allocated)
2386		sk_sockets_allocated_inc(newsk);
2387
2388	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2389		net_enable_timestamp();
2390out:
2391	return newsk;
2392}
2393EXPORT_SYMBOL_GPL(sk_clone_lock);
2394
2395void sk_free_unlock_clone(struct sock *sk)
2396{
2397	/* It is still raw copy of parent, so invalidate
2398	 * destructor and make plain sk_free() */
2399	sk->sk_destruct = NULL;
2400	bh_unlock_sock(sk);
2401	sk_free(sk);
2402}
2403EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2404
2405static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
2406{
2407	bool is_ipv6 = false;
2408	u32 max_size;
2409
2410#if IS_ENABLED(CONFIG_IPV6)
2411	is_ipv6 = (sk->sk_family == AF_INET6 &&
2412		   !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr));
2413#endif
2414	/* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
2415	max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) :
2416			READ_ONCE(dst->dev->gso_ipv4_max_size);
2417	if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk))
2418		max_size = GSO_LEGACY_MAX_SIZE;
2419
2420	return max_size - (MAX_TCP_HEADER + 1);
2421}
2422
2423void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2424{
2425	u32 max_segs = 1;
2426
2427	sk->sk_route_caps = dst->dev->features;
2428	if (sk_is_tcp(sk))
2429		sk->sk_route_caps |= NETIF_F_GSO;
2430	if (sk->sk_route_caps & NETIF_F_GSO)
2431		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2432	if (unlikely(sk->sk_gso_disabled))
2433		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2434	if (sk_can_gso(sk)) {
2435		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2436			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2437		} else {
2438			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2439			sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst);
2440			/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2441			max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2442		}
2443	}
2444	sk->sk_gso_max_segs = max_segs;
2445	sk_dst_set(sk, dst);
2446}
2447EXPORT_SYMBOL_GPL(sk_setup_caps);
2448
2449/*
2450 *	Simple resource managers for sockets.
2451 */
2452
2453
2454/*
2455 * Write buffer destructor automatically called from kfree_skb.
2456 */
2457void sock_wfree(struct sk_buff *skb)
2458{
2459	struct sock *sk = skb->sk;
2460	unsigned int len = skb->truesize;
2461	bool free;
2462
2463	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2464		if (sock_flag(sk, SOCK_RCU_FREE) &&
2465		    sk->sk_write_space == sock_def_write_space) {
2466			rcu_read_lock();
2467			free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2468			sock_def_write_space_wfree(sk);
2469			rcu_read_unlock();
2470			if (unlikely(free))
2471				__sk_free(sk);
2472			return;
2473		}
2474
2475		/*
2476		 * Keep a reference on sk_wmem_alloc, this will be released
2477		 * after sk_write_space() call
2478		 */
2479		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2480		sk->sk_write_space(sk);
2481		len = 1;
2482	}
2483	/*
2484	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2485	 * could not do because of in-flight packets
2486	 */
2487	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2488		__sk_free(sk);
2489}
2490EXPORT_SYMBOL(sock_wfree);
2491
2492/* This variant of sock_wfree() is used by TCP,
2493 * since it sets SOCK_USE_WRITE_QUEUE.
2494 */
2495void __sock_wfree(struct sk_buff *skb)
2496{
2497	struct sock *sk = skb->sk;
2498
2499	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2500		__sk_free(sk);
2501}
2502
2503void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2504{
2505	skb_orphan(skb);
2506	skb->sk = sk;
2507#ifdef CONFIG_INET
2508	if (unlikely(!sk_fullsock(sk))) {
2509		skb->destructor = sock_edemux;
2510		sock_hold(sk);
2511		return;
2512	}
2513#endif
 
2514	skb->destructor = sock_wfree;
2515	skb_set_hash_from_sk(skb, sk);
2516	/*
2517	 * We used to take a refcount on sk, but following operation
2518	 * is enough to guarantee sk_free() wont free this sock until
2519	 * all in-flight packets are completed
2520	 */
2521	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2522}
2523EXPORT_SYMBOL(skb_set_owner_w);
2524
2525static bool can_skb_orphan_partial(const struct sk_buff *skb)
2526{
2527#ifdef CONFIG_TLS_DEVICE
2528	/* Drivers depend on in-order delivery for crypto offload,
2529	 * partial orphan breaks out-of-order-OK logic.
2530	 */
2531	if (skb->decrypted)
2532		return false;
2533#endif
2534	return (skb->destructor == sock_wfree ||
2535		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2536}
2537
2538/* This helper is used by netem, as it can hold packets in its
2539 * delay queue. We want to allow the owner socket to send more
2540 * packets, as if they were already TX completed by a typical driver.
2541 * But we also want to keep skb->sk set because some packet schedulers
2542 * rely on it (sch_fq for example).
2543 */
2544void skb_orphan_partial(struct sk_buff *skb)
2545{
2546	if (skb_is_tcp_pure_ack(skb))
2547		return;
2548
2549	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2550		return;
2551
2552	skb_orphan(skb);
2553}
2554EXPORT_SYMBOL(skb_orphan_partial);
2555
2556/*
2557 * Read buffer destructor automatically called from kfree_skb.
2558 */
2559void sock_rfree(struct sk_buff *skb)
2560{
2561	struct sock *sk = skb->sk;
2562	unsigned int len = skb->truesize;
2563
2564	atomic_sub(len, &sk->sk_rmem_alloc);
2565	sk_mem_uncharge(sk, len);
2566}
2567EXPORT_SYMBOL(sock_rfree);
2568
2569/*
2570 * Buffer destructor for skbs that are not used directly in read or write
2571 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2572 */
2573void sock_efree(struct sk_buff *skb)
2574{
2575	sock_put(skb->sk);
2576}
2577EXPORT_SYMBOL(sock_efree);
2578
2579/* Buffer destructor for prefetch/receive path where reference count may
2580 * not be held, e.g. for listen sockets.
2581 */
2582#ifdef CONFIG_INET
2583void sock_pfree(struct sk_buff *skb)
2584{
2585	if (sk_is_refcounted(skb->sk))
2586		sock_gen_put(skb->sk);
 
 
 
 
 
 
 
 
 
 
2587}
2588EXPORT_SYMBOL(sock_pfree);
2589#endif /* CONFIG_INET */
2590
2591kuid_t sock_i_uid(struct sock *sk)
2592{
2593	kuid_t uid;
2594
2595	read_lock_bh(&sk->sk_callback_lock);
2596	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2597	read_unlock_bh(&sk->sk_callback_lock);
2598	return uid;
2599}
2600EXPORT_SYMBOL(sock_i_uid);
2601
2602unsigned long __sock_i_ino(struct sock *sk)
2603{
2604	unsigned long ino;
2605
2606	read_lock(&sk->sk_callback_lock);
2607	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2608	read_unlock(&sk->sk_callback_lock);
2609	return ino;
2610}
2611EXPORT_SYMBOL(__sock_i_ino);
2612
2613unsigned long sock_i_ino(struct sock *sk)
2614{
2615	unsigned long ino;
2616
2617	local_bh_disable();
2618	ino = __sock_i_ino(sk);
2619	local_bh_enable();
2620	return ino;
2621}
2622EXPORT_SYMBOL(sock_i_ino);
2623
2624/*
2625 * Allocate a skb from the socket's send buffer.
2626 */
2627struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2628			     gfp_t priority)
2629{
2630	if (force ||
2631	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2632		struct sk_buff *skb = alloc_skb(size, priority);
2633
2634		if (skb) {
2635			skb_set_owner_w(skb, sk);
2636			return skb;
2637		}
2638	}
2639	return NULL;
2640}
2641EXPORT_SYMBOL(sock_wmalloc);
2642
2643static void sock_ofree(struct sk_buff *skb)
2644{
2645	struct sock *sk = skb->sk;
2646
2647	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2648}
2649
2650struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2651			     gfp_t priority)
2652{
2653	struct sk_buff *skb;
2654
2655	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2656	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2657	    READ_ONCE(sock_net(sk)->core.sysctl_optmem_max))
2658		return NULL;
2659
2660	skb = alloc_skb(size, priority);
2661	if (!skb)
2662		return NULL;
2663
2664	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2665	skb->sk = sk;
2666	skb->destructor = sock_ofree;
2667	return skb;
2668}
2669
2670/*
2671 * Allocate a memory block from the socket's option memory buffer.
2672 */
2673void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2674{
2675	int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
2676
2677	if ((unsigned int)size <= optmem_max &&
2678	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2679		void *mem;
2680		/* First do the add, to avoid the race if kmalloc
2681		 * might sleep.
2682		 */
2683		atomic_add(size, &sk->sk_omem_alloc);
2684		mem = kmalloc(size, priority);
2685		if (mem)
2686			return mem;
2687		atomic_sub(size, &sk->sk_omem_alloc);
2688	}
2689	return NULL;
2690}
2691EXPORT_SYMBOL(sock_kmalloc);
2692
2693/* Free an option memory block. Note, we actually want the inline
2694 * here as this allows gcc to detect the nullify and fold away the
2695 * condition entirely.
2696 */
2697static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2698				  const bool nullify)
2699{
2700	if (WARN_ON_ONCE(!mem))
2701		return;
2702	if (nullify)
2703		kfree_sensitive(mem);
2704	else
2705		kfree(mem);
2706	atomic_sub(size, &sk->sk_omem_alloc);
2707}
2708
2709void sock_kfree_s(struct sock *sk, void *mem, int size)
2710{
2711	__sock_kfree_s(sk, mem, size, false);
2712}
2713EXPORT_SYMBOL(sock_kfree_s);
2714
2715void sock_kzfree_s(struct sock *sk, void *mem, int size)
2716{
2717	__sock_kfree_s(sk, mem, size, true);
2718}
2719EXPORT_SYMBOL(sock_kzfree_s);
2720
2721/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2722   I think, these locks should be removed for datagram sockets.
2723 */
2724static long sock_wait_for_wmem(struct sock *sk, long timeo)
2725{
2726	DEFINE_WAIT(wait);
2727
2728	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2729	for (;;) {
2730		if (!timeo)
2731			break;
2732		if (signal_pending(current))
2733			break;
2734		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2735		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2736		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2737			break;
2738		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2739			break;
2740		if (READ_ONCE(sk->sk_err))
2741			break;
2742		timeo = schedule_timeout(timeo);
2743	}
2744	finish_wait(sk_sleep(sk), &wait);
2745	return timeo;
2746}
2747
2748
2749/*
2750 *	Generic send/receive buffer handlers
2751 */
2752
2753struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2754				     unsigned long data_len, int noblock,
2755				     int *errcode, int max_page_order)
2756{
2757	struct sk_buff *skb;
2758	long timeo;
2759	int err;
2760
2761	timeo = sock_sndtimeo(sk, noblock);
2762	for (;;) {
2763		err = sock_error(sk);
2764		if (err != 0)
2765			goto failure;
2766
2767		err = -EPIPE;
2768		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2769			goto failure;
2770
2771		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2772			break;
2773
2774		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2775		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2776		err = -EAGAIN;
2777		if (!timeo)
2778			goto failure;
2779		if (signal_pending(current))
2780			goto interrupted;
2781		timeo = sock_wait_for_wmem(sk, timeo);
2782	}
2783	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2784				   errcode, sk->sk_allocation);
2785	if (skb)
2786		skb_set_owner_w(skb, sk);
2787	return skb;
2788
2789interrupted:
2790	err = sock_intr_errno(timeo);
2791failure:
2792	*errcode = err;
2793	return NULL;
2794}
2795EXPORT_SYMBOL(sock_alloc_send_pskb);
2796
2797int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2798		     struct sockcm_cookie *sockc)
2799{
2800	u32 tsflags;
2801
 
 
2802	switch (cmsg->cmsg_type) {
2803	case SO_MARK:
2804		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2805		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2806			return -EPERM;
2807		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2808			return -EINVAL;
2809		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2810		break;
2811	case SO_TIMESTAMPING_OLD:
2812	case SO_TIMESTAMPING_NEW:
2813		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2814			return -EINVAL;
2815
2816		tsflags = *(u32 *)CMSG_DATA(cmsg);
2817		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2818			return -EINVAL;
2819
2820		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2821		sockc->tsflags |= tsflags;
2822		break;
2823	case SCM_TXTIME:
2824		if (!sock_flag(sk, SOCK_TXTIME))
2825			return -EINVAL;
2826		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2827			return -EINVAL;
2828		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2829		break;
 
 
 
 
 
 
 
 
 
 
 
