Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11/*
12 * This file implements UBIFS journal.
13 *
14 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
15 * length and position, while a bud logical eraseblock is any LEB in the main
16 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
17 * contains only references to buds and some other stuff like commit
18 * start node. The idea is that when we commit the journal, we do
19 * not copy the data, the buds just become indexed. Since after the commit the
20 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
21 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
22 * become leafs in the future.
23 *
24 * The journal is multi-headed because we want to write data to the journal as
25 * optimally as possible. It is nice to have nodes belonging to the same inode
26 * in one LEB, so we may write data owned by different inodes to different
27 * journal heads, although at present only one data head is used.
28 *
29 * For recovery reasons, the base head contains all inode nodes, all directory
30 * entry nodes and all truncate nodes. This means that the other heads contain
31 * only data nodes.
32 *
33 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
34 * time of commit, the bud is retained to continue to be used in the journal,
35 * even though the "front" of the LEB is now indexed. In that case, the log
36 * reference contains the offset where the bud starts for the purposes of the
37 * journal.
38 *
39 * The journal size has to be limited, because the larger is the journal, the
40 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
41 * takes (indexing in the TNC).
42 *
43 * All the journal write operations like 'ubifs_jnl_update()' here, which write
44 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
45 * unclean reboots. Should the unclean reboot happen, the recovery code drops
46 * all the nodes.
47 */
48
49#include "ubifs.h"
50
51/**
52 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
53 * @ino: the inode to zero out
54 */
55static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
56{
57 memset(ino->padding1, 0, 4);
58 memset(ino->padding2, 0, 26);
59}
60
61/**
62 * zero_dent_node_unused - zero out unused fields of an on-flash directory
63 * entry node.
64 * @dent: the directory entry to zero out
65 */
66static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
67{
68 dent->padding1 = 0;
69}
70
71/**
72 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
73 * node.
74 * @trun: the truncation node to zero out
75 */
76static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
77{
78 memset(trun->padding, 0, 12);
79}
80
81static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
82{
83 if (ubifs_authenticated(c))
84 ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
85}
86
87/**
88 * reserve_space - reserve space in the journal.
89 * @c: UBIFS file-system description object
90 * @jhead: journal head number
91 * @len: node length
92 *
93 * This function reserves space in journal head @head. If the reservation
94 * succeeded, the journal head stays locked and later has to be unlocked using
95 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
96 * be done, and other negative error codes in case of other failures.
97 */
98static int reserve_space(struct ubifs_info *c, int jhead, int len)
99{
100 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
101 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
102
103 /*
104 * Typically, the base head has smaller nodes written to it, so it is
105 * better to try to allocate space at the ends of eraseblocks. This is
106 * what the squeeze parameter does.
107 */
108 ubifs_assert(c, !c->ro_media && !c->ro_mount);
109 squeeze = (jhead == BASEHD);
110again:
111 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
112
113 if (c->ro_error) {
114 err = -EROFS;
115 goto out_unlock;
116 }
117
118 avail = c->leb_size - wbuf->offs - wbuf->used;
119 if (wbuf->lnum != -1 && avail >= len)
120 return 0;
121
122 /*
123 * Write buffer wasn't seek'ed or there is no enough space - look for an
124 * LEB with some empty space.
125 */
126 lnum = ubifs_find_free_space(c, len, &offs, squeeze);
127 if (lnum >= 0)
128 goto out;
129
130 err = lnum;
131 if (err != -ENOSPC)
132 goto out_unlock;
133
134 /*
135 * No free space, we have to run garbage collector to make
136 * some. But the write-buffer mutex has to be unlocked because
137 * GC also takes it.
138 */
139 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
140 mutex_unlock(&wbuf->io_mutex);
141
142 lnum = ubifs_garbage_collect(c, 0);
143 if (lnum < 0) {
144 err = lnum;
145 if (err != -ENOSPC)
146 return err;
147
148 /*
149 * GC could not make a free LEB. But someone else may
150 * have allocated new bud for this journal head,
151 * because we dropped @wbuf->io_mutex, so try once
152 * again.
153 */
154 dbg_jnl("GC couldn't make a free LEB for jhead %s",
155 dbg_jhead(jhead));
156 if (retries++ < 2) {
157 dbg_jnl("retry (%d)", retries);
158 goto again;
159 }
160
161 dbg_jnl("return -ENOSPC");
162 return err;
163 }
164
165 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
166 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
167 avail = c->leb_size - wbuf->offs - wbuf->used;
168
169 if (wbuf->lnum != -1 && avail >= len) {
170 /*
171 * Someone else has switched the journal head and we have
172 * enough space now. This happens when more than one process is
173 * trying to write to the same journal head at the same time.
174 */
175 dbg_jnl("return LEB %d back, already have LEB %d:%d",
176 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
177 err = ubifs_return_leb(c, lnum);
178 if (err)
179 goto out_unlock;
180 return 0;
181 }
182
183 offs = 0;
184
185out:
186 /*
187 * Make sure we synchronize the write-buffer before we add the new bud
188 * to the log. Otherwise we may have a power cut after the log
189 * reference node for the last bud (@lnum) is written but before the
190 * write-buffer data are written to the next-to-last bud
191 * (@wbuf->lnum). And the effect would be that the recovery would see
192 * that there is corruption in the next-to-last bud.
193 */
194 err = ubifs_wbuf_sync_nolock(wbuf);
195 if (err)
196 goto out_return;
197 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
198 if (err)
199 goto out_return;
200 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
201 if (err)
202 goto out_unlock;
203
204 return 0;
205
206out_unlock:
207 mutex_unlock(&wbuf->io_mutex);
208 return err;
209
210out_return:
211 /* An error occurred and the LEB has to be returned to lprops */
212 ubifs_assert(c, err < 0);
213 err1 = ubifs_return_leb(c, lnum);
214 if (err1 && err == -EAGAIN)
215 /*
216 * Return original error code only if it is not %-EAGAIN,
217 * which is not really an error. Otherwise, return the error
218 * code of 'ubifs_return_leb()'.
219 */
220 err = err1;
221 mutex_unlock(&wbuf->io_mutex);
222 return err;
223}
224
225static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
226 int len, struct shash_desc *hash)
227{
228 int auth_node_size = ubifs_auth_node_sz(c);
229 int err;
230
231 while (1) {
232 const struct ubifs_ch *ch = node;
233 int nodelen = le32_to_cpu(ch->len);
234
235 ubifs_assert(c, len >= auth_node_size);
236
237 if (len == auth_node_size)
238 break;
239
240 ubifs_assert(c, len > nodelen);
241 ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
242
243 err = ubifs_shash_update(c, hash, (void *)node, nodelen);
244 if (err)
245 return err;
246
247 node += ALIGN(nodelen, 8);
248 len -= ALIGN(nodelen, 8);
249 }
250
251 return ubifs_prepare_auth_node(c, node, hash);
252}
253
254/**
255 * write_head - write data to a journal head.
256 * @c: UBIFS file-system description object
257 * @jhead: journal head
258 * @buf: buffer to write
259 * @len: length to write
260 * @lnum: LEB number written is returned here
261 * @offs: offset written is returned here
262 * @sync: non-zero if the write-buffer has to by synchronized
263 *
264 * This function writes data to the reserved space of journal head @jhead.
265 * Returns zero in case of success and a negative error code in case of
266 * failure.
267 */
268static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
269 int *lnum, int *offs, int sync)
270{
271 int err;
272 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
273
274 ubifs_assert(c, jhead != GCHD);
275
276 *lnum = c->jheads[jhead].wbuf.lnum;
277 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
278 dbg_jnl("jhead %s, LEB %d:%d, len %d",
279 dbg_jhead(jhead), *lnum, *offs, len);
280
281 if (ubifs_authenticated(c)) {
282 err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
283 if (err)
284 return err;
285 }
286
287 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
288 if (err)
289 return err;
290 if (sync)
291 err = ubifs_wbuf_sync_nolock(wbuf);
292 return err;
293}
294
295/**
296 * make_reservation - reserve journal space.
297 * @c: UBIFS file-system description object
298 * @jhead: journal head
299 * @len: how many bytes to reserve
300 *
301 * This function makes space reservation in journal head @jhead. The function
302 * takes the commit lock and locks the journal head, and the caller has to
303 * unlock the head and finish the reservation with 'finish_reservation()'.
304 * Returns zero in case of success and a negative error code in case of
305 * failure.
306 *
307 * Note, the journal head may be unlocked as soon as the data is written, while
308 * the commit lock has to be released after the data has been added to the
309 * TNC.
310 */
311static int make_reservation(struct ubifs_info *c, int jhead, int len)
312{
313 int err, cmt_retries = 0, nospc_retries = 0;
314
315again:
316 down_read(&c->commit_sem);
317 err = reserve_space(c, jhead, len);
318 if (!err)
319 /* c->commit_sem will get released via finish_reservation(). */
320 return 0;
321 up_read(&c->commit_sem);
322
323 if (err == -ENOSPC) {
324 /*
325 * GC could not make any progress. We should try to commit
326 * once because it could make some dirty space and GC would
327 * make progress, so make the error -EAGAIN so that the below
328 * will commit and re-try.
329 */
330 if (nospc_retries++ < 2) {
331 dbg_jnl("no space, retry");
332 err = -EAGAIN;
333 }
334
335 /*
336 * This means that the budgeting is incorrect. We always have
337 * to be able to write to the media, because all operations are
338 * budgeted. Deletions are not budgeted, though, but we reserve
339 * an extra LEB for them.
340 */
341 }
342
343 if (err != -EAGAIN)
344 goto out;
345
346 /*
347 * -EAGAIN means that the journal is full or too large, or the above
348 * code wants to do one commit. Do this and re-try.
349 */
350 if (cmt_retries > 128) {
351 /*
352 * This should not happen unless the journal size limitations
353 * are too tough.
354 */
355 ubifs_err(c, "stuck in space allocation");
356 err = -ENOSPC;
357 goto out;
358 } else if (cmt_retries > 32)
359 ubifs_warn(c, "too many space allocation re-tries (%d)",
360 cmt_retries);
361
362 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
363 cmt_retries);
364 cmt_retries += 1;
365
366 err = ubifs_run_commit(c);
367 if (err)
368 return err;
369 goto again;
370
371out:
372 ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
373 len, jhead, err);
374 if (err == -ENOSPC) {
375 /* This are some budgeting problems, print useful information */
376 down_write(&c->commit_sem);
377 dump_stack();
378 ubifs_dump_budg(c, &c->bi);
379 ubifs_dump_lprops(c);
380 cmt_retries = dbg_check_lprops(c);
381 up_write(&c->commit_sem);
382 }
383 return err;
384}
385
386/**
387 * release_head - release a journal head.
388 * @c: UBIFS file-system description object
389 * @jhead: journal head
390 *
391 * This function releases journal head @jhead which was locked by
392 * the 'make_reservation()' function. It has to be called after each successful
393 * 'make_reservation()' invocation.
394 */
395static inline void release_head(struct ubifs_info *c, int jhead)
396{
397 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
398}
399
400/**
401 * finish_reservation - finish a reservation.
402 * @c: UBIFS file-system description object
403 *
404 * This function finishes journal space reservation. It must be called after
405 * 'make_reservation()'.
406 */
407static void finish_reservation(struct ubifs_info *c)
408{
409 up_read(&c->commit_sem);
410}
411
412/**
413 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
414 * @mode: inode mode
415 */
416static int get_dent_type(int mode)
417{
418 switch (mode & S_IFMT) {
419 case S_IFREG:
420 return UBIFS_ITYPE_REG;
421 case S_IFDIR:
422 return UBIFS_ITYPE_DIR;
423 case S_IFLNK:
424 return UBIFS_ITYPE_LNK;
425 case S_IFBLK:
426 return UBIFS_ITYPE_BLK;
427 case S_IFCHR:
428 return UBIFS_ITYPE_CHR;
429 case S_IFIFO:
430 return UBIFS_ITYPE_FIFO;
431 case S_IFSOCK:
432 return UBIFS_ITYPE_SOCK;
433 default:
434 BUG();
435 }
436 return 0;
437}
438
439/**
440 * pack_inode - pack an inode node.
441 * @c: UBIFS file-system description object
442 * @ino: buffer in which to pack inode node
443 * @inode: inode to pack
444 * @last: indicates the last node of the group
445 */
446static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
447 const struct inode *inode, int last)
448{
449 int data_len = 0, last_reference = !inode->i_nlink;
450 struct ubifs_inode *ui = ubifs_inode(inode);
451
452 ino->ch.node_type = UBIFS_INO_NODE;
453 ino_key_init_flash(c, &ino->key, inode->i_ino);
454 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
455 ino->atime_sec = cpu_to_le64(inode_get_atime_sec(inode));
456 ino->atime_nsec = cpu_to_le32(inode_get_atime_nsec(inode));
457 ino->ctime_sec = cpu_to_le64(inode_get_ctime_sec(inode));
458 ino->ctime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode));
459 ino->mtime_sec = cpu_to_le64(inode_get_mtime_sec(inode));
460 ino->mtime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
461 ino->uid = cpu_to_le32(i_uid_read(inode));
462 ino->gid = cpu_to_le32(i_gid_read(inode));
463 ino->mode = cpu_to_le32(inode->i_mode);
464 ino->flags = cpu_to_le32(ui->flags);
465 ino->size = cpu_to_le64(ui->ui_size);
466 ino->nlink = cpu_to_le32(inode->i_nlink);
467 ino->compr_type = cpu_to_le16(ui->compr_type);
468 ino->data_len = cpu_to_le32(ui->data_len);
469 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
470 ino->xattr_size = cpu_to_le32(ui->xattr_size);
471 ino->xattr_names = cpu_to_le32(ui->xattr_names);
472 zero_ino_node_unused(ino);
473
474 /*
475 * Drop the attached data if this is a deletion inode, the data is not
476 * needed anymore.
477 */
478 if (!last_reference) {
479 memcpy(ino->data, ui->data, ui->data_len);
480 data_len = ui->data_len;
481 }
482
483 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
484}
485
486/**
487 * mark_inode_clean - mark UBIFS inode as clean.
488 * @c: UBIFS file-system description object
489 * @ui: UBIFS inode to mark as clean
490 *
491 * This helper function marks UBIFS inode @ui as clean by cleaning the
492 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
493 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
494 * just do nothing.
495 */
496static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
497{
498 if (ui->dirty)
499 ubifs_release_dirty_inode_budget(c, ui);
500 ui->dirty = 0;
501}
502
503static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
504{
505 if (c->double_hash)
506 dent->cookie = (__force __le32) get_random_u32();
507 else
508 dent->cookie = 0;
509}
510
511/**
512 * ubifs_jnl_update - update inode.
513 * @c: UBIFS file-system description object
514 * @dir: parent inode or host inode in case of extended attributes
515 * @nm: directory entry name
516 * @inode: inode to update
517 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
518 * @xent: non-zero if the directory entry is an extended attribute entry
519 *
520 * This function updates an inode by writing a directory entry (or extended
521 * attribute entry), the inode itself, and the parent directory inode (or the
522 * host inode) to the journal.
523 *
524 * The function writes the host inode @dir last, which is important in case of
525 * extended attributes. Indeed, then we guarantee that if the host inode gets
526 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
527 * the extended attribute inode gets flushed too. And this is exactly what the
528 * user expects - synchronizing the host inode synchronizes its extended
529 * attributes. Similarly, this guarantees that if @dir is synchronized, its
530 * directory entry corresponding to @nm gets synchronized too.
