Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2015 MediaTek Inc.
4 * Author:
5 * Zhigang.Wei <zhigang.wei@mediatek.com>
6 * Chunfeng.Yun <chunfeng.yun@mediatek.com>
7 */
8
9#include <linux/kernel.h>
10#include <linux/module.h>
11#include <linux/slab.h>
12
13#include "xhci.h"
14#include "xhci-mtk.h"
15
16#define SSP_BW_BOUNDARY 130000
17#define SS_BW_BOUNDARY 51000
18/* table 5-5. High-speed Isoc Transaction Limits in usb_20 spec */
19#define HS_BW_BOUNDARY 6144
20/* usb2 spec section11.18.1: at most 188 FS bytes per microframe */
21#define FS_PAYLOAD_MAX 188
22#define LS_PAYLOAD_MAX 18
23/* section 11.18.1, per fs frame */
24#define FS_BW_BOUNDARY 1157
25#define LS_BW_BOUNDARY 144
26
27/*
28 * max number of microframes for split transfer, assume extra-cs budget is 0
29 * for fs isoc in : 1 ss + 1 idle + 6 cs (roundup(1023/188))
30 */
31#define TT_MICROFRAMES_MAX 8
32/* offset from SS for fs/ls isoc/intr ep (ss + idle) */
33#define CS_OFFSET 2
34
35#define DBG_BUF_EN 64
36
37/* schedule error type */
38#define ESCH_SS_Y6 1001
39#define ESCH_SS_OVERLAP 1002
40#define ESCH_CS_OVERFLOW 1003
41#define ESCH_BW_OVERFLOW 1004
42#define ESCH_FIXME 1005
43
44/* mtk scheduler bitmasks */
45#define EP_BPKTS(p) ((p) & 0x7f)
46#define EP_BCSCOUNT(p) (((p) & 0x7) << 8)
47#define EP_BBM(p) ((p) << 11)
48#define EP_BOFFSET(p) ((p) & 0x3fff)
49#define EP_BREPEAT(p) (((p) & 0x7fff) << 16)
50
51static char *sch_error_string(int err_num)
52{
53 switch (err_num) {
54 case ESCH_SS_Y6:
55 return "Can't schedule Start-Split in Y6";
56 case ESCH_SS_OVERLAP:
57 return "Can't find a suitable Start-Split location";
58 case ESCH_CS_OVERFLOW:
59 return "The last Complete-Split is greater than 7";
60 case ESCH_BW_OVERFLOW:
61 return "Bandwidth exceeds the maximum limit";
62 case ESCH_FIXME:
63 return "FIXME, to be resolved";
64 default:
65 return "Unknown";
66 }
67}
68
69static int is_fs_or_ls(enum usb_device_speed speed)
70{
71 return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW;
72}
73
74static const char *
75decode_ep(struct usb_host_endpoint *ep, enum usb_device_speed speed)
76{
77 static char buf[DBG_BUF_EN];
78 struct usb_endpoint_descriptor *epd = &ep->desc;
79 unsigned int interval;
80 const char *unit;
81
82 interval = usb_decode_interval(epd, speed);
83 if (interval % 1000) {
84 unit = "us";
85 } else {
86 unit = "ms";
87 interval /= 1000;
88 }
89
90 snprintf(buf, DBG_BUF_EN, "%s ep%d%s %s, mpkt:%d, interval:%d/%d%s",
91 usb_speed_string(speed), usb_endpoint_num(epd),
92 usb_endpoint_dir_in(epd) ? "in" : "out",
93 usb_ep_type_string(usb_endpoint_type(epd)),
94 usb_endpoint_maxp(epd), epd->bInterval, interval, unit);
95
96 return buf;
97}
98
99static u32 get_bw_boundary(enum usb_device_speed speed)
100{
101 u32 boundary;
102
103 switch (speed) {
104 case USB_SPEED_SUPER_PLUS:
105 boundary = SSP_BW_BOUNDARY;
106 break;
107 case USB_SPEED_SUPER:
108 boundary = SS_BW_BOUNDARY;
109 break;
110 default:
111 boundary = HS_BW_BOUNDARY;
112 break;
113 }
114
115 return boundary;
116}
117
118/*
119* get the bandwidth domain which @ep belongs to.
120*
121* the bandwidth domain array is saved to @sch_array of struct xhci_hcd_mtk,
122* each HS root port is treated as a single bandwidth domain,
123* but each SS root port is treated as two bandwidth domains, one for IN eps,
124* one for OUT eps.
125* @real_port value is defined as follow according to xHCI spec:
126* 1 for SSport0, ..., N+1 for SSportN, N+2 for HSport0, N+3 for HSport1, etc
127* so the bandwidth domain array is organized as follow for simplification:
128* SSport0-OUT, SSport0-IN, ..., SSportX-OUT, SSportX-IN, HSport0, ..., HSportY
129*/
130static struct mu3h_sch_bw_info *
131get_bw_info(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
132 struct usb_host_endpoint *ep)
133{
134 struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd);
135 struct xhci_virt_device *virt_dev;
136 int bw_index;
137
138 virt_dev = xhci->devs[udev->slot_id];
139 if (!virt_dev->real_port) {
140 WARN_ONCE(1, "%s invalid real_port\n", dev_name(&udev->dev));
141 return NULL;
142 }
143
144 if (udev->speed >= USB_SPEED_SUPER) {
145 if (usb_endpoint_dir_out(&ep->desc))
146 bw_index = (virt_dev->real_port - 1) * 2;
147 else
148 bw_index = (virt_dev->real_port - 1) * 2 + 1;
149 } else {
150 /* add one more for each SS port */
151 bw_index = virt_dev->real_port + xhci->usb3_rhub.num_ports - 1;
152 }
153
154 return &mtk->sch_array[bw_index];
155}
156
157static u32 get_esit(struct xhci_ep_ctx *ep_ctx)
158{
159 u32 esit;
160
161 esit = 1 << CTX_TO_EP_INTERVAL(le32_to_cpu(ep_ctx->ep_info));
162 if (esit > XHCI_MTK_MAX_ESIT)
163 esit = XHCI_MTK_MAX_ESIT;
164
165 return esit;
166}
167
168static struct mu3h_sch_tt *find_tt(struct usb_device *udev)
169{
170 struct usb_tt *utt = udev->tt;
171 struct mu3h_sch_tt *tt, **tt_index, **ptt;
172 bool allocated_index = false;
173
174 if (!utt)
175 return NULL; /* Not below a TT */
176
177 /*
178 * Find/create our data structure.
179 * For hubs with a single TT, we get it directly.
180 * For hubs with multiple TTs, there's an extra level of pointers.
181 */
182 tt_index = NULL;
183 if (utt->multi) {
184 tt_index = utt->hcpriv;
185 if (!tt_index) { /* Create the index array */
186 tt_index = kcalloc(utt->hub->maxchild,
187 sizeof(*tt_index), GFP_KERNEL);
188 if (!tt_index)
189 return ERR_PTR(-ENOMEM);
190 utt->hcpriv = tt_index;
191 allocated_index = true;
192 }
193 ptt = &tt_index[udev->ttport - 1];
194 } else {
195 ptt = (struct mu3h_sch_tt **) &utt->hcpriv;
196 }
197
198 tt = *ptt;
199 if (!tt) { /* Create the mu3h_sch_tt */
200 tt = kzalloc(sizeof(*tt), GFP_KERNEL);
201 if (!tt) {
202 if (allocated_index) {
203 utt->hcpriv = NULL;
204 kfree(tt_index);
205 }
206 return ERR_PTR(-ENOMEM);
207 }
208 INIT_LIST_HEAD(&tt->ep_list);
209 *ptt = tt;
210 }
211
212 return tt;
213}
214
215/* Release the TT above udev, if it's not in use */
216static void drop_tt(struct usb_device *udev)
217{
218 struct usb_tt *utt = udev->tt;
219 struct mu3h_sch_tt *tt, **tt_index, **ptt;
220 int i, cnt;
221
222 if (!utt || !utt->hcpriv)
223 return; /* Not below a TT, or never allocated */
224
225 cnt = 0;
226 if (utt->multi) {
227 tt_index = utt->hcpriv;
228 ptt = &tt_index[udev->ttport - 1];
229 /* How many entries are left in tt_index? */
230 for (i = 0; i < utt->hub->maxchild; ++i)
231 cnt += !!tt_index[i];
232 } else {
233 tt_index = NULL;
234 ptt = (struct mu3h_sch_tt **)&utt->hcpriv;
235 }
236
237 tt = *ptt;
238 if (!tt || !list_empty(&tt->ep_list))
239 return; /* never allocated , or still in use*/
240
241 *ptt = NULL;
242 kfree(tt);
243
244 if (cnt == 1) {
245 utt->hcpriv = NULL;
246 kfree(tt_index);
247 }
248}
249
250static struct mu3h_sch_ep_info *
251create_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
252 struct usb_host_endpoint *ep, struct xhci_ep_ctx *ep_ctx)
253{
254 struct mu3h_sch_ep_info *sch_ep;
255 struct mu3h_sch_bw_info *bw_info;
256 struct mu3h_sch_tt *tt = NULL;
257 u32 len;
258
259 bw_info = get_bw_info(mtk, udev, ep);
260 if (!bw_info)
261 return ERR_PTR(-ENODEV);
262
263 if (is_fs_or_ls(udev->speed))
264 len = TT_MICROFRAMES_MAX;
265 else if ((udev->speed >= USB_SPEED_SUPER) &&
266 usb_endpoint_xfer_isoc(&ep->desc))
267 len = get_esit(ep_ctx);
268 else
269 len = 1;
270
271 sch_ep = kzalloc(struct_size(sch_ep, bw_budget_table, len), GFP_KERNEL);
