Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
7#include <linux/blkdev.h>
8#include <linux/export.h>
9#include <linux/pagemap.h>
10#include <linux/slab.h>
11#include <linux/cred.h>
12#include <linux/mount.h>
13#include <linux/vfs.h>
14#include <linux/quotaops.h>
15#include <linux/mutex.h>
16#include <linux/namei.h>
17#include <linux/exportfs.h>
18#include <linux/iversion.h>
19#include <linux/writeback.h>
20#include <linux/buffer_head.h> /* sync_mapping_buffers */
21#include <linux/fs_context.h>
22#include <linux/pseudo_fs.h>
23#include <linux/fsnotify.h>
24#include <linux/unicode.h>
25#include <linux/fscrypt.h>
26
27#include <linux/uaccess.h>
28
29#include "internal.h"
30
31int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
32 struct kstat *stat, u32 request_mask,
33 unsigned int query_flags)
34{
35 struct inode *inode = d_inode(path->dentry);
36 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
37 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
38 return 0;
39}
40EXPORT_SYMBOL(simple_getattr);
41
42int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
43{
44 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
45
46 buf->f_fsid = u64_to_fsid(id);
47 buf->f_type = dentry->d_sb->s_magic;
48 buf->f_bsize = PAGE_SIZE;
49 buf->f_namelen = NAME_MAX;
50 return 0;
51}
52EXPORT_SYMBOL(simple_statfs);
53
54/*
55 * Retaining negative dentries for an in-memory filesystem just wastes
56 * memory and lookup time: arrange for them to be deleted immediately.
57 */
58int always_delete_dentry(const struct dentry *dentry)
59{
60 return 1;
61}
62EXPORT_SYMBOL(always_delete_dentry);
63
64const struct dentry_operations simple_dentry_operations = {
65 .d_delete = always_delete_dentry,
66};
67EXPORT_SYMBOL(simple_dentry_operations);
68
69/*
70 * Lookup the data. This is trivial - if the dentry didn't already
71 * exist, we know it is negative. Set d_op to delete negative dentries.
72 */
73struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
74{
75 if (dentry->d_name.len > NAME_MAX)
76 return ERR_PTR(-ENAMETOOLONG);
77 if (!dentry->d_sb->s_d_op)
78 d_set_d_op(dentry, &simple_dentry_operations);
79 d_add(dentry, NULL);
80 return NULL;
81}
82EXPORT_SYMBOL(simple_lookup);
83
84int dcache_dir_open(struct inode *inode, struct file *file)
85{
86 file->private_data = d_alloc_cursor(file->f_path.dentry);
87
88 return file->private_data ? 0 : -ENOMEM;
89}
90EXPORT_SYMBOL(dcache_dir_open);
91
92int dcache_dir_close(struct inode *inode, struct file *file)
93{
94 dput(file->private_data);
95 return 0;
96}
97EXPORT_SYMBOL(dcache_dir_close);
98
99/* parent is locked at least shared */
100/*
101 * Returns an element of siblings' list.
102 * We are looking for <count>th positive after <p>; if
103 * found, dentry is grabbed and returned to caller.
104 * If no such element exists, NULL is returned.
105 */
106static struct dentry *scan_positives(struct dentry *cursor,
107 struct hlist_node **p,
108 loff_t count,
109 struct dentry *last)
110{
111 struct dentry *dentry = cursor->d_parent, *found = NULL;
112
113 spin_lock(&dentry->d_lock);
114 while (*p) {
115 struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
116 p = &d->d_sib.next;
117 // we must at least skip cursors, to avoid livelocks
118 if (d->d_flags & DCACHE_DENTRY_CURSOR)
119 continue;
120 if (simple_positive(d) && !--count) {
121 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
122 if (simple_positive(d))
123 found = dget_dlock(d);
124 spin_unlock(&d->d_lock);
125 if (likely(found))
126 break;
127 count = 1;
128 }
129 if (need_resched()) {
130 if (!hlist_unhashed(&cursor->d_sib))
131 __hlist_del(&cursor->d_sib);
132 hlist_add_behind(&cursor->d_sib, &d->d_sib);
133 p = &cursor->d_sib.next;
134 spin_unlock(&dentry->d_lock);
135 cond_resched();
136 spin_lock(&dentry->d_lock);
137 }
138 }
139 spin_unlock(&dentry->d_lock);
140 dput(last);
141 return found;
142}
143
144loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
145{
146 struct dentry *dentry = file->f_path.dentry;
147 switch (whence) {
148 case 1:
149 offset += file->f_pos;
150 fallthrough;
151 case 0:
152 if (offset >= 0)
153 break;
154 fallthrough;
155 default:
156 return -EINVAL;
157 }
158 if (offset != file->f_pos) {
159 struct dentry *cursor = file->private_data;
160 struct dentry *to = NULL;
161
162 inode_lock_shared(dentry->d_inode);
163
164 if (offset > 2)
165 to = scan_positives(cursor, &dentry->d_children.first,
166 offset - 2, NULL);
167 spin_lock(&dentry->d_lock);
168 hlist_del_init(&cursor->d_sib);
169 if (to)
170 hlist_add_behind(&cursor->d_sib, &to->d_sib);
171 spin_unlock(&dentry->d_lock);
172 dput(to);
173
174 file->f_pos = offset;
175
176 inode_unlock_shared(dentry->d_inode);
177 }
178 return offset;
179}
180EXPORT_SYMBOL(dcache_dir_lseek);
181
182/*
183 * Directory is locked and all positive dentries in it are safe, since
184 * for ramfs-type trees they can't go away without unlink() or rmdir(),
185 * both impossible due to the lock on directory.
186 */
187
188int dcache_readdir(struct file *file, struct dir_context *ctx)
189{
190 struct dentry *dentry = file->f_path.dentry;
191 struct dentry *cursor = file->private_data;
192 struct dentry *next = NULL;
193 struct hlist_node **p;
194
195 if (!dir_emit_dots(file, ctx))
196 return 0;
197
198 if (ctx->pos == 2)
199 p = &dentry->d_children.first;
200 else
201 p = &cursor->d_sib.next;
202
203 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
204 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
205 d_inode(next)->i_ino,
206 fs_umode_to_dtype(d_inode(next)->i_mode)))
207 break;
208 ctx->pos++;
209 p = &next->d_sib.next;
210 }
211 spin_lock(&dentry->d_lock);
212 hlist_del_init(&cursor->d_sib);
213 if (next)
214 hlist_add_before(&cursor->d_sib, &next->d_sib);
215 spin_unlock(&dentry->d_lock);
216 dput(next);
217
218 return 0;
219}
220EXPORT_SYMBOL(dcache_readdir);
221
222ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
223{
224 return -EISDIR;
225}
226EXPORT_SYMBOL(generic_read_dir);
227
228const struct file_operations simple_dir_operations = {
229 .open = dcache_dir_open,
230 .release = dcache_dir_close,
231 .llseek = dcache_dir_lseek,
232 .read = generic_read_dir,
233 .iterate_shared = dcache_readdir,
234 .fsync = noop_fsync,
235};
236EXPORT_SYMBOL(simple_dir_operations);
237
238const struct inode_operations simple_dir_inode_operations = {
239 .lookup = simple_lookup,
240};
241EXPORT_SYMBOL(simple_dir_inode_operations);
242
243static void offset_set(struct dentry *dentry, u32 offset)
244{
245 dentry->d_fsdata = (void *)((uintptr_t)(offset));
246}
247
248static u32 dentry2offset(struct dentry *dentry)
249{
250 return (u32)((uintptr_t)(dentry->d_fsdata));
251}
252
253static struct lock_class_key simple_offset_xa_lock;
254
255/**
256 * simple_offset_init - initialize an offset_ctx
257 * @octx: directory offset map to be initialized
258 *
259 */
260void simple_offset_init(struct offset_ctx *octx)
261{
262 xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1);
263 lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock);
264
265 /* 0 is '.', 1 is '..', so always start with offset 2 */
266 octx->next_offset = 2;
267}
268
269/**
270 * simple_offset_add - Add an entry to a directory's offset map
271 * @octx: directory offset ctx to be updated
272 * @dentry: new dentry being added
273 *
274 * Returns zero on success. @so_ctx and the dentry offset are updated.
275 * Otherwise, a negative errno value is returned.
276 */
277int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
278{
279 static const struct xa_limit limit = XA_LIMIT(2, U32_MAX);
280 u32 offset;
281 int ret;
282
283 if (dentry2offset(dentry) != 0)
284 return -EBUSY;
285
286 ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit,
287 &octx->next_offset, GFP_KERNEL);
288 if (ret < 0)
289 return ret;
290
291 offset_set(dentry, offset);
292 return 0;
293}
294
295/**
296 * simple_offset_remove - Remove an entry to a directory's offset map
297 * @octx: directory offset ctx to be updated
298 * @dentry: dentry being removed
299 *
300 */
301void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
302{
303 u32 offset;
304
305 offset = dentry2offset(dentry);
306 if (offset == 0)
307 return;
308
309 xa_erase(&octx->xa, offset);
310 offset_set(dentry, 0);
311}
312
313/**
314 * simple_offset_rename_exchange - exchange rename with directory offsets
315 * @old_dir: parent of dentry being moved
316 * @old_dentry: dentry being moved
317 * @new_dir: destination parent
318 * @new_dentry: destination dentry
319 *
320 * Returns zero on success. Otherwise a negative errno is returned and the
321 * rename is rolled back.
322 */
323int simple_offset_rename_exchange(struct inode *old_dir,
324 struct dentry *old_dentry,
325 struct inode *new_dir,
326 struct dentry *new_dentry)
327{
328 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
329 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
330 u32 old_index = dentry2offset(old_dentry);
331 u32 new_index = dentry2offset(new_dentry);
332 int ret;
333
334 simple_offset_remove(old_ctx, old_dentry);
335 simple_offset_remove(new_ctx, new_dentry);
336
337 ret = simple_offset_add(new_ctx, old_dentry);
338 if (ret)
339 goto out_restore;
340
341 ret = simple_offset_add(old_ctx, new_dentry);
342 if (ret) {
343 simple_offset_remove(new_ctx, old_dentry);
344 goto out_restore;
345 }
346
347 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
348 if (ret) {
349 simple_offset_remove(new_ctx, old_dentry);
350 simple_offset_remove(old_ctx, new_dentry);
351 goto out_restore;
352 }
353 return 0;
354
355out_restore:
356 offset_set(old_dentry, old_index);
357 xa_store(&old_ctx->xa, old_index, old_dentry, GFP_KERNEL);
358 offset_set(new_dentry, new_index);
359 xa_store(&new_ctx->xa, new_index, new_dentry, GFP_KERNEL);
360 return ret;
361}
362
363/**
364 * simple_offset_destroy - Release offset map
365 * @octx: directory offset ctx that is about to be destroyed
366 *
367 * During fs teardown (eg. umount), a directory's offset map might still
368 * contain entries. xa_destroy() cleans out anything that remains.
369 */
370void simple_offset_destroy(struct offset_ctx *octx)
371{
372 xa_destroy(&octx->xa);
373}
374
375/**
376 * offset_dir_llseek - Advance the read position of a directory descriptor
377 * @file: an open directory whose position is to be updated
378 * @offset: a byte offset
379 * @whence: enumerator describing the starting position for this update
380 *
381 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
382 *
383 * Returns the updated read position if successful; otherwise a
384 * negative errno is returned and the read position remains unchanged.
385 */
386static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
387{
388 switch (whence) {
389 case SEEK_CUR:
390 offset += file->f_pos;
391 fallthrough;
392 case SEEK_SET:
393 if (offset >= 0)
394 break;
395 fallthrough;
396 default:
397 return -EINVAL;
398 }
399
400 /* In this case, ->private_data is protected by f_pos_lock */
401 file->private_data = NULL;
402 return vfs_setpos(file, offset, U32_MAX);
403}
404
405static struct dentry *offset_find_next(struct xa_state *xas)
406{
407 struct dentry *child, *found = NULL;
408
409 rcu_read_lock();
410 child = xas_next_entry(xas, U32_MAX);
411 if (!child)
412 goto out;
413 spin_lock(&child->d_lock);
414 if (simple_positive(child))
415 found = dget_dlock(child);
416 spin_unlock(&child->d_lock);
417out:
418 rcu_read_unlock();
419 return found;
420}
421
422static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
423{
424 u32 offset = dentry2offset(dentry);
425 struct inode *inode = d_inode(dentry);
426
427 return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
428 inode->i_ino, fs_umode_to_dtype(inode->i_mode));
429}
430
431static void *offset_iterate_dir(struct inode *inode, struct dir_context *ctx)
432{
433 struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode);
434 XA_STATE(xas, &so_ctx->xa, ctx->pos);
435 struct dentry *dentry;
436
437 while (true) {
438 dentry = offset_find_next(&xas);
439 if (!dentry)
440 return ERR_PTR(-ENOENT);
441
442 if (!offset_dir_emit(ctx, dentry)) {
443 dput(dentry);
444 break;
445 }
446
447 dput(dentry);
448 ctx->pos = xas.xa_index + 1;
449 }
450 return NULL;
451}
452
453/**
454 * offset_readdir - Emit entries starting at offset @ctx->pos
455 * @file: an open directory to iterate over
456 * @ctx: directory iteration context
457 *
458 * Caller must hold @file's i_rwsem to prevent insertion or removal of
459 * entries during this call.
460 *
461 * On entry, @ctx->pos contains an offset that represents the first entry
462 * to be read from the directory.
463 *
464 * The operation continues until there are no more entries to read, or
465 * until the ctx->actor indicates there is no more space in the caller's
466 * output buffer.
467 *
468 * On return, @ctx->pos contains an offset that will read the next entry
469 * in this directory when offset_readdir() is called again with @ctx.
470 *
471 * Return values:
472 * %0 - Complete
473 */
474static int offset_readdir(struct file *file, struct dir_context *ctx)
475{
476 struct dentry *dir = file->f_path.dentry;
477
478 lockdep_assert_held(&d_inode(dir)->i_rwsem);
479
480 if (!dir_emit_dots(file, ctx))
481 return 0;
482
483 /* In this case, ->private_data is protected by f_pos_lock */
484 if (ctx->pos == 2)
485 file->private_data = NULL;
486 else if (file->private_data == ERR_PTR(-ENOENT))
487 return 0;
488 file->private_data = offset_iterate_dir(d_inode(dir), ctx);
489 return 0;
490}
491
492const struct file_operations simple_offset_dir_operations = {
493 .llseek = offset_dir_llseek,
494 .iterate_shared = offset_readdir,
495 .read = generic_read_dir,
496 .fsync = noop_fsync,
497};
498
499static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
500{
501 struct dentry *child = NULL, *d;
502
503 spin_lock(&parent->d_lock);
504 d = prev ? d_next_sibling(prev) : d_first_child(parent);
505 hlist_for_each_entry_from(d, d_sib) {
506 if (simple_positive(d)) {
507 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
508 if (simple_positive(d))
509 child = dget_dlock(d);
510 spin_unlock(&d->d_lock);
511 if (likely(child))
512 break;
513 }
514 }
515 spin_unlock(&parent->d_lock);
516 dput(prev);
517 return child;
518}
519
520void simple_recursive_removal(struct dentry *dentry,
521 void (*callback)(struct dentry *))
522{
523 struct dentry *this = dget(dentry);
524 while (true) {
525 struct dentry *victim = NULL, *child;
526 struct inode *inode = this->d_inode;
527
528 inode_lock(inode);
529 if (d_is_dir(this))
530 inode->i_flags |= S_DEAD;
531 while ((child = find_next_child(this, victim)) == NULL) {
532 // kill and ascend
533 // update metadata while it's still locked
534 inode_set_ctime_current(inode);
535 clear_nlink(inode);
536 inode_unlock(inode);
537 victim = this;
538 this = this->d_parent;
539 inode = this->d_inode;
540 inode_lock(inode);
541 if (simple_positive(victim)) {
542 d_invalidate(victim); // avoid lost mounts
543 if (d_is_dir(victim))
544 fsnotify_rmdir(inode, victim);
545 else
546 fsnotify_unlink(inode, victim);
547 if (callback)
548 callback(victim);
549 dput(victim); // unpin it
550 }
551 if (victim == dentry) {
552 inode_set_mtime_to_ts(inode,
553 inode_set_ctime_current(inode));
554 if (d_is_dir(dentry))
555 drop_nlink(inode);
556 inode_unlock(inode);
557 dput(dentry);
558 return;
559 }
560 }
561 inode_unlock(inode);
562 this = child;
563 }
564}
565EXPORT_SYMBOL(simple_recursive_removal);
566
567static const struct super_operations simple_super_operations = {
568 .statfs = simple_statfs,
569};
570
571static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
572{
573 struct pseudo_fs_context *ctx = fc->fs_private;
574 struct inode *root;
575
576 s->s_maxbytes = MAX_LFS_FILESIZE;
577 s->s_blocksize = PAGE_SIZE;
578 s->s_blocksize_bits = PAGE_SHIFT;
579 s->s_magic = ctx->magic;
580 s->s_op = ctx->ops ?: &simple_super_operations;
581 s->s_xattr = ctx->xattr;
582 s->s_time_gran = 1;
583 root = new_inode(s);
584 if (!root)
585 return -ENOMEM;
586
587 /*
588 * since this is the first inode, make it number 1. New inodes created
589 * after this must take care not to collide with it (by passing
590 * max_reserved of 1 to iunique).