531 *
532 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
533 * function synchronizes the write-buffer.
534 *
535 * This function marks the @dir and @inode inodes as clean and returns zero on
536 * success. In case of failure, a negative error code is returned.
537 */
538int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
539 const struct fscrypt_name *nm, const struct inode *inode,
540 int deletion, int xent)
541{
542 int err, dlen, ilen, len, lnum, ino_offs, dent_offs, orphan_added = 0;
543 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
544 int last_reference = !!(deletion && inode->i_nlink == 0);
545 struct ubifs_inode *ui = ubifs_inode(inode);
546 struct ubifs_inode *host_ui = ubifs_inode(dir);
547 struct ubifs_dent_node *dent;
548 struct ubifs_ino_node *ino;
549 union ubifs_key dent_key, ino_key;
550 u8 hash_dent[UBIFS_HASH_ARR_SZ];
551 u8 hash_ino[UBIFS_HASH_ARR_SZ];
552 u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
553
554 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
555
556 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
557 ilen = UBIFS_INO_NODE_SZ;
558
559 /*
560 * If the last reference to the inode is being deleted, then there is
561 * no need to attach and write inode data, it is being deleted anyway.
562 * And if the inode is being deleted, no need to synchronize
563 * write-buffer even if the inode is synchronous.
564 */
565 if (!last_reference) {
566 ilen += ui->data_len;
567 sync |= IS_SYNC(inode);
568 }
569
570 aligned_dlen = ALIGN(dlen, 8);
571 aligned_ilen = ALIGN(ilen, 8);
572
573 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
574 /* Make sure to also account for extended attributes */
575 if (ubifs_authenticated(c))
576 len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
577 else
578 len += host_ui->data_len;
579
580 dent = kzalloc(len, GFP_NOFS);
581 if (!dent)
582 return -ENOMEM;
583
584 /* Make reservation before allocating sequence numbers */
585 err = make_reservation(c, BASEHD, len);
586 if (err)
587 goto out_free;
588
589 if (!xent) {
590 dent->ch.node_type = UBIFS_DENT_NODE;
591 if (fname_name(nm) == NULL)
592 dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
593 else
594 dent_key_init(c, &dent_key, dir->i_ino, nm);
595 } else {
596 dent->ch.node_type = UBIFS_XENT_NODE;
597 xent_key_init(c, &dent_key, dir->i_ino, nm);
598 }
599
600 key_write(c, &dent_key, dent->key);
601 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
602 dent->type = get_dent_type(inode->i_mode);
603 dent->nlen = cpu_to_le16(fname_len(nm));
604 memcpy(dent->name, fname_name(nm), fname_len(nm));
605 dent->name[fname_len(nm)] = '\0';
606 set_dent_cookie(c, dent);
607
608 zero_dent_node_unused(dent);
609 ubifs_prep_grp_node(c, dent, dlen, 0);
610 err = ubifs_node_calc_hash(c, dent, hash_dent);
611 if (err)
612 goto out_release;
613
614 ino = (void *)dent + aligned_dlen;
615 pack_inode(c, ino, inode, 0);
616 err = ubifs_node_calc_hash(c, ino, hash_ino);
617 if (err)
618 goto out_release;
619
620 ino = (void *)ino + aligned_ilen;
621 pack_inode(c, ino, dir, 1);
622 err = ubifs_node_calc_hash(c, ino, hash_ino_host);
623 if (err)
624 goto out_release;
625
626 if (last_reference) {
627 err = ubifs_add_orphan(c, inode->i_ino);
628 if (err) {
629 release_head(c, BASEHD);
630 goto out_finish;
631 }
632 ui->del_cmtno = c->cmt_no;
633 orphan_added = 1;
634 }
635
636 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
637 if (err)
638 goto out_release;
639 if (!sync) {
640 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
641
642 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
643 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
644 }
645 release_head(c, BASEHD);
646 kfree(dent);
647 ubifs_add_auth_dirt(c, lnum);
648
649 if (deletion) {
650 if (fname_name(nm) == NULL)
651 err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
652 else
653 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
654 if (err)
655 goto out_ro;
656 err = ubifs_add_dirt(c, lnum, dlen);
657 } else
658 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
659 hash_dent, nm);
660 if (err)
661 goto out_ro;
662
663 /*
664 * Note, we do not remove the inode from TNC even if the last reference
665 * to it has just been deleted, because the inode may still be opened.
666 * Instead, the inode has been added to orphan lists and the orphan
667 * subsystem will take further care about it.
668 */
669 ino_key_init(c, &ino_key, inode->i_ino);
670 ino_offs = dent_offs + aligned_dlen;
671 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
672 if (err)
673 goto out_ro;
674
675 ino_key_init(c, &ino_key, dir->i_ino);
676 ino_offs += aligned_ilen;
677 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
678 UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
679 if (err)
680 goto out_ro;
681
682 finish_reservation(c);
683 spin_lock(&ui->ui_lock);
684 ui->synced_i_size = ui->ui_size;
685 spin_unlock(&ui->ui_lock);
686 if (xent) {
687 spin_lock(&host_ui->ui_lock);
688 host_ui->synced_i_size = host_ui->ui_size;
689 spin_unlock(&host_ui->ui_lock);
690 }
691 mark_inode_clean(c, ui);
692 mark_inode_clean(c, host_ui);
693 return 0;
694
695out_finish:
696 finish_reservation(c);
697out_free:
698 kfree(dent);
699 return err;
700
701out_release:
702 release_head(c, BASEHD);
703 kfree(dent);
704out_ro:
705 ubifs_ro_mode(c, err);
706 if (orphan_added)
707 ubifs_delete_orphan(c, inode->i_ino);
708 finish_reservation(c);
709 return err;
710}
711
712/**
713 * ubifs_jnl_write_data - write a data node to the journal.
714 * @c: UBIFS file-system description object
715 * @inode: inode the data node belongs to
716 * @key: node key
717 * @buf: buffer to write
718 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
719 *
720 * This function writes a data node to the journal. Returns %0 if the data node
721 * was successfully written, and a negative error code in case of failure.
722 */
723int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
724 const union ubifs_key *key, const void *buf, int len)
725{
726 struct ubifs_data_node *data;
727 int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
728 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
729 int write_len;
730 struct ubifs_inode *ui = ubifs_inode(inode);
731 bool encrypted = IS_ENCRYPTED(inode);
732 u8 hash[UBIFS_HASH_ARR_SZ];
733
734 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
735 (unsigned long)key_inum(c, key), key_block(c, key), len);
736 ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
737
738 if (encrypted)
739 dlen += UBIFS_CIPHER_BLOCK_SIZE;
740
741 auth_len = ubifs_auth_node_sz(c);
742
743 data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
744 if (!data) {
745 /*
746 * Fall-back to the write reserve buffer. Note, we might be
747 * currently on the memory reclaim path, when the kernel is
748 * trying to free some memory by writing out dirty pages. The
749 * write reserve buffer helps us to guarantee that we are
750 * always able to write the data.
751 */
752 allocated = 0;
753 mutex_lock(&c->write_reserve_mutex);
754 data = c->write_reserve_buf;
755 }
756
757 data->ch.node_type = UBIFS_DATA_NODE;
758 key_write(c, key, &data->key);
759 data->size = cpu_to_le32(len);
760
761 if (!(ui->flags & UBIFS_COMPR_FL))
762 /* Compression is disabled for this inode */
763 compr_type = UBIFS_COMPR_NONE;
764 else
765 compr_type = ui->compr_type;
766
767 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
768 ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
769 ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
770
771 if (encrypted) {
772 err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
773 if (err)
774 goto out_free;
775
776 } else {
777 data->compr_size = 0;
778 out_len = compr_len;
779 }
780
781 dlen = UBIFS_DATA_NODE_SZ + out_len;
782 if (ubifs_authenticated(c))
783 write_len = ALIGN(dlen, 8) + auth_len;
784 else
785 write_len = dlen;
786
787 data->compr_type = cpu_to_le16(compr_type);
788
789 /* Make reservation before allocating sequence numbers */
790 err = make_reservation(c, DATAHD, write_len);
791 if (err)
792 goto out_free;
793
794 ubifs_prepare_node(c, data, dlen, 0);
795 err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
796 if (err)
797 goto out_release;
798
799 err = ubifs_node_calc_hash(c, data, hash);
800 if (err)
801 goto out_release;
802
803 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
804 release_head(c, DATAHD);
805
806 ubifs_add_auth_dirt(c, lnum);
807
808 err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
809 if (err)
810 goto out_ro;
811
812 finish_reservation(c);
813 if (!allocated)
814 mutex_unlock(&c->write_reserve_mutex);
815 else
816 kfree(data);
817 return 0;
818
819out_release:
820 release_head(c, DATAHD);
821out_ro:
822 ubifs_ro_mode(c, err);
823 finish_reservation(c);
824out_free:
825 if (!allocated)
826 mutex_unlock(&c->write_reserve_mutex);
827 else
828 kfree(data);
829 return err;
830}
831
832/**
833 * ubifs_jnl_write_inode - flush inode to the journal.
834 * @c: UBIFS file-system description object
835 * @inode: inode to flush
836 *
837 * This function writes inode @inode to the journal. If the inode is
838 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
839 * success and a negative error code in case of failure.
840 */
841int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
842{
843 int err, lnum, offs;
844 struct ubifs_ino_node *ino, *ino_start;
845 struct ubifs_inode *ui = ubifs_inode(inode);
846 int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
847 int last_reference = !inode->i_nlink;
848 int kill_xattrs = ui->xattr_cnt && last_reference;
849 u8 hash[UBIFS_HASH_ARR_SZ];
850
851 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
852
853 /*
854 * If the inode is being deleted, do not write the attached data. No
855 * need to synchronize the write-buffer either.
856 */
857 if (!last_reference) {
858 ilen += ui->data_len;
859 sync = IS_SYNC(inode);
860 } else if (kill_xattrs) {
861 write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
862 }
863
864 if (ubifs_authenticated(c))
865 write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
866 else
867 write_len += ilen;
868
869 ino_start = ino = kmalloc(write_len, GFP_NOFS);
870 if (!ino)
871 return -ENOMEM;
872
873 /* Make reservation before allocating sequence numbers */
874 err = make_reservation(c, BASEHD, write_len);
875 if (err)
876 goto out_free;
877
878 if (kill_xattrs) {
879 union ubifs_key key;
880 struct fscrypt_name nm = {0};
881 struct inode *xino;
882 struct ubifs_dent_node *xent, *pxent = NULL;
883
884 if (ui->xattr_cnt > ubifs_xattr_max_cnt(c)) {
885 err = -EPERM;
886 ubifs_err(c, "Cannot delete inode, it has too much xattrs!");
887 goto out_release;
888 }
889
890 lowest_xent_key(c, &key, inode->i_ino);
891 while (1) {
892 xent = ubifs_tnc_next_ent(c, &key, &nm);
893 if (IS_ERR(xent)) {
894 err = PTR_ERR(xent);
895 if (err == -ENOENT)
896 break;
897
898 kfree(pxent);
899 goto out_release;
900 }
901
902 fname_name(&nm) = xent->name;
903 fname_len(&nm) = le16_to_cpu(xent->nlen);
904
905 xino = ubifs_iget(c->vfs_sb, le64_to_cpu(xent->inum));
906 if (IS_ERR(xino)) {
907 err = PTR_ERR(xino);
908 ubifs_err(c, "dead directory entry '%s', error %d",
909 xent->name, err);
910 ubifs_ro_mode(c, err);
911 kfree(pxent);
912 kfree(xent);
913 goto out_release;
914 }
915 ubifs_assert(c, ubifs_inode(xino)->xattr);
916
917 clear_nlink(xino);
918 pack_inode(c, ino, xino, 0);
919 ino = (void *)ino + UBIFS_INO_NODE_SZ;
920 iput(xino);
921
922 kfree(pxent);
923 pxent = xent;
924 key_read(c, &xent->key, &key);
925 }
926 kfree(pxent);
927 }
928
929 pack_inode(c, ino, inode, 1);
930 err = ubifs_node_calc_hash(c, ino, hash);
931 if (err)
932 goto out_release;
933
934 err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync);
935 if (err)
936 goto out_release;
937 if (!sync)
938 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
939 inode->i_ino);
940 release_head(c, BASEHD);
941
942 if (last_reference) {
943 err = ubifs_tnc_remove_ino(c, inode->i_ino);
944 if (err)
945 goto out_ro;
946 ubifs_delete_orphan(c, inode->i_ino);
947 err = ubifs_add_dirt(c, lnum, write_len);
948 } else {
949 union ubifs_key key;
950
951 ubifs_add_auth_dirt(c, lnum);
952
953 ino_key_init(c, &key, inode->i_ino);
954 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
955 }
956 if (err)
957 goto out_ro;
958
959 finish_reservation(c);
960 spin_lock(&ui->ui_lock);
961 ui->synced_i_size = ui->ui_size;
962 spin_unlock(&ui->ui_lock);
963 kfree(ino_start);
964 return 0;
965
966out_release:
967 release_head(c, BASEHD);
968out_ro:
969 ubifs_ro_mode(c, err);
970 finish_reservation(c);
971out_free:
972 kfree(ino_start);
973 return err;
974}
975
976/**
977 * ubifs_jnl_delete_inode - delete an inode.
978 * @c: UBIFS file-system description object
979 * @inode: inode to delete
980 *
981 * This function deletes inode @inode which includes removing it from orphans,
982 * deleting it from TNC and, in some cases, writing a deletion inode to the
983 * journal.
984 *
985 * When regular file inodes are unlinked or a directory inode is removed, the
986 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
987 * direntry to the media, and adds the inode to orphans. After this, when the
988 * last reference to this inode has been dropped, this function is called. In
989 * general, it has to write one more deletion inode to the media, because if
990 * a commit happened between 'ubifs_jnl_update()' and
991 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
992 * anymore, and in fact it might not be on the flash anymore, because it might
993 * have been garbage-collected already. And for optimization reasons UBIFS does
994 * not read the orphan area if it has been unmounted cleanly, so it would have
995 * no indication in the journal that there is a deleted inode which has to be
996 * removed from TNC.
997 *
998 * However, if there was no commit between 'ubifs_jnl_update()' and
999 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
1000 * inode to the media for the second time. And this is quite a typical case.
1001 *
1002 * This function returns zero in case of success and a negative error code in
1003 * case of failure.
1004 */
1005int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
1006{
1007 int err;
1008 struct ubifs_inode *ui = ubifs_inode(inode);
1009
1010 ubifs_assert(c, inode->i_nlink == 0);
1011
1012 if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
1013 /* A commit happened for sure or inode hosts xattrs */
1014 return ubifs_jnl_write_inode(c, inode);
1015
1016 down_read(&c->commit_sem);
1017 /*
1018 * Check commit number again, because the first test has been done
1019 * without @c->commit_sem, so a commit might have happened.
1020 */
1021 if (ui->del_cmtno != c->cmt_no) {
1022 up_read(&c->commit_sem);
1023 return ubifs_jnl_write_inode(c, inode);
1024 }
1025
1026 err = ubifs_tnc_remove_ino(c, inode->i_ino);
1027 if (err)
1028 ubifs_ro_mode(c, err);
1029 else
1030 ubifs_delete_orphan(c, inode->i_ino);
1031 up_read(&c->commit_sem);
1032 return err;
1033}
1034
1035/**
1036 * ubifs_jnl_xrename - cross rename two directory entries.