2830	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2831	case SCM_RIGHTS:
2832	case SCM_CREDENTIALS:
2833		break;
2834	default:
2835		return -EINVAL;
2836	}
2837	return 0;
2838}
2839EXPORT_SYMBOL(__sock_cmsg_send);
2840
2841int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2842		   struct sockcm_cookie *sockc)
2843{
2844	struct cmsghdr *cmsg;
2845	int ret;
2846
2847	for_each_cmsghdr(cmsg, msg) {
2848		if (!CMSG_OK(msg, cmsg))
2849			return -EINVAL;
2850		if (cmsg->cmsg_level != SOL_SOCKET)
2851			continue;
2852		ret = __sock_cmsg_send(sk, cmsg, sockc);
2853		if (ret)
2854			return ret;
2855	}
2856	return 0;
2857}
2858EXPORT_SYMBOL(sock_cmsg_send);
2859
2860static void sk_enter_memory_pressure(struct sock *sk)
2861{
2862	if (!sk->sk_prot->enter_memory_pressure)
2863		return;
2864
2865	sk->sk_prot->enter_memory_pressure(sk);
2866}
2867
2868static void sk_leave_memory_pressure(struct sock *sk)
2869{
2870	if (sk->sk_prot->leave_memory_pressure) {
2871		INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
2872				     tcp_leave_memory_pressure, sk);
2873	} else {
2874		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2875
2876		if (memory_pressure && READ_ONCE(*memory_pressure))
2877			WRITE_ONCE(*memory_pressure, 0);
2878	}
2879}
2880
2881DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2882
2883/**
2884 * skb_page_frag_refill - check that a page_frag contains enough room
2885 * @sz: minimum size of the fragment we want to get
2886 * @pfrag: pointer to page_frag
2887 * @gfp: priority for memory allocation
2888 *
2889 * Note: While this allocator tries to use high order pages, there is
2890 * no guarantee that allocations succeed. Therefore, @sz MUST be
2891 * less or equal than PAGE_SIZE.
2892 */
2893bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2894{
2895	if (pfrag->page) {
2896		if (page_ref_count(pfrag->page) == 1) {
2897			pfrag->offset = 0;
2898			return true;
2899		}
2900		if (pfrag->offset + sz <= pfrag->size)
2901			return true;
2902		put_page(pfrag->page);
2903	}
2904
2905	pfrag->offset = 0;
2906	if (SKB_FRAG_PAGE_ORDER &&
2907	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2908		/* Avoid direct reclaim but allow kswapd to wake */
2909		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2910					  __GFP_COMP | __GFP_NOWARN |
2911					  __GFP_NORETRY,
2912					  SKB_FRAG_PAGE_ORDER);
2913		if (likely(pfrag->page)) {
2914			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2915			return true;
2916		}
2917	}
2918	pfrag->page = alloc_page(gfp);
2919	if (likely(pfrag->page)) {
2920		pfrag->size = PAGE_SIZE;
2921		return true;
2922	}
2923	return false;
2924}
2925EXPORT_SYMBOL(skb_page_frag_refill);
2926
2927bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2928{
2929	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2930		return true;
2931
2932	sk_enter_memory_pressure(sk);
2933	sk_stream_moderate_sndbuf(sk);
2934	return false;
2935}
2936EXPORT_SYMBOL(sk_page_frag_refill);
2937
2938void __lock_sock(struct sock *sk)
2939	__releases(&sk->sk_lock.slock)
2940	__acquires(&sk->sk_lock.slock)
2941{
2942	DEFINE_WAIT(wait);
2943
2944	for (;;) {
2945		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2946					TASK_UNINTERRUPTIBLE);
2947		spin_unlock_bh(&sk->sk_lock.slock);
2948		schedule();
2949		spin_lock_bh(&sk->sk_lock.slock);
2950		if (!sock_owned_by_user(sk))
2951			break;
2952	}
2953	finish_wait(&sk->sk_lock.wq, &wait);
2954}
2955
2956void __release_sock(struct sock *sk)
2957	__releases(&sk->sk_lock.slock)
2958	__acquires(&sk->sk_lock.slock)
2959{
2960	struct sk_buff *skb, *next;
2961
2962	while ((skb = sk->sk_backlog.head) != NULL) {
2963		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2964
2965		spin_unlock_bh(&sk->sk_lock.slock);
2966
2967		do {
2968			next = skb->next;
2969			prefetch(next);
2970			DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
2971			skb_mark_not_on_list(skb);
2972			sk_backlog_rcv(sk, skb);
2973
2974			cond_resched();
2975
2976			skb = next;
2977		} while (skb != NULL);
2978
2979		spin_lock_bh(&sk->sk_lock.slock);
2980	}
2981
2982	/*
2983	 * Doing the zeroing here guarantee we can not loop forever
2984	 * while a wild producer attempts to flood us.
2985	 */
2986	sk->sk_backlog.len = 0;
2987}
2988
2989void __sk_flush_backlog(struct sock *sk)
2990{
2991	spin_lock_bh(&sk->sk_lock.slock);
2992	__release_sock(sk);
2993
2994	if (sk->sk_prot->release_cb)
2995		INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
2996				     tcp_release_cb, sk);
2997
2998	spin_unlock_bh(&sk->sk_lock.slock);
2999}
3000EXPORT_SYMBOL_GPL(__sk_flush_backlog);
3001
3002/**
3003 * sk_wait_data - wait for data to arrive at sk_receive_queue
3004 * @sk:    sock to wait on
3005 * @timeo: for how long
3006 * @skb:   last skb seen on sk_receive_queue
3007 *
3008 * Now socket state including sk->sk_err is changed only under lock,
3009 * hence we may omit checks after joining wait queue.
3010 * We check receive queue before schedule() only as optimization;
3011 * it is very likely that release_sock() added new data.
3012 */
3013int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
3014{
3015	DEFINE_WAIT_FUNC(wait, woken_wake_function);
3016	int rc;
3017
3018	add_wait_queue(sk_sleep(sk), &wait);
3019	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3020	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
3021	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3022	remove_wait_queue(sk_sleep(sk), &wait);
3023	return rc;
3024}
3025EXPORT_SYMBOL(sk_wait_data);
3026
3027/**
3028 *	__sk_mem_raise_allocated - increase memory_allocated
3029 *	@sk: socket
3030 *	@size: memory size to allocate
3031 *	@amt: pages to allocate
3032 *	@kind: allocation type
3033 *
3034 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc.
3035 *
3036 *	Unlike the globally shared limits among the sockets under same protocol,
3037 *	consuming the budget of a memcg won't have direct effect on other ones.
3038 *	So be optimistic about memcg's tolerance, and leave the callers to decide
3039 *	whether or not to raise allocated through sk_under_memory_pressure() or
3040 *	its variants.
3041 */
3042int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
3043{
3044	struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL;
3045	struct proto *prot = sk->sk_prot;
3046	bool charged = false;
3047	long allocated;
3048
3049	sk_memory_allocated_add(sk, amt);
3050	allocated = sk_memory_allocated(sk);
3051
3052	if (memcg) {
3053		if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge()))
3054			goto suppress_allocation;
3055		charged = true;
3056	}
3057
3058	/* Under limit. */
3059	if (allocated <= sk_prot_mem_limits(sk, 0)) {
3060		sk_leave_memory_pressure(sk);
3061		return 1;
3062	}
3063
3064	/* Under pressure. */
3065	if (allocated > sk_prot_mem_limits(sk, 1))
3066		sk_enter_memory_pressure(sk);
3067
3068	/* Over hard limit. */
3069	if (allocated > sk_prot_mem_limits(sk, 2))
3070		goto suppress_allocation;
3071
3072	/* Guarantee minimum buffer size under pressure (either global
3073	 * or memcg) to make sure features described in RFC 7323 (TCP
3074	 * Extensions for High Performance) work properly.
3075	 *
3076	 * This rule does NOT stand when exceeds global or memcg's hard
3077	 * limit, or else a DoS attack can be taken place by spawning
3078	 * lots of sockets whose usage are under minimum buffer size.
3079	 */
3080	if (kind == SK_MEM_RECV) {
3081		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3082			return 1;
3083
3084	} else { /* SK_MEM_SEND */
3085		int wmem0 = sk_get_wmem0(sk, prot);
3086
3087		if (sk->sk_type == SOCK_STREAM) {
3088			if (sk->sk_wmem_queued < wmem0)
3089				return 1;
3090		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3091				return 1;
3092		}
3093	}
3094
3095	if (sk_has_memory_pressure(sk)) {
3096		u64 alloc;
3097
3098		/* The following 'average' heuristic is within the
3099		 * scope of global accounting, so it only makes
3100		 * sense for global memory pressure.
3101		 */
3102		if (!sk_under_global_memory_pressure(sk))
3103			return 1;
3104
3105		/* Try to be fair among all the sockets under global
3106		 * pressure by allowing the ones that below average
3107		 * usage to raise.
3108		 */
3109		alloc = sk_sockets_allocated_read_positive(sk);
3110		if (sk_prot_mem_limits(sk, 2) > alloc *
3111		    sk_mem_pages(sk->sk_wmem_queued +
3112				 atomic_read(&sk->sk_rmem_alloc) +
3113				 sk->sk_forward_alloc))
3114			return 1;
3115	}
3116
3117suppress_allocation:
3118
3119	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3120		sk_stream_moderate_sndbuf(sk);
3121
3122		/* Fail only if socket is _under_ its sndbuf.
3123		 * In this case we cannot block, so that we have to fail.
3124		 */
3125		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3126			/* Force charge with __GFP_NOFAIL */
3127			if (memcg && !charged) {
3128				mem_cgroup_charge_skmem(memcg, amt,
3129					gfp_memcg_charge() | __GFP_NOFAIL);
3130			}
3131			return 1;
3132		}
3133	}
3134
3135	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3136		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3137
3138	sk_memory_allocated_sub(sk, amt);
3139
3140	if (charged)
3141		mem_cgroup_uncharge_skmem(memcg, amt);
3142
3143	return 0;
3144}
3145
3146/**
3147 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3148 *	@sk: socket
3149 *	@size: memory size to allocate
3150 *	@kind: allocation type
3151 *
3152 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3153 *	rmem allocation. This function assumes that protocols which have
3154 *	memory_pressure use sk_wmem_queued as write buffer accounting.
3155 */
3156int __sk_mem_schedule(struct sock *sk, int size, int kind)
3157{
3158	int ret, amt = sk_mem_pages(size);
3159
3160	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3161	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3162	if (!ret)
3163		sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT));
3164	return ret;
3165}
3166EXPORT_SYMBOL(__sk_mem_schedule);
3167
3168/**
3169 *	__sk_mem_reduce_allocated - reclaim memory_allocated
3170 *	@sk: socket
3171 *	@amount: number of quanta
3172 *
3173 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3174 */
3175void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3176{
3177	sk_memory_allocated_sub(sk, amount);
3178
3179	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3180		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3181
3182	if (sk_under_global_memory_pressure(sk) &&
3183	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3184		sk_leave_memory_pressure(sk);
3185}
3186
3187/**
3188 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3189 *	@sk: socket
3190 *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3191 */
3192void __sk_mem_reclaim(struct sock *sk, int amount)
3193{
3194	amount >>= PAGE_SHIFT;
3195	sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT));
3196	__sk_mem_reduce_allocated(sk, amount);
3197}
3198EXPORT_SYMBOL(__sk_mem_reclaim);
3199
3200int sk_set_peek_off(struct sock *sk, int val)
3201{
3202	WRITE_ONCE(sk->sk_peek_off, val);
3203	return 0;
3204}
3205EXPORT_SYMBOL_GPL(sk_set_peek_off);
3206
3207/*
3208 * Set of default routines for initialising struct proto_ops when
3209 * the protocol does not support a particular function. In certain
3210 * cases where it makes no sense for a protocol to have a "do nothing"
3211 * function, some default processing is provided.
3212 */
3213
3214int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3215{
3216	return -EOPNOTSUPP;
3217}
3218EXPORT_SYMBOL(sock_no_bind);
3219
3220int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3221		    int len, int flags)
3222{
3223	return -EOPNOTSUPP;
3224}
3225EXPORT_SYMBOL(sock_no_connect);
3226
3227int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3228{
3229	return -EOPNOTSUPP;
3230}
3231EXPORT_SYMBOL(sock_no_socketpair);
3232
3233int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3234		   bool kern)
3235{
3236	return -EOPNOTSUPP;
3237}
3238EXPORT_SYMBOL(sock_no_accept);
3239
3240int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3241		    int peer)
3242{
3243	return -EOPNOTSUPP;
3244}
3245EXPORT_SYMBOL(sock_no_getname);
3246
3247int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3248{
3249	return -EOPNOTSUPP;
3250}
3251EXPORT_SYMBOL(sock_no_ioctl);
3252
3253int sock_no_listen(struct socket *sock, int backlog)
3254{
3255	return -EOPNOTSUPP;
3256}
3257EXPORT_SYMBOL(sock_no_listen);
3258
3259int sock_no_shutdown(struct socket *sock, int how)
3260{
3261	return -EOPNOTSUPP;
3262}
3263EXPORT_SYMBOL(sock_no_shutdown);
3264
3265int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3266{
3267	return -EOPNOTSUPP;
3268}
3269EXPORT_SYMBOL(sock_no_sendmsg);
3270
3271int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3272{
3273	return -EOPNOTSUPP;
3274}
3275EXPORT_SYMBOL(sock_no_sendmsg_locked);
3276
3277int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3278		    int flags)
3279{
3280	return -EOPNOTSUPP;
3281}
3282EXPORT_SYMBOL(sock_no_recvmsg);
3283
3284int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3285{
3286	/* Mirror missing mmap method error code */
3287	return -ENODEV;
3288}
3289EXPORT_SYMBOL(sock_no_mmap);
3290
3291/*
3292 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3293 * various sock-based usage counts.
3294 */
3295void __receive_sock(struct file *file)
3296{
3297	struct socket *sock;
3298
3299	sock = sock_from_file(file);
3300	if (sock) {
3301		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3302		sock_update_classid(&sock->sk->sk_cgrp_data);
3303	}
3304}
3305
3306/*
3307 *	Default Socket Callbacks
3308 */
3309
3310static void sock_def_wakeup(struct sock *sk)
3311{
3312	struct socket_wq *wq;
3313
3314	rcu_read_lock();
3315	wq = rcu_dereference(sk->sk_wq);
3316	if (skwq_has_sleeper(wq))
3317		wake_up_interruptible_all(&wq->wait);
3318	rcu_read_unlock();
3319}
3320
3321static void sock_def_error_report(struct sock *sk)
3322{
3323	struct socket_wq *wq;
3324
3325	rcu_read_lock();
3326	wq = rcu_dereference(sk->sk_wq);
3327	if (skwq_has_sleeper(wq))
3328		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3329	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3330	rcu_read_unlock();
3331}
3332
3333void sock_def_readable(struct sock *sk)
3334{
3335	struct socket_wq *wq;
3336
3337	trace_sk_data_ready(sk);
3338
3339	rcu_read_lock();
3340	wq = rcu_dereference(sk->sk_wq);
3341	if (skwq_has_sleeper(wq))
3342		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3343						EPOLLRDNORM | EPOLLRDBAND);
3344	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3345	rcu_read_unlock();
3346}
3347
3348static void sock_def_write_space(struct sock *sk)
3349{
3350	struct socket_wq *wq;
3351
3352	rcu_read_lock();
3353
3354	/* Do not wake up a writer until he can make "significant"
3355	 * progress.  --DaveM
3356	 */
3357	if (sock_writeable(sk)) {
3358		wq = rcu_dereference(sk->sk_wq);
3359		if (skwq_has_sleeper(wq))
3360			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3361						EPOLLWRNORM | EPOLLWRBAND);
3362
3363		/* Should agree with poll, otherwise some programs break */
3364		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3365	}
3366
3367	rcu_read_unlock();
3368}
3369
3370/* An optimised version of sock_def_write_space(), should only be called
3371 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3372 * ->sk_wmem_alloc.
3373 */
3374static void sock_def_write_space_wfree(struct sock *sk)
3375{
3376	/* Do not wake up a writer until he can make "significant"
3377	 * progress.  --DaveM
3378	 */
3379	if (sock_writeable(sk)) {
3380		struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3381
3382		/* rely on refcount_sub from sock_wfree() */
3383		smp_mb__after_atomic();
3384		if (wq && waitqueue_active(&wq->wait))
3385			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3386						EPOLLWRNORM | EPOLLWRBAND);
3387
3388		/* Should agree with poll, otherwise some programs break */
3389		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3390	}
3391}
3392
3393static void sock_def_destruct(struct sock *sk)
3394{
3395}
3396
3397void sk_send_sigurg(struct sock *sk)
3398{
3399	if (sk->sk_socket && sk->sk_socket->file)
3400		if (send_sigurg(&sk->sk_socket->file->f_owner))
3401			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3402}
3403EXPORT_SYMBOL(sk_send_sigurg);
3404
3405void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3406		    unsigned long expires)
3407{
3408	if (!mod_timer(timer, expires))
3409		sock_hold(sk);
3410}
3411EXPORT_SYMBOL(sk_reset_timer);
3412
3413void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3414{
3415	if (del_timer(timer))
3416		__sock_put(sk);
3417}
3418EXPORT_SYMBOL(sk_stop_timer);
3419
3420void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3421{
3422	if (del_timer_sync(timer))
3423		__sock_put(sk);
3424}
3425EXPORT_SYMBOL(sk_stop_timer_sync);
3426
3427void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
3428{
3429	sk_init_common(sk);
3430	sk->sk_send_head	=	NULL;
3431
3432	timer_setup(&sk->sk_timer, NULL, 0);
3433
3434	sk->sk_allocation	=	GFP_KERNEL;
3435	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
3436	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
3437	sk->sk_state		=	TCP_CLOSE;
3438	sk->sk_use_task_frag	=	true;
3439	sk_set_socket(sk, sock);
3440
3441	sock_set_flag(sk, SOCK_ZAPPED);
3442
3443	if (sock) {
3444		sk->sk_type	=	sock->type;
3445		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3446		sock->sk	=	sk;
3447	} else {
3448		RCU_INIT_POINTER(sk->sk_wq, NULL);
3449	}
3450	sk->sk_uid	=	uid;
3451
3452	rwlock_init(&sk->sk_callback_lock);
3453	if (sk->sk_kern_sock)
3454		lockdep_set_class_and_name(
3455			&sk->sk_callback_lock,
3456			af_kern_callback_keys + sk->sk_family,
3457			af_family_kern_clock_key_strings[sk->sk_family]);
3458	else
3459		lockdep_set_class_and_name(
3460			&sk->sk_callback_lock,
3461			af_callback_keys + sk->sk_family,
3462			af_family_clock_key_strings[sk->sk_family]);
3463
3464	sk->sk_state_change	=	sock_def_wakeup;
3465	sk->sk_data_ready	=	sock_def_readable;
3466	sk->sk_write_space	=	sock_def_write_space;
3467	sk->sk_error_report	=	sock_def_error_report;
3468	sk->sk_destruct		=	sock_def_destruct;
3469
3470	sk->sk_frag.page	=	NULL;
3471	sk->sk_frag.offset	=	0;
3472	sk->sk_peek_off		=	-1;
3473
3474	sk->sk_peer_pid 	=	NULL;
3475	sk->sk_peer_cred	=	NULL;
3476	spin_lock_init(&sk->sk_peer_lock);
3477
3478	sk->sk_write_pending	=	0;
3479	sk->sk_rcvlowat		=	1;
3480	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3481	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3482
3483	sk->sk_stamp = SK_DEFAULT_STAMP;
3484#if BITS_PER_LONG==32
3485	seqlock_init(&sk->sk_stamp_seq);
3486#endif
3487	atomic_set(&sk->sk_zckey, 0);
3488
3489#ifdef CONFIG_NET_RX_BUSY_POLL
3490	sk->sk_napi_id		=	0;
3491	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3492#endif
3493
3494	sk->sk_max_pacing_rate = ~0UL;
3495	sk->sk_pacing_rate = ~0UL;
3496	WRITE_ONCE(sk->sk_pacing_shift, 10);
3497	sk->sk_incoming_cpu = -1;
3498
3499	sk_rx_queue_clear(sk);
3500	/*
3501	 * Before updating sk_refcnt, we must commit prior changes to memory
3502	 * (Documentation/RCU/rculist_nulls.rst for details)
3503	 */
3504	smp_wmb();
3505	refcount_set(&sk->sk_refcnt, 1);
3506	atomic_set(&sk->sk_drops, 0);
3507}
3508EXPORT_SYMBOL(sock_init_data_uid);
3509
3510void sock_init_data(struct socket *sock, struct sock *sk)
3511{
3512	kuid_t uid = sock ?
3513		SOCK_INODE(sock)->i_uid :
3514		make_kuid(sock_net(sk)->user_ns, 0);
3515
3516	sock_init_data_uid(sock, sk, uid);
3517}
3518EXPORT_SYMBOL(sock_init_data);
3519
3520void lock_sock_nested(struct sock *sk, int subclass)
3521{
3522	/* The sk_lock has mutex_lock() semantics here. */
3523	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3524
3525	might_sleep();
3526	spin_lock_bh(&sk->sk_lock.slock);
3527	if (sock_owned_by_user_nocheck(sk))
3528		__lock_sock(sk);
3529	sk->sk_lock.owned = 1;
3530	spin_unlock_bh(&sk->sk_lock.slock);
3531}
3532EXPORT_SYMBOL(lock_sock_nested);
3533
3534void release_sock(struct sock *sk)
3535{
3536	spin_lock_bh(&sk->sk_lock.slock);
3537	if (sk->sk_backlog.tail)
3538		__release_sock(sk);
3539
3540	if (sk->sk_prot->release_cb)
3541		INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3542				     tcp_release_cb, sk);
3543
3544	sock_release_ownership(sk);
3545	if (waitqueue_active(&sk->sk_lock.wq))
3546		wake_up(&sk->sk_lock.wq);
3547	spin_unlock_bh(&sk->sk_lock.slock);
3548}
3549EXPORT_SYMBOL(release_sock);
3550
3551bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3552{
3553	might_sleep();
3554	spin_lock_bh(&sk->sk_lock.slock);
3555
3556	if (!sock_owned_by_user_nocheck(sk)) {
3557		/*
3558		 * Fast path return with bottom halves disabled and
3559		 * sock::sk_lock.slock held.
3560		 *
3561		 * The 'mutex' is not contended and holding
3562		 * sock::sk_lock.slock prevents all other lockers to
3563		 * proceed so the corresponding unlock_sock_fast() can
3564		 * avoid the slow path of release_sock() completely and
3565		 * just release slock.
3566		 *
3567		 * From a semantical POV this is equivalent to 'acquiring'
3568		 * the 'mutex', hence the corresponding lockdep
3569		 * mutex_release() has to happen in the fast path of
3570		 * unlock_sock_fast().
3571		 */
3572		return false;
3573	}
3574
3575	__lock_sock(sk);
3576	sk->sk_lock.owned = 1;
3577	__acquire(&sk->sk_lock.slock);
3578	spin_unlock_bh(&sk->sk_lock.slock);
3579	return true;
3580}
3581EXPORT_SYMBOL(__lock_sock_fast);
3582
3583int sock_gettstamp(struct socket *sock, void __user *userstamp,
3584		   bool timeval, bool time32)
3585{
3586	struct sock *sk = sock->sk;
3587	struct timespec64 ts;
3588
3589	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3590	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3591	if (ts.tv_sec == -1)
3592		return -ENOENT;
3593	if (ts.tv_sec == 0) {
3594		ktime_t kt = ktime_get_real();
3595		sock_write_timestamp(sk, kt);
3596		ts = ktime_to_timespec64(kt);
3597	}
3598
3599	if (timeval)
3600		ts.tv_nsec /= 1000;
3601
3602#ifdef CONFIG_COMPAT_32BIT_TIME
3603	if (time32)
3604		return put_old_timespec32(&ts, userstamp);
3605#endif
3606#ifdef CONFIG_SPARC64
3607	/* beware of padding in sparc64 timeval */
3608	if (timeval && !in_compat_syscall()) {
3609		struct __kernel_old_timeval __user tv = {
3610			.tv_sec = ts.tv_sec,
3611			.tv_usec = ts.tv_nsec,
3612		};
3613		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3614			return -EFAULT;
3615		return 0;
3616	}
3617#endif
3618	return put_timespec64(&ts, userstamp);
3619}
3620EXPORT_SYMBOL(sock_gettstamp);
3621
3622void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3623{
3624	if (!sock_flag(sk, flag)) {
3625		unsigned long previous_flags = sk->sk_flags;
3626
3627		sock_set_flag(sk, flag);
3628		/*
3629		 * we just set one of the two flags which require net
3630		 * time stamping, but time stamping might have been on
3631		 * already because of the other one
3632		 */
3633		if (sock_needs_netstamp(sk) &&
3634		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3635			net_enable_timestamp();
3636	}
3637}
3638
3639int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3640		       int level, int type)
3641{
3642	struct sock_exterr_skb *serr;
3643	struct sk_buff *skb;
3644	int copied, err;
3645
3646	err = -EAGAIN;
3647	skb = sock_dequeue_err_skb(sk);
3648	if (skb == NULL)
3649		goto out;
3650
3651	copied = skb->len;
3652	if (copied > len) {
3653		msg->msg_flags |= MSG_TRUNC;
3654		copied = len;
3655	}
3656	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3657	if (err)
3658		goto out_free_skb;
3659
3660	sock_recv_timestamp(msg, sk, skb);
3661
3662	serr = SKB_EXT_ERR(skb);
3663	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3664
3665	msg->msg_flags |= MSG_ERRQUEUE;
3666	err = copied;
3667
3668out_free_skb:
3669	kfree_skb(skb);
3670out:
3671	return err;
3672}
3673EXPORT_SYMBOL(sock_recv_errqueue);
3674
3675/*
3676 *	Get a socket option on an socket.
3677 *
3678 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3679 *	asynchronous errors should be reported by getsockopt. We assume
3680 *	this means if you specify SO_ERROR (otherwise whats the point of it).
3681 */
3682int sock_common_getsockopt(struct socket *sock, int level, int optname,
3683			   char __user *optval, int __user *optlen)
3684{
3685	struct sock *sk = sock->sk;
3686
3687	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3688	return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3689}
3690EXPORT_SYMBOL(sock_common_getsockopt);
3691
3692int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3693			int flags)
3694{
3695	struct sock *sk = sock->sk;
3696	int addr_len = 0;
3697	int err;
3698
3699	err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3700	if (err >= 0)
3701		msg->msg_namelen = addr_len;
3702	return err;
3703}
3704EXPORT_SYMBOL(sock_common_recvmsg);
3705
3706/*
3707 *	Set socket options on an inet socket.
3708 */
3709int sock_common_setsockopt(struct socket *sock, int level, int optname,
3710			   sockptr_t optval, unsigned int optlen)
3711{
3712	struct sock *sk = sock->sk;
3713
3714	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3715	return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3716}
3717EXPORT_SYMBOL(sock_common_setsockopt);
3718
3719void sk_common_release(struct sock *sk)
3720{
3721	if (sk->sk_prot->destroy)
3722		sk->sk_prot->destroy(sk);
