Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3* ***************************************************************************
   4* Marvell Armada-3700 Serial Driver
   5* Author: Wilson Ding <dingwei@marvell.com>
   6* Copyright (C) 2015 Marvell International Ltd.
   7* ***************************************************************************
   8*/
   9
  10#include <linux/clk.h>
  11#include <linux/clk-provider.h>
  12#include <linux/console.h>
  13#include <linux/delay.h>
  14#include <linux/device.h>
  15#include <linux/init.h>
  16#include <linux/io.h>
  17#include <linux/iopoll.h>
  18#include <linux/math64.h>
  19#include <linux/of.h>
  20#include <linux/of_address.h>
  21#include <linux/of_device.h>
  22#include <linux/of_irq.h>
  23#include <linux/of_platform.h>
  24#include <linux/platform_device.h>
  25#include <linux/serial.h>
  26#include <linux/serial_core.h>
  27#include <linux/slab.h>
  28#include <linux/tty.h>
  29#include <linux/tty_flip.h>
  30
  31/* Register Map */
  32#define UART_STD_RBR		0x00
  33#define UART_EXT_RBR		0x18
  34
  35#define UART_STD_TSH		0x04
  36#define UART_EXT_TSH		0x1C
  37
  38#define UART_STD_CTRL1		0x08
  39#define UART_EXT_CTRL1		0x04
  40#define  CTRL_SOFT_RST		BIT(31)
  41#define  CTRL_TXFIFO_RST	BIT(15)
  42#define  CTRL_RXFIFO_RST	BIT(14)
  43#define  CTRL_SND_BRK_SEQ	BIT(11)
  44#define  CTRL_BRK_DET_INT	BIT(3)
  45#define  CTRL_FRM_ERR_INT	BIT(2)
  46#define  CTRL_PAR_ERR_INT	BIT(1)
  47#define  CTRL_OVR_ERR_INT	BIT(0)
  48#define  CTRL_BRK_INT		(CTRL_BRK_DET_INT | CTRL_FRM_ERR_INT | \
  49				CTRL_PAR_ERR_INT | CTRL_OVR_ERR_INT)
  50
  51#define UART_STD_CTRL2		UART_STD_CTRL1
  52#define UART_EXT_CTRL2		0x20
  53#define  CTRL_STD_TX_RDY_INT	BIT(5)
  54#define  CTRL_EXT_TX_RDY_INT	BIT(6)
  55#define  CTRL_STD_RX_RDY_INT	BIT(4)
  56#define  CTRL_EXT_RX_RDY_INT	BIT(5)
  57
  58#define UART_STAT		0x0C
  59#define  STAT_TX_FIFO_EMP	BIT(13)
  60#define  STAT_TX_FIFO_FUL	BIT(11)
  61#define  STAT_TX_EMP		BIT(6)
  62#define  STAT_STD_TX_RDY	BIT(5)
  63#define  STAT_EXT_TX_RDY	BIT(15)
  64#define  STAT_STD_RX_RDY	BIT(4)
  65#define  STAT_EXT_RX_RDY	BIT(14)
  66#define  STAT_BRK_DET		BIT(3)
  67#define  STAT_FRM_ERR		BIT(2)
  68#define  STAT_PAR_ERR		BIT(1)
  69#define  STAT_OVR_ERR		BIT(0)
  70#define  STAT_BRK_ERR		(STAT_BRK_DET | STAT_FRM_ERR \
  71				 | STAT_PAR_ERR | STAT_OVR_ERR)
  72
  73/*
  74 * Marvell Armada 3700 Functional Specifications describes that bit 21 of UART
  75 * Clock Control register controls UART1 and bit 20 controls UART2. But in
  76 * reality bit 21 controls UART2 and bit 20 controls UART1. This seems to be an
  77 * error in Marvell's documentation. Hence following CLK_DIS macros are swapped.
  78 */
  79
  80#define UART_BRDV		0x10
  81/* These bits are located in UART1 address space and control UART2 */
  82#define  UART2_CLK_DIS		BIT(21)
  83/* These bits are located in UART1 address space and control UART1 */
  84#define  UART1_CLK_DIS		BIT(20)
  85/* These bits are located in UART1 address space and control both UARTs */
  86#define  CLK_NO_XTAL		BIT(19)
  87#define  CLK_TBG_DIV1_SHIFT	15
  88#define  CLK_TBG_DIV1_MASK	0x7
  89#define  CLK_TBG_DIV1_MAX	6
  90#define  CLK_TBG_DIV2_SHIFT	12
  91#define  CLK_TBG_DIV2_MASK	0x7
  92#define  CLK_TBG_DIV2_MAX	6
  93#define  CLK_TBG_SEL_SHIFT	10
  94#define  CLK_TBG_SEL_MASK	0x3
  95/* These bits are located in both UARTs address space */
  96#define  BRDV_BAUD_MASK         0x3FF
  97#define  BRDV_BAUD_MAX		BRDV_BAUD_MASK
  98
  99#define UART_OSAMP		0x14
 100#define  OSAMP_DEFAULT_DIVISOR	16
 101#define  OSAMP_DIVISORS_MASK	0x3F3F3F3F
 102#define  OSAMP_MAX_DIVISOR	63
 103
 104#define MVEBU_NR_UARTS		2
 105
 106#define MVEBU_UART_TYPE		"mvebu-uart"
 107#define DRIVER_NAME		"mvebu_serial"
 108
 109enum {
 110	/* Either there is only one summed IRQ... */
 111	UART_IRQ_SUM = 0,
 112	/* ...or there are two separate IRQ for RX and TX */
 113	UART_RX_IRQ = 0,
 114	UART_TX_IRQ,
 115	UART_IRQ_COUNT
 116};
 117
 118/* Diverging register offsets */
 119struct uart_regs_layout {
 120	unsigned int rbr;
 121	unsigned int tsh;
 122	unsigned int ctrl;
 123	unsigned int intr;
 124};
 125
 126/* Diverging flags */
 127struct uart_flags {
 128	unsigned int ctrl_tx_rdy_int;
 129	unsigned int ctrl_rx_rdy_int;
 130	unsigned int stat_tx_rdy;
 131	unsigned int stat_rx_rdy;
 132};
 133
 134/* Driver data, a structure for each UART port */
 135struct mvebu_uart_driver_data {
 136	bool is_ext;
 137	struct uart_regs_layout regs;
 138	struct uart_flags flags;
 139};
 140
 141/* Saved registers during suspend */
 142struct mvebu_uart_pm_regs {
 143	unsigned int rbr;
 144	unsigned int tsh;
 145	unsigned int ctrl;
 146	unsigned int intr;
 147	unsigned int stat;
 148	unsigned int brdv;
 149	unsigned int osamp;
 150};
 151
 152/* MVEBU UART driver structure */
 153struct mvebu_uart {
 154	struct uart_port *port;
 155	struct clk *clk;
 156	int irq[UART_IRQ_COUNT];
 157	struct mvebu_uart_driver_data *data;
 158#if defined(CONFIG_PM)
 159	struct mvebu_uart_pm_regs pm_regs;
 160#endif /* CONFIG_PM */
 161};
 162
 163static struct mvebu_uart *to_mvuart(struct uart_port *port)
 164{
 165	return (struct mvebu_uart *)port->private_data;
 166}
 167
 168#define IS_EXTENDED(port) (to_mvuart(port)->data->is_ext)
 169
 170#define UART_RBR(port) (to_mvuart(port)->data->regs.rbr)
 171#define UART_TSH(port) (to_mvuart(port)->data->regs.tsh)
 172#define UART_CTRL(port) (to_mvuart(port)->data->regs.ctrl)
 173#define UART_INTR(port) (to_mvuart(port)->data->regs.intr)
 174
 175#define CTRL_TX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_tx_rdy_int)
 176#define CTRL_RX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_rx_rdy_int)
 177#define STAT_TX_RDY(port) (to_mvuart(port)->data->flags.stat_tx_rdy)
 178#define STAT_RX_RDY(port) (to_mvuart(port)->data->flags.stat_rx_rdy)
 179
 180static struct uart_port mvebu_uart_ports[MVEBU_NR_UARTS];
 181
 182static DEFINE_SPINLOCK(mvebu_uart_lock);
 183
 184/* Core UART Driver Operations */
 185static unsigned int mvebu_uart_tx_empty(struct uart_port *port)
 186{
 187	unsigned long flags;
 188	unsigned int st;
 189
 190	uart_port_lock_irqsave(port, &flags);
 191	st = readl(port->membase + UART_STAT);
 192	uart_port_unlock_irqrestore(port, flags);
 193
 194	return (st & STAT_TX_EMP) ? TIOCSER_TEMT : 0;
 195}
 196
 197static unsigned int mvebu_uart_get_mctrl(struct uart_port *port)
 198{
 199	return TIOCM_CTS | TIOCM_DSR | TIOCM_CAR;
 200}
 201
 202static void mvebu_uart_set_mctrl(struct uart_port *port,
 203				 unsigned int mctrl)
 204{
 205/*
 206 * Even if we do not support configuring the modem control lines, this
 207 * function must be proided to the serial core
 208 */
 209}
 210
 211static void mvebu_uart_stop_tx(struct uart_port *port)
 212{
 213	unsigned int ctl = readl(port->membase + UART_INTR(port));
 214
 215	ctl &= ~CTRL_TX_RDY_INT(port);
 216	writel(ctl, port->membase + UART_INTR(port));
 217}
 218
 219static void mvebu_uart_start_tx(struct uart_port *port)
 220{
 221	unsigned int ctl;
 222	struct circ_buf *xmit = &port->state->xmit;
 223
 224	if (IS_EXTENDED(port) && !uart_circ_empty(xmit)) {
 225		writel(xmit->buf[xmit->tail], port->membase + UART_TSH(port));
 226		uart_xmit_advance(port, 1);
 227	}
 228
 229	ctl = readl(port->membase + UART_INTR(port));
 230	ctl |= CTRL_TX_RDY_INT(port);
 231	writel(ctl, port->membase + UART_INTR(port));
 232}
 233
 234static void mvebu_uart_stop_rx(struct uart_port *port)
 235{
 236	unsigned int ctl;
 237
 238	ctl = readl(port->membase + UART_CTRL(port));
 239	ctl &= ~CTRL_BRK_INT;
 240	writel(ctl, port->membase + UART_CTRL(port));
 241
 242	ctl = readl(port->membase + UART_INTR(port));
 243	ctl &= ~CTRL_RX_RDY_INT(port);
 244	writel(ctl, port->membase + UART_INTR(port));
 245}
 246
 247static void mvebu_uart_break_ctl(struct uart_port *port, int brk)
 248{
 249	unsigned int ctl;
 250	unsigned long flags;
 251
 252	uart_port_lock_irqsave(port, &flags);
 253	ctl = readl(port->membase + UART_CTRL(port));
 254	if (brk == -1)
 255		ctl |= CTRL_SND_BRK_SEQ;
 256	else
 257		ctl &= ~CTRL_SND_BRK_SEQ;
 258	writel(ctl, port->membase + UART_CTRL(port));
 259	uart_port_unlock_irqrestore(port, flags);
 260}
 261
 262static void mvebu_uart_rx_chars(struct uart_port *port, unsigned int status)
 263{
 264	struct tty_port *tport = &port->state->port;
 265	unsigned char ch = 0;
 266	char flag = 0;
 267	int ret;
 268
 269	do {
 270		if (status & STAT_RX_RDY(port)) {
 271			ch = readl(port->membase + UART_RBR(port));
 272			ch &= 0xff;
 273			flag = TTY_NORMAL;
 274			port->icount.rx++;
 275
 276			if (status & STAT_PAR_ERR)
 277				port->icount.parity++;
 278		}
 279
 280		/*
 281		 * For UART2, error bits are not cleared on buffer read.
 282		 * This causes interrupt loop and system hang.