272 if (!sch_ep)
273 return ERR_PTR(-ENOMEM);
274
275 if (is_fs_or_ls(udev->speed)) {
276 tt = find_tt(udev);
277 if (IS_ERR(tt)) {
278 kfree(sch_ep);
279 return ERR_PTR(-ENOMEM);
280 }
281 }
282
283 sch_ep->bw_info = bw_info;
284 sch_ep->sch_tt = tt;
285 sch_ep->ep = ep;
286 sch_ep->speed = udev->speed;
287 INIT_LIST_HEAD(&sch_ep->endpoint);
288 INIT_LIST_HEAD(&sch_ep->tt_endpoint);
289 INIT_HLIST_NODE(&sch_ep->hentry);
290
291 return sch_ep;
292}
293
294static void setup_sch_info(struct xhci_ep_ctx *ep_ctx,
295 struct mu3h_sch_ep_info *sch_ep)
296{
297 u32 ep_type;
298 u32 maxpkt;
299 u32 max_burst;
300 u32 mult;
301 u32 esit_pkts;
302 u32 max_esit_payload;
303 u32 bw_per_microframe;
304 u32 *bwb_table;
305 int i;
306
307 bwb_table = sch_ep->bw_budget_table;
308 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
309 maxpkt = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
310 max_burst = CTX_TO_MAX_BURST(le32_to_cpu(ep_ctx->ep_info2));
311 mult = CTX_TO_EP_MULT(le32_to_cpu(ep_ctx->ep_info));
312 max_esit_payload =
313 (CTX_TO_MAX_ESIT_PAYLOAD_HI(
314 le32_to_cpu(ep_ctx->ep_info)) << 16) |
315 CTX_TO_MAX_ESIT_PAYLOAD(le32_to_cpu(ep_ctx->tx_info));
316
317 sch_ep->esit = get_esit(ep_ctx);
318 sch_ep->num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit;
319 sch_ep->ep_type = ep_type;
320 sch_ep->maxpkt = maxpkt;
321 sch_ep->offset = 0;
322 sch_ep->burst_mode = 0;
323 sch_ep->repeat = 0;
324
325 if (sch_ep->speed == USB_SPEED_HIGH) {
326 sch_ep->cs_count = 0;
327
328 /*
329 * usb_20 spec section5.9
330 * a single microframe is enough for HS synchromous endpoints
331 * in a interval
332 */
333 sch_ep->num_budget_microframes = 1;
334
335 /*
336 * xHCI spec section6.2.3.4
337 * @max_burst is the number of additional transactions
338 * opportunities per microframe
339 */
340 sch_ep->pkts = max_burst + 1;
341 bwb_table[0] = maxpkt * sch_ep->pkts;
342 } else if (sch_ep->speed >= USB_SPEED_SUPER) {
343 /* usb3_r1 spec section4.4.7 & 4.4.8 */
344 sch_ep->cs_count = 0;
345 sch_ep->burst_mode = 1;
346 /*
347 * some device's (d)wBytesPerInterval is set as 0,
348 * then max_esit_payload is 0, so evaluate esit_pkts from
349 * mult and burst
350 */
351 esit_pkts = DIV_ROUND_UP(max_esit_payload, maxpkt);
352 if (esit_pkts == 0)
353 esit_pkts = (mult + 1) * (max_burst + 1);
354
355 if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) {
356 sch_ep->pkts = esit_pkts;
357 sch_ep->num_budget_microframes = 1;
358 bwb_table[0] = maxpkt * sch_ep->pkts;
359 }
360
361 if (ep_type == ISOC_IN_EP || ep_type == ISOC_OUT_EP) {
362
363 if (sch_ep->esit == 1)
364 sch_ep->pkts = esit_pkts;
365 else if (esit_pkts <= sch_ep->esit)
366 sch_ep->pkts = 1;
367 else
368 sch_ep->pkts = roundup_pow_of_two(esit_pkts)
369 / sch_ep->esit;
370
371 sch_ep->num_budget_microframes =
372 DIV_ROUND_UP(esit_pkts, sch_ep->pkts);
373
374 sch_ep->repeat = !!(sch_ep->num_budget_microframes > 1);
375 bw_per_microframe = maxpkt * sch_ep->pkts;
376
377 for (i = 0; i < sch_ep->num_budget_microframes - 1; i++)
378 bwb_table[i] = bw_per_microframe;
379
380 /* last one <= bw_per_microframe */
381 bwb_table[i] = maxpkt * esit_pkts - i * bw_per_microframe;
382 }
383 } else if (is_fs_or_ls(sch_ep->speed)) {
384 sch_ep->pkts = 1; /* at most one packet for each microframe */
385
386 /*
387 * @cs_count will be updated to add extra-cs when
388 * check TT for INT_OUT_EP, ISOC/INT_IN_EP type
389 * @maxpkt <= 1023;
390 */
391 sch_ep->cs_count = DIV_ROUND_UP(maxpkt, FS_PAYLOAD_MAX);
392 sch_ep->num_budget_microframes = sch_ep->cs_count;
393
394 /* init budget table */
395 if (ep_type == ISOC_OUT_EP) {
396 for (i = 0; i < sch_ep->cs_count - 1; i++)
397 bwb_table[i] = FS_PAYLOAD_MAX;
398
399 bwb_table[i] = maxpkt - i * FS_PAYLOAD_MAX;
400 } else if (ep_type == INT_OUT_EP) {
401 /* only first one used (maxpkt <= 64), others zero */
402 bwb_table[0] = maxpkt;
403 } else { /* INT_IN_EP or ISOC_IN_EP */
404 bwb_table[0] = 0; /* start split */
405 bwb_table[1] = 0; /* idle */
406 /*
407 * @cs_count will be updated according to cs position
408 * (add 1 or 2 extra-cs), but assume only first
409 * @num_budget_microframes elements will be used later,
410 * although in fact it does not (extra-cs budget many receive
411 * some data for IN ep);
412 * @cs_count is 1 for INT_IN_EP (maxpkt <= 64);
413 */
414 for (i = 0; i < sch_ep->cs_count - 1; i++)
415 bwb_table[i + CS_OFFSET] = FS_PAYLOAD_MAX;
416
417 bwb_table[i + CS_OFFSET] = maxpkt - i * FS_PAYLOAD_MAX;
418 /* ss + idle */
419 sch_ep->num_budget_microframes += CS_OFFSET;
420 }
421 }
422}
423
424/* Get maximum bandwidth when we schedule at offset slot. */
425static u32 get_max_bw(struct mu3h_sch_bw_info *sch_bw,
426 struct mu3h_sch_ep_info *sch_ep, u32 offset)
427{
428 u32 max_bw = 0;
429 u32 bw;
430 int i, j, k;
431
432 for (i = 0; i < sch_ep->num_esit; i++) {
433 u32 base = offset + i * sch_ep->esit;
434
435 for (j = 0; j < sch_ep->num_budget_microframes; j++) {
436 k = XHCI_MTK_BW_INDEX(base + j);
437 bw = sch_bw->bus_bw[k] + sch_ep->bw_budget_table[j];
438 if (bw > max_bw)
439 max_bw = bw;
440 }
441 }
442 return max_bw;
443}
444
445/*
446 * for OUT: get first SS consumed bw;
447 * for IN: get first CS consumed bw;
448 */
449static u16 get_fs_bw(struct mu3h_sch_ep_info *sch_ep, int offset)
450{
451 struct mu3h_sch_tt *tt = sch_ep->sch_tt;
452 u16 fs_bw;
453
454 if (sch_ep->ep_type == ISOC_OUT_EP || sch_ep->ep_type == INT_OUT_EP)
455 fs_bw = tt->fs_bus_bw_out[XHCI_MTK_BW_INDEX(offset)];
456 else /* skip ss + idle */
457 fs_bw = tt->fs_bus_bw_in[XHCI_MTK_BW_INDEX(offset + CS_OFFSET)];
458
459 return fs_bw;
460}
461
462static void update_bus_bw(struct mu3h_sch_bw_info *sch_bw,
463 struct mu3h_sch_ep_info *sch_ep, bool used)
464{
465 u32 base;
466 int i, j, k;
467
468 for (i = 0; i < sch_ep->num_esit; i++) {
469 base = sch_ep->offset + i * sch_ep->esit;
470 for (j = 0; j < sch_ep->num_budget_microframes; j++) {
471 k = XHCI_MTK_BW_INDEX(base + j);
472 if (used)
473 sch_bw->bus_bw[k] += sch_ep->bw_budget_table[j];
474 else
475 sch_bw->bus_bw[k] -= sch_ep->bw_budget_table[j];
476 }
477 }
478}
479
480static int check_ls_budget_microframes(struct mu3h_sch_ep_info *sch_ep, int offset)
481{
482 struct mu3h_sch_tt *tt = sch_ep->sch_tt;
483 int i;
484
485 if (sch_ep->speed != USB_SPEED_LOW)
486 return 0;
487
488 if (sch_ep->ep_type == INT_OUT_EP)
489 i = XHCI_MTK_BW_INDEX(offset);
490 else if (sch_ep->ep_type == INT_IN_EP)
491 i = XHCI_MTK_BW_INDEX(offset + CS_OFFSET); /* skip ss + idle */
492 else
493 return -EINVAL;
494
495 if (tt->ls_bus_bw[i] + sch_ep->maxpkt > LS_PAYLOAD_MAX)
496 return -ESCH_BW_OVERFLOW;
497
498 return 0;
499}
500
501static int check_fs_budget_microframes(struct mu3h_sch_ep_info *sch_ep, int offset)
502{
503 struct mu3h_sch_tt *tt = sch_ep->sch_tt;
504 u32 tmp;
505 int i, k;
506
507 /*
508 * for OUT eps, will transfer exactly assigned length of data,
509 * so can't allocate more than 188 bytes;
510 * but it's not for IN eps, usually it can't receive full
511 * 188 bytes in a uframe, if it not assign full 188 bytes,
512 * can add another one;
513 */
514 for (i = 0; i < sch_ep->num_budget_microframes; i++) {
515 k = XHCI_MTK_BW_INDEX(offset + i);
516 if (sch_ep->ep_type == ISOC_OUT_EP || sch_ep->ep_type == INT_OUT_EP)
517 tmp = tt->fs_bus_bw_out[k] + sch_ep->bw_budget_table[i];
518 else /* ep_type : ISOC IN / INTR IN */