3723
3724	/*
3725	 * Observation: when sk_common_release is called, processes have
3726	 * no access to socket. But net still has.
3727	 * Step one, detach it from networking:
3728	 *
3729	 * A. Remove from hash tables.
3730	 */
3731
3732	sk->sk_prot->unhash(sk);
3733
3734	/*
3735	 * In this point socket cannot receive new packets, but it is possible
3736	 * that some packets are in flight because some CPU runs receiver and
3737	 * did hash table lookup before we unhashed socket. They will achieve
3738	 * receive queue and will be purged by socket destructor.
3739	 *
3740	 * Also we still have packets pending on receive queue and probably,
3741	 * our own packets waiting in device queues. sock_destroy will drain
3742	 * receive queue, but transmitted packets will delay socket destruction
3743	 * until the last reference will be released.
3744	 */
3745
3746	sock_orphan(sk);
3747
3748	xfrm_sk_free_policy(sk);
3749
3750	sock_put(sk);
3751}
3752EXPORT_SYMBOL(sk_common_release);
3753
3754void sk_get_meminfo(const struct sock *sk, u32 *mem)
3755{
3756	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3757
3758	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3759	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3760	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3761	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3762	mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk);
3763	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3764	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3765	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3766	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3767}
3768
3769#ifdef CONFIG_PROC_FS
3770static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3771
3772int sock_prot_inuse_get(struct net *net, struct proto *prot)
3773{
3774	int cpu, idx = prot->inuse_idx;
3775	int res = 0;
3776
3777	for_each_possible_cpu(cpu)
3778		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3779
3780	return res >= 0 ? res : 0;
3781}
3782EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3783
3784int sock_inuse_get(struct net *net)
3785{
3786	int cpu, res = 0;
3787
3788	for_each_possible_cpu(cpu)
3789		res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3790
3791	return res;
3792}
3793
3794EXPORT_SYMBOL_GPL(sock_inuse_get);
3795
3796static int __net_init sock_inuse_init_net(struct net *net)
3797{
3798	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3799	if (net->core.prot_inuse == NULL)
3800		return -ENOMEM;
3801	return 0;
3802}
3803
3804static void __net_exit sock_inuse_exit_net(struct net *net)
3805{
3806	free_percpu(net->core.prot_inuse);
3807}
3808
3809static struct pernet_operations net_inuse_ops = {
3810	.init = sock_inuse_init_net,
3811	.exit = sock_inuse_exit_net,
3812};
3813
3814static __init int net_inuse_init(void)
3815{
3816	if (register_pernet_subsys(&net_inuse_ops))
3817		panic("Cannot initialize net inuse counters");
3818
3819	return 0;
3820}
3821
3822core_initcall(net_inuse_init);
3823
3824static int assign_proto_idx(struct proto *prot)
3825{
3826	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3827
3828	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3829		pr_err("PROTO_INUSE_NR exhausted\n");
3830		return -ENOSPC;
3831	}
3832
3833	set_bit(prot->inuse_idx, proto_inuse_idx);
3834	return 0;
3835}
3836
3837static void release_proto_idx(struct proto *prot)
3838{
3839	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3840		clear_bit(prot->inuse_idx, proto_inuse_idx);
3841}
3842#else
3843static inline int assign_proto_idx(struct proto *prot)
3844{
3845	return 0;
3846}
3847
3848static inline void release_proto_idx(struct proto *prot)
3849{
3850}
3851
3852#endif
3853
3854static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3855{
3856	if (!twsk_prot)
3857		return;
3858	kfree(twsk_prot->twsk_slab_name);
3859	twsk_prot->twsk_slab_name = NULL;
3860	kmem_cache_destroy(twsk_prot->twsk_slab);
3861	twsk_prot->twsk_slab = NULL;
3862}
3863
3864static int tw_prot_init(const struct proto *prot)
3865{
3866	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3867
3868	if (!twsk_prot)
3869		return 0;
3870
3871	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3872					      prot->name);
3873	if (!twsk_prot->twsk_slab_name)
3874		return -ENOMEM;
3875
3876	twsk_prot->twsk_slab =
3877		kmem_cache_create(twsk_prot->twsk_slab_name,
3878				  twsk_prot->twsk_obj_size, 0,
3879				  SLAB_ACCOUNT | prot->slab_flags,
3880				  NULL);
3881	if (!twsk_prot->twsk_slab) {
3882		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3883			prot->name);
3884		return -ENOMEM;
3885	}
3886
3887	return 0;
3888}
3889
3890static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3891{
3892	if (!rsk_prot)
3893		return;
3894	kfree(rsk_prot->slab_name);
3895	rsk_prot->slab_name = NULL;
3896	kmem_cache_destroy(rsk_prot->slab);
3897	rsk_prot->slab = NULL;
3898}
3899
3900static int req_prot_init(const struct proto *prot)
3901{
3902	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3903
3904	if (!rsk_prot)
3905		return 0;
3906
3907	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3908					prot->name);
3909	if (!rsk_prot->slab_name)
3910		return -ENOMEM;
3911
3912	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3913					   rsk_prot->obj_size, 0,
3914					   SLAB_ACCOUNT | prot->slab_flags,
3915					   NULL);
3916
3917	if (!rsk_prot->slab) {
3918		pr_crit("%s: Can't create request sock SLAB cache!\n",
3919			prot->name);
3920		return -ENOMEM;
3921	}
3922	return 0;
3923}
3924
3925int proto_register(struct proto *prot, int alloc_slab)
3926{
3927	int ret = -ENOBUFS;
3928
3929	if (prot->memory_allocated && !prot->sysctl_mem) {
3930		pr_err("%s: missing sysctl_mem\n", prot->name);
3931		return -EINVAL;
3932	}
3933	if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3934		pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3935		return -EINVAL;
3936	}
3937	if (alloc_slab) {
3938		prot->slab = kmem_cache_create_usercopy(prot->name,
3939					prot->obj_size, 0,
3940					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3941					prot->slab_flags,
3942					prot->useroffset, prot->usersize,
3943					NULL);
3944
3945		if (prot->slab == NULL) {
3946			pr_crit("%s: Can't create sock SLAB cache!\n",
3947				prot->name);
3948			goto out;
3949		}
3950
3951		if (req_prot_init(prot))
3952			goto out_free_request_sock_slab;
3953
3954		if (tw_prot_init(prot))
3955			goto out_free_timewait_sock_slab;
3956	}
3957
3958	mutex_lock(&proto_list_mutex);
3959	ret = assign_proto_idx(prot);
3960	if (ret) {
3961		mutex_unlock(&proto_list_mutex);
3962		goto out_free_timewait_sock_slab;
3963	}
3964	list_add(&prot->node, &proto_list);
3965	mutex_unlock(&proto_list_mutex);
3966	return ret;
3967
3968out_free_timewait_sock_slab:
3969	if (alloc_slab)
3970		tw_prot_cleanup(prot->twsk_prot);
3971out_free_request_sock_slab:
3972	if (alloc_slab) {
3973		req_prot_cleanup(prot->rsk_prot);
3974
3975		kmem_cache_destroy(prot->slab);
3976		prot->slab = NULL;
3977	}
3978out:
3979	return ret;
3980}
3981EXPORT_SYMBOL(proto_register);
3982
3983void proto_unregister(struct proto *prot)
3984{
3985	mutex_lock(&proto_list_mutex);
3986	release_proto_idx(prot);
3987	list_del(&prot->node);
3988	mutex_unlock(&proto_list_mutex);
3989
3990	kmem_cache_destroy(prot->slab);
3991	prot->slab = NULL;
3992
3993	req_prot_cleanup(prot->rsk_prot);
3994	tw_prot_cleanup(prot->twsk_prot);
3995}
3996EXPORT_SYMBOL(proto_unregister);
3997
3998int sock_load_diag_module(int family, int protocol)
3999{
4000	if (!protocol) {
4001		if (!sock_is_registered(family))
4002			return -ENOENT;
4003
4004		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
4005				      NETLINK_SOCK_DIAG, family);
4006	}
4007
4008#ifdef CONFIG_INET
4009	if (family == AF_INET &&
4010	    protocol != IPPROTO_RAW &&
4011	    protocol < MAX_INET_PROTOS &&
4012	    !rcu_access_pointer(inet_protos[protocol]))
4013		return -ENOENT;
4014#endif
4015
4016	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
4017			      NETLINK_SOCK_DIAG, family, protocol);
4018}
4019EXPORT_SYMBOL(sock_load_diag_module);
4020
4021#ifdef CONFIG_PROC_FS
4022static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
4023	__acquires(proto_list_mutex)
4024{
4025	mutex_lock(&proto_list_mutex);
4026	return seq_list_start_head(&proto_list, *pos);
4027}
4028
4029static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4030{
4031	return seq_list_next(v, &proto_list, pos);
4032}
4033
4034static void proto_seq_stop(struct seq_file *seq, void *v)
4035	__releases(proto_list_mutex)
4036{
4037	mutex_unlock(&proto_list_mutex);
4038}
4039
4040static char proto_method_implemented(const void *method)
4041{
4042	return method == NULL ? 'n' : 'y';
4043}
4044static long sock_prot_memory_allocated(struct proto *proto)
4045{
4046	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
4047}
4048
4049static const char *sock_prot_memory_pressure(struct proto *proto)
4050{
4051	return proto->memory_pressure != NULL ?
4052	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4053}
4054
4055static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4056{
4057
4058	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
4059			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4060		   proto->name,
4061		   proto->obj_size,
4062		   sock_prot_inuse_get(seq_file_net(seq), proto),
4063		   sock_prot_memory_allocated(proto),
4064		   sock_prot_memory_pressure(proto),
4065		   proto->max_header,
4066		   proto->slab == NULL ? "no" : "yes",
4067		   module_name(proto->owner),
4068		   proto_method_implemented(proto->close),
4069		   proto_method_implemented(proto->connect),
4070		   proto_method_implemented(proto->disconnect),
4071		   proto_method_implemented(proto->accept),
4072		   proto_method_implemented(proto->ioctl),
4073		   proto_method_implemented(proto->init),
4074		   proto_method_implemented(proto->destroy),
4075		   proto_method_implemented(proto->shutdown),
4076		   proto_method_implemented(proto->setsockopt),
4077		   proto_method_implemented(proto->getsockopt),
4078		   proto_method_implemented(proto->sendmsg),
4079		   proto_method_implemented(proto->recvmsg),
4080		   proto_method_implemented(proto->bind),
4081		   proto_method_implemented(proto->backlog_rcv),
4082		   proto_method_implemented(proto->hash),
4083		   proto_method_implemented(proto->unhash),
4084		   proto_method_implemented(proto->get_port),
4085		   proto_method_implemented(proto->enter_memory_pressure));
4086}
4087
4088static int proto_seq_show(struct seq_file *seq, void *v)
4089{
4090	if (v == &proto_list)
4091		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4092			   "protocol",
4093			   "size",
4094			   "sockets",
4095			   "memory",
4096			   "press",
4097			   "maxhdr",
4098			   "slab",
4099			   "module",
4100			   "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n");
4101	else
4102		proto_seq_printf(seq, list_entry(v, struct proto, node));
4103	return 0;
4104}
4105
4106static const struct seq_operations proto_seq_ops = {
4107	.start  = proto_seq_start,
4108	.next   = proto_seq_next,
4109	.stop   = proto_seq_stop,
4110	.show   = proto_seq_show,
4111};
4112
4113static __net_init int proto_init_net(struct net *net)
4114{
4115	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4116			sizeof(struct seq_net_private)))
4117		return -ENOMEM;
4118
4119	return 0;
4120}
4121
4122static __net_exit void proto_exit_net(struct net *net)
4123{
4124	remove_proc_entry("protocols", net->proc_net);
4125}
4126
4127
4128static __net_initdata struct pernet_operations proto_net_ops = {
4129	.init = proto_init_net,
4130	.exit = proto_exit_net,
4131};
4132
4133static int __init proto_init(void)
4134{
4135	return register_pernet_subsys(&proto_net_ops);
4136}
4137
4138subsys_initcall(proto_init);
4139
4140#endif /* PROC_FS */
4141
4142#ifdef CONFIG_NET_RX_BUSY_POLL
4143bool sk_busy_loop_end(void *p, unsigned long start_time)
4144{
4145	struct sock *sk = p;
4146
4147	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
4148		return true;
4149
4150	if (sk_is_udp(sk) &&
4151	    !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
4152		return true;
4153
4154	return sk_busy_loop_timeout(sk, start_time);
4155}
4156EXPORT_SYMBOL(sk_busy_loop_end);
4157#endif /* CONFIG_NET_RX_BUSY_POLL */
4158
4159int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4160{
4161	if (!sk->sk_prot->bind_add)
4162		return -EOPNOTSUPP;
4163	return sk->sk_prot->bind_add(sk, addr, addr_len);
4164}
4165EXPORT_SYMBOL(sock_bind_add);
4166
4167/* Copy 'size' bytes from userspace and return `size` back to userspace */
4168int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
4169		     void __user *arg, void *karg, size_t size)
4170{
4171	int ret;
4172
4173	if (copy_from_user(karg, arg, size))
4174		return -EFAULT;
4175
4176	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg);
4177	if (ret)
4178		return ret;
4179
4180	if (copy_to_user(arg, karg, size))
4181		return -EFAULT;
4182
4183	return 0;
4184}
4185EXPORT_SYMBOL(sock_ioctl_inout);
4186
4187/* This is the most common ioctl prep function, where the result (4 bytes) is
4188 * copied back to userspace if the ioctl() returns successfully. No input is
4189 * copied from userspace as input argument.
4190 */
4191static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg)
4192{
4193	int ret, karg = 0;
4194
4195	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg);
4196	if (ret)
4197		return ret;
4198
4199	return put_user(karg, (int __user *)arg);
4200}
4201
4202/* A wrapper around sock ioctls, which copies the data from userspace
4203 * (depending on the protocol/ioctl), and copies back the result to userspace.
4204 * The main motivation for this function is to pass kernel memory to the
4205 * protocol ioctl callbacks, instead of userspace memory.
4206 */
4207int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
4208{
4209	int rc = 1;
4210
4211	if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET)
4212		rc = ipmr_sk_ioctl(sk, cmd, arg);
4213	else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6)
4214		rc = ip6mr_sk_ioctl(sk, cmd, arg);
4215	else if (sk_is_phonet(sk))
4216		rc = phonet_sk_ioctl(sk, cmd, arg);
4217
4218	/* If ioctl was processed, returns its value */
4219	if (rc <= 0)
4220		return rc;
4221
4222	/* Otherwise call the default handler */
4223	return sock_ioctl_out(sk, cmd, arg);
4224}
4225EXPORT_SYMBOL(sk_ioctl);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Generic socket support routines. Memory allocators, socket lock/release
   8 *		handler for protocols to use and generic option handler.
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Alan Cox, <A.Cox@swansea.ac.uk>
  14 *
  15 * Fixes:
  16 *		Alan Cox	: 	Numerous verify_area() problems
  17 *		Alan Cox	:	Connecting on a connecting socket
  18 *					now returns an error for tcp.
  19 *		Alan Cox	:	sock->protocol is set correctly.
  20 *					and is not sometimes left as 0.
  21 *		Alan Cox	:	connect handles icmp errors on a
  22 *					connect properly. Unfortunately there
  23 *					is a restart syscall nasty there. I
  24 *					can't match BSD without hacking the C
  25 *					library. Ideas urgently sought!
  26 *		Alan Cox	:	Disallow bind() to addresses that are
  27 *					not ours - especially broadcast ones!!
  28 *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
  29 *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
  30 *					instead they leave that for the DESTROY timer.
  31 *		Alan Cox	:	Clean up error flag in accept
  32 *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
  33 *					was buggy. Put a remove_sock() in the handler
  34 *					for memory when we hit 0. Also altered the timer
  35 *					code. The ACK stuff can wait and needs major
  36 *					TCP layer surgery.
  37 *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
  38 *					and fixed timer/inet_bh race.
  39 *		Alan Cox	:	Added zapped flag for TCP
  40 *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
  41 *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42 *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
  43 *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44 *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45 *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
  46 *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
  47 *	Pauline Middelink	:	identd support
  48 *		Alan Cox	:	Fixed connect() taking signals I think.
  49 *		Alan Cox	:	SO_LINGER supported
  50 *		Alan Cox	:	Error reporting fixes
  51 *		Anonymous	:	inet_create tidied up (sk->reuse setting)
  52 *		Alan Cox	:	inet sockets don't set sk->type!
  53 *		Alan Cox	:	Split socket option code
  54 *		Alan Cox	:	Callbacks
  55 *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
  56 *		Alex		:	Removed restriction on inet fioctl
  57 *		Alan Cox	:	Splitting INET from NET core
  58 *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
  59 *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
  60 *		Alan Cox	:	Split IP from generic code
  61 *		Alan Cox	:	New kfree_skbmem()
  62 *		Alan Cox	:	Make SO_DEBUG superuser only.
  63 *		Alan Cox	:	Allow anyone to clear SO_DEBUG
  64 *					(compatibility fix)
  65 *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
  66 *		Alan Cox	:	Allocator for a socket is settable.
  67 *		Alan Cox	:	SO_ERROR includes soft errors.
  68 *		Alan Cox	:	Allow NULL arguments on some SO_ opts
  69 *		Alan Cox	: 	Generic socket allocation to make hooks
  70 *					easier (suggested by Craig Metz).
  71 *		Michael Pall	:	SO_ERROR returns positive errno again
  72 *              Steve Whitehouse:       Added default destructor to free
  73 *                                      protocol private data.
  74 *              Steve Whitehouse:       Added various other default routines
  75 *                                      common to several socket families.
  76 *              Chris Evans     :       Call suser() check last on F_SETOWN
  77 *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78 *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
  79 *		Andi Kleen	:	Fix write_space callback
  80 *		Chris Evans	:	Security fixes - signedness again
  81 *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
  82 *
  83 * To Fix:
  84 */
  85
  86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  87
  88#include <linux/unaligned.h>
  89#include <linux/capability.h>
  90#include <linux/errno.h>
  91#include <linux/errqueue.h>
  92#include <linux/types.h>
  93#include <linux/socket.h>
  94#include <linux/in.h>
  95#include <linux/kernel.h>
  96#include <linux/module.h>
  97#include <linux/proc_fs.h>
  98#include <linux/seq_file.h>
  99#include <linux/sched.h>
 100#include <linux/sched/mm.h>
 101#include <linux/timer.h>
 102#include <linux/string.h>
 103#include <linux/sockios.h>
 104#include <linux/net.h>
 105#include <linux/mm.h>
 106#include <linux/slab.h>
 107#include <linux/interrupt.h>
 108#include <linux/poll.h>
 109#include <linux/tcp.h>
 110#include <linux/udp.h>
 111#include <linux/init.h>
 112#include <linux/highmem.h>
 113#include <linux/user_namespace.h>
 114#include <linux/static_key.h>
 115#include <linux/memcontrol.h>
 116#include <linux/prefetch.h>
 117#include <linux/compat.h>
 118#include <linux/mroute.h>
 119#include <linux/mroute6.h>
 120#include <linux/icmpv6.h>
 121
 122#include <linux/uaccess.h>
 123
 124#include <linux/netdevice.h>
 125#include <net/protocol.h>
 126#include <linux/skbuff.h>
 127#include <linux/skbuff_ref.h>
 128#include <net/net_namespace.h>
 129#include <net/request_sock.h>
 130#include <net/sock.h>
 131#include <net/proto_memory.h>
 132#include <linux/net_tstamp.h>
 133#include <net/xfrm.h>
 134#include <linux/ipsec.h>
 135#include <net/cls_cgroup.h>
 136#include <net/netprio_cgroup.h>
 137#include <linux/sock_diag.h>
 138
 139#include <linux/filter.h>
 140#include <net/sock_reuseport.h>
 141#include <net/bpf_sk_storage.h>
 142
 143#include <trace/events/sock.h>
 144
 145#include <net/tcp.h>
 146#include <net/busy_poll.h>
 147#include <net/phonet/phonet.h>
 148
 149#include <linux/ethtool.h>
 150
 151#include "dev.h"
 152
 153static DEFINE_MUTEX(proto_list_mutex);
 154static LIST_HEAD(proto_list);
 155
 156static void sock_def_write_space_wfree(struct sock *sk);
 157static void sock_def_write_space(struct sock *sk);
 158
 159/**
 160 * sk_ns_capable - General socket capability test
 161 * @sk: Socket to use a capability on or through
 162 * @user_ns: The user namespace of the capability to use
 163 * @cap: The capability to use
 164 *
 165 * Test to see if the opener of the socket had when the socket was
 166 * created and the current process has the capability @cap in the user
 167 * namespace @user_ns.
 168 */
 169bool sk_ns_capable(const struct sock *sk,
 170		   struct user_namespace *user_ns, int cap)
 171{
 172	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
 173		ns_capable(user_ns, cap);
 174}
 175EXPORT_SYMBOL(sk_ns_capable);
 176
 177/**
 178 * sk_capable - Socket global capability test
 179 * @sk: Socket to use a capability on or through
 180 * @cap: The global capability to use
 181 *
 182 * Test to see if the opener of the socket had when the socket was
 183 * created and the current process has the capability @cap in all user
 184 * namespaces.
 185 */
 186bool sk_capable(const struct sock *sk, int cap)
 187{
 188	return sk_ns_capable(sk, &init_user_ns, cap);
 189}
 190EXPORT_SYMBOL(sk_capable);
 191
 192/**
 193 * sk_net_capable - Network namespace socket capability test
 194 * @sk: Socket to use a capability on or through
 195 * @cap: The capability to use
 196 *
 197 * Test to see if the opener of the socket had when the socket was created
 198 * and the current process has the capability @cap over the network namespace
 199 * the socket is a member of.
 200 */
 201bool sk_net_capable(const struct sock *sk, int cap)
 202{
 203	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
 204}
 205EXPORT_SYMBOL(sk_net_capable);
 206
 207/*
 208 * Each address family might have different locking rules, so we have
 209 * one slock key per address family and separate keys for internal and
 210 * userspace sockets.
 211 */
 212static struct lock_class_key af_family_keys[AF_MAX];
 213static struct lock_class_key af_family_kern_keys[AF_MAX];
 214static struct lock_class_key af_family_slock_keys[AF_MAX];
 215static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
 216
 217/*
 218 * Make lock validator output more readable. (we pre-construct these
 219 * strings build-time, so that runtime initialization of socket
 220 * locks is fast):
 221 */
 222
 223#define _sock_locks(x)						  \
 224  x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
 225  x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
 226  x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
 227  x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
 228  x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
 229  x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
 230  x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
 231  x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
 232  x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
 233  x "27"       ,	x "28"          ,	x "AF_CAN"      , \
 234  x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
 235  x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
 236  x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
 237  x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
 238  x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
 239  x "AF_MCTP"  , \
 240  x "AF_MAX"
 241
 242static const char *const af_family_key_strings[AF_MAX+1] = {
 243	_sock_locks("sk_lock-")
 244};
 245static const char *const af_family_slock_key_strings[AF_MAX+1] = {
 246	_sock_locks("slock-")
 247};
 248static const char *const af_family_clock_key_strings[AF_MAX+1] = {
 249	_sock_locks("clock-")
 250};
 251
 252static const char *const af_family_kern_key_strings[AF_MAX+1] = {
 253	_sock_locks("k-sk_lock-")
 254};
 255static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
 256	_sock_locks("k-slock-")
 257};
 258static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
 259	_sock_locks("k-clock-")
 260};
 261static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
 262	_sock_locks("rlock-")
 263};
 264static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
 265	_sock_locks("wlock-")
 266};
 267static const char *const af_family_elock_key_strings[AF_MAX+1] = {
 268	_sock_locks("elock-")
 269};
 270
 271/*
 272 * sk_callback_lock and sk queues locking rules are per-address-family,
 273 * so split the lock classes by using a per-AF key:
 274 */
 275static struct lock_class_key af_callback_keys[AF_MAX];
 276static struct lock_class_key af_rlock_keys[AF_MAX];
 277static struct lock_class_key af_wlock_keys[AF_MAX];
 278static struct lock_class_key af_elock_keys[AF_MAX];
 279static struct lock_class_key af_kern_callback_keys[AF_MAX];
 280
 281/* Run time adjustable parameters. */
 282__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
 283EXPORT_SYMBOL(sysctl_wmem_max);
 284__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
 285EXPORT_SYMBOL(sysctl_rmem_max);
 286__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
 287__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
 288
 