 283		 */
 284		if (IS_EXTENDED(port) && (status & STAT_BRK_ERR)) {
 285			ret = readl(port->membase + UART_STAT);
 286			ret |= STAT_BRK_ERR;
 287			writel(ret, port->membase + UART_STAT);
 288		}
 289
 290		if (status & STAT_BRK_DET) {
 291			port->icount.brk++;
 292			status &= ~(STAT_FRM_ERR | STAT_PAR_ERR);
 293			if (uart_handle_break(port))
 294				goto ignore_char;
 295		}
 296
 297		if (status & STAT_OVR_ERR)
 298			port->icount.overrun++;
 299
 300		if (status & STAT_FRM_ERR)
 301			port->icount.frame++;
 302
 303		if (uart_handle_sysrq_char(port, ch))
 304			goto ignore_char;
 305
 306		if (status & port->ignore_status_mask & STAT_PAR_ERR)
 307			status &= ~STAT_RX_RDY(port);
 308
 309		status &= port->read_status_mask;
 310
 311		if (status & STAT_PAR_ERR)
 312			flag = TTY_PARITY;
 313
 314		status &= ~port->ignore_status_mask;
 315
 316		if (status & STAT_RX_RDY(port))
 317			tty_insert_flip_char(tport, ch, flag);
 318
 319		if (status & STAT_BRK_DET)
 320			tty_insert_flip_char(tport, 0, TTY_BREAK);
 321
 322		if (status & STAT_FRM_ERR)
 323			tty_insert_flip_char(tport, 0, TTY_FRAME);
 324
 325		if (status & STAT_OVR_ERR)
 326			tty_insert_flip_char(tport, 0, TTY_OVERRUN);
 327
 328ignore_char:
 329		status = readl(port->membase + UART_STAT);
 330	} while (status & (STAT_RX_RDY(port) | STAT_BRK_DET));
 331
 332	tty_flip_buffer_push(tport);
 333}
 334
 335static void mvebu_uart_tx_chars(struct uart_port *port, unsigned int status)
 336{
 337	u8 ch;
 338
 339	uart_port_tx_limited(port, ch, port->fifosize,
 340		!(readl(port->membase + UART_STAT) & STAT_TX_FIFO_FUL),
 341		writel(ch, port->membase + UART_TSH(port)),
 342		({}));
 343}
 344
 345static irqreturn_t mvebu_uart_isr(int irq, void *dev_id)
 346{
 347	struct uart_port *port = (struct uart_port *)dev_id;
 348	unsigned int st = readl(port->membase + UART_STAT);
 349
 350	if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR |
 351		  STAT_BRK_DET))
 352		mvebu_uart_rx_chars(port, st);
 353
 354	if (st & STAT_TX_RDY(port))
 355		mvebu_uart_tx_chars(port, st);
 356
 357	return IRQ_HANDLED;
 358}
 359
 360static irqreturn_t mvebu_uart_rx_isr(int irq, void *dev_id)
 361{
 362	struct uart_port *port = (struct uart_port *)dev_id;
 363	unsigned int st = readl(port->membase + UART_STAT);
 364
 365	if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR |
 366			STAT_BRK_DET))
 367		mvebu_uart_rx_chars(port, st);
 368
 369	return IRQ_HANDLED;
 370}
 371
 372static irqreturn_t mvebu_uart_tx_isr(int irq, void *dev_id)
 373{
 374	struct uart_port *port = (struct uart_port *)dev_id;
 375	unsigned int st = readl(port->membase + UART_STAT);
 376
 377	if (st & STAT_TX_RDY(port))
 378		mvebu_uart_tx_chars(port, st);
 379
 380	return IRQ_HANDLED;
 381}
 382
 383static int mvebu_uart_startup(struct uart_port *port)
 384{
 385	struct mvebu_uart *mvuart = to_mvuart(port);
 386	unsigned int ctl;
 387	int ret;
 388
 389	writel(CTRL_TXFIFO_RST | CTRL_RXFIFO_RST,
 390	       port->membase + UART_CTRL(port));
 391	udelay(1);
 392
 393	/* Clear the error bits of state register before IRQ request */
 394	ret = readl(port->membase + UART_STAT);
 395	ret |= STAT_BRK_ERR;
 396	writel(ret, port->membase + UART_STAT);
 397
 398	writel(CTRL_BRK_INT, port->membase + UART_CTRL(port));
 399
 400	ctl = readl(port->membase + UART_INTR(port));
 401	ctl |= CTRL_RX_RDY_INT(port);
 402	writel(ctl, port->membase + UART_INTR(port));
 403
 404	if (!mvuart->irq[UART_TX_IRQ]) {
 405		/* Old bindings with just one interrupt (UART0 only) */
 406		ret = devm_request_irq(port->dev, mvuart->irq[UART_IRQ_SUM],
 407				       mvebu_uart_isr, port->irqflags,
 408				       dev_name(port->dev), port);
 409		if (ret) {
 410			dev_err(port->dev, "unable to request IRQ %d\n",
 411				mvuart->irq[UART_IRQ_SUM]);
 412			return ret;
 413		}
 414	} else {
 415		/* New bindings with an IRQ for RX and TX (both UART) */
 416		ret = devm_request_irq(port->dev, mvuart->irq[UART_RX_IRQ],
 417				       mvebu_uart_rx_isr, port->irqflags,
 418				       dev_name(port->dev), port);
 419		if (ret) {
 420			dev_err(port->dev, "unable to request IRQ %d\n",
 421				mvuart->irq[UART_RX_IRQ]);
 422			return ret;
 423		}
 424
 425		ret = devm_request_irq(port->dev, mvuart->irq[UART_TX_IRQ],
 426				       mvebu_uart_tx_isr, port->irqflags,
 427				       dev_name(port->dev),
 428				       port);
 429		if (ret) {
 430			dev_err(port->dev, "unable to request IRQ %d\n",
 431				mvuart->irq[UART_TX_IRQ]);
 432			devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ],
 433				      port);
 434			return ret;
 435		}
 436	}
 437
 438	return 0;
 439}
 440
 441static void mvebu_uart_shutdown(struct uart_port *port)
 442{
 443	struct mvebu_uart *mvuart = to_mvuart(port);
 444
 445	writel(0, port->membase + UART_INTR(port));
 446
 447	if (!mvuart->irq[UART_TX_IRQ]) {
 448		devm_free_irq(port->dev, mvuart->irq[UART_IRQ_SUM], port);
 449	} else {
 450		devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ], port);
 451		devm_free_irq(port->dev, mvuart->irq[UART_TX_IRQ], port);
 452	}
 453}
 454
 455static unsigned int mvebu_uart_baud_rate_set(struct uart_port *port, unsigned int baud)
 456{
 457	unsigned int d_divisor, m_divisor;
 458	unsigned long flags;
 459	u32 brdv, osamp;
 460
 461	if (!port->uartclk)
 462		return 0;
 463
 464	/*
 465	 * The baudrate is derived from the UART clock thanks to divisors:
 466	 *   > d1 * d2 ("TBG divisors"): can divide only TBG clock from 1 to 6
 467	 *   > D ("baud generator"): can divide the clock from 1 to 1023
 468	 *   > M ("fractional divisor"): allows a better accuracy (from 1 to 63)
 469	 *
 470	 * Exact formulas for calculating baudrate:
 471	 *
 472	 * with default x16 scheme:
 473	 *   baudrate = xtal / (d * 16)
 474	 *   baudrate = tbg / (d1 * d2 * d * 16)
 475	 *
 476	 * with fractional divisor:
 477	 *   baudrate = 10 * xtal / (d * (3 * (m1 + m2) + 2 * (m3 + m4)))
 478	 *   baudrate = 10 * tbg / (d1*d2 * d * (3 * (m1 + m2) + 2 * (m3 + m4)))
 479	 *
 480	 * Oversampling value:
 481	 *   osamp = (m1 << 0) | (m2 << 8) | (m3 << 16) | (m4 << 24);
 482	 *
 483	 * Where m1 controls number of clock cycles per bit for bits 1,2,3;
 484	 * m2 for bits 4,5,6; m3 for bits 7,8 and m4 for bits 9,10.
 485	 *
 486	 * To simplify baudrate setup set all the M prescalers to the same
 487	 * value. For baudrates 9600 Bd and higher, it is enough to use the
 488	 * default (x16) divisor or fractional divisor with M = 63, so there
 489	 * is no need to use real fractional support (where the M prescalers
 490	 * are not equal).
 491	 *
 492	 * When all the M prescalers are zeroed then default (x16) divisor is
 493	 * used. Default x16 scheme is more stable than M (fractional divisor),
 494	 * so use M only when D divisor is not enough to derive baudrate.
 495	 *
 496	 * Member port->uartclk is either xtal clock rate or TBG clock rate
 497	 * divided by (d1 * d2). So d1 and d2 are already set by the UART clock
 498	 * driver (and UART driver itself cannot change them). Moreover they are
 499	 * shared between both UARTs.
 500	 */
 501
 502	m_divisor = OSAMP_DEFAULT_DIVISOR;
 503	d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor);
 504
 505	if (d_divisor > BRDV_BAUD_MAX) {
 506		/*
 507		 * Experiments show that small M divisors are unstable.
 508		 * Use maximal possible M = 63 and calculate D divisor.
 509		 */
 510		m_divisor = OSAMP_MAX_DIVISOR;
 511		d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor);
 512	}
 513
 514	if (d_divisor < 1)
 515		d_divisor = 1;
 516	else if (d_divisor > BRDV_BAUD_MAX)
 517		d_divisor = BRDV_BAUD_MAX;
 518
 519	spin_lock_irqsave(&mvebu_uart_lock, flags);
 520	brdv = readl(port->membase + UART_BRDV);
 521	brdv &= ~BRDV_BAUD_MASK;
 522	brdv |= d_divisor;
 523	writel(brdv, port->membase + UART_BRDV);
 524	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
 525
 526	osamp = readl(port->membase + UART_OSAMP);
 527	osamp &= ~OSAMP_DIVISORS_MASK;
 528	if (m_divisor != OSAMP_DEFAULT_DIVISOR)
 529		osamp |= (m_divisor << 0) | (m_divisor << 8) |
 530			(m_divisor << 16) | (m_divisor << 24);
 531	writel(osamp, port->membase + UART_OSAMP);
 532
 533	return DIV_ROUND_CLOSEST(port->uartclk, d_divisor * m_divisor);
 534}
 535
 536static void mvebu_uart_set_termios(struct uart_port *port,
 537				   struct ktermios *termios,
 538				   const struct ktermios *old)
 539{
 540	unsigned long flags;
 541	unsigned int baud, min_baud, max_baud;
 542
 543	uart_port_lock_irqsave(port, &flags);
 544
 545	port->read_status_mask = STAT_RX_RDY(port) | STAT_OVR_ERR |
 546		STAT_TX_RDY(port) | STAT_TX_FIFO_FUL;
 547
 548	if (termios->c_iflag & INPCK)
 549		port->read_status_mask |= STAT_FRM_ERR | STAT_PAR_ERR;
 550
 551	port->ignore_status_mask = 0;
 552	if (termios->c_iflag & IGNPAR)
 553		port->ignore_status_mask |=
 554			STAT_FRM_ERR | STAT_PAR_ERR | STAT_OVR_ERR;
 555
 556	if ((termios->c_cflag & CREAD) == 0)
 557		port->ignore_status_mask |= STAT_RX_RDY(port) | STAT_BRK_ERR;
 558
 559	/*
 560	 * Maximal divisor is 1023 and maximal fractional divisor is 63. And
 561	 * experiments show that baudrates above 1/80 of parent clock rate are
 562	 * not stable. So disallow baudrates above 1/80 of the parent clock
 563	 * rate. If port->uartclk is not available, then
 564	 * mvebu_uart_baud_rate_set() fails, so values min_baud and max_baud
 565	 * in this case do not matter.
 566	 */
 567	min_baud = DIV_ROUND_UP(port->uartclk, BRDV_BAUD_MAX *
 568				OSAMP_MAX_DIVISOR);
 569	max_baud = port->uartclk / 80;
 570
 571	baud = uart_get_baud_rate(port, termios, old, min_baud, max_baud);
 572	baud = mvebu_uart_baud_rate_set(port, baud);
 573
 574	/* In case baudrate cannot be changed, report previous old value */
 575	if (baud == 0 && old)
 576		baud = tty_termios_baud_rate(old);
 577
 578	/* Only the following flag changes are supported */
 579	if (old) {
 580		termios->c_iflag &= INPCK | IGNPAR;
 581		termios->c_iflag |= old->c_iflag & ~(INPCK | IGNPAR);
 582		termios->c_cflag &= CREAD | CBAUD;
 583		termios->c_cflag |= old->c_cflag & ~(CREAD | CBAUD);
 584		termios->c_cflag |= CS8;
 585	}
 586
 587	if (baud != 0) {
 588		tty_termios_encode_baud_rate(termios, baud, baud);
 589		uart_update_timeout(port, termios->c_cflag, baud);
 590	}
 591
 592	uart_port_unlock_irqrestore(port, flags);
 593}
 594
 595static const char *mvebu_uart_type(struct uart_port *port)
 596{
 597	return MVEBU_UART_TYPE;
 598}
 599
 600static void mvebu_uart_release_port(struct uart_port *port)
 601{
 602	/* Nothing to do here */
 603}
 604
 605static int mvebu_uart_request_port(struct uart_port *port)
 606{
 607	return 0;
 608}
 609
 610#ifdef CONFIG_CONSOLE_POLL
 611static int mvebu_uart_get_poll_char(struct uart_port *port)
 612{
 613	unsigned int st = readl(port->membase + UART_STAT);
 614
 615	if (!(st & STAT_RX_RDY(port)))
 616		return NO_POLL_CHAR;
 617
 618	return readl(port->membase + UART_RBR(port));
 619}
 620
 621static void mvebu_uart_put_poll_char(struct uart_port *port, unsigned char c)
 622{
 623	unsigned int st;
 624
 625	for (;;) {
 626		st = readl(port->membase + UART_STAT);
 627
 628		if (!(st & STAT_TX_FIFO_FUL))
 629			break;
 630
 631		udelay(1);
 632	}
 633
 634	writel(c, port->membase + UART_TSH(port));
 635}
 636#endif
 637
 638static const struct uart_ops mvebu_uart_ops = {
 639	.tx_empty	= mvebu_uart_tx_empty,
 640	.set_mctrl	= mvebu_uart_set_mctrl,
 641	.get_mctrl	= mvebu_uart_get_mctrl,
 642	.stop_tx	= mvebu_uart_stop_tx,
 643	.start_tx	= mvebu_uart_start_tx,
 644	.stop_rx	= mvebu_uart_stop_rx,
 645	.break_ctl	= mvebu_uart_break_ctl,
 646	.startup	= mvebu_uart_startup,
 647	.shutdown	= mvebu_uart_shutdown,
 648	.set_termios	= mvebu_uart_set_termios,
 649	.type		= mvebu_uart_type,
 650	.release_port	= mvebu_uart_release_port,
 651	.request_port	= mvebu_uart_request_port,
 652#ifdef CONFIG_CONSOLE_POLL
 653	.poll_get_char	= mvebu_uart_get_poll_char,
 654	.poll_put_char	= mvebu_uart_put_poll_char,
 655#endif
 656};
 657
 658/* Console Driver Operations  */
 659
 660#ifdef CONFIG_SERIAL_MVEBU_CONSOLE
 661/* Early Console */
 662static void mvebu_uart_putc(struct uart_port *port, unsigned char c)
 663{
 664	unsigned int st;
 665
 666	for (;;) {
 667		st = readl(port->membase + UART_STAT);
 668		if (!(st & STAT_TX_FIFO_FUL))
 669			break;
 670	}
 671
 672	/* At early stage, DT is not parsed yet, only use UART0 */
 673	writel(c, port->membase + UART_STD_TSH);
 674
 675	for (;;) {
 676		st = readl(port->membase + UART_STAT);
 677		if (st & STAT_TX_FIFO_EMP)
 678			break;
 679	}
 680}
 681
 682static void mvebu_uart_putc_early_write(struct console *con,
 683					const char *s,
 684					unsigned int n)
 685{