519 tmp = tt->fs_bus_bw_in[k];
520
521 if (tmp > FS_PAYLOAD_MAX)
522 return -ESCH_BW_OVERFLOW;
523 }
524
525 return 0;
526}
527
528static int check_fs_budget_frames(struct mu3h_sch_ep_info *sch_ep, int offset)
529{
530 struct mu3h_sch_tt *tt = sch_ep->sch_tt;
531 u32 head, tail;
532 int i, j, k;
533
534 /* bugdet scheduled may cross at most two fs frames */
535 j = XHCI_MTK_BW_INDEX(offset) / UFRAMES_PER_FRAME;
536 k = XHCI_MTK_BW_INDEX(offset + sch_ep->num_budget_microframes - 1) / UFRAMES_PER_FRAME;
537
538 if (j != k) {
539 head = tt->fs_frame_bw[j];
540 tail = tt->fs_frame_bw[k];
541 } else {
542 head = tt->fs_frame_bw[j];
543 tail = 0;
544 }
545
546 j = roundup(offset, UFRAMES_PER_FRAME);
547 for (i = 0; i < sch_ep->num_budget_microframes; i++) {
548 if ((offset + i) < j)
549 head += sch_ep->bw_budget_table[i];
550 else
551 tail += sch_ep->bw_budget_table[i];
552 }
553
554 if (head > FS_BW_BOUNDARY || tail > FS_BW_BOUNDARY)
555 return -ESCH_BW_OVERFLOW;
556
557 return 0;
558}
559
560static int check_fs_bus_bw(struct mu3h_sch_ep_info *sch_ep, int offset)
561{
562 int i, base;
563 int ret = 0;
564
565 for (i = 0; i < sch_ep->num_esit; i++) {
566 base = offset + i * sch_ep->esit;
567
568 ret = check_ls_budget_microframes(sch_ep, base);
569 if (ret)
570 goto err;
571
572 ret = check_fs_budget_microframes(sch_ep, base);
573 if (ret)
574 goto err;
575
576 ret = check_fs_budget_frames(sch_ep, base);
577 if (ret)
578 goto err;
579 }
580
581err:
582 return ret;
583}
584
585static int check_ss_and_cs(struct mu3h_sch_ep_info *sch_ep, u32 offset)
586{
587 u32 start_ss, last_ss;
588 u32 start_cs, last_cs;
589
590 start_ss = offset % UFRAMES_PER_FRAME;
591
592 if (sch_ep->ep_type == ISOC_OUT_EP) {
593 last_ss = start_ss + sch_ep->cs_count - 1;
594
595 /*
596 * usb_20 spec section11.18:
597 * must never schedule Start-Split in Y6
598 */
599 if (!(start_ss == 7 || last_ss < 6))
600 return -ESCH_SS_Y6;
601
602 } else {
603 /* maxpkt <= 1023, cs <= 6 */
604 u32 cs_count = DIV_ROUND_UP(sch_ep->maxpkt, FS_PAYLOAD_MAX);
605
606 /*
607 * usb_20 spec section11.18:
608 * must never schedule Start-Split in Y6
609 */
610 if (start_ss == 6)
611 return -ESCH_SS_Y6;
612
613 /* one uframe for ss + one uframe for idle */
614 start_cs = (start_ss + CS_OFFSET) % UFRAMES_PER_FRAME;
615 last_cs = start_cs + cs_count - 1;
616 if (last_cs > 7)
617 return -ESCH_CS_OVERFLOW;
618
619 /* add extra-cs */
620 cs_count += (last_cs == 7) ? 1 : 2;
621 if (cs_count > 7)
622 cs_count = 7; /* HW limit */
623
624 sch_ep->cs_count = cs_count;
625
626 }
627
628 return 0;
629}
630
631/*
632 * when isoc-out transfers 188 bytes in a uframe, and send isoc/intr's
633 * ss token in the uframe, may cause 'bit stuff error' in downstream
634 * port;
635 * when isoc-out transfer less than 188 bytes in a uframe, shall send
636 * isoc-in's ss after isoc-out's ss (but hw can't ensure the sequence,
637 * so just avoid overlap).
638 */
639static int check_isoc_ss_overlap(struct mu3h_sch_ep_info *sch_ep, u32 offset)
640{
641 struct mu3h_sch_tt *tt = sch_ep->sch_tt;
642 int base;
643 int i, j, k;
644
645 if (!tt)
646 return 0;
647
648 for (i = 0; i < sch_ep->num_esit; i++) {
649 base = offset + i * sch_ep->esit;
650
651 if (sch_ep->ep_type == ISOC_OUT_EP) {
652 for (j = 0; j < sch_ep->num_budget_microframes; j++) {
653 k = XHCI_MTK_BW_INDEX(base + j);
654 if (tt->in_ss_cnt[k])
655 return -ESCH_SS_OVERLAP;
656 }
657 } else if (sch_ep->ep_type == ISOC_IN_EP || sch_ep->ep_type == INT_IN_EP) {
658 k = XHCI_MTK_BW_INDEX(base);
659 /* only check IN's ss */
660 if (tt->fs_bus_bw_out[k])
661 return -ESCH_SS_OVERLAP;
662 }
663 }
664
665 return 0;
666}
667
668static int check_sch_tt_budget(struct mu3h_sch_ep_info *sch_ep, u32 offset)
669{
670 int ret;
671
672 ret = check_ss_and_cs(sch_ep, offset);
673 if (ret)
674 return ret;
675
676 ret = check_isoc_ss_overlap(sch_ep, offset);
677 if (ret)
678 return ret;
679
680 return check_fs_bus_bw(sch_ep, offset);
681}
682
683/* allocate microframes in the ls/fs frame */
684static int alloc_sch_portion_of_frame(struct mu3h_sch_ep_info *sch_ep)
685{
686 struct mu3h_sch_bw_info *sch_bw = sch_ep->bw_info;
687 const u32 bw_boundary = get_bw_boundary(sch_ep->speed);
688 u32 bw_max, fs_bw_min;
689 u32 offset, offset_min;
690 u16 fs_bw;
691 int frames;
692 int i, j;
693 int ret;
694
695 frames = sch_ep->esit / UFRAMES_PER_FRAME;
696
697 for (i = 0; i < UFRAMES_PER_FRAME; i++) {
698 fs_bw_min = FS_PAYLOAD_MAX;
699 offset_min = XHCI_MTK_MAX_ESIT;
700
701 for (j = 0; j < frames; j++) {
702 offset = (i + j * UFRAMES_PER_FRAME) % sch_ep->esit;
703
704 ret = check_sch_tt_budget(sch_ep, offset);
705 if (ret)
706 continue;
707
708 /* check hs bw domain */
709 bw_max = get_max_bw(sch_bw, sch_ep, offset);
710 if (bw_max > bw_boundary) {
711 ret = -ESCH_BW_OVERFLOW;
712 continue;
713 }
714
715 /* use best-fit between frames */
716 fs_bw = get_fs_bw(sch_ep, offset);
717 if (fs_bw < fs_bw_min) {
718 fs_bw_min = fs_bw;
719 offset_min = offset;
720 }
721
722 if (!fs_bw_min)
723 break;
724 }
725
726 /* use first-fit between microframes in a frame */
727 if (offset_min < XHCI_MTK_MAX_ESIT)
728 break;
729 }
730
731 if (offset_min == XHCI_MTK_MAX_ESIT)
732 return -ESCH_BW_OVERFLOW;
733
734 sch_ep->offset = offset_min;
735
736 return 0;
737}
738
739static void update_sch_tt(struct mu3h_sch_ep_info *sch_ep, bool used)
740{
741 struct mu3h_sch_tt *tt = sch_ep->sch_tt;
742 u16 *fs_bus_bw;
743 u32 base;
744 int i, j, k, f;
745
746 if (sch_ep->ep_type == ISOC_OUT_EP || sch_ep->ep_type == INT_OUT_EP)
747 fs_bus_bw = tt->fs_bus_bw_out;
748 else
749 fs_bus_bw = tt->fs_bus_bw_in;
750
751 for (i = 0; i < sch_ep->num_esit; i++) {
752 base = sch_ep->offset + i * sch_ep->esit;
753
754 for (j = 0; j < sch_ep->num_budget_microframes; j++) {
755 k = XHCI_MTK_BW_INDEX(base + j);
756 f = k / UFRAMES_PER_FRAME;
757 if (used) {
758 if (sch_ep->speed == USB_SPEED_LOW)
759 tt->ls_bus_bw[k] += (u8)sch_ep->bw_budget_table[j];
760
761 fs_bus_bw[k] += (u16)sch_ep->bw_budget_table[j];
762 tt->fs_frame_bw[f] += (u16)sch_ep->bw_budget_table[j];
763 } else {
764 if (sch_ep->speed == USB_SPEED_LOW)
765 tt->ls_bus_bw[k] -= (u8)sch_ep->bw_budget_table[j];
766
767 fs_bus_bw[k] -= (u16)sch_ep->bw_budget_table[j];
768 tt->fs_frame_bw[f] -= (u16)sch_ep->bw_budget_table[j];
769 }
770 }
771
772 if (sch_ep->ep_type == ISOC_IN_EP || sch_ep->ep_type == INT_IN_EP) {
773 k = XHCI_MTK_BW_INDEX(base);
774 if (used)
775 tt->in_ss_cnt[k]++;
776 else
777 tt->in_ss_cnt[k]--;
778 }
779 }
780
781 if (used)
782 list_add_tail(&sch_ep->tt_endpoint, &tt->ep_list);
783 else
784 list_del(&sch_ep->tt_endpoint);
785}
786
787static int load_ep_bw(struct mu3h_sch_bw_info *sch_bw,
788 struct mu3h_sch_ep_info *sch_ep, bool loaded)
789{
790 if (sch_ep->sch_tt)
791 update_sch_tt(sch_ep, loaded);
792
793 /* update bus bandwidth info */
794 update_bus_bw(sch_bw, sch_ep, loaded);
795 sch_ep->allocated = loaded;
796
797 return 0;
798}
799
800/* allocate microframes for hs/ss/ssp */
801static int alloc_sch_microframes(struct mu3h_sch_ep_info *sch_ep)
802{
803 struct mu3h_sch_bw_info *sch_bw = sch_ep->bw_info;
804 const u32 bw_boundary = get_bw_boundary(sch_ep->speed);
805 u32 offset;
806 u32 worst_bw;
807 u32 min_bw = ~0;
808 int min_index = -1;
809
810 /*
811 * Search through all possible schedule microframes.