 
 289DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
 290EXPORT_SYMBOL_GPL(memalloc_socks_key);
 291
 292/**
 293 * sk_set_memalloc - sets %SOCK_MEMALLOC
 294 * @sk: socket to set it on
 295 *
 296 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
 297 * It's the responsibility of the admin to adjust min_free_kbytes
 298 * to meet the requirements
 299 */
 300void sk_set_memalloc(struct sock *sk)
 301{
 302	sock_set_flag(sk, SOCK_MEMALLOC);
 303	sk->sk_allocation |= __GFP_MEMALLOC;
 304	static_branch_inc(&memalloc_socks_key);
 305}
 306EXPORT_SYMBOL_GPL(sk_set_memalloc);
 307
 308void sk_clear_memalloc(struct sock *sk)
 309{
 310	sock_reset_flag(sk, SOCK_MEMALLOC);
 311	sk->sk_allocation &= ~__GFP_MEMALLOC;
 312	static_branch_dec(&memalloc_socks_key);
 313
 314	/*
 315	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
 316	 * progress of swapping. SOCK_MEMALLOC may be cleared while
 317	 * it has rmem allocations due to the last swapfile being deactivated
 318	 * but there is a risk that the socket is unusable due to exceeding
 319	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
 320	 */
 321	sk_mem_reclaim(sk);
 322}
 323EXPORT_SYMBOL_GPL(sk_clear_memalloc);
 324
 325int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 326{
 327	int ret;
 328	unsigned int noreclaim_flag;
 329
 330	/* these should have been dropped before queueing */
 331	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
 332
 333	noreclaim_flag = memalloc_noreclaim_save();
 334	ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
 335				 tcp_v6_do_rcv,
 336				 tcp_v4_do_rcv,
 337				 sk, skb);
 338	memalloc_noreclaim_restore(noreclaim_flag);
 339
 340	return ret;
 341}
 342EXPORT_SYMBOL(__sk_backlog_rcv);
 343
 344void sk_error_report(struct sock *sk)
 345{
 346	sk->sk_error_report(sk);
 347
 348	switch (sk->sk_family) {
 349	case AF_INET:
 350		fallthrough;
 351	case AF_INET6:
 352		trace_inet_sk_error_report(sk);
 353		break;
 354	default:
 355		break;
 356	}
 357}
 358EXPORT_SYMBOL(sk_error_report);
 359
 360int sock_get_timeout(long timeo, void *optval, bool old_timeval)
 361{
 362	struct __kernel_sock_timeval tv;
 363
 364	if (timeo == MAX_SCHEDULE_TIMEOUT) {
 365		tv.tv_sec = 0;
 366		tv.tv_usec = 0;
 367	} else {
 368		tv.tv_sec = timeo / HZ;
 369		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
 370	}
 371
 372	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 373		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
 374		*(struct old_timeval32 *)optval = tv32;
 375		return sizeof(tv32);
 376	}
 377
 378	if (old_timeval) {
 379		struct __kernel_old_timeval old_tv;
 380		old_tv.tv_sec = tv.tv_sec;
 381		old_tv.tv_usec = tv.tv_usec;
 382		*(struct __kernel_old_timeval *)optval = old_tv;
 383		return sizeof(old_tv);
 384	}
 385
 386	*(struct __kernel_sock_timeval *)optval = tv;
 387	return sizeof(tv);
 388}
 389EXPORT_SYMBOL(sock_get_timeout);
 390
 391int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
 392			   sockptr_t optval, int optlen, bool old_timeval)
 393{
 394	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
 395		struct old_timeval32 tv32;
 396
 397		if (optlen < sizeof(tv32))
 398			return -EINVAL;
 399
 400		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
 401			return -EFAULT;
 402		tv->tv_sec = tv32.tv_sec;
 403		tv->tv_usec = tv32.tv_usec;
 404	} else if (old_timeval) {
 405		struct __kernel_old_timeval old_tv;
 406
 407		if (optlen < sizeof(old_tv))
 408			return -EINVAL;
 409		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
 410			return -EFAULT;
 411		tv->tv_sec = old_tv.tv_sec;
 412		tv->tv_usec = old_tv.tv_usec;
 413	} else {
 414		if (optlen < sizeof(*tv))
 415			return -EINVAL;
 416		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
 417			return -EFAULT;
 418	}
 419
 420	return 0;
 421}
 422EXPORT_SYMBOL(sock_copy_user_timeval);
 423
 424static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
 425			    bool old_timeval)
 426{
 427	struct __kernel_sock_timeval tv;
 428	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
 429	long val;
 430
 431	if (err)
 432		return err;
 433
 434	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
 435		return -EDOM;
 436
 437	if (tv.tv_sec < 0) {
 438		static int warned __read_mostly;
 439
 440		WRITE_ONCE(*timeo_p, 0);
 441		if (warned < 10 && net_ratelimit()) {
 442			warned++;
 443			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
 444				__func__, current->comm, task_pid_nr(current));
 445		}
 446		return 0;
 447	}
 448	val = MAX_SCHEDULE_TIMEOUT;
 449	if ((tv.tv_sec || tv.tv_usec) &&
 450	    (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)))
 451		val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec,
 452						    USEC_PER_SEC / HZ);
 453	WRITE_ONCE(*timeo_p, val);
 454	return 0;
 455}
 456
 457static bool sock_needs_netstamp(const struct sock *sk)
 458{
 459	switch (sk->sk_family) {
 460	case AF_UNSPEC:
 461	case AF_UNIX:
 462		return false;
 463	default:
 464		return true;
 465	}
 466}
 467
 468static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
 469{
 470	if (sk->sk_flags & flags) {
 471		sk->sk_flags &= ~flags;
 472		if (sock_needs_netstamp(sk) &&
 473		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
 474			net_disable_timestamp();
 475	}
 476}
 477
 478
 479int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
 480{
 481	unsigned long flags;
 482	struct sk_buff_head *list = &sk->sk_receive_queue;
 483
 484	if (atomic_read(&sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) {
 485		atomic_inc(&sk->sk_drops);
 486		trace_sock_rcvqueue_full(sk, skb);
 487		return -ENOMEM;
 488	}
 489
 490	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
 491		atomic_inc(&sk->sk_drops);
 492		return -ENOBUFS;
 493	}
 494
 495	skb->dev = NULL;
 496	skb_set_owner_r(skb, sk);
 497
 498	/* we escape from rcu protected region, make sure we dont leak
 499	 * a norefcounted dst
 500	 */
 501	skb_dst_force(skb);
 502
 503	spin_lock_irqsave(&list->lock, flags);
 504	sock_skb_set_dropcount(sk, skb);
 505	__skb_queue_tail(list, skb);
 506	spin_unlock_irqrestore(&list->lock, flags);
 507
 508	if (!sock_flag(sk, SOCK_DEAD))
 509		sk->sk_data_ready(sk);
 510	return 0;
 511}
 512EXPORT_SYMBOL(__sock_queue_rcv_skb);
 513
 514int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
 515			      enum skb_drop_reason *reason)
 516{
 517	enum skb_drop_reason drop_reason;
 518	int err;
 519
 520	err = sk_filter(sk, skb);
 521	if (err) {
 522		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
 523		goto out;
 524	}
 525	err = __sock_queue_rcv_skb(sk, skb);
 526	switch (err) {
 527	case -ENOMEM:
 528		drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
 529		break;
 530	case -ENOBUFS:
 531		drop_reason = SKB_DROP_REASON_PROTO_MEM;
 532		break;
 533	default:
 534		drop_reason = SKB_NOT_DROPPED_YET;
 535		break;
 536	}
 537out:
 538	if (reason)
 539		*reason = drop_reason;
 540	return err;
 541}
 542EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
 543
 544int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
 545		     const int nested, unsigned int trim_cap, bool refcounted)
 546{
 547	int rc = NET_RX_SUCCESS;
 548
 549	if (sk_filter_trim_cap(sk, skb, trim_cap))
 550		goto discard_and_relse;
 551
 552	skb->dev = NULL;
 553
 554	if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) {
 555		atomic_inc(&sk->sk_drops);
 556		goto discard_and_relse;
 557	}
 558	if (nested)
 559		bh_lock_sock_nested(sk);
 560	else
 561		bh_lock_sock(sk);
 562	if (!sock_owned_by_user(sk)) {
 563		/*
 564		 * trylock + unlock semantics:
 565		 */
 566		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
 567
 568		rc = sk_backlog_rcv(sk, skb);
 569
 570		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
 571	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
 572		bh_unlock_sock(sk);
 573		atomic_inc(&sk->sk_drops);
 574		goto discard_and_relse;
 575	}
 576
 577	bh_unlock_sock(sk);
 578out:
 579	if (refcounted)
 580		sock_put(sk);
 581	return rc;
 582discard_and_relse:
 583	kfree_skb(skb);
 584	goto out;
 585}
 586EXPORT_SYMBOL(__sk_receive_skb);
 587
 588INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
 589							  u32));
 590INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
 591							   u32));
 592struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
 593{
 594	struct dst_entry *dst = __sk_dst_get(sk);
 595
 596	if (dst && dst->obsolete &&
 597	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 598			       dst, cookie) == NULL) {
 599		sk_tx_queue_clear(sk);
 600		WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
 601		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
 602		dst_release(dst);
 603		return NULL;
 604	}
 605
 606	return dst;
 607}
 608EXPORT_SYMBOL(__sk_dst_check);
 609
 610struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
 611{
 612	struct dst_entry *dst = sk_dst_get(sk);
 613
 614	if (dst && dst->obsolete &&
 615	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
 616			       dst, cookie) == NULL) {
 617		sk_dst_reset(sk);
 618		dst_release(dst);
 619		return NULL;
 620	}
 621
 622	return dst;
 623}
 624EXPORT_SYMBOL(sk_dst_check);
 625
 626static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
 627{
 628	int ret = -ENOPROTOOPT;
 629#ifdef CONFIG_NETDEVICES
 630	struct net *net = sock_net(sk);
 631
 632	/* Sorry... */
 633	ret = -EPERM;
 634	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
 635		goto out;
 636
 637	ret = -EINVAL;
 638	if (ifindex < 0)
 639		goto out;
 640
 641	/* Paired with all READ_ONCE() done locklessly. */
 642	WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
 643
 644	if (sk->sk_prot->rehash)
 645		sk->sk_prot->rehash(sk);
 646	sk_dst_reset(sk);
 647
 648	ret = 0;
 649
 650out:
 651#endif
 652
 653	return ret;
 654}
 655
 656int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
 657{
 658	int ret;
 659
 660	if (lock_sk)
 661		lock_sock(sk);
 662	ret = sock_bindtoindex_locked(sk, ifindex);
 663	if (lock_sk)
 664		release_sock(sk);
 665
 666	return ret;
 667}
 668EXPORT_SYMBOL(sock_bindtoindex);
 669
 670static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
 671{
 672	int ret = -ENOPROTOOPT;
 673#ifdef CONFIG_NETDEVICES
 674	struct net *net = sock_net(sk);
 675	char devname[IFNAMSIZ];
 676	int index;
 677
 678	ret = -EINVAL;
 679	if (optlen < 0)
 680		goto out;
 681
 682	/* Bind this socket to a particular device like "eth0",
 683	 * as specified in the passed interface name. If the
 684	 * name is "" or the option length is zero the socket
 685	 * is not bound.
 686	 */
 687	if (optlen > IFNAMSIZ - 1)
 688		optlen = IFNAMSIZ - 1;
 689	memset(devname, 0, sizeof(devname));
 690
 691	ret = -EFAULT;
 692	if (copy_from_sockptr(devname, optval, optlen))
 693		goto out;
 694
 695	index = 0;
 696	if (devname[0] != '\0') {
 697		struct net_device *dev;
 698
 699		rcu_read_lock();
 700		dev = dev_get_by_name_rcu(net, devname);
 701		if (dev)
 702			index = dev->ifindex;
 703		rcu_read_unlock();
 704		ret = -ENODEV;
 705		if (!dev)
 706			goto out;
 707	}
 708
 709	sockopt_lock_sock(sk);
 710	ret = sock_bindtoindex_locked(sk, index);
 711	sockopt_release_sock(sk);
 712out:
 713#endif
 714
 715	return ret;
 716}
 717
 718static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
 719				sockptr_t optlen, int len)
 720{
 721	int ret = -ENOPROTOOPT;
 722#ifdef CONFIG_NETDEVICES
 723	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
 724	struct net *net = sock_net(sk);
 725	char devname[IFNAMSIZ];
 726
 727	if (bound_dev_if == 0) {
 728		len = 0;
 729		goto zero;
 730	}
 731
 732	ret = -EINVAL;
 733	if (len < IFNAMSIZ)
 734		goto out;
 735
 736	ret = netdev_get_name(net, devname, bound_dev_if);
 737	if (ret)
 738		goto out;
 739
 740	len = strlen(devname) + 1;
 741
 742	ret = -EFAULT;
 743	if (copy_to_sockptr(optval, devname, len))
 744		goto out;
 745
 746zero:
 747	ret = -EFAULT;
 748	if (copy_to_sockptr(optlen, &len, sizeof(int)))
 749		goto out;
 750
 751	ret = 0;
 752
 753out:
 754#endif
 755
 756	return ret;
 757}
 758
 759bool sk_mc_loop(const struct sock *sk)
 760{
 761	if (dev_recursion_level())
 762		return false;
 763	if (!sk)
 764		return true;
 765	/* IPV6_ADDRFORM can change sk->sk_family under us. */
 766	switch (READ_ONCE(sk->sk_family)) {
 767	case AF_INET:
 768		return inet_test_bit(MC_LOOP, sk);
 769#if IS_ENABLED(CONFIG_IPV6)
 770	case AF_INET6:
 771		return inet6_test_bit(MC6_LOOP, sk);
 772#endif
 773	}
 774	WARN_ON_ONCE(1);
 775	return true;
 776}
 777EXPORT_SYMBOL(sk_mc_loop);
 778
 779void sock_set_reuseaddr(struct sock *sk)
 780{
 781	lock_sock(sk);
 782	sk->sk_reuse = SK_CAN_REUSE;
 783	release_sock(sk);
 784}
 785EXPORT_SYMBOL(sock_set_reuseaddr);
 786
 787void sock_set_reuseport(struct sock *sk)
 788{
 789	lock_sock(sk);
 790	sk->sk_reuseport = true;
 791	release_sock(sk);
 792}
 793EXPORT_SYMBOL(sock_set_reuseport);
 794
 795void sock_no_linger(struct sock *sk)
 796{
 797	lock_sock(sk);
 798	WRITE_ONCE(sk->sk_lingertime, 0);
 799	sock_set_flag(sk, SOCK_LINGER);
 800	release_sock(sk);
 801}
 802EXPORT_SYMBOL(sock_no_linger);
 803
 804void sock_set_priority(struct sock *sk, u32 priority)
 805{
 806	WRITE_ONCE(sk->sk_priority, priority);
 807}
 808EXPORT_SYMBOL(sock_set_priority);
 809
 810void sock_set_sndtimeo(struct sock *sk, s64 secs)
 811{
 812	lock_sock(sk);
 813	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
 814		WRITE_ONCE(sk->sk_sndtimeo, secs * HZ);
 815	else
 816		WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT);
 817	release_sock(sk);
 818}
 819EXPORT_SYMBOL(sock_set_sndtimeo);
 820
 821static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
 822{
 823	sock_valbool_flag(sk, SOCK_RCVTSTAMP, val);
 824	sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, val && ns);
 825	if (val)  {
 826		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
 