 686	struct earlycon_device *dev = con->data;
 687
 688	uart_console_write(&dev->port, s, n, mvebu_uart_putc);
 689}
 690
 691static int __init
 692mvebu_uart_early_console_setup(struct earlycon_device *device,
 693			       const char *opt)
 694{
 695	if (!device->port.membase)
 696		return -ENODEV;
 697
 698	device->con->write = mvebu_uart_putc_early_write;
 699
 700	return 0;
 701}
 702
 703EARLYCON_DECLARE(ar3700_uart, mvebu_uart_early_console_setup);
 704OF_EARLYCON_DECLARE(ar3700_uart, "marvell,armada-3700-uart",
 705		    mvebu_uart_early_console_setup);
 706
 707static void wait_for_xmitr(struct uart_port *port)
 708{
 709	u32 val;
 710
 711	readl_poll_timeout_atomic(port->membase + UART_STAT, val,
 712				  (val & STAT_TX_RDY(port)), 1, 10000);
 713}
 714
 715static void wait_for_xmite(struct uart_port *port)
 716{
 717	u32 val;
 718
 719	readl_poll_timeout_atomic(port->membase + UART_STAT, val,
 720				  (val & STAT_TX_EMP), 1, 10000);
 721}
 722
 723static void mvebu_uart_console_putchar(struct uart_port *port, unsigned char ch)
 724{
 725	wait_for_xmitr(port);
 726	writel(ch, port->membase + UART_TSH(port));
 727}
 728
 729static void mvebu_uart_console_write(struct console *co, const char *s,
 730				     unsigned int count)
 731{
 732	struct uart_port *port = &mvebu_uart_ports[co->index];
 733	unsigned long flags;
 734	unsigned int ier, intr, ctl;
 735	int locked = 1;
 736
 737	if (oops_in_progress)
 738		locked = uart_port_trylock_irqsave(port, &flags);
 739	else
 740		uart_port_lock_irqsave(port, &flags);
 741
 742	ier = readl(port->membase + UART_CTRL(port)) & CTRL_BRK_INT;
 743	intr = readl(port->membase + UART_INTR(port)) &
 744		(CTRL_RX_RDY_INT(port) | CTRL_TX_RDY_INT(port));
 745	writel(0, port->membase + UART_CTRL(port));
 746	writel(0, port->membase + UART_INTR(port));
 747
 748	uart_console_write(port, s, count, mvebu_uart_console_putchar);
 749
 750	wait_for_xmite(port);
 751
 752	if (ier)
 753		writel(ier, port->membase + UART_CTRL(port));
 754
 755	if (intr) {
 756		ctl = intr | readl(port->membase + UART_INTR(port));
 757		writel(ctl, port->membase + UART_INTR(port));
 758	}
 759
 760	if (locked)
 761		uart_port_unlock_irqrestore(port, flags);
 762}
 763
 764static int mvebu_uart_console_setup(struct console *co, char *options)
 765{
 766	struct uart_port *port;
 767	int baud = 9600;
 768	int bits = 8;
 769	int parity = 'n';
 770	int flow = 'n';
 771
 772	if (co->index < 0 || co->index >= MVEBU_NR_UARTS)
 773		return -EINVAL;
 774
 775	port = &mvebu_uart_ports[co->index];
 776
 777	if (!port->mapbase || !port->membase) {
 778		pr_debug("console on ttyMV%i not present\n", co->index);
 779		return -ENODEV;
 780	}
 781
 782	if (options)
 783		uart_parse_options(options, &baud, &parity, &bits, &flow);
 784
 785	return uart_set_options(port, co, baud, parity, bits, flow);
 786}
 787
 788static struct uart_driver mvebu_uart_driver;
 789
 790static struct console mvebu_uart_console = {
 791	.name	= "ttyMV",
 792	.write	= mvebu_uart_console_write,
 793	.device	= uart_console_device,
 794	.setup	= mvebu_uart_console_setup,
 795	.flags	= CON_PRINTBUFFER,
 796	.index	= -1,
 797	.data	= &mvebu_uart_driver,
 798};
 799
 800static int __init mvebu_uart_console_init(void)
 801{
 802	register_console(&mvebu_uart_console);
 803	return 0;
 804}
 805
 806console_initcall(mvebu_uart_console_init);
 807
 808
 809#endif /* CONFIG_SERIAL_MVEBU_CONSOLE */
 810
 811static struct uart_driver mvebu_uart_driver = {
 812	.owner			= THIS_MODULE,
 813	.driver_name		= DRIVER_NAME,
 814	.dev_name		= "ttyMV",
 815	.nr			= MVEBU_NR_UARTS,
 816#ifdef CONFIG_SERIAL_MVEBU_CONSOLE
 817	.cons			= &mvebu_uart_console,
 818#endif
 819};
 820
 821#if defined(CONFIG_PM)
 822static int mvebu_uart_suspend(struct device *dev)
 823{
 824	struct mvebu_uart *mvuart = dev_get_drvdata(dev);
 825	struct uart_port *port = mvuart->port;
 826	unsigned long flags;
 827
 828	uart_suspend_port(&mvebu_uart_driver, port);
 829
 830	mvuart->pm_regs.rbr = readl(port->membase + UART_RBR(port));
 831	mvuart->pm_regs.tsh = readl(port->membase + UART_TSH(port));
 832	mvuart->pm_regs.ctrl = readl(port->membase + UART_CTRL(port));
 833	mvuart->pm_regs.intr = readl(port->membase + UART_INTR(port));
 834	mvuart->pm_regs.stat = readl(port->membase + UART_STAT);
 835	spin_lock_irqsave(&mvebu_uart_lock, flags);
 836	mvuart->pm_regs.brdv = readl(port->membase + UART_BRDV);
 837	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
 838	mvuart->pm_regs.osamp = readl(port->membase + UART_OSAMP);
 839
 840	device_set_wakeup_enable(dev, true);
 841
 842	return 0;
 843}
 844
 845static int mvebu_uart_resume(struct device *dev)
 846{
 847	struct mvebu_uart *mvuart = dev_get_drvdata(dev);
 848	struct uart_port *port = mvuart->port;
 849	unsigned long flags;
 850
 851	writel(mvuart->pm_regs.rbr, port->membase + UART_RBR(port));
 852	writel(mvuart->pm_regs.tsh, port->membase + UART_TSH(port));
 853	writel(mvuart->pm_regs.ctrl, port->membase + UART_CTRL(port));
 854	writel(mvuart->pm_regs.intr, port->membase + UART_INTR(port));
 855	writel(mvuart->pm_regs.stat, port->membase + UART_STAT);
 856	spin_lock_irqsave(&mvebu_uart_lock, flags);
 857	writel(mvuart->pm_regs.brdv, port->membase + UART_BRDV);
 858	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
 859	writel(mvuart->pm_regs.osamp, port->membase + UART_OSAMP);
 860
 861	uart_resume_port(&mvebu_uart_driver, port);
 862
 863	return 0;
 864}
 865
 866static const struct dev_pm_ops mvebu_uart_pm_ops = {
 867	.suspend        = mvebu_uart_suspend,
 868	.resume         = mvebu_uart_resume,
 869};
 870#endif /* CONFIG_PM */
 871
 872static const struct of_device_id mvebu_uart_of_match[];
 873
 874/* Counter to keep track of each UART port id when not using CONFIG_OF */
 875static int uart_num_counter;
 876
 877static int mvebu_uart_probe(struct platform_device *pdev)
 878{
 879	const struct of_device_id *match = of_match_device(mvebu_uart_of_match,
 880							   &pdev->dev);
 881	struct uart_port *port;
 882	struct mvebu_uart *mvuart;
 883	struct resource *reg;
 884	int id, irq;
 885
 886	/* Assume that all UART ports have a DT alias or none has */
 887	id = of_alias_get_id(pdev->dev.of_node, "serial");
 888	if (!pdev->dev.of_node || id < 0)
 889		pdev->id = uart_num_counter++;
 890	else
 891		pdev->id = id;
 892
 893	if (pdev->id >= MVEBU_NR_UARTS) {
 894		dev_err(&pdev->dev, "cannot have more than %d UART ports\n",
 895			MVEBU_NR_UARTS);
 896		return -EINVAL;
 897	}
 898
 899	port = &mvebu_uart_ports[pdev->id];
 900
 901	spin_lock_init(&port->lock);
 902
 903	port->dev        = &pdev->dev;
 904	port->type       = PORT_MVEBU;
 905	port->ops        = &mvebu_uart_ops;
 906	port->regshift   = 0;
 907
 908	port->fifosize   = 32;
 909	port->iotype     = UPIO_MEM32;
 910	port->flags      = UPF_FIXED_PORT;
 911	port->line       = pdev->id;
 912
 913	/*
 914	 * IRQ number is not stored in this structure because we may have two of
 915	 * them per port (RX and TX). Instead, use the driver UART structure
 916	 * array so called ->irq[].
 917	 */
 918	port->irq        = 0;
 919	port->irqflags   = 0;
 920
 921	port->membase = devm_platform_get_and_ioremap_resource(pdev, 0, &reg);
 922	if (IS_ERR(port->membase))
 923		return PTR_ERR(port->membase);
 924	port->mapbase    = reg->start;
 925
 926	mvuart = devm_kzalloc(&pdev->dev, sizeof(struct mvebu_uart),
 927			      GFP_KERNEL);
 928	if (!mvuart)
 929		return -ENOMEM;
 930
 931	/* Get controller data depending on the compatible string */
 932	mvuart->data = (struct mvebu_uart_driver_data *)match->data;
 933	mvuart->port = port;
 934
 935	port->private_data = mvuart;
 936	platform_set_drvdata(pdev, mvuart);
 937
 938	/* Get fixed clock frequency */
 939	mvuart->clk = devm_clk_get(&pdev->dev, NULL);
 940	if (IS_ERR(mvuart->clk)) {
 941		if (PTR_ERR(mvuart->clk) == -EPROBE_DEFER)
 942			return PTR_ERR(mvuart->clk);
 943
 944		if (IS_EXTENDED(port)) {
 945			dev_err(&pdev->dev, "unable to get UART clock\n");
 946			return PTR_ERR(mvuart->clk);
 947		}
 948	} else {
 949		if (!clk_prepare_enable(mvuart->clk))
 950			port->uartclk = clk_get_rate(mvuart->clk);
 951	}
 952
 953	/* Manage interrupts */
 954	if (platform_irq_count(pdev) == 1) {
 955		/* Old bindings: no name on the single unamed UART0 IRQ */
 956		irq = platform_get_irq(pdev, 0);
 957		if (irq < 0)
 958			return irq;
 959
 960		mvuart->irq[UART_IRQ_SUM] = irq;
 961	} else {
 962		/*
 963		 * New bindings: named interrupts (RX, TX) for both UARTS,
 964		 * only make use of uart-rx and uart-tx interrupts, do not use
 965		 * uart-sum of UART0 port.
 966		 */
 967		irq = platform_get_irq_byname(pdev, "uart-rx");
 968		if (irq < 0)
 969			return irq;
 970
 971		mvuart->irq[UART_RX_IRQ] = irq;
 972
 973		irq = platform_get_irq_byname(pdev, "uart-tx");
 974		if (irq < 0)
 975			return irq;
 976
 977		mvuart->irq[UART_TX_IRQ] = irq;
 978	}
 979
 980	/* UART Soft Reset*/
 981	writel(CTRL_SOFT_RST, port->membase + UART_CTRL(port));
 982	udelay(1);
 983	writel(0, port->membase + UART_CTRL(port));
 984
 985	return uart_add_one_port(&mvebu_uart_driver, port);
 986}
 987
 988static struct mvebu_uart_driver_data uart_std_driver_data = {
 989	.is_ext = false,
 990	.regs.rbr = UART_STD_RBR,
 991	.regs.tsh = UART_STD_TSH,
 992	.regs.ctrl = UART_STD_CTRL1,
 993	.regs.intr = UART_STD_CTRL2,
 994	.flags.ctrl_tx_rdy_int = CTRL_STD_TX_RDY_INT,
 995	.flags.ctrl_rx_rdy_int = CTRL_STD_RX_RDY_INT,
 996	.flags.stat_tx_rdy = STAT_STD_TX_RDY,
 997	.flags.stat_rx_rdy = STAT_STD_RX_RDY,
 998};
 999
1000static struct mvebu_uart_driver_data uart_ext_driver_data = {
1001	.is_ext = true,
1002	.regs.rbr = UART_EXT_RBR,
1003	.regs.tsh = UART_EXT_TSH,
1004	.regs.ctrl = UART_EXT_CTRL1,
1005	.regs.intr = UART_EXT_CTRL2,
1006	.flags.ctrl_tx_rdy_int = CTRL_EXT_TX_RDY_INT,
1007	.flags.ctrl_rx_rdy_int = CTRL_EXT_RX_RDY_INT,
1008	.flags.stat_tx_rdy = STAT_EXT_TX_RDY,
1009	.flags.stat_rx_rdy = STAT_EXT_RX_RDY,
1010};
1011
1012/* Match table for of_platform binding */
1013static const struct of_device_id mvebu_uart_of_match[] = {
1014	{
1015		.compatible = "marvell,armada-3700-uart",
1016		.data = (void *)&uart_std_driver_data,
1017	},
1018	{
1019		.compatible = "marvell,armada-3700-uart-ext",
1020		.data = (void *)&uart_ext_driver_data,
1021	},
1022	{}
1023};
1024
1025static struct platform_driver mvebu_uart_platform_driver = {
1026	.probe	= mvebu_uart_probe,
1027	.driver	= {
1028		.name  = "mvebu-uart",
1029		.of_match_table = of_match_ptr(mvebu_uart_of_match),
1030		.suppress_bind_attrs = true,
1031#if defined(CONFIG_PM)
1032		.pm	= &mvebu_uart_pm_ops,
1033#endif /* CONFIG_PM */
1034	},
1035};
1036
1037/* This code is based on clk-fixed-factor.c driver and modified. */
1038
1039struct mvebu_uart_clock {
1040	struct clk_hw clk_hw;
1041	int clock_idx;
1042	u32 pm_context_reg1;
1043	u32 pm_context_reg2;
1044};
1045
1046struct mvebu_uart_clock_base {
1047	struct mvebu_uart_clock clocks[2];
1048	unsigned int parent_rates[5];
1049	int parent_idx;
1050	unsigned int div;
1051	void __iomem *reg1;
1052	void __iomem *reg2;
1053	bool configured;
1054};
1055
1056#define PARENT_CLOCK_XTAL 4
1057
1058#define to_uart_clock(hw) container_of(hw, struct mvebu_uart_clock, clk_hw)
1059#define to_uart_clock_base(uart_clock) container_of(uart_clock, \
1060	struct mvebu_uart_clock_base, clocks[uart_clock->clock_idx])
1061
1062static int mvebu_uart_clock_prepare(struct clk_hw *hw)
1063{
1064	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1065	struct mvebu_uart_clock_base *uart_clock_base =
1066						to_uart_clock_base(uart_clock);
1067	unsigned int prev_clock_idx, prev_clock_rate, prev_d1d2;
1068	unsigned int parent_clock_idx, parent_clock_rate;
1069	unsigned long flags;
1070	unsigned int d1, d2;
1071	u64 divisor;
1072	u32 val;
1073
1074	/*
1075	 * This function just reconfigures UART Clock Control register (located
1076	 * in UART1 address space which controls both UART1 and UART2) to
1077	 * selected UART base clock and recalculates current UART1/UART2
1078	 * divisors in their address spaces, so that final baudrate will not be
1079	 * changed by switching UART parent clock. This is required for
1080	 * otherwise kernel's boot log stops working - we need to ensure that
1081	 * UART baudrate does not change during this setup. It is a one time
1082	 * operation, it will execute only once and set `configured` to true,
1083	 * and be skipped on subsequent calls. Because this UART Clock Control
1084	 * register (UART_BRDV) is shared between UART1 baudrate function,
1085	 * UART1 clock selector and UART2 clock selector, every access to
1086	 * UART_BRDV (reg1) needs to be protected by a lock.