591 */
592 root->i_ino = 1;
593 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
594 simple_inode_init_ts(root);
595 s->s_root = d_make_root(root);
596 if (!s->s_root)
597 return -ENOMEM;
598 s->s_d_op = ctx->dops;
599 return 0;
600}
601
602static int pseudo_fs_get_tree(struct fs_context *fc)
603{
604 return get_tree_nodev(fc, pseudo_fs_fill_super);
605}
606
607static void pseudo_fs_free(struct fs_context *fc)
608{
609 kfree(fc->fs_private);
610}
611
612static const struct fs_context_operations pseudo_fs_context_ops = {
613 .free = pseudo_fs_free,
614 .get_tree = pseudo_fs_get_tree,
615};
616
617/*
618 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
619 * will never be mountable)
620 */
621struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
622 unsigned long magic)
623{
624 struct pseudo_fs_context *ctx;
625
626 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
627 if (likely(ctx)) {
628 ctx->magic = magic;
629 fc->fs_private = ctx;
630 fc->ops = &pseudo_fs_context_ops;
631 fc->sb_flags |= SB_NOUSER;
632 fc->global = true;
633 }
634 return ctx;
635}
636EXPORT_SYMBOL(init_pseudo);
637
638int simple_open(struct inode *inode, struct file *file)
639{
640 if (inode->i_private)
641 file->private_data = inode->i_private;
642 return 0;
643}
644EXPORT_SYMBOL(simple_open);
645
646int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
647{
648 struct inode *inode = d_inode(old_dentry);
649
650 inode_set_mtime_to_ts(dir,
651 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
652 inc_nlink(inode);
653 ihold(inode);
654 dget(dentry);
655 d_instantiate(dentry, inode);
656 return 0;
657}
658EXPORT_SYMBOL(simple_link);
659
660int simple_empty(struct dentry *dentry)
661{
662 struct dentry *child;
663 int ret = 0;
664
665 spin_lock(&dentry->d_lock);
666 hlist_for_each_entry(child, &dentry->d_children, d_sib) {
667 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
668 if (simple_positive(child)) {
669 spin_unlock(&child->d_lock);
670 goto out;
671 }
672 spin_unlock(&child->d_lock);
673 }
674 ret = 1;
675out:
676 spin_unlock(&dentry->d_lock);
677 return ret;
678}
679EXPORT_SYMBOL(simple_empty);
680
681int simple_unlink(struct inode *dir, struct dentry *dentry)
682{
683 struct inode *inode = d_inode(dentry);
684
685 inode_set_mtime_to_ts(dir,
686 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
687 drop_nlink(inode);
688 dput(dentry);
689 return 0;
690}
691EXPORT_SYMBOL(simple_unlink);
692
693int simple_rmdir(struct inode *dir, struct dentry *dentry)
694{
695 if (!simple_empty(dentry))
696 return -ENOTEMPTY;
697
698 drop_nlink(d_inode(dentry));
699 simple_unlink(dir, dentry);
700 drop_nlink(dir);
701 return 0;
702}
703EXPORT_SYMBOL(simple_rmdir);
704
705/**
706 * simple_rename_timestamp - update the various inode timestamps for rename
707 * @old_dir: old parent directory
708 * @old_dentry: dentry that is being renamed
709 * @new_dir: new parent directory
710 * @new_dentry: target for rename
711 *
712 * POSIX mandates that the old and new parent directories have their ctime and
713 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
714 * their ctime updated.
715 */
716void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
717 struct inode *new_dir, struct dentry *new_dentry)
718{
719 struct inode *newino = d_inode(new_dentry);
720
721 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
722 if (new_dir != old_dir)
723 inode_set_mtime_to_ts(new_dir,
724 inode_set_ctime_current(new_dir));
725 inode_set_ctime_current(d_inode(old_dentry));
726 if (newino)
727 inode_set_ctime_current(newino);
728}
729EXPORT_SYMBOL_GPL(simple_rename_timestamp);
730
731int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
732 struct inode *new_dir, struct dentry *new_dentry)
733{
734 bool old_is_dir = d_is_dir(old_dentry);
735 bool new_is_dir = d_is_dir(new_dentry);
736
737 if (old_dir != new_dir && old_is_dir != new_is_dir) {
738 if (old_is_dir) {
739 drop_nlink(old_dir);
740 inc_nlink(new_dir);
741 } else {
742 drop_nlink(new_dir);
743 inc_nlink(old_dir);
744 }
745 }
746 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
747 return 0;
748}
749EXPORT_SYMBOL_GPL(simple_rename_exchange);
750
751int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
752 struct dentry *old_dentry, struct inode *new_dir,
753 struct dentry *new_dentry, unsigned int flags)
754{
755 int they_are_dirs = d_is_dir(old_dentry);
756
757 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
758 return -EINVAL;
759
760 if (flags & RENAME_EXCHANGE)
761 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
762
763 if (!simple_empty(new_dentry))
764 return -ENOTEMPTY;
765
766 if (d_really_is_positive(new_dentry)) {
767 simple_unlink(new_dir, new_dentry);
768 if (they_are_dirs) {
769 drop_nlink(d_inode(new_dentry));
770 drop_nlink(old_dir);
771 }
772 } else if (they_are_dirs) {
773 drop_nlink(old_dir);
774 inc_nlink(new_dir);
775 }
776
777 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
778 return 0;
779}
780EXPORT_SYMBOL(simple_rename);
781
782/**
783 * simple_setattr - setattr for simple filesystem
784 * @idmap: idmap of the target mount
785 * @dentry: dentry
786 * @iattr: iattr structure
787 *
788 * Returns 0 on success, -error on failure.
789 *
790 * simple_setattr is a simple ->setattr implementation without a proper
791 * implementation of size changes.
792 *
793 * It can either be used for in-memory filesystems or special files
794 * on simple regular filesystems. Anything that needs to change on-disk
795 * or wire state on size changes needs its own setattr method.
796 */
797int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
798 struct iattr *iattr)
799{
800 struct inode *inode = d_inode(dentry);
801 int error;
802
803 error = setattr_prepare(idmap, dentry, iattr);
804 if (error)
805 return error;
806
807 if (iattr->ia_valid & ATTR_SIZE)
808 truncate_setsize(inode, iattr->ia_size);
809 setattr_copy(idmap, inode, iattr);
810 mark_inode_dirty(inode);
811 return 0;
812}
813EXPORT_SYMBOL(simple_setattr);
814
815static int simple_read_folio(struct file *file, struct folio *folio)
816{
817 folio_zero_range(folio, 0, folio_size(folio));
818 flush_dcache_folio(folio);
819 folio_mark_uptodate(folio);
820 folio_unlock(folio);
821 return 0;
822}
823
824int simple_write_begin(struct file *file, struct address_space *mapping,
825 loff_t pos, unsigned len,
826 struct page **pagep, void **fsdata)
827{
828 struct folio *folio;
829
830 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
831 mapping_gfp_mask(mapping));
832 if (IS_ERR(folio))
833 return PTR_ERR(folio);
834
835 *pagep = &folio->page;
836
837 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
838 size_t from = offset_in_folio(folio, pos);
839
840 folio_zero_segments(folio, 0, from,
841 from + len, folio_size(folio));
842 }
843 return 0;
844}
845EXPORT_SYMBOL(simple_write_begin);
846
847/**
848 * simple_write_end - .write_end helper for non-block-device FSes
849 * @file: See .write_end of address_space_operations
850 * @mapping: "
851 * @pos: "
852 * @len: "
853 * @copied: "
854 * @page: "
855 * @fsdata: "
856 *
857 * simple_write_end does the minimum needed for updating a page after writing is
858 * done. It has the same API signature as the .write_end of
859 * address_space_operations vector. So it can just be set onto .write_end for
860 * FSes that don't need any other processing. i_mutex is assumed to be held.
861 * Block based filesystems should use generic_write_end().
862 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
863 * is not called, so a filesystem that actually does store data in .write_inode
864 * should extend on what's done here with a call to mark_inode_dirty() in the
865 * case that i_size has changed.
866 *
867 * Use *ONLY* with simple_read_folio()
868 */
869static int simple_write_end(struct file *file, struct address_space *mapping,
870 loff_t pos, unsigned len, unsigned copied,
871 struct page *page, void *fsdata)
872{
873 struct folio *folio = page_folio(page);
874 struct inode *inode = folio->mapping->host;
875 loff_t last_pos = pos + copied;
876
877 /* zero the stale part of the folio if we did a short copy */
878 if (!folio_test_uptodate(folio)) {
879 if (copied < len) {
880 size_t from = offset_in_folio(folio, pos);
881
882 folio_zero_range(folio, from + copied, len - copied);
883 }
884 folio_mark_uptodate(folio);
885 }
886 /*
887 * No need to use i_size_read() here, the i_size
888 * cannot change under us because we hold the i_mutex.
889 */
890 if (last_pos > inode->i_size)
891 i_size_write(inode, last_pos);
892
893 folio_mark_dirty(folio);
894 folio_unlock(folio);
895 folio_put(folio);
896
897 return copied;
898}
899
900/*
901 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
902 */
903const struct address_space_operations ram_aops = {
904 .read_folio = simple_read_folio,
905 .write_begin = simple_write_begin,
906 .write_end = simple_write_end,
907 .dirty_folio = noop_dirty_folio,
908};
909EXPORT_SYMBOL(ram_aops);
910
911/*
912 * the inodes created here are not hashed. If you use iunique to generate
913 * unique inode values later for this filesystem, then you must take care
914 * to pass it an appropriate max_reserved value to avoid collisions.
915 */
916int simple_fill_super(struct super_block *s, unsigned long magic,
917 const struct tree_descr *files)
918{
919 struct inode *inode;
920 struct dentry *dentry;
921 int i;
922
923 s->s_blocksize = PAGE_SIZE;
924 s->s_blocksize_bits = PAGE_SHIFT;
925 s->s_magic = magic;
926 s->s_op = &simple_super_operations;
927 s->s_time_gran = 1;
928
929 inode = new_inode(s);
930 if (!inode)
931 return -ENOMEM;
932 /*
933 * because the root inode is 1, the files array must not contain an
934 * entry at index 1
935 */
936 inode->i_ino = 1;
937 inode->i_mode = S_IFDIR | 0755;
938 simple_inode_init_ts(inode);
939 inode->i_op = &simple_dir_inode_operations;
940 inode->i_fop = &simple_dir_operations;
941 set_nlink(inode, 2);
942 s->s_root = d_make_root(inode);
943 if (!s->s_root)
944 return -ENOMEM;
945 for (i = 0; !files->name || files->name[0]; i++, files++) {
946 if (!files->name)
947 continue;
948
949 /* warn if it tries to conflict with the root inode */
950 if (unlikely(i == 1))
951 printk(KERN_WARNING "%s: %s passed in a files array"
952 "with an index of 1!\n", __func__,
953 s->s_type->name);
954
955 dentry = d_alloc_name(s->s_root, files->name);
956 if (!dentry)
957 return -ENOMEM;
958 inode = new_inode(s);
959 if (!inode) {
960 dput(dentry);
961 return -ENOMEM;
962 }
963 inode->i_mode = S_IFREG | files->mode;
964 simple_inode_init_ts(inode);
965 inode->i_fop = files->ops;
966 inode->i_ino = i;
967 d_add(dentry, inode);
968 }
969 return 0;
970}
971EXPORT_SYMBOL(simple_fill_super);
972
973static DEFINE_SPINLOCK(pin_fs_lock);
974
975int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
976{
977 struct vfsmount *mnt = NULL;
978 spin_lock(&pin_fs_lock);
979 if (unlikely(!*mount)) {
980 spin_unlock(&pin_fs_lock);
981 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
982 if (IS_ERR(mnt))
983 return PTR_ERR(mnt);
984 spin_lock(&pin_fs_lock);
985 if (!*mount)
986 *mount = mnt;
987 }
988 mntget(*mount);
989 ++*count;
990 spin_unlock(&pin_fs_lock);
991 mntput(mnt);
992 return 0;
993}
994EXPORT_SYMBOL(simple_pin_fs);
995
996void simple_release_fs(struct vfsmount **mount, int *count)
997{
998 struct vfsmount *mnt;
999 spin_lock(&pin_fs_lock);
1000 mnt = *mount;
1001 if (!--*count)
1002 *mount = NULL;
1003 spin_unlock(&pin_fs_lock);
1004 mntput(mnt);
1005}
1006EXPORT_SYMBOL(simple_release_fs);
1007
1008/**
1009 * simple_read_from_buffer - copy data from the buffer to user space
1010 * @to: the user space buffer to read to
1011 * @count: the maximum number of bytes to read
1012 * @ppos: the current position in the buffer
1013 * @from: the buffer to read from
1014 * @available: the size of the buffer
1015 *
1016 * The simple_read_from_buffer() function reads up to @count bytes from the
1017 * buffer @from at offset @ppos into the user space address starting at @to.
1018 *
1019 * On success, the number of bytes read is returned and the offset @ppos is
1020 * advanced by this number, or negative value is returned on error.
1021 **/
1022ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1023 const void *from, size_t available)
1024{
1025 loff_t pos = *ppos;
1026 size_t ret;
1027
1028 if (pos < 0)
1029 return -EINVAL;
1030 if (pos >= available || !count)
1031 return 0;
1032 if (count > available - pos)
1033 count = available - pos;
1034 ret = copy_to_user(to, from + pos, count);
1035 if (ret == count)
1036 return -EFAULT;
1037 count -= ret;
1038 *ppos = pos + count;
1039 return count;
1040}
1041EXPORT_SYMBOL(simple_read_from_buffer);
1042
1043/**
1044 * simple_write_to_buffer - copy data from user space to the buffer
1045 * @to: the buffer to write to
1046 * @available: the size of the buffer
1047 * @ppos: the current position in the buffer
1048 * @from: the user space buffer to read from
1049 * @count: the maximum number of bytes to read
1050 *
1051 * The simple_write_to_buffer() function reads up to @count bytes from the user
1052 * space address starting at @from into the buffer @to at offset @ppos.
1053 *
1054 * On success, the number of bytes written is returned and the offset @ppos is
1055 * advanced by this number, or negative value is returned on error.
1056 **/
1057ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1058 const void __user *from, size_t count)
1059{
1060 loff_t pos = *ppos;
1061 size_t res;
1062
1063 if (pos < 0)
1064 return -EINVAL;
1065 if (pos >= available || !count)
1066 return 0;
1067 if (count > available - pos)
1068 count = available - pos;
1069 res = copy_from_user(to + pos, from, count);
1070 if (res == count)
1071 return -EFAULT;
1072 count -= res;
1073 *ppos = pos + count;
1074 return count;
1075}
1076EXPORT_SYMBOL(simple_write_to_buffer);
1077
1078/**
1079 * memory_read_from_buffer - copy data from the buffer
1080 * @to: the kernel space buffer to read to
1081 * @count: the maximum number of bytes to read
1082 * @ppos: the current position in the buffer
1083 * @from: the buffer to read from
1084 * @available: the size of the buffer
1085 *
1086 * The memory_read_from_buffer() function reads up to @count bytes from the
1087 * buffer @from at offset @ppos into the kernel space address starting at @to.