 
 827		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
 
 
 
 828	}
 829}
 830
 831void sock_enable_timestamps(struct sock *sk)
 832{
 833	lock_sock(sk);
 834	__sock_set_timestamps(sk, true, false, true);
 835	release_sock(sk);
 836}
 837EXPORT_SYMBOL(sock_enable_timestamps);
 838
 839void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
 840{
 841	switch (optname) {
 842	case SO_TIMESTAMP_OLD:
 843		__sock_set_timestamps(sk, valbool, false, false);
 844		break;
 845	case SO_TIMESTAMP_NEW:
 846		__sock_set_timestamps(sk, valbool, true, false);
 847		break;
 848	case SO_TIMESTAMPNS_OLD:
 849		__sock_set_timestamps(sk, valbool, false, true);
 850		break;
 851	case SO_TIMESTAMPNS_NEW:
 852		__sock_set_timestamps(sk, valbool, true, true);
 853		break;
 854	}
 855}
 856
 857static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
 858{
 859	struct net *net = sock_net(sk);
 860	struct net_device *dev = NULL;
 861	bool match = false;
 862	int *vclock_index;
 863	int i, num;
 864
 865	if (sk->sk_bound_dev_if)
 866		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
 867
 868	if (!dev) {
 869		pr_err("%s: sock not bind to device\n", __func__);
 870		return -EOPNOTSUPP;
 871	}
 872
 873	num = ethtool_get_phc_vclocks(dev, &vclock_index);
 874	dev_put(dev);
 875
 876	for (i = 0; i < num; i++) {
 877		if (*(vclock_index + i) == phc_index) {
 878			match = true;
 879			break;
 880		}
 881	}
 882
 883	if (num > 0)
 884		kfree(vclock_index);
 885
 886	if (!match)
 887		return -EINVAL;
 888
 889	WRITE_ONCE(sk->sk_bind_phc, phc_index);
 890
 891	return 0;
 892}
 893
 894int sock_set_timestamping(struct sock *sk, int optname,
 895			  struct so_timestamping timestamping)
 896{
 897	int val = timestamping.flags;
 898	int ret;
 899
 900	if (val & ~SOF_TIMESTAMPING_MASK)
 901		return -EINVAL;
 902
 903	if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
 904	    !(val & SOF_TIMESTAMPING_OPT_ID))
 905		return -EINVAL;
 906
 907	if (val & SOF_TIMESTAMPING_OPT_ID &&
 908	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
 909		if (sk_is_tcp(sk)) {
 910			if ((1 << sk->sk_state) &
 911			    (TCPF_CLOSE | TCPF_LISTEN))
 912				return -EINVAL;
 913			if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
 914				atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
 915			else
 916				atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
 917		} else {
 918			atomic_set(&sk->sk_tskey, 0);
 919		}
 920	}
 921
 922	if (val & SOF_TIMESTAMPING_OPT_STATS &&
 923	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
 924		return -EINVAL;
 925
 926	if (val & SOF_TIMESTAMPING_BIND_PHC) {
 927		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
 928		if (ret)
 929			return ret;
 930	}
 931
 932	WRITE_ONCE(sk->sk_tsflags, val);
 933	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
 934
 935	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
 936		sock_enable_timestamp(sk,
 937				      SOCK_TIMESTAMPING_RX_SOFTWARE);
 938	else
 939		sock_disable_timestamp(sk,
 940				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
 941	return 0;
 942}
 943
 944void sock_set_keepalive(struct sock *sk)
 945{
 946	lock_sock(sk);
 947	if (sk->sk_prot->keepalive)
 948		sk->sk_prot->keepalive(sk, true);
 949	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
 950	release_sock(sk);
 951}
 952EXPORT_SYMBOL(sock_set_keepalive);
 953
 954static void __sock_set_rcvbuf(struct sock *sk, int val)
 955{
 956	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
 957	 * as a negative value.
 958	 */
 959	val = min_t(int, val, INT_MAX / 2);
 960	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
 961
 962	/* We double it on the way in to account for "struct sk_buff" etc.
 963	 * overhead.   Applications assume that the SO_RCVBUF setting they make
 964	 * will allow that much actual data to be received on that socket.
 965	 *
 966	 * Applications are unaware that "struct sk_buff" and other overheads
 967	 * allocate from the receive buffer during socket buffer allocation.
 968	 *
 969	 * And after considering the possible alternatives, returning the value
 970	 * we actually used in getsockopt is the most desirable behavior.
 971	 */
 972	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
 973}
 974
 975void sock_set_rcvbuf(struct sock *sk, int val)
 976{
 977	lock_sock(sk);
 978	__sock_set_rcvbuf(sk, val);
 979	release_sock(sk);
 980}
 981EXPORT_SYMBOL(sock_set_rcvbuf);
 982
 983static void __sock_set_mark(struct sock *sk, u32 val)
 984{
 985	if (val != sk->sk_mark) {
 986		WRITE_ONCE(sk->sk_mark, val);
 987		sk_dst_reset(sk);
 988	}
 989}
 990
 991void sock_set_mark(struct sock *sk, u32 val)
 992{
 993	lock_sock(sk);
 994	__sock_set_mark(sk, val);
 995	release_sock(sk);
 996}
 997EXPORT_SYMBOL(sock_set_mark);
 998
 999static void sock_release_reserved_memory(struct sock *sk, int bytes)
1000{
1001	/* Round down bytes to multiple of pages */
1002	bytes = round_down(bytes, PAGE_SIZE);
1003
1004	WARN_ON(bytes > sk->sk_reserved_mem);
1005	WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes);
1006	sk_mem_reclaim(sk);
1007}
1008
1009static int sock_reserve_memory(struct sock *sk, int bytes)
1010{
1011	long allocated;
1012	bool charged;
1013	int pages;
1014
1015	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1016		return -EOPNOTSUPP;
1017
1018	if (!bytes)
1019		return 0;
1020
1021	pages = sk_mem_pages(bytes);
1022
1023	/* pre-charge to memcg */
1024	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1025					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1026	if (!charged)
1027		return -ENOMEM;
1028
1029	/* pre-charge to forward_alloc */
1030	sk_memory_allocated_add(sk, pages);
1031	allocated = sk_memory_allocated(sk);
1032	/* If the system goes into memory pressure with this
1033	 * precharge, give up and return error.
1034	 */
1035	if (allocated > sk_prot_mem_limits(sk, 1)) {
1036		sk_memory_allocated_sub(sk, pages);
1037		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1038		return -ENOMEM;
1039	}
1040	sk_forward_alloc_add(sk, pages << PAGE_SHIFT);
1041
1042	WRITE_ONCE(sk->sk_reserved_mem,
1043		   sk->sk_reserved_mem + (pages << PAGE_SHIFT));
1044
1045	return 0;
1046}
1047
1048#ifdef CONFIG_PAGE_POOL
1049
1050/* This is the number of tokens and frags that the user can SO_DEVMEM_DONTNEED
1051 * in 1 syscall. The limit exists to limit the amount of memory the kernel
1052 * allocates to copy these tokens, and to prevent looping over the frags for
1053 * too long.
1054 */
1055#define MAX_DONTNEED_TOKENS 128
1056#define MAX_DONTNEED_FRAGS 1024
1057
1058static noinline_for_stack int
1059sock_devmem_dontneed(struct sock *sk, sockptr_t optval, unsigned int optlen)
1060{
1061	unsigned int num_tokens, i, j, k, netmem_num = 0;
1062	struct dmabuf_token *tokens;
1063	int ret = 0, num_frags = 0;
1064	netmem_ref netmems[16];
1065
1066	if (!sk_is_tcp(sk))
1067		return -EBADF;
1068
1069	if (optlen % sizeof(*tokens) ||
1070	    optlen > sizeof(*tokens) * MAX_DONTNEED_TOKENS)
1071		return -EINVAL;
1072
1073	num_tokens = optlen / sizeof(*tokens);
1074	tokens = kvmalloc_array(num_tokens, sizeof(*tokens), GFP_KERNEL);
1075	if (!tokens)
1076		return -ENOMEM;
1077
1078	if (copy_from_sockptr(tokens, optval, optlen)) {
1079		kvfree(tokens);
1080		return -EFAULT;
1081	}
1082
1083	xa_lock_bh(&sk->sk_user_frags);
1084	for (i = 0; i < num_tokens; i++) {
1085		for (j = 0; j < tokens[i].token_count; j++) {
1086			if (++num_frags > MAX_DONTNEED_FRAGS)
1087				goto frag_limit_reached;
1088
1089			netmem_ref netmem = (__force netmem_ref)__xa_erase(
1090				&sk->sk_user_frags, tokens[i].token_start + j);
1091
1092			if (!netmem || WARN_ON_ONCE(!netmem_is_net_iov(netmem)))
1093				continue;
1094
1095			netmems[netmem_num++] = netmem;
1096			if (netmem_num == ARRAY_SIZE(netmems)) {
1097				xa_unlock_bh(&sk->sk_user_frags);
1098				for (k = 0; k < netmem_num; k++)
1099					WARN_ON_ONCE(!napi_pp_put_page(netmems[k]));
1100				netmem_num = 0;
1101				xa_lock_bh(&sk->sk_user_frags);
1102			}
1103			ret++;
1104		}
1105	}
1106
1107frag_limit_reached:
1108	xa_unlock_bh(&sk->sk_user_frags);
1109	for (k = 0; k < netmem_num; k++)
1110		WARN_ON_ONCE(!napi_pp_put_page(netmems[k]));
1111
1112	kvfree(tokens);
1113	return ret;
1114}
1115#endif
1116
1117void sockopt_lock_sock(struct sock *sk)
1118{
1119	/* When current->bpf_ctx is set, the setsockopt is called from
1120	 * a bpf prog.  bpf has ensured the sk lock has been
1121	 * acquired before calling setsockopt().
1122	 */
1123	if (has_current_bpf_ctx())
1124		return;
1125
1126	lock_sock(sk);
1127}
1128EXPORT_SYMBOL(sockopt_lock_sock);
1129
1130void sockopt_release_sock(struct sock *sk)
1131{
1132	if (has_current_bpf_ctx())
1133		return;
1134
1135	release_sock(sk);
1136}
1137EXPORT_SYMBOL(sockopt_release_sock);
1138
1139bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1140{
1141	return has_current_bpf_ctx() || ns_capable(ns, cap);
1142}
1143EXPORT_SYMBOL(sockopt_ns_capable);
1144
1145bool sockopt_capable(int cap)
1146{
1147	return has_current_bpf_ctx() || capable(cap);
1148}
1149EXPORT_SYMBOL(sockopt_capable);
1150
1151static int sockopt_validate_clockid(__kernel_clockid_t value)
1152{
1153	switch (value) {
1154	case CLOCK_REALTIME:
1155	case CLOCK_MONOTONIC:
1156	case CLOCK_TAI:
1157		return 0;
1158	}
1159	return -EINVAL;
1160}
1161
1162/*
1163 *	This is meant for all protocols to use and covers goings on
1164 *	at the socket level. Everything here is generic.
1165 */
1166
1167int sk_setsockopt(struct sock *sk, int level, int optname,
1168		  sockptr_t optval, unsigned int optlen)
1169{
1170	struct so_timestamping timestamping;
1171	struct socket *sock = sk->sk_socket;
1172	struct sock_txtime sk_txtime;
1173	int val;
1174	int valbool;
1175	struct linger ling;
1176	int ret = 0;
1177
1178	/*
1179	 *	Options without arguments
1180	 */
1181
1182	if (optname == SO_BINDTODEVICE)
1183		return sock_setbindtodevice(sk, optval, optlen);
1184
1185	if (optlen < sizeof(int))
1186		return -EINVAL;
1187
1188	if (copy_from_sockptr(&val, optval, sizeof(val)))
1189		return -EFAULT;
1190
1191	valbool = val ? 1 : 0;
1192
1193	/* handle options which do not require locking the socket. */
1194	switch (optname) {
1195	case SO_PRIORITY:
1196		if ((val >= 0 && val <= 6) ||
1197		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1198		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1199			sock_set_priority(sk, val);
1200			return 0;
1201		}
1202		return -EPERM;
1203	case SO_PASSSEC:
1204		assign_bit(SOCK_PASSSEC, &sock->flags, valbool);
1205		return 0;
1206	case SO_PASSCRED:
1207		assign_bit(SOCK_PASSCRED, &sock->flags, valbool);
1208		return 0;
1209	case SO_PASSPIDFD:
1210		assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool);
1211		return 0;
1212	case SO_TYPE:
1213	case SO_PROTOCOL:
1214	case SO_DOMAIN:
1215	case SO_ERROR:
1216		return -ENOPROTOOPT;
1217#ifdef CONFIG_NET_RX_BUSY_POLL
1218	case SO_BUSY_POLL:
1219		if (val < 0)
1220			return -EINVAL;
1221		WRITE_ONCE(sk->sk_ll_usec, val);
1222		return 0;
1223	case SO_PREFER_BUSY_POLL:
1224		if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1225			return -EPERM;
1226		WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1227		return 0;
1228	case SO_BUSY_POLL_BUDGET:
1229		if (val > READ_ONCE(sk->sk_busy_poll_budget) &&
1230		    !sockopt_capable(CAP_NET_ADMIN))
1231			return -EPERM;
1232		if (val < 0 || val > U16_MAX)
1233			return -EINVAL;
1234		WRITE_ONCE(sk->sk_busy_poll_budget, val);
1235		return 0;
1236#endif
1237	case SO_MAX_PACING_RATE:
1238		{
1239		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1240		unsigned long pacing_rate;
1241
1242		if (sizeof(ulval) != sizeof(val) &&
1243		    optlen >= sizeof(ulval) &&
1244		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1245			return -EFAULT;
1246		}
1247		if (ulval != ~0UL)
1248			cmpxchg(&sk->sk_pacing_status,
1249				SK_PACING_NONE,
1250				SK_PACING_NEEDED);
1251		/* Pairs with READ_ONCE() from sk_getsockopt() */
1252		WRITE_ONCE(sk->sk_max_pacing_rate, ulval);
1253		pacing_rate = READ_ONCE(sk->sk_pacing_rate);
1254		if (ulval < pacing_rate)
1255			WRITE_ONCE(sk->sk_pacing_rate, ulval);
1256		return 0;
1257		}
1258	case SO_TXREHASH:
1259		if (val < -1 || val > 1)
1260			return -EINVAL;
1261		if ((u8)val == SOCK_TXREHASH_DEFAULT)
1262			val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1263		/* Paired with READ_ONCE() in tcp_rtx_synack()
1264		 * and sk_getsockopt().
1265		 */
1266		WRITE_ONCE(sk->sk_txrehash, (u8)val);
1267		return 0;
1268	case SO_PEEK_OFF:
1269		{
1270		int (*set_peek_off)(struct sock *sk, int val);
1271
1272		set_peek_off = READ_ONCE(sock->ops)->set_peek_off;
1273		if (set_peek_off)
1274			ret = set_peek_off(sk, val);
1275		else
1276			ret = -EOPNOTSUPP;
1277		return ret;
1278		}
1279#ifdef CONFIG_PAGE_POOL
1280	case SO_DEVMEM_DONTNEED:
1281		return sock_devmem_dontneed(sk, optval, optlen);
1282#endif
1283	}
1284
1285	sockopt_lock_sock(sk);
1286
1287	switch (optname) {
1288	case SO_DEBUG:
1289		if (val && !sockopt_capable(CAP_NET_ADMIN))
1290			ret = -EACCES;
1291		else
1292			sock_valbool_flag(sk, SOCK_DBG, valbool);
1293		break;
1294	case SO_REUSEADDR:
1295		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1296		break;
1297	case SO_REUSEPORT:
1298		if (valbool && !sk_is_inet(sk))
1299			ret = -EOPNOTSUPP;
1300		else
1301			sk->sk_reuseport = valbool;
1302		break;
1303	case SO_DONTROUTE:
1304		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1305		sk_dst_reset(sk);
1306		break;
1307	case SO_BROADCAST:
1308		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1309		break;
1310	case SO_SNDBUF:
1311		/* Don't error on this BSD doesn't and if you think
1312		 * about it this is right. Otherwise apps have to
1313		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1314		 * are treated in BSD as hints
1315		 */
1316		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1317set_sndbuf:
1318		/* Ensure val * 2 fits into an int, to prevent max_t()
1319		 * from treating it as a negative value.
1320		 */
1321		val = min_t(int, val, INT_MAX / 2);
1322		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1323		WRITE_ONCE(sk->sk_sndbuf,
1324			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1325		/* Wake up sending tasks if we upped the value. */
1326		sk->sk_write_space(sk);
1327		break;
1328
1329	case SO_SNDBUFFORCE:
1330		if (!sockopt_capable(CAP_NET_ADMIN)) {
1331			ret = -EPERM;
1332			break;
1333		}
1334
1335		/* No negative values (to prevent underflow, as val will be
1336		 * multiplied by 2).
1337		 */
1338		if (val < 0)
1339			val = 0;
1340		goto set_sndbuf;
1341
1342	case SO_RCVBUF:
1343		/* Don't error on this BSD doesn't and if you think
1344		 * about it this is right. Otherwise apps have to
1345		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1346		 * are treated in BSD as hints
1347		 */
1348		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1349		break;
1350
1351	case SO_RCVBUFFORCE:
1352		if (!sockopt_capable(CAP_NET_ADMIN)) {
1353			ret = -EPERM;
1354			break;
1355		}
1356
1357		/* No negative values (to prevent underflow, as val will be
1358		 * multiplied by 2).
1359		 */
1360		__sock_set_rcvbuf(sk, max(val, 0));
1361		break;
1362
1363	case SO_KEEPALIVE:
1364		if (sk->sk_prot->keepalive)
1365			sk->sk_prot->keepalive(sk, valbool);
1366		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1367		break;
1368
1369	case SO_OOBINLINE:
1370		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1371		break;
1372
1373	case SO_NO_CHECK:
1374		sk->sk_no_check_tx = valbool;
1375		break;
1376
1377	case SO_LINGER:
1378		if (optlen < sizeof(ling)) {
1379			ret = -EINVAL;	/* 1003.1g */
1380			break;
1381		}
1382		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1383			ret = -EFAULT;
1384			break;
1385		}
1386		if (!ling.l_onoff) {
1387			sock_reset_flag(sk, SOCK_LINGER);
1388		} else {
1389			unsigned long t_sec = ling.l_linger;
1390
1391			if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ)
1392				WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT);
1393			else
1394				WRITE_ONCE(sk->sk_lingertime, t_sec * HZ);
1395			sock_set_flag(sk, SOCK_LINGER);
1396		}
1397		break;
1398
1399	case SO_BSDCOMPAT:
1400		break;
1401
1402	case SO_TIMESTAMP_OLD:
1403	case SO_TIMESTAMP_NEW:
1404	case SO_TIMESTAMPNS_OLD:
1405	case SO_TIMESTAMPNS_NEW:
1406		sock_set_timestamp(sk, optname, valbool);
1407		break;
1408
1409	case SO_TIMESTAMPING_NEW:
1410	case SO_TIMESTAMPING_OLD:
1411		if (optlen == sizeof(timestamping)) {
1412			if (copy_from_sockptr(&timestamping, optval,
1413					      sizeof(timestamping))) {
1414				ret = -EFAULT;
1415				break;
1416			}
1417		} else {
1418			memset(&timestamping, 0, sizeof(timestamping));
1419			timestamping.flags = val;
1420		}
1421		ret = sock_set_timestamping(sk, optname, timestamping);
1422		break;
1423
1424	case SO_RCVLOWAT:
1425		{
1426		int (*set_rcvlowat)(struct sock *sk, int val) = NULL;
1427
1428		if (val < 0)
1429			val = INT_MAX;
1430		if (sock)
1431			set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat;
1432		if (set_rcvlowat)
1433			ret = set_rcvlowat(sk, val);
1434		else
1435			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1436		break;
1437		}
1438	case SO_RCVTIMEO_OLD:
1439	case SO_RCVTIMEO_NEW:
1440		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1441				       optlen, optname == SO_RCVTIMEO_OLD);
1442		break;
1443
1444	case SO_SNDTIMEO_OLD:
1445	case SO_SNDTIMEO_NEW:
1446		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1447				       optlen, optname == SO_SNDTIMEO_OLD);
1448		break;
1449
1450	case SO_ATTACH_FILTER: {
1451		struct sock_fprog fprog;
1452
1453		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1454		if (!ret)
1455			ret = sk_attach_filter(&fprog, sk);
1456		break;
1457	}
1458	case SO_ATTACH_BPF:
1459		ret = -EINVAL;
1460		if (optlen == sizeof(u32)) {
1461			u32 ufd;
1462
1463			ret = -EFAULT;
1464			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1465				break;
1466
1467			ret = sk_attach_bpf(ufd, sk);
1468		}
1469		break;
1470
1471	case SO_ATTACH_REUSEPORT_CBPF: {
1472		struct sock_fprog fprog;
1473
1474		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1475		if (!ret)
1476			ret = sk_reuseport_attach_filter(&fprog, sk);
1477		break;
1478	}
1479	case SO_ATTACH_REUSEPORT_EBPF:
1480		ret = -EINVAL;
1481		if (optlen == sizeof(u32)) {
1482			u32 ufd;
1483
1484			ret = -EFAULT;
1485			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1486				break;
1487
1488			ret = sk_reuseport_attach_bpf(ufd, sk);
1489		}
1490		break;
1491
1492	case SO_DETACH_REUSEPORT_BPF:
1493		ret = reuseport_detach_prog(sk);
1494		break;
1495
1496	case SO_DETACH_FILTER:
1497		ret = sk_detach_filter(sk);
1498		break;
1499
1500	case SO_LOCK_FILTER:
1501		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1502			ret = -EPERM;
1503		else
1504			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1505		break;
1506
1507	case SO_MARK:
1508		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1509		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1510			ret = -EPERM;
1511			break;
1512		}
1513
1514		__sock_set_mark(sk, val);
1515		break;
1516	case SO_RCVMARK:
1517		sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1518		break;
1519
1520	case SO_RXQ_OVFL:
1521		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1522		break;
1523
1524	case SO_WIFI_STATUS:
1525		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1526		break;
1527
1528	case SO_NOFCS:
1529		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1530		break;
1531
1532	case SO_SELECT_ERR_QUEUE:
1533		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1534		break;
1535
1536
1537	case SO_INCOMING_CPU:
1538		reuseport_update_incoming_cpu(sk, val);
1539		break;
1540
1541	case SO_CNX_ADVICE:
1542		if (val == 1)
1543			dst_negative_advice(sk);
1544		break;
1545
1546	case SO_ZEROCOPY:
1547		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1548			if (!(sk_is_tcp(sk) ||
1549			      (sk->sk_type == SOCK_DGRAM &&
1550			       sk->sk_protocol == IPPROTO_UDP)))
1551				ret = -EOPNOTSUPP;
1552		} else if (sk->sk_family != PF_RDS) {
1553			ret = -EOPNOTSUPP;
1554		}
1555		if (!ret) {
1556			if (val < 0 || val > 1)
1557				ret = -EINVAL;
1558			else
1559				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1560		}
1561		break;
1562
1563	case SO_TXTIME:
1564		if (optlen != sizeof(struct sock_txtime)) {
1565			ret = -EINVAL;
1566			break;
1567		} else if (copy_from_sockptr(&sk_txtime, optval,
1568			   sizeof(struct sock_txtime))) {
1569			ret = -EFAULT;
1570			break;
1571		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1572			ret = -EINVAL;
1573			break;
1574		}
1575		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1576		 * scheduler has enough safe guards.
1577		 */
1578		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1579		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1580			ret = -EPERM;
1581			break;
1582		}
1583
1584		ret = sockopt_validate_clockid(sk_txtime.clockid);
1585		if (ret)
1586			break;
1587
1588		sock_valbool_flag(sk, SOCK_TXTIME, true);
1589		sk->sk_clockid = sk_txtime.clockid;
1590		sk->sk_txtime_deadline_mode =
1591			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1592		sk->sk_txtime_report_errors =
1593			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1594		break;
1595
1596	case SO_BINDTOIFINDEX:
1597		ret = sock_bindtoindex_locked(sk, val);
1598		break;
1599
1600	case SO_BUF_LOCK:
1601		if (val & ~SOCK_BUF_LOCK_MASK) {
1602			ret = -EINVAL;
1603			break;
1604		}
1605		sk->sk_userlocks = val | (sk->sk_userlocks &
1606					  ~SOCK_BUF_LOCK_MASK);
1607		break;
1608
1609	case SO_RESERVE_MEM:
1610	{
1611		int delta;
1612
1613		if (val < 0) {
1614			ret = -EINVAL;
1615			break;
1616		}
1617
1618		delta = val - sk->sk_reserved_mem;
1619		if (delta < 0)
1620			sock_release_reserved_memory(sk, -delta);
1621		else
1622			ret = sock_reserve_memory(sk, delta);
1623		break;
1624	}
1625
1626	default:
1627		ret = -ENOPROTOOPT;
1628		break;
1629	}
1630	sockopt_release_sock(sk);
1631	return ret;
1632}
1633
1634int sock_setsockopt(struct socket *sock, int level, int optname,
1635		    sockptr_t optval, unsigned int optlen)
1636{
1637	return sk_setsockopt(sock->sk, level, optname,
1638			     optval, optlen);
1639}
1640EXPORT_SYMBOL(sock_setsockopt);
1641
1642static const struct cred *sk_get_peer_cred(struct sock *sk)
1643{
1644	const struct cred *cred;
1645
1646	spin_lock(&sk->sk_peer_lock);
1647	cred = get_cred(sk->sk_peer_cred);
1648	spin_unlock(&sk->sk_peer_lock);
1649
1650	return cred;
1651}
1652
1653static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1654			  struct ucred *ucred)
1655{
1656	ucred->pid = pid_vnr(pid);
1657	ucred->uid = ucred->gid = -1;
1658	if (cred) {
1659		struct user_namespace *current_ns = current_user_ns();
1660
1661		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1662		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1663	}
1664}
1665
1666static int groups_to_user(sockptr_t dst, const struct group_info *src)
1667{
1668	struct user_namespace *user_ns = current_user_ns();
1669	int i;
1670
1671	for (i = 0; i < src->ngroups; i++) {
1672		gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1673
1674		if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1675			return -EFAULT;
1676	}
1677
1678	return 0;
1679}
1680
1681int sk_getsockopt(struct sock *sk, int level, int optname,
1682		  sockptr_t optval, sockptr_t optlen)
1683{
1684	struct socket *sock = sk->sk_socket;
1685
1686	union {
1687		int val;
1688		u64 val64;
1689		unsigned long ulval;
1690		struct linger ling;
1691		struct old_timeval32 tm32;
1692		struct __kernel_old_timeval tm;
1693		struct  __kernel_sock_timeval stm;
1694		struct sock_txtime txtime;
1695		struct so_timestamping timestamping;
1696	} v;
1697
1698	int lv = sizeof(int);
1699	int len;
1700
1701	if (copy_from_sockptr(&len, optlen, sizeof(int)))
1702		return -EFAULT;
1703	if (len < 0)
1704		return -EINVAL;
1705
1706	memset(&v, 0, sizeof(v));
1707
1708	switch (optname) {
1709	case SO_DEBUG:
1710		v.val = sock_flag(sk, SOCK_DBG);
1711		break;
1712
1713	case SO_DONTROUTE:
1714		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1715		break;
1716
1717	case SO_BROADCAST:
1718		v.val = sock_flag(sk, SOCK_BROADCAST);
1719		break;
1720
1721	case SO_SNDBUF:
1722		v.val = READ_ONCE(sk->sk_sndbuf);
1723		break;
1724
1725	case SO_RCVBUF:
1726		v.val = READ_ONCE(sk->sk_rcvbuf);
1727		break;
1728
1729	case SO_REUSEADDR:
1730		v.val = sk->sk_reuse;
1731		break;
1732
1733	case SO_REUSEPORT:
1734		v.val = sk->sk_reuseport;
1735		break;
1736
1737	case SO_KEEPALIVE:
1738		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1739		break;