1087	 */
1088
1089	spin_lock_irqsave(&mvebu_uart_lock, flags);
1090
1091	if (uart_clock_base->configured) {
1092		spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1093		return 0;
1094	}
1095
1096	parent_clock_idx = uart_clock_base->parent_idx;
1097	parent_clock_rate = uart_clock_base->parent_rates[parent_clock_idx];
1098
1099	val = readl(uart_clock_base->reg1);
1100
1101	if (uart_clock_base->div > CLK_TBG_DIV1_MAX) {
1102		d1 = CLK_TBG_DIV1_MAX;
1103		d2 = uart_clock_base->div / CLK_TBG_DIV1_MAX;
1104	} else {
1105		d1 = uart_clock_base->div;
1106		d2 = 1;
1107	}
1108
1109	if (val & CLK_NO_XTAL) {
1110		prev_clock_idx = (val >> CLK_TBG_SEL_SHIFT) & CLK_TBG_SEL_MASK;
1111		prev_d1d2 = ((val >> CLK_TBG_DIV1_SHIFT) & CLK_TBG_DIV1_MASK) *
1112			    ((val >> CLK_TBG_DIV2_SHIFT) & CLK_TBG_DIV2_MASK);
1113	} else {
1114		prev_clock_idx = PARENT_CLOCK_XTAL;
1115		prev_d1d2 = 1;
1116	}
1117
1118	/* Note that uart_clock_base->parent_rates[i] may not be available */
1119	prev_clock_rate = uart_clock_base->parent_rates[prev_clock_idx];
1120
1121	/* Recalculate UART1 divisor so UART1 baudrate does not change */
1122	if (prev_clock_rate) {
1123		divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) *
1124						parent_clock_rate * prev_d1d2,
1125						prev_clock_rate * d1 * d2);
1126		if (divisor < 1)
1127			divisor = 1;
1128		else if (divisor > BRDV_BAUD_MAX)
1129			divisor = BRDV_BAUD_MAX;
1130		val = (val & ~BRDV_BAUD_MASK) | divisor;
1131	}
1132
1133	if (parent_clock_idx != PARENT_CLOCK_XTAL) {
1134		/* Do not use XTAL, select TBG clock and TBG d1 * d2 divisors */
1135		val |= CLK_NO_XTAL;
1136		val &= ~(CLK_TBG_DIV1_MASK << CLK_TBG_DIV1_SHIFT);
1137		val |= d1 << CLK_TBG_DIV1_SHIFT;
1138		val &= ~(CLK_TBG_DIV2_MASK << CLK_TBG_DIV2_SHIFT);
1139		val |= d2 << CLK_TBG_DIV2_SHIFT;
1140		val &= ~(CLK_TBG_SEL_MASK << CLK_TBG_SEL_SHIFT);
1141		val |= parent_clock_idx << CLK_TBG_SEL_SHIFT;
1142	} else {
1143		/* Use XTAL, TBG bits are then ignored */
1144		val &= ~CLK_NO_XTAL;
1145	}
1146
1147	writel(val, uart_clock_base->reg1);
1148
1149	/* Recalculate UART2 divisor so UART2 baudrate does not change */
1150	if (prev_clock_rate) {
1151		val = readl(uart_clock_base->reg2);
1152		divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) *
1153						parent_clock_rate * prev_d1d2,
1154						prev_clock_rate * d1 * d2);
1155		if (divisor < 1)
1156			divisor = 1;
1157		else if (divisor > BRDV_BAUD_MAX)
1158			divisor = BRDV_BAUD_MAX;
1159		val = (val & ~BRDV_BAUD_MASK) | divisor;
1160		writel(val, uart_clock_base->reg2);
1161	}
1162
1163	uart_clock_base->configured = true;
1164
1165	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1166
1167	return 0;
1168}
1169
1170static int mvebu_uart_clock_enable(struct clk_hw *hw)
1171{
1172	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1173	struct mvebu_uart_clock_base *uart_clock_base =
1174						to_uart_clock_base(uart_clock);
1175	unsigned long flags;
1176	u32 val;
1177
1178	spin_lock_irqsave(&mvebu_uart_lock, flags);
1179
1180	val = readl(uart_clock_base->reg1);
1181
1182	if (uart_clock->clock_idx == 0)
1183		val &= ~UART1_CLK_DIS;
1184	else
1185		val &= ~UART2_CLK_DIS;
1186
1187	writel(val, uart_clock_base->reg1);
1188
1189	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1190
1191	return 0;
1192}
1193
1194static void mvebu_uart_clock_disable(struct clk_hw *hw)
1195{
1196	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1197	struct mvebu_uart_clock_base *uart_clock_base =
1198						to_uart_clock_base(uart_clock);
1199	unsigned long flags;
1200	u32 val;
1201
1202	spin_lock_irqsave(&mvebu_uart_lock, flags);
1203
1204	val = readl(uart_clock_base->reg1);
1205
1206	if (uart_clock->clock_idx == 0)
1207		val |= UART1_CLK_DIS;
1208	else
1209		val |= UART2_CLK_DIS;
1210
1211	writel(val, uart_clock_base->reg1);
1212
1213	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1214}
1215
1216static int mvebu_uart_clock_is_enabled(struct clk_hw *hw)
1217{
1218	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1219	struct mvebu_uart_clock_base *uart_clock_base =
1220						to_uart_clock_base(uart_clock);
1221	u32 val;
1222
1223	val = readl(uart_clock_base->reg1);
1224
1225	if (uart_clock->clock_idx == 0)
1226		return !(val & UART1_CLK_DIS);
1227	else
1228		return !(val & UART2_CLK_DIS);
1229}
1230
1231static int mvebu_uart_clock_save_context(struct clk_hw *hw)
1232{
1233	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1234	struct mvebu_uart_clock_base *uart_clock_base =
1235						to_uart_clock_base(uart_clock);
1236	unsigned long flags;
1237
1238	spin_lock_irqsave(&mvebu_uart_lock, flags);
1239	uart_clock->pm_context_reg1 = readl(uart_clock_base->reg1);
1240	uart_clock->pm_context_reg2 = readl(uart_clock_base->reg2);
1241	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1242
1243	return 0;
1244}
1245
1246static void mvebu_uart_clock_restore_context(struct clk_hw *hw)
1247{
1248	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1249	struct mvebu_uart_clock_base *uart_clock_base =
1250						to_uart_clock_base(uart_clock);
1251	unsigned long flags;
1252
1253	spin_lock_irqsave(&mvebu_uart_lock, flags);
1254	writel(uart_clock->pm_context_reg1, uart_clock_base->reg1);
1255	writel(uart_clock->pm_context_reg2, uart_clock_base->reg2);
1256	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1257}
1258
1259static unsigned long mvebu_uart_clock_recalc_rate(struct clk_hw *hw,
1260						  unsigned long parent_rate)
1261{
1262	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1263	struct mvebu_uart_clock_base *uart_clock_base =
1264						to_uart_clock_base(uart_clock);
1265
1266	return parent_rate / uart_clock_base->div;
1267}
1268
1269static long mvebu_uart_clock_round_rate(struct clk_hw *hw, unsigned long rate,
1270					unsigned long *parent_rate)
1271{
1272	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1273	struct mvebu_uart_clock_base *uart_clock_base =
1274						to_uart_clock_base(uart_clock);
1275
1276	return *parent_rate / uart_clock_base->div;
1277}
1278
1279static int mvebu_uart_clock_set_rate(struct clk_hw *hw, unsigned long rate,
1280				     unsigned long parent_rate)
1281{
1282	/*
1283	 * We must report success but we can do so unconditionally because
1284	 * mvebu_uart_clock_round_rate returns values that ensure this call is a
1285	 * nop.
1286	 */
1287
1288	return 0;
1289}
1290
1291static const struct clk_ops mvebu_uart_clock_ops = {
1292	.prepare = mvebu_uart_clock_prepare,
1293	.enable = mvebu_uart_clock_enable,
1294	.disable = mvebu_uart_clock_disable,
1295	.is_enabled = mvebu_uart_clock_is_enabled,
1296	.save_context = mvebu_uart_clock_save_context,
1297	.restore_context = mvebu_uart_clock_restore_context,
1298	.round_rate = mvebu_uart_clock_round_rate,
1299	.set_rate = mvebu_uart_clock_set_rate,
1300	.recalc_rate = mvebu_uart_clock_recalc_rate,
1301};
1302
1303static int mvebu_uart_clock_register(struct device *dev,
1304				     struct mvebu_uart_clock *uart_clock,
1305				     const char *name,
1306				     const char *parent_name)
1307{
1308	struct clk_init_data init = { };
1309
1310	uart_clock->clk_hw.init = &init;
1311
1312	init.name = name;
1313	init.ops = &mvebu_uart_clock_ops;
1314	init.flags = 0;
1315	init.num_parents = 1;
1316	init.parent_names = &parent_name;
1317
1318	return devm_clk_hw_register(dev, &uart_clock->clk_hw);
1319}
1320
1321static int mvebu_uart_clock_probe(struct platform_device *pdev)
1322{
1323	static const char *const uart_clk_names[] = { "uart_1", "uart_2" };
1324	static const char *const parent_clk_names[] = { "TBG-A-P", "TBG-B-P",
1325							"TBG-A-S", "TBG-B-S",
1326							"xtal" };
1327	struct clk *parent_clks[ARRAY_SIZE(parent_clk_names)];
1328	struct mvebu_uart_clock_base *uart_clock_base;
1329	struct clk_hw_onecell_data *hw_clk_data;
1330	struct device *dev = &pdev->dev;
1331	int i, parent_clk_idx, ret;
1332	unsigned long div, rate;
1333	struct resource *res;
1334	unsigned int d1, d2;
1335
1336	BUILD_BUG_ON(ARRAY_SIZE(uart_clk_names) !=
1337		     ARRAY_SIZE(uart_clock_base->clocks));
1338	BUILD_BUG_ON(ARRAY_SIZE(parent_clk_names) !=
1339		     ARRAY_SIZE(uart_clock_base->parent_rates));
1340
1341	uart_clock_base = devm_kzalloc(dev,
1342				       sizeof(*uart_clock_base),
1343				       GFP_KERNEL);
1344	if (!uart_clock_base)
1345		return -ENOMEM;
1346
1347	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1348	if (!res) {
1349		dev_err(dev, "Couldn't get first register\n");
1350		return -ENOENT;
1351	}
1352
1353	/*
1354	 * UART Clock Control register (reg1 / UART_BRDV) is in the address
1355	 * space of UART1 (standard UART variant), controls parent clock and
1356	 * dividers for both UART1 and UART2 and is supplied via DT as the first
1357	 * resource. Therefore use ioremap() rather than ioremap_resource() to
1358	 * avoid conflicts with UART1 driver. Access to UART_BRDV is protected
1359	 * by a lock shared between clock and UART driver.
1360	 */
1361	uart_clock_base->reg1 = devm_ioremap(dev, res->start,
1362					     resource_size(res));
1363	if (!uart_clock_base->reg1)
1364		return -ENOMEM;
1365
1366	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1367	if (!res) {
1368		dev_err(dev, "Couldn't get second register\n");
1369		return -ENOENT;
1370	}
1371
1372	/*
1373	 * UART 2 Baud Rate Divisor register (reg2 / UART_BRDV) is in address
1374	 * space of UART2 (extended UART variant), controls only one UART2
1375	 * specific divider and is supplied via DT as second resource.
1376	 * Therefore use ioremap() rather than ioremap_resource() to avoid
1377	 * conflicts with UART2 driver. Access to UART_BRDV is protected by a
1378	 * by lock shared between clock and UART driver.
1379	 */
1380	uart_clock_base->reg2 = devm_ioremap(dev, res->start,
1381					     resource_size(res));
1382	if (!uart_clock_base->reg2)
1383		return -ENOMEM;
1384
1385	hw_clk_data = devm_kzalloc(dev,
1386				   struct_size(hw_clk_data, hws,
1387					       ARRAY_SIZE(uart_clk_names)),
1388				   GFP_KERNEL);
1389	if (!hw_clk_data)
1390		return -ENOMEM;
1391
1392	hw_clk_data->num = ARRAY_SIZE(uart_clk_names);
1393	for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) {
1394		hw_clk_data->hws[i] = &uart_clock_base->clocks[i].clk_hw;
1395		uart_clock_base->clocks[i].clock_idx = i;
1396	}
1397
1398	parent_clk_idx = -1;
1399
1400	for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) {
1401		parent_clks[i] = devm_clk_get(dev, parent_clk_names[i]);
1402		if (IS_ERR(parent_clks[i])) {
1403			if (PTR_ERR(parent_clks[i]) == -EPROBE_DEFER)
1404				return -EPROBE_DEFER;
1405			dev_warn(dev, "Couldn't get the parent clock %s: %ld\n",
1406				 parent_clk_names[i], PTR_ERR(parent_clks[i]));
1407			continue;
1408		}
1409
1410		ret = clk_prepare_enable(parent_clks[i]);
1411		if (ret) {
1412			dev_warn(dev, "Couldn't enable parent clock %s: %d\n",
1413				 parent_clk_names[i], ret);
1414			continue;
1415		}
1416		rate = clk_get_rate(parent_clks[i]);
1417		uart_clock_base->parent_rates[i] = rate;
1418
1419		if (i != PARENT_CLOCK_XTAL) {
1420			/*
1421			 * Calculate the smallest TBG d1 and d2 divisors that
1422			 * still can provide 9600 baudrate.
1423			 */
1424			d1 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR *
1425					  BRDV_BAUD_MAX);
1426			if (d1 < 1)
1427				d1 = 1;
1428			else if (d1 > CLK_TBG_DIV1_MAX)
1429				d1 = CLK_TBG_DIV1_MAX;
1430
1431			d2 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR *
1432					  BRDV_BAUD_MAX * d1);
1433			if (d2 < 1)
1434				d2 = 1;
1435			else if (d2 > CLK_TBG_DIV2_MAX)
1436				d2 = CLK_TBG_DIV2_MAX;
1437		} else {
1438			/*
1439			 * When UART clock uses XTAL clock as a source then it
1440			 * is not possible to use d1 and d2 divisors.
1441			 */
1442			d1 = d2 = 1;
1443		}
1444
1445		/* Skip clock source which cannot provide 9600 baudrate */
1446		if (rate > 9600 * OSAMP_MAX_DIVISOR * BRDV_BAUD_MAX * d1 * d2)
1447			continue;
1448
1449		/*
1450		 * Choose TBG clock source with the smallest divisors. Use XTAL
1451		 * clock source only in case TBG is not available as XTAL cannot
1452		 * be used for baudrates higher than 230400.
1453		 */
1454		if (parent_clk_idx == -1 ||
1455		    (i != PARENT_CLOCK_XTAL && div > d1 * d2)) {
1456			parent_clk_idx = i;
1457			div = d1 * d2;
1458		}
1459	}
1460
1461	for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) {
1462		if (i == parent_clk_idx || IS_ERR(parent_clks[i]))
1463			continue;
1464		clk_disable_unprepare(parent_clks[i]);
1465		devm_clk_put(dev, parent_clks[i]);
1466	}
1467
1468	if (parent_clk_idx == -1) {
1469		dev_err(dev, "No usable parent clock\n");
1470		return -ENOENT;
1471	}
1472
1473	uart_clock_base->parent_idx = parent_clk_idx;
1474	uart_clock_base->div = div;
1475
1476	dev_notice(dev, "Using parent clock %s as base UART clock\n",
1477		   __clk_get_name(parent_clks[parent_clk_idx]));
1478
1479	for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) {
1480		ret = mvebu_uart_clock_register(dev,
1481				&uart_clock_base->clocks[i],
1482				uart_clk_names[i],
1483				__clk_get_name(parent_clks[parent_clk_idx]));
1484		if (ret) {
1485			dev_err(dev, "Can't register UART clock %d: %d\n",
1486				i, ret);
1487			return ret;
1488		}
1489	}
1490
1491	return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get,
1492					   hw_clk_data);
1493}
1494
1495static const struct of_device_id mvebu_uart_clock_of_match[] = {
1496	{ .compatible = "marvell,armada-3700-uart-clock", },
1497	{ }
1498};
1499
1500static struct platform_driver mvebu_uart_clock_platform_driver = {
1501	.probe = mvebu_uart_clock_probe,
1502	.driver		= {
1503		.name	= "mvebu-uart-clock",
1504		.of_match_table = mvebu_uart_clock_of_match,
1505	},
1506};
1507
1508static int __init mvebu_uart_init(void)
1509{
1510	int ret;
1511
1512	ret = uart_register_driver(&mvebu_uart_driver);
1513	if (ret)
1514		return ret;
1515
1516	ret = platform_driver_register(&mvebu_uart_clock_platform_driver);
1517	if (ret) {
1518		uart_unregister_driver(&mvebu_uart_driver);
1519		return ret;
1520	}
1521
1522	ret = platform_driver_register(&mvebu_uart_platform_driver);
1523	if (ret) {
1524		platform_driver_unregister(&mvebu_uart_clock_platform_driver);
1525		uart_unregister_driver(&mvebu_uart_driver);
1526		return ret;
1527	}
1528
1529	return 0;
1530}
1531arch_initcall(mvebu_uart_init);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3* ***************************************************************************
   4* Marvell Armada-3700 Serial Driver
   5* Author: Wilson Ding <dingwei@marvell.com>
   6* Copyright (C) 2015 Marvell International Ltd.