1037 * @c: UBIFS file-system description object
1038 * @fst_dir: parent inode of 1st directory entry to exchange
1039 * @fst_inode: 1st inode to exchange
1040 * @fst_nm: name of 1st inode to exchange
1041 * @snd_dir: parent inode of 2nd directory entry to exchange
1042 * @snd_inode: 2nd inode to exchange
1043 * @snd_nm: name of 2nd inode to exchange
1044 * @sync: non-zero if the write-buffer has to be synchronized
1045 *
1046 * This function implements the cross rename operation which may involve
1047 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1048 * and returns zero on success. In case of failure, a negative error code is
1049 * returned.
1050 */
1051int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1052 const struct inode *fst_inode,
1053 const struct fscrypt_name *fst_nm,
1054 const struct inode *snd_dir,
1055 const struct inode *snd_inode,
1056 const struct fscrypt_name *snd_nm, int sync)
1057{
1058 union ubifs_key key;
1059 struct ubifs_dent_node *dent1, *dent2;
1060 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1061 int aligned_dlen1, aligned_dlen2;
1062 int twoparents = (fst_dir != snd_dir);
1063 void *p;
1064 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1065 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1066 u8 hash_p1[UBIFS_HASH_ARR_SZ];
1067 u8 hash_p2[UBIFS_HASH_ARR_SZ];
1068
1069 ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1070 ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1071 ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1072 ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1073
1074 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1075 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1076 aligned_dlen1 = ALIGN(dlen1, 8);
1077 aligned_dlen2 = ALIGN(dlen2, 8);
1078
1079 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1080 if (twoparents)
1081 len += plen;
1082
1083 len += ubifs_auth_node_sz(c);
1084
1085 dent1 = kzalloc(len, GFP_NOFS);
1086 if (!dent1)
1087 return -ENOMEM;
1088
1089 /* Make reservation before allocating sequence numbers */
1090 err = make_reservation(c, BASEHD, len);
1091 if (err)
1092 goto out_free;
1093
1094 /* Make new dent for 1st entry */
1095 dent1->ch.node_type = UBIFS_DENT_NODE;
1096 dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1097 dent1->inum = cpu_to_le64(fst_inode->i_ino);
1098 dent1->type = get_dent_type(fst_inode->i_mode);
1099 dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1100 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1101 dent1->name[fname_len(snd_nm)] = '\0';
1102 set_dent_cookie(c, dent1);
1103 zero_dent_node_unused(dent1);
1104 ubifs_prep_grp_node(c, dent1, dlen1, 0);
1105 err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1106 if (err)
1107 goto out_release;
1108
1109 /* Make new dent for 2nd entry */
1110 dent2 = (void *)dent1 + aligned_dlen1;
1111 dent2->ch.node_type = UBIFS_DENT_NODE;
1112 dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1113 dent2->inum = cpu_to_le64(snd_inode->i_ino);
1114 dent2->type = get_dent_type(snd_inode->i_mode);
1115 dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1116 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1117 dent2->name[fname_len(fst_nm)] = '\0';
1118 set_dent_cookie(c, dent2);
1119 zero_dent_node_unused(dent2);
1120 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1121 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1122 if (err)
1123 goto out_release;
1124
1125 p = (void *)dent2 + aligned_dlen2;
1126 if (!twoparents) {
1127 pack_inode(c, p, fst_dir, 1);
1128 err = ubifs_node_calc_hash(c, p, hash_p1);
1129 if (err)
1130 goto out_release;
1131 } else {
1132 pack_inode(c, p, fst_dir, 0);
1133 err = ubifs_node_calc_hash(c, p, hash_p1);
1134 if (err)
1135 goto out_release;
1136 p += ALIGN(plen, 8);
1137 pack_inode(c, p, snd_dir, 1);
1138 err = ubifs_node_calc_hash(c, p, hash_p2);
1139 if (err)
1140 goto out_release;
1141 }
1142
1143 err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1144 if (err)
1145 goto out_release;
1146 if (!sync) {
1147 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1148
1149 ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1150 ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1151 }
1152 release_head(c, BASEHD);
1153
1154 ubifs_add_auth_dirt(c, lnum);
1155
1156 dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1157 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1158 if (err)
1159 goto out_ro;
1160
1161 offs += aligned_dlen1;
1162 dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1163 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1164 if (err)
1165 goto out_ro;
1166
1167 offs += aligned_dlen2;
1168
1169 ino_key_init(c, &key, fst_dir->i_ino);
1170 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1171 if (err)
1172 goto out_ro;
1173
1174 if (twoparents) {
1175 offs += ALIGN(plen, 8);
1176 ino_key_init(c, &key, snd_dir->i_ino);
1177 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1178 if (err)
1179 goto out_ro;
1180 }
1181
1182 finish_reservation(c);
1183
1184 mark_inode_clean(c, ubifs_inode(fst_dir));
1185 if (twoparents)
1186 mark_inode_clean(c, ubifs_inode(snd_dir));
1187 kfree(dent1);
1188 return 0;
1189
1190out_release:
1191 release_head(c, BASEHD);
1192out_ro:
1193 ubifs_ro_mode(c, err);
1194 finish_reservation(c);
1195out_free:
1196 kfree(dent1);
1197 return err;
1198}
1199
1200/**
1201 * ubifs_jnl_rename - rename a directory entry.
1202 * @c: UBIFS file-system description object
1203 * @old_dir: parent inode of directory entry to rename
1204 * @old_inode: directory entry's inode to rename
1205 * @old_nm: name of the old directory entry to rename
1206 * @new_dir: parent inode of directory entry to rename
1207 * @new_inode: new directory entry's inode (or directory entry's inode to
1208 * replace)
1209 * @new_nm: new name of the new directory entry
1210 * @whiteout: whiteout inode
1211 * @sync: non-zero if the write-buffer has to be synchronized
1212 *
1213 * This function implements the re-name operation which may involve writing up
1214 * to 4 inodes(new inode, whiteout inode, old and new parent directory inodes)
1215 * and 2 directory entries. It marks the written inodes as clean and returns
1216 * zero on success. In case of failure, a negative error code is returned.
1217 */
1218int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1219 const struct inode *old_inode,
1220 const struct fscrypt_name *old_nm,
1221 const struct inode *new_dir,
1222 const struct inode *new_inode,
1223 const struct fscrypt_name *new_nm,
1224 const struct inode *whiteout, int sync)
1225{
1226 void *p;
1227 union ubifs_key key;
1228 struct ubifs_dent_node *dent, *dent2;
1229 int err, dlen1, dlen2, ilen, wlen, lnum, offs, len, orphan_added = 0;
1230 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1231 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1232 int move = (old_dir != new_dir);
1233 struct ubifs_inode *new_ui, *whiteout_ui;
1234 u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1235 u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1236 u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1237 u8 hash_whiteout_inode[UBIFS_HASH_ARR_SZ];
1238 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1239 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1240
1241 ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1242 ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1243 ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1244 ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1245
1246 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1247 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1248 if (new_inode) {
1249 new_ui = ubifs_inode(new_inode);
1250 ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1251 ilen = UBIFS_INO_NODE_SZ;
1252 if (!last_reference)
1253 ilen += new_ui->data_len;
1254 } else
1255 ilen = 0;
1256
1257 if (whiteout) {
1258 whiteout_ui = ubifs_inode(whiteout);
1259 ubifs_assert(c, mutex_is_locked(&whiteout_ui->ui_mutex));
1260 ubifs_assert(c, whiteout->i_nlink == 1);
1261 ubifs_assert(c, !whiteout_ui->dirty);
1262 wlen = UBIFS_INO_NODE_SZ;
1263 wlen += whiteout_ui->data_len;
1264 } else
1265 wlen = 0;
1266
1267 aligned_dlen1 = ALIGN(dlen1, 8);
1268 aligned_dlen2 = ALIGN(dlen2, 8);
1269 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) +
1270 ALIGN(wlen, 8) + ALIGN(plen, 8);
1271 if (move)
1272 len += plen;
1273
1274 len += ubifs_auth_node_sz(c);
1275
1276 dent = kzalloc(len, GFP_NOFS);
1277 if (!dent)
1278 return -ENOMEM;
1279
1280 /* Make reservation before allocating sequence numbers */
1281 err = make_reservation(c, BASEHD, len);
1282 if (err)
1283 goto out_free;
1284
1285 /* Make new dent */
1286 dent->ch.node_type = UBIFS_DENT_NODE;
1287 dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1288 dent->inum = cpu_to_le64(old_inode->i_ino);
1289 dent->type = get_dent_type(old_inode->i_mode);
1290 dent->nlen = cpu_to_le16(fname_len(new_nm));
1291 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1292 dent->name[fname_len(new_nm)] = '\0';
1293 set_dent_cookie(c, dent);
1294 zero_dent_node_unused(dent);
1295 ubifs_prep_grp_node(c, dent, dlen1, 0);
1296 err = ubifs_node_calc_hash(c, dent, hash_dent1);
1297 if (err)
1298 goto out_release;
1299
1300 dent2 = (void *)dent + aligned_dlen1;
1301 dent2->ch.node_type = UBIFS_DENT_NODE;
1302 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1303
1304 if (whiteout) {
1305 dent2->inum = cpu_to_le64(whiteout->i_ino);
1306 dent2->type = get_dent_type(whiteout->i_mode);
1307 } else {
1308 /* Make deletion dent */
1309 dent2->inum = 0;
1310 dent2->type = DT_UNKNOWN;
1311 }
1312 dent2->nlen = cpu_to_le16(fname_len(old_nm));
1313 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1314 dent2->name[fname_len(old_nm)] = '\0';
1315 set_dent_cookie(c, dent2);
1316 zero_dent_node_unused(dent2);
1317 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1318 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1319 if (err)
1320 goto out_release;
1321
1322 p = (void *)dent2 + aligned_dlen2;
1323 if (new_inode) {
1324 pack_inode(c, p, new_inode, 0);
1325 err = ubifs_node_calc_hash(c, p, hash_new_inode);
1326 if (err)
1327 goto out_release;
1328
1329 p += ALIGN(ilen, 8);
1330 }
1331
1332 if (whiteout) {
1333 pack_inode(c, p, whiteout, 0);
1334 err = ubifs_node_calc_hash(c, p, hash_whiteout_inode);
1335 if (err)
1336 goto out_release;
1337
1338 p += ALIGN(wlen, 8);
1339 }
1340
1341 if (!move) {
1342 pack_inode(c, p, old_dir, 1);
1343 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1344 if (err)
1345 goto out_release;
1346 } else {
1347 pack_inode(c, p, old_dir, 0);
1348 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1349 if (err)
1350 goto out_release;
1351
1352 p += ALIGN(plen, 8);
1353 pack_inode(c, p, new_dir, 1);
1354 err = ubifs_node_calc_hash(c, p, hash_new_dir);
1355 if (err)
1356 goto out_release;
1357 }
1358
1359 if (last_reference) {
1360 err = ubifs_add_orphan(c, new_inode->i_ino);
1361 if (err) {
1362 release_head(c, BASEHD);
1363 goto out_finish;
1364 }
1365 new_ui->del_cmtno = c->cmt_no;
1366 orphan_added = 1;
1367 }
1368
1369 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1370 if (err)
1371 goto out_release;
1372 if (!sync) {
1373 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1374
1375 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1376 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1377 if (new_inode)
1378 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1379 new_inode->i_ino);
1380 if (whiteout)
1381 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1382 whiteout->i_ino);
1383 }
1384 release_head(c, BASEHD);
1385
1386 ubifs_add_auth_dirt(c, lnum);
1387
1388 dent_key_init(c, &key, new_dir->i_ino, new_nm);
1389 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1390 if (err)
1391 goto out_ro;
1392
1393 offs += aligned_dlen1;
1394 if (whiteout) {
1395 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1396 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1397 if (err)
1398 goto out_ro;
1399 } else {
1400 err = ubifs_add_dirt(c, lnum, dlen2);
1401 if (err)
1402 goto out_ro;
1403
1404 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1405 err = ubifs_tnc_remove_nm(c, &key, old_nm);
1406 if (err)
1407 goto out_ro;
1408 }
1409
1410 offs += aligned_dlen2;
1411 if (new_inode) {
1412 ino_key_init(c, &key, new_inode->i_ino);
1413 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1414 if (err)
1415 goto out_ro;
1416 offs += ALIGN(ilen, 8);
1417 }
1418
1419 if (whiteout) {
1420 ino_key_init(c, &key, whiteout->i_ino);
1421 err = ubifs_tnc_add(c, &key, lnum, offs, wlen,
1422 hash_whiteout_inode);
1423 if (err)
1424 goto out_ro;
1425 offs += ALIGN(wlen, 8);
1426 }
1427
1428 ino_key_init(c, &key, old_dir->i_ino);
1429 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1430 if (err)
1431 goto out_ro;
1432
1433 if (move) {
1434 offs += ALIGN(plen, 8);
1435 ino_key_init(c, &key, new_dir->i_ino);
1436 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1437 if (err)
1438 goto out_ro;
1439 }
1440
1441 finish_reservation(c);
1442 if (new_inode) {
1443 mark_inode_clean(c, new_ui);
1444 spin_lock(&new_ui->ui_lock);
1445 new_ui->synced_i_size = new_ui->ui_size;
1446 spin_unlock(&new_ui->ui_lock);
1447 }
1448 /*
1449 * No need to mark whiteout inode clean.
1450 * Whiteout doesn't have non-zero size, no need to update
1451 * synced_i_size for whiteout_ui.
1452 */
1453 mark_inode_clean(c, ubifs_inode(old_dir));
1454 if (move)
1455 mark_inode_clean(c, ubifs_inode(new_dir));
1456 kfree(dent);
1457 return 0;
1458
1459out_release:
1460 release_head(c, BASEHD);
1461out_ro:
1462 ubifs_ro_mode(c, err);
1463 if (orphan_added)
1464 ubifs_delete_orphan(c, new_inode->i_ino);
1465out_finish:
1466 finish_reservation(c);
1467out_free:
1468 kfree(dent);
1469 return err;
1470}
1471
1472/**
1473 * truncate_data_node - re-compress/encrypt a truncated data node.
1474 * @c: UBIFS file-system description object
1475 * @inode: inode which refers to the data node
1476 * @block: data block number
1477 * @dn: data node to re-compress
1478 * @new_len: new length
1479 * @dn_size: size of the data node @dn in memory
1480 *
1481 * This function is used when an inode is truncated and the last data node of
1482 * the inode has to be re-compressed/encrypted and re-written.
1483 */
1484static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1485 unsigned int block, struct ubifs_data_node *dn,
1486 int *new_len, int dn_size)
1487{
1488 void *buf;
1489 int err, dlen, compr_type, out_len, data_size;
1490
1491 out_len = le32_to_cpu(dn->size);
1492 buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1493 if (!buf)
1494 return -ENOMEM;
1495
1496 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1497 data_size = dn_size - UBIFS_DATA_NODE_SZ;
1498 compr_type = le16_to_cpu(dn->compr_type);
1499
1500 if (IS_ENCRYPTED(inode)) {
1501 err = ubifs_decrypt(inode, dn, &dlen, block);
1502 if (err)
1503 goto out;
1504 }
1505
1506 if (compr_type == UBIFS_COMPR_NONE) {
1507 out_len = *new_len;
1508 } else {
1509 err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1510 if (err)
1511 goto out;
1512
1513 ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1514 }
1515
1516 if (IS_ENCRYPTED(inode)) {
1517 err = ubifs_encrypt(inode, dn, out_len, &data_size, block);
1518 if (err)
1519 goto out;
1520
1521 out_len = data_size;
1522 } else {
1523 dn->compr_size = 0;
1524 }
1525
1526 ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1527 dn->compr_type = cpu_to_le16(compr_type);
1528 dn->size = cpu_to_le32(*new_len);
1529 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1530 err = 0;
1531out:
1532 kfree(buf);
1533 return err;
1534}
1535
1536/**
1537 * ubifs_jnl_truncate - update the journal for a truncation.