812 * and find a microframe where its worst bandwidth is minimum.
813 */
814 for (offset = 0; offset < sch_ep->esit; offset++) {
815
816 worst_bw = get_max_bw(sch_bw, sch_ep, offset);
817 if (worst_bw > bw_boundary)
818 continue;
819
820 if (min_bw > worst_bw) {
821 min_bw = worst_bw;
822 min_index = offset;
823 }
824 }
825
826 if (min_index < 0)
827 return -ESCH_BW_OVERFLOW;
828
829 sch_ep->offset = min_index;
830
831 return 0;
832}
833
834static int check_sch_bw(struct mu3h_sch_ep_info *sch_ep)
835{
836 int ret;
837
838 if (sch_ep->sch_tt)
839 ret = alloc_sch_portion_of_frame(sch_ep);
840 else
841 ret = alloc_sch_microframes(sch_ep);
842
843 if (ret)
844 return ret;
845
846 return load_ep_bw(sch_ep->bw_info, sch_ep, true);
847}
848
849static void destroy_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
850 struct mu3h_sch_ep_info *sch_ep)
851{
852 /* only release ep bw check passed by check_sch_bw() */
853 if (sch_ep->allocated)
854 load_ep_bw(sch_ep->bw_info, sch_ep, false);
855
856 if (sch_ep->sch_tt)
857 drop_tt(udev);
858
859 list_del(&sch_ep->endpoint);
860 hlist_del(&sch_ep->hentry);
861 kfree(sch_ep);
862}
863
864static bool need_bw_sch(struct usb_device *udev,
865 struct usb_host_endpoint *ep)
866{
867 bool has_tt = udev->tt && udev->tt->hub->parent;
868
869 /* only for periodic endpoints */
870 if (usb_endpoint_xfer_control(&ep->desc)
871 || usb_endpoint_xfer_bulk(&ep->desc))
872 return false;
873
874 /*
875 * for LS & FS periodic endpoints which its device is not behind
876 * a TT are also ignored, root-hub will schedule them directly,
877 * but need set @bpkts field of endpoint context to 1.
878 */
879 if (is_fs_or_ls(udev->speed) && !has_tt)
880 return false;
881
882 /* skip endpoint with zero maxpkt */
883 if (usb_endpoint_maxp(&ep->desc) == 0)
884 return false;
885
886 return true;
887}
888
889int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk)
890{
891 struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd);
892 struct mu3h_sch_bw_info *sch_array;
893 int num_usb_bus;
894
895 /* ss IN and OUT are separated */
896 num_usb_bus = xhci->usb3_rhub.num_ports * 2 + xhci->usb2_rhub.num_ports;
897
898 sch_array = kcalloc(num_usb_bus, sizeof(*sch_array), GFP_KERNEL);
899 if (sch_array == NULL)
900 return -ENOMEM;
901
902 mtk->sch_array = sch_array;
903
904 INIT_LIST_HEAD(&mtk->bw_ep_chk_list);
905 hash_init(mtk->sch_ep_hash);
906
907 return 0;
908}
909
910void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk)
911{
912 kfree(mtk->sch_array);
913}
914
915static int add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
916 struct usb_host_endpoint *ep)
917{
918 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
919 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
920 struct xhci_ep_ctx *ep_ctx;
921 struct xhci_virt_device *virt_dev;
922 struct mu3h_sch_ep_info *sch_ep;
923 unsigned int ep_index;
924
925 virt_dev = xhci->devs[udev->slot_id];
926 ep_index = xhci_get_endpoint_index(&ep->desc);
927 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
928
929 if (!need_bw_sch(udev, ep)) {
930 /*
931 * set @bpkts to 1 if it is LS or FS periodic endpoint, and its
932 * device does not connected through an external HS hub
933 */
934 if (usb_endpoint_xfer_int(&ep->desc)
935 || usb_endpoint_xfer_isoc(&ep->desc))
936 ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(1));
937
938 return 0;
939 }
940
941 xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed));
942
943 sch_ep = create_sch_ep(mtk, udev, ep, ep_ctx);
944 if (IS_ERR_OR_NULL(sch_ep))
945 return -ENOMEM;
946
947 setup_sch_info(ep_ctx, sch_ep);
948
949 list_add_tail(&sch_ep->endpoint, &mtk->bw_ep_chk_list);
950 hash_add(mtk->sch_ep_hash, &sch_ep->hentry, (unsigned long)ep);
951
952 return 0;
953}
954
955static void drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
956 struct usb_host_endpoint *ep)
957{
958 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
959 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
960 struct mu3h_sch_ep_info *sch_ep;
961 struct hlist_node *hn;
962
963 if (!need_bw_sch(udev, ep))
964 return;
965
966 xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed));
967
968 hash_for_each_possible_safe(mtk->sch_ep_hash, sch_ep,
969 hn, hentry, (unsigned long)ep) {
970 if (sch_ep->ep == ep) {
971 destroy_sch_ep(mtk, udev, sch_ep);
972 break;
973 }
974 }
975}
976
977int xhci_mtk_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
978{
979 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
980 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
981 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
982 struct mu3h_sch_ep_info *sch_ep;
983 int ret;
984
985 xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev));
986
987 list_for_each_entry(sch_ep, &mtk->bw_ep_chk_list, endpoint) {
988 struct xhci_ep_ctx *ep_ctx;
989 struct usb_host_endpoint *ep = sch_ep->ep;
990 unsigned int ep_index = xhci_get_endpoint_index(&ep->desc);
991
992 ret = check_sch_bw(sch_ep);
993 if (ret) {
994 xhci_err(xhci, "Not enough bandwidth! (%s)\n",
995 sch_error_string(-ret));
996 return -ENOSPC;
997 }
998
999 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1000 ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(sch_ep->pkts)
1001 | EP_BCSCOUNT(sch_ep->cs_count)
1002 | EP_BBM(sch_ep->burst_mode));
1003 ep_ctx->reserved[1] = cpu_to_le32(EP_BOFFSET(sch_ep->offset)
1004 | EP_BREPEAT(sch_ep->repeat));
1005
1006 xhci_dbg(xhci, " PKTS:%x, CSCOUNT:%x, BM:%x, OFFSET:%x, REPEAT:%x\n",
1007 sch_ep->pkts, sch_ep->cs_count, sch_ep->burst_mode,
1008 sch_ep->offset, sch_ep->repeat);
1009 }
1010
1011 ret = xhci_check_bandwidth(hcd, udev);
1012 if (!ret)
1013 list_del_init(&mtk->bw_ep_chk_list);
1014
1015 return ret;
1016}
1017
1018void xhci_mtk_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1019{
1020 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
1021 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1022 struct mu3h_sch_ep_info *sch_ep, *tmp;
1023
1024 xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev));
1025
1026 list_for_each_entry_safe(sch_ep, tmp, &mtk->bw_ep_chk_list, endpoint)
1027 destroy_sch_ep(mtk, udev, sch_ep);
1028
1029 xhci_reset_bandwidth(hcd, udev);
1030}
1031
1032int xhci_mtk_add_ep(struct usb_hcd *hcd, struct usb_device *udev,
1033 struct usb_host_endpoint *ep)
1034{
1035 int ret;
1036
1037 ret = xhci_add_endpoint(hcd, udev, ep);
1038 if (ret)
1039 return ret;
1040
1041 if (ep->hcpriv)
1042 ret = add_ep_quirk(hcd, udev, ep);
1043
1044 return ret;
1045}
1046
1047int xhci_mtk_drop_ep(struct usb_hcd *hcd, struct usb_device *udev,
1048 struct usb_host_endpoint *ep)
1049{
1050 int ret;
1051
1052 ret = xhci_drop_endpoint(hcd, udev, ep);
1053 if (ret)
1054 return ret;
1055
1056 /* needn't check @ep->hcpriv, xhci_endpoint_disable set it NULL */
1057 drop_ep_quirk(hcd, udev, ep);
1058
1059 return 0;
1060}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2015 MediaTek Inc.