   7* ***************************************************************************
   8*/
   9
  10#include <linux/clk.h>
  11#include <linux/clk-provider.h>
  12#include <linux/console.h>
  13#include <linux/delay.h>
  14#include <linux/device.h>
  15#include <linux/init.h>
  16#include <linux/io.h>
  17#include <linux/iopoll.h>
  18#include <linux/math64.h>
  19#include <linux/of.h>
  20#include <linux/of_address.h>
  21#include <linux/of_device.h>
  22#include <linux/of_irq.h>
  23#include <linux/of_platform.h>
  24#include <linux/platform_device.h>
  25#include <linux/serial.h>
  26#include <linux/serial_core.h>
  27#include <linux/slab.h>
  28#include <linux/tty.h>
  29#include <linux/tty_flip.h>
  30
  31/* Register Map */
  32#define UART_STD_RBR		0x00
  33#define UART_EXT_RBR		0x18
  34
  35#define UART_STD_TSH		0x04
  36#define UART_EXT_TSH		0x1C
  37
  38#define UART_STD_CTRL1		0x08
  39#define UART_EXT_CTRL1		0x04
  40#define  CTRL_SOFT_RST		BIT(31)
  41#define  CTRL_TXFIFO_RST	BIT(15)
  42#define  CTRL_RXFIFO_RST	BIT(14)
  43#define  CTRL_SND_BRK_SEQ	BIT(11)
  44#define  CTRL_BRK_DET_INT	BIT(3)
  45#define  CTRL_FRM_ERR_INT	BIT(2)
  46#define  CTRL_PAR_ERR_INT	BIT(1)
  47#define  CTRL_OVR_ERR_INT	BIT(0)
  48#define  CTRL_BRK_INT		(CTRL_BRK_DET_INT | CTRL_FRM_ERR_INT | \
  49				CTRL_PAR_ERR_INT | CTRL_OVR_ERR_INT)
  50
  51#define UART_STD_CTRL2		UART_STD_CTRL1
  52#define UART_EXT_CTRL2		0x20
  53#define  CTRL_STD_TX_RDY_INT	BIT(5)
  54#define  CTRL_EXT_TX_RDY_INT	BIT(6)
  55#define  CTRL_STD_RX_RDY_INT	BIT(4)
  56#define  CTRL_EXT_RX_RDY_INT	BIT(5)
  57
  58#define UART_STAT		0x0C
  59#define  STAT_TX_FIFO_EMP	BIT(13)
  60#define  STAT_TX_FIFO_FUL	BIT(11)
  61#define  STAT_TX_EMP		BIT(6)
  62#define  STAT_STD_TX_RDY	BIT(5)
  63#define  STAT_EXT_TX_RDY	BIT(15)
  64#define  STAT_STD_RX_RDY	BIT(4)
  65#define  STAT_EXT_RX_RDY	BIT(14)
  66#define  STAT_BRK_DET		BIT(3)
  67#define  STAT_FRM_ERR		BIT(2)
  68#define  STAT_PAR_ERR		BIT(1)
  69#define  STAT_OVR_ERR		BIT(0)
  70#define  STAT_BRK_ERR		(STAT_BRK_DET | STAT_FRM_ERR \
  71				 | STAT_PAR_ERR | STAT_OVR_ERR)
  72
  73/*
  74 * Marvell Armada 3700 Functional Specifications describes that bit 21 of UART
  75 * Clock Control register controls UART1 and bit 20 controls UART2. But in
  76 * reality bit 21 controls UART2 and bit 20 controls UART1. This seems to be an
  77 * error in Marvell's documentation. Hence following CLK_DIS macros are swapped.
  78 */
  79
  80#define UART_BRDV		0x10
  81/* These bits are located in UART1 address space and control UART2 */
  82#define  UART2_CLK_DIS		BIT(21)
  83/* These bits are located in UART1 address space and control UART1 */
  84#define  UART1_CLK_DIS		BIT(20)
  85/* These bits are located in UART1 address space and control both UARTs */
  86#define  CLK_NO_XTAL		BIT(19)
  87#define  CLK_TBG_DIV1_SHIFT	15
  88#define  CLK_TBG_DIV1_MASK	0x7
  89#define  CLK_TBG_DIV1_MAX	6
  90#define  CLK_TBG_DIV2_SHIFT	12
  91#define  CLK_TBG_DIV2_MASK	0x7
  92#define  CLK_TBG_DIV2_MAX	6
  93#define  CLK_TBG_SEL_SHIFT	10
  94#define  CLK_TBG_SEL_MASK	0x3
  95/* These bits are located in both UARTs address space */
  96#define  BRDV_BAUD_MASK         0x3FF
  97#define  BRDV_BAUD_MAX		BRDV_BAUD_MASK
  98
  99#define UART_OSAMP		0x14
 100#define  OSAMP_DEFAULT_DIVISOR	16
 101#define  OSAMP_DIVISORS_MASK	0x3F3F3F3F
 102#define  OSAMP_MAX_DIVISOR	63
 103
 104#define MVEBU_NR_UARTS		2
 105
 106#define MVEBU_UART_TYPE		"mvebu-uart"
 107#define DRIVER_NAME		"mvebu_serial"
 108
 109enum {
 110	/* Either there is only one summed IRQ... */
 111	UART_IRQ_SUM = 0,
 112	/* ...or there are two separate IRQ for RX and TX */
 113	UART_RX_IRQ = 0,
 114	UART_TX_IRQ,
 115	UART_IRQ_COUNT
 116};
 117
 118/* Diverging register offsets */
 119struct uart_regs_layout {
 120	unsigned int rbr;
 121	unsigned int tsh;
 122	unsigned int ctrl;
 123	unsigned int intr;
 124};
 125
 126/* Diverging flags */
 127struct uart_flags {
 128	unsigned int ctrl_tx_rdy_int;
 129	unsigned int ctrl_rx_rdy_int;
 130	unsigned int stat_tx_rdy;
 131	unsigned int stat_rx_rdy;
 132};
 133
 134/* Driver data, a structure for each UART port */
 135struct mvebu_uart_driver_data {
 136	bool is_ext;
 137	struct uart_regs_layout regs;
 138	struct uart_flags flags;
 139};
 140
 141/* Saved registers during suspend */
 142struct mvebu_uart_pm_regs {
 143	unsigned int rbr;
 144	unsigned int tsh;
 145	unsigned int ctrl;
 146	unsigned int intr;
 147	unsigned int stat;
 148	unsigned int brdv;
 149	unsigned int osamp;
 150};
 151
 152/* MVEBU UART driver structure */
 153struct mvebu_uart {
 154	struct uart_port *port;
 155	struct clk *clk;
 156	int irq[UART_IRQ_COUNT];
 157	struct mvebu_uart_driver_data *data;
 158#if defined(CONFIG_PM)
 159	struct mvebu_uart_pm_regs pm_regs;
 160#endif /* CONFIG_PM */
 161};
 162
 163static struct mvebu_uart *to_mvuart(struct uart_port *port)
 164{
 165	return (struct mvebu_uart *)port->private_data;
 166}
 167
 168#define IS_EXTENDED(port) (to_mvuart(port)->data->is_ext)
 169
 170#define UART_RBR(port) (to_mvuart(port)->data->regs.rbr)
 171#define UART_TSH(port) (to_mvuart(port)->data->regs.tsh)
 172#define UART_CTRL(port) (to_mvuart(port)->data->regs.ctrl)
 173#define UART_INTR(port) (to_mvuart(port)->data->regs.intr)
 174
 175#define CTRL_TX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_tx_rdy_int)
 176#define CTRL_RX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_rx_rdy_int)
 177#define STAT_TX_RDY(port) (to_mvuart(port)->data->flags.stat_tx_rdy)
 178#define STAT_RX_RDY(port) (to_mvuart(port)->data->flags.stat_rx_rdy)
 179
 180static struct uart_port mvebu_uart_ports[MVEBU_NR_UARTS];
 181
 182static DEFINE_SPINLOCK(mvebu_uart_lock);
 183
 184/* Core UART Driver Operations */
 185static unsigned int mvebu_uart_tx_empty(struct uart_port *port)
 186{
 187	unsigned long flags;
 188	unsigned int st;
 189
 190	uart_port_lock_irqsave(port, &flags);
 191	st = readl(port->membase + UART_STAT);
 192	uart_port_unlock_irqrestore(port, flags);
 193
 194	return (st & STAT_TX_EMP) ? TIOCSER_TEMT : 0;
 195}
 196
 197static unsigned int mvebu_uart_get_mctrl(struct uart_port *port)
 198{
 199	return TIOCM_CTS | TIOCM_DSR | TIOCM_CAR;
 200}
 201
 202static void mvebu_uart_set_mctrl(struct uart_port *port,
 203				 unsigned int mctrl)
 204{
 205/*
 206 * Even if we do not support configuring the modem control lines, this
 207 * function must be proided to the serial core
 208 */
 209}
 210
 211static void mvebu_uart_stop_tx(struct uart_port *port)
 212{
 213	unsigned int ctl = readl(port->membase + UART_INTR(port));
 214
 215	ctl &= ~CTRL_TX_RDY_INT(port);
 216	writel(ctl, port->membase + UART_INTR(port));
 217}
 218
 219static void mvebu_uart_start_tx(struct uart_port *port)
 220{
 221	unsigned int ctl;
 222	unsigned char c;
 223
 224	if (IS_EXTENDED(port) && uart_fifo_get(port, &c))
 225		writel(c, port->membase + UART_TSH(port));
 
 
 226
 227	ctl = readl(port->membase + UART_INTR(port));
 228	ctl |= CTRL_TX_RDY_INT(port);
 229	writel(ctl, port->membase + UART_INTR(port));
 230}
 231
 232static void mvebu_uart_stop_rx(struct uart_port *port)
 233{
 234	unsigned int ctl;
 235
 236	ctl = readl(port->membase + UART_CTRL(port));
 237	ctl &= ~CTRL_BRK_INT;
 238	writel(ctl, port->membase + UART_CTRL(port));
 239
 240	ctl = readl(port->membase + UART_INTR(port));
 241	ctl &= ~CTRL_RX_RDY_INT(port);
 242	writel(ctl, port->membase + UART_INTR(port));
 243}
 244
 245static void mvebu_uart_break_ctl(struct uart_port *port, int brk)
 246{
 247	unsigned int ctl;
 248	unsigned long flags;
 249
 250	uart_port_lock_irqsave(port, &flags);
 251	ctl = readl(port->membase + UART_CTRL(port));
 252	if (brk == -1)
 253		ctl |= CTRL_SND_BRK_SEQ;
 254	else
 255		ctl &= ~CTRL_SND_BRK_SEQ;
 256	writel(ctl, port->membase + UART_CTRL(port));
 257	uart_port_unlock_irqrestore(port, flags);
 258}
 259
 260static void mvebu_uart_rx_chars(struct uart_port *port, unsigned int status)
 261{
 262	struct tty_port *tport = &port->state->port;
 263	unsigned char ch = 0;
 264	char flag = 0;
 265	int ret;
 266
 267	do {
 268		if (status & STAT_RX_RDY(port)) {
 269			ch = readl(port->membase + UART_RBR(port));
 270			ch &= 0xff;
 271			flag = TTY_NORMAL;
 272			port->icount.rx++;
 273
 274			if (status & STAT_PAR_ERR)
 275				port->icount.parity++;
 276		}
 277
 278		/*
 279		 * For UART2, error bits are not cleared on buffer read.
 280		 * This causes interrupt loop and system hang.