1538 * @c: UBIFS file-system description object
1539 * @inode: inode to truncate
1540 * @old_size: old size
1541 * @new_size: new size
1542 *
1543 * When the size of a file decreases due to truncation, a truncation node is
1544 * written, the journal tree is updated, and the last data block is re-written
1545 * if it has been affected. The inode is also updated in order to synchronize
1546 * the new inode size.
1547 *
1548 * This function marks the inode as clean and returns zero on success. In case
1549 * of failure, a negative error code is returned.
1550 */
1551int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1552 loff_t old_size, loff_t new_size)
1553{
1554 union ubifs_key key, to_key;
1555 struct ubifs_ino_node *ino;
1556 struct ubifs_trun_node *trun;
1557 struct ubifs_data_node *dn;
1558 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1559 int dn_size;
1560 struct ubifs_inode *ui = ubifs_inode(inode);
1561 ino_t inum = inode->i_ino;
1562 unsigned int blk;
1563 u8 hash_ino[UBIFS_HASH_ARR_SZ];
1564 u8 hash_dn[UBIFS_HASH_ARR_SZ];
1565
1566 dbg_jnl("ino %lu, size %lld -> %lld",
1567 (unsigned long)inum, old_size, new_size);
1568 ubifs_assert(c, !ui->data_len);
1569 ubifs_assert(c, S_ISREG(inode->i_mode));
1570 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1571
1572 dn_size = COMPRESSED_DATA_NODE_BUF_SZ;
1573
1574 if (IS_ENCRYPTED(inode))
1575 dn_size += UBIFS_CIPHER_BLOCK_SIZE;
1576
1577 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1578 dn_size + ubifs_auth_node_sz(c);
1579
1580 ino = kmalloc(sz, GFP_NOFS);
1581 if (!ino)
1582 return -ENOMEM;
1583
1584 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1585 trun->ch.node_type = UBIFS_TRUN_NODE;
1586 trun->inum = cpu_to_le32(inum);
1587 trun->old_size = cpu_to_le64(old_size);
1588 trun->new_size = cpu_to_le64(new_size);
1589 zero_trun_node_unused(trun);
1590
1591 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1592 if (dlen) {
1593 /* Get last data block so it can be truncated */
1594 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1595 blk = new_size >> UBIFS_BLOCK_SHIFT;
1596 data_key_init(c, &key, inum, blk);
1597 dbg_jnlk(&key, "last block key ");
1598 err = ubifs_tnc_lookup(c, &key, dn);
1599 if (err == -ENOENT)
1600 dlen = 0; /* Not found (so it is a hole) */
1601 else if (err)
1602 goto out_free;
1603 else {
1604 int dn_len = le32_to_cpu(dn->size);
1605
1606 if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1607 ubifs_err(c, "bad data node (block %u, inode %lu)",
1608 blk, inode->i_ino);
1609 ubifs_dump_node(c, dn, dn_size);
1610 err = -EUCLEAN;
1611 goto out_free;
1612 }
1613
1614 if (dn_len <= dlen)
1615 dlen = 0; /* Nothing to do */
1616 else {
1617 err = truncate_data_node(c, inode, blk, dn,
1618 &dlen, dn_size);
1619 if (err)
1620 goto out_free;
1621 }
1622 }
1623 }
1624
1625 /* Must make reservation before allocating sequence numbers */
1626 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1627
1628 if (ubifs_authenticated(c))
1629 len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1630 else
1631 len += dlen;
1632
1633 err = make_reservation(c, BASEHD, len);
1634 if (err)
1635 goto out_free;
1636
1637 pack_inode(c, ino, inode, 0);
1638 err = ubifs_node_calc_hash(c, ino, hash_ino);
1639 if (err)
1640 goto out_release;
1641
1642 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1643 if (dlen) {
1644 ubifs_prep_grp_node(c, dn, dlen, 1);
1645 err = ubifs_node_calc_hash(c, dn, hash_dn);
1646 if (err)
1647 goto out_release;
1648 }
1649
1650 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1651 if (err)
1652 goto out_release;
1653 if (!sync)
1654 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1655 release_head(c, BASEHD);
1656
1657 ubifs_add_auth_dirt(c, lnum);
1658
1659 if (dlen) {
1660 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1661 err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1662 if (err)
1663 goto out_ro;
1664 }
1665
1666 ino_key_init(c, &key, inum);
1667 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1668 if (err)
1669 goto out_ro;
1670
1671 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1672 if (err)
1673 goto out_ro;
1674
1675 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1676 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1677 data_key_init(c, &key, inum, blk);
1678
1679 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1680 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1681 data_key_init(c, &to_key, inum, blk);
1682
1683 err = ubifs_tnc_remove_range(c, &key, &to_key);
1684 if (err)
1685 goto out_ro;
1686
1687 finish_reservation(c);
1688 spin_lock(&ui->ui_lock);
1689 ui->synced_i_size = ui->ui_size;
1690 spin_unlock(&ui->ui_lock);
1691 mark_inode_clean(c, ui);
1692 kfree(ino);
1693 return 0;
1694
1695out_release:
1696 release_head(c, BASEHD);
1697out_ro:
1698 ubifs_ro_mode(c, err);
1699 finish_reservation(c);
1700out_free:
1701 kfree(ino);
1702 return err;
1703}
1704
1705
1706/**
1707 * ubifs_jnl_delete_xattr - delete an extended attribute.
1708 * @c: UBIFS file-system description object
1709 * @host: host inode
1710 * @inode: extended attribute inode
1711 * @nm: extended attribute entry name
1712 *
1713 * This function delete an extended attribute which is very similar to
1714 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1715 * updates the target inode. Returns zero in case of success and a negative
1716 * error code in case of failure.
1717 */
1718int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1719 const struct inode *inode,
1720 const struct fscrypt_name *nm)
1721{
1722 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1723 struct ubifs_dent_node *xent;
1724 struct ubifs_ino_node *ino;
1725 union ubifs_key xent_key, key1, key2;
1726 int sync = IS_DIRSYNC(host);
1727 struct ubifs_inode *host_ui = ubifs_inode(host);
1728 u8 hash[UBIFS_HASH_ARR_SZ];
1729
1730 ubifs_assert(c, inode->i_nlink == 0);
1731 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1732
1733 /*
1734 * Since we are deleting the inode, we do not bother to attach any data
1735 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1736 */
1737 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1738 aligned_xlen = ALIGN(xlen, 8);
1739 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1740 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1741
1742 write_len = len + ubifs_auth_node_sz(c);
1743
1744 xent = kzalloc(write_len, GFP_NOFS);
1745 if (!xent)
1746 return -ENOMEM;
1747
1748 /* Make reservation before allocating sequence numbers */
1749 err = make_reservation(c, BASEHD, write_len);
1750 if (err) {
1751 kfree(xent);
1752 return err;
1753 }
1754
1755 xent->ch.node_type = UBIFS_XENT_NODE;
1756 xent_key_init(c, &xent_key, host->i_ino, nm);
1757 key_write(c, &xent_key, xent->key);
1758 xent->inum = 0;
1759 xent->type = get_dent_type(inode->i_mode);
1760 xent->nlen = cpu_to_le16(fname_len(nm));
1761 memcpy(xent->name, fname_name(nm), fname_len(nm));
1762 xent->name[fname_len(nm)] = '\0';
1763 zero_dent_node_unused(xent);
1764 ubifs_prep_grp_node(c, xent, xlen, 0);
1765
1766 ino = (void *)xent + aligned_xlen;
1767 pack_inode(c, ino, inode, 0);
1768 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1769 pack_inode(c, ino, host, 1);
1770 err = ubifs_node_calc_hash(c, ino, hash);
1771 if (err)
1772 goto out_release;
1773
1774 err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1775 if (!sync && !err)
1776 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1777 release_head(c, BASEHD);
1778
1779 ubifs_add_auth_dirt(c, lnum);
1780 kfree(xent);
1781 if (err)
1782 goto out_ro;
1783
1784 /* Remove the extended attribute entry from TNC */
1785 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1786 if (err)
1787 goto out_ro;
1788 err = ubifs_add_dirt(c, lnum, xlen);
1789 if (err)
1790 goto out_ro;
1791
1792 /*
1793 * Remove all nodes belonging to the extended attribute inode from TNC.
1794 * Well, there actually must be only one node - the inode itself.
1795 */
1796 lowest_ino_key(c, &key1, inode->i_ino);
1797 highest_ino_key(c, &key2, inode->i_ino);
1798 err = ubifs_tnc_remove_range(c, &key1, &key2);
1799 if (err)
1800 goto out_ro;
1801 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1802 if (err)
1803 goto out_ro;
1804
1805 /* And update TNC with the new host inode position */
1806 ino_key_init(c, &key1, host->i_ino);
1807 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1808 if (err)
1809 goto out_ro;
1810
1811 finish_reservation(c);
1812 spin_lock(&host_ui->ui_lock);
1813 host_ui->synced_i_size = host_ui->ui_size;
1814 spin_unlock(&host_ui->ui_lock);
1815 mark_inode_clean(c, host_ui);
1816 return 0;
1817
1818out_release:
1819 kfree(xent);
1820 release_head(c, BASEHD);
1821out_ro:
1822 ubifs_ro_mode(c, err);
1823 finish_reservation(c);
1824 return err;
1825}
1826
1827/**
1828 * ubifs_jnl_change_xattr - change an extended attribute.
1829 * @c: UBIFS file-system description object
1830 * @inode: extended attribute inode
1831 * @host: host inode
1832 *
1833 * This function writes the updated version of an extended attribute inode and
1834 * the host inode to the journal (to the base head). The host inode is written
1835 * after the extended attribute inode in order to guarantee that the extended
1836 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1837 * consequently, the write-buffer is synchronized. This function returns zero
1838 * in case of success and a negative error code in case of failure.
1839 */
1840int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1841 const struct inode *host)
1842{
1843 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1844 struct ubifs_inode *host_ui = ubifs_inode(host);
1845 struct ubifs_ino_node *ino;
1846 union ubifs_key key;
1847 int sync = IS_DIRSYNC(host);
1848 u8 hash_host[UBIFS_HASH_ARR_SZ];
1849 u8 hash[UBIFS_HASH_ARR_SZ];
1850
1851 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1852 ubifs_assert(c, inode->i_nlink > 0);
1853 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1854
1855 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1856 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1857 aligned_len1 = ALIGN(len1, 8);
1858 aligned_len = aligned_len1 + ALIGN(len2, 8);
1859
1860 aligned_len += ubifs_auth_node_sz(c);
1861
1862 ino = kzalloc(aligned_len, GFP_NOFS);
1863 if (!ino)
1864 return -ENOMEM;
1865
1866 /* Make reservation before allocating sequence numbers */
1867 err = make_reservation(c, BASEHD, aligned_len);
1868 if (err)
1869 goto out_free;
1870
1871 pack_inode(c, ino, host, 0);
1872 err = ubifs_node_calc_hash(c, ino, hash_host);
1873 if (err)
1874 goto out_release;
1875 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1876 err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
1877 if (err)
1878 goto out_release;
1879
1880 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1881 if (!sync && !err) {
1882 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1883
1884 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1885 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1886 }
1887 release_head(c, BASEHD);
1888 if (err)
1889 goto out_ro;
1890
1891 ubifs_add_auth_dirt(c, lnum);
1892
1893 ino_key_init(c, &key, host->i_ino);
1894 err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
1895 if (err)
1896 goto out_ro;
1897
1898 ino_key_init(c, &key, inode->i_ino);
1899 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
1900 if (err)
1901 goto out_ro;
1902
1903 finish_reservation(c);
1904 spin_lock(&host_ui->ui_lock);
1905 host_ui->synced_i_size = host_ui->ui_size;
1906 spin_unlock(&host_ui->ui_lock);
1907 mark_inode_clean(c, host_ui);
1908 kfree(ino);
1909 return 0;
1910
1911out_release:
1912 release_head(c, BASEHD);
1913out_ro:
1914 ubifs_ro_mode(c, err);
1915 finish_reservation(c);
1916out_free:
1917 kfree(ino);
1918 return err;
1919}
1920
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11/*
12 * This file implements UBIFS journal.
13 *
14 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
15 * length and position, while a bud logical eraseblock is any LEB in the main
16 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
17 * contains only references to buds and some other stuff like commit
18 * start node. The idea is that when we commit the journal, we do
19 * not copy the data, the buds just become indexed. Since after the commit the
20 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
21 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
22 * become leafs in the future.
23 *
24 * The journal is multi-headed because we want to write data to the journal as
25 * optimally as possible. It is nice to have nodes belonging to the same inode
26 * in one LEB, so we may write data owned by different inodes to different
27 * journal heads, although at present only one data head is used.
28 *
29 * For recovery reasons, the base head contains all inode nodes, all directory
30 * entry nodes and all truncate nodes. This means that the other heads contain
31 * only data nodes.
32 *
33 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
34 * time of commit, the bud is retained to continue to be used in the journal,
35 * even though the "front" of the LEB is now indexed. In that case, the log
36 * reference contains the offset where the bud starts for the purposes of the
37 * journal.
38 *
39 * The journal size has to be limited, because the larger is the journal, the
40 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
41 * takes (indexing in the TNC).
42 *
43 * All the journal write operations like 'ubifs_jnl_update()' here, which write
44 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
45 * unclean reboots. Should the unclean reboot happen, the recovery code drops
46 * all the nodes.
47 */
48
49#include "ubifs.h"
50
51/**
52 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
53 * @ino: the inode to zero out
54 */
55static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
56{
57 memset(ino->padding1, 0, 4);
58 memset(ino->padding2, 0, 26);
59}
60
61/**
62 * zero_dent_node_unused - zero out unused fields of an on-flash directory
63 * entry node.
64 * @dent: the directory entry to zero out
65 */
66static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
67{
68 dent->padding1 = 0;
69}
70
71/**
72 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
73 * node.
74 * @trun: the truncation node to zero out
75 */
76static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
77{
78 memset(trun->padding, 0, 12);
79}
80
81static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
82{
83 if (ubifs_authenticated(c))
84 ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
85}
86
87/**
88 * reserve_space - reserve space in the journal.
89 * @c: UBIFS file-system description object
90 * @jhead: journal head number
91 * @len: node length
92 *
93 * This function reserves space in journal head @head. If the reservation
94 * succeeded, the journal head stays locked and later has to be unlocked using
95 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
96 * be done, and other negative error codes in case of other failures.
97 */
98static int reserve_space(struct ubifs_info *c, int jhead, int len)
99{
100 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
101 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
102
103 /*
104 * Typically, the base head has smaller nodes written to it, so it is
105 * better to try to allocate space at the ends of eraseblocks. This is
106 * what the squeeze parameter does.