1088 *
1089 * On success, the number of bytes read is returned and the offset @ppos is
1090 * advanced by this number, or negative value is returned on error.
1091 **/
1092ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1093 const void *from, size_t available)
1094{
1095 loff_t pos = *ppos;
1096
1097 if (pos < 0)
1098 return -EINVAL;
1099 if (pos >= available)
1100 return 0;
1101 if (count > available - pos)
1102 count = available - pos;
1103 memcpy(to, from + pos, count);
1104 *ppos = pos + count;
1105
1106 return count;
1107}
1108EXPORT_SYMBOL(memory_read_from_buffer);
1109
1110/*
1111 * Transaction based IO.
1112 * The file expects a single write which triggers the transaction, and then
1113 * possibly a read which collects the result - which is stored in a
1114 * file-local buffer.
1115 */
1116
1117void simple_transaction_set(struct file *file, size_t n)
1118{
1119 struct simple_transaction_argresp *ar = file->private_data;
1120
1121 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1122
1123 /*
1124 * The barrier ensures that ar->size will really remain zero until
1125 * ar->data is ready for reading.
1126 */
1127 smp_mb();
1128 ar->size = n;
1129}
1130EXPORT_SYMBOL(simple_transaction_set);
1131
1132char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1133{
1134 struct simple_transaction_argresp *ar;
1135 static DEFINE_SPINLOCK(simple_transaction_lock);
1136
1137 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1138 return ERR_PTR(-EFBIG);
1139
1140 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1141 if (!ar)
1142 return ERR_PTR(-ENOMEM);
1143
1144 spin_lock(&simple_transaction_lock);
1145
1146 /* only one write allowed per open */
1147 if (file->private_data) {
1148 spin_unlock(&simple_transaction_lock);
1149 free_page((unsigned long)ar);
1150 return ERR_PTR(-EBUSY);
1151 }
1152
1153 file->private_data = ar;
1154
1155 spin_unlock(&simple_transaction_lock);
1156
1157 if (copy_from_user(ar->data, buf, size))
1158 return ERR_PTR(-EFAULT);
1159
1160 return ar->data;
1161}
1162EXPORT_SYMBOL(simple_transaction_get);
1163
1164ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1165{
1166 struct simple_transaction_argresp *ar = file->private_data;
1167
1168 if (!ar)
1169 return 0;
1170 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1171}
1172EXPORT_SYMBOL(simple_transaction_read);
1173
1174int simple_transaction_release(struct inode *inode, struct file *file)
1175{
1176 free_page((unsigned long)file->private_data);
1177 return 0;
1178}
1179EXPORT_SYMBOL(simple_transaction_release);
1180
1181/* Simple attribute files */
1182
1183struct simple_attr {
1184 int (*get)(void *, u64 *);
1185 int (*set)(void *, u64);
1186 char get_buf[24]; /* enough to store a u64 and "\n\0" */
1187 char set_buf[24];
1188 void *data;
1189 const char *fmt; /* format for read operation */
1190 struct mutex mutex; /* protects access to these buffers */
1191};
1192
1193/* simple_attr_open is called by an actual attribute open file operation
1194 * to set the attribute specific access operations. */
1195int simple_attr_open(struct inode *inode, struct file *file,
1196 int (*get)(void *, u64 *), int (*set)(void *, u64),
1197 const char *fmt)
1198{
1199 struct simple_attr *attr;
1200
1201 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1202 if (!attr)
1203 return -ENOMEM;
1204
1205 attr->get = get;
1206 attr->set = set;
1207 attr->data = inode->i_private;
1208 attr->fmt = fmt;
1209 mutex_init(&attr->mutex);
1210
1211 file->private_data = attr;
1212
1213 return nonseekable_open(inode, file);
1214}
1215EXPORT_SYMBOL_GPL(simple_attr_open);
1216
1217int simple_attr_release(struct inode *inode, struct file *file)
1218{
1219 kfree(file->private_data);
1220 return 0;
1221}
1222EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
1223
1224/* read from the buffer that is filled with the get function */
1225ssize_t simple_attr_read(struct file *file, char __user *buf,
1226 size_t len, loff_t *ppos)
1227{
1228 struct simple_attr *attr;
1229 size_t size;
1230 ssize_t ret;
1231
1232 attr = file->private_data;
1233
1234 if (!attr->get)
1235 return -EACCES;
1236
1237 ret = mutex_lock_interruptible(&attr->mutex);
1238 if (ret)
1239 return ret;
1240
1241 if (*ppos && attr->get_buf[0]) {
1242 /* continued read */
1243 size = strlen(attr->get_buf);
1244 } else {
1245 /* first read */
1246 u64 val;
1247 ret = attr->get(attr->data, &val);
1248 if (ret)
1249 goto out;
1250
1251 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1252 attr->fmt, (unsigned long long)val);
1253 }
1254
1255 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1256out:
1257 mutex_unlock(&attr->mutex);
1258 return ret;
1259}
1260EXPORT_SYMBOL_GPL(simple_attr_read);
1261
1262/* interpret the buffer as a number to call the set function with */
1263static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1264 size_t len, loff_t *ppos, bool is_signed)
1265{
1266 struct simple_attr *attr;
1267 unsigned long long val;
1268 size_t size;
1269 ssize_t ret;
1270
1271 attr = file->private_data;
1272 if (!attr->set)
1273 return -EACCES;
1274
1275 ret = mutex_lock_interruptible(&attr->mutex);
1276 if (ret)
1277 return ret;
1278
1279 ret = -EFAULT;
1280 size = min(sizeof(attr->set_buf) - 1, len);
1281 if (copy_from_user(attr->set_buf, buf, size))
1282 goto out;
1283
1284 attr->set_buf[size] = '\0';
1285 if (is_signed)
1286 ret = kstrtoll(attr->set_buf, 0, &val);
1287 else
1288 ret = kstrtoull(attr->set_buf, 0, &val);
1289 if (ret)
1290 goto out;
1291 ret = attr->set(attr->data, val);
1292 if (ret == 0)
1293 ret = len; /* on success, claim we got the whole input */
1294out:
1295 mutex_unlock(&attr->mutex);
1296 return ret;
1297}
1298
1299ssize_t simple_attr_write(struct file *file, const char __user *buf,
1300 size_t len, loff_t *ppos)
1301{
1302 return simple_attr_write_xsigned(file, buf, len, ppos, false);
1303}
1304EXPORT_SYMBOL_GPL(simple_attr_write);
1305
1306ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1307 size_t len, loff_t *ppos)
1308{
1309 return simple_attr_write_xsigned(file, buf, len, ppos, true);
1310}
1311EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1312
1313/**
1314 * generic_encode_ino32_fh - generic export_operations->encode_fh function
1315 * @inode: the object to encode
1316 * @fh: where to store the file handle fragment
1317 * @max_len: maximum length to store there (in 4 byte units)
1318 * @parent: parent directory inode, if wanted
1319 *
1320 * This generic encode_fh function assumes that the 32 inode number
1321 * is suitable for locating an inode, and that the generation number
1322 * can be used to check that it is still valid. It places them in the
1323 * filehandle fragment where export_decode_fh expects to find them.
1324 */
1325int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1326 struct inode *parent)
1327{
1328 struct fid *fid = (void *)fh;
1329 int len = *max_len;
1330 int type = FILEID_INO32_GEN;
1331
1332 if (parent && (len < 4)) {
1333 *max_len = 4;
1334 return FILEID_INVALID;
1335 } else if (len < 2) {
1336 *max_len = 2;
1337 return FILEID_INVALID;
1338 }
1339
1340 len = 2;
1341 fid->i32.ino = inode->i_ino;
1342 fid->i32.gen = inode->i_generation;
1343 if (parent) {
1344 fid->i32.parent_ino = parent->i_ino;
1345 fid->i32.parent_gen = parent->i_generation;
1346 len = 4;
1347 type = FILEID_INO32_GEN_PARENT;
1348 }
1349 *max_len = len;
1350 return type;
1351}
1352EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1353
1354/**
1355 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1356 * @sb: filesystem to do the file handle conversion on
1357 * @fid: file handle to convert
1358 * @fh_len: length of the file handle in bytes
1359 * @fh_type: type of file handle
1360 * @get_inode: filesystem callback to retrieve inode
1361 *
1362 * This function decodes @fid as long as it has one of the well-known
1363 * Linux filehandle types and calls @get_inode on it to retrieve the
1364 * inode for the object specified in the file handle.
1365 */
1366struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1367 int fh_len, int fh_type, struct inode *(*get_inode)
1368 (struct super_block *sb, u64 ino, u32 gen))
1369{
1370 struct inode *inode = NULL;
1371
1372 if (fh_len < 2)
1373 return NULL;
1374
1375 switch (fh_type) {
1376 case FILEID_INO32_GEN:
1377 case FILEID_INO32_GEN_PARENT:
1378 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1379 break;
1380 }
1381
1382 return d_obtain_alias(inode);
1383}
1384EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1385
1386/**
1387 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1388 * @sb: filesystem to do the file handle conversion on
1389 * @fid: file handle to convert
1390 * @fh_len: length of the file handle in bytes
1391 * @fh_type: type of file handle
1392 * @get_inode: filesystem callback to retrieve inode
1393 *
1394 * This function decodes @fid as long as it has one of the well-known
1395 * Linux filehandle types and calls @get_inode on it to retrieve the
1396 * inode for the _parent_ object specified in the file handle if it
1397 * is specified in the file handle, or NULL otherwise.
1398 */
1399struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1400 int fh_len, int fh_type, struct inode *(*get_inode)
1401 (struct super_block *sb, u64 ino, u32 gen))
1402{
1403 struct inode *inode = NULL;
1404
1405 if (fh_len <= 2)
1406 return NULL;
1407
1408 switch (fh_type) {
1409 case FILEID_INO32_GEN_PARENT:
1410 inode = get_inode(sb, fid->i32.parent_ino,
1411 (fh_len > 3 ? fid->i32.parent_gen : 0));
1412 break;
1413 }
1414
1415 return d_obtain_alias(inode);
1416}
1417EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1418
1419/**
1420 * __generic_file_fsync - generic fsync implementation for simple filesystems
1421 *
1422 * @file: file to synchronize
1423 * @start: start offset in bytes
1424 * @end: end offset in bytes (inclusive)
1425 * @datasync: only synchronize essential metadata if true
1426 *
1427 * This is a generic implementation of the fsync method for simple
1428 * filesystems which track all non-inode metadata in the buffers list
1429 * hanging off the address_space structure.
1430 */
1431int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1432 int datasync)
1433{
1434 struct inode *inode = file->f_mapping->host;
1435 int err;
1436 int ret;
1437
1438 err = file_write_and_wait_range(file, start, end);
1439 if (err)
1440 return err;
1441
1442 inode_lock(inode);
1443 ret = sync_mapping_buffers(inode->i_mapping);
1444 if (!(inode->i_state & I_DIRTY_ALL))
1445 goto out;
1446 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1447 goto out;
1448
1449 err = sync_inode_metadata(inode, 1);
1450 if (ret == 0)
1451 ret = err;
1452
1453out:
1454 inode_unlock(inode);
1455 /* check and advance again to catch errors after syncing out buffers */
1456 err = file_check_and_advance_wb_err(file);
1457 if (ret == 0)
1458 ret = err;
1459 return ret;
1460}
1461EXPORT_SYMBOL(__generic_file_fsync);
1462
1463/**
1464 * generic_file_fsync - generic fsync implementation for simple filesystems
1465 * with flush
1466 * @file: file to synchronize
1467 * @start: start offset in bytes
1468 * @end: end offset in bytes (inclusive)
1469 * @datasync: only synchronize essential metadata if true
1470 *
1471 */
1472
1473int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1474 int datasync)
1475{
1476 struct inode *inode = file->f_mapping->host;
1477 int err;
1478
1479 err = __generic_file_fsync(file, start, end, datasync);
1480 if (err)
1481 return err;
1482 return blkdev_issue_flush(inode->i_sb->s_bdev);
1483}
1484EXPORT_SYMBOL(generic_file_fsync);
1485
1486/**
1487 * generic_check_addressable - Check addressability of file system
1488 * @blocksize_bits: log of file system block size
1489 * @num_blocks: number of blocks in file system
1490 *
1491 * Determine whether a file system with @num_blocks blocks (and a
1492 * block size of 2**@blocksize_bits) is addressable by the sector_t
1493 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1494 */
1495int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1496{
1497 u64 last_fs_block = num_blocks - 1;
1498 u64 last_fs_page =
1499 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1500
1501 if (unlikely(num_blocks == 0))
1502 return 0;
1503
1504 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1505 return -EINVAL;
1506
1507 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1508 (last_fs_page > (pgoff_t)(~0ULL))) {
1509 return -EFBIG;
1510 }
1511 return 0;
1512}
1513EXPORT_SYMBOL(generic_check_addressable);
1514
1515/*
1516 * No-op implementation of ->fsync for in-memory filesystems.
1517 */
1518int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1519{
1520 return 0;
1521}
1522EXPORT_SYMBOL(noop_fsync);
1523
1524ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1525{
1526 /*
1527 * iomap based filesystems support direct I/O without need for
1528 * this callback. However, it still needs to be set in
1529 * inode->a_ops so that open/fcntl know that direct I/O is
1530 * generally supported.
1531 */
1532 return -EINVAL;
1533}
1534EXPORT_SYMBOL_GPL(noop_direct_IO);
1535
1536/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1537void kfree_link(void *p)
1538{
1539 kfree(p);
1540}
1541EXPORT_SYMBOL(kfree_link);
1542
1543struct inode *alloc_anon_inode(struct super_block *s)
1544{
1545 static const struct address_space_operations anon_aops = {
1546 .dirty_folio = noop_dirty_folio,
1547 };
1548 struct inode *inode = new_inode_pseudo(s);
1549
1550 if (!inode)
1551 return ERR_PTR(-ENOMEM);
1552
1553 inode->i_ino = get_next_ino();
1554 inode->i_mapping->a_ops = &anon_aops;
1555
1556 /*
1557 * Mark the inode dirty from the very beginning,
1558 * that way it will never be moved to the dirty
1559 * list because mark_inode_dirty() will think
1560 * that it already _is_ on the dirty list.
1561 */
1562 inode->i_state = I_DIRTY;
1563 inode->i_mode = S_IRUSR | S_IWUSR;
1564 inode->i_uid = current_fsuid();
1565 inode->i_gid = current_fsgid();
1566 inode->i_flags |= S_PRIVATE;
1567 simple_inode_init_ts(inode);
1568 return inode;
1569}
1570EXPORT_SYMBOL(alloc_anon_inode);
1571
1572/**
1573 * simple_nosetlease - generic helper for prohibiting leases
1574 * @filp: file pointer
1575 * @arg: type of lease to obtain
1576 * @flp: new lease supplied for insertion
1577 * @priv: private data for lm_setup operation
1578 *
1579 * Generic helper for filesystems that do not wish to allow leases to be set.
1580 * All arguments are ignored and it just returns -EINVAL.
1581 */
1582int
1583simple_nosetlease(struct file *filp, int arg, struct file_lock **flp,
1584 void **priv)
1585{
1586 return -EINVAL;
1587}
1588EXPORT_SYMBOL(simple_nosetlease);
1589
1590/**
1591 * simple_get_link - generic helper to get the target of "fast" symlinks
1592 * @dentry: not used here
1593 * @inode: the symlink inode
1594 * @done: not used here
1595 *
1596 * Generic helper for filesystems to use for symlink inodes where a pointer to
1597 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1598 * since as an optimization the path lookup code uses any non-NULL ->i_link
1599 * directly, without calling ->get_link(). But ->get_link() still must be set,
1600 * to mark the inode_operations as being for a symlink.
1601 *
1602 * Return: the symlink target
1603 */
1604const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1605 struct delayed_call *done)
1606{
1607 return inode->i_link;
1608}
1609EXPORT_SYMBOL(simple_get_link);
1610
1611const struct inode_operations simple_symlink_inode_operations = {
1612 .get_link = simple_get_link,
1613};
1614EXPORT_SYMBOL(simple_symlink_inode_operations);
1615
1616/*
1617 * Operations for a permanently empty directory.