1740
1741	case SO_TYPE:
1742		v.val = sk->sk_type;
1743		break;
1744
1745	case SO_PROTOCOL:
1746		v.val = sk->sk_protocol;
1747		break;
1748
1749	case SO_DOMAIN:
1750		v.val = sk->sk_family;
1751		break;
1752
1753	case SO_ERROR:
1754		v.val = -sock_error(sk);
1755		if (v.val == 0)
1756			v.val = xchg(&sk->sk_err_soft, 0);
1757		break;
1758
1759	case SO_OOBINLINE:
1760		v.val = sock_flag(sk, SOCK_URGINLINE);
1761		break;
1762
1763	case SO_NO_CHECK:
1764		v.val = sk->sk_no_check_tx;
1765		break;
1766
1767	case SO_PRIORITY:
1768		v.val = READ_ONCE(sk->sk_priority);
1769		break;
1770
1771	case SO_LINGER:
1772		lv		= sizeof(v.ling);
1773		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1774		v.ling.l_linger	= READ_ONCE(sk->sk_lingertime) / HZ;
1775		break;
1776
1777	case SO_BSDCOMPAT:
1778		break;
1779
1780	case SO_TIMESTAMP_OLD:
1781		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1782				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1783				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1784		break;
1785
1786	case SO_TIMESTAMPNS_OLD:
1787		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1788		break;
1789
1790	case SO_TIMESTAMP_NEW:
1791		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1792		break;
1793
1794	case SO_TIMESTAMPNS_NEW:
1795		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1796		break;
1797
1798	case SO_TIMESTAMPING_OLD:
1799	case SO_TIMESTAMPING_NEW:
1800		lv = sizeof(v.timestamping);
1801		/* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only
1802		 * returning the flags when they were set through the same option.
1803		 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD.
1804		 */
1805		if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) {
1806			v.timestamping.flags = READ_ONCE(sk->sk_tsflags);
1807			v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc);
1808		}
1809		break;
1810
1811	case SO_RCVTIMEO_OLD:
1812	case SO_RCVTIMEO_NEW:
1813		lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v,
1814				      SO_RCVTIMEO_OLD == optname);
1815		break;
1816
1817	case SO_SNDTIMEO_OLD:
1818	case SO_SNDTIMEO_NEW:
1819		lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v,
1820				      SO_SNDTIMEO_OLD == optname);
1821		break;
1822
1823	case SO_RCVLOWAT:
1824		v.val = READ_ONCE(sk->sk_rcvlowat);
1825		break;
1826
1827	case SO_SNDLOWAT:
1828		v.val = 1;
1829		break;
1830
1831	case SO_PASSCRED:
1832		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1833		break;
1834
1835	case SO_PASSPIDFD:
1836		v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags);
1837		break;
1838
1839	case SO_PEERCRED:
1840	{
1841		struct ucred peercred;
1842		if (len > sizeof(peercred))
1843			len = sizeof(peercred);
1844
1845		spin_lock(&sk->sk_peer_lock);
1846		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1847		spin_unlock(&sk->sk_peer_lock);
1848
1849		if (copy_to_sockptr(optval, &peercred, len))
1850			return -EFAULT;
1851		goto lenout;
1852	}
1853
1854	case SO_PEERPIDFD:
1855	{
1856		struct pid *peer_pid;
1857		struct file *pidfd_file = NULL;
1858		int pidfd;
1859
1860		if (len > sizeof(pidfd))
1861			len = sizeof(pidfd);
1862
1863		spin_lock(&sk->sk_peer_lock);
1864		peer_pid = get_pid(sk->sk_peer_pid);
1865		spin_unlock(&sk->sk_peer_lock);
1866
1867		if (!peer_pid)
1868			return -ENODATA;
1869
1870		pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file);
1871		put_pid(peer_pid);
1872		if (pidfd < 0)
1873			return pidfd;
1874
1875		if (copy_to_sockptr(optval, &pidfd, len) ||
1876		    copy_to_sockptr(optlen, &len, sizeof(int))) {
1877			put_unused_fd(pidfd);
1878			fput(pidfd_file);
1879
1880			return -EFAULT;
1881		}
1882
1883		fd_install(pidfd, pidfd_file);
1884		return 0;
1885	}
1886
1887	case SO_PEERGROUPS:
1888	{
1889		const struct cred *cred;
1890		int ret, n;
1891
1892		cred = sk_get_peer_cred(sk);
1893		if (!cred)
1894			return -ENODATA;
1895
1896		n = cred->group_info->ngroups;
1897		if (len < n * sizeof(gid_t)) {
1898			len = n * sizeof(gid_t);
1899			put_cred(cred);
1900			return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1901		}
1902		len = n * sizeof(gid_t);
1903
1904		ret = groups_to_user(optval, cred->group_info);
1905		put_cred(cred);
1906		if (ret)
1907			return ret;
1908		goto lenout;
1909	}
1910
1911	case SO_PEERNAME:
1912	{
1913		struct sockaddr_storage address;
1914
1915		lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2);
1916		if (lv < 0)
1917			return -ENOTCONN;
1918		if (lv < len)
1919			return -EINVAL;
1920		if (copy_to_sockptr(optval, &address, len))
1921			return -EFAULT;
1922		goto lenout;
1923	}
1924
1925	/* Dubious BSD thing... Probably nobody even uses it, but
1926	 * the UNIX standard wants it for whatever reason... -DaveM
1927	 */
1928	case SO_ACCEPTCONN:
1929		v.val = sk->sk_state == TCP_LISTEN;
1930		break;
1931
1932	case SO_PASSSEC:
1933		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1934		break;
1935
1936	case SO_PEERSEC:
1937		return security_socket_getpeersec_stream(sock,
1938							 optval, optlen, len);
1939
1940	case SO_MARK:
1941		v.val = READ_ONCE(sk->sk_mark);
1942		break;
1943
1944	case SO_RCVMARK:
1945		v.val = sock_flag(sk, SOCK_RCVMARK);
1946		break;
1947
1948	case SO_RXQ_OVFL:
1949		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1950		break;
1951
1952	case SO_WIFI_STATUS:
1953		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1954		break;
1955
1956	case SO_PEEK_OFF:
1957		if (!READ_ONCE(sock->ops)->set_peek_off)
1958			return -EOPNOTSUPP;
1959
1960		v.val = READ_ONCE(sk->sk_peek_off);
1961		break;
1962	case SO_NOFCS:
1963		v.val = sock_flag(sk, SOCK_NOFCS);
1964		break;
1965
1966	case SO_BINDTODEVICE:
1967		return sock_getbindtodevice(sk, optval, optlen, len);
1968
1969	case SO_GET_FILTER:
1970		len = sk_get_filter(sk, optval, len);
1971		if (len < 0)
1972			return len;
1973
1974		goto lenout;
1975
1976	case SO_LOCK_FILTER:
1977		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1978		break;
1979
1980	case SO_BPF_EXTENSIONS:
1981		v.val = bpf_tell_extensions();
1982		break;
1983
1984	case SO_SELECT_ERR_QUEUE:
1985		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1986		break;
1987
1988#ifdef CONFIG_NET_RX_BUSY_POLL
1989	case SO_BUSY_POLL:
1990		v.val = READ_ONCE(sk->sk_ll_usec);
1991		break;
1992	case SO_PREFER_BUSY_POLL:
1993		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1994		break;
1995#endif
1996
1997	case SO_MAX_PACING_RATE:
1998		/* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */
1999		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
2000			lv = sizeof(v.ulval);
2001			v.ulval = READ_ONCE(sk->sk_max_pacing_rate);
2002		} else {
2003			/* 32bit version */
2004			v.val = min_t(unsigned long, ~0U,
2005				      READ_ONCE(sk->sk_max_pacing_rate));
2006		}
2007		break;
2008
2009	case SO_INCOMING_CPU:
2010		v.val = READ_ONCE(sk->sk_incoming_cpu);
2011		break;
2012
2013	case SO_MEMINFO:
2014	{
2015		u32 meminfo[SK_MEMINFO_VARS];
2016
2017		sk_get_meminfo(sk, meminfo);
2018
2019		len = min_t(unsigned int, len, sizeof(meminfo));
2020		if (copy_to_sockptr(optval, &meminfo, len))
2021			return -EFAULT;
2022
2023		goto lenout;
2024	}
2025
2026#ifdef CONFIG_NET_RX_BUSY_POLL
2027	case SO_INCOMING_NAPI_ID:
2028		v.val = READ_ONCE(sk->sk_napi_id);
2029
2030		/* aggregate non-NAPI IDs down to 0 */
2031		if (v.val < MIN_NAPI_ID)
2032			v.val = 0;
2033
2034		break;
2035#endif
2036
2037	case SO_COOKIE:
2038		lv = sizeof(u64);
2039		if (len < lv)
2040			return -EINVAL;
2041		v.val64 = sock_gen_cookie(sk);
2042		break;
2043
2044	case SO_ZEROCOPY:
2045		v.val = sock_flag(sk, SOCK_ZEROCOPY);
2046		break;
2047
2048	case SO_TXTIME:
2049		lv = sizeof(v.txtime);
2050		v.txtime.clockid = sk->sk_clockid;
2051		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
2052				  SOF_TXTIME_DEADLINE_MODE : 0;
2053		v.txtime.flags |= sk->sk_txtime_report_errors ?
2054				  SOF_TXTIME_REPORT_ERRORS : 0;
2055		break;
2056
2057	case SO_BINDTOIFINDEX:
2058		v.val = READ_ONCE(sk->sk_bound_dev_if);
2059		break;
2060
2061	case SO_NETNS_COOKIE:
2062		lv = sizeof(u64);
2063		if (len != lv)
2064			return -EINVAL;
2065		v.val64 = sock_net(sk)->net_cookie;
2066		break;
2067
2068	case SO_BUF_LOCK:
2069		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
2070		break;
2071
2072	case SO_RESERVE_MEM:
2073		v.val = READ_ONCE(sk->sk_reserved_mem);
2074		break;
2075
2076	case SO_TXREHASH:
2077		/* Paired with WRITE_ONCE() in sk_setsockopt() */
2078		v.val = READ_ONCE(sk->sk_txrehash);
2079		break;
2080
2081	default:
2082		/* We implement the SO_SNDLOWAT etc to not be settable
2083		 * (1003.1g 7).
2084		 */
2085		return -ENOPROTOOPT;
2086	}
2087
2088	if (len > lv)
2089		len = lv;
2090	if (copy_to_sockptr(optval, &v, len))
2091		return -EFAULT;
2092lenout:
2093	if (copy_to_sockptr(optlen, &len, sizeof(int)))
2094		return -EFAULT;
2095	return 0;
2096}
2097
2098/*
2099 * Initialize an sk_lock.
2100 *
2101 * (We also register the sk_lock with the lock validator.)
2102 */
2103static inline void sock_lock_init(struct sock *sk)
2104{
2105	if (sk->sk_kern_sock)
2106		sock_lock_init_class_and_name(
2107			sk,
2108			af_family_kern_slock_key_strings[sk->sk_family],
2109			af_family_kern_slock_keys + sk->sk_family,
2110			af_family_kern_key_strings[sk->sk_family],
2111			af_family_kern_keys + sk->sk_family);
2112	else
2113		sock_lock_init_class_and_name(
2114			sk,
2115			af_family_slock_key_strings[sk->sk_family],
2116			af_family_slock_keys + sk->sk_family,
2117			af_family_key_strings[sk->sk_family],
2118			af_family_keys + sk->sk_family);
2119}
2120
2121/*
2122 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
2123 * even temporarily, because of RCU lookups. sk_node should also be left as is.
2124 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
2125 */
2126static void sock_copy(struct sock *nsk, const struct sock *osk)
2127{
2128	const struct proto *prot = READ_ONCE(osk->sk_prot);
2129#ifdef CONFIG_SECURITY_NETWORK
2130	void *sptr = nsk->sk_security;
2131#endif
2132
2133	/* If we move sk_tx_queue_mapping out of the private section,
2134	 * we must check if sk_tx_queue_clear() is called after
2135	 * sock_copy() in sk_clone_lock().
2136	 */
2137	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2138		     offsetof(struct sock, sk_dontcopy_begin) ||
2139		     offsetof(struct sock, sk_tx_queue_mapping) >=
2140		     offsetof(struct sock, sk_dontcopy_end));
2141
2142	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2143
2144	unsafe_memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2145		      prot->obj_size - offsetof(struct sock, sk_dontcopy_end),
2146		      /* alloc is larger than struct, see sk_prot_alloc() */);
2147
2148#ifdef CONFIG_SECURITY_NETWORK
2149	nsk->sk_security = sptr;
2150	security_sk_clone(osk, nsk);
2151#endif
2152}
2153
2154static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2155		int family)
2156{
2157	struct sock *sk;
2158	struct kmem_cache *slab;
2159
2160	slab = prot->slab;
2161	if (slab != NULL) {
2162		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2163		if (!sk)
2164			return sk;
2165		if (want_init_on_alloc(priority))
2166			sk_prot_clear_nulls(sk, prot->obj_size);
2167	} else
2168		sk = kmalloc(prot->obj_size, priority);
2169
2170	if (sk != NULL) {
2171		if (security_sk_alloc(sk, family, priority))
2172			goto out_free;
2173
2174		if (!try_module_get(prot->owner))
2175			goto out_free_sec;
2176	}
2177
2178	return sk;
2179
2180out_free_sec:
2181	security_sk_free(sk);
2182out_free:
2183	if (slab != NULL)
2184		kmem_cache_free(slab, sk);
2185	else
2186		kfree(sk);
2187	return NULL;
2188}
2189
2190static void sk_prot_free(struct proto *prot, struct sock *sk)
2191{
2192	struct kmem_cache *slab;
2193	struct module *owner;
2194
2195	owner = prot->owner;
2196	slab = prot->slab;
2197
2198	cgroup_sk_free(&sk->sk_cgrp_data);
2199	mem_cgroup_sk_free(sk);
2200	security_sk_free(sk);
2201	if (slab != NULL)
2202		kmem_cache_free(slab, sk);
2203	else
2204		kfree(sk);
2205	module_put(owner);
2206}
2207
2208/**
2209 *	sk_alloc - All socket objects are allocated here
2210 *	@net: the applicable net namespace
2211 *	@family: protocol family
2212 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2213 *	@prot: struct proto associated with this new sock instance
2214 *	@kern: is this to be a kernel socket?
2215 */
2216struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2217		      struct proto *prot, int kern)
2218{
2219	struct sock *sk;
2220
2221	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2222	if (sk) {
2223		sk->sk_family = family;
2224		/*
2225		 * See comment in struct sock definition to understand
2226		 * why we need sk_prot_creator -acme
2227		 */
2228		sk->sk_prot = sk->sk_prot_creator = prot;
2229		sk->sk_kern_sock = kern;
2230		sock_lock_init(sk);
2231		sk->sk_net_refcnt = kern ? 0 : 1;
2232		if (likely(sk->sk_net_refcnt)) {
2233			get_net_track(net, &sk->ns_tracker, priority);
2234			sock_inuse_add(net, 1);
2235		} else {
2236			net_passive_inc(net);
2237			__netns_tracker_alloc(net, &sk->ns_tracker,
2238					      false, priority);
2239		}
2240
2241		sock_net_set(sk, net);
2242		refcount_set(&sk->sk_wmem_alloc, 1);
2243
2244		mem_cgroup_sk_alloc(sk);
2245		cgroup_sk_alloc(&sk->sk_cgrp_data);
2246		sock_update_classid(&sk->sk_cgrp_data);
2247		sock_update_netprioidx(&sk->sk_cgrp_data);
2248		sk_tx_queue_clear(sk);
2249	}
2250
2251	return sk;
2252}
2253EXPORT_SYMBOL(sk_alloc);
2254
2255/* Sockets having SOCK_RCU_FREE will call this function after one RCU
2256 * grace period. This is the case for UDP sockets and TCP listeners.
2257 */
2258static void __sk_destruct(struct rcu_head *head)
2259{
2260	struct sock *sk = container_of(head, struct sock, sk_rcu);
2261	struct net *net = sock_net(sk);
2262	struct sk_filter *filter;
2263
2264	if (sk->sk_destruct)
2265		sk->sk_destruct(sk);
2266
2267	filter = rcu_dereference_check(sk->sk_filter,
2268				       refcount_read(&sk->sk_wmem_alloc) == 0);
2269	if (filter) {
2270		sk_filter_uncharge(sk, filter);
2271		RCU_INIT_POINTER(sk->sk_filter, NULL);
2272	}
2273
2274	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2275
2276#ifdef CONFIG_BPF_SYSCALL
2277	bpf_sk_storage_free(sk);
2278#endif
2279
2280	if (atomic_read(&sk->sk_omem_alloc))
2281		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2282			 __func__, atomic_read(&sk->sk_omem_alloc));
2283
2284	if (sk->sk_frag.page) {
2285		put_page(sk->sk_frag.page);
2286		sk->sk_frag.page = NULL;
2287	}
2288
2289	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2290	put_cred(sk->sk_peer_cred);
2291	put_pid(sk->sk_peer_pid);
2292
2293	if (likely(sk->sk_net_refcnt)) {
2294		put_net_track(net, &sk->ns_tracker);
2295	} else {
2296		__netns_tracker_free(net, &sk->ns_tracker, false);
2297		net_passive_dec(net);
2298	}
2299	sk_prot_free(sk->sk_prot_creator, sk);
2300}
2301
2302void sk_net_refcnt_upgrade(struct sock *sk)
2303{
2304	struct net *net = sock_net(sk);
2305
2306	WARN_ON_ONCE(sk->sk_net_refcnt);
2307	__netns_tracker_free(net, &sk->ns_tracker, false);
2308	net_passive_dec(net);
2309	sk->sk_net_refcnt = 1;
2310	get_net_track(net, &sk->ns_tracker, GFP_KERNEL);
2311	sock_inuse_add(net, 1);
2312}
2313EXPORT_SYMBOL_GPL(sk_net_refcnt_upgrade);
2314
2315void sk_destruct(struct sock *sk)
2316{
2317	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2318
2319	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2320		reuseport_detach_sock(sk);
2321		use_call_rcu = true;
2322	}
2323
2324	if (use_call_rcu)
2325		call_rcu(&sk->sk_rcu, __sk_destruct);
2326	else
2327		__sk_destruct(&sk->sk_rcu);
2328}
2329
2330static void __sk_free(struct sock *sk)
2331{
2332	if (likely(sk->sk_net_refcnt))
2333		sock_inuse_add(sock_net(sk), -1);
2334
2335	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2336		sock_diag_broadcast_destroy(sk);
2337	else
2338		sk_destruct(sk);
2339}
2340
2341void sk_free(struct sock *sk)
2342{
2343	/*
2344	 * We subtract one from sk_wmem_alloc and can know if
2345	 * some packets are still in some tx queue.
2346	 * If not null, sock_wfree() will call __sk_free(sk) later
2347	 */
2348	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2349		__sk_free(sk);
2350}
2351EXPORT_SYMBOL(sk_free);
2352
2353static void sk_init_common(struct sock *sk)
2354{
2355	skb_queue_head_init(&sk->sk_receive_queue);
2356	skb_queue_head_init(&sk->sk_write_queue);
2357	skb_queue_head_init(&sk->sk_error_queue);
2358
2359	rwlock_init(&sk->sk_callback_lock);
2360	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2361			af_rlock_keys + sk->sk_family,
2362			af_family_rlock_key_strings[sk->sk_family]);
2363	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2364			af_wlock_keys + sk->sk_family,
2365			af_family_wlock_key_strings[sk->sk_family]);
2366	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2367			af_elock_keys + sk->sk_family,
2368			af_family_elock_key_strings[sk->sk_family]);
2369	if (sk->sk_kern_sock)
2370		lockdep_set_class_and_name(&sk->sk_callback_lock,
2371			af_kern_callback_keys + sk->sk_family,
2372			af_family_kern_clock_key_strings[sk->sk_family]);
2373	else
2374		lockdep_set_class_and_name(&sk->sk_callback_lock,
2375			af_callback_keys + sk->sk_family,
2376			af_family_clock_key_strings[sk->sk_family]);
2377}
2378
2379/**
2380 *	sk_clone_lock - clone a socket, and lock its clone
2381 *	@sk: the socket to clone
2382 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2383 *
2384 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2385 */
2386struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2387{
2388	struct proto *prot = READ_ONCE(sk->sk_prot);
2389	struct sk_filter *filter;
2390	bool is_charged = true;
2391	struct sock *newsk;
2392
2393	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2394	if (!newsk)
2395		goto out;
2396
2397	sock_copy(newsk, sk);
2398
2399	newsk->sk_prot_creator = prot;
2400
2401	/* SANITY */
2402	if (likely(newsk->sk_net_refcnt)) {
2403		get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2404		sock_inuse_add(sock_net(newsk), 1);
2405	} else {
2406		/* Kernel sockets are not elevating the struct net refcount.
2407		 * Instead, use a tracker to more easily detect if a layer
2408		 * is not properly dismantling its kernel sockets at netns
2409		 * destroy time.
2410		 */
2411		net_passive_inc(sock_net(newsk));
2412		__netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2413				      false, priority);
2414	}
2415	sk_node_init(&newsk->sk_node);
2416	sock_lock_init(newsk);
2417	bh_lock_sock(newsk);
2418	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2419	newsk->sk_backlog.len = 0;
2420
2421	atomic_set(&newsk->sk_rmem_alloc, 0);
2422
2423	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2424	refcount_set(&newsk->sk_wmem_alloc, 1);
2425
2426	atomic_set(&newsk->sk_omem_alloc, 0);
2427	sk_init_common(newsk);
2428
2429	newsk->sk_dst_cache	= NULL;
2430	newsk->sk_dst_pending_confirm = 0;
2431	newsk->sk_wmem_queued	= 0;
2432	newsk->sk_forward_alloc = 0;
2433	newsk->sk_reserved_mem  = 0;
2434	atomic_set(&newsk->sk_drops, 0);
2435	newsk->sk_send_head	= NULL;
2436	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2437	atomic_set(&newsk->sk_zckey, 0);
2438
2439	sock_reset_flag(newsk, SOCK_DONE);
2440
2441	/* sk->sk_memcg will be populated at accept() time */
2442	newsk->sk_memcg = NULL;
2443
2444	cgroup_sk_clone(&newsk->sk_cgrp_data);
2445
2446	rcu_read_lock();
2447	filter = rcu_dereference(sk->sk_filter);
2448	if (filter != NULL)
2449		/* though it's an empty new sock, the charging may fail
2450		 * if sysctl_optmem_max was changed between creation of
2451		 * original socket and cloning
2452		 */
2453		is_charged = sk_filter_charge(newsk, filter);
2454	RCU_INIT_POINTER(newsk->sk_filter, filter);
2455	rcu_read_unlock();
2456
2457	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2458		/* We need to make sure that we don't uncharge the new
2459		 * socket if we couldn't charge it in the first place
2460		 * as otherwise we uncharge the parent's filter.
2461		 */
2462		if (!is_charged)
2463			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2464		sk_free_unlock_clone(newsk);
2465		newsk = NULL;
2466		goto out;
2467	}
2468	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2469
2470	if (bpf_sk_storage_clone(sk, newsk)) {
2471		sk_free_unlock_clone(newsk);
2472		newsk = NULL;
2473		goto out;
2474	}
2475
2476	/* Clear sk_user_data if parent had the pointer tagged
2477	 * as not suitable for copying when cloning.
2478	 */
2479	if (sk_user_data_is_nocopy(newsk))
2480		newsk->sk_user_data = NULL;
2481
2482	newsk->sk_err	   = 0;
2483	newsk->sk_err_soft = 0;
2484	newsk->sk_priority = 0;
2485	newsk->sk_incoming_cpu = raw_smp_processor_id();
2486
2487	/* Before updating sk_refcnt, we must commit prior changes to memory
2488	 * (Documentation/RCU/rculist_nulls.rst for details)
2489	 */
2490	smp_wmb();
2491	refcount_set(&newsk->sk_refcnt, 2);
2492
2493	sk_set_socket(newsk, NULL);
2494	sk_tx_queue_clear(newsk);
2495	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2496
2497	if (newsk->sk_prot->sockets_allocated)
2498		sk_sockets_allocated_inc(newsk);
2499
2500	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2501		net_enable_timestamp();
2502out:
2503	return newsk;
2504}
2505EXPORT_SYMBOL_GPL(sk_clone_lock);
2506
2507void sk_free_unlock_clone(struct sock *sk)
2508{
2509	/* It is still raw copy of parent, so invalidate
2510	 * destructor and make plain sk_free() */
2511	sk->sk_destruct = NULL;
2512	bh_unlock_sock(sk);
2513	sk_free(sk);
2514}
2515EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2516
2517static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
2518{
2519	bool is_ipv6 = false;
2520	u32 max_size;
2521
2522#if IS_ENABLED(CONFIG_IPV6)
2523	is_ipv6 = (sk->sk_family == AF_INET6 &&
2524		   !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr));
2525#endif
2526	/* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
2527	max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) :
2528			READ_ONCE(dst->dev->gso_ipv4_max_size);
2529	if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk))
2530		max_size = GSO_LEGACY_MAX_SIZE;
2531
2532	return max_size - (MAX_TCP_HEADER + 1);
2533}
2534
2535void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2536{
2537	u32 max_segs = 1;
2538
2539	sk->sk_route_caps = dst->dev->features;
2540	if (sk_is_tcp(sk))
2541		sk->sk_route_caps |= NETIF_F_GSO;
2542	if (sk->sk_route_caps & NETIF_F_GSO)
2543		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2544	if (unlikely(sk->sk_gso_disabled))
2545		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2546	if (sk_can_gso(sk)) {
2547		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2548			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2549		} else {
2550			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2551			sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst);
2552			/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2553			max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2554		}
2555	}
2556	sk->sk_gso_max_segs = max_segs;
2557	sk_dst_set(sk, dst);
2558}
2559EXPORT_SYMBOL_GPL(sk_setup_caps);
2560
2561/*
2562 *	Simple resource managers for sockets.
2563 */
2564
2565
2566/*
2567 * Write buffer destructor automatically called from kfree_skb.
2568 */
2569void sock_wfree(struct sk_buff *skb)
2570{
2571	struct sock *sk = skb->sk;
2572	unsigned int len = skb->truesize;
2573	bool free;
2574
2575	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2576		if (sock_flag(sk, SOCK_RCU_FREE) &&
2577		    sk->sk_write_space == sock_def_write_space) {
2578			rcu_read_lock();
2579			free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2580			sock_def_write_space_wfree(sk);
2581			rcu_read_unlock();
2582			if (unlikely(free))
2583				__sk_free(sk);
2584			return;
2585		}
2586
2587		/*
2588		 * Keep a reference on sk_wmem_alloc, this will be released
2589		 * after sk_write_space() call
2590		 */
2591		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2592		sk->sk_write_space(sk);
2593		len = 1;
2594	}
2595	/*
2596	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2597	 * could not do because of in-flight packets
2598	 */
2599	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2600		__sk_free(sk);
2601}
2602EXPORT_SYMBOL(sock_wfree);
2603
2604/* This variant of sock_wfree() is used by TCP,
2605 * since it sets SOCK_USE_WRITE_QUEUE.
2606 */
2607void __sock_wfree(struct sk_buff *skb)
2608{
2609	struct sock *sk = skb->sk;
2610
2611	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2612		__sk_free(sk);
2613}
2614
2615void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2616{
2617	skb_orphan(skb);
 