4 * Author:
5 * Zhigang.Wei <zhigang.wei@mediatek.com>
6 * Chunfeng.Yun <chunfeng.yun@mediatek.com>
7 */
8
9#include <linux/kernel.h>
10#include <linux/module.h>
11#include <linux/slab.h>
12
13#include "xhci.h"
14#include "xhci-mtk.h"
15
16#define SSP_BW_BOUNDARY 130000
17#define SS_BW_BOUNDARY 51000
18/* table 5-5. High-speed Isoc Transaction Limits in usb_20 spec */
19#define HS_BW_BOUNDARY 6144
20/* usb2 spec section11.18.1: at most 188 FS bytes per microframe */
21#define FS_PAYLOAD_MAX 188
22#define LS_PAYLOAD_MAX 18
23/* section 11.18.1, per fs frame */
24#define FS_BW_BOUNDARY 1157
25#define LS_BW_BOUNDARY 144
26
27/*
28 * max number of microframes for split transfer, assume extra-cs budget is 0
29 * for fs isoc in : 1 ss + 1 idle + 6 cs (roundup(1023/188))
30 */
31#define TT_MICROFRAMES_MAX 8
32/* offset from SS for fs/ls isoc/intr ep (ss + idle) */
33#define CS_OFFSET 2
34
35#define DBG_BUF_EN 64
36
37/* schedule error type */
38#define ESCH_SS_Y6 1001
39#define ESCH_SS_OVERLAP 1002
40#define ESCH_CS_OVERFLOW 1003
41#define ESCH_BW_OVERFLOW 1004
42#define ESCH_FIXME 1005
43
44/* mtk scheduler bitmasks */
45#define EP_BPKTS(p) ((p) & 0x7f)
46#define EP_BCSCOUNT(p) (((p) & 0x7) << 8)
47#define EP_BBM(p) ((p) << 11)
48#define EP_BOFFSET(p) ((p) & 0x3fff)
49#define EP_BREPEAT(p) (((p) & 0x7fff) << 16)
50
51static char *sch_error_string(int err_num)
52{
53 switch (err_num) {
54 case ESCH_SS_Y6:
55 return "Can't schedule Start-Split in Y6";
56 case ESCH_SS_OVERLAP:
57 return "Can't find a suitable Start-Split location";
58 case ESCH_CS_OVERFLOW:
59 return "The last Complete-Split is greater than 7";
60 case ESCH_BW_OVERFLOW:
61 return "Bandwidth exceeds the maximum limit";
62 case ESCH_FIXME:
63 return "FIXME, to be resolved";
64 default:
65 return "Unknown";
66 }
67}
68
69static int is_fs_or_ls(enum usb_device_speed speed)
70{
71 return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW;
72}
73
74static const char *
75decode_ep(struct usb_host_endpoint *ep, enum usb_device_speed speed)
76{
77 static char buf[DBG_BUF_EN];
78 struct usb_endpoint_descriptor *epd = &ep->desc;
79 unsigned int interval;
80 const char *unit;
81
82 interval = usb_decode_interval(epd, speed);
83 if (interval % 1000) {
84 unit = "us";
85 } else {
86 unit = "ms";
87 interval /= 1000;
88 }
89
90 snprintf(buf, DBG_BUF_EN, "%s ep%d%s %s, mpkt:%d, interval:%d/%d%s",
91 usb_speed_string(speed), usb_endpoint_num(epd),
92 usb_endpoint_dir_in(epd) ? "in" : "out",
93 usb_ep_type_string(usb_endpoint_type(epd)),
94 usb_endpoint_maxp(epd), epd->bInterval, interval, unit);
95
96 return buf;
97}
98
99static u32 get_bw_boundary(enum usb_device_speed speed)
100{
101 u32 boundary;
102
103 switch (speed) {
104 case USB_SPEED_SUPER_PLUS:
105 boundary = SSP_BW_BOUNDARY;
106 break;
107 case USB_SPEED_SUPER:
108 boundary = SS_BW_BOUNDARY;
109 break;
110 default:
111 boundary = HS_BW_BOUNDARY;
112 break;
113 }
114
115 return boundary;
116}
117
118/*
119* get the bandwidth domain which @ep belongs to.
120*
121* the bandwidth domain array is saved to @sch_array of struct xhci_hcd_mtk,
122* each HS root port is treated as a single bandwidth domain,
123* but each SS root port is treated as two bandwidth domains, one for IN eps,
124* one for OUT eps.
125*/
126static struct mu3h_sch_bw_info *
127get_bw_info(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
128 struct usb_host_endpoint *ep)
129{
130 struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd);
131 struct xhci_virt_device *virt_dev;
132 int bw_index;
133
134 virt_dev = xhci->devs[udev->slot_id];
135 if (!virt_dev->rhub_port) {
136 WARN_ONCE(1, "%s invalid rhub port\n", dev_name(&udev->dev));
137 return NULL;
138 }
139
140 if (udev->speed >= USB_SPEED_SUPER) {
141 if (usb_endpoint_dir_out(&ep->desc))
142 bw_index = (virt_dev->rhub_port->hw_portnum) * 2;
143 else
144 bw_index = (virt_dev->rhub_port->hw_portnum) * 2 + 1;
145 } else {
146 /* add one more for each SS port */
147 bw_index = virt_dev->rhub_port->hw_portnum + xhci->usb3_rhub.num_ports;
148 }
149
150 return &mtk->sch_array[bw_index];
151}
152
153static u32 get_esit(struct xhci_ep_ctx *ep_ctx)
154{
155 u32 esit;
156
157 esit = 1 << CTX_TO_EP_INTERVAL(le32_to_cpu(ep_ctx->ep_info));
158 if (esit > XHCI_MTK_MAX_ESIT)
159 esit = XHCI_MTK_MAX_ESIT;
160
161 return esit;
162}
163
164static struct mu3h_sch_tt *find_tt(struct usb_device *udev)
165{
166 struct usb_tt *utt = udev->tt;
167 struct mu3h_sch_tt *tt, **tt_index, **ptt;
168 bool allocated_index = false;
169
170 if (!utt)
171 return NULL; /* Not below a TT */
172
173 /*
174 * Find/create our data structure.
175 * For hubs with a single TT, we get it directly.
176 * For hubs with multiple TTs, there's an extra level of pointers.
177 */
178 tt_index = NULL;
179 if (utt->multi) {
180 tt_index = utt->hcpriv;
181 if (!tt_index) { /* Create the index array */
182 tt_index = kcalloc(utt->hub->maxchild,
183 sizeof(*tt_index), GFP_KERNEL);
184 if (!tt_index)
185 return ERR_PTR(-ENOMEM);
186 utt->hcpriv = tt_index;
187 allocated_index = true;
188 }
189 ptt = &tt_index[udev->ttport - 1];
190 } else {
191 ptt = (struct mu3h_sch_tt **) &utt->hcpriv;
192 }
193
194 tt = *ptt;
195 if (!tt) { /* Create the mu3h_sch_tt */
196 tt = kzalloc(sizeof(*tt), GFP_KERNEL);
197 if (!tt) {
198 if (allocated_index) {
199 utt->hcpriv = NULL;
200 kfree(tt_index);
201 }
202 return ERR_PTR(-ENOMEM);
203 }
204 INIT_LIST_HEAD(&tt->ep_list);
205 *ptt = tt;
206 }
207
208 return tt;
209}
210
211/* Release the TT above udev, if it's not in use */
212static void drop_tt(struct usb_device *udev)
213{
214 struct usb_tt *utt = udev->tt;
215 struct mu3h_sch_tt *tt, **tt_index, **ptt;
216 int i, cnt;
217
218 if (!utt || !utt->hcpriv)
219 return; /* Not below a TT, or never allocated */
220
221 cnt = 0;
222 if (utt->multi) {
223 tt_index = utt->hcpriv;
224 ptt = &tt_index[udev->ttport - 1];
225 /* How many entries are left in tt_index? */
226 for (i = 0; i < utt->hub->maxchild; ++i)
227 cnt += !!tt_index[i];
228 } else {
229 tt_index = NULL;
230 ptt = (struct mu3h_sch_tt **)&utt->hcpriv;
231 }
232
233 tt = *ptt;
234 if (!tt || !list_empty(&tt->ep_list))
235 return; /* never allocated , or still in use*/
236
237 *ptt = NULL;
238 kfree(tt);
239
240 if (cnt == 1) {
241 utt->hcpriv = NULL;
242 kfree(tt_index);
243 }
244}
245
246static struct mu3h_sch_ep_info *
247create_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
248 struct usb_host_endpoint *ep, struct xhci_ep_ctx *ep_ctx)
249{
250 struct mu3h_sch_ep_info *sch_ep;
251 struct mu3h_sch_bw_info *bw_info;
252 struct mu3h_sch_tt *tt = NULL;
253 u32 len;
254
255 bw_info = get_bw_info(mtk, udev, ep);
256 if (!bw_info)
257 return ERR_PTR(-ENODEV);
258
259 if (is_fs_or_ls(udev->speed))
260 len = TT_MICROFRAMES_MAX;
261 else if ((udev->speed >= USB_SPEED_SUPER) &&
262 usb_endpoint_xfer_isoc(&ep->desc))
263 len = get_esit(ep_ctx);
264 else
265 len = 1;
266
267 sch_ep = kzalloc(struct_size(sch_ep, bw_budget_table, len), GFP_KERNEL);
268 if (!sch_ep)
269 return ERR_PTR(-ENOMEM);
270
271 if (is_fs_or_ls(udev->speed)) {
272 tt = find_tt(udev);
273 if (IS_ERR(tt)) {
274 kfree(sch_ep);
275 return ERR_PTR(-ENOMEM);
276 }
277 }
278
279 sch_ep->bw_info = bw_info;