1618 */
1619static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1620{
1621 return ERR_PTR(-ENOENT);
1622}
1623
1624static int empty_dir_getattr(struct mnt_idmap *idmap,
1625 const struct path *path, struct kstat *stat,
1626 u32 request_mask, unsigned int query_flags)
1627{
1628 struct inode *inode = d_inode(path->dentry);
1629 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1630 return 0;
1631}
1632
1633static int empty_dir_setattr(struct mnt_idmap *idmap,
1634 struct dentry *dentry, struct iattr *attr)
1635{
1636 return -EPERM;
1637}
1638
1639static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1640{
1641 return -EOPNOTSUPP;
1642}
1643
1644static const struct inode_operations empty_dir_inode_operations = {
1645 .lookup = empty_dir_lookup,
1646 .permission = generic_permission,
1647 .setattr = empty_dir_setattr,
1648 .getattr = empty_dir_getattr,
1649 .listxattr = empty_dir_listxattr,
1650};
1651
1652static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1653{
1654 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1655 return generic_file_llseek_size(file, offset, whence, 2, 2);
1656}
1657
1658static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1659{
1660 dir_emit_dots(file, ctx);
1661 return 0;
1662}
1663
1664static const struct file_operations empty_dir_operations = {
1665 .llseek = empty_dir_llseek,
1666 .read = generic_read_dir,
1667 .iterate_shared = empty_dir_readdir,
1668 .fsync = noop_fsync,
1669};
1670
1671
1672void make_empty_dir_inode(struct inode *inode)
1673{
1674 set_nlink(inode, 2);
1675 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1676 inode->i_uid = GLOBAL_ROOT_UID;
1677 inode->i_gid = GLOBAL_ROOT_GID;
1678 inode->i_rdev = 0;
1679 inode->i_size = 0;
1680 inode->i_blkbits = PAGE_SHIFT;
1681 inode->i_blocks = 0;
1682
1683 inode->i_op = &empty_dir_inode_operations;
1684 inode->i_opflags &= ~IOP_XATTR;
1685 inode->i_fop = &empty_dir_operations;
1686}
1687
1688bool is_empty_dir_inode(struct inode *inode)
1689{
1690 return (inode->i_fop == &empty_dir_operations) &&
1691 (inode->i_op == &empty_dir_inode_operations);
1692}
1693
1694#if IS_ENABLED(CONFIG_UNICODE)
1695/**
1696 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1697 * @dentry: dentry whose name we are checking against
1698 * @len: len of name of dentry
1699 * @str: str pointer to name of dentry
1700 * @name: Name to compare against
1701 *
1702 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1703 */
1704static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1705 const char *str, const struct qstr *name)
1706{
1707 const struct dentry *parent = READ_ONCE(dentry->d_parent);
1708 const struct inode *dir = READ_ONCE(parent->d_inode);
1709 const struct super_block *sb = dentry->d_sb;
1710 const struct unicode_map *um = sb->s_encoding;
1711 struct qstr qstr = QSTR_INIT(str, len);
1712 char strbuf[DNAME_INLINE_LEN];
1713 int ret;
1714
1715 if (!dir || !IS_CASEFOLDED(dir))
1716 goto fallback;
1717 /*
1718 * If the dentry name is stored in-line, then it may be concurrently
1719 * modified by a rename. If this happens, the VFS will eventually retry
1720 * the lookup, so it doesn't matter what ->d_compare() returns.
1721 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1722 * string. Therefore, we have to copy the name into a temporary buffer.
1723 */
1724 if (len <= DNAME_INLINE_LEN - 1) {
1725 memcpy(strbuf, str, len);
1726 strbuf[len] = 0;
1727 qstr.name = strbuf;
1728 /* prevent compiler from optimizing out the temporary buffer */
1729 barrier();
1730 }
1731 ret = utf8_strncasecmp(um, name, &qstr);
1732 if (ret >= 0)
1733 return ret;
1734
1735 if (sb_has_strict_encoding(sb))
1736 return -EINVAL;
1737fallback:
1738 if (len != name->len)
1739 return 1;
1740 return !!memcmp(str, name->name, len);
1741}
1742
1743/**
1744 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1745 * @dentry: dentry of the parent directory
1746 * @str: qstr of name whose hash we should fill in
1747 *
1748 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1749 */
1750static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1751{
1752 const struct inode *dir = READ_ONCE(dentry->d_inode);
1753 struct super_block *sb = dentry->d_sb;
1754 const struct unicode_map *um = sb->s_encoding;
1755 int ret = 0;
1756
1757 if (!dir || !IS_CASEFOLDED(dir))
1758 return 0;
1759
1760 ret = utf8_casefold_hash(um, dentry, str);
1761 if (ret < 0 && sb_has_strict_encoding(sb))
1762 return -EINVAL;
1763 return 0;
1764}
1765
1766static const struct dentry_operations generic_ci_dentry_ops = {
1767 .d_hash = generic_ci_d_hash,
1768 .d_compare = generic_ci_d_compare,
1769};
1770#endif
1771
1772#ifdef CONFIG_FS_ENCRYPTION
1773static const struct dentry_operations generic_encrypted_dentry_ops = {
1774 .d_revalidate = fscrypt_d_revalidate,
1775};
1776#endif
1777
1778#if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1779static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1780 .d_hash = generic_ci_d_hash,
1781 .d_compare = generic_ci_d_compare,
1782 .d_revalidate = fscrypt_d_revalidate,
1783};
1784#endif
1785
1786/**
1787 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1788 * @dentry: dentry to set ops on
1789 *
1790 * Casefolded directories need d_hash and d_compare set, so that the dentries
1791 * contained in them are handled case-insensitively. Note that these operations
1792 * are needed on the parent directory rather than on the dentries in it, and
1793 * while the casefolding flag can be toggled on and off on an empty directory,
1794 * dentry_operations can't be changed later. As a result, if the filesystem has
1795 * casefolding support enabled at all, we have to give all dentries the
1796 * casefolding operations even if their inode doesn't have the casefolding flag
1797 * currently (and thus the casefolding ops would be no-ops for now).
1798 *
1799 * Encryption works differently in that the only dentry operation it needs is
1800 * d_revalidate, which it only needs on dentries that have the no-key name flag.
1801 * The no-key flag can't be set "later", so we don't have to worry about that.
1802 *
1803 * Finally, to maximize compatibility with overlayfs (which isn't compatible
1804 * with certain dentry operations) and to avoid taking an unnecessary
1805 * performance hit, we use custom dentry_operations for each possible
1806 * combination rather than always installing all operations.
1807 */
1808void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1809{
1810#ifdef CONFIG_FS_ENCRYPTION
1811 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1812#endif
1813#if IS_ENABLED(CONFIG_UNICODE)
1814 bool needs_ci_ops = dentry->d_sb->s_encoding;
1815#endif
1816#if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1817 if (needs_encrypt_ops && needs_ci_ops) {
1818 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1819 return;
1820 }
1821#endif
1822#ifdef CONFIG_FS_ENCRYPTION
1823 if (needs_encrypt_ops) {
1824 d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1825 return;
1826 }
1827#endif
1828#if IS_ENABLED(CONFIG_UNICODE)
1829 if (needs_ci_ops) {
1830 d_set_d_op(dentry, &generic_ci_dentry_ops);
1831 return;
1832 }
1833#endif
1834}
1835EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1836
1837/**
1838 * inode_maybe_inc_iversion - increments i_version
1839 * @inode: inode with the i_version that should be updated
1840 * @force: increment the counter even if it's not necessary?
1841 *
1842 * Every time the inode is modified, the i_version field must be seen to have
1843 * changed by any observer.
1844 *
1845 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1846 * the value, and clear the queried flag.
1847 *
1848 * In the common case where neither is set, then we can return "false" without
1849 * updating i_version.
1850 *
1851 * If this function returns false, and no other metadata has changed, then we
1852 * can avoid logging the metadata.
1853 */
1854bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1855{
1856 u64 cur, new;
1857
1858 /*
1859 * The i_version field is not strictly ordered with any other inode
1860 * information, but the legacy inode_inc_iversion code used a spinlock
1861 * to serialize increments.
1862 *
1863 * Here, we add full memory barriers to ensure that any de-facto
1864 * ordering with other info is preserved.
1865 *
1866 * This barrier pairs with the barrier in inode_query_iversion()
1867 */
1868 smp_mb();
1869 cur = inode_peek_iversion_raw(inode);
1870 do {
1871 /* If flag is clear then we needn't do anything */
1872 if (!force && !(cur & I_VERSION_QUERIED))
1873 return false;
1874
1875 /* Since lowest bit is flag, add 2 to avoid it */
1876 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1877 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1878 return true;
1879}
1880EXPORT_SYMBOL(inode_maybe_inc_iversion);
1881
1882/**
1883 * inode_query_iversion - read i_version for later use
1884 * @inode: inode from which i_version should be read
1885 *
1886 * Read the inode i_version counter. This should be used by callers that wish
1887 * to store the returned i_version for later comparison. This will guarantee
1888 * that a later query of the i_version will result in a different value if
1889 * anything has changed.
1890 *
1891 * In this implementation, we fetch the current value, set the QUERIED flag and
1892 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1893 * that fails, we try again with the newly fetched value from the cmpxchg.
1894 */
1895u64 inode_query_iversion(struct inode *inode)
1896{
1897 u64 cur, new;
1898
1899 cur = inode_peek_iversion_raw(inode);
1900 do {
1901 /* If flag is already set, then no need to swap */
1902 if (cur & I_VERSION_QUERIED) {
1903 /*
1904 * This barrier (and the implicit barrier in the
1905 * cmpxchg below) pairs with the barrier in
1906 * inode_maybe_inc_iversion().
1907 */
1908 smp_mb();
1909 break;
1910 }
1911
1912 new = cur | I_VERSION_QUERIED;
1913 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1914 return cur >> I_VERSION_QUERIED_SHIFT;
1915}
1916EXPORT_SYMBOL(inode_query_iversion);
1917
1918ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1919 ssize_t direct_written, ssize_t buffered_written)
1920{
1921 struct address_space *mapping = iocb->ki_filp->f_mapping;
1922 loff_t pos = iocb->ki_pos - buffered_written;
1923 loff_t end = iocb->ki_pos - 1;
1924 int err;
1925
1926 /*
1927 * If the buffered write fallback returned an error, we want to return
1928 * the number of bytes which were written by direct I/O, or the error
1929 * code if that was zero.
1930 *
1931 * Note that this differs from normal direct-io semantics, which will
1932 * return -EFOO even if some bytes were written.
1933 */
1934 if (unlikely(buffered_written < 0)) {
1935 if (direct_written)
1936 return direct_written;
1937 return buffered_written;
1938 }
1939
1940 /*
1941 * We need to ensure that the page cache pages are written to disk and
1942 * invalidated to preserve the expected O_DIRECT semantics.
1943 */
1944 err = filemap_write_and_wait_range(mapping, pos, end);
1945 if (err < 0) {
1946 /*
1947 * We don't know how much we wrote, so just return the number of
1948 * bytes which were direct-written
1949 */
1950 iocb->ki_pos -= buffered_written;
1951 if (direct_written)
1952 return direct_written;
1953 return err;
1954 }
1955 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
1956 return direct_written + buffered_written;
1957}
1958EXPORT_SYMBOL_GPL(direct_write_fallback);
1959
1960/**
1961 * simple_inode_init_ts - initialize the timestamps for a new inode
1962 * @inode: inode to be initialized
1963 *
1964 * When a new inode is created, most filesystems set the timestamps to the
1965 * current time. Add a helper to do this.
1966 */
1967struct timespec64 simple_inode_init_ts(struct inode *inode)
1968{
1969 struct timespec64 ts = inode_set_ctime_current(inode);
1970
1971 inode_set_atime_to_ts(inode, ts);
1972 inode_set_mtime_to_ts(inode, ts);
1973 return ts;
1974}
1975EXPORT_SYMBOL(simple_inode_init_ts);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
7#include <linux/blkdev.h>
8#include <linux/export.h>
9#include <linux/pagemap.h>
10#include <linux/slab.h>
11#include <linux/cred.h>
12#include <linux/mount.h>
13#include <linux/vfs.h>
14#include <linux/quotaops.h>
15#include <linux/mutex.h>
16#include <linux/namei.h>
17#include <linux/exportfs.h>
18#include <linux/iversion.h>
19#include <linux/writeback.h>
20#include <linux/buffer_head.h> /* sync_mapping_buffers */
21#include <linux/fs_context.h>
22#include <linux/pseudo_fs.h>
23#include <linux/fsnotify.h>
24#include <linux/unicode.h>
25#include <linux/fscrypt.h>
26#include <linux/pidfs.h>
27
28#include <linux/uaccess.h>
29
30#include "internal.h"
31
32int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
33 struct kstat *stat, u32 request_mask,
34 unsigned int query_flags)
35{
36 struct inode *inode = d_inode(path->dentry);
37 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
38 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
39 return 0;
40}
41EXPORT_SYMBOL(simple_getattr);
42
43int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44{
45 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
46
47 buf->f_fsid = u64_to_fsid(id);
48 buf->f_type = dentry->d_sb->s_magic;
49 buf->f_bsize = PAGE_SIZE;
50 buf->f_namelen = NAME_MAX;
51 return 0;
52}
53EXPORT_SYMBOL(simple_statfs);
54
55/*
56 * Retaining negative dentries for an in-memory filesystem just wastes
57 * memory and lookup time: arrange for them to be deleted immediately.
58 */
59int always_delete_dentry(const struct dentry *dentry)
60{
61 return 1;
62}
63EXPORT_SYMBOL(always_delete_dentry);
64
65const struct dentry_operations simple_dentry_operations = {
66 .d_delete = always_delete_dentry,
67};
68EXPORT_SYMBOL(simple_dentry_operations);
69
70/*
71 * Lookup the data. This is trivial - if the dentry didn't already
72 * exist, we know it is negative. Set d_op to delete negative dentries.
73 */
74struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
75{
76 if (dentry->d_name.len > NAME_MAX)
77 return ERR_PTR(-ENAMETOOLONG);
78 if (!dentry->d_sb->s_d_op)
79 d_set_d_op(dentry, &simple_dentry_operations);
80
81 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
82 return NULL;
83
84 d_add(dentry, NULL);
85 return NULL;
86}
87EXPORT_SYMBOL(simple_lookup);
88
89int dcache_dir_open(struct inode *inode, struct file *file)
90{
91 file->private_data = d_alloc_cursor(file->f_path.dentry);
92
93 return file->private_data ? 0 : -ENOMEM;
94}
95EXPORT_SYMBOL(dcache_dir_open);
96
97int dcache_dir_close(struct inode *inode, struct file *file)
98{
99 dput(file->private_data);
100 return 0;
101}
102EXPORT_SYMBOL(dcache_dir_close);
103
104/* parent is locked at least shared */
105/*
106 * Returns an element of siblings' list.
107 * We are looking for <count>th positive after <p>; if
108 * found, dentry is grabbed and returned to caller.
109 * If no such element exists, NULL is returned.