107 */
108 ubifs_assert(c, !c->ro_media && !c->ro_mount);
109 squeeze = (jhead == BASEHD);
110again:
111 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
112
113 if (c->ro_error) {
114 err = -EROFS;
115 goto out_unlock;
116 }
117
118 avail = c->leb_size - wbuf->offs - wbuf->used;
119 if (wbuf->lnum != -1 && avail >= len)
120 return 0;
121
122 /*
123 * Write buffer wasn't seek'ed or there is no enough space - look for an
124 * LEB with some empty space.
125 */
126 lnum = ubifs_find_free_space(c, len, &offs, squeeze);
127 if (lnum >= 0)
128 goto out;
129
130 err = lnum;
131 if (err != -ENOSPC)
132 goto out_unlock;
133
134 /*
135 * No free space, we have to run garbage collector to make
136 * some. But the write-buffer mutex has to be unlocked because
137 * GC also takes it.
138 */
139 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
140 mutex_unlock(&wbuf->io_mutex);
141
142 lnum = ubifs_garbage_collect(c, 0);
143 if (lnum < 0) {
144 err = lnum;
145 if (err != -ENOSPC)
146 return err;
147
148 /*
149 * GC could not make a free LEB. But someone else may
150 * have allocated new bud for this journal head,
151 * because we dropped @wbuf->io_mutex, so try once
152 * again.
153 */
154 dbg_jnl("GC couldn't make a free LEB for jhead %s",
155 dbg_jhead(jhead));
156 if (retries++ < 2) {
157 dbg_jnl("retry (%d)", retries);
158 goto again;
159 }
160
161 dbg_jnl("return -ENOSPC");
162 return err;
163 }
164
165 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
166 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
167 avail = c->leb_size - wbuf->offs - wbuf->used;
168
169 if (wbuf->lnum != -1 && avail >= len) {
170 /*
171 * Someone else has switched the journal head and we have
172 * enough space now. This happens when more than one process is
173 * trying to write to the same journal head at the same time.
174 */
175 dbg_jnl("return LEB %d back, already have LEB %d:%d",
176 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
177 err = ubifs_return_leb(c, lnum);
178 if (err)
179 goto out_unlock;
180 return 0;
181 }
182
183 offs = 0;
184
185out:
186 /*
187 * Make sure we synchronize the write-buffer before we add the new bud
188 * to the log. Otherwise we may have a power cut after the log
189 * reference node for the last bud (@lnum) is written but before the
190 * write-buffer data are written to the next-to-last bud
191 * (@wbuf->lnum). And the effect would be that the recovery would see
192 * that there is corruption in the next-to-last bud.
193 */
194 err = ubifs_wbuf_sync_nolock(wbuf);
195 if (err)
196 goto out_return;
197 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
198 if (err)
199 goto out_return;
200 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
201 if (err)
202 goto out_unlock;
203
204 return 0;
205
206out_unlock:
207 mutex_unlock(&wbuf->io_mutex);
208 return err;
209
210out_return:
211 /* An error occurred and the LEB has to be returned to lprops */
212 ubifs_assert(c, err < 0);
213 err1 = ubifs_return_leb(c, lnum);
214 if (err1 && err == -EAGAIN)
215 /*
216 * Return original error code only if it is not %-EAGAIN,
217 * which is not really an error. Otherwise, return the error
218 * code of 'ubifs_return_leb()'.
219 */
220 err = err1;
221 mutex_unlock(&wbuf->io_mutex);
222 return err;
223}
224
225static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
226 int len, struct shash_desc *hash)
227{
228 int auth_node_size = ubifs_auth_node_sz(c);
229 int err;
230
231 while (1) {
232 const struct ubifs_ch *ch = node;
233 int nodelen = le32_to_cpu(ch->len);
234
235 ubifs_assert(c, len >= auth_node_size);
236
237 if (len == auth_node_size)
238 break;
239
240 ubifs_assert(c, len > nodelen);
241 ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
242
243 err = ubifs_shash_update(c, hash, (void *)node, nodelen);
244 if (err)
245 return err;
246
247 node += ALIGN(nodelen, 8);
248 len -= ALIGN(nodelen, 8);
249 }
250
251 return ubifs_prepare_auth_node(c, node, hash);
252}
253
254/**
255 * write_head - write data to a journal head.
256 * @c: UBIFS file-system description object
257 * @jhead: journal head
258 * @buf: buffer to write
259 * @len: length to write
260 * @lnum: LEB number written is returned here
261 * @offs: offset written is returned here
262 * @sync: non-zero if the write-buffer has to by synchronized
263 *
264 * This function writes data to the reserved space of journal head @jhead.
265 * Returns zero in case of success and a negative error code in case of
266 * failure.
267 */
268static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
269 int *lnum, int *offs, int sync)
270{
271 int err;
272 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
273
274 ubifs_assert(c, jhead != GCHD);
275
276 *lnum = c->jheads[jhead].wbuf.lnum;
277 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
278 dbg_jnl("jhead %s, LEB %d:%d, len %d",
279 dbg_jhead(jhead), *lnum, *offs, len);
280
281 if (ubifs_authenticated(c)) {
282 err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
283 if (err)
284 return err;
285 }
286
287 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
288 if (err)
289 return err;
290 if (sync)
291 err = ubifs_wbuf_sync_nolock(wbuf);
292 return err;
293}
294
295/**
296 * __queue_and_wait - queue a task and wait until the task is waked up.
297 * @c: UBIFS file-system description object
298 *
299 * This function adds current task in queue and waits until the task is waked
300 * up. This function should be called with @c->reserve_space_wq locked.
301 */
302static void __queue_and_wait(struct ubifs_info *c)
303{
304 DEFINE_WAIT(wait);
305
306 __add_wait_queue_entry_tail_exclusive(&c->reserve_space_wq, &wait);
307 set_current_state(TASK_UNINTERRUPTIBLE);
308 spin_unlock(&c->reserve_space_wq.lock);
309
310 schedule();
311 finish_wait(&c->reserve_space_wq, &wait);
312}
313
314/**
315 * wait_for_reservation - try queuing current task to wait until waked up.
316 * @c: UBIFS file-system description object
317 *
318 * This function queues current task to wait until waked up, if queuing is
319 * started(@c->need_wait_space is not %0). Returns %true if current task is
320 * added in queue, otherwise %false is returned.
321 */
322static bool wait_for_reservation(struct ubifs_info *c)
323{
324 if (likely(atomic_read(&c->need_wait_space) == 0))
325 /* Quick path to check whether queuing is started. */
326 return false;
327
328 spin_lock(&c->reserve_space_wq.lock);
329 if (atomic_read(&c->need_wait_space) == 0) {
330 /* Queuing is not started, don't queue current task. */
331 spin_unlock(&c->reserve_space_wq.lock);
332 return false;
333 }
334
335 __queue_and_wait(c);
336 return true;
337}
338
339/**
340 * wake_up_reservation - wake up first task in queue or stop queuing.
341 * @c: UBIFS file-system description object
342 *
343 * This function wakes up the first task in queue if it exists, or stops
344 * queuing if no tasks in queue.
345 */
346static void wake_up_reservation(struct ubifs_info *c)
347{
348 spin_lock(&c->reserve_space_wq.lock);
349 if (waitqueue_active(&c->reserve_space_wq))
350 wake_up_locked(&c->reserve_space_wq);
351 else
352 /*
353 * Compared with wait_for_reservation(), set @c->need_wait_space
354 * under the protection of wait queue lock, which can avoid that
355 * @c->need_wait_space is set to 0 after new task queued.
356 */
357 atomic_set(&c->need_wait_space, 0);
358 spin_unlock(&c->reserve_space_wq.lock);
359}
360
361/**
362 * add_or_start_queue - add current task in queue or start queuing.
363 * @c: UBIFS file-system description object
364 *
365 * This function starts queuing if queuing is not started, otherwise adds
366 * current task in queue.
367 */
368static void add_or_start_queue(struct ubifs_info *c)
369{
370 spin_lock(&c->reserve_space_wq.lock);
371 if (atomic_cmpxchg(&c->need_wait_space, 0, 1) == 0) {
372 /* Starts queuing, task can go on directly. */
373 spin_unlock(&c->reserve_space_wq.lock);
374 return;
375 }
376
377 /*
378 * There are at least two tasks have retried more than 32 times
379 * at certain point, first task has started queuing, just queue
380 * the left tasks.
381 */
382 __queue_and_wait(c);
383}
384
385/**
386 * make_reservation - reserve journal space.
387 * @c: UBIFS file-system description object
388 * @jhead: journal head
389 * @len: how many bytes to reserve
390 *
391 * This function makes space reservation in journal head @jhead. The function
392 * takes the commit lock and locks the journal head, and the caller has to
393 * unlock the head and finish the reservation with 'finish_reservation()'.
394 * Returns zero in case of success and a negative error code in case of
395 * failure.
396 *
397 * Note, the journal head may be unlocked as soon as the data is written, while
398 * the commit lock has to be released after the data has been added to the
399 * TNC.
400 */
401static int make_reservation(struct ubifs_info *c, int jhead, int len)
402{
403 int err, cmt_retries = 0, nospc_retries = 0;
404 bool blocked = wait_for_reservation(c);
405
406again:
407 down_read(&c->commit_sem);
408 err = reserve_space(c, jhead, len);
409 if (!err) {
410 /* c->commit_sem will get released via finish_reservation(). */
411 goto out_wake_up;
412 }
413 up_read(&c->commit_sem);
414
415 if (err == -ENOSPC) {
416 /*
417 * GC could not make any progress. We should try to commit
418 * because it could make some dirty space and GC would make
419 * progress, so make the error -EAGAIN so that the below
420 * will commit and re-try.
421 */
422 nospc_retries++;
423 dbg_jnl("no space, retry");
424 err = -EAGAIN;
425 }
426
427 if (err != -EAGAIN)
428 goto out;
429
430 /*
431 * -EAGAIN means that the journal is full or too large, or the above
432 * code wants to do one commit. Do this and re-try.
433 */
434 if (cmt_retries > 128) {
435 /*
436 * This should not happen unless:
437 * 1. The journal size limitations are too tough.
438 * 2. The budgeting is incorrect. We always have to be able to
439 * write to the media, because all operations are budgeted.
440 * Deletions are not budgeted, though, but we reserve an
441 * extra LEB for them.
442 */
443 ubifs_err(c, "stuck in space allocation, nospc_retries %d",
444 nospc_retries);
445 err = -ENOSPC;
446 goto out;
447 } else if (cmt_retries > 32) {
448 /*
449 * It's almost impossible to happen, unless there are many tasks
450 * making reservation concurrently and someone task has retried
451 * gc + commit for many times, generated available space during
452 * this period are grabbed by other tasks.
453 * But if it happens, start queuing up all tasks that will make
454 * space reservation, then there is only one task making space
455 * reservation at any time, and it can always make success under
456 * the premise of correct budgeting.
457 */
458 ubifs_warn(c, "too many space allocation cmt_retries (%d) "
459 "nospc_retries (%d), start queuing tasks",
460 cmt_retries, nospc_retries);
461
462 if (!blocked) {
463 blocked = true;
464 add_or_start_queue(c);
465 }
466 }
467
468 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
469 cmt_retries);
470 cmt_retries += 1;
471
472 err = ubifs_run_commit(c);
473 if (err)
474 goto out_wake_up;
475 goto again;
476
477out:
478 ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
479 len, jhead, err);
480 if (err == -ENOSPC) {
481 /* This are some budgeting problems, print useful information */
482 down_write(&c->commit_sem);
483 dump_stack();
484 ubifs_dump_budg(c, &c->bi);
485 ubifs_dump_lprops(c);
486 cmt_retries = dbg_check_lprops(c);
487 up_write(&c->commit_sem);
488 }
489out_wake_up:
490 if (blocked) {
491 /*
492 * Only tasks that have ever started queuing or ever been queued
493 * can wake up other queued tasks, which can make sure that
494 * there is only one task waked up to make space reservation.
495 * For example:
496 * task A task B task C
497 * make_reservation make_reservation
498 * reserve_space // 0
499 * wake_up_reservation
500 * atomic_cmpxchg // 0, start queuing
501 * reserve_space
502 * wait_for_reservation
503 * __queue_and_wait
504 * add_wait_queue
505 * if (blocked) // false
506 * // So that task C won't be waked up to race with task B
507 */
508 wake_up_reservation(c);
509 }
510 return err;
511}
512
513/**
514 * release_head - release a journal head.
515 * @c: UBIFS file-system description object
516 * @jhead: journal head
517 *
518 * This function releases journal head @jhead which was locked by
519 * the 'make_reservation()' function. It has to be called after each successful
520 * 'make_reservation()' invocation.
521 */
522static inline void release_head(struct ubifs_info *c, int jhead)
523{
524 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
525}
526
527/**
528 * finish_reservation - finish a reservation.
529 * @c: UBIFS file-system description object
530 *
531 * This function finishes journal space reservation. It must be called after
532 * 'make_reservation()'.
533 */
534static void finish_reservation(struct ubifs_info *c)
535{
536 up_read(&c->commit_sem);
537}
538
539/**
540 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
541 * @mode: inode mode
542 */
543static int get_dent_type(int mode)
544{
545 switch (mode & S_IFMT) {
546 case S_IFREG:
547 return UBIFS_ITYPE_REG;
548 case S_IFDIR:
549 return UBIFS_ITYPE_DIR;
550 case S_IFLNK:
551 return UBIFS_ITYPE_LNK;
552 case S_IFBLK:
553 return UBIFS_ITYPE_BLK;
554 case S_IFCHR:
555 return UBIFS_ITYPE_CHR;
556 case S_IFIFO:
557 return UBIFS_ITYPE_FIFO;
558 case S_IFSOCK:
559 return UBIFS_ITYPE_SOCK;
560 default:
561 BUG();
562 }
563 return 0;
564}
565
566/**
567 * pack_inode - pack an inode node.
568 * @c: UBIFS file-system description object
569 * @ino: buffer in which to pack inode node
570 * @inode: inode to pack
571 * @last: indicates the last node of the group
572 */
573static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
574 const struct inode *inode, int last)
575{
576 int data_len = 0, last_reference = !inode->i_nlink;
577 struct ubifs_inode *ui = ubifs_inode(inode);
578
579 ino->ch.node_type = UBIFS_INO_NODE;
580 ino_key_init_flash(c, &ino->key, inode->i_ino);
581 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
582 ino->atime_sec = cpu_to_le64(inode_get_atime_sec(inode));
583 ino->atime_nsec = cpu_to_le32(inode_get_atime_nsec(inode));
584 ino->ctime_sec = cpu_to_le64(inode_get_ctime_sec(inode));
585 ino->ctime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode));
586 ino->mtime_sec = cpu_to_le64(inode_get_mtime_sec(inode));
587 ino->mtime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
588 ino->uid = cpu_to_le32(i_uid_read(inode));
589 ino->gid = cpu_to_le32(i_gid_read(inode));
590 ino->mode = cpu_to_le32(inode->i_mode);
591 ino->flags = cpu_to_le32(ui->flags);
592 ino->size = cpu_to_le64(ui->ui_size);
593 ino->nlink = cpu_to_le32(inode->i_nlink);
594 ino->compr_type = cpu_to_le16(ui->compr_type);
595 ino->data_len = cpu_to_le32(ui->data_len);
596 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
597 ino->xattr_size = cpu_to_le32(ui->xattr_size);
598 ino->xattr_names = cpu_to_le32(ui->xattr_names);
599 zero_ino_node_unused(ino);
600
601 /*
602 * Drop the attached data if this is a deletion inode, the data is not
603 * needed anymore.