 281		 */
 282		if (IS_EXTENDED(port) && (status & STAT_BRK_ERR)) {
 283			ret = readl(port->membase + UART_STAT);
 284			ret |= STAT_BRK_ERR;
 285			writel(ret, port->membase + UART_STAT);
 286		}
 287
 288		if (status & STAT_BRK_DET) {
 289			port->icount.brk++;
 290			status &= ~(STAT_FRM_ERR | STAT_PAR_ERR);
 291			if (uart_handle_break(port))
 292				goto ignore_char;
 293		}
 294
 295		if (status & STAT_OVR_ERR)
 296			port->icount.overrun++;
 297
 298		if (status & STAT_FRM_ERR)
 299			port->icount.frame++;
 300
 301		if (uart_handle_sysrq_char(port, ch))
 302			goto ignore_char;
 303
 304		if (status & port->ignore_status_mask & STAT_PAR_ERR)
 305			status &= ~STAT_RX_RDY(port);
 306
 307		status &= port->read_status_mask;
 308
 309		if (status & STAT_PAR_ERR)
 310			flag = TTY_PARITY;
 311
 312		status &= ~port->ignore_status_mask;
 313
 314		if (status & STAT_RX_RDY(port))
 315			tty_insert_flip_char(tport, ch, flag);
 316
 317		if (status & STAT_BRK_DET)
 318			tty_insert_flip_char(tport, 0, TTY_BREAK);
 319
 320		if (status & STAT_FRM_ERR)
 321			tty_insert_flip_char(tport, 0, TTY_FRAME);
 322
 323		if (status & STAT_OVR_ERR)
 324			tty_insert_flip_char(tport, 0, TTY_OVERRUN);
 325
 326ignore_char:
 327		status = readl(port->membase + UART_STAT);
 328	} while (status & (STAT_RX_RDY(port) | STAT_BRK_DET));
 329
 330	tty_flip_buffer_push(tport);
 331}
 332
 333static void mvebu_uart_tx_chars(struct uart_port *port, unsigned int status)
 334{
 335	u8 ch;
 336
 337	uart_port_tx_limited(port, ch, port->fifosize,
 338		!(readl(port->membase + UART_STAT) & STAT_TX_FIFO_FUL),
 339		writel(ch, port->membase + UART_TSH(port)),
 340		({}));
 341}
 342
 343static irqreturn_t mvebu_uart_isr(int irq, void *dev_id)
 344{
 345	struct uart_port *port = (struct uart_port *)dev_id;
 346	unsigned int st = readl(port->membase + UART_STAT);
 347
 348	if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR |
 349		  STAT_BRK_DET))
 350		mvebu_uart_rx_chars(port, st);
 351
 352	if (st & STAT_TX_RDY(port))
 353		mvebu_uart_tx_chars(port, st);
 354
 355	return IRQ_HANDLED;
 356}
 357
 358static irqreturn_t mvebu_uart_rx_isr(int irq, void *dev_id)
 359{
 360	struct uart_port *port = (struct uart_port *)dev_id;
 361	unsigned int st = readl(port->membase + UART_STAT);
 362
 363	if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR |
 364			STAT_BRK_DET))
 365		mvebu_uart_rx_chars(port, st);
 366
 367	return IRQ_HANDLED;
 368}
 369
 370static irqreturn_t mvebu_uart_tx_isr(int irq, void *dev_id)
 371{
 372	struct uart_port *port = (struct uart_port *)dev_id;
 373	unsigned int st = readl(port->membase + UART_STAT);
 374
 375	if (st & STAT_TX_RDY(port))
 376		mvebu_uart_tx_chars(port, st);
 377
 378	return IRQ_HANDLED;
 379}
 380
 381static int mvebu_uart_startup(struct uart_port *port)
 382{
 383	struct mvebu_uart *mvuart = to_mvuart(port);
 384	unsigned int ctl;
 385	int ret;
 386
 387	writel(CTRL_TXFIFO_RST | CTRL_RXFIFO_RST,
 388	       port->membase + UART_CTRL(port));
 389	udelay(1);
 390
 391	/* Clear the error bits of state register before IRQ request */
 392	ret = readl(port->membase + UART_STAT);
 393	ret |= STAT_BRK_ERR;
 394	writel(ret, port->membase + UART_STAT);
 395
 396	writel(CTRL_BRK_INT, port->membase + UART_CTRL(port));
 397
 398	ctl = readl(port->membase + UART_INTR(port));
 399	ctl |= CTRL_RX_RDY_INT(port);
 400	writel(ctl, port->membase + UART_INTR(port));
 401
 402	if (!mvuart->irq[UART_TX_IRQ]) {
 403		/* Old bindings with just one interrupt (UART0 only) */
 404		ret = devm_request_irq(port->dev, mvuart->irq[UART_IRQ_SUM],
 405				       mvebu_uart_isr, port->irqflags,
 406				       dev_name(port->dev), port);
 407		if (ret) {
 408			dev_err(port->dev, "unable to request IRQ %d\n",
 409				mvuart->irq[UART_IRQ_SUM]);
 410			return ret;
 411		}
 412	} else {
 413		/* New bindings with an IRQ for RX and TX (both UART) */
 414		ret = devm_request_irq(port->dev, mvuart->irq[UART_RX_IRQ],
 415				       mvebu_uart_rx_isr, port->irqflags,
 416				       dev_name(port->dev), port);
 417		if (ret) {
 418			dev_err(port->dev, "unable to request IRQ %d\n",
 419				mvuart->irq[UART_RX_IRQ]);
 420			return ret;
 421		}
 422
 423		ret = devm_request_irq(port->dev, mvuart->irq[UART_TX_IRQ],
 424				       mvebu_uart_tx_isr, port->irqflags,
 425				       dev_name(port->dev),
 426				       port);
 427		if (ret) {
 428			dev_err(port->dev, "unable to request IRQ %d\n",
 429				mvuart->irq[UART_TX_IRQ]);
 430			devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ],
 431				      port);
 432			return ret;
 433		}
 434	}
 435
 436	return 0;
 437}
 438
 439static void mvebu_uart_shutdown(struct uart_port *port)
 440{
 441	struct mvebu_uart *mvuart = to_mvuart(port);
 442
 443	writel(0, port->membase + UART_INTR(port));
 444
 445	if (!mvuart->irq[UART_TX_IRQ]) {
 446		devm_free_irq(port->dev, mvuart->irq[UART_IRQ_SUM], port);
 447	} else {
 448		devm_free_irq(port->dev, mvuart->irq[UART_RX_IRQ], port);
 449		devm_free_irq(port->dev, mvuart->irq[UART_TX_IRQ], port);
 450	}
 451}
 452
 453static unsigned int mvebu_uart_baud_rate_set(struct uart_port *port, unsigned int baud)
 454{
 455	unsigned int d_divisor, m_divisor;
 456	unsigned long flags;
 457	u32 brdv, osamp;
 458
 459	if (!port->uartclk)
 460		return 0;
 461
 462	/*
 463	 * The baudrate is derived from the UART clock thanks to divisors:
 464	 *   > d1 * d2 ("TBG divisors"): can divide only TBG clock from 1 to 6
 465	 *   > D ("baud generator"): can divide the clock from 1 to 1023
 466	 *   > M ("fractional divisor"): allows a better accuracy (from 1 to 63)
 467	 *
 468	 * Exact formulas for calculating baudrate:
 469	 *
 470	 * with default x16 scheme:
 471	 *   baudrate = xtal / (d * 16)
 472	 *   baudrate = tbg / (d1 * d2 * d * 16)
 473	 *
 474	 * with fractional divisor:
 475	 *   baudrate = 10 * xtal / (d * (3 * (m1 + m2) + 2 * (m3 + m4)))
 476	 *   baudrate = 10 * tbg / (d1*d2 * d * (3 * (m1 + m2) + 2 * (m3 + m4)))
 477	 *
 478	 * Oversampling value:
 479	 *   osamp = (m1 << 0) | (m2 << 8) | (m3 << 16) | (m4 << 24);
 480	 *
 481	 * Where m1 controls number of clock cycles per bit for bits 1,2,3;
 482	 * m2 for bits 4,5,6; m3 for bits 7,8 and m4 for bits 9,10.
 483	 *
 484	 * To simplify baudrate setup set all the M prescalers to the same
 485	 * value. For baudrates 9600 Bd and higher, it is enough to use the
 486	 * default (x16) divisor or fractional divisor with M = 63, so there
 487	 * is no need to use real fractional support (where the M prescalers
 488	 * are not equal).
 489	 *
 490	 * When all the M prescalers are zeroed then default (x16) divisor is
 491	 * used. Default x16 scheme is more stable than M (fractional divisor),
 492	 * so use M only when D divisor is not enough to derive baudrate.
 493	 *
 494	 * Member port->uartclk is either xtal clock rate or TBG clock rate
 495	 * divided by (d1 * d2). So d1 and d2 are already set by the UART clock
 496	 * driver (and UART driver itself cannot change them). Moreover they are
 497	 * shared between both UARTs.
 498	 */
 499
 500	m_divisor = OSAMP_DEFAULT_DIVISOR;
 501	d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor);
 502
 503	if (d_divisor > BRDV_BAUD_MAX) {
 504		/*
 505		 * Experiments show that small M divisors are unstable.
 506		 * Use maximal possible M = 63 and calculate D divisor.
 507		 */
 508		m_divisor = OSAMP_MAX_DIVISOR;
 509		d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor);
 510	}
 511
 512	if (d_divisor < 1)
 513		d_divisor = 1;
 514	else if (d_divisor > BRDV_BAUD_MAX)
 515		d_divisor = BRDV_BAUD_MAX;
 516
 517	spin_lock_irqsave(&mvebu_uart_lock, flags);
 518	brdv = readl(port->membase + UART_BRDV);
 519	brdv &= ~BRDV_BAUD_MASK;
 520	brdv |= d_divisor;
 521	writel(brdv, port->membase + UART_BRDV);
 522	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
 523
 524	osamp = readl(port->membase + UART_OSAMP);
 525	osamp &= ~OSAMP_DIVISORS_MASK;
 526	if (m_divisor != OSAMP_DEFAULT_DIVISOR)
 527		osamp |= (m_divisor << 0) | (m_divisor << 8) |
 528			(m_divisor << 16) | (m_divisor << 24);
 529	writel(osamp, port->membase + UART_OSAMP);
 530
 531	return DIV_ROUND_CLOSEST(port->uartclk, d_divisor * m_divisor);
 532}
 533
 534static void mvebu_uart_set_termios(struct uart_port *port,
 535				   struct ktermios *termios,
 536				   const struct ktermios *old)
 537{
 538	unsigned long flags;
 539	unsigned int baud, min_baud, max_baud;
 540
 541	uart_port_lock_irqsave(port, &flags);
 542
 543	port->read_status_mask = STAT_RX_RDY(port) | STAT_OVR_ERR |
 544		STAT_TX_RDY(port) | STAT_TX_FIFO_FUL;
 545
 546	if (termios->c_iflag & INPCK)
 547		port->read_status_mask |= STAT_FRM_ERR | STAT_PAR_ERR;
 548
 549	port->ignore_status_mask = 0;
 550	if (termios->c_iflag & IGNPAR)
 551		port->ignore_status_mask |=
 552			STAT_FRM_ERR | STAT_PAR_ERR | STAT_OVR_ERR;
 553
 554	if ((termios->c_cflag & CREAD) == 0)
 555		port->ignore_status_mask |= STAT_RX_RDY(port) | STAT_BRK_ERR;
 556
 557	/*
 558	 * Maximal divisor is 1023 and maximal fractional divisor is 63. And
 559	 * experiments show that baudrates above 1/80 of parent clock rate are
 560	 * not stable. So disallow baudrates above 1/80 of the parent clock
 561	 * rate. If port->uartclk is not available, then
 562	 * mvebu_uart_baud_rate_set() fails, so values min_baud and max_baud
 563	 * in this case do not matter.
 564	 */
 565	min_baud = DIV_ROUND_UP(port->uartclk, BRDV_BAUD_MAX *
 566				OSAMP_MAX_DIVISOR);
 567	max_baud = port->uartclk / 80;
 568
 569	baud = uart_get_baud_rate(port, termios, old, min_baud, max_baud);
 570	baud = mvebu_uart_baud_rate_set(port, baud);
 571
 572	/* In case baudrate cannot be changed, report previous old value */
 573	if (baud == 0 && old)
 574		baud = tty_termios_baud_rate(old);
 575
 576	/* Only the following flag changes are supported */
 577	if (old) {
 578		termios->c_iflag &= INPCK | IGNPAR;
 579		termios->c_iflag |= old->c_iflag & ~(INPCK | IGNPAR);
 580		termios->c_cflag &= CREAD | CBAUD;
 581		termios->c_cflag |= old->c_cflag & ~(CREAD | CBAUD);
 582		termios->c_cflag |= CS8;
 583	}
 584
 585	if (baud != 0) {
 586		tty_termios_encode_baud_rate(termios, baud, baud);
 587		uart_update_timeout(port, termios->c_cflag, baud);
 588	}
 589
 590	uart_port_unlock_irqrestore(port, flags);
 591}
 592
 593static const char *mvebu_uart_type(struct uart_port *port)
 594{
 595	return MVEBU_UART_TYPE;
 596}
 597
 598static void mvebu_uart_release_port(struct uart_port *port)
 599{
 600	/* Nothing to do here */
 601}
 602
 603static int mvebu_uart_request_port(struct uart_port *port)
 604{
 605	return 0;
 606}
 607
 608#ifdef CONFIG_CONSOLE_POLL
 609static int mvebu_uart_get_poll_char(struct uart_port *port)
 610{
 611	unsigned int st = readl(port->membase + UART_STAT);
 612
 613	if (!(st & STAT_RX_RDY(port)))
 614		return NO_POLL_CHAR;
 615
 616	return readl(port->membase + UART_RBR(port));
 617}
 618
 619static void mvebu_uart_put_poll_char(struct uart_port *port, unsigned char c)
 620{
 621	unsigned int st;
 622
 623	for (;;) {
 624		st = readl(port->membase + UART_STAT);
 625
 626		if (!(st & STAT_TX_FIFO_FUL))
 627			break;
 628
 629		udelay(1);
 630	}
 631
 632	writel(c, port->membase + UART_TSH(port));
 633}
 634#endif
 635
 636static const struct uart_ops mvebu_uart_ops = {
 637	.tx_empty	= mvebu_uart_tx_empty,
 638	.set_mctrl	= mvebu_uart_set_mctrl,
 639	.get_mctrl	= mvebu_uart_get_mctrl,
 640	.stop_tx	= mvebu_uart_stop_tx,
 641	.start_tx	= mvebu_uart_start_tx,
 642	.stop_rx	= mvebu_uart_stop_rx,
 643	.break_ctl	= mvebu_uart_break_ctl,
 644	.startup	= mvebu_uart_startup,
 645	.shutdown	= mvebu_uart_shutdown,
 646	.set_termios	= mvebu_uart_set_termios,
 647	.type		= mvebu_uart_type,
 648	.release_port	= mvebu_uart_release_port,
 649	.request_port	= mvebu_uart_request_port,
 650#ifdef CONFIG_CONSOLE_POLL
 651	.poll_get_char	= mvebu_uart_get_poll_char,
 652	.poll_put_char	= mvebu_uart_put_poll_char,
 653#endif
 654};
 655
 656/* Console Driver Operations  */
 657
 658#ifdef CONFIG_SERIAL_MVEBU_CONSOLE
 659/* Early Console */
 660static void mvebu_uart_putc(struct uart_port *port, unsigned char c)
 661{
 662	unsigned int st;
 663
 664	for (;;) {
 665		st = readl(port->membase + UART_STAT);
 666		if (!(st & STAT_TX_FIFO_FUL))
 667			break;
 668	}
 669
 670	/* At early stage, DT is not parsed yet, only use UART0 */
 671	writel(c, port->membase + UART_STD_TSH);
 672
 673	for (;;) {
 674		st = readl(port->membase + UART_STAT);
 675		if (st & STAT_TX_FIFO_EMP)
 676			break;
 677	}
 678}
 679
 680static void mvebu_uart_putc_early_write(struct console *con,
 681					const char *s,
 682					unsigned int n)
 683{