2618#ifdef CONFIG_INET
2619	if (unlikely(!sk_fullsock(sk)))
2620		return skb_set_owner_edemux(skb, sk);
 
 
 
2621#endif
2622	skb->sk = sk;
2623	skb->destructor = sock_wfree;
2624	skb_set_hash_from_sk(skb, sk);
2625	/*
2626	 * We used to take a refcount on sk, but following operation
2627	 * is enough to guarantee sk_free() won't free this sock until
2628	 * all in-flight packets are completed
2629	 */
2630	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2631}
2632EXPORT_SYMBOL(skb_set_owner_w);
2633
2634static bool can_skb_orphan_partial(const struct sk_buff *skb)
2635{
 
2636	/* Drivers depend on in-order delivery for crypto offload,
2637	 * partial orphan breaks out-of-order-OK logic.
2638	 */
2639	if (skb_is_decrypted(skb))
2640		return false;
2641
2642	return (skb->destructor == sock_wfree ||
2643		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2644}
2645
2646/* This helper is used by netem, as it can hold packets in its
2647 * delay queue. We want to allow the owner socket to send more
2648 * packets, as if they were already TX completed by a typical driver.
2649 * But we also want to keep skb->sk set because some packet schedulers
2650 * rely on it (sch_fq for example).
2651 */
2652void skb_orphan_partial(struct sk_buff *skb)
2653{
2654	if (skb_is_tcp_pure_ack(skb))
2655		return;
2656
2657	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2658		return;
2659
2660	skb_orphan(skb);
2661}
2662EXPORT_SYMBOL(skb_orphan_partial);
2663
2664/*
2665 * Read buffer destructor automatically called from kfree_skb.
2666 */
2667void sock_rfree(struct sk_buff *skb)
2668{
2669	struct sock *sk = skb->sk;
2670	unsigned int len = skb->truesize;
2671
2672	atomic_sub(len, &sk->sk_rmem_alloc);
2673	sk_mem_uncharge(sk, len);
2674}
2675EXPORT_SYMBOL(sock_rfree);
2676
2677/*
2678 * Buffer destructor for skbs that are not used directly in read or write
2679 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2680 */
2681void sock_efree(struct sk_buff *skb)
2682{
2683	sock_put(skb->sk);
2684}
2685EXPORT_SYMBOL(sock_efree);
2686
2687/* Buffer destructor for prefetch/receive path where reference count may
2688 * not be held, e.g. for listen sockets.
2689 */
2690#ifdef CONFIG_INET
2691void sock_pfree(struct sk_buff *skb)
2692{
2693	struct sock *sk = skb->sk;
2694
2695	if (!sk_is_refcounted(sk))
2696		return;
2697
2698	if (sk->sk_state == TCP_NEW_SYN_RECV && inet_reqsk(sk)->syncookie) {
2699		inet_reqsk(sk)->rsk_listener = NULL;
2700		reqsk_free(inet_reqsk(sk));
2701		return;
2702	}
2703
2704	sock_gen_put(sk);
2705}
2706EXPORT_SYMBOL(sock_pfree);
2707#endif /* CONFIG_INET */
2708
2709kuid_t sock_i_uid(struct sock *sk)
2710{
2711	kuid_t uid;
2712
2713	read_lock_bh(&sk->sk_callback_lock);
2714	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2715	read_unlock_bh(&sk->sk_callback_lock);
2716	return uid;
2717}
2718EXPORT_SYMBOL(sock_i_uid);
2719
2720unsigned long __sock_i_ino(struct sock *sk)
2721{
2722	unsigned long ino;
2723
2724	read_lock(&sk->sk_callback_lock);
2725	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2726	read_unlock(&sk->sk_callback_lock);
2727	return ino;
2728}
2729EXPORT_SYMBOL(__sock_i_ino);
2730
2731unsigned long sock_i_ino(struct sock *sk)
2732{
2733	unsigned long ino;
2734
2735	local_bh_disable();
2736	ino = __sock_i_ino(sk);
2737	local_bh_enable();
2738	return ino;
2739}
2740EXPORT_SYMBOL(sock_i_ino);
2741
2742/*
2743 * Allocate a skb from the socket's send buffer.
2744 */
2745struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2746			     gfp_t priority)
2747{
2748	if (force ||
2749	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2750		struct sk_buff *skb = alloc_skb(size, priority);
2751
2752		if (skb) {
2753			skb_set_owner_w(skb, sk);
2754			return skb;
2755		}
2756	}
2757	return NULL;
2758}
2759EXPORT_SYMBOL(sock_wmalloc);
2760
2761static void sock_ofree(struct sk_buff *skb)
2762{
2763	struct sock *sk = skb->sk;
2764
2765	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2766}
2767
2768struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2769			     gfp_t priority)
2770{
2771	struct sk_buff *skb;
2772
2773	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2774	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2775	    READ_ONCE(sock_net(sk)->core.sysctl_optmem_max))
2776		return NULL;
2777
2778	skb = alloc_skb(size, priority);
2779	if (!skb)
2780		return NULL;
2781
2782	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2783	skb->sk = sk;
2784	skb->destructor = sock_ofree;
2785	return skb;
2786}
2787
2788/*
2789 * Allocate a memory block from the socket's option memory buffer.
2790 */
2791void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2792{
2793	int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
2794
2795	if ((unsigned int)size <= optmem_max &&
2796	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2797		void *mem;
2798		/* First do the add, to avoid the race if kmalloc
2799		 * might sleep.
2800		 */
2801		atomic_add(size, &sk->sk_omem_alloc);
2802		mem = kmalloc(size, priority);
2803		if (mem)
2804			return mem;
2805		atomic_sub(size, &sk->sk_omem_alloc);
2806	}
2807	return NULL;
2808}
2809EXPORT_SYMBOL(sock_kmalloc);
2810
2811/* Free an option memory block. Note, we actually want the inline
2812 * here as this allows gcc to detect the nullify and fold away the
2813 * condition entirely.
2814 */
2815static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2816				  const bool nullify)
2817{
2818	if (WARN_ON_ONCE(!mem))
2819		return;
2820	if (nullify)
2821		kfree_sensitive(mem);
2822	else
2823		kfree(mem);
2824	atomic_sub(size, &sk->sk_omem_alloc);
2825}
2826
2827void sock_kfree_s(struct sock *sk, void *mem, int size)
2828{
2829	__sock_kfree_s(sk, mem, size, false);
2830}
2831EXPORT_SYMBOL(sock_kfree_s);
2832
2833void sock_kzfree_s(struct sock *sk, void *mem, int size)
2834{
2835	__sock_kfree_s(sk, mem, size, true);
2836}
2837EXPORT_SYMBOL(sock_kzfree_s);
2838
2839/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2840   I think, these locks should be removed for datagram sockets.
2841 */
2842static long sock_wait_for_wmem(struct sock *sk, long timeo)
2843{
2844	DEFINE_WAIT(wait);
2845
2846	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2847	for (;;) {
2848		if (!timeo)
2849			break;
2850		if (signal_pending(current))
2851			break;
2852		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2853		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2854		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2855			break;
2856		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2857			break;
2858		if (READ_ONCE(sk->sk_err))
2859			break;
2860		timeo = schedule_timeout(timeo);
2861	}
2862	finish_wait(sk_sleep(sk), &wait);
2863	return timeo;
2864}
2865
2866
2867/*
2868 *	Generic send/receive buffer handlers
2869 */
2870
2871struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2872				     unsigned long data_len, int noblock,
2873				     int *errcode, int max_page_order)
2874{
2875	struct sk_buff *skb;
2876	long timeo;
2877	int err;
2878
2879	timeo = sock_sndtimeo(sk, noblock);
2880	for (;;) {
2881		err = sock_error(sk);
2882		if (err != 0)
2883			goto failure;
2884
2885		err = -EPIPE;
2886		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2887			goto failure;
2888
2889		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2890			break;
2891
2892		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2893		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2894		err = -EAGAIN;
2895		if (!timeo)
2896			goto failure;
2897		if (signal_pending(current))
2898			goto interrupted;
2899		timeo = sock_wait_for_wmem(sk, timeo);
2900	}
2901	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2902				   errcode, sk->sk_allocation);
2903	if (skb)
2904		skb_set_owner_w(skb, sk);
2905	return skb;
2906
2907interrupted:
2908	err = sock_intr_errno(timeo);
2909failure:
2910	*errcode = err;
2911	return NULL;
2912}
2913EXPORT_SYMBOL(sock_alloc_send_pskb);
2914
2915int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2916		     struct sockcm_cookie *sockc)
2917{
2918	u32 tsflags;
2919
2920	BUILD_BUG_ON(SOF_TIMESTAMPING_LAST == (1 << 31));
2921
2922	switch (cmsg->cmsg_type) {
2923	case SO_MARK:
2924		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2925		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2926			return -EPERM;
2927		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2928			return -EINVAL;
2929		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2930		break;
2931	case SO_TIMESTAMPING_OLD:
2932	case SO_TIMESTAMPING_NEW:
2933		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2934			return -EINVAL;
2935
2936		tsflags = *(u32 *)CMSG_DATA(cmsg);
2937		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2938			return -EINVAL;
2939
2940		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2941		sockc->tsflags |= tsflags;
2942		break;
2943	case SCM_TXTIME:
2944		if (!sock_flag(sk, SOCK_TXTIME))
2945			return -EINVAL;
2946		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2947			return -EINVAL;
2948		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2949		break;
2950	case SCM_TS_OPT_ID:
2951		if (sk_is_tcp(sk))
2952			return -EINVAL;
2953		tsflags = READ_ONCE(sk->sk_tsflags);
2954		if (!(tsflags & SOF_TIMESTAMPING_OPT_ID))
2955			return -EINVAL;
2956		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2957			return -EINVAL;
2958		sockc->ts_opt_id = *(u32 *)CMSG_DATA(cmsg);
2959		sockc->tsflags |= SOCKCM_FLAG_TS_OPT_ID;
2960		break;
2961	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2962	case SCM_RIGHTS:
2963	case SCM_CREDENTIALS:
2964		break;
2965	default:
2966		return -EINVAL;
2967	}
2968	return 0;
2969}
2970EXPORT_SYMBOL(__sock_cmsg_send);
2971
2972int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2973		   struct sockcm_cookie *sockc)
2974{
2975	struct cmsghdr *cmsg;
2976	int ret;
2977
2978	for_each_cmsghdr(cmsg, msg) {
2979		if (!CMSG_OK(msg, cmsg))
2980			return -EINVAL;
2981		if (cmsg->cmsg_level != SOL_SOCKET)
2982			continue;
2983		ret = __sock_cmsg_send(sk, cmsg, sockc);
2984		if (ret)
2985			return ret;
2986	}
2987	return 0;
2988}
2989EXPORT_SYMBOL(sock_cmsg_send);
2990
2991static void sk_enter_memory_pressure(struct sock *sk)
2992{
2993	if (!sk->sk_prot->enter_memory_pressure)
2994		return;
2995
2996	sk->sk_prot->enter_memory_pressure(sk);
2997}
2998
2999static void sk_leave_memory_pressure(struct sock *sk)
3000{
3001	if (sk->sk_prot->leave_memory_pressure) {
3002		INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
3003				     tcp_leave_memory_pressure, sk);
3004	} else {
3005		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
3006
3007		if (memory_pressure && READ_ONCE(*memory_pressure))
3008			WRITE_ONCE(*memory_pressure, 0);
3009	}
3010}
3011
3012DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
3013
3014/**
3015 * skb_page_frag_refill - check that a page_frag contains enough room
3016 * @sz: minimum size of the fragment we want to get
3017 * @pfrag: pointer to page_frag
3018 * @gfp: priority for memory allocation
3019 *
3020 * Note: While this allocator tries to use high order pages, there is
3021 * no guarantee that allocations succeed. Therefore, @sz MUST be
3022 * less or equal than PAGE_SIZE.
3023 */
3024bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
3025{
3026	if (pfrag->page) {
3027		if (page_ref_count(pfrag->page) == 1) {
3028			pfrag->offset = 0;
3029			return true;
3030		}
3031		if (pfrag->offset + sz <= pfrag->size)
3032			return true;
3033		put_page(pfrag->page);
3034	}
3035
3036	pfrag->offset = 0;
3037	if (SKB_FRAG_PAGE_ORDER &&
3038	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
3039		/* Avoid direct reclaim but allow kswapd to wake */
3040		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
3041					  __GFP_COMP | __GFP_NOWARN |
3042					  __GFP_NORETRY,
3043					  SKB_FRAG_PAGE_ORDER);
3044		if (likely(pfrag->page)) {
3045			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
3046			return true;
3047		}
3048	}
3049	pfrag->page = alloc_page(gfp);
3050	if (likely(pfrag->page)) {
3051		pfrag->size = PAGE_SIZE;
3052		return true;
3053	}
3054	return false;
3055}
3056EXPORT_SYMBOL(skb_page_frag_refill);
3057
3058bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
3059{
3060	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
3061		return true;
3062
3063	sk_enter_memory_pressure(sk);
3064	sk_stream_moderate_sndbuf(sk);
3065	return false;
3066}
3067EXPORT_SYMBOL(sk_page_frag_refill);
3068
3069void __lock_sock(struct sock *sk)
3070	__releases(&sk->sk_lock.slock)
3071	__acquires(&sk->sk_lock.slock)
3072{
3073	DEFINE_WAIT(wait);
3074
3075	for (;;) {
3076		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
3077					TASK_UNINTERRUPTIBLE);
3078		spin_unlock_bh(&sk->sk_lock.slock);
3079		schedule();
3080		spin_lock_bh(&sk->sk_lock.slock);
3081		if (!sock_owned_by_user(sk))
3082			break;
3083	}
3084	finish_wait(&sk->sk_lock.wq, &wait);
3085}
3086
3087void __release_sock(struct sock *sk)
3088	__releases(&sk->sk_lock.slock)
3089	__acquires(&sk->sk_lock.slock)
3090{
3091	struct sk_buff *skb, *next;
3092
3093	while ((skb = sk->sk_backlog.head) != NULL) {
3094		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
3095
3096		spin_unlock_bh(&sk->sk_lock.slock);
3097
3098		do {
3099			next = skb->next;
3100			prefetch(next);
3101			DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
3102			skb_mark_not_on_list(skb);
3103			sk_backlog_rcv(sk, skb);
3104
3105			cond_resched();
3106
3107			skb = next;
3108		} while (skb != NULL);
3109
3110		spin_lock_bh(&sk->sk_lock.slock);
3111	}
3112
3113	/*
3114	 * Doing the zeroing here guarantee we can not loop forever
3115	 * while a wild producer attempts to flood us.
3116	 */
3117	sk->sk_backlog.len = 0;
3118}
3119
3120void __sk_flush_backlog(struct sock *sk)
3121{
3122	spin_lock_bh(&sk->sk_lock.slock);
3123	__release_sock(sk);
3124
3125	if (sk->sk_prot->release_cb)
3126		INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3127				     tcp_release_cb, sk);
3128
3129	spin_unlock_bh(&sk->sk_lock.slock);
3130}
3131EXPORT_SYMBOL_GPL(__sk_flush_backlog);
3132
3133/**
3134 * sk_wait_data - wait for data to arrive at sk_receive_queue
3135 * @sk:    sock to wait on
3136 * @timeo: for how long
3137 * @skb:   last skb seen on sk_receive_queue
3138 *
3139 * Now socket state including sk->sk_err is changed only under lock,
3140 * hence we may omit checks after joining wait queue.
3141 * We check receive queue before schedule() only as optimization;
3142 * it is very likely that release_sock() added new data.
3143 */
3144int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
3145{
3146	DEFINE_WAIT_FUNC(wait, woken_wake_function);
3147	int rc;
3148
3149	add_wait_queue(sk_sleep(sk), &wait);
3150	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3151	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
3152	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3153	remove_wait_queue(sk_sleep(sk), &wait);
3154	return rc;
3155}
3156EXPORT_SYMBOL(sk_wait_data);
3157
3158/**
3159 *	__sk_mem_raise_allocated - increase memory_allocated
3160 *	@sk: socket
3161 *	@size: memory size to allocate
3162 *	@amt: pages to allocate
3163 *	@kind: allocation type
3164 *
3165 *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc.
3166 *
3167 *	Unlike the globally shared limits among the sockets under same protocol,
3168 *	consuming the budget of a memcg won't have direct effect on other ones.
3169 *	So be optimistic about memcg's tolerance, and leave the callers to decide
3170 *	whether or not to raise allocated through sk_under_memory_pressure() or
3171 *	its variants.
3172 */
3173int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
3174{
3175	struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL;
3176	struct proto *prot = sk->sk_prot;
3177	bool charged = false;
3178	long allocated;
3179
3180	sk_memory_allocated_add(sk, amt);
3181	allocated = sk_memory_allocated(sk);
3182
3183	if (memcg) {
3184		if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge()))
3185			goto suppress_allocation;
3186		charged = true;
3187	}
3188
3189	/* Under limit. */
3190	if (allocated <= sk_prot_mem_limits(sk, 0)) {
3191		sk_leave_memory_pressure(sk);
3192		return 1;
3193	}
3194
3195	/* Under pressure. */
3196	if (allocated > sk_prot_mem_limits(sk, 1))
3197		sk_enter_memory_pressure(sk);
3198
3199	/* Over hard limit. */
3200	if (allocated > sk_prot_mem_limits(sk, 2))
3201		goto suppress_allocation;
3202
3203	/* Guarantee minimum buffer size under pressure (either global
3204	 * or memcg) to make sure features described in RFC 7323 (TCP
3205	 * Extensions for High Performance) work properly.
3206	 *
3207	 * This rule does NOT stand when exceeds global or memcg's hard
3208	 * limit, or else a DoS attack can be taken place by spawning
3209	 * lots of sockets whose usage are under minimum buffer size.
3210	 */
3211	if (kind == SK_MEM_RECV) {
3212		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3213			return 1;
3214
3215	} else { /* SK_MEM_SEND */
3216		int wmem0 = sk_get_wmem0(sk, prot);
3217
3218		if (sk->sk_type == SOCK_STREAM) {
3219			if (sk->sk_wmem_queued < wmem0)
3220				return 1;
3221		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3222				return 1;
3223		}
3224	}
3225
3226	if (sk_has_memory_pressure(sk)) {
3227		u64 alloc;
3228
3229		/* The following 'average' heuristic is within the
3230		 * scope of global accounting, so it only makes
3231		 * sense for global memory pressure.
3232		 */
3233		if (!sk_under_global_memory_pressure(sk))
3234			return 1;
3235
3236		/* Try to be fair among all the sockets under global
3237		 * pressure by allowing the ones that below average
3238		 * usage to raise.
3239		 */
3240		alloc = sk_sockets_allocated_read_positive(sk);
3241		if (sk_prot_mem_limits(sk, 2) > alloc *
3242		    sk_mem_pages(sk->sk_wmem_queued +
3243				 atomic_read(&sk->sk_rmem_alloc) +
3244				 sk->sk_forward_alloc))
3245			return 1;
3246	}
3247
3248suppress_allocation:
3249
3250	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3251		sk_stream_moderate_sndbuf(sk);
3252
3253		/* Fail only if socket is _under_ its sndbuf.
3254		 * In this case we cannot block, so that we have to fail.
3255		 */
3256		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3257			/* Force charge with __GFP_NOFAIL */
3258			if (memcg && !charged) {
3259				mem_cgroup_charge_skmem(memcg, amt,
3260					gfp_memcg_charge() | __GFP_NOFAIL);
3261			}
3262			return 1;
3263		}
3264	}
3265
3266	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3267		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3268
3269	sk_memory_allocated_sub(sk, amt);
3270
3271	if (charged)
3272		mem_cgroup_uncharge_skmem(memcg, amt);
3273
3274	return 0;
3275}
3276
3277/**
3278 *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3279 *	@sk: socket
3280 *	@size: memory size to allocate
3281 *	@kind: allocation type
3282 *
3283 *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3284 *	rmem allocation. This function assumes that protocols which have
3285 *	memory_pressure use sk_wmem_queued as write buffer accounting.
3286 */
3287int __sk_mem_schedule(struct sock *sk, int size, int kind)
3288{
3289	int ret, amt = sk_mem_pages(size);
3290
3291	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3292	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3293	if (!ret)
3294		sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT));
3295	return ret;
3296}
3297EXPORT_SYMBOL(__sk_mem_schedule);
3298
3299/**
3300 *	__sk_mem_reduce_allocated - reclaim memory_allocated
3301 *	@sk: socket
3302 *	@amount: number of quanta
3303 *
3304 *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3305 */
3306void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3307{
3308	sk_memory_allocated_sub(sk, amount);
3309
3310	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3311		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3312
3313	if (sk_under_global_memory_pressure(sk) &&
3314	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3315		sk_leave_memory_pressure(sk);
3316}
3317
3318/**
3319 *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3320 *	@sk: socket
3321 *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3322 */
3323void __sk_mem_reclaim(struct sock *sk, int amount)
3324{
3325	amount >>= PAGE_SHIFT;
3326	sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT));
3327	__sk_mem_reduce_allocated(sk, amount);
3328}
3329EXPORT_SYMBOL(__sk_mem_reclaim);
3330
3331int sk_set_peek_off(struct sock *sk, int val)
3332{
3333	WRITE_ONCE(sk->sk_peek_off, val);
3334	return 0;
3335}
3336EXPORT_SYMBOL_GPL(sk_set_peek_off);
3337
3338/*
3339 * Set of default routines for initialising struct proto_ops when
3340 * the protocol does not support a particular function. In certain
3341 * cases where it makes no sense for a protocol to have a "do nothing"
3342 * function, some default processing is provided.
3343 */
3344
3345int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3346{
3347	return -EOPNOTSUPP;
3348}
3349EXPORT_SYMBOL(sock_no_bind);
3350
3351int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3352		    int len, int flags)
3353{
3354	return -EOPNOTSUPP;
3355}
3356EXPORT_SYMBOL(sock_no_connect);
3357
3358int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3359{
3360	return -EOPNOTSUPP;
3361}
3362EXPORT_SYMBOL(sock_no_socketpair);
3363
3364int sock_no_accept(struct socket *sock, struct socket *newsock,
3365		   struct proto_accept_arg *arg)
3366{
3367	return -EOPNOTSUPP;
3368}
3369EXPORT_SYMBOL(sock_no_accept);
3370
3371int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3372		    int peer)
3373{
3374	return -EOPNOTSUPP;
3375}
3376EXPORT_SYMBOL(sock_no_getname);
3377
3378int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3379{
3380	return -EOPNOTSUPP;
3381}
3382EXPORT_SYMBOL(sock_no_ioctl);
3383
3384int sock_no_listen(struct socket *sock, int backlog)
3385{
3386	return -EOPNOTSUPP;
3387}
3388EXPORT_SYMBOL(sock_no_listen);
3389
3390int sock_no_shutdown(struct socket *sock, int how)
3391{
3392	return -EOPNOTSUPP;
3393}
3394EXPORT_SYMBOL(sock_no_shutdown);
3395
3396int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3397{
3398	return -EOPNOTSUPP;
3399}
3400EXPORT_SYMBOL(sock_no_sendmsg);
3401
3402int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3403{
3404	return -EOPNOTSUPP;
3405}
3406EXPORT_SYMBOL(sock_no_sendmsg_locked);
3407
3408int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3409		    int flags)
3410{
3411	return -EOPNOTSUPP;
3412}
3413EXPORT_SYMBOL(sock_no_recvmsg);
3414
3415int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3416{
3417	/* Mirror missing mmap method error code */
3418	return -ENODEV;
3419}
3420EXPORT_SYMBOL(sock_no_mmap);
3421
3422/*
3423 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3424 * various sock-based usage counts.
3425 */
3426void __receive_sock(struct file *file)
3427{
3428	struct socket *sock;
3429
3430	sock = sock_from_file(file);
3431	if (sock) {
3432		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3433		sock_update_classid(&sock->sk->sk_cgrp_data);
3434	}
3435}
3436
3437/*
3438 *	Default Socket Callbacks
3439 */
3440
3441static void sock_def_wakeup(struct sock *sk)
3442{
3443	struct socket_wq *wq;
3444
3445	rcu_read_lock();
3446	wq = rcu_dereference(sk->sk_wq);
3447	if (skwq_has_sleeper(wq))
3448		wake_up_interruptible_all(&wq->wait);
3449	rcu_read_unlock();
3450}
3451
3452static void sock_def_error_report(struct sock *sk)
3453{
3454	struct socket_wq *wq;
3455
3456	rcu_read_lock();
3457	wq = rcu_dereference(sk->sk_wq);
3458	if (skwq_has_sleeper(wq))
3459		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3460	sk_wake_async_rcu(sk, SOCK_WAKE_IO, POLL_ERR);
3461	rcu_read_unlock();
3462}
3463
3464void sock_def_readable(struct sock *sk)
3465{
3466	struct socket_wq *wq;
3467
3468	trace_sk_data_ready(sk);
3469
3470	rcu_read_lock();
3471	wq = rcu_dereference(sk->sk_wq);
3472	if (skwq_has_sleeper(wq))
3473		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3474						EPOLLRDNORM | EPOLLRDBAND);
3475	sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN);
3476	rcu_read_unlock();
3477}
3478
3479static void sock_def_write_space(struct sock *sk)
3480{
3481	struct socket_wq *wq;
3482
3483	rcu_read_lock();
3484
3485	/* Do not wake up a writer until he can make "significant"
3486	 * progress.  --DaveM
3487	 */
3488	if (sock_writeable(sk)) {
3489		wq = rcu_dereference(sk->sk_wq);
3490		if (skwq_has_sleeper(wq))
3491			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3492						EPOLLWRNORM | EPOLLWRBAND);
3493
3494		/* Should agree with poll, otherwise some programs break */
3495		sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
3496	}
3497
3498	rcu_read_unlock();
3499}
3500
3501/* An optimised version of sock_def_write_space(), should only be called
3502 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3503 * ->sk_wmem_alloc.
3504 */
3505static void sock_def_write_space_wfree(struct sock *sk)
3506{
3507	/* Do not wake up a writer until he can make "significant"
3508	 * progress.  --DaveM
3509	 */
3510	if (sock_writeable(sk)) {
3511		struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3512
3513		/* rely on refcount_sub from sock_wfree() */
3514		smp_mb__after_atomic();
3515		if (wq && waitqueue_active(&wq->wait))
3516			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3517						EPOLLWRNORM | EPOLLWRBAND);
3518
3519		/* Should agree with poll, otherwise some programs break */
3520		sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
3521	}
3522}
3523
3524static void sock_def_destruct(struct sock *sk)
3525{
3526}
3527
3528void sk_send_sigurg(struct sock *sk)
3529{
3530	if (sk->sk_socket && sk->sk_socket->file)
3531		if (send_sigurg(sk->sk_socket->file))
3532			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3533}
3534EXPORT_SYMBOL(sk_send_sigurg);
3535
3536void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3537		    unsigned long expires)
3538{
3539	if (!mod_timer(timer, expires))
3540		sock_hold(sk);
3541}
3542EXPORT_SYMBOL(sk_reset_timer);
3543
3544void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3545{
3546	if (del_timer(timer))
3547		__sock_put(sk);
3548}
3549EXPORT_SYMBOL(sk_stop_timer);
3550
3551void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3552{
3553	if (del_timer_sync(timer))
3554		__sock_put(sk);
3555}
3556EXPORT_SYMBOL(sk_stop_timer_sync);
3557
3558void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
3559{
3560	sk_init_common(sk);
3561	sk->sk_send_head	=	NULL;
3562
3563	timer_setup(&sk->sk_timer, NULL, 0);
3564
3565	sk->sk_allocation	=	GFP_KERNEL;
3566	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
3567	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
3568	sk->sk_state		=	TCP_CLOSE;
3569	sk->sk_use_task_frag	=	true;
3570	sk_set_socket(sk, sock);
3571
3572	sock_set_flag(sk, SOCK_ZAPPED);
3573
3574	if (sock) {
3575		sk->sk_type	=	sock->type;
3576		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3577		sock->sk	=	sk;
3578	} else {
3579		RCU_INIT_POINTER(sk->sk_wq, NULL);
3580	}
3581	sk->sk_uid	=	uid;
3582
 
 
 
 
 
 
 
 
 
 
 