604 */
605 if (!last_reference) {
606 memcpy(ino->data, ui->data, ui->data_len);
607 data_len = ui->data_len;
608 }
609
610 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
611}
612
613/**
614 * mark_inode_clean - mark UBIFS inode as clean.
615 * @c: UBIFS file-system description object
616 * @ui: UBIFS inode to mark as clean
617 *
618 * This helper function marks UBIFS inode @ui as clean by cleaning the
619 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
620 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
621 * just do nothing.
622 */
623static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
624{
625 if (ui->dirty)
626 ubifs_release_dirty_inode_budget(c, ui);
627 ui->dirty = 0;
628}
629
630static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
631{
632 if (c->double_hash)
633 dent->cookie = (__force __le32) get_random_u32();
634 else
635 dent->cookie = 0;
636}
637
638/**
639 * ubifs_jnl_update - update inode.
640 * @c: UBIFS file-system description object
641 * @dir: parent inode or host inode in case of extended attributes
642 * @nm: directory entry name
643 * @inode: inode to update
644 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
645 * @xent: non-zero if the directory entry is an extended attribute entry
646 * @in_orphan: indicates whether the @inode is in orphan list
647 *
648 * This function updates an inode by writing a directory entry (or extended
649 * attribute entry), the inode itself, and the parent directory inode (or the
650 * host inode) to the journal.
651 *
652 * The function writes the host inode @dir last, which is important in case of
653 * extended attributes. Indeed, then we guarantee that if the host inode gets
654 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
655 * the extended attribute inode gets flushed too. And this is exactly what the
656 * user expects - synchronizing the host inode synchronizes its extended
657 * attributes. Similarly, this guarantees that if @dir is synchronized, its
658 * directory entry corresponding to @nm gets synchronized too.
659 *
660 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
661 * function synchronizes the write-buffer.
662 *
663 * This function marks the @dir and @inode inodes as clean and returns zero on
664 * success. In case of failure, a negative error code is returned.
665 */
666int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
667 const struct fscrypt_name *nm, const struct inode *inode,
668 int deletion, int xent, int in_orphan)
669{
670 int err, dlen, ilen, len, lnum, ino_offs, dent_offs, orphan_added = 0;
671 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
672 int last_reference = !!(deletion && inode->i_nlink == 0);
673 struct ubifs_inode *ui = ubifs_inode(inode);
674 struct ubifs_inode *host_ui = ubifs_inode(dir);
675 struct ubifs_dent_node *dent;
676 struct ubifs_ino_node *ino;
677 union ubifs_key dent_key, ino_key;
678 u8 hash_dent[UBIFS_HASH_ARR_SZ];
679 u8 hash_ino[UBIFS_HASH_ARR_SZ];
680 u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
681
682 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
683
684 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
685 ilen = UBIFS_INO_NODE_SZ;
686
687 /*
688 * If the last reference to the inode is being deleted, then there is
689 * no need to attach and write inode data, it is being deleted anyway.
690 * And if the inode is being deleted, no need to synchronize
691 * write-buffer even if the inode is synchronous.
692 */
693 if (!last_reference) {
694 ilen += ui->data_len;
695 sync |= IS_SYNC(inode);
696 }
697
698 aligned_dlen = ALIGN(dlen, 8);
699 aligned_ilen = ALIGN(ilen, 8);
700
701 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
702 /* Make sure to also account for extended attributes */
703 if (ubifs_authenticated(c))
704 len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
705 else
706 len += host_ui->data_len;
707
708 dent = kzalloc(len, GFP_NOFS);
709 if (!dent)
710 return -ENOMEM;
711
712 /* Make reservation before allocating sequence numbers */
713 err = make_reservation(c, BASEHD, len);
714 if (err)
715 goto out_free;
716
717 if (!xent) {
718 dent->ch.node_type = UBIFS_DENT_NODE;
719 if (fname_name(nm) == NULL)
720 dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
721 else
722 dent_key_init(c, &dent_key, dir->i_ino, nm);
723 } else {
724 dent->ch.node_type = UBIFS_XENT_NODE;
725 xent_key_init(c, &dent_key, dir->i_ino, nm);
726 }
727
728 key_write(c, &dent_key, dent->key);
729 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
730 dent->type = get_dent_type(inode->i_mode);
731 dent->nlen = cpu_to_le16(fname_len(nm));
732 memcpy(dent->name, fname_name(nm), fname_len(nm));
733 dent->name[fname_len(nm)] = '\0';
734 set_dent_cookie(c, dent);
735
736 zero_dent_node_unused(dent);
737 ubifs_prep_grp_node(c, dent, dlen, 0);
738 err = ubifs_node_calc_hash(c, dent, hash_dent);
739 if (err)
740 goto out_release;
741
742 ino = (void *)dent + aligned_dlen;
743 pack_inode(c, ino, inode, 0);
744 err = ubifs_node_calc_hash(c, ino, hash_ino);
745 if (err)
746 goto out_release;
747
748 ino = (void *)ino + aligned_ilen;
749 pack_inode(c, ino, dir, 1);
750 err = ubifs_node_calc_hash(c, ino, hash_ino_host);
751 if (err)
752 goto out_release;
753
754 if (last_reference && !in_orphan) {
755 err = ubifs_add_orphan(c, inode->i_ino);
756 if (err) {
757 release_head(c, BASEHD);
758 goto out_finish;
759 }
760 ui->del_cmtno = c->cmt_no;
761 orphan_added = 1;
762 }
763
764 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
765 if (err)
766 goto out_release;
767 if (!sync) {
768 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
769
770 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
771 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
772 }
773 release_head(c, BASEHD);
774 kfree(dent);
775 ubifs_add_auth_dirt(c, lnum);
776
777 if (deletion) {
778 if (fname_name(nm) == NULL)
779 err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
780 else
781 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
782 if (err)
783 goto out_ro;
784 err = ubifs_add_dirt(c, lnum, dlen);
785 } else
786 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
787 hash_dent, nm);
788 if (err)
789 goto out_ro;
790
791 /*
792 * Note, we do not remove the inode from TNC even if the last reference
793 * to it has just been deleted, because the inode may still be opened.
794 * Instead, the inode has been added to orphan lists and the orphan
795 * subsystem will take further care about it.
796 */
797 ino_key_init(c, &ino_key, inode->i_ino);
798 ino_offs = dent_offs + aligned_dlen;
799 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
800 if (err)
801 goto out_ro;
802
803 ino_key_init(c, &ino_key, dir->i_ino);
804 ino_offs += aligned_ilen;
805 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
806 UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
807 if (err)
808 goto out_ro;
809
810 if (in_orphan && inode->i_nlink)
811 ubifs_delete_orphan(c, inode->i_ino);
812
813 finish_reservation(c);
814 spin_lock(&ui->ui_lock);
815 ui->synced_i_size = ui->ui_size;
816 spin_unlock(&ui->ui_lock);
817 if (xent) {
818 spin_lock(&host_ui->ui_lock);
819 host_ui->synced_i_size = host_ui->ui_size;
820 spin_unlock(&host_ui->ui_lock);
821 }
822 mark_inode_clean(c, ui);
823 mark_inode_clean(c, host_ui);
824 return 0;
825
826out_finish:
827 finish_reservation(c);
828out_free:
829 kfree(dent);
830 return err;
831
832out_release:
833 release_head(c, BASEHD);
834 kfree(dent);
835out_ro:
836 ubifs_ro_mode(c, err);
837 if (orphan_added)
838 ubifs_delete_orphan(c, inode->i_ino);
839 finish_reservation(c);
840 return err;
841}
842
843/**
844 * ubifs_jnl_write_data - write a data node to the journal.
845 * @c: UBIFS file-system description object
846 * @inode: inode the data node belongs to
847 * @key: node key
848 * @buf: buffer to write
849 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
850 *
851 * This function writes a data node to the journal. Returns %0 if the data node
852 * was successfully written, and a negative error code in case of failure.
853 */
854int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
855 const union ubifs_key *key, const void *buf, int len)
856{
857 struct ubifs_data_node *data;
858 int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
859 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
860 int write_len;
861 struct ubifs_inode *ui = ubifs_inode(inode);
862 bool encrypted = IS_ENCRYPTED(inode);
863 u8 hash[UBIFS_HASH_ARR_SZ];
864
865 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
866 (unsigned long)key_inum(c, key), key_block(c, key), len);
867 ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
868
869 if (encrypted)
870 dlen += UBIFS_CIPHER_BLOCK_SIZE;
871
872 auth_len = ubifs_auth_node_sz(c);
873
874 data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
875 if (!data) {
876 /*
877 * Fall-back to the write reserve buffer. Note, we might be
878 * currently on the memory reclaim path, when the kernel is
879 * trying to free some memory by writing out dirty pages. The
880 * write reserve buffer helps us to guarantee that we are
881 * always able to write the data.
882 */
883 allocated = 0;
884 mutex_lock(&c->write_reserve_mutex);
885 data = c->write_reserve_buf;
886 }
887
888 data->ch.node_type = UBIFS_DATA_NODE;
889 key_write(c, key, &data->key);
890 data->size = cpu_to_le32(len);
891
892 if (!(ui->flags & UBIFS_COMPR_FL))
893 /* Compression is disabled for this inode */
894 compr_type = UBIFS_COMPR_NONE;
895 else
896 compr_type = ui->compr_type;
897
898 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
899 ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
900 ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
901
902 if (encrypted) {
903 err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
904 if (err)
905 goto out_free;
906
907 } else {
908 data->compr_size = 0;
909 out_len = compr_len;
910 }
911
912 dlen = UBIFS_DATA_NODE_SZ + out_len;
913 if (ubifs_authenticated(c))
914 write_len = ALIGN(dlen, 8) + auth_len;
915 else
916 write_len = dlen;
917
918 data->compr_type = cpu_to_le16(compr_type);
919
920 /* Make reservation before allocating sequence numbers */
921 err = make_reservation(c, DATAHD, write_len);
922 if (err)
923 goto out_free;
924
925 ubifs_prepare_node(c, data, dlen, 0);
926 err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
927 if (err)
928 goto out_release;
929
930 err = ubifs_node_calc_hash(c, data, hash);
931 if (err)
932 goto out_release;
933
934 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
935 release_head(c, DATAHD);
936
937 ubifs_add_auth_dirt(c, lnum);
938
939 err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
940 if (err)
941 goto out_ro;
942
943 finish_reservation(c);
944 if (!allocated)
945 mutex_unlock(&c->write_reserve_mutex);
946 else
947 kfree(data);
948 return 0;
949
950out_release:
951 release_head(c, DATAHD);
952out_ro:
953 ubifs_ro_mode(c, err);
954 finish_reservation(c);
955out_free:
956 if (!allocated)
957 mutex_unlock(&c->write_reserve_mutex);
958 else
959 kfree(data);
960 return err;
961}
962
963/**
964 * ubifs_jnl_write_inode - flush inode to the journal.
965 * @c: UBIFS file-system description object
966 * @inode: inode to flush
967 *
968 * This function writes inode @inode to the journal. If the inode is
969 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
970 * success and a negative error code in case of failure.
971 */
972int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
973{
974 int err, lnum, offs;
975 struct ubifs_ino_node *ino, *ino_start;
976 struct ubifs_inode *ui = ubifs_inode(inode);
977 int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
978 int last_reference = !inode->i_nlink;
979 int kill_xattrs = ui->xattr_cnt && last_reference;
980 u8 hash[UBIFS_HASH_ARR_SZ];
981
982 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
983
984 if (kill_xattrs && ui->xattr_cnt > ubifs_xattr_max_cnt(c)) {
985 ubifs_err(c, "Cannot delete inode, it has too much xattrs!");
986 err = -EPERM;
987 ubifs_ro_mode(c, err);
988 return err;
989 }
990
991 /*
992 * If the inode is being deleted, do not write the attached data. No
993 * need to synchronize the write-buffer either.
994 */
995 if (!last_reference) {
996 ilen += ui->data_len;
997 sync = IS_SYNC(inode);
998 } else if (kill_xattrs) {
999 write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
1000 }
1001
1002 if (ubifs_authenticated(c))
1003 write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
1004 else
1005 write_len += ilen;
1006
1007 ino_start = ino = kmalloc(write_len, GFP_NOFS);
1008 if (!ino)
1009 return -ENOMEM;
1010
1011 /* Make reservation before allocating sequence numbers */
1012 err = make_reservation(c, BASEHD, write_len);
1013 if (err)
1014 goto out_free;
1015
1016 if (kill_xattrs) {
1017 union ubifs_key key;
1018 struct fscrypt_name nm = {0};
1019 struct inode *xino;
1020 struct ubifs_dent_node *xent, *pxent = NULL;
1021
1022 lowest_xent_key(c, &key, inode->i_ino);
1023 while (1) {
1024 xent = ubifs_tnc_next_ent(c, &key, &nm);
1025 if (IS_ERR(xent)) {
1026 err = PTR_ERR(xent);
1027 if (err == -ENOENT)
1028 break;
1029
1030 kfree(pxent);
1031 goto out_release;
1032 }
1033
1034 fname_name(&nm) = xent->name;
1035 fname_len(&nm) = le16_to_cpu(xent->nlen);
1036
1037 xino = ubifs_iget(c->vfs_sb, le64_to_cpu(xent->inum));
1038 if (IS_ERR(xino)) {
1039 err = PTR_ERR(xino);
1040 ubifs_err(c, "dead directory entry '%s', error %d",
1041 xent->name, err);
1042 ubifs_ro_mode(c, err);
1043 kfree(pxent);
1044 kfree(xent);
1045 goto out_release;
1046 }
1047 ubifs_assert(c, ubifs_inode(xino)->xattr);
1048
1049 clear_nlink(xino);
1050 pack_inode(c, ino, xino, 0);
1051 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1052 iput(xino);
1053
1054 kfree(pxent);
1055 pxent = xent;
1056 key_read(c, &xent->key, &key);
1057 }
1058 kfree(pxent);
1059 }
1060
1061 pack_inode(c, ino, inode, 1);
1062 err = ubifs_node_calc_hash(c, ino, hash);
1063 if (err)
1064 goto out_release;
1065
1066 err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync);
1067 if (err)
1068 goto out_release;
1069 if (!sync)
1070 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1071 inode->i_ino);
1072 release_head(c, BASEHD);
1073
1074 if (last_reference) {
1075 err = ubifs_tnc_remove_ino(c, inode->i_ino);
1076 if (err)
1077 goto out_ro;
1078 ubifs_delete_orphan(c, inode->i_ino);
1079 err = ubifs_add_dirt(c, lnum, write_len);
1080 } else {
1081 union ubifs_key key;
1082
1083 ubifs_add_auth_dirt(c, lnum);
1084
1085 ino_key_init(c, &key, inode->i_ino);
1086 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
1087 }
1088 if (err)
1089 goto out_ro;
1090
1091 finish_reservation(c);
1092 spin_lock(&ui->ui_lock);
1093 ui->synced_i_size = ui->ui_size;
1094 spin_unlock(&ui->ui_lock);
1095 kfree(ino_start);
1096 return 0;
1097
1098out_release:
1099 release_head(c, BASEHD);
1100out_ro:
1101 ubifs_ro_mode(c, err);
1102 finish_reservation(c);
1103out_free:
1104 kfree(ino_start);
1105 return err;
1106}
1107
1108/**
1109 * ubifs_jnl_delete_inode - delete an inode.