 684	struct earlycon_device *dev = con->data;
 685
 686	uart_console_write(&dev->port, s, n, mvebu_uart_putc);
 687}
 688
 689static int __init
 690mvebu_uart_early_console_setup(struct earlycon_device *device,
 691			       const char *opt)
 692{
 693	if (!device->port.membase)
 694		return -ENODEV;
 695
 696	device->con->write = mvebu_uart_putc_early_write;
 697
 698	return 0;
 699}
 700
 701EARLYCON_DECLARE(ar3700_uart, mvebu_uart_early_console_setup);
 702OF_EARLYCON_DECLARE(ar3700_uart, "marvell,armada-3700-uart",
 703		    mvebu_uart_early_console_setup);
 704
 705static void wait_for_xmitr(struct uart_port *port)
 706{
 707	u32 val;
 708
 709	readl_poll_timeout_atomic(port->membase + UART_STAT, val,
 710				  (val & STAT_TX_RDY(port)), 1, 10000);
 711}
 712
 713static void wait_for_xmite(struct uart_port *port)
 714{
 715	u32 val;
 716
 717	readl_poll_timeout_atomic(port->membase + UART_STAT, val,
 718				  (val & STAT_TX_EMP), 1, 10000);
 719}
 720
 721static void mvebu_uart_console_putchar(struct uart_port *port, unsigned char ch)
 722{
 723	wait_for_xmitr(port);
 724	writel(ch, port->membase + UART_TSH(port));
 725}
 726
 727static void mvebu_uart_console_write(struct console *co, const char *s,
 728				     unsigned int count)
 729{
 730	struct uart_port *port = &mvebu_uart_ports[co->index];
 731	unsigned long flags;
 732	unsigned int ier, intr, ctl;
 733	int locked = 1;
 734
 735	if (oops_in_progress)
 736		locked = uart_port_trylock_irqsave(port, &flags);
 737	else
 738		uart_port_lock_irqsave(port, &flags);
 739
 740	ier = readl(port->membase + UART_CTRL(port)) & CTRL_BRK_INT;
 741	intr = readl(port->membase + UART_INTR(port)) &
 742		(CTRL_RX_RDY_INT(port) | CTRL_TX_RDY_INT(port));
 743	writel(0, port->membase + UART_CTRL(port));
 744	writel(0, port->membase + UART_INTR(port));
 745
 746	uart_console_write(port, s, count, mvebu_uart_console_putchar);
 747
 748	wait_for_xmite(port);
 749
 750	if (ier)
 751		writel(ier, port->membase + UART_CTRL(port));
 752
 753	if (intr) {
 754		ctl = intr | readl(port->membase + UART_INTR(port));
 755		writel(ctl, port->membase + UART_INTR(port));
 756	}
 757
 758	if (locked)
 759		uart_port_unlock_irqrestore(port, flags);
 760}
 761
 762static int mvebu_uart_console_setup(struct console *co, char *options)
 763{
 764	struct uart_port *port;
 765	int baud = 9600;
 766	int bits = 8;
 767	int parity = 'n';
 768	int flow = 'n';
 769
 770	if (co->index < 0 || co->index >= MVEBU_NR_UARTS)
 771		return -EINVAL;
 772
 773	port = &mvebu_uart_ports[co->index];
 774
 775	if (!port->mapbase || !port->membase) {
 776		pr_debug("console on ttyMV%i not present\n", co->index);
 777		return -ENODEV;
 778	}
 779
 780	if (options)
 781		uart_parse_options(options, &baud, &parity, &bits, &flow);
 782
 783	return uart_set_options(port, co, baud, parity, bits, flow);
 784}
 785
 786static struct uart_driver mvebu_uart_driver;
 787
 788static struct console mvebu_uart_console = {
 789	.name	= "ttyMV",
 790	.write	= mvebu_uart_console_write,
 791	.device	= uart_console_device,
 792	.setup	= mvebu_uart_console_setup,
 793	.flags	= CON_PRINTBUFFER,
 794	.index	= -1,
 795	.data	= &mvebu_uart_driver,
 796};
 797
 798static int __init mvebu_uart_console_init(void)
 799{
 800	register_console(&mvebu_uart_console);
 801	return 0;
 802}
 803
 804console_initcall(mvebu_uart_console_init);
 805
 806
 807#endif /* CONFIG_SERIAL_MVEBU_CONSOLE */
 808
 809static struct uart_driver mvebu_uart_driver = {
 810	.owner			= THIS_MODULE,
 811	.driver_name		= DRIVER_NAME,
 812	.dev_name		= "ttyMV",
 813	.nr			= MVEBU_NR_UARTS,
 814#ifdef CONFIG_SERIAL_MVEBU_CONSOLE
 815	.cons			= &mvebu_uart_console,
 816#endif
 817};
 818
 819#if defined(CONFIG_PM)
 820static int mvebu_uart_suspend(struct device *dev)
 821{
 822	struct mvebu_uart *mvuart = dev_get_drvdata(dev);
 823	struct uart_port *port = mvuart->port;
 824	unsigned long flags;
 825
 826	uart_suspend_port(&mvebu_uart_driver, port);
 827
 828	mvuart->pm_regs.rbr = readl(port->membase + UART_RBR(port));
 829	mvuart->pm_regs.tsh = readl(port->membase + UART_TSH(port));
 830	mvuart->pm_regs.ctrl = readl(port->membase + UART_CTRL(port));
 831	mvuart->pm_regs.intr = readl(port->membase + UART_INTR(port));
 832	mvuart->pm_regs.stat = readl(port->membase + UART_STAT);
 833	spin_lock_irqsave(&mvebu_uart_lock, flags);
 834	mvuart->pm_regs.brdv = readl(port->membase + UART_BRDV);
 835	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
 836	mvuart->pm_regs.osamp = readl(port->membase + UART_OSAMP);
 837
 838	device_set_wakeup_enable(dev, true);
 839
 840	return 0;
 841}
 842
 843static int mvebu_uart_resume(struct device *dev)
 844{
 845	struct mvebu_uart *mvuart = dev_get_drvdata(dev);
 846	struct uart_port *port = mvuart->port;
 847	unsigned long flags;
 848
 849	writel(mvuart->pm_regs.rbr, port->membase + UART_RBR(port));
 850	writel(mvuart->pm_regs.tsh, port->membase + UART_TSH(port));
 851	writel(mvuart->pm_regs.ctrl, port->membase + UART_CTRL(port));
 852	writel(mvuart->pm_regs.intr, port->membase + UART_INTR(port));
 853	writel(mvuart->pm_regs.stat, port->membase + UART_STAT);
 854	spin_lock_irqsave(&mvebu_uart_lock, flags);
 855	writel(mvuart->pm_regs.brdv, port->membase + UART_BRDV);
 856	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
 857	writel(mvuart->pm_regs.osamp, port->membase + UART_OSAMP);
 858
 859	uart_resume_port(&mvebu_uart_driver, port);
 860
 861	return 0;
 862}
 863
 864static const struct dev_pm_ops mvebu_uart_pm_ops = {
 865	.suspend        = mvebu_uart_suspend,
 866	.resume         = mvebu_uart_resume,
 867};
 868#endif /* CONFIG_PM */
 869
 870static const struct of_device_id mvebu_uart_of_match[];
 871
 872/* Counter to keep track of each UART port id when not using CONFIG_OF */
 873static int uart_num_counter;
 874
 875static int mvebu_uart_probe(struct platform_device *pdev)
 876{
 877	const struct of_device_id *match = of_match_device(mvebu_uart_of_match,
 878							   &pdev->dev);
 879	struct uart_port *port;
 880	struct mvebu_uart *mvuart;
 881	struct resource *reg;
 882	int id, irq;
 883
 884	/* Assume that all UART ports have a DT alias or none has */
 885	id = of_alias_get_id(pdev->dev.of_node, "serial");
 886	if (!pdev->dev.of_node || id < 0)
 887		pdev->id = uart_num_counter++;
 888	else
 889		pdev->id = id;
 890
 891	if (pdev->id >= MVEBU_NR_UARTS) {
 892		dev_err(&pdev->dev, "cannot have more than %d UART ports\n",
 893			MVEBU_NR_UARTS);
 894		return -EINVAL;
 895	}
 896
 897	port = &mvebu_uart_ports[pdev->id];
 898
 899	spin_lock_init(&port->lock);
 900
 901	port->dev        = &pdev->dev;
 902	port->type       = PORT_MVEBU;
 903	port->ops        = &mvebu_uart_ops;
 904	port->regshift   = 0;
 905
 906	port->fifosize   = 32;
 907	port->iotype     = UPIO_MEM32;
 908	port->flags      = UPF_FIXED_PORT;
 909	port->line       = pdev->id;
 910
 911	/*
 912	 * IRQ number is not stored in this structure because we may have two of
 913	 * them per port (RX and TX). Instead, use the driver UART structure
 914	 * array so called ->irq[].
 915	 */
 916	port->irq        = 0;
 917	port->irqflags   = 0;
 918
 919	port->membase = devm_platform_get_and_ioremap_resource(pdev, 0, &reg);
 920	if (IS_ERR(port->membase))
 921		return PTR_ERR(port->membase);
 922	port->mapbase    = reg->start;
 923
 924	mvuart = devm_kzalloc(&pdev->dev, sizeof(struct mvebu_uart),
 925			      GFP_KERNEL);
 926	if (!mvuart)
 927		return -ENOMEM;
 928
 929	/* Get controller data depending on the compatible string */
 930	mvuart->data = (struct mvebu_uart_driver_data *)match->data;
 931	mvuart->port = port;
 932
 933	port->private_data = mvuart;
 934	platform_set_drvdata(pdev, mvuart);
 935
 936	/* Get fixed clock frequency */
 937	mvuart->clk = devm_clk_get(&pdev->dev, NULL);
 938	if (IS_ERR(mvuart->clk)) {
 939		if (PTR_ERR(mvuart->clk) == -EPROBE_DEFER)
 940			return PTR_ERR(mvuart->clk);
 941
 942		if (IS_EXTENDED(port)) {
 943			dev_err(&pdev->dev, "unable to get UART clock\n");
 944			return PTR_ERR(mvuart->clk);
 945		}
 946	} else {
 947		if (!clk_prepare_enable(mvuart->clk))
 948			port->uartclk = clk_get_rate(mvuart->clk);
 949	}
 950
 951	/* Manage interrupts */
 952	if (platform_irq_count(pdev) == 1) {
 953		/* Old bindings: no name on the single unamed UART0 IRQ */
 954		irq = platform_get_irq(pdev, 0);
 955		if (irq < 0)
 956			return irq;
 957
 958		mvuart->irq[UART_IRQ_SUM] = irq;
 959	} else {
 960		/*
 961		 * New bindings: named interrupts (RX, TX) for both UARTS,
 962		 * only make use of uart-rx and uart-tx interrupts, do not use
 963		 * uart-sum of UART0 port.
 964		 */
 965		irq = platform_get_irq_byname(pdev, "uart-rx");
 966		if (irq < 0)
 967			return irq;
 968
 969		mvuart->irq[UART_RX_IRQ] = irq;
 970
 971		irq = platform_get_irq_byname(pdev, "uart-tx");
 972		if (irq < 0)
 973			return irq;
 974
 975		mvuart->irq[UART_TX_IRQ] = irq;
 976	}
 977
 978	/* UART Soft Reset*/
 979	writel(CTRL_SOFT_RST, port->membase + UART_CTRL(port));
 980	udelay(1);
 981	writel(0, port->membase + UART_CTRL(port));
 982
 983	return uart_add_one_port(&mvebu_uart_driver, port);
 984}
 985
 986static struct mvebu_uart_driver_data uart_std_driver_data = {
 987	.is_ext = false,
 988	.regs.rbr = UART_STD_RBR,
 989	.regs.tsh = UART_STD_TSH,
 990	.regs.ctrl = UART_STD_CTRL1,
 991	.regs.intr = UART_STD_CTRL2,
 992	.flags.ctrl_tx_rdy_int = CTRL_STD_TX_RDY_INT,
 993	.flags.ctrl_rx_rdy_int = CTRL_STD_RX_RDY_INT,
 994	.flags.stat_tx_rdy = STAT_STD_TX_RDY,
 995	.flags.stat_rx_rdy = STAT_STD_RX_RDY,
 996};
 997
 998static struct mvebu_uart_driver_data uart_ext_driver_data = {
 999	.is_ext = true,
1000	.regs.rbr = UART_EXT_RBR,
1001	.regs.tsh = UART_EXT_TSH,
1002	.regs.ctrl = UART_EXT_CTRL1,
1003	.regs.intr = UART_EXT_CTRL2,
1004	.flags.ctrl_tx_rdy_int = CTRL_EXT_TX_RDY_INT,
1005	.flags.ctrl_rx_rdy_int = CTRL_EXT_RX_RDY_INT,
1006	.flags.stat_tx_rdy = STAT_EXT_TX_RDY,
1007	.flags.stat_rx_rdy = STAT_EXT_RX_RDY,
1008};
1009
1010/* Match table for of_platform binding */
1011static const struct of_device_id mvebu_uart_of_match[] = {
1012	{
1013		.compatible = "marvell,armada-3700-uart",
1014		.data = (void *)&uart_std_driver_data,
1015	},
1016	{
1017		.compatible = "marvell,armada-3700-uart-ext",
1018		.data = (void *)&uart_ext_driver_data,
1019	},
1020	{}
1021};
1022
1023static struct platform_driver mvebu_uart_platform_driver = {
1024	.probe	= mvebu_uart_probe,
1025	.driver	= {
1026		.name  = "mvebu-uart",
1027		.of_match_table = of_match_ptr(mvebu_uart_of_match),
1028		.suppress_bind_attrs = true,
1029#if defined(CONFIG_PM)
1030		.pm	= &mvebu_uart_pm_ops,
1031#endif /* CONFIG_PM */
1032	},
1033};
1034
1035/* This code is based on clk-fixed-factor.c driver and modified. */
1036
1037struct mvebu_uart_clock {
1038	struct clk_hw clk_hw;
1039	int clock_idx;
1040	u32 pm_context_reg1;
1041	u32 pm_context_reg2;
1042};
1043
1044struct mvebu_uart_clock_base {
1045	struct mvebu_uart_clock clocks[2];
1046	unsigned int parent_rates[5];
1047	int parent_idx;
1048	unsigned int div;
1049	void __iomem *reg1;
1050	void __iomem *reg2;
1051	bool configured;
1052};
1053
1054#define PARENT_CLOCK_XTAL 4
1055
1056#define to_uart_clock(hw) container_of(hw, struct mvebu_uart_clock, clk_hw)
1057#define to_uart_clock_base(uart_clock) container_of(uart_clock, \
1058	struct mvebu_uart_clock_base, clocks[uart_clock->clock_idx])
1059
1060static int mvebu_uart_clock_prepare(struct clk_hw *hw)
1061{
1062	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1063	struct mvebu_uart_clock_base *uart_clock_base =
1064						to_uart_clock_base(uart_clock);
1065	unsigned int prev_clock_idx, prev_clock_rate, prev_d1d2;
1066	unsigned int parent_clock_idx, parent_clock_rate;
1067	unsigned long flags;
1068	unsigned int d1, d2;
1069	u64 divisor;
1070	u32 val;
1071
1072	/*
1073	 * This function just reconfigures UART Clock Control register (located
1074	 * in UART1 address space which controls both UART1 and UART2) to
1075	 * selected UART base clock and recalculates current UART1/UART2
1076	 * divisors in their address spaces, so that final baudrate will not be
1077	 * changed by switching UART parent clock. This is required for
1078	 * otherwise kernel's boot log stops working - we need to ensure that
1079	 * UART baudrate does not change during this setup. It is a one time
1080	 * operation, it will execute only once and set `configured` to true,
1081	 * and be skipped on subsequent calls. Because this UART Clock Control
1082	 * register (UART_BRDV) is shared between UART1 baudrate function,
1083	 * UART1 clock selector and UART2 clock selector, every access to
1084	 * UART_BRDV (reg1) needs to be protected by a lock.