110 */
111static struct dentry *scan_positives(struct dentry *cursor,
112 struct hlist_node **p,
113 loff_t count,
114 struct dentry *last)
115{
116 struct dentry *dentry = cursor->d_parent, *found = NULL;
117
118 spin_lock(&dentry->d_lock);
119 while (*p) {
120 struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
121 p = &d->d_sib.next;
122 // we must at least skip cursors, to avoid livelocks
123 if (d->d_flags & DCACHE_DENTRY_CURSOR)
124 continue;
125 if (simple_positive(d) && !--count) {
126 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
127 if (simple_positive(d))
128 found = dget_dlock(d);
129 spin_unlock(&d->d_lock);
130 if (likely(found))
131 break;
132 count = 1;
133 }
134 if (need_resched()) {
135 if (!hlist_unhashed(&cursor->d_sib))
136 __hlist_del(&cursor->d_sib);
137 hlist_add_behind(&cursor->d_sib, &d->d_sib);
138 p = &cursor->d_sib.next;
139 spin_unlock(&dentry->d_lock);
140 cond_resched();
141 spin_lock(&dentry->d_lock);
142 }
143 }
144 spin_unlock(&dentry->d_lock);
145 dput(last);
146 return found;
147}
148
149loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
150{
151 struct dentry *dentry = file->f_path.dentry;
152 switch (whence) {
153 case 1:
154 offset += file->f_pos;
155 fallthrough;
156 case 0:
157 if (offset >= 0)
158 break;
159 fallthrough;
160 default:
161 return -EINVAL;
162 }
163 if (offset != file->f_pos) {
164 struct dentry *cursor = file->private_data;
165 struct dentry *to = NULL;
166
167 inode_lock_shared(dentry->d_inode);
168
169 if (offset > 2)
170 to = scan_positives(cursor, &dentry->d_children.first,
171 offset - 2, NULL);
172 spin_lock(&dentry->d_lock);
173 hlist_del_init(&cursor->d_sib);
174 if (to)
175 hlist_add_behind(&cursor->d_sib, &to->d_sib);
176 spin_unlock(&dentry->d_lock);
177 dput(to);
178
179 file->f_pos = offset;
180
181 inode_unlock_shared(dentry->d_inode);
182 }
183 return offset;
184}
185EXPORT_SYMBOL(dcache_dir_lseek);
186
187/*
188 * Directory is locked and all positive dentries in it are safe, since
189 * for ramfs-type trees they can't go away without unlink() or rmdir(),
190 * both impossible due to the lock on directory.
191 */
192
193int dcache_readdir(struct file *file, struct dir_context *ctx)
194{
195 struct dentry *dentry = file->f_path.dentry;
196 struct dentry *cursor = file->private_data;
197 struct dentry *next = NULL;
198 struct hlist_node **p;
199
200 if (!dir_emit_dots(file, ctx))
201 return 0;
202
203 if (ctx->pos == 2)
204 p = &dentry->d_children.first;
205 else
206 p = &cursor->d_sib.next;
207
208 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
209 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
210 d_inode(next)->i_ino,
211 fs_umode_to_dtype(d_inode(next)->i_mode)))
212 break;
213 ctx->pos++;
214 p = &next->d_sib.next;
215 }
216 spin_lock(&dentry->d_lock);
217 hlist_del_init(&cursor->d_sib);
218 if (next)
219 hlist_add_before(&cursor->d_sib, &next->d_sib);
220 spin_unlock(&dentry->d_lock);
221 dput(next);
222
223 return 0;
224}
225EXPORT_SYMBOL(dcache_readdir);
226
227ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
228{
229 return -EISDIR;
230}
231EXPORT_SYMBOL(generic_read_dir);
232
233const struct file_operations simple_dir_operations = {
234 .open = dcache_dir_open,
235 .release = dcache_dir_close,
236 .llseek = dcache_dir_lseek,
237 .read = generic_read_dir,
238 .iterate_shared = dcache_readdir,
239 .fsync = noop_fsync,
240};
241EXPORT_SYMBOL(simple_dir_operations);
242
243const struct inode_operations simple_dir_inode_operations = {
244 .lookup = simple_lookup,
245};
246EXPORT_SYMBOL(simple_dir_inode_operations);
247
248/* simple_offset_add() never assigns these to a dentry */
249enum {
250 DIR_OFFSET_FIRST = 2, /* Find first real entry */
251 DIR_OFFSET_EOD = S32_MAX,
252};
253
254/* simple_offset_add() allocation range */
255enum {
256 DIR_OFFSET_MIN = DIR_OFFSET_FIRST + 1,
257 DIR_OFFSET_MAX = DIR_OFFSET_EOD - 1,
258};
259
260static void offset_set(struct dentry *dentry, long offset)
261{
262 dentry->d_fsdata = (void *)offset;
263}
264
265static long dentry2offset(struct dentry *dentry)
266{
267 return (long)dentry->d_fsdata;
268}
269
270static struct lock_class_key simple_offset_lock_class;
271
272/**
273 * simple_offset_init - initialize an offset_ctx
274 * @octx: directory offset map to be initialized
275 *
276 */
277void simple_offset_init(struct offset_ctx *octx)
278{
279 mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
280 lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
281 octx->next_offset = DIR_OFFSET_MIN;
282}
283
284/**
285 * simple_offset_add - Add an entry to a directory's offset map
286 * @octx: directory offset ctx to be updated
287 * @dentry: new dentry being added
288 *
289 * Returns zero on success. @octx and the dentry's offset are updated.
290 * Otherwise, a negative errno value is returned.
291 */
292int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
293{
294 unsigned long offset;
295 int ret;
296
297 if (dentry2offset(dentry) != 0)
298 return -EBUSY;
299
300 ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
301 DIR_OFFSET_MAX, &octx->next_offset,
302 GFP_KERNEL);
303 if (unlikely(ret < 0))
304 return ret == -EBUSY ? -ENOSPC : ret;
305
306 offset_set(dentry, offset);
307 return 0;
308}
309
310static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
311 long offset)
312{
313 int ret;
314
315 ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
316 if (ret)
317 return ret;
318 offset_set(dentry, offset);
319 return 0;
320}
321
322/**
323 * simple_offset_remove - Remove an entry to a directory's offset map
324 * @octx: directory offset ctx to be updated
325 * @dentry: dentry being removed
326 *
327 */
328void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
329{
330 long offset;
331
332 offset = dentry2offset(dentry);
333 if (offset == 0)
334 return;
335
336 mtree_erase(&octx->mt, offset);
337 offset_set(dentry, 0);
338}
339
340/**
341 * simple_offset_rename - handle directory offsets for rename
342 * @old_dir: parent directory of source entry
343 * @old_dentry: dentry of source entry
344 * @new_dir: parent_directory of destination entry
345 * @new_dentry: dentry of destination
346 *
347 * Caller provides appropriate serialization.
348 *
349 * User space expects the directory offset value of the replaced
350 * (new) directory entry to be unchanged after a rename.
351 *
352 * Returns zero on success, a negative errno value on failure.
353 */
354int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
355 struct inode *new_dir, struct dentry *new_dentry)
356{
357 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
358 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
359 long new_offset = dentry2offset(new_dentry);
360
361 simple_offset_remove(old_ctx, old_dentry);
362
363 if (new_offset) {
364 offset_set(new_dentry, 0);
365 return simple_offset_replace(new_ctx, old_dentry, new_offset);
366 }
367 return simple_offset_add(new_ctx, old_dentry);
368}
369
370/**
371 * simple_offset_rename_exchange - exchange rename with directory offsets
372 * @old_dir: parent of dentry being moved
373 * @old_dentry: dentry being moved
374 * @new_dir: destination parent
375 * @new_dentry: destination dentry
376 *
377 * This API preserves the directory offset values. Caller provides
378 * appropriate serialization.
379 *
380 * Returns zero on success. Otherwise a negative errno is returned and the
381 * rename is rolled back.
382 */
383int simple_offset_rename_exchange(struct inode *old_dir,
384 struct dentry *old_dentry,
385 struct inode *new_dir,
386 struct dentry *new_dentry)
387{
388 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
389 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
390 long old_index = dentry2offset(old_dentry);
391 long new_index = dentry2offset(new_dentry);
392 int ret;
393
394 simple_offset_remove(old_ctx, old_dentry);
395 simple_offset_remove(new_ctx, new_dentry);
396
397 ret = simple_offset_replace(new_ctx, old_dentry, new_index);
398 if (ret)
399 goto out_restore;
400
401 ret = simple_offset_replace(old_ctx, new_dentry, old_index);
402 if (ret) {
403 simple_offset_remove(new_ctx, old_dentry);
404 goto out_restore;
405 }
406
407 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
408 if (ret) {
409 simple_offset_remove(new_ctx, old_dentry);
410 simple_offset_remove(old_ctx, new_dentry);
411 goto out_restore;
412 }
413 return 0;
414
415out_restore:
416 (void)simple_offset_replace(old_ctx, old_dentry, old_index);
417 (void)simple_offset_replace(new_ctx, new_dentry, new_index);
418 return ret;
419}
420
421/**
422 * simple_offset_destroy - Release offset map
423 * @octx: directory offset ctx that is about to be destroyed
424 *
425 * During fs teardown (eg. umount), a directory's offset map might still
426 * contain entries. xa_destroy() cleans out anything that remains.
427 */
428void simple_offset_destroy(struct offset_ctx *octx)
429{
430 mtree_destroy(&octx->mt);
431}
432
433/**
434 * offset_dir_llseek - Advance the read position of a directory descriptor
435 * @file: an open directory whose position is to be updated
436 * @offset: a byte offset
437 * @whence: enumerator describing the starting position for this update
438 *
439 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
440 *
441 * Returns the updated read position if successful; otherwise a
442 * negative errno is returned and the read position remains unchanged.
443 */
444static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
445{
446 switch (whence) {
447 case SEEK_CUR:
448 offset += file->f_pos;
449 fallthrough;
450 case SEEK_SET:
451 if (offset >= 0)
452 break;
453 fallthrough;
454 default:
455 return -EINVAL;
456 }
457
458 return vfs_setpos(file, offset, LONG_MAX);
459}
460
461static struct dentry *find_positive_dentry(struct dentry *parent,
462 struct dentry *dentry,
463 bool next)
464{
465 struct dentry *found = NULL;
466
467 spin_lock(&parent->d_lock);
468 if (next)
469 dentry = d_next_sibling(dentry);
470 else if (!dentry)
471 dentry = d_first_child(parent);
472 hlist_for_each_entry_from(dentry, d_sib) {
473 if (!simple_positive(dentry))
474 continue;
475 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
476 if (simple_positive(dentry))
477 found = dget_dlock(dentry);
478 spin_unlock(&dentry->d_lock);
479 if (likely(found))
480 break;
481 }
482 spin_unlock(&parent->d_lock);
483 return found;
484}
485
486static noinline_for_stack struct dentry *
487offset_dir_lookup(struct dentry *parent, loff_t offset)
488{
489 struct inode *inode = d_inode(parent);
490 struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
491 struct dentry *child, *found = NULL;
492
493 MA_STATE(mas, &octx->mt, offset, offset);
494
495 if (offset == DIR_OFFSET_FIRST)
496 found = find_positive_dentry(parent, NULL, false);
497 else {
498 rcu_read_lock();
499 child = mas_find(&mas, DIR_OFFSET_MAX);
500 found = find_positive_dentry(parent, child, false);
501 rcu_read_unlock();
502 }
503 return found;
504}
505
506static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
507{
508 struct inode *inode = d_inode(dentry);
509
510 return dir_emit(ctx, dentry->d_name.name, dentry->d_name.len,
511 inode->i_ino, fs_umode_to_dtype(inode->i_mode));
512}
513
514static void offset_iterate_dir(struct file *file, struct dir_context *ctx)
515{
516 struct dentry *dir = file->f_path.dentry;
517 struct dentry *dentry;
518
519 dentry = offset_dir_lookup(dir, ctx->pos);
520 if (!dentry)
521 goto out_eod;
522 while (true) {
523 struct dentry *next;
524
525 ctx->pos = dentry2offset(dentry);
526 if (!offset_dir_emit(ctx, dentry))
527 break;
528
529 next = find_positive_dentry(dir, dentry, true);
530 dput(dentry);
531
532 if (!next)
533 goto out_eod;
534 dentry = next;
535 }
536 dput(dentry);
537 return;
538
539out_eod:
540 ctx->pos = DIR_OFFSET_EOD;
541}
542
543/**
544 * offset_readdir - Emit entries starting at offset @ctx->pos
545 * @file: an open directory to iterate over
546 * @ctx: directory iteration context
547 *
548 * Caller must hold @file's i_rwsem to prevent insertion or removal of
549 * entries during this call.
550 *
551 * On entry, @ctx->pos contains an offset that represents the first entry
552 * to be read from the directory.
553 *
554 * The operation continues until there are no more entries to read, or
555 * until the ctx->actor indicates there is no more space in the caller's
556 * output buffer.
557 *
558 * On return, @ctx->pos contains an offset that will read the next entry
559 * in this directory when offset_readdir() is called again with @ctx.
560 * Caller places this value in the d_off field of the last entry in the
561 * user's buffer.
562 *
563 * Return values:
564 * %0 - Complete
565 */
566static int offset_readdir(struct file *file, struct dir_context *ctx)
567{
568 struct dentry *dir = file->f_path.dentry;
569
570 lockdep_assert_held(&d_inode(dir)->i_rwsem);
571
572 if (!dir_emit_dots(file, ctx))
573 return 0;
574 if (ctx->pos != DIR_OFFSET_EOD)
575 offset_iterate_dir(file, ctx);
576 return 0;
577}
578
579const struct file_operations simple_offset_dir_operations = {
580 .llseek = offset_dir_llseek,
581 .iterate_shared = offset_readdir,
582 .read = generic_read_dir,
583 .fsync = noop_fsync,
584};
585
586static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
587{
588 struct dentry *child = NULL, *d;
589
590 spin_lock(&parent->d_lock);
591 d = prev ? d_next_sibling(prev) : d_first_child(parent);
592 hlist_for_each_entry_from(d, d_sib) {
593 if (simple_positive(d)) {
594 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
595 if (simple_positive(d))
596 child = dget_dlock(d);
597 spin_unlock(&d->d_lock);
598 if (likely(child))
599 break;
600 }
601 }
602 spin_unlock(&parent->d_lock);
603 dput(prev);
604 return child;
605}
606
607void simple_recursive_removal(struct dentry *dentry,
608 void (*callback)(struct dentry *))
609{
610 struct dentry *this = dget(dentry);
611 while (true) {
612 struct dentry *victim = NULL, *child;
613 struct inode *inode = this->d_inode;
614
615 inode_lock(inode);
616 if (d_is_dir(this))
617 inode->i_flags |= S_DEAD;
618 while ((child = find_next_child(this, victim)) == NULL) {
619 // kill and ascend
620 // update metadata while it's still locked
621 inode_set_ctime_current(inode);
622 clear_nlink(inode);
623 inode_unlock(inode);
624 victim = this;
625 this = this->d_parent;
626 inode = this->d_inode;
627 inode_lock(inode);
628 if (simple_positive(victim)) {
629 d_invalidate(victim); // avoid lost mounts
630 if (d_is_dir(victim))
631 fsnotify_rmdir(inode, victim);
632 else
633 fsnotify_unlink(inode, victim);
634 if (callback)
635 callback(victim);
636 dput(victim); // unpin it
637 }
638 if (victim == dentry) {
639 inode_set_mtime_to_ts(inode,
640 inode_set_ctime_current(inode));
641 if (d_is_dir(dentry))
642 drop_nlink(inode);
643 inode_unlock(inode);
644 dput(dentry);
645 return;
646 }
647 }
648 inode_unlock(inode);
649 this = child;
650 }
651}
652EXPORT_SYMBOL(simple_recursive_removal);
653
654static const struct super_operations simple_super_operations = {
655 .statfs = simple_statfs,
656};
657
658static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
659{
660 struct pseudo_fs_context *ctx = fc->fs_private;
661 struct inode *root;
662
663 s->s_maxbytes = MAX_LFS_FILESIZE;
664 s->s_blocksize = PAGE_SIZE;
665 s->s_blocksize_bits = PAGE_SHIFT;
666 s->s_magic = ctx->magic;
667 s->s_op = ctx->ops ?: &simple_super_operations;
668 s->s_xattr = ctx->xattr;
669 s->s_time_gran = 1;
670 root = new_inode(s);
671 if (!root)
672 return -ENOMEM;
673
674 /*
675 * since this is the first inode, make it number 1. New inodes created
676 * after this must take care not to collide with it (by passing
677 * max_reserved of 1 to iunique).