1110 * @c: UBIFS file-system description object
1111 * @inode: inode to delete
1112 *
1113 * This function deletes inode @inode which includes removing it from orphans,
1114 * deleting it from TNC and, in some cases, writing a deletion inode to the
1115 * journal.
1116 *
1117 * When regular file inodes are unlinked or a directory inode is removed, the
1118 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
1119 * direntry to the media, and adds the inode to orphans. After this, when the
1120 * last reference to this inode has been dropped, this function is called. In
1121 * general, it has to write one more deletion inode to the media, because if
1122 * a commit happened between 'ubifs_jnl_update()' and
1123 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
1124 * anymore, and in fact it might not be on the flash anymore, because it might
1125 * have been garbage-collected already. And for optimization reasons UBIFS does
1126 * not read the orphan area if it has been unmounted cleanly, so it would have
1127 * no indication in the journal that there is a deleted inode which has to be
1128 * removed from TNC.
1129 *
1130 * However, if there was no commit between 'ubifs_jnl_update()' and
1131 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
1132 * inode to the media for the second time. And this is quite a typical case.
1133 *
1134 * This function returns zero in case of success and a negative error code in
1135 * case of failure.
1136 */
1137int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
1138{
1139 int err;
1140 struct ubifs_inode *ui = ubifs_inode(inode);
1141
1142 ubifs_assert(c, inode->i_nlink == 0);
1143
1144 if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
1145 /* A commit happened for sure or inode hosts xattrs */
1146 return ubifs_jnl_write_inode(c, inode);
1147
1148 down_read(&c->commit_sem);
1149 /*
1150 * Check commit number again, because the first test has been done
1151 * without @c->commit_sem, so a commit might have happened.
1152 */
1153 if (ui->del_cmtno != c->cmt_no) {
1154 up_read(&c->commit_sem);
1155 return ubifs_jnl_write_inode(c, inode);
1156 }
1157
1158 err = ubifs_tnc_remove_ino(c, inode->i_ino);
1159 if (err)
1160 ubifs_ro_mode(c, err);
1161 else
1162 ubifs_delete_orphan(c, inode->i_ino);
1163 up_read(&c->commit_sem);
1164 return err;
1165}
1166
1167/**
1168 * ubifs_jnl_xrename - cross rename two directory entries.
1169 * @c: UBIFS file-system description object
1170 * @fst_dir: parent inode of 1st directory entry to exchange
1171 * @fst_inode: 1st inode to exchange
1172 * @fst_nm: name of 1st inode to exchange
1173 * @snd_dir: parent inode of 2nd directory entry to exchange
1174 * @snd_inode: 2nd inode to exchange
1175 * @snd_nm: name of 2nd inode to exchange
1176 * @sync: non-zero if the write-buffer has to be synchronized
1177 *
1178 * This function implements the cross rename operation which may involve
1179 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1180 * and returns zero on success. In case of failure, a negative error code is
1181 * returned.
1182 */
1183int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1184 const struct inode *fst_inode,
1185 const struct fscrypt_name *fst_nm,
1186 const struct inode *snd_dir,
1187 const struct inode *snd_inode,
1188 const struct fscrypt_name *snd_nm, int sync)
1189{
1190 union ubifs_key key;
1191 struct ubifs_dent_node *dent1, *dent2;
1192 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1193 int aligned_dlen1, aligned_dlen2;
1194 int twoparents = (fst_dir != snd_dir);
1195 void *p;
1196 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1197 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1198 u8 hash_p1[UBIFS_HASH_ARR_SZ];
1199 u8 hash_p2[UBIFS_HASH_ARR_SZ];
1200
1201 ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1202 ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1203 ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1204 ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1205
1206 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1207 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1208 aligned_dlen1 = ALIGN(dlen1, 8);
1209 aligned_dlen2 = ALIGN(dlen2, 8);
1210
1211 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1212 if (twoparents)
1213 len += plen;
1214
1215 len += ubifs_auth_node_sz(c);
1216
1217 dent1 = kzalloc(len, GFP_NOFS);
1218 if (!dent1)
1219 return -ENOMEM;
1220
1221 /* Make reservation before allocating sequence numbers */
1222 err = make_reservation(c, BASEHD, len);
1223 if (err)
1224 goto out_free;
1225
1226 /* Make new dent for 1st entry */
1227 dent1->ch.node_type = UBIFS_DENT_NODE;
1228 dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1229 dent1->inum = cpu_to_le64(fst_inode->i_ino);
1230 dent1->type = get_dent_type(fst_inode->i_mode);
1231 dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1232 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1233 dent1->name[fname_len(snd_nm)] = '\0';
1234 set_dent_cookie(c, dent1);
1235 zero_dent_node_unused(dent1);
1236 ubifs_prep_grp_node(c, dent1, dlen1, 0);
1237 err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1238 if (err)
1239 goto out_release;
1240
1241 /* Make new dent for 2nd entry */
1242 dent2 = (void *)dent1 + aligned_dlen1;
1243 dent2->ch.node_type = UBIFS_DENT_NODE;
1244 dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1245 dent2->inum = cpu_to_le64(snd_inode->i_ino);
1246 dent2->type = get_dent_type(snd_inode->i_mode);
1247 dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1248 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1249 dent2->name[fname_len(fst_nm)] = '\0';
1250 set_dent_cookie(c, dent2);
1251 zero_dent_node_unused(dent2);
1252 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1253 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1254 if (err)
1255 goto out_release;
1256
1257 p = (void *)dent2 + aligned_dlen2;
1258 if (!twoparents) {
1259 pack_inode(c, p, fst_dir, 1);
1260 err = ubifs_node_calc_hash(c, p, hash_p1);
1261 if (err)
1262 goto out_release;
1263 } else {
1264 pack_inode(c, p, fst_dir, 0);
1265 err = ubifs_node_calc_hash(c, p, hash_p1);
1266 if (err)
1267 goto out_release;
1268 p += ALIGN(plen, 8);
1269 pack_inode(c, p, snd_dir, 1);
1270 err = ubifs_node_calc_hash(c, p, hash_p2);
1271 if (err)
1272 goto out_release;
1273 }
1274
1275 err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1276 if (err)
1277 goto out_release;
1278 if (!sync) {
1279 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1280
1281 ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1282 ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1283 }
1284 release_head(c, BASEHD);
1285
1286 ubifs_add_auth_dirt(c, lnum);
1287
1288 dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1289 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1290 if (err)
1291 goto out_ro;
1292
1293 offs += aligned_dlen1;
1294 dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1295 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1296 if (err)
1297 goto out_ro;
1298
1299 offs += aligned_dlen2;
1300
1301 ino_key_init(c, &key, fst_dir->i_ino);
1302 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1303 if (err)
1304 goto out_ro;
1305
1306 if (twoparents) {
1307 offs += ALIGN(plen, 8);
1308 ino_key_init(c, &key, snd_dir->i_ino);
1309 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1310 if (err)
1311 goto out_ro;
1312 }
1313
1314 finish_reservation(c);
1315
1316 mark_inode_clean(c, ubifs_inode(fst_dir));
1317 if (twoparents)
1318 mark_inode_clean(c, ubifs_inode(snd_dir));
1319 kfree(dent1);
1320 return 0;
1321
1322out_release:
1323 release_head(c, BASEHD);
1324out_ro:
1325 ubifs_ro_mode(c, err);
1326 finish_reservation(c);
1327out_free:
1328 kfree(dent1);
1329 return err;
1330}
1331
1332/**
1333 * ubifs_jnl_rename - rename a directory entry.
1334 * @c: UBIFS file-system description object
1335 * @old_dir: parent inode of directory entry to rename
1336 * @old_inode: directory entry's inode to rename
1337 * @old_nm: name of the old directory entry to rename
1338 * @new_dir: parent inode of directory entry to rename
1339 * @new_inode: new directory entry's inode (or directory entry's inode to
1340 * replace)
1341 * @new_nm: new name of the new directory entry
1342 * @whiteout: whiteout inode
1343 * @sync: non-zero if the write-buffer has to be synchronized
1344 * @delete_orphan: indicates an orphan entry deletion for @whiteout
1345 *
1346 * This function implements the re-name operation which may involve writing up
1347 * to 4 inodes(new inode, whiteout inode, old and new parent directory inodes)
1348 * and 2 directory entries. It marks the written inodes as clean and returns
1349 * zero on success. In case of failure, a negative error code is returned.
1350 */
1351int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1352 const struct inode *old_inode,
1353 const struct fscrypt_name *old_nm,
1354 const struct inode *new_dir,
1355 const struct inode *new_inode,
1356 const struct fscrypt_name *new_nm,
1357 const struct inode *whiteout, int sync, int delete_orphan)
1358{
1359 void *p;
1360 union ubifs_key key;
1361 struct ubifs_dent_node *dent, *dent2;
1362 int err, dlen1, dlen2, ilen, wlen, lnum, offs, len, orphan_added = 0;
1363 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1364 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1365 int move = (old_dir != new_dir);
1366 struct ubifs_inode *new_ui, *whiteout_ui;
1367 u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1368 u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1369 u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1370 u8 hash_whiteout_inode[UBIFS_HASH_ARR_SZ];
1371 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1372 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1373
1374 ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1375 ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1376 ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1377 ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1378
1379 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1380 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1381 if (new_inode) {
1382 new_ui = ubifs_inode(new_inode);
1383 ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1384 ilen = UBIFS_INO_NODE_SZ;
1385 if (!last_reference)
1386 ilen += new_ui->data_len;
1387 } else
1388 ilen = 0;
1389
1390 if (whiteout) {
1391 whiteout_ui = ubifs_inode(whiteout);
1392 ubifs_assert(c, mutex_is_locked(&whiteout_ui->ui_mutex));
1393 ubifs_assert(c, whiteout->i_nlink == 1);
1394 ubifs_assert(c, !whiteout_ui->dirty);
1395 wlen = UBIFS_INO_NODE_SZ;
1396 wlen += whiteout_ui->data_len;
1397 } else
1398 wlen = 0;
1399
1400 aligned_dlen1 = ALIGN(dlen1, 8);
1401 aligned_dlen2 = ALIGN(dlen2, 8);
1402 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) +
1403 ALIGN(wlen, 8) + ALIGN(plen, 8);
1404 if (move)
1405 len += plen;
1406
1407 len += ubifs_auth_node_sz(c);
1408
1409 dent = kzalloc(len, GFP_NOFS);
1410 if (!dent)
1411 return -ENOMEM;
1412
1413 /* Make reservation before allocating sequence numbers */
1414 err = make_reservation(c, BASEHD, len);
1415 if (err)
1416 goto out_free;
1417
1418 /* Make new dent */
1419 dent->ch.node_type = UBIFS_DENT_NODE;
1420 dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1421 dent->inum = cpu_to_le64(old_inode->i_ino);
1422 dent->type = get_dent_type(old_inode->i_mode);
1423 dent->nlen = cpu_to_le16(fname_len(new_nm));
1424 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1425 dent->name[fname_len(new_nm)] = '\0';
1426 set_dent_cookie(c, dent);
1427 zero_dent_node_unused(dent);
1428 ubifs_prep_grp_node(c, dent, dlen1, 0);
1429 err = ubifs_node_calc_hash(c, dent, hash_dent1);
1430 if (err)
1431 goto out_release;
1432
1433 dent2 = (void *)dent + aligned_dlen1;
1434 dent2->ch.node_type = UBIFS_DENT_NODE;
1435 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1436
1437 if (whiteout) {
1438 dent2->inum = cpu_to_le64(whiteout->i_ino);
1439 dent2->type = get_dent_type(whiteout->i_mode);
1440 } else {
1441 /* Make deletion dent */
1442 dent2->inum = 0;
1443 dent2->type = DT_UNKNOWN;
1444 }
1445 dent2->nlen = cpu_to_le16(fname_len(old_nm));
1446 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1447 dent2->name[fname_len(old_nm)] = '\0';
1448 set_dent_cookie(c, dent2);
1449 zero_dent_node_unused(dent2);
1450 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1451 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1452 if (err)
1453 goto out_release;
1454
1455 p = (void *)dent2 + aligned_dlen2;
1456 if (new_inode) {
1457 pack_inode(c, p, new_inode, 0);
1458 err = ubifs_node_calc_hash(c, p, hash_new_inode);
1459 if (err)
1460 goto out_release;
1461
1462 p += ALIGN(ilen, 8);
1463 }
1464
1465 if (whiteout) {
1466 pack_inode(c, p, whiteout, 0);
1467 err = ubifs_node_calc_hash(c, p, hash_whiteout_inode);
1468 if (err)
1469 goto out_release;
1470
1471 p += ALIGN(wlen, 8);
1472 }
1473
1474 if (!move) {
1475 pack_inode(c, p, old_dir, 1);
1476 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1477 if (err)
1478 goto out_release;
1479 } else {
1480 pack_inode(c, p, old_dir, 0);
1481 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1482 if (err)
1483 goto out_release;
1484
1485 p += ALIGN(plen, 8);
1486 pack_inode(c, p, new_dir, 1);
1487 err = ubifs_node_calc_hash(c, p, hash_new_dir);
1488 if (err)
1489 goto out_release;
1490 }
1491
1492 if (last_reference) {
1493 err = ubifs_add_orphan(c, new_inode->i_ino);
1494 if (err) {
1495 release_head(c, BASEHD);
1496 goto out_finish;
1497 }
1498 new_ui->del_cmtno = c->cmt_no;
1499 orphan_added = 1;
1500 }
1501
1502 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1503 if (err)
1504 goto out_release;
1505 if (!sync) {
1506 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1507
1508 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1509 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1510 if (new_inode)
1511 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1512 new_inode->i_ino);
1513 if (whiteout)
1514 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1515 whiteout->i_ino);
1516 }
1517 release_head(c, BASEHD);
1518
1519 ubifs_add_auth_dirt(c, lnum);
1520
1521 dent_key_init(c, &key, new_dir->i_ino, new_nm);
1522 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1523 if (err)
1524 goto out_ro;
1525
1526 offs += aligned_dlen1;
1527 if (whiteout) {
1528 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1529 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1530 if (err)
1531 goto out_ro;
1532 } else {
1533 err = ubifs_add_dirt(c, lnum, dlen2);
1534 if (err)
1535 goto out_ro;
1536
1537 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1538 err = ubifs_tnc_remove_nm(c, &key, old_nm);
1539 if (err)
1540 goto out_ro;
1541 }
1542
1543 offs += aligned_dlen2;
1544 if (new_inode) {
1545 ino_key_init(c, &key, new_inode->i_ino);
1546 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1547 if (err)
1548 goto out_ro;
1549 offs += ALIGN(ilen, 8);
1550 }
1551
1552 if (whiteout) {
1553 ino_key_init(c, &key, whiteout->i_ino);
1554 err = ubifs_tnc_add(c, &key, lnum, offs, wlen,
1555 hash_whiteout_inode);
1556 if (err)
1557 goto out_ro;
1558 offs += ALIGN(wlen, 8);
1559 }
1560
1561 ino_key_init(c, &key, old_dir->i_ino);
1562 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1563 if (err)
1564 goto out_ro;
1565
1566 if (move) {
1567 offs += ALIGN(plen, 8);
1568 ino_key_init(c, &key, new_dir->i_ino);
1569 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1570 if (err)
1571 goto out_ro;
1572 }
1573
1574 if (delete_orphan)
1575 ubifs_delete_orphan(c, whiteout->i_ino);
1576
1577 finish_reservation(c);
1578 if (new_inode) {
1579 mark_inode_clean(c, new_ui);
1580 spin_lock(&new_ui->ui_lock);
1581 new_ui->synced_i_size = new_ui->ui_size;
1582 spin_unlock(&new_ui->ui_lock);
1583 }
1584 /*
1585 * No need to mark whiteout inode clean.