280 sch_ep->sch_tt = tt;
281 sch_ep->ep = ep;
282 sch_ep->speed = udev->speed;
283 INIT_LIST_HEAD(&sch_ep->endpoint);
284 INIT_LIST_HEAD(&sch_ep->tt_endpoint);
285 INIT_HLIST_NODE(&sch_ep->hentry);
286
287 return sch_ep;
288}
289
290static void setup_sch_info(struct xhci_ep_ctx *ep_ctx,
291 struct mu3h_sch_ep_info *sch_ep)
292{
293 u32 ep_type;
294 u32 maxpkt;
295 u32 max_burst;
296 u32 mult;
297 u32 esit_pkts;
298 u32 max_esit_payload;
299 u32 bw_per_microframe;
300 u32 *bwb_table;
301 int i;
302
303 bwb_table = sch_ep->bw_budget_table;
304 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
305 maxpkt = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
306 max_burst = CTX_TO_MAX_BURST(le32_to_cpu(ep_ctx->ep_info2));
307 mult = CTX_TO_EP_MULT(le32_to_cpu(ep_ctx->ep_info));
308 max_esit_payload =
309 (CTX_TO_MAX_ESIT_PAYLOAD_HI(
310 le32_to_cpu(ep_ctx->ep_info)) << 16) |
311 CTX_TO_MAX_ESIT_PAYLOAD(le32_to_cpu(ep_ctx->tx_info));
312
313 sch_ep->esit = get_esit(ep_ctx);
314 sch_ep->num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit;
315 sch_ep->ep_type = ep_type;
316 sch_ep->maxpkt = maxpkt;
317 sch_ep->offset = 0;
318 sch_ep->burst_mode = 0;
319 sch_ep->repeat = 0;
320
321 if (sch_ep->speed == USB_SPEED_HIGH) {
322 sch_ep->cs_count = 0;
323
324 /*
325 * usb_20 spec section5.9
326 * a single microframe is enough for HS synchromous endpoints
327 * in a interval
328 */
329 sch_ep->num_budget_microframes = 1;
330
331 /*
332 * xHCI spec section6.2.3.4
333 * @max_burst is the number of additional transactions
334 * opportunities per microframe
335 */
336 sch_ep->pkts = max_burst + 1;
337 bwb_table[0] = maxpkt * sch_ep->pkts;
338 } else if (sch_ep->speed >= USB_SPEED_SUPER) {
339 /* usb3_r1 spec section4.4.7 & 4.4.8 */
340 sch_ep->cs_count = 0;
341 sch_ep->burst_mode = 1;
342 /*
343 * some device's (d)wBytesPerInterval is set as 0,
344 * then max_esit_payload is 0, so evaluate esit_pkts from
345 * mult and burst
346 */
347 esit_pkts = DIV_ROUND_UP(max_esit_payload, maxpkt);
348 if (esit_pkts == 0)
349 esit_pkts = (mult + 1) * (max_burst + 1);
350
351 if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) {
352 sch_ep->pkts = esit_pkts;
353 sch_ep->num_budget_microframes = 1;
354 bwb_table[0] = maxpkt * sch_ep->pkts;
355 }
356
357 if (ep_type == ISOC_IN_EP || ep_type == ISOC_OUT_EP) {
358
359 if (sch_ep->esit == 1)
360 sch_ep->pkts = esit_pkts;
361 else if (esit_pkts <= sch_ep->esit)
362 sch_ep->pkts = 1;
363 else
364 sch_ep->pkts = roundup_pow_of_two(esit_pkts)
365 / sch_ep->esit;
366
367 sch_ep->num_budget_microframes =
368 DIV_ROUND_UP(esit_pkts, sch_ep->pkts);
369
370 sch_ep->repeat = !!(sch_ep->num_budget_microframes > 1);
371 bw_per_microframe = maxpkt * sch_ep->pkts;
372
373 for (i = 0; i < sch_ep->num_budget_microframes - 1; i++)
374 bwb_table[i] = bw_per_microframe;
375
376 /* last one <= bw_per_microframe */
377 bwb_table[i] = maxpkt * esit_pkts - i * bw_per_microframe;
378 }
379 } else if (is_fs_or_ls(sch_ep->speed)) {
380 sch_ep->pkts = 1; /* at most one packet for each microframe */
381
382 /*
383 * @cs_count will be updated to add extra-cs when
384 * check TT for INT_OUT_EP, ISOC/INT_IN_EP type
385 * @maxpkt <= 1023;
386 */
387 sch_ep->cs_count = DIV_ROUND_UP(maxpkt, FS_PAYLOAD_MAX);
388 sch_ep->num_budget_microframes = sch_ep->cs_count;
389
390 /* init budget table */
391 if (ep_type == ISOC_OUT_EP) {
392 for (i = 0; i < sch_ep->cs_count - 1; i++)
393 bwb_table[i] = FS_PAYLOAD_MAX;
394
395 bwb_table[i] = maxpkt - i * FS_PAYLOAD_MAX;
396 } else if (ep_type == INT_OUT_EP) {
397 /* only first one used (maxpkt <= 64), others zero */
398 bwb_table[0] = maxpkt;
399 } else { /* INT_IN_EP or ISOC_IN_EP */
400 bwb_table[0] = 0; /* start split */
401 bwb_table[1] = 0; /* idle */
402 /*
403 * @cs_count will be updated according to cs position
404 * (add 1 or 2 extra-cs), but assume only first
405 * @num_budget_microframes elements will be used later,
406 * although in fact it does not (extra-cs budget many receive
407 * some data for IN ep);
408 * @cs_count is 1 for INT_IN_EP (maxpkt <= 64);
409 */
410 for (i = 0; i < sch_ep->cs_count - 1; i++)
411 bwb_table[i + CS_OFFSET] = FS_PAYLOAD_MAX;
412
413 bwb_table[i + CS_OFFSET] = maxpkt - i * FS_PAYLOAD_MAX;
414 /* ss + idle */
415 sch_ep->num_budget_microframes += CS_OFFSET;
416 }
417 }
418}
419
420/* Get maximum bandwidth when we schedule at offset slot. */
421static u32 get_max_bw(struct mu3h_sch_bw_info *sch_bw,
422 struct mu3h_sch_ep_info *sch_ep, u32 offset)
423{
424 u32 max_bw = 0;
425 u32 bw;
426 int i, j, k;
427
428 for (i = 0; i < sch_ep->num_esit; i++) {
429 u32 base = offset + i * sch_ep->esit;
430
431 for (j = 0; j < sch_ep->num_budget_microframes; j++) {
432 k = XHCI_MTK_BW_INDEX(base + j);
433 bw = sch_bw->bus_bw[k] + sch_ep->bw_budget_table[j];
434 if (bw > max_bw)
435 max_bw = bw;
436 }
437 }
438 return max_bw;
439}
440
441/*
442 * for OUT: get first SS consumed bw;
443 * for IN: get first CS consumed bw;
444 */
445static u16 get_fs_bw(struct mu3h_sch_ep_info *sch_ep, int offset)
446{
447 struct mu3h_sch_tt *tt = sch_ep->sch_tt;
448 u16 fs_bw;
449
450 if (sch_ep->ep_type == ISOC_OUT_EP || sch_ep->ep_type == INT_OUT_EP)
451 fs_bw = tt->fs_bus_bw_out[XHCI_MTK_BW_INDEX(offset)];
452 else /* skip ss + idle */
453 fs_bw = tt->fs_bus_bw_in[XHCI_MTK_BW_INDEX(offset + CS_OFFSET)];
454
455 return fs_bw;
456}
457
458static void update_bus_bw(struct mu3h_sch_bw_info *sch_bw,
459 struct mu3h_sch_ep_info *sch_ep, bool used)
460{
461 u32 base;
462 int i, j, k;
463
464 for (i = 0; i < sch_ep->num_esit; i++) {
465 base = sch_ep->offset + i * sch_ep->esit;
466 for (j = 0; j < sch_ep->num_budget_microframes; j++) {
467 k = XHCI_MTK_BW_INDEX(base + j);
468 if (used)
469 sch_bw->bus_bw[k] += sch_ep->bw_budget_table[j];
470 else
471 sch_bw->bus_bw[k] -= sch_ep->bw_budget_table[j];
472 }
473 }
474}
475
476static int check_ls_budget_microframes(struct mu3h_sch_ep_info *sch_ep, int offset)
477{
478 struct mu3h_sch_tt *tt = sch_ep->sch_tt;
479 int i;
480
481 if (sch_ep->speed != USB_SPEED_LOW)
482 return 0;
483
484 if (sch_ep->ep_type == INT_OUT_EP)
485 i = XHCI_MTK_BW_INDEX(offset);
486 else if (sch_ep->ep_type == INT_IN_EP)
487 i = XHCI_MTK_BW_INDEX(offset + CS_OFFSET); /* skip ss + idle */
488 else
489 return -EINVAL;
490
491 if (tt->ls_bus_bw[i] + sch_ep->maxpkt > LS_PAYLOAD_MAX)
492 return -ESCH_BW_OVERFLOW;
493
494 return 0;
495}
496
497static int check_fs_budget_microframes(struct mu3h_sch_ep_info *sch_ep, int offset)
498{
499 struct mu3h_sch_tt *tt = sch_ep->sch_tt;
500 u32 tmp;
501 int i, k;
502
503 /*
504 * for OUT eps, will transfer exactly assigned length of data,
505 * so can't allocate more than 188 bytes;
506 * but it's not for IN eps, usually it can't receive full
507 * 188 bytes in a uframe, if it not assign full 188 bytes,
508 * can add another one;
509 */
510 for (i = 0; i < sch_ep->num_budget_microframes; i++) {
511 k = XHCI_MTK_BW_INDEX(offset + i);
512 if (sch_ep->ep_type == ISOC_OUT_EP || sch_ep->ep_type == INT_OUT_EP)
513 tmp = tt->fs_bus_bw_out[k] + sch_ep->bw_budget_table[i];
514 else /* ep_type : ISOC IN / INTR IN */
515 tmp = tt->fs_bus_bw_in[k];
516
517 if (tmp > FS_PAYLOAD_MAX)
518 return -ESCH_BW_OVERFLOW;
519 }