678 */
679 root->i_ino = 1;
680 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
681 simple_inode_init_ts(root);
682 s->s_root = d_make_root(root);
683 if (!s->s_root)
684 return -ENOMEM;
685 s->s_d_op = ctx->dops;
686 return 0;
687}
688
689static int pseudo_fs_get_tree(struct fs_context *fc)
690{
691 return get_tree_nodev(fc, pseudo_fs_fill_super);
692}
693
694static void pseudo_fs_free(struct fs_context *fc)
695{
696 kfree(fc->fs_private);
697}
698
699static const struct fs_context_operations pseudo_fs_context_ops = {
700 .free = pseudo_fs_free,
701 .get_tree = pseudo_fs_get_tree,
702};
703
704/*
705 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
706 * will never be mountable)
707 */
708struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
709 unsigned long magic)
710{
711 struct pseudo_fs_context *ctx;
712
713 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
714 if (likely(ctx)) {
715 ctx->magic = magic;
716 fc->fs_private = ctx;
717 fc->ops = &pseudo_fs_context_ops;
718 fc->sb_flags |= SB_NOUSER;
719 fc->global = true;
720 }
721 return ctx;
722}
723EXPORT_SYMBOL(init_pseudo);
724
725int simple_open(struct inode *inode, struct file *file)
726{
727 if (inode->i_private)
728 file->private_data = inode->i_private;
729 return 0;
730}
731EXPORT_SYMBOL(simple_open);
732
733int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
734{
735 struct inode *inode = d_inode(old_dentry);
736
737 inode_set_mtime_to_ts(dir,
738 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
739 inc_nlink(inode);
740 ihold(inode);
741 dget(dentry);
742 d_instantiate(dentry, inode);
743 return 0;
744}
745EXPORT_SYMBOL(simple_link);
746
747int simple_empty(struct dentry *dentry)
748{
749 struct dentry *child;
750 int ret = 0;
751
752 spin_lock(&dentry->d_lock);
753 hlist_for_each_entry(child, &dentry->d_children, d_sib) {
754 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
755 if (simple_positive(child)) {
756 spin_unlock(&child->d_lock);
757 goto out;
758 }
759 spin_unlock(&child->d_lock);
760 }
761 ret = 1;
762out:
763 spin_unlock(&dentry->d_lock);
764 return ret;
765}
766EXPORT_SYMBOL(simple_empty);
767
768int simple_unlink(struct inode *dir, struct dentry *dentry)
769{
770 struct inode *inode = d_inode(dentry);
771
772 inode_set_mtime_to_ts(dir,
773 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
774 drop_nlink(inode);
775 dput(dentry);
776 return 0;
777}
778EXPORT_SYMBOL(simple_unlink);
779
780int simple_rmdir(struct inode *dir, struct dentry *dentry)
781{
782 if (!simple_empty(dentry))
783 return -ENOTEMPTY;
784
785 drop_nlink(d_inode(dentry));
786 simple_unlink(dir, dentry);
787 drop_nlink(dir);
788 return 0;
789}
790EXPORT_SYMBOL(simple_rmdir);
791
792/**
793 * simple_rename_timestamp - update the various inode timestamps for rename
794 * @old_dir: old parent directory
795 * @old_dentry: dentry that is being renamed
796 * @new_dir: new parent directory
797 * @new_dentry: target for rename
798 *
799 * POSIX mandates that the old and new parent directories have their ctime and
800 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
801 * their ctime updated.
802 */
803void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
804 struct inode *new_dir, struct dentry *new_dentry)
805{
806 struct inode *newino = d_inode(new_dentry);
807
808 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
809 if (new_dir != old_dir)
810 inode_set_mtime_to_ts(new_dir,
811 inode_set_ctime_current(new_dir));
812 inode_set_ctime_current(d_inode(old_dentry));
813 if (newino)
814 inode_set_ctime_current(newino);
815}
816EXPORT_SYMBOL_GPL(simple_rename_timestamp);
817
818int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
819 struct inode *new_dir, struct dentry *new_dentry)
820{
821 bool old_is_dir = d_is_dir(old_dentry);
822 bool new_is_dir = d_is_dir(new_dentry);
823
824 if (old_dir != new_dir && old_is_dir != new_is_dir) {
825 if (old_is_dir) {
826 drop_nlink(old_dir);
827 inc_nlink(new_dir);
828 } else {
829 drop_nlink(new_dir);
830 inc_nlink(old_dir);
831 }
832 }
833 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
834 return 0;
835}
836EXPORT_SYMBOL_GPL(simple_rename_exchange);
837
838int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
839 struct dentry *old_dentry, struct inode *new_dir,
840 struct dentry *new_dentry, unsigned int flags)
841{
842 int they_are_dirs = d_is_dir(old_dentry);
843
844 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
845 return -EINVAL;
846
847 if (flags & RENAME_EXCHANGE)
848 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
849
850 if (!simple_empty(new_dentry))
851 return -ENOTEMPTY;
852
853 if (d_really_is_positive(new_dentry)) {
854 simple_unlink(new_dir, new_dentry);
855 if (they_are_dirs) {
856 drop_nlink(d_inode(new_dentry));
857 drop_nlink(old_dir);
858 }
859 } else if (they_are_dirs) {
860 drop_nlink(old_dir);
861 inc_nlink(new_dir);
862 }
863
864 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
865 return 0;
866}
867EXPORT_SYMBOL(simple_rename);
868
869/**
870 * simple_setattr - setattr for simple filesystem
871 * @idmap: idmap of the target mount
872 * @dentry: dentry
873 * @iattr: iattr structure
874 *
875 * Returns 0 on success, -error on failure.
876 *
877 * simple_setattr is a simple ->setattr implementation without a proper
878 * implementation of size changes.
879 *
880 * It can either be used for in-memory filesystems or special files
881 * on simple regular filesystems. Anything that needs to change on-disk
882 * or wire state on size changes needs its own setattr method.
883 */
884int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
885 struct iattr *iattr)
886{
887 struct inode *inode = d_inode(dentry);
888 int error;
889
890 error = setattr_prepare(idmap, dentry, iattr);
891 if (error)
892 return error;
893
894 if (iattr->ia_valid & ATTR_SIZE)
895 truncate_setsize(inode, iattr->ia_size);
896 setattr_copy(idmap, inode, iattr);
897 mark_inode_dirty(inode);
898 return 0;
899}
900EXPORT_SYMBOL(simple_setattr);
901
902static int simple_read_folio(struct file *file, struct folio *folio)
903{
904 folio_zero_range(folio, 0, folio_size(folio));
905 flush_dcache_folio(folio);
906 folio_mark_uptodate(folio);
907 folio_unlock(folio);
908 return 0;
909}
910
911int simple_write_begin(struct file *file, struct address_space *mapping,
912 loff_t pos, unsigned len,
913 struct folio **foliop, void **fsdata)
914{
915 struct folio *folio;
916
917 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
918 mapping_gfp_mask(mapping));
919 if (IS_ERR(folio))
920 return PTR_ERR(folio);
921
922 *foliop = folio;
923
924 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
925 size_t from = offset_in_folio(folio, pos);
926
927 folio_zero_segments(folio, 0, from,
928 from + len, folio_size(folio));
929 }
930 return 0;
931}
932EXPORT_SYMBOL(simple_write_begin);
933
934/**
935 * simple_write_end - .write_end helper for non-block-device FSes
936 * @file: See .write_end of address_space_operations
937 * @mapping: "
938 * @pos: "
939 * @len: "
940 * @copied: "
941 * @folio: "
942 * @fsdata: "
943 *
944 * simple_write_end does the minimum needed for updating a folio after
945 * writing is done. It has the same API signature as the .write_end of
946 * address_space_operations vector. So it can just be set onto .write_end for
947 * FSes that don't need any other processing. i_mutex is assumed to be held.
948 * Block based filesystems should use generic_write_end().
949 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
950 * is not called, so a filesystem that actually does store data in .write_inode
951 * should extend on what's done here with a call to mark_inode_dirty() in the
952 * case that i_size has changed.
953 *
954 * Use *ONLY* with simple_read_folio()
955 */
956static int simple_write_end(struct file *file, struct address_space *mapping,
957 loff_t pos, unsigned len, unsigned copied,
958 struct folio *folio, void *fsdata)
959{
960 struct inode *inode = folio->mapping->host;
961 loff_t last_pos = pos + copied;
962
963 /* zero the stale part of the folio if we did a short copy */
964 if (!folio_test_uptodate(folio)) {
965 if (copied < len) {
966 size_t from = offset_in_folio(folio, pos);
967
968 folio_zero_range(folio, from + copied, len - copied);
969 }
970 folio_mark_uptodate(folio);
971 }
972 /*
973 * No need to use i_size_read() here, the i_size
974 * cannot change under us because we hold the i_mutex.
975 */
976 if (last_pos > inode->i_size)
977 i_size_write(inode, last_pos);
978
979 folio_mark_dirty(folio);
980 folio_unlock(folio);
981 folio_put(folio);
982
983 return copied;
984}
985
986/*
987 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
988 */
989const struct address_space_operations ram_aops = {
990 .read_folio = simple_read_folio,
991 .write_begin = simple_write_begin,
992 .write_end = simple_write_end,
993 .dirty_folio = noop_dirty_folio,
994};
995EXPORT_SYMBOL(ram_aops);
996
997/*
998 * the inodes created here are not hashed. If you use iunique to generate
999 * unique inode values later for this filesystem, then you must take care
1000 * to pass it an appropriate max_reserved value to avoid collisions.
1001 */
1002int simple_fill_super(struct super_block *s, unsigned long magic,
1003 const struct tree_descr *files)
1004{
1005 struct inode *inode;
1006 struct dentry *dentry;
1007 int i;
1008
1009 s->s_blocksize = PAGE_SIZE;
1010 s->s_blocksize_bits = PAGE_SHIFT;
1011 s->s_magic = magic;
1012 s->s_op = &simple_super_operations;
1013 s->s_time_gran = 1;
1014
1015 inode = new_inode(s);
1016 if (!inode)
1017 return -ENOMEM;
1018 /*
1019 * because the root inode is 1, the files array must not contain an
1020 * entry at index 1
1021 */
1022 inode->i_ino = 1;
1023 inode->i_mode = S_IFDIR | 0755;
1024 simple_inode_init_ts(inode);
1025 inode->i_op = &simple_dir_inode_operations;
1026 inode->i_fop = &simple_dir_operations;
1027 set_nlink(inode, 2);
1028 s->s_root = d_make_root(inode);
1029 if (!s->s_root)
1030 return -ENOMEM;
1031 for (i = 0; !files->name || files->name[0]; i++, files++) {
1032 if (!files->name)
1033 continue;
1034
1035 /* warn if it tries to conflict with the root inode */
1036 if (unlikely(i == 1))
1037 printk(KERN_WARNING "%s: %s passed in a files array"
1038 "with an index of 1!\n", __func__,
1039 s->s_type->name);
1040
1041 dentry = d_alloc_name(s->s_root, files->name);
1042 if (!dentry)
1043 return -ENOMEM;
1044 inode = new_inode(s);
1045 if (!inode) {
1046 dput(dentry);
1047 return -ENOMEM;
1048 }
1049 inode->i_mode = S_IFREG | files->mode;
1050 simple_inode_init_ts(inode);
1051 inode->i_fop = files->ops;
1052 inode->i_ino = i;
1053 d_add(dentry, inode);
1054 }
1055 return 0;
1056}
1057EXPORT_SYMBOL(simple_fill_super);
1058
1059static DEFINE_SPINLOCK(pin_fs_lock);
1060
1061int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1062{
1063 struct vfsmount *mnt = NULL;
1064 spin_lock(&pin_fs_lock);
1065 if (unlikely(!*mount)) {
1066 spin_unlock(&pin_fs_lock);
1067 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1068 if (IS_ERR(mnt))
1069 return PTR_ERR(mnt);
1070 spin_lock(&pin_fs_lock);
1071 if (!*mount)
1072 *mount = mnt;
1073 }
1074 mntget(*mount);
1075 ++*count;
1076 spin_unlock(&pin_fs_lock);
1077 mntput(mnt);
1078 return 0;
1079}
1080EXPORT_SYMBOL(simple_pin_fs);
1081
1082void simple_release_fs(struct vfsmount **mount, int *count)
1083{
1084 struct vfsmount *mnt;
1085 spin_lock(&pin_fs_lock);
1086 mnt = *mount;
1087 if (!--*count)
1088 *mount = NULL;
1089 spin_unlock(&pin_fs_lock);
1090 mntput(mnt);
1091}
1092EXPORT_SYMBOL(simple_release_fs);
1093
1094/**
1095 * simple_read_from_buffer - copy data from the buffer to user space
1096 * @to: the user space buffer to read to
1097 * @count: the maximum number of bytes to read
1098 * @ppos: the current position in the buffer
1099 * @from: the buffer to read from
1100 * @available: the size of the buffer
1101 *
1102 * The simple_read_from_buffer() function reads up to @count bytes from the
1103 * buffer @from at offset @ppos into the user space address starting at @to.
1104 *
1105 * On success, the number of bytes read is returned and the offset @ppos is
1106 * advanced by this number, or negative value is returned on error.
1107 **/
1108ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1109 const void *from, size_t available)
1110{
1111 loff_t pos = *ppos;
1112 size_t ret;
1113
1114 if (pos < 0)
1115 return -EINVAL;
1116 if (pos >= available || !count)
1117 return 0;
1118 if (count > available - pos)
1119 count = available - pos;
1120 ret = copy_to_user(to, from + pos, count);
1121 if (ret == count)
1122 return -EFAULT;
1123 count -= ret;
1124 *ppos = pos + count;
1125 return count;
1126}
1127EXPORT_SYMBOL(simple_read_from_buffer);
1128
1129/**
1130 * simple_write_to_buffer - copy data from user space to the buffer
1131 * @to: the buffer to write to
1132 * @available: the size of the buffer
1133 * @ppos: the current position in the buffer
1134 * @from: the user space buffer to read from
1135 * @count: the maximum number of bytes to read
1136 *
1137 * The simple_write_to_buffer() function reads up to @count bytes from the user
1138 * space address starting at @from into the buffer @to at offset @ppos.
1139 *
1140 * On success, the number of bytes written is returned and the offset @ppos is
1141 * advanced by this number, or negative value is returned on error.
1142 **/
1143ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1144 const void __user *from, size_t count)
1145{
1146 loff_t pos = *ppos;
1147 size_t res;
1148
1149 if (pos < 0)
1150 return -EINVAL;
1151 if (pos >= available || !count)
1152 return 0;
1153 if (count > available - pos)
1154 count = available - pos;
1155 res = copy_from_user(to + pos, from, count);
1156 if (res == count)
1157 return -EFAULT;
1158 count -= res;
1159 *ppos = pos + count;
1160 return count;
1161}
1162EXPORT_SYMBOL(simple_write_to_buffer);
1163
1164/**
1165 * memory_read_from_buffer - copy data from the buffer
1166 * @to: the kernel space buffer to read to
1167 * @count: the maximum number of bytes to read
1168 * @ppos: the current position in the buffer
1169 * @from: the buffer to read from
1170 * @available: the size of the buffer
1171 *
1172 * The memory_read_from_buffer() function reads up to @count bytes from the
1173 * buffer @from at offset @ppos into the kernel space address starting at @to.
1174 *
1175 * On success, the number of bytes read is returned and the offset @ppos is
1176 * advanced by this number, or negative value is returned on error.
1177 **/
1178ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1179 const void *from, size_t available)
1180{
1181 loff_t pos = *ppos;
1182
1183 if (pos < 0)
1184 return -EINVAL;
1185 if (pos >= available)
1186 return 0;
1187 if (count > available - pos)
1188 count = available - pos;
1189 memcpy(to, from + pos, count);
1190 *ppos = pos + count;
1191
1192 return count;
1193}
1194EXPORT_SYMBOL(memory_read_from_buffer);
1195
1196/*
1197 * Transaction based IO.
1198 * The file expects a single write which triggers the transaction, and then
1199 * possibly a read which collects the result - which is stored in a
1200 * file-local buffer.
1201 */
1202
1203void simple_transaction_set(struct file *file, size_t n)
1204{
1205 struct simple_transaction_argresp *ar = file->private_data;
1206
1207 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1208
1209 /*
1210 * The barrier ensures that ar->size will really remain zero until
1211 * ar->data is ready for reading.