1586 * Whiteout doesn't have non-zero size, no need to update
1587 * synced_i_size for whiteout_ui.
1588 */
1589 mark_inode_clean(c, ubifs_inode(old_dir));
1590 if (move)
1591 mark_inode_clean(c, ubifs_inode(new_dir));
1592 kfree(dent);
1593 return 0;
1594
1595out_release:
1596 release_head(c, BASEHD);
1597out_ro:
1598 ubifs_ro_mode(c, err);
1599 if (orphan_added)
1600 ubifs_delete_orphan(c, new_inode->i_ino);
1601out_finish:
1602 finish_reservation(c);
1603out_free:
1604 kfree(dent);
1605 return err;
1606}
1607
1608/**
1609 * truncate_data_node - re-compress/encrypt a truncated data node.
1610 * @c: UBIFS file-system description object
1611 * @inode: inode which refers to the data node
1612 * @block: data block number
1613 * @dn: data node to re-compress
1614 * @new_len: new length
1615 * @dn_size: size of the data node @dn in memory
1616 *
1617 * This function is used when an inode is truncated and the last data node of
1618 * the inode has to be re-compressed/encrypted and re-written.
1619 */
1620static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1621 unsigned int block, struct ubifs_data_node *dn,
1622 int *new_len, int dn_size)
1623{
1624 void *buf;
1625 int err, dlen, compr_type, out_len, data_size;
1626
1627 out_len = le32_to_cpu(dn->size);
1628 buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1629 if (!buf)
1630 return -ENOMEM;
1631
1632 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1633 data_size = dn_size - UBIFS_DATA_NODE_SZ;
1634 compr_type = le16_to_cpu(dn->compr_type);
1635
1636 if (IS_ENCRYPTED(inode)) {
1637 err = ubifs_decrypt(inode, dn, &dlen, block);
1638 if (err)
1639 goto out;
1640 }
1641
1642 if (compr_type == UBIFS_COMPR_NONE) {
1643 out_len = *new_len;
1644 } else {
1645 err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1646 if (err)
1647 goto out;
1648
1649 ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1650 }
1651
1652 if (IS_ENCRYPTED(inode)) {
1653 err = ubifs_encrypt(inode, dn, out_len, &data_size, block);
1654 if (err)
1655 goto out;
1656
1657 out_len = data_size;
1658 } else {
1659 dn->compr_size = 0;
1660 }
1661
1662 ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1663 dn->compr_type = cpu_to_le16(compr_type);
1664 dn->size = cpu_to_le32(*new_len);
1665 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1666 err = 0;
1667out:
1668 kfree(buf);
1669 return err;
1670}
1671
1672/**
1673 * ubifs_jnl_truncate - update the journal for a truncation.
1674 * @c: UBIFS file-system description object
1675 * @inode: inode to truncate
1676 * @old_size: old size
1677 * @new_size: new size
1678 *
1679 * When the size of a file decreases due to truncation, a truncation node is
1680 * written, the journal tree is updated, and the last data block is re-written
1681 * if it has been affected. The inode is also updated in order to synchronize
1682 * the new inode size.
1683 *
1684 * This function marks the inode as clean and returns zero on success. In case
1685 * of failure, a negative error code is returned.
1686 */
1687int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1688 loff_t old_size, loff_t new_size)
1689{
1690 union ubifs_key key, to_key;
1691 struct ubifs_ino_node *ino;
1692 struct ubifs_trun_node *trun;
1693 struct ubifs_data_node *dn;
1694 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1695 int dn_size;
1696 struct ubifs_inode *ui = ubifs_inode(inode);
1697 ino_t inum = inode->i_ino;
1698 unsigned int blk;
1699 u8 hash_ino[UBIFS_HASH_ARR_SZ];
1700 u8 hash_dn[UBIFS_HASH_ARR_SZ];
1701
1702 dbg_jnl("ino %lu, size %lld -> %lld",
1703 (unsigned long)inum, old_size, new_size);
1704 ubifs_assert(c, !ui->data_len);
1705 ubifs_assert(c, S_ISREG(inode->i_mode));
1706 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1707
1708 dn_size = COMPRESSED_DATA_NODE_BUF_SZ;
1709
1710 if (IS_ENCRYPTED(inode))
1711 dn_size += UBIFS_CIPHER_BLOCK_SIZE;
1712
1713 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1714 dn_size + ubifs_auth_node_sz(c);
1715
1716 ino = kmalloc(sz, GFP_NOFS);
1717 if (!ino)
1718 return -ENOMEM;
1719
1720 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1721 trun->ch.node_type = UBIFS_TRUN_NODE;
1722 trun->inum = cpu_to_le32(inum);
1723 trun->old_size = cpu_to_le64(old_size);
1724 trun->new_size = cpu_to_le64(new_size);
1725 zero_trun_node_unused(trun);
1726
1727 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1728 if (dlen) {
1729 /* Get last data block so it can be truncated */
1730 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1731 blk = new_size >> UBIFS_BLOCK_SHIFT;
1732 data_key_init(c, &key, inum, blk);
1733 dbg_jnlk(&key, "last block key ");
1734 err = ubifs_tnc_lookup(c, &key, dn);
1735 if (err == -ENOENT)
1736 dlen = 0; /* Not found (so it is a hole) */
1737 else if (err)
1738 goto out_free;
1739 else {
1740 int dn_len = le32_to_cpu(dn->size);
1741
1742 if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1743 ubifs_err(c, "bad data node (block %u, inode %lu)",
1744 blk, inode->i_ino);
1745 ubifs_dump_node(c, dn, dn_size);
1746 err = -EUCLEAN;
1747 goto out_free;
1748 }
1749
1750 if (dn_len <= dlen)
1751 dlen = 0; /* Nothing to do */
1752 else {
1753 err = truncate_data_node(c, inode, blk, dn,
1754 &dlen, dn_size);
1755 if (err)
1756 goto out_free;
1757 }
1758 }
1759 }
1760
1761 /* Must make reservation before allocating sequence numbers */
1762 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1763
1764 if (ubifs_authenticated(c))
1765 len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1766 else
1767 len += dlen;
1768
1769 err = make_reservation(c, BASEHD, len);
1770 if (err)
1771 goto out_free;
1772
1773 pack_inode(c, ino, inode, 0);
1774 err = ubifs_node_calc_hash(c, ino, hash_ino);
1775 if (err)
1776 goto out_release;
1777
1778 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1779 if (dlen) {
1780 ubifs_prep_grp_node(c, dn, dlen, 1);
1781 err = ubifs_node_calc_hash(c, dn, hash_dn);
1782 if (err)
1783 goto out_release;
1784 }
1785
1786 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1787 if (err)
1788 goto out_release;
1789 if (!sync)
1790 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1791 release_head(c, BASEHD);
1792
1793 ubifs_add_auth_dirt(c, lnum);
1794
1795 if (dlen) {
1796 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1797 err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1798 if (err)
1799 goto out_ro;
1800 }
1801
1802 ino_key_init(c, &key, inum);
1803 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1804 if (err)
1805 goto out_ro;
1806
1807 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1808 if (err)
1809 goto out_ro;
1810
1811 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1812 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1813 data_key_init(c, &key, inum, blk);
1814
1815 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1816 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1817 data_key_init(c, &to_key, inum, blk);
1818
1819 err = ubifs_tnc_remove_range(c, &key, &to_key);
1820 if (err)
1821 goto out_ro;
1822
1823 finish_reservation(c);
1824 spin_lock(&ui->ui_lock);
1825 ui->synced_i_size = ui->ui_size;
1826 spin_unlock(&ui->ui_lock);
1827 mark_inode_clean(c, ui);
1828 kfree(ino);
1829 return 0;
1830
1831out_release:
1832 release_head(c, BASEHD);
1833out_ro:
1834 ubifs_ro_mode(c, err);
1835 finish_reservation(c);
1836out_free:
1837 kfree(ino);
1838 return err;
1839}
1840
1841
1842/**
1843 * ubifs_jnl_delete_xattr - delete an extended attribute.
1844 * @c: UBIFS file-system description object
1845 * @host: host inode
1846 * @inode: extended attribute inode
1847 * @nm: extended attribute entry name
1848 *
1849 * This function delete an extended attribute which is very similar to
1850 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1851 * updates the target inode. Returns zero in case of success and a negative
1852 * error code in case of failure.
1853 */
1854int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1855 const struct inode *inode,
1856 const struct fscrypt_name *nm)
1857{
1858 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1859 struct ubifs_dent_node *xent;
1860 struct ubifs_ino_node *ino;
1861 union ubifs_key xent_key, key1, key2;
1862 int sync = IS_DIRSYNC(host);
1863 struct ubifs_inode *host_ui = ubifs_inode(host);
1864 u8 hash[UBIFS_HASH_ARR_SZ];
1865
1866 ubifs_assert(c, inode->i_nlink == 0);
1867 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1868
1869 /*
1870 * Since we are deleting the inode, we do not bother to attach any data
1871 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1872 */
1873 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1874 aligned_xlen = ALIGN(xlen, 8);
1875 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1876 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1877
1878 write_len = len + ubifs_auth_node_sz(c);
1879
1880 xent = kzalloc(write_len, GFP_NOFS);
1881 if (!xent)
1882 return -ENOMEM;
1883
1884 /* Make reservation before allocating sequence numbers */
1885 err = make_reservation(c, BASEHD, write_len);
1886 if (err) {
1887 kfree(xent);
1888 return err;
1889 }
1890
1891 xent->ch.node_type = UBIFS_XENT_NODE;
1892 xent_key_init(c, &xent_key, host->i_ino, nm);
1893 key_write(c, &xent_key, xent->key);
1894 xent->inum = 0;
1895 xent->type = get_dent_type(inode->i_mode);
1896 xent->nlen = cpu_to_le16(fname_len(nm));
1897 memcpy(xent->name, fname_name(nm), fname_len(nm));
1898 xent->name[fname_len(nm)] = '\0';
1899 zero_dent_node_unused(xent);
1900 ubifs_prep_grp_node(c, xent, xlen, 0);
1901
1902 ino = (void *)xent + aligned_xlen;
1903 pack_inode(c, ino, inode, 0);
1904 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1905 pack_inode(c, ino, host, 1);
1906 err = ubifs_node_calc_hash(c, ino, hash);
1907 if (err)
1908 goto out_release;
1909
1910 err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1911 if (!sync && !err)
1912 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1913 release_head(c, BASEHD);
1914
1915 ubifs_add_auth_dirt(c, lnum);
1916 kfree(xent);
1917 if (err)
1918 goto out_ro;
1919
1920 /* Remove the extended attribute entry from TNC */
1921 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1922 if (err)
1923 goto out_ro;
1924 err = ubifs_add_dirt(c, lnum, xlen);
1925 if (err)
1926 goto out_ro;
1927
1928 /*
1929 * Remove all nodes belonging to the extended attribute inode from TNC.
1930 * Well, there actually must be only one node - the inode itself.
1931 */
1932 lowest_ino_key(c, &key1, inode->i_ino);
1933 highest_ino_key(c, &key2, inode->i_ino);
1934 err = ubifs_tnc_remove_range(c, &key1, &key2);
1935 if (err)
1936 goto out_ro;
1937 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1938 if (err)
1939 goto out_ro;
1940
1941 /* And update TNC with the new host inode position */
1942 ino_key_init(c, &key1, host->i_ino);
1943 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1944 if (err)
1945 goto out_ro;
1946
1947 finish_reservation(c);
1948 spin_lock(&host_ui->ui_lock);
1949 host_ui->synced_i_size = host_ui->ui_size;
1950 spin_unlock(&host_ui->ui_lock);
1951 mark_inode_clean(c, host_ui);
1952 return 0;
1953
1954out_release:
1955 kfree(xent);
1956 release_head(c, BASEHD);
1957out_ro:
1958 ubifs_ro_mode(c, err);
1959 finish_reservation(c);
1960 return err;
1961}
1962
1963/**
1964 * ubifs_jnl_change_xattr - change an extended attribute.
1965 * @c: UBIFS file-system description object
1966 * @inode: extended attribute inode
1967 * @host: host inode
1968 *
1969 * This function writes the updated version of an extended attribute inode and
1970 * the host inode to the journal (to the base head). The host inode is written
1971 * after the extended attribute inode in order to guarantee that the extended
1972 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1973 * consequently, the write-buffer is synchronized. This function returns zero
1974 * in case of success and a negative error code in case of failure.
1975 */
1976int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1977 const struct inode *host)
1978{
1979 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1980 struct ubifs_inode *host_ui = ubifs_inode(host);
1981 struct ubifs_ino_node *ino;
1982 union ubifs_key key;
1983 int sync = IS_DIRSYNC(host);
1984 u8 hash_host[UBIFS_HASH_ARR_SZ];
1985 u8 hash[UBIFS_HASH_ARR_SZ];
1986
1987 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1988 ubifs_assert(c, inode->i_nlink > 0);
1989 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1990
1991 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1992 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1993 aligned_len1 = ALIGN(len1, 8);
1994 aligned_len = aligned_len1 + ALIGN(len2, 8);
1995
1996 aligned_len += ubifs_auth_node_sz(c);
1997
1998 ino = kzalloc(aligned_len, GFP_NOFS);
1999 if (!ino)
2000 return -ENOMEM;
2001
2002 /* Make reservation before allocating sequence numbers */
2003 err = make_reservation(c, BASEHD, aligned_len);
2004 if (err)
2005 goto out_free;
2006
2007 pack_inode(c, ino, host, 0);
2008 err = ubifs_node_calc_hash(c, ino, hash_host);
2009 if (err)
2010 goto out_release;
2011 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
2012 err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
2013 if (err)
2014 goto out_release;
2015
2016 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
2017 if (!sync && !err) {
2018 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
2019
2020 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
2021 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
2022 }
2023 release_head(c, BASEHD);
2024 if (err)
2025 goto out_ro;
2026
2027 ubifs_add_auth_dirt(c, lnum);
2028
2029 ino_key_init(c, &key, host->i_ino);
2030 err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
2031 if (err)
2032 goto out_ro;
2033
2034 ino_key_init(c, &key, inode->i_ino);
2035 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
2036 if (err)
2037 goto out_ro;
2038
2039 finish_reservation(c);
2040 spin_lock(&host_ui->ui_lock);
2041 host_ui->synced_i_size = host_ui->ui_size;
2042 spin_unlock(&host_ui->ui_lock);
2043 mark_inode_clean(c, host_ui);
2044 kfree(ino);
2045 return 0;
2046
2047out_release:
2048 release_head(c, BASEHD);
2049out_ro:
2050 ubifs_ro_mode(c, err);
2051 finish_reservation(c);
2052out_free:
2053 kfree(ino);
2054 return err;
2055}
2056