 
3583	sk->sk_state_change	=	sock_def_wakeup;
3584	sk->sk_data_ready	=	sock_def_readable;
3585	sk->sk_write_space	=	sock_def_write_space;
3586	sk->sk_error_report	=	sock_def_error_report;
3587	sk->sk_destruct		=	sock_def_destruct;
3588
3589	sk->sk_frag.page	=	NULL;
3590	sk->sk_frag.offset	=	0;
3591	sk->sk_peek_off		=	-1;
3592
3593	sk->sk_peer_pid 	=	NULL;
3594	sk->sk_peer_cred	=	NULL;
3595	spin_lock_init(&sk->sk_peer_lock);
3596
3597	sk->sk_write_pending	=	0;
3598	sk->sk_rcvlowat		=	1;
3599	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3600	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3601
3602	sk->sk_stamp = SK_DEFAULT_STAMP;
3603#if BITS_PER_LONG==32
3604	seqlock_init(&sk->sk_stamp_seq);
3605#endif
3606	atomic_set(&sk->sk_zckey, 0);
3607
3608#ifdef CONFIG_NET_RX_BUSY_POLL
3609	sk->sk_napi_id		=	0;
3610	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3611#endif
3612
3613	sk->sk_max_pacing_rate = ~0UL;
3614	sk->sk_pacing_rate = ~0UL;
3615	WRITE_ONCE(sk->sk_pacing_shift, 10);
3616	sk->sk_incoming_cpu = -1;
3617
3618	sk_rx_queue_clear(sk);
3619	/*
3620	 * Before updating sk_refcnt, we must commit prior changes to memory
3621	 * (Documentation/RCU/rculist_nulls.rst for details)
3622	 */
3623	smp_wmb();
3624	refcount_set(&sk->sk_refcnt, 1);
3625	atomic_set(&sk->sk_drops, 0);
3626}
3627EXPORT_SYMBOL(sock_init_data_uid);
3628
3629void sock_init_data(struct socket *sock, struct sock *sk)
3630{
3631	kuid_t uid = sock ?
3632		SOCK_INODE(sock)->i_uid :
3633		make_kuid(sock_net(sk)->user_ns, 0);
3634
3635	sock_init_data_uid(sock, sk, uid);
3636}
3637EXPORT_SYMBOL(sock_init_data);
3638
3639void lock_sock_nested(struct sock *sk, int subclass)
3640{
3641	/* The sk_lock has mutex_lock() semantics here. */
3642	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3643
3644	might_sleep();
3645	spin_lock_bh(&sk->sk_lock.slock);
3646	if (sock_owned_by_user_nocheck(sk))
3647		__lock_sock(sk);
3648	sk->sk_lock.owned = 1;
3649	spin_unlock_bh(&sk->sk_lock.slock);
3650}
3651EXPORT_SYMBOL(lock_sock_nested);
3652
3653void release_sock(struct sock *sk)
3654{
3655	spin_lock_bh(&sk->sk_lock.slock);
3656	if (sk->sk_backlog.tail)
3657		__release_sock(sk);
3658
3659	if (sk->sk_prot->release_cb)
3660		INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3661				     tcp_release_cb, sk);
3662
3663	sock_release_ownership(sk);
3664	if (waitqueue_active(&sk->sk_lock.wq))
3665		wake_up(&sk->sk_lock.wq);
3666	spin_unlock_bh(&sk->sk_lock.slock);
3667}
3668EXPORT_SYMBOL(release_sock);
3669
3670bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3671{
3672	might_sleep();
3673	spin_lock_bh(&sk->sk_lock.slock);
3674
3675	if (!sock_owned_by_user_nocheck(sk)) {
3676		/*
3677		 * Fast path return with bottom halves disabled and
3678		 * sock::sk_lock.slock held.
3679		 *
3680		 * The 'mutex' is not contended and holding
3681		 * sock::sk_lock.slock prevents all other lockers to
3682		 * proceed so the corresponding unlock_sock_fast() can
3683		 * avoid the slow path of release_sock() completely and
3684		 * just release slock.
3685		 *
3686		 * From a semantical POV this is equivalent to 'acquiring'
3687		 * the 'mutex', hence the corresponding lockdep
3688		 * mutex_release() has to happen in the fast path of
3689		 * unlock_sock_fast().
3690		 */
3691		return false;
3692	}
3693
3694	__lock_sock(sk);
3695	sk->sk_lock.owned = 1;
3696	__acquire(&sk->sk_lock.slock);
3697	spin_unlock_bh(&sk->sk_lock.slock);
3698	return true;
3699}
3700EXPORT_SYMBOL(__lock_sock_fast);
3701
3702int sock_gettstamp(struct socket *sock, void __user *userstamp,
3703		   bool timeval, bool time32)
3704{
3705	struct sock *sk = sock->sk;
3706	struct timespec64 ts;
3707
3708	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3709	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3710	if (ts.tv_sec == -1)
3711		return -ENOENT;
3712	if (ts.tv_sec == 0) {
3713		ktime_t kt = ktime_get_real();
3714		sock_write_timestamp(sk, kt);
3715		ts = ktime_to_timespec64(kt);
3716	}
3717
3718	if (timeval)
3719		ts.tv_nsec /= 1000;
3720
3721#ifdef CONFIG_COMPAT_32BIT_TIME
3722	if (time32)
3723		return put_old_timespec32(&ts, userstamp);
3724#endif
3725#ifdef CONFIG_SPARC64
3726	/* beware of padding in sparc64 timeval */
3727	if (timeval && !in_compat_syscall()) {
3728		struct __kernel_old_timeval __user tv = {
3729			.tv_sec = ts.tv_sec,
3730			.tv_usec = ts.tv_nsec,
3731		};
3732		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3733			return -EFAULT;
3734		return 0;
3735	}
3736#endif
3737	return put_timespec64(&ts, userstamp);
3738}
3739EXPORT_SYMBOL(sock_gettstamp);
3740
3741void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3742{
3743	if (!sock_flag(sk, flag)) {
3744		unsigned long previous_flags = sk->sk_flags;
3745
3746		sock_set_flag(sk, flag);
3747		/*
3748		 * we just set one of the two flags which require net
3749		 * time stamping, but time stamping might have been on
3750		 * already because of the other one
3751		 */
3752		if (sock_needs_netstamp(sk) &&
3753		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3754			net_enable_timestamp();
3755	}
3756}
3757
3758int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3759		       int level, int type)
3760{
3761	struct sock_exterr_skb *serr;
3762	struct sk_buff *skb;
3763	int copied, err;
3764
3765	err = -EAGAIN;
3766	skb = sock_dequeue_err_skb(sk);
3767	if (skb == NULL)
3768		goto out;
3769
3770	copied = skb->len;
3771	if (copied > len) {
3772		msg->msg_flags |= MSG_TRUNC;
3773		copied = len;
3774	}
3775	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3776	if (err)
3777		goto out_free_skb;
3778
3779	sock_recv_timestamp(msg, sk, skb);
3780
3781	serr = SKB_EXT_ERR(skb);
3782	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3783
3784	msg->msg_flags |= MSG_ERRQUEUE;
3785	err = copied;
3786
3787out_free_skb:
3788	kfree_skb(skb);
3789out:
3790	return err;
3791}
3792EXPORT_SYMBOL(sock_recv_errqueue);
3793
3794/*
3795 *	Get a socket option on an socket.
3796 *
3797 *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3798 *	asynchronous errors should be reported by getsockopt. We assume
3799 *	this means if you specify SO_ERROR (otherwise what is the point of it).
3800 */
3801int sock_common_getsockopt(struct socket *sock, int level, int optname,
3802			   char __user *optval, int __user *optlen)
3803{
3804	struct sock *sk = sock->sk;
3805
3806	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3807	return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3808}
3809EXPORT_SYMBOL(sock_common_getsockopt);
3810
3811int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3812			int flags)
3813{
3814	struct sock *sk = sock->sk;
3815	int addr_len = 0;
3816	int err;
3817
3818	err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3819	if (err >= 0)
3820		msg->msg_namelen = addr_len;
3821	return err;
3822}
3823EXPORT_SYMBOL(sock_common_recvmsg);
3824
3825/*
3826 *	Set socket options on an inet socket.
3827 */
3828int sock_common_setsockopt(struct socket *sock, int level, int optname,
3829			   sockptr_t optval, unsigned int optlen)
3830{
3831	struct sock *sk = sock->sk;
3832
3833	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3834	return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3835}
3836EXPORT_SYMBOL(sock_common_setsockopt);
3837
3838void sk_common_release(struct sock *sk)
3839{
3840	if (sk->sk_prot->destroy)
3841		sk->sk_prot->destroy(sk);
3842
3843	/*
3844	 * Observation: when sk_common_release is called, processes have
3845	 * no access to socket. But net still has.
3846	 * Step one, detach it from networking:
3847	 *
3848	 * A. Remove from hash tables.
3849	 */
3850
3851	sk->sk_prot->unhash(sk);
3852
3853	/*
3854	 * In this point socket cannot receive new packets, but it is possible
3855	 * that some packets are in flight because some CPU runs receiver and
3856	 * did hash table lookup before we unhashed socket. They will achieve
3857	 * receive queue and will be purged by socket destructor.
3858	 *
3859	 * Also we still have packets pending on receive queue and probably,
3860	 * our own packets waiting in device queues. sock_destroy will drain
3861	 * receive queue, but transmitted packets will delay socket destruction
3862	 * until the last reference will be released.
3863	 */
3864
3865	sock_orphan(sk);
3866
3867	xfrm_sk_free_policy(sk);
3868
3869	sock_put(sk);
3870}
3871EXPORT_SYMBOL(sk_common_release);
3872
3873void sk_get_meminfo(const struct sock *sk, u32 *mem)
3874{
3875	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3876
3877	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3878	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3879	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3880	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3881	mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk);
3882	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3883	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3884	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3885	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3886}
3887
3888#ifdef CONFIG_PROC_FS
3889static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3890
3891int sock_prot_inuse_get(struct net *net, struct proto *prot)
3892{
3893	int cpu, idx = prot->inuse_idx;
3894	int res = 0;
3895
3896	for_each_possible_cpu(cpu)
3897		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3898
3899	return res >= 0 ? res : 0;
3900}
3901EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3902
3903int sock_inuse_get(struct net *net)
3904{
3905	int cpu, res = 0;
3906
3907	for_each_possible_cpu(cpu)
3908		res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3909
3910	return res;
3911}
3912
3913EXPORT_SYMBOL_GPL(sock_inuse_get);
3914
3915static int __net_init sock_inuse_init_net(struct net *net)
3916{
3917	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3918	if (net->core.prot_inuse == NULL)
3919		return -ENOMEM;
3920	return 0;
3921}
3922
3923static void __net_exit sock_inuse_exit_net(struct net *net)
3924{
3925	free_percpu(net->core.prot_inuse);
3926}
3927
3928static struct pernet_operations net_inuse_ops = {
3929	.init = sock_inuse_init_net,
3930	.exit = sock_inuse_exit_net,
3931};
3932
3933static __init int net_inuse_init(void)
3934{
3935	if (register_pernet_subsys(&net_inuse_ops))
3936		panic("Cannot initialize net inuse counters");
3937
3938	return 0;
3939}
3940
3941core_initcall(net_inuse_init);
3942
3943static int assign_proto_idx(struct proto *prot)
3944{
3945	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3946
3947	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3948		pr_err("PROTO_INUSE_NR exhausted\n");
3949		return -ENOSPC;
3950	}
3951
3952	set_bit(prot->inuse_idx, proto_inuse_idx);
3953	return 0;
3954}
3955
3956static void release_proto_idx(struct proto *prot)
3957{
3958	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3959		clear_bit(prot->inuse_idx, proto_inuse_idx);
3960}
3961#else
3962static inline int assign_proto_idx(struct proto *prot)
3963{
3964	return 0;
3965}
3966
3967static inline void release_proto_idx(struct proto *prot)
3968{
3969}
3970
3971#endif
3972
3973static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3974{
3975	if (!twsk_prot)
3976		return;
3977	kfree(twsk_prot->twsk_slab_name);
3978	twsk_prot->twsk_slab_name = NULL;
3979	kmem_cache_destroy(twsk_prot->twsk_slab);
3980	twsk_prot->twsk_slab = NULL;
3981}
3982
3983static int tw_prot_init(const struct proto *prot)
3984{
3985	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3986
3987	if (!twsk_prot)
3988		return 0;
3989
3990	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3991					      prot->name);
3992	if (!twsk_prot->twsk_slab_name)
3993		return -ENOMEM;
3994
3995	twsk_prot->twsk_slab =
3996		kmem_cache_create(twsk_prot->twsk_slab_name,
3997				  twsk_prot->twsk_obj_size, 0,
3998				  SLAB_ACCOUNT | prot->slab_flags,
3999				  NULL);
4000	if (!twsk_prot->twsk_slab) {
4001		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
4002			prot->name);
4003		return -ENOMEM;
4004	}
4005
4006	return 0;
4007}
4008
4009static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
4010{
4011	if (!rsk_prot)
4012		return;
4013	kfree(rsk_prot->slab_name);
4014	rsk_prot->slab_name = NULL;
4015	kmem_cache_destroy(rsk_prot->slab);
4016	rsk_prot->slab = NULL;
4017}
4018
4019static int req_prot_init(const struct proto *prot)
4020{
4021	struct request_sock_ops *rsk_prot = prot->rsk_prot;
4022
4023	if (!rsk_prot)
4024		return 0;
4025
4026	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
4027					prot->name);
4028	if (!rsk_prot->slab_name)
4029		return -ENOMEM;
4030
4031	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
4032					   rsk_prot->obj_size, 0,
4033					   SLAB_ACCOUNT | prot->slab_flags,
4034					   NULL);
4035
4036	if (!rsk_prot->slab) {
4037		pr_crit("%s: Can't create request sock SLAB cache!\n",
4038			prot->name);
4039		return -ENOMEM;
4040	}
4041	return 0;
4042}
4043
4044int proto_register(struct proto *prot, int alloc_slab)
4045{
4046	int ret = -ENOBUFS;
4047
4048	if (prot->memory_allocated && !prot->sysctl_mem) {
4049		pr_err("%s: missing sysctl_mem\n", prot->name);
4050		return -EINVAL;
4051	}
4052	if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
4053		pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
4054		return -EINVAL;
4055	}
4056	if (alloc_slab) {
4057		prot->slab = kmem_cache_create_usercopy(prot->name,
4058					prot->obj_size, 0,
4059					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
4060					prot->slab_flags,
4061					prot->useroffset, prot->usersize,
4062					NULL);
4063
4064		if (prot->slab == NULL) {
4065			pr_crit("%s: Can't create sock SLAB cache!\n",
4066				prot->name);
4067			goto out;
4068		}
4069
4070		if (req_prot_init(prot))
4071			goto out_free_request_sock_slab;
4072
4073		if (tw_prot_init(prot))
4074			goto out_free_timewait_sock_slab;
4075	}
4076
4077	mutex_lock(&proto_list_mutex);
4078	ret = assign_proto_idx(prot);
4079	if (ret) {
4080		mutex_unlock(&proto_list_mutex);
4081		goto out_free_timewait_sock_slab;
4082	}
4083	list_add(&prot->node, &proto_list);
4084	mutex_unlock(&proto_list_mutex);
4085	return ret;
4086
4087out_free_timewait_sock_slab:
4088	if (alloc_slab)
4089		tw_prot_cleanup(prot->twsk_prot);
4090out_free_request_sock_slab:
4091	if (alloc_slab) {
4092		req_prot_cleanup(prot->rsk_prot);
4093
4094		kmem_cache_destroy(prot->slab);
4095		prot->slab = NULL;
4096	}
4097out:
4098	return ret;
4099}
4100EXPORT_SYMBOL(proto_register);
4101
4102void proto_unregister(struct proto *prot)
4103{
4104	mutex_lock(&proto_list_mutex);
4105	release_proto_idx(prot);
4106	list_del(&prot->node);
4107	mutex_unlock(&proto_list_mutex);
4108
4109	kmem_cache_destroy(prot->slab);
4110	prot->slab = NULL;
4111
4112	req_prot_cleanup(prot->rsk_prot);
4113	tw_prot_cleanup(prot->twsk_prot);
4114}
4115EXPORT_SYMBOL(proto_unregister);
4116
4117int sock_load_diag_module(int family, int protocol)
4118{
4119	if (!protocol) {
4120		if (!sock_is_registered(family))
4121			return -ENOENT;
4122
4123		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
4124				      NETLINK_SOCK_DIAG, family);
4125	}
4126
4127#ifdef CONFIG_INET
4128	if (family == AF_INET &&
4129	    protocol != IPPROTO_RAW &&
4130	    protocol < MAX_INET_PROTOS &&
4131	    !rcu_access_pointer(inet_protos[protocol]))
4132		return -ENOENT;
4133#endif
4134
4135	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
4136			      NETLINK_SOCK_DIAG, family, protocol);
4137}
4138EXPORT_SYMBOL(sock_load_diag_module);
4139
4140#ifdef CONFIG_PROC_FS
4141static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
4142	__acquires(proto_list_mutex)
4143{
4144	mutex_lock(&proto_list_mutex);
4145	return seq_list_start_head(&proto_list, *pos);
4146}
4147
4148static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4149{
4150	return seq_list_next(v, &proto_list, pos);
4151}
4152
4153static void proto_seq_stop(struct seq_file *seq, void *v)
4154	__releases(proto_list_mutex)
4155{
4156	mutex_unlock(&proto_list_mutex);
4157}
4158
4159static char proto_method_implemented(const void *method)
4160{
4161	return method == NULL ? 'n' : 'y';
4162}
4163static long sock_prot_memory_allocated(struct proto *proto)
4164{
4165	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
4166}
4167
4168static const char *sock_prot_memory_pressure(struct proto *proto)
4169{
4170	return proto->memory_pressure != NULL ?
4171	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4172}
4173
4174static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4175{
4176
4177	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
4178			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4179		   proto->name,
4180		   proto->obj_size,
4181		   sock_prot_inuse_get(seq_file_net(seq), proto),
4182		   sock_prot_memory_allocated(proto),
4183		   sock_prot_memory_pressure(proto),
4184		   proto->max_header,
4185		   proto->slab == NULL ? "no" : "yes",
4186		   module_name(proto->owner),
4187		   proto_method_implemented(proto->close),
4188		   proto_method_implemented(proto->connect),
4189		   proto_method_implemented(proto->disconnect),
4190		   proto_method_implemented(proto->accept),
4191		   proto_method_implemented(proto->ioctl),
4192		   proto_method_implemented(proto->init),
4193		   proto_method_implemented(proto->destroy),
4194		   proto_method_implemented(proto->shutdown),
4195		   proto_method_implemented(proto->setsockopt),
4196		   proto_method_implemented(proto->getsockopt),
4197		   proto_method_implemented(proto->sendmsg),
4198		   proto_method_implemented(proto->recvmsg),
4199		   proto_method_implemented(proto->bind),
4200		   proto_method_implemented(proto->backlog_rcv),
4201		   proto_method_implemented(proto->hash),
4202		   proto_method_implemented(proto->unhash),
4203		   proto_method_implemented(proto->get_port),
4204		   proto_method_implemented(proto->enter_memory_pressure));
4205}
4206
4207static int proto_seq_show(struct seq_file *seq, void *v)
4208{
4209	if (v == &proto_list)
4210		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4211			   "protocol",
4212			   "size",
4213			   "sockets",
4214			   "memory",
4215			   "press",
4216			   "maxhdr",
4217			   "slab",
4218			   "module",
4219			   "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n");
4220	else
4221		proto_seq_printf(seq, list_entry(v, struct proto, node));
4222	return 0;
4223}
4224
4225static const struct seq_operations proto_seq_ops = {
4226	.start  = proto_seq_start,
4227	.next   = proto_seq_next,
4228	.stop   = proto_seq_stop,
4229	.show   = proto_seq_show,
4230};
4231
4232static __net_init int proto_init_net(struct net *net)
4233{
4234	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4235			sizeof(struct seq_net_private)))
4236		return -ENOMEM;
4237
4238	return 0;
4239}
4240
4241static __net_exit void proto_exit_net(struct net *net)
4242{
4243	remove_proc_entry("protocols", net->proc_net);
4244}
4245
4246
4247static __net_initdata struct pernet_operations proto_net_ops = {
4248	.init = proto_init_net,
4249	.exit = proto_exit_net,
4250};
4251
4252static int __init proto_init(void)
4253{
4254	return register_pernet_subsys(&proto_net_ops);
4255}
4256
4257subsys_initcall(proto_init);
4258
4259#endif /* PROC_FS */
4260
4261#ifdef CONFIG_NET_RX_BUSY_POLL
4262bool sk_busy_loop_end(void *p, unsigned long start_time)
4263{
4264	struct sock *sk = p;
4265
4266	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
4267		return true;
4268
4269	if (sk_is_udp(sk) &&
4270	    !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
4271		return true;
4272
4273	return sk_busy_loop_timeout(sk, start_time);
4274}
4275EXPORT_SYMBOL(sk_busy_loop_end);
4276#endif /* CONFIG_NET_RX_BUSY_POLL */
4277
4278int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4279{
4280	if (!sk->sk_prot->bind_add)
4281		return -EOPNOTSUPP;
4282	return sk->sk_prot->bind_add(sk, addr, addr_len);
4283}
4284EXPORT_SYMBOL(sock_bind_add);
4285
4286/* Copy 'size' bytes from userspace and return `size` back to userspace */
4287int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
4288		     void __user *arg, void *karg, size_t size)
4289{
4290	int ret;
4291
4292	if (copy_from_user(karg, arg, size))
4293		return -EFAULT;
4294
4295	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg);
4296	if (ret)
4297		return ret;
4298
4299	if (copy_to_user(arg, karg, size))
4300		return -EFAULT;
4301
4302	return 0;
4303}
4304EXPORT_SYMBOL(sock_ioctl_inout);
4305
4306/* This is the most common ioctl prep function, where the result (4 bytes) is
4307 * copied back to userspace if the ioctl() returns successfully. No input is
4308 * copied from userspace as input argument.
4309 */
4310static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg)
4311{
4312	int ret, karg = 0;
4313
4314	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg);
4315	if (ret)
4316		return ret;
4317
4318	return put_user(karg, (int __user *)arg);
4319}
4320
4321/* A wrapper around sock ioctls, which copies the data from userspace
4322 * (depending on the protocol/ioctl), and copies back the result to userspace.
4323 * The main motivation for this function is to pass kernel memory to the
4324 * protocol ioctl callbacks, instead of userspace memory.
4325 */
4326int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
4327{
4328	int rc = 1;
4329
4330	if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET)
4331		rc = ipmr_sk_ioctl(sk, cmd, arg);
4332	else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6)
4333		rc = ip6mr_sk_ioctl(sk, cmd, arg);
4334	else if (sk_is_phonet(sk))
4335		rc = phonet_sk_ioctl(sk, cmd, arg);
4336
4337	/* If ioctl was processed, returns its value */
4338	if (rc <= 0)
4339		return rc;
4340
4341	/* Otherwise call the default handler */
4342	return sock_ioctl_out(sk, cmd, arg);
4343}
4344EXPORT_SYMBOL(sk_ioctl);
4345
4346static int __init sock_struct_check(void)
4347{
4348	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_drops);
4349	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_peek_off);
4350	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_error_queue);
4351	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_receive_queue);
4352	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_backlog);
4353
4354	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst);
4355	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_ifindex);
4356	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_cookie);
4357	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvbuf);
4358	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_filter);
4359	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_wq);
4360	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_data_ready);
4361	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvtimeo);
4362	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvlowat);
4363
4364	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_err);
4365	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_socket);
4366	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_memcg);
4367
4368	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_lock);
4369	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_reserved_mem);
4370	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_forward_alloc);
4371	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_tsflags);
4372
4373	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
4374	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
4375	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_sndbuf);
4376	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_queued);
4377	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_alloc);
4378	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tsq_flags);
4379	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_send_head);
4380	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_queue);
4381	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_pending);
4382	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_dst_pending_confirm);
4383	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_status);
4384	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_frag);
4385	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_timer);
4386	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_rate);
4387	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_zckey);
4388	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tskey);
4389
4390	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_max_pacing_rate);
4391	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_sndtimeo);
4392	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_priority);
4393	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_mark);
4394	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_dst_cache);
4395	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_route_caps);
4396	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_type);
4397	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_size);
4398	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_allocation);
4399	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_txhash);
4400	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_segs);
4401	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_pacing_shift);
4402	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_use_task_frag);
4403	return 0;
4404}
4405
4406core_initcall(sock_struct_check);