520
521 return 0;
522}
523
524static int check_fs_budget_frames(struct mu3h_sch_ep_info *sch_ep, int offset)
525{
526 struct mu3h_sch_tt *tt = sch_ep->sch_tt;
527 u32 head, tail;
528 int i, j, k;
529
530 /* bugdet scheduled may cross at most two fs frames */
531 j = XHCI_MTK_BW_INDEX(offset) / UFRAMES_PER_FRAME;
532 k = XHCI_MTK_BW_INDEX(offset + sch_ep->num_budget_microframes - 1) / UFRAMES_PER_FRAME;
533
534 if (j != k) {
535 head = tt->fs_frame_bw[j];
536 tail = tt->fs_frame_bw[k];
537 } else {
538 head = tt->fs_frame_bw[j];
539 tail = 0;
540 }
541
542 j = roundup(offset, UFRAMES_PER_FRAME);
543 for (i = 0; i < sch_ep->num_budget_microframes; i++) {
544 if ((offset + i) < j)
545 head += sch_ep->bw_budget_table[i];
546 else
547 tail += sch_ep->bw_budget_table[i];
548 }
549
550 if (head > FS_BW_BOUNDARY || tail > FS_BW_BOUNDARY)
551 return -ESCH_BW_OVERFLOW;
552
553 return 0;
554}
555
556static int check_fs_bus_bw(struct mu3h_sch_ep_info *sch_ep, int offset)
557{
558 int i, base;
559 int ret = 0;
560
561 for (i = 0; i < sch_ep->num_esit; i++) {
562 base = offset + i * sch_ep->esit;
563
564 ret = check_ls_budget_microframes(sch_ep, base);
565 if (ret)
566 goto err;
567
568 ret = check_fs_budget_microframes(sch_ep, base);
569 if (ret)
570 goto err;
571
572 ret = check_fs_budget_frames(sch_ep, base);
573 if (ret)
574 goto err;
575 }
576
577err:
578 return ret;
579}
580
581static int check_ss_and_cs(struct mu3h_sch_ep_info *sch_ep, u32 offset)
582{
583 u32 start_ss, last_ss;
584 u32 start_cs, last_cs;
585
586 start_ss = offset % UFRAMES_PER_FRAME;
587
588 if (sch_ep->ep_type == ISOC_OUT_EP) {
589 last_ss = start_ss + sch_ep->cs_count - 1;
590
591 /*
592 * usb_20 spec section11.18:
593 * must never schedule Start-Split in Y6
594 */
595 if (!(start_ss == 7 || last_ss < 6))
596 return -ESCH_SS_Y6;
597
598 } else {
599 /* maxpkt <= 1023, cs <= 6 */
600 u32 cs_count = DIV_ROUND_UP(sch_ep->maxpkt, FS_PAYLOAD_MAX);
601
602 /*
603 * usb_20 spec section11.18:
604 * must never schedule Start-Split in Y6
605 */
606 if (start_ss == 6)
607 return -ESCH_SS_Y6;
608
609 /* one uframe for ss + one uframe for idle */
610 start_cs = (start_ss + CS_OFFSET) % UFRAMES_PER_FRAME;
611 last_cs = start_cs + cs_count - 1;
612 if (last_cs > 7)
613 return -ESCH_CS_OVERFLOW;
614
615 /* add extra-cs */
616 cs_count += (last_cs == 7) ? 1 : 2;
617 if (cs_count > 7)
618 cs_count = 7; /* HW limit */
619
620 sch_ep->cs_count = cs_count;
621
622 }
623
624 return 0;
625}
626
627/*
628 * when isoc-out transfers 188 bytes in a uframe, and send isoc/intr's
629 * ss token in the uframe, may cause 'bit stuff error' in downstream
630 * port;
631 * when isoc-out transfer less than 188 bytes in a uframe, shall send
632 * isoc-in's ss after isoc-out's ss (but hw can't ensure the sequence,
633 * so just avoid overlap).
634 */
635static int check_isoc_ss_overlap(struct mu3h_sch_ep_info *sch_ep, u32 offset)
636{
637 struct mu3h_sch_tt *tt = sch_ep->sch_tt;
638 int base;
639 int i, j, k;
640
641 if (!tt)
642 return 0;
643
644 for (i = 0; i < sch_ep->num_esit; i++) {
645 base = offset + i * sch_ep->esit;
646
647 if (sch_ep->ep_type == ISOC_OUT_EP) {
648 for (j = 0; j < sch_ep->num_budget_microframes; j++) {
649 k = XHCI_MTK_BW_INDEX(base + j);
650 if (tt->in_ss_cnt[k])
651 return -ESCH_SS_OVERLAP;
652 }
653 } else if (sch_ep->ep_type == ISOC_IN_EP || sch_ep->ep_type == INT_IN_EP) {
654 k = XHCI_MTK_BW_INDEX(base);
655 /* only check IN's ss */
656 if (tt->fs_bus_bw_out[k])
657 return -ESCH_SS_OVERLAP;
658 }
659 }
660
661 return 0;
662}
663
664static int check_sch_tt_budget(struct mu3h_sch_ep_info *sch_ep, u32 offset)
665{
666 int ret;
667
668 ret = check_ss_and_cs(sch_ep, offset);
669 if (ret)
670 return ret;
671
672 ret = check_isoc_ss_overlap(sch_ep, offset);
673 if (ret)
674 return ret;
675
676 return check_fs_bus_bw(sch_ep, offset);
677}
678
679/* allocate microframes in the ls/fs frame */
680static int alloc_sch_portion_of_frame(struct mu3h_sch_ep_info *sch_ep)
681{
682 struct mu3h_sch_bw_info *sch_bw = sch_ep->bw_info;
683 const u32 bw_boundary = get_bw_boundary(sch_ep->speed);
684 u32 bw_max, fs_bw_min;
685 u32 offset, offset_min;
686 u16 fs_bw;
687 int frames;
688 int i, j;
689 int ret;
690
691 frames = sch_ep->esit / UFRAMES_PER_FRAME;
692
693 for (i = 0; i < UFRAMES_PER_FRAME; i++) {
694 fs_bw_min = FS_PAYLOAD_MAX;
695 offset_min = XHCI_MTK_MAX_ESIT;
696
697 for (j = 0; j < frames; j++) {
698 offset = (i + j * UFRAMES_PER_FRAME) % sch_ep->esit;
699
700 ret = check_sch_tt_budget(sch_ep, offset);
701 if (ret)
702 continue;
703
704 /* check hs bw domain */
705 bw_max = get_max_bw(sch_bw, sch_ep, offset);
706 if (bw_max > bw_boundary) {
707 ret = -ESCH_BW_OVERFLOW;
708 continue;
709 }
710
711 /* use best-fit between frames */
712 fs_bw = get_fs_bw(sch_ep, offset);
713 if (fs_bw < fs_bw_min) {
714 fs_bw_min = fs_bw;
715 offset_min = offset;
716 }
717
718 if (!fs_bw_min)
719 break;
720 }
721
722 /* use first-fit between microframes in a frame */
723 if (offset_min < XHCI_MTK_MAX_ESIT)
724 break;
725 }
726
727 if (offset_min == XHCI_MTK_MAX_ESIT)
728 return -ESCH_BW_OVERFLOW;
729
730 sch_ep->offset = offset_min;
731
732 return 0;
733}
734
735static void update_sch_tt(struct mu3h_sch_ep_info *sch_ep, bool used)
736{
737 struct mu3h_sch_tt *tt = sch_ep->sch_tt;
738 u16 *fs_bus_bw;
739 u32 base;
740 int i, j, k, f;
741
742 if (sch_ep->ep_type == ISOC_OUT_EP || sch_ep->ep_type == INT_OUT_EP)
743 fs_bus_bw = tt->fs_bus_bw_out;
744 else
745 fs_bus_bw = tt->fs_bus_bw_in;
746
747 for (i = 0; i < sch_ep->num_esit; i++) {
748 base = sch_ep->offset + i * sch_ep->esit;
749
750 for (j = 0; j < sch_ep->num_budget_microframes; j++) {
751 k = XHCI_MTK_BW_INDEX(base + j);
752 f = k / UFRAMES_PER_FRAME;
753 if (used) {
754 if (sch_ep->speed == USB_SPEED_LOW)
755 tt->ls_bus_bw[k] += (u8)sch_ep->bw_budget_table[j];
756
757 fs_bus_bw[k] += (u16)sch_ep->bw_budget_table[j];
758 tt->fs_frame_bw[f] += (u16)sch_ep->bw_budget_table[j];
759 } else {
760 if (sch_ep->speed == USB_SPEED_LOW)
761 tt->ls_bus_bw[k] -= (u8)sch_ep->bw_budget_table[j];
762
763 fs_bus_bw[k] -= (u16)sch_ep->bw_budget_table[j];
764 tt->fs_frame_bw[f] -= (u16)sch_ep->bw_budget_table[j];
765 }
766 }
767
768 if (sch_ep->ep_type == ISOC_IN_EP || sch_ep->ep_type == INT_IN_EP) {
769 k = XHCI_MTK_BW_INDEX(base);
770 if (used)
771 tt->in_ss_cnt[k]++;
772 else
773 tt->in_ss_cnt[k]--;
774 }
775 }
776
777 if (used)
778 list_add_tail(&sch_ep->tt_endpoint, &tt->ep_list);
779 else
780 list_del(&sch_ep->tt_endpoint);
781}
782
783static int load_ep_bw(struct mu3h_sch_bw_info *sch_bw,
784 struct mu3h_sch_ep_info *sch_ep, bool loaded)
785{
786 if (sch_ep->sch_tt)
787 update_sch_tt(sch_ep, loaded);
788
789 /* update bus bandwidth info */
790 update_bus_bw(sch_bw, sch_ep, loaded);
791 sch_ep->allocated = loaded;
792
793 return 0;
794}
795
796/* allocate microframes for hs/ss/ssp */
797static int alloc_sch_microframes(struct mu3h_sch_ep_info *sch_ep)
798{
799 struct mu3h_sch_bw_info *sch_bw = sch_ep->bw_info;
800 const u32 bw_boundary = get_bw_boundary(sch_ep->speed);
801 u32 offset;
802 u32 worst_bw;
803 u32 min_bw = ~0;
804 int min_index = -1;
805
806 /*
807 * Search through all possible schedule microframes.