1212 */
1213 smp_mb();
1214 ar->size = n;
1215}
1216EXPORT_SYMBOL(simple_transaction_set);
1217
1218char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1219{
1220 struct simple_transaction_argresp *ar;
1221 static DEFINE_SPINLOCK(simple_transaction_lock);
1222
1223 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1224 return ERR_PTR(-EFBIG);
1225
1226 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1227 if (!ar)
1228 return ERR_PTR(-ENOMEM);
1229
1230 spin_lock(&simple_transaction_lock);
1231
1232 /* only one write allowed per open */
1233 if (file->private_data) {
1234 spin_unlock(&simple_transaction_lock);
1235 free_page((unsigned long)ar);
1236 return ERR_PTR(-EBUSY);
1237 }
1238
1239 file->private_data = ar;
1240
1241 spin_unlock(&simple_transaction_lock);
1242
1243 if (copy_from_user(ar->data, buf, size))
1244 return ERR_PTR(-EFAULT);
1245
1246 return ar->data;
1247}
1248EXPORT_SYMBOL(simple_transaction_get);
1249
1250ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1251{
1252 struct simple_transaction_argresp *ar = file->private_data;
1253
1254 if (!ar)
1255 return 0;
1256 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1257}
1258EXPORT_SYMBOL(simple_transaction_read);
1259
1260int simple_transaction_release(struct inode *inode, struct file *file)
1261{
1262 free_page((unsigned long)file->private_data);
1263 return 0;
1264}
1265EXPORT_SYMBOL(simple_transaction_release);
1266
1267/* Simple attribute files */
1268
1269struct simple_attr {
1270 int (*get)(void *, u64 *);
1271 int (*set)(void *, u64);
1272 char get_buf[24]; /* enough to store a u64 and "\n\0" */
1273 char set_buf[24];
1274 void *data;
1275 const char *fmt; /* format for read operation */
1276 struct mutex mutex; /* protects access to these buffers */
1277};
1278
1279/* simple_attr_open is called by an actual attribute open file operation
1280 * to set the attribute specific access operations. */
1281int simple_attr_open(struct inode *inode, struct file *file,
1282 int (*get)(void *, u64 *), int (*set)(void *, u64),
1283 const char *fmt)
1284{
1285 struct simple_attr *attr;
1286
1287 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1288 if (!attr)
1289 return -ENOMEM;
1290
1291 attr->get = get;
1292 attr->set = set;
1293 attr->data = inode->i_private;
1294 attr->fmt = fmt;
1295 mutex_init(&attr->mutex);
1296
1297 file->private_data = attr;
1298
1299 return nonseekable_open(inode, file);
1300}
1301EXPORT_SYMBOL_GPL(simple_attr_open);
1302
1303int simple_attr_release(struct inode *inode, struct file *file)
1304{
1305 kfree(file->private_data);
1306 return 0;
1307}
1308EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
1309
1310/* read from the buffer that is filled with the get function */
1311ssize_t simple_attr_read(struct file *file, char __user *buf,
1312 size_t len, loff_t *ppos)
1313{
1314 struct simple_attr *attr;
1315 size_t size;
1316 ssize_t ret;
1317
1318 attr = file->private_data;
1319
1320 if (!attr->get)
1321 return -EACCES;
1322
1323 ret = mutex_lock_interruptible(&attr->mutex);
1324 if (ret)
1325 return ret;
1326
1327 if (*ppos && attr->get_buf[0]) {
1328 /* continued read */
1329 size = strlen(attr->get_buf);
1330 } else {
1331 /* first read */
1332 u64 val;
1333 ret = attr->get(attr->data, &val);
1334 if (ret)
1335 goto out;
1336
1337 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1338 attr->fmt, (unsigned long long)val);
1339 }
1340
1341 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1342out:
1343 mutex_unlock(&attr->mutex);
1344 return ret;
1345}
1346EXPORT_SYMBOL_GPL(simple_attr_read);
1347
1348/* interpret the buffer as a number to call the set function with */
1349static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1350 size_t len, loff_t *ppos, bool is_signed)
1351{
1352 struct simple_attr *attr;
1353 unsigned long long val;
1354 size_t size;
1355 ssize_t ret;
1356
1357 attr = file->private_data;
1358 if (!attr->set)
1359 return -EACCES;
1360
1361 ret = mutex_lock_interruptible(&attr->mutex);
1362 if (ret)
1363 return ret;
1364
1365 ret = -EFAULT;
1366 size = min(sizeof(attr->set_buf) - 1, len);
1367 if (copy_from_user(attr->set_buf, buf, size))
1368 goto out;
1369
1370 attr->set_buf[size] = '\0';
1371 if (is_signed)
1372 ret = kstrtoll(attr->set_buf, 0, &val);
1373 else
1374 ret = kstrtoull(attr->set_buf, 0, &val);
1375 if (ret)
1376 goto out;
1377 ret = attr->set(attr->data, val);
1378 if (ret == 0)
1379 ret = len; /* on success, claim we got the whole input */
1380out:
1381 mutex_unlock(&attr->mutex);
1382 return ret;
1383}
1384
1385ssize_t simple_attr_write(struct file *file, const char __user *buf,
1386 size_t len, loff_t *ppos)
1387{
1388 return simple_attr_write_xsigned(file, buf, len, ppos, false);
1389}
1390EXPORT_SYMBOL_GPL(simple_attr_write);
1391
1392ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1393 size_t len, loff_t *ppos)
1394{
1395 return simple_attr_write_xsigned(file, buf, len, ppos, true);
1396}
1397EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1398
1399/**
1400 * generic_encode_ino32_fh - generic export_operations->encode_fh function
1401 * @inode: the object to encode
1402 * @fh: where to store the file handle fragment
1403 * @max_len: maximum length to store there (in 4 byte units)
1404 * @parent: parent directory inode, if wanted
1405 *
1406 * This generic encode_fh function assumes that the 32 inode number
1407 * is suitable for locating an inode, and that the generation number
1408 * can be used to check that it is still valid. It places them in the
1409 * filehandle fragment where export_decode_fh expects to find them.
1410 */
1411int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1412 struct inode *parent)
1413{
1414 struct fid *fid = (void *)fh;
1415 int len = *max_len;
1416 int type = FILEID_INO32_GEN;
1417
1418 if (parent && (len < 4)) {
1419 *max_len = 4;
1420 return FILEID_INVALID;
1421 } else if (len < 2) {
1422 *max_len = 2;
1423 return FILEID_INVALID;
1424 }
1425
1426 len = 2;
1427 fid->i32.ino = inode->i_ino;
1428 fid->i32.gen = inode->i_generation;
1429 if (parent) {
1430 fid->i32.parent_ino = parent->i_ino;
1431 fid->i32.parent_gen = parent->i_generation;
1432 len = 4;
1433 type = FILEID_INO32_GEN_PARENT;
1434 }
1435 *max_len = len;
1436 return type;
1437}
1438EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1439
1440/**
1441 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1442 * @sb: filesystem to do the file handle conversion on
1443 * @fid: file handle to convert
1444 * @fh_len: length of the file handle in bytes
1445 * @fh_type: type of file handle
1446 * @get_inode: filesystem callback to retrieve inode
1447 *
1448 * This function decodes @fid as long as it has one of the well-known
1449 * Linux filehandle types and calls @get_inode on it to retrieve the
1450 * inode for the object specified in the file handle.
1451 */
1452struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1453 int fh_len, int fh_type, struct inode *(*get_inode)
1454 (struct super_block *sb, u64 ino, u32 gen))
1455{
1456 struct inode *inode = NULL;
1457
1458 if (fh_len < 2)
1459 return NULL;
1460
1461 switch (fh_type) {
1462 case FILEID_INO32_GEN:
1463 case FILEID_INO32_GEN_PARENT:
1464 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1465 break;
1466 }
1467
1468 return d_obtain_alias(inode);
1469}
1470EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1471
1472/**
1473 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1474 * @sb: filesystem to do the file handle conversion on
1475 * @fid: file handle to convert
1476 * @fh_len: length of the file handle in bytes
1477 * @fh_type: type of file handle
1478 * @get_inode: filesystem callback to retrieve inode
1479 *
1480 * This function decodes @fid as long as it has one of the well-known
1481 * Linux filehandle types and calls @get_inode on it to retrieve the
1482 * inode for the _parent_ object specified in the file handle if it
1483 * is specified in the file handle, or NULL otherwise.
1484 */
1485struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1486 int fh_len, int fh_type, struct inode *(*get_inode)
1487 (struct super_block *sb, u64 ino, u32 gen))
1488{
1489 struct inode *inode = NULL;
1490
1491 if (fh_len <= 2)
1492 return NULL;
1493
1494 switch (fh_type) {
1495 case FILEID_INO32_GEN_PARENT:
1496 inode = get_inode(sb, fid->i32.parent_ino,
1497 (fh_len > 3 ? fid->i32.parent_gen : 0));
1498 break;
1499 }
1500
1501 return d_obtain_alias(inode);
1502}
1503EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1504
1505/**
1506 * __generic_file_fsync - generic fsync implementation for simple filesystems
1507 *
1508 * @file: file to synchronize
1509 * @start: start offset in bytes
1510 * @end: end offset in bytes (inclusive)
1511 * @datasync: only synchronize essential metadata if true
1512 *
1513 * This is a generic implementation of the fsync method for simple
1514 * filesystems which track all non-inode metadata in the buffers list
1515 * hanging off the address_space structure.
1516 */
1517int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1518 int datasync)
1519{
1520 struct inode *inode = file->f_mapping->host;
1521 int err;
1522 int ret;
1523
1524 err = file_write_and_wait_range(file, start, end);
1525 if (err)
1526 return err;
1527
1528 inode_lock(inode);
1529 ret = sync_mapping_buffers(inode->i_mapping);
1530 if (!(inode->i_state & I_DIRTY_ALL))
1531 goto out;
1532 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1533 goto out;
1534
1535 err = sync_inode_metadata(inode, 1);
1536 if (ret == 0)
1537 ret = err;
1538
1539out:
1540 inode_unlock(inode);
1541 /* check and advance again to catch errors after syncing out buffers */
1542 err = file_check_and_advance_wb_err(file);
1543 if (ret == 0)
1544 ret = err;
1545 return ret;
1546}
1547EXPORT_SYMBOL(__generic_file_fsync);
1548
1549/**
1550 * generic_file_fsync - generic fsync implementation for simple filesystems
1551 * with flush
1552 * @file: file to synchronize
1553 * @start: start offset in bytes
1554 * @end: end offset in bytes (inclusive)
1555 * @datasync: only synchronize essential metadata if true
1556 *
1557 */
1558
1559int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1560 int datasync)
1561{
1562 struct inode *inode = file->f_mapping->host;
1563 int err;
1564
1565 err = __generic_file_fsync(file, start, end, datasync);
1566 if (err)
1567 return err;
1568 return blkdev_issue_flush(inode->i_sb->s_bdev);
1569}
1570EXPORT_SYMBOL(generic_file_fsync);
1571
1572/**
1573 * generic_check_addressable - Check addressability of file system
1574 * @blocksize_bits: log of file system block size
1575 * @num_blocks: number of blocks in file system
1576 *
1577 * Determine whether a file system with @num_blocks blocks (and a
1578 * block size of 2**@blocksize_bits) is addressable by the sector_t
1579 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1580 */
1581int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1582{
1583 u64 last_fs_block = num_blocks - 1;
1584 u64 last_fs_page =
1585 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1586
1587 if (unlikely(num_blocks == 0))
1588 return 0;
1589
1590 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1591 return -EINVAL;
1592
1593 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1594 (last_fs_page > (pgoff_t)(~0ULL))) {
1595 return -EFBIG;
1596 }
1597 return 0;
1598}
1599EXPORT_SYMBOL(generic_check_addressable);
1600
1601/*
1602 * No-op implementation of ->fsync for in-memory filesystems.
1603 */
1604int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1605{
1606 return 0;
1607}
1608EXPORT_SYMBOL(noop_fsync);
1609
1610ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1611{
1612 /*
1613 * iomap based filesystems support direct I/O without need for
1614 * this callback. However, it still needs to be set in
1615 * inode->a_ops so that open/fcntl know that direct I/O is
1616 * generally supported.
1617 */
1618 return -EINVAL;
1619}
1620EXPORT_SYMBOL_GPL(noop_direct_IO);
1621
1622/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1623void kfree_link(void *p)
1624{
1625 kfree(p);
1626}
1627EXPORT_SYMBOL(kfree_link);
1628
1629struct inode *alloc_anon_inode(struct super_block *s)
1630{
1631 static const struct address_space_operations anon_aops = {
1632 .dirty_folio = noop_dirty_folio,
1633 };
1634 struct inode *inode = new_inode_pseudo(s);
1635
1636 if (!inode)
1637 return ERR_PTR(-ENOMEM);
1638
1639 inode->i_ino = get_next_ino();
1640 inode->i_mapping->a_ops = &anon_aops;
1641
1642 /*
1643 * Mark the inode dirty from the very beginning,
1644 * that way it will never be moved to the dirty
1645 * list because mark_inode_dirty() will think
1646 * that it already _is_ on the dirty list.
1647 */
1648 inode->i_state = I_DIRTY;
1649 inode->i_mode = S_IRUSR | S_IWUSR;
1650 inode->i_uid = current_fsuid();
1651 inode->i_gid = current_fsgid();
1652 inode->i_flags |= S_PRIVATE;
1653 simple_inode_init_ts(inode);
1654 return inode;
1655}
1656EXPORT_SYMBOL(alloc_anon_inode);
1657
1658/**
1659 * simple_nosetlease - generic helper for prohibiting leases
1660 * @filp: file pointer
1661 * @arg: type of lease to obtain
1662 * @flp: new lease supplied for insertion
1663 * @priv: private data for lm_setup operation
1664 *
1665 * Generic helper for filesystems that do not wish to allow leases to be set.
1666 * All arguments are ignored and it just returns -EINVAL.
1667 */
1668int
1669simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1670 void **priv)
1671{
1672 return -EINVAL;
1673}
1674EXPORT_SYMBOL(simple_nosetlease);
1675
1676/**
1677 * simple_get_link - generic helper to get the target of "fast" symlinks
1678 * @dentry: not used here
1679 * @inode: the symlink inode
1680 * @done: not used here
1681 *
1682 * Generic helper for filesystems to use for symlink inodes where a pointer to
1683 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1684 * since as an optimization the path lookup code uses any non-NULL ->i_link
1685 * directly, without calling ->get_link(). But ->get_link() still must be set,
1686 * to mark the inode_operations as being for a symlink.
1687 *
1688 * Return: the symlink target
1689 */
1690const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1691 struct delayed_call *done)
1692{
1693 return inode->i_link;
1694}
1695EXPORT_SYMBOL(simple_get_link);
1696
1697const struct inode_operations simple_symlink_inode_operations = {
1698 .get_link = simple_get_link,
1699};
1700EXPORT_SYMBOL(simple_symlink_inode_operations);
1701
1702/*
1703 * Operations for a permanently empty directory.
1704 */
1705static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1706{
1707 return ERR_PTR(-ENOENT);
1708}
1709
1710static int empty_dir_setattr(struct mnt_idmap *idmap,
1711 struct dentry *dentry, struct iattr *attr)
1712{
1713 return -EPERM;
1714}
1715
1716static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1717{
1718 return -EOPNOTSUPP;
1719}
1720
1721static const struct inode_operations empty_dir_inode_operations = {
1722 .lookup = empty_dir_lookup,
1723 .setattr = empty_dir_setattr,
1724 .listxattr = empty_dir_listxattr,
1725};
1726
1727static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1728{
1729 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1730 return generic_file_llseek_size(file, offset, whence, 2, 2);
1731}
1732
1733static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1734{
1735 dir_emit_dots(file, ctx);
1736 return 0;
1737}
1738
1739static const struct file_operations empty_dir_operations = {
1740 .llseek = empty_dir_llseek,
1741 .read = generic_read_dir,
1742 .iterate_shared = empty_dir_readdir,
1743 .fsync = noop_fsync,
1744};
1745
1746
1747void make_empty_dir_inode(struct inode *inode)
1748{
1749 set_nlink(inode, 2);
1750 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1751 inode->i_uid = GLOBAL_ROOT_UID;
1752 inode->i_gid = GLOBAL_ROOT_GID;
1753 inode->i_rdev = 0;
1754 inode->i_size = 0;
1755 inode->i_blkbits = PAGE_SHIFT;
1756 inode->i_blocks = 0;
1757
1758 inode->i_op = &empty_dir_inode_operations;
1759 inode->i_opflags &= ~IOP_XATTR;
1760 inode->i_fop = &empty_dir_operations;
1761}
1762
1763bool is_empty_dir_inode(struct inode *inode)
1764{
1765 return (inode->i_fop == &empty_dir_operations) &&
1766 (inode->i_op == &empty_dir_inode_operations);
1767}
1768
1769#if IS_ENABLED(CONFIG_UNICODE)
1770/**
1771 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1772 * @dentry: dentry whose name we are checking against
1773 * @len: len of name of dentry
1774 * @str: str pointer to name of dentry
1775 * @name: Name to compare against
1776 *
1777 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1778 */
1779int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1780 const char *str, const struct qstr *name)
1781{
1782 const struct dentry *parent;
1783 const struct inode *dir;
1784 char strbuf[DNAME_INLINE_LEN];
1785 struct qstr qstr;
1786
1787 /*
1788 * Attempt a case-sensitive match first. It is cheaper and
1789 * should cover most lookups, including all the sane
1790 * applications that expect a case-sensitive filesystem.