1085	 */
1086
1087	spin_lock_irqsave(&mvebu_uart_lock, flags);
1088
1089	if (uart_clock_base->configured) {
1090		spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1091		return 0;
1092	}
1093
1094	parent_clock_idx = uart_clock_base->parent_idx;
1095	parent_clock_rate = uart_clock_base->parent_rates[parent_clock_idx];
1096
1097	val = readl(uart_clock_base->reg1);
1098
1099	if (uart_clock_base->div > CLK_TBG_DIV1_MAX) {
1100		d1 = CLK_TBG_DIV1_MAX;
1101		d2 = uart_clock_base->div / CLK_TBG_DIV1_MAX;
1102	} else {
1103		d1 = uart_clock_base->div;
1104		d2 = 1;
1105	}
1106
1107	if (val & CLK_NO_XTAL) {
1108		prev_clock_idx = (val >> CLK_TBG_SEL_SHIFT) & CLK_TBG_SEL_MASK;
1109		prev_d1d2 = ((val >> CLK_TBG_DIV1_SHIFT) & CLK_TBG_DIV1_MASK) *
1110			    ((val >> CLK_TBG_DIV2_SHIFT) & CLK_TBG_DIV2_MASK);
1111	} else {
1112		prev_clock_idx = PARENT_CLOCK_XTAL;
1113		prev_d1d2 = 1;
1114	}
1115
1116	/* Note that uart_clock_base->parent_rates[i] may not be available */
1117	prev_clock_rate = uart_clock_base->parent_rates[prev_clock_idx];
1118
1119	/* Recalculate UART1 divisor so UART1 baudrate does not change */
1120	if (prev_clock_rate) {
1121		divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) *
1122						parent_clock_rate * prev_d1d2,
1123						prev_clock_rate * d1 * d2);
1124		if (divisor < 1)
1125			divisor = 1;
1126		else if (divisor > BRDV_BAUD_MAX)
1127			divisor = BRDV_BAUD_MAX;
1128		val = (val & ~BRDV_BAUD_MASK) | divisor;
1129	}
1130
1131	if (parent_clock_idx != PARENT_CLOCK_XTAL) {
1132		/* Do not use XTAL, select TBG clock and TBG d1 * d2 divisors */
1133		val |= CLK_NO_XTAL;
1134		val &= ~(CLK_TBG_DIV1_MASK << CLK_TBG_DIV1_SHIFT);
1135		val |= d1 << CLK_TBG_DIV1_SHIFT;
1136		val &= ~(CLK_TBG_DIV2_MASK << CLK_TBG_DIV2_SHIFT);
1137		val |= d2 << CLK_TBG_DIV2_SHIFT;
1138		val &= ~(CLK_TBG_SEL_MASK << CLK_TBG_SEL_SHIFT);
1139		val |= parent_clock_idx << CLK_TBG_SEL_SHIFT;
1140	} else {
1141		/* Use XTAL, TBG bits are then ignored */
1142		val &= ~CLK_NO_XTAL;
1143	}
1144
1145	writel(val, uart_clock_base->reg1);
1146
1147	/* Recalculate UART2 divisor so UART2 baudrate does not change */
1148	if (prev_clock_rate) {
1149		val = readl(uart_clock_base->reg2);
1150		divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) *
1151						parent_clock_rate * prev_d1d2,
1152						prev_clock_rate * d1 * d2);
1153		if (divisor < 1)
1154			divisor = 1;
1155		else if (divisor > BRDV_BAUD_MAX)
1156			divisor = BRDV_BAUD_MAX;
1157		val = (val & ~BRDV_BAUD_MASK) | divisor;
1158		writel(val, uart_clock_base->reg2);
1159	}
1160
1161	uart_clock_base->configured = true;
1162
1163	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1164
1165	return 0;
1166}
1167
1168static int mvebu_uart_clock_enable(struct clk_hw *hw)
1169{
1170	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1171	struct mvebu_uart_clock_base *uart_clock_base =
1172						to_uart_clock_base(uart_clock);
1173	unsigned long flags;
1174	u32 val;
1175
1176	spin_lock_irqsave(&mvebu_uart_lock, flags);
1177
1178	val = readl(uart_clock_base->reg1);
1179
1180	if (uart_clock->clock_idx == 0)
1181		val &= ~UART1_CLK_DIS;
1182	else
1183		val &= ~UART2_CLK_DIS;
1184
1185	writel(val, uart_clock_base->reg1);
1186
1187	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1188
1189	return 0;
1190}
1191
1192static void mvebu_uart_clock_disable(struct clk_hw *hw)
1193{
1194	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1195	struct mvebu_uart_clock_base *uart_clock_base =
1196						to_uart_clock_base(uart_clock);
1197	unsigned long flags;
1198	u32 val;
1199
1200	spin_lock_irqsave(&mvebu_uart_lock, flags);
1201
1202	val = readl(uart_clock_base->reg1);
1203
1204	if (uart_clock->clock_idx == 0)
1205		val |= UART1_CLK_DIS;
1206	else
1207		val |= UART2_CLK_DIS;
1208
1209	writel(val, uart_clock_base->reg1);
1210
1211	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1212}
1213
1214static int mvebu_uart_clock_is_enabled(struct clk_hw *hw)
1215{
1216	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1217	struct mvebu_uart_clock_base *uart_clock_base =
1218						to_uart_clock_base(uart_clock);
1219	u32 val;
1220
1221	val = readl(uart_clock_base->reg1);
1222
1223	if (uart_clock->clock_idx == 0)
1224		return !(val & UART1_CLK_DIS);
1225	else
1226		return !(val & UART2_CLK_DIS);
1227}
1228
1229static int mvebu_uart_clock_save_context(struct clk_hw *hw)
1230{
1231	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1232	struct mvebu_uart_clock_base *uart_clock_base =
1233						to_uart_clock_base(uart_clock);
1234	unsigned long flags;
1235
1236	spin_lock_irqsave(&mvebu_uart_lock, flags);
1237	uart_clock->pm_context_reg1 = readl(uart_clock_base->reg1);
1238	uart_clock->pm_context_reg2 = readl(uart_clock_base->reg2);
1239	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1240
1241	return 0;
1242}
1243
1244static void mvebu_uart_clock_restore_context(struct clk_hw *hw)
1245{
1246	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1247	struct mvebu_uart_clock_base *uart_clock_base =
1248						to_uart_clock_base(uart_clock);
1249	unsigned long flags;
1250
1251	spin_lock_irqsave(&mvebu_uart_lock, flags);
1252	writel(uart_clock->pm_context_reg1, uart_clock_base->reg1);
1253	writel(uart_clock->pm_context_reg2, uart_clock_base->reg2);
1254	spin_unlock_irqrestore(&mvebu_uart_lock, flags);
1255}
1256
1257static unsigned long mvebu_uart_clock_recalc_rate(struct clk_hw *hw,
1258						  unsigned long parent_rate)
1259{
1260	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1261	struct mvebu_uart_clock_base *uart_clock_base =
1262						to_uart_clock_base(uart_clock);
1263
1264	return parent_rate / uart_clock_base->div;
1265}
1266
1267static long mvebu_uart_clock_round_rate(struct clk_hw *hw, unsigned long rate,
1268					unsigned long *parent_rate)
1269{
1270	struct mvebu_uart_clock *uart_clock = to_uart_clock(hw);
1271	struct mvebu_uart_clock_base *uart_clock_base =
1272						to_uart_clock_base(uart_clock);
1273
1274	return *parent_rate / uart_clock_base->div;
1275}
1276
1277static int mvebu_uart_clock_set_rate(struct clk_hw *hw, unsigned long rate,
1278				     unsigned long parent_rate)
1279{
1280	/*
1281	 * We must report success but we can do so unconditionally because
1282	 * mvebu_uart_clock_round_rate returns values that ensure this call is a
1283	 * nop.
1284	 */
1285
1286	return 0;
1287}
1288
1289static const struct clk_ops mvebu_uart_clock_ops = {
1290	.prepare = mvebu_uart_clock_prepare,
1291	.enable = mvebu_uart_clock_enable,
1292	.disable = mvebu_uart_clock_disable,
1293	.is_enabled = mvebu_uart_clock_is_enabled,
1294	.save_context = mvebu_uart_clock_save_context,
1295	.restore_context = mvebu_uart_clock_restore_context,
1296	.round_rate = mvebu_uart_clock_round_rate,
1297	.set_rate = mvebu_uart_clock_set_rate,
1298	.recalc_rate = mvebu_uart_clock_recalc_rate,
1299};
1300
1301static int mvebu_uart_clock_register(struct device *dev,
1302				     struct mvebu_uart_clock *uart_clock,
1303				     const char *name,
1304				     const char *parent_name)
1305{
1306	struct clk_init_data init = { };
1307
1308	uart_clock->clk_hw.init = &init;
1309
1310	init.name = name;
1311	init.ops = &mvebu_uart_clock_ops;
1312	init.flags = 0;
1313	init.num_parents = 1;
1314	init.parent_names = &parent_name;
1315
1316	return devm_clk_hw_register(dev, &uart_clock->clk_hw);
1317}
1318
1319static int mvebu_uart_clock_probe(struct platform_device *pdev)
1320{
1321	static const char *const uart_clk_names[] = { "uart_1", "uart_2" };
1322	static const char *const parent_clk_names[] = { "TBG-A-P", "TBG-B-P",
1323							"TBG-A-S", "TBG-B-S",
1324							"xtal" };
1325	struct clk *parent_clks[ARRAY_SIZE(parent_clk_names)];
1326	struct mvebu_uart_clock_base *uart_clock_base;
1327	struct clk_hw_onecell_data *hw_clk_data;
1328	struct device *dev = &pdev->dev;
1329	int i, parent_clk_idx, ret;
1330	unsigned long div, rate;
1331	struct resource *res;
1332	unsigned int d1, d2;
1333
1334	BUILD_BUG_ON(ARRAY_SIZE(uart_clk_names) !=
1335		     ARRAY_SIZE(uart_clock_base->clocks));
1336	BUILD_BUG_ON(ARRAY_SIZE(parent_clk_names) !=
1337		     ARRAY_SIZE(uart_clock_base->parent_rates));
1338
1339	uart_clock_base = devm_kzalloc(dev,
1340				       sizeof(*uart_clock_base),
1341				       GFP_KERNEL);
1342	if (!uart_clock_base)
1343		return -ENOMEM;
1344
1345	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1346	if (!res) {
1347		dev_err(dev, "Couldn't get first register\n");
1348		return -ENOENT;
1349	}
1350
1351	/*
1352	 * UART Clock Control register (reg1 / UART_BRDV) is in the address
1353	 * space of UART1 (standard UART variant), controls parent clock and
1354	 * dividers for both UART1 and UART2 and is supplied via DT as the first
1355	 * resource. Therefore use ioremap() rather than ioremap_resource() to
1356	 * avoid conflicts with UART1 driver. Access to UART_BRDV is protected
1357	 * by a lock shared between clock and UART driver.
1358	 */
1359	uart_clock_base->reg1 = devm_ioremap(dev, res->start,
1360					     resource_size(res));
1361	if (!uart_clock_base->reg1)
1362		return -ENOMEM;
1363
1364	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1365	if (!res) {
1366		dev_err(dev, "Couldn't get second register\n");
1367		return -ENOENT;
1368	}
1369
1370	/*
1371	 * UART 2 Baud Rate Divisor register (reg2 / UART_BRDV) is in address
1372	 * space of UART2 (extended UART variant), controls only one UART2
1373	 * specific divider and is supplied via DT as second resource.
1374	 * Therefore use ioremap() rather than ioremap_resource() to avoid
1375	 * conflicts with UART2 driver. Access to UART_BRDV is protected by a
1376	 * by lock shared between clock and UART driver.
1377	 */
1378	uart_clock_base->reg2 = devm_ioremap(dev, res->start,
1379					     resource_size(res));
1380	if (!uart_clock_base->reg2)
1381		return -ENOMEM;
1382
1383	hw_clk_data = devm_kzalloc(dev,
1384				   struct_size(hw_clk_data, hws,
1385					       ARRAY_SIZE(uart_clk_names)),
1386				   GFP_KERNEL);
1387	if (!hw_clk_data)
1388		return -ENOMEM;
1389
1390	hw_clk_data->num = ARRAY_SIZE(uart_clk_names);
1391	for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) {
1392		hw_clk_data->hws[i] = &uart_clock_base->clocks[i].clk_hw;
1393		uart_clock_base->clocks[i].clock_idx = i;
1394	}
1395
1396	parent_clk_idx = -1;
1397
1398	for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) {
1399		parent_clks[i] = devm_clk_get(dev, parent_clk_names[i]);
1400		if (IS_ERR(parent_clks[i])) {
1401			if (PTR_ERR(parent_clks[i]) == -EPROBE_DEFER)
1402				return -EPROBE_DEFER;
1403			dev_warn(dev, "Couldn't get the parent clock %s: %ld\n",
1404				 parent_clk_names[i], PTR_ERR(parent_clks[i]));
1405			continue;
1406		}
1407
1408		ret = clk_prepare_enable(parent_clks[i]);
1409		if (ret) {
1410			dev_warn(dev, "Couldn't enable parent clock %s: %d\n",
1411				 parent_clk_names[i], ret);
1412			continue;
1413		}
1414		rate = clk_get_rate(parent_clks[i]);
1415		uart_clock_base->parent_rates[i] = rate;
1416
1417		if (i != PARENT_CLOCK_XTAL) {
1418			/*
1419			 * Calculate the smallest TBG d1 and d2 divisors that
1420			 * still can provide 9600 baudrate.
1421			 */
1422			d1 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR *
1423					  BRDV_BAUD_MAX);
1424			if (d1 < 1)
1425				d1 = 1;
1426			else if (d1 > CLK_TBG_DIV1_MAX)
1427				d1 = CLK_TBG_DIV1_MAX;
1428
1429			d2 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR *
1430					  BRDV_BAUD_MAX * d1);
1431			if (d2 < 1)
1432				d2 = 1;
1433			else if (d2 > CLK_TBG_DIV2_MAX)
1434				d2 = CLK_TBG_DIV2_MAX;
1435		} else {
1436			/*
1437			 * When UART clock uses XTAL clock as a source then it
1438			 * is not possible to use d1 and d2 divisors.
1439			 */
1440			d1 = d2 = 1;
1441		}
1442
1443		/* Skip clock source which cannot provide 9600 baudrate */
1444		if (rate > 9600 * OSAMP_MAX_DIVISOR * BRDV_BAUD_MAX * d1 * d2)
1445			continue;
1446
1447		/*
1448		 * Choose TBG clock source with the smallest divisors. Use XTAL
1449		 * clock source only in case TBG is not available as XTAL cannot
1450		 * be used for baudrates higher than 230400.
1451		 */
1452		if (parent_clk_idx == -1 ||
1453		    (i != PARENT_CLOCK_XTAL && div > d1 * d2)) {
1454			parent_clk_idx = i;
1455			div = d1 * d2;
1456		}
1457	}
1458
1459	for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) {
1460		if (i == parent_clk_idx || IS_ERR(parent_clks[i]))
1461			continue;
1462		clk_disable_unprepare(parent_clks[i]);
1463		devm_clk_put(dev, parent_clks[i]);
1464	}
1465
1466	if (parent_clk_idx == -1) {
1467		dev_err(dev, "No usable parent clock\n");
1468		return -ENOENT;
1469	}
1470
1471	uart_clock_base->parent_idx = parent_clk_idx;
1472	uart_clock_base->div = div;
1473
1474	dev_notice(dev, "Using parent clock %s as base UART clock\n",
1475		   __clk_get_name(parent_clks[parent_clk_idx]));
1476
1477	for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) {
1478		ret = mvebu_uart_clock_register(dev,
1479				&uart_clock_base->clocks[i],
1480				uart_clk_names[i],
1481				__clk_get_name(parent_clks[parent_clk_idx]));
1482		if (ret) {
1483			dev_err(dev, "Can't register UART clock %d: %d\n",
1484				i, ret);
1485			return ret;
1486		}
1487	}
1488
1489	return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get,
1490					   hw_clk_data);
1491}
1492
1493static const struct of_device_id mvebu_uart_clock_of_match[] = {
1494	{ .compatible = "marvell,armada-3700-uart-clock", },
1495	{ }
1496};
1497
1498static struct platform_driver mvebu_uart_clock_platform_driver = {
1499	.probe = mvebu_uart_clock_probe,
1500	.driver		= {
1501		.name	= "mvebu-uart-clock",
1502		.of_match_table = mvebu_uart_clock_of_match,
1503	},
1504};
1505
1506static int __init mvebu_uart_init(void)
1507{
1508	int ret;
1509
1510	ret = uart_register_driver(&mvebu_uart_driver);
1511	if (ret)
1512		return ret;
1513
1514	ret = platform_driver_register(&mvebu_uart_clock_platform_driver);
1515	if (ret) {
1516		uart_unregister_driver(&mvebu_uart_driver);
1517		return ret;
1518	}
1519
1520	ret = platform_driver_register(&mvebu_uart_platform_driver);
1521	if (ret) {
1522		platform_driver_unregister(&mvebu_uart_clock_platform_driver);
1523		uart_unregister_driver(&mvebu_uart_driver);
1524		return ret;
1525	}
1526
1527	return 0;
1528}
1529arch_initcall(mvebu_uart_init);