808 * and find a microframe where its worst bandwidth is minimum.
809 */
810 for (offset = 0; offset < sch_ep->esit; offset++) {
811
812 worst_bw = get_max_bw(sch_bw, sch_ep, offset);
813 if (worst_bw > bw_boundary)
814 continue;
815
816 if (min_bw > worst_bw) {
817 min_bw = worst_bw;
818 min_index = offset;
819 }
820 }
821
822 if (min_index < 0)
823 return -ESCH_BW_OVERFLOW;
824
825 sch_ep->offset = min_index;
826
827 return 0;
828}
829
830static int check_sch_bw(struct mu3h_sch_ep_info *sch_ep)
831{
832 int ret;
833
834 if (sch_ep->sch_tt)
835 ret = alloc_sch_portion_of_frame(sch_ep);
836 else
837 ret = alloc_sch_microframes(sch_ep);
838
839 if (ret)
840 return ret;
841
842 return load_ep_bw(sch_ep->bw_info, sch_ep, true);
843}
844
845static void destroy_sch_ep(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
846 struct mu3h_sch_ep_info *sch_ep)
847{
848 /* only release ep bw check passed by check_sch_bw() */
849 if (sch_ep->allocated)
850 load_ep_bw(sch_ep->bw_info, sch_ep, false);
851
852 if (sch_ep->sch_tt)
853 drop_tt(udev);
854
855 list_del(&sch_ep->endpoint);
856 hlist_del(&sch_ep->hentry);
857 kfree(sch_ep);
858}
859
860static bool need_bw_sch(struct usb_device *udev,
861 struct usb_host_endpoint *ep)
862{
863 bool has_tt = udev->tt && udev->tt->hub->parent;
864
865 /* only for periodic endpoints */
866 if (usb_endpoint_xfer_control(&ep->desc)
867 || usb_endpoint_xfer_bulk(&ep->desc))
868 return false;
869
870 /*
871 * for LS & FS periodic endpoints which its device is not behind
872 * a TT are also ignored, root-hub will schedule them directly,
873 * but need set @bpkts field of endpoint context to 1.
874 */
875 if (is_fs_or_ls(udev->speed) && !has_tt)
876 return false;
877
878 /* skip endpoint with zero maxpkt */
879 if (usb_endpoint_maxp(&ep->desc) == 0)
880 return false;
881
882 return true;
883}
884
885int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk)
886{
887 struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd);
888 struct mu3h_sch_bw_info *sch_array;
889 int num_usb_bus;
890
891 /* ss IN and OUT are separated */
892 num_usb_bus = xhci->usb3_rhub.num_ports * 2 + xhci->usb2_rhub.num_ports;
893
894 sch_array = kcalloc(num_usb_bus, sizeof(*sch_array), GFP_KERNEL);
895 if (sch_array == NULL)
896 return -ENOMEM;
897
898 mtk->sch_array = sch_array;
899
900 INIT_LIST_HEAD(&mtk->bw_ep_chk_list);
901 hash_init(mtk->sch_ep_hash);
902
903 return 0;
904}
905
906void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk)
907{
908 kfree(mtk->sch_array);
909}
910
911static int add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
912 struct usb_host_endpoint *ep)
913{
914 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
915 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
916 struct xhci_ep_ctx *ep_ctx;
917 struct xhci_virt_device *virt_dev;
918 struct mu3h_sch_ep_info *sch_ep;
919 unsigned int ep_index;
920
921 virt_dev = xhci->devs[udev->slot_id];
922 ep_index = xhci_get_endpoint_index(&ep->desc);
923 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
924
925 if (!need_bw_sch(udev, ep)) {
926 /*
927 * set @bpkts to 1 if it is LS or FS periodic endpoint, and its
928 * device does not connected through an external HS hub
929 */
930 if (usb_endpoint_xfer_int(&ep->desc)
931 || usb_endpoint_xfer_isoc(&ep->desc))
932 ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(1));
933
934 return 0;
935 }
936
937 xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed));
938
939 sch_ep = create_sch_ep(mtk, udev, ep, ep_ctx);
940 if (IS_ERR_OR_NULL(sch_ep))
941 return -ENOMEM;
942
943 setup_sch_info(ep_ctx, sch_ep);
944
945 list_add_tail(&sch_ep->endpoint, &mtk->bw_ep_chk_list);
946 hash_add(mtk->sch_ep_hash, &sch_ep->hentry, (unsigned long)ep);
947
948 return 0;
949}
950
951static void drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
952 struct usb_host_endpoint *ep)
953{
954 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
955 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
956 struct mu3h_sch_ep_info *sch_ep;
957 struct hlist_node *hn;
958
959 if (!need_bw_sch(udev, ep))
960 return;
961
962 xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed));
963
964 hash_for_each_possible_safe(mtk->sch_ep_hash, sch_ep,
965 hn, hentry, (unsigned long)ep) {
966 if (sch_ep->ep == ep) {
967 destroy_sch_ep(mtk, udev, sch_ep);
968 break;
969 }
970 }
971}
972
973int xhci_mtk_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
974{
975 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
976 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
977 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
978 struct mu3h_sch_ep_info *sch_ep;
979 int ret;
980
981 xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev));
982
983 list_for_each_entry(sch_ep, &mtk->bw_ep_chk_list, endpoint) {
984 struct xhci_ep_ctx *ep_ctx;
985 struct usb_host_endpoint *ep = sch_ep->ep;
986 unsigned int ep_index = xhci_get_endpoint_index(&ep->desc);
987
988 ret = check_sch_bw(sch_ep);
989 if (ret) {
990 xhci_err(xhci, "Not enough bandwidth! (%s)\n",
991 sch_error_string(-ret));
992 return -ENOSPC;
993 }
994
995 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
996 ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(sch_ep->pkts)
997 | EP_BCSCOUNT(sch_ep->cs_count)
998 | EP_BBM(sch_ep->burst_mode));
999 ep_ctx->reserved[1] = cpu_to_le32(EP_BOFFSET(sch_ep->offset)
1000 | EP_BREPEAT(sch_ep->repeat));
1001
1002 xhci_dbg(xhci, " PKTS:%x, CSCOUNT:%x, BM:%x, OFFSET:%x, REPEAT:%x\n",
1003 sch_ep->pkts, sch_ep->cs_count, sch_ep->burst_mode,
1004 sch_ep->offset, sch_ep->repeat);
1005 }
1006
1007 ret = xhci_check_bandwidth(hcd, udev);
1008 if (!ret)
1009 list_del_init(&mtk->bw_ep_chk_list);
1010
1011 return ret;
1012}
1013
1014void xhci_mtk_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1015{
1016 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
1017 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1018 struct mu3h_sch_ep_info *sch_ep, *tmp;
1019
1020 xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev));
1021
1022 list_for_each_entry_safe(sch_ep, tmp, &mtk->bw_ep_chk_list, endpoint)
1023 destroy_sch_ep(mtk, udev, sch_ep);
1024
1025 xhci_reset_bandwidth(hcd, udev);
1026}
1027
1028int xhci_mtk_add_ep(struct usb_hcd *hcd, struct usb_device *udev,
1029 struct usb_host_endpoint *ep)
1030{
1031 int ret;
1032
1033 ret = xhci_add_endpoint(hcd, udev, ep);
1034 if (ret)
1035 return ret;
1036
1037 if (ep->hcpriv)
1038 ret = add_ep_quirk(hcd, udev, ep);
1039
1040 return ret;
1041}
1042
1043int xhci_mtk_drop_ep(struct usb_hcd *hcd, struct usb_device *udev,
1044 struct usb_host_endpoint *ep)
1045{
1046 int ret;
1047
1048 ret = xhci_drop_endpoint(hcd, udev, ep);
1049 if (ret)
1050 return ret;
1051
1052 /* needn't check @ep->hcpriv, xhci_endpoint_disable set it NULL */
1053 drop_ep_quirk(hcd, udev, ep);
1054
1055 return 0;
1056}