1791 *
1792 * This comparison is safe under RCU because the caller
1793 * guarantees the consistency between str and len. See
1794 * __d_lookup_rcu_op_compare() for details.
1795 */
1796 if (len == name->len && !memcmp(str, name->name, len))
1797 return 0;
1798
1799 parent = READ_ONCE(dentry->d_parent);
1800 dir = READ_ONCE(parent->d_inode);
1801 if (!dir || !IS_CASEFOLDED(dir))
1802 return 1;
1803
1804 /*
1805 * If the dentry name is stored in-line, then it may be concurrently
1806 * modified by a rename. If this happens, the VFS will eventually retry
1807 * the lookup, so it doesn't matter what ->d_compare() returns.
1808 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1809 * string. Therefore, we have to copy the name into a temporary buffer.
1810 */
1811 if (len <= DNAME_INLINE_LEN - 1) {
1812 memcpy(strbuf, str, len);
1813 strbuf[len] = 0;
1814 str = strbuf;
1815 /* prevent compiler from optimizing out the temporary buffer */
1816 barrier();
1817 }
1818 qstr.len = len;
1819 qstr.name = str;
1820
1821 return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1822}
1823EXPORT_SYMBOL(generic_ci_d_compare);
1824
1825/**
1826 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1827 * @dentry: dentry of the parent directory
1828 * @str: qstr of name whose hash we should fill in
1829 *
1830 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1831 */
1832int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1833{
1834 const struct inode *dir = READ_ONCE(dentry->d_inode);
1835 struct super_block *sb = dentry->d_sb;
1836 const struct unicode_map *um = sb->s_encoding;
1837 int ret;
1838
1839 if (!dir || !IS_CASEFOLDED(dir))
1840 return 0;
1841
1842 ret = utf8_casefold_hash(um, dentry, str);
1843 if (ret < 0 && sb_has_strict_encoding(sb))
1844 return -EINVAL;
1845 return 0;
1846}
1847EXPORT_SYMBOL(generic_ci_d_hash);
1848
1849static const struct dentry_operations generic_ci_dentry_ops = {
1850 .d_hash = generic_ci_d_hash,
1851 .d_compare = generic_ci_d_compare,
1852#ifdef CONFIG_FS_ENCRYPTION
1853 .d_revalidate = fscrypt_d_revalidate,
1854#endif
1855};
1856
1857/**
1858 * generic_ci_match() - Match a name (case-insensitively) with a dirent.
1859 * This is a filesystem helper for comparison with directory entries.
1860 * generic_ci_d_compare should be used in VFS' ->d_compare instead.
1861 *
1862 * @parent: Inode of the parent of the dirent under comparison
1863 * @name: name under lookup.
1864 * @folded_name: Optional pre-folded name under lookup
1865 * @de_name: Dirent name.
1866 * @de_name_len: dirent name length.
1867 *
1868 * Test whether a case-insensitive directory entry matches the filename
1869 * being searched. If @folded_name is provided, it is used instead of
1870 * recalculating the casefold of @name.
1871 *
1872 * Return: > 0 if the directory entry matches, 0 if it doesn't match, or
1873 * < 0 on error.
1874 */
1875int generic_ci_match(const struct inode *parent,
1876 const struct qstr *name,
1877 const struct qstr *folded_name,
1878 const u8 *de_name, u32 de_name_len)
1879{
1880 const struct super_block *sb = parent->i_sb;
1881 const struct unicode_map *um = sb->s_encoding;
1882 struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
1883 struct qstr dirent = QSTR_INIT(de_name, de_name_len);
1884 int res = 0;
1885
1886 if (IS_ENCRYPTED(parent)) {
1887 const struct fscrypt_str encrypted_name =
1888 FSTR_INIT((u8 *) de_name, de_name_len);
1889
1890 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent)))
1891 return -EINVAL;
1892
1893 decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
1894 if (!decrypted_name.name)
1895 return -ENOMEM;
1896 res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
1897 &decrypted_name);
1898 if (res < 0) {
1899 kfree(decrypted_name.name);
1900 return res;
1901 }
1902 dirent.name = decrypted_name.name;
1903 dirent.len = decrypted_name.len;
1904 }
1905
1906 /*
1907 * Attempt a case-sensitive match first. It is cheaper and
1908 * should cover most lookups, including all the sane
1909 * applications that expect a case-sensitive filesystem.
1910 */
1911
1912 if (dirent.len == name->len &&
1913 !memcmp(name->name, dirent.name, dirent.len))
1914 goto out;
1915
1916 if (folded_name->name)
1917 res = utf8_strncasecmp_folded(um, folded_name, &dirent);
1918 else
1919 res = utf8_strncasecmp(um, name, &dirent);
1920
1921out:
1922 kfree(decrypted_name.name);
1923 if (res < 0 && sb_has_strict_encoding(sb)) {
1924 pr_err_ratelimited("Directory contains filename that is invalid UTF-8");
1925 return 0;
1926 }
1927 return !res;
1928}
1929EXPORT_SYMBOL(generic_ci_match);
1930#endif
1931
1932#ifdef CONFIG_FS_ENCRYPTION
1933static const struct dentry_operations generic_encrypted_dentry_ops = {
1934 .d_revalidate = fscrypt_d_revalidate,
1935};
1936#endif
1937
1938/**
1939 * generic_set_sb_d_ops - helper for choosing the set of
1940 * filesystem-wide dentry operations for the enabled features
1941 * @sb: superblock to be configured
1942 *
1943 * Filesystems supporting casefolding and/or fscrypt can call this
1944 * helper at mount-time to configure sb->s_d_op to best set of dentry
1945 * operations required for the enabled features. The helper must be
1946 * called after these have been configured, but before the root dentry
1947 * is created.
1948 */
1949void generic_set_sb_d_ops(struct super_block *sb)
1950{
1951#if IS_ENABLED(CONFIG_UNICODE)
1952 if (sb->s_encoding) {
1953 sb->s_d_op = &generic_ci_dentry_ops;
1954 return;
1955 }
1956#endif
1957#ifdef CONFIG_FS_ENCRYPTION
1958 if (sb->s_cop) {
1959 sb->s_d_op = &generic_encrypted_dentry_ops;
1960 return;
1961 }
1962#endif
1963}
1964EXPORT_SYMBOL(generic_set_sb_d_ops);
1965
1966/**
1967 * inode_maybe_inc_iversion - increments i_version
1968 * @inode: inode with the i_version that should be updated
1969 * @force: increment the counter even if it's not necessary?
1970 *
1971 * Every time the inode is modified, the i_version field must be seen to have
1972 * changed by any observer.
1973 *
1974 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1975 * the value, and clear the queried flag.
1976 *
1977 * In the common case where neither is set, then we can return "false" without
1978 * updating i_version.
1979 *
1980 * If this function returns false, and no other metadata has changed, then we
1981 * can avoid logging the metadata.
1982 */
1983bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1984{
1985 u64 cur, new;
1986
1987 /*
1988 * The i_version field is not strictly ordered with any other inode
1989 * information, but the legacy inode_inc_iversion code used a spinlock
1990 * to serialize increments.
1991 *
1992 * We add a full memory barrier to ensure that any de facto ordering
1993 * with other state is preserved (either implicitly coming from cmpxchg
1994 * or explicitly from smp_mb if we don't know upfront if we will execute
1995 * the former).
1996 *
1997 * These barriers pair with inode_query_iversion().
1998 */
1999 cur = inode_peek_iversion_raw(inode);
2000 if (!force && !(cur & I_VERSION_QUERIED)) {
2001 smp_mb();
2002 cur = inode_peek_iversion_raw(inode);
2003 }
2004
2005 do {
2006 /* If flag is clear then we needn't do anything */
2007 if (!force && !(cur & I_VERSION_QUERIED))
2008 return false;
2009
2010 /* Since lowest bit is flag, add 2 to avoid it */
2011 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
2012 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2013 return true;
2014}
2015EXPORT_SYMBOL(inode_maybe_inc_iversion);
2016
2017/**
2018 * inode_query_iversion - read i_version for later use
2019 * @inode: inode from which i_version should be read
2020 *
2021 * Read the inode i_version counter. This should be used by callers that wish
2022 * to store the returned i_version for later comparison. This will guarantee
2023 * that a later query of the i_version will result in a different value if
2024 * anything has changed.
2025 *
2026 * In this implementation, we fetch the current value, set the QUERIED flag and
2027 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
2028 * that fails, we try again with the newly fetched value from the cmpxchg.
2029 */
2030u64 inode_query_iversion(struct inode *inode)
2031{
2032 u64 cur, new;
2033 bool fenced = false;
2034
2035 /*
2036 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with
2037 * inode_maybe_inc_iversion(), see that routine for more details.
2038 */
2039 cur = inode_peek_iversion_raw(inode);
2040 do {
2041 /* If flag is already set, then no need to swap */
2042 if (cur & I_VERSION_QUERIED) {
2043 if (!fenced)
2044 smp_mb();
2045 break;
2046 }
2047
2048 fenced = true;
2049 new = cur | I_VERSION_QUERIED;
2050 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2051 return cur >> I_VERSION_QUERIED_SHIFT;
2052}
2053EXPORT_SYMBOL(inode_query_iversion);
2054
2055ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2056 ssize_t direct_written, ssize_t buffered_written)
2057{
2058 struct address_space *mapping = iocb->ki_filp->f_mapping;
2059 loff_t pos = iocb->ki_pos - buffered_written;
2060 loff_t end = iocb->ki_pos - 1;
2061 int err;
2062
2063 /*
2064 * If the buffered write fallback returned an error, we want to return
2065 * the number of bytes which were written by direct I/O, or the error
2066 * code if that was zero.
2067 *
2068 * Note that this differs from normal direct-io semantics, which will
2069 * return -EFOO even if some bytes were written.
2070 */
2071 if (unlikely(buffered_written < 0)) {
2072 if (direct_written)
2073 return direct_written;
2074 return buffered_written;
2075 }
2076
2077 /*
2078 * We need to ensure that the page cache pages are written to disk and
2079 * invalidated to preserve the expected O_DIRECT semantics.
2080 */
2081 err = filemap_write_and_wait_range(mapping, pos, end);
2082 if (err < 0) {
2083 /*
2084 * We don't know how much we wrote, so just return the number of
2085 * bytes which were direct-written
2086 */
2087 iocb->ki_pos -= buffered_written;
2088 if (direct_written)
2089 return direct_written;
2090 return err;
2091 }
2092 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2093 return direct_written + buffered_written;
2094}
2095EXPORT_SYMBOL_GPL(direct_write_fallback);
2096
2097/**
2098 * simple_inode_init_ts - initialize the timestamps for a new inode
2099 * @inode: inode to be initialized
2100 *
2101 * When a new inode is created, most filesystems set the timestamps to the
2102 * current time. Add a helper to do this.
2103 */
2104struct timespec64 simple_inode_init_ts(struct inode *inode)
2105{
2106 struct timespec64 ts = inode_set_ctime_current(inode);
2107
2108 inode_set_atime_to_ts(inode, ts);
2109 inode_set_mtime_to_ts(inode, ts);
2110 return ts;
2111}
2112EXPORT_SYMBOL(simple_inode_init_ts);
2113
2114static inline struct dentry *get_stashed_dentry(struct dentry **stashed)
2115{
2116 struct dentry *dentry;
2117
2118 guard(rcu)();
2119 dentry = rcu_dereference(*stashed);
2120 if (!dentry)
2121 return NULL;
2122 if (!lockref_get_not_dead(&dentry->d_lockref))
2123 return NULL;
2124 return dentry;
2125}
2126
2127static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2128 struct super_block *sb,
2129 void *data)
2130{
2131 struct dentry *dentry;
2132 struct inode *inode;
2133 const struct stashed_operations *sops = sb->s_fs_info;
2134 int ret;
2135
2136 inode = new_inode_pseudo(sb);
2137 if (!inode) {
2138 sops->put_data(data);
2139 return ERR_PTR(-ENOMEM);
2140 }
2141
2142 inode->i_flags |= S_IMMUTABLE;
2143 inode->i_mode = S_IFREG;
2144 simple_inode_init_ts(inode);
2145
2146 ret = sops->init_inode(inode, data);
2147 if (ret < 0) {
2148 iput(inode);
2149 return ERR_PTR(ret);
2150 }
2151
2152 /* Notice when this is changed. */
2153 WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2154 WARN_ON_ONCE(!IS_IMMUTABLE(inode));
2155
2156 dentry = d_alloc_anon(sb);
2157 if (!dentry) {
2158 iput(inode);
2159 return ERR_PTR(-ENOMEM);
2160 }
2161
2162 /* Store address of location where dentry's supposed to be stashed. */
2163 dentry->d_fsdata = stashed;
2164
2165 /* @data is now owned by the fs */
2166 d_instantiate(dentry, inode);
2167 return dentry;
2168}
2169
2170static struct dentry *stash_dentry(struct dentry **stashed,
2171 struct dentry *dentry)
2172{
2173 guard(rcu)();
2174 for (;;) {
2175 struct dentry *old;
2176
2177 /* Assume any old dentry was cleared out. */
2178 old = cmpxchg(stashed, NULL, dentry);
2179 if (likely(!old))
2180 return dentry;
2181
2182 /* Check if somebody else installed a reusable dentry. */
2183 if (lockref_get_not_dead(&old->d_lockref))
2184 return old;
2185
2186 /* There's an old dead dentry there, try to take it over. */
2187 if (likely(try_cmpxchg(stashed, &old, dentry)))
2188 return dentry;
2189 }
2190}
2191
2192/**
2193 * path_from_stashed - create path from stashed or new dentry
2194 * @stashed: where to retrieve or stash dentry
2195 * @mnt: mnt of the filesystems to use
2196 * @data: data to store in inode->i_private
2197 * @path: path to create
2198 *
2199 * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2200 * is still valid then it will be reused. If the dentry isn't able the function
2201 * will allocate a new dentry and inode. It will then check again whether it
2202 * can reuse an existing dentry in case one has been added in the meantime or
2203 * update @stashed with the newly added dentry.
2204 *
2205 * Special-purpose helper for nsfs and pidfs.
2206 *
2207 * Return: On success zero and on failure a negative error is returned.
2208 */
2209int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2210 struct path *path)
2211{
2212 struct dentry *dentry;
2213 const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2214
2215 /* See if dentry can be reused. */
2216 path->dentry = get_stashed_dentry(stashed);
2217 if (path->dentry) {
2218 sops->put_data(data);
2219 goto out_path;
2220 }
2221
2222 /* Allocate a new dentry. */
2223 dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2224 if (IS_ERR(dentry))
2225 return PTR_ERR(dentry);
2226
2227 /* Added a new dentry. @data is now owned by the filesystem. */
2228 path->dentry = stash_dentry(stashed, dentry);
2229 if (path->dentry != dentry)
2230 dput(dentry);
2231
2232out_path:
2233 WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2234 WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2235 path->mnt = mntget(mnt);
2236 return 0;
2237}
2238
2239void stashed_dentry_prune(struct dentry *dentry)
2240{
2241 struct dentry **stashed = dentry->d_fsdata;
2242 struct inode *inode = d_inode(dentry);
2243
2244 if (WARN_ON_ONCE(!stashed))
2245 return;
2246
2247 if (!inode)
2248 return;
2249
2250 /*
2251 * Only replace our own @dentry as someone else might've
2252 * already cleared out @dentry and stashed their own
2253 * dentry in there.
2254 */
2255 cmpxchg(stashed, dentry, NULL);
2256}