Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 *  Driver for AMBA serial ports
   4 *
   5 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   6 *
   7 *  Copyright 1999 ARM Limited
   8 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   9 *  Copyright (C) 2010 ST-Ericsson SA
  10 *
  11 * This is a generic driver for ARM AMBA-type serial ports.  They
  12 * have a lot of 16550-like features, but are not register compatible.
  13 * Note that although they do have CTS, DCD and DSR inputs, they do
  14 * not have an RI input, nor do they have DTR or RTS outputs.  If
  15 * required, these have to be supplied via some other means (eg, GPIO)
  16 * and hooked into this driver.
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/ioport.h>
  21#include <linux/init.h>
  22#include <linux/console.h>
  23#include <linux/platform_device.h>
  24#include <linux/sysrq.h>
  25#include <linux/device.h>
  26#include <linux/tty.h>
  27#include <linux/tty_flip.h>
  28#include <linux/serial_core.h>
  29#include <linux/serial.h>
  30#include <linux/amba/bus.h>
  31#include <linux/amba/serial.h>
  32#include <linux/clk.h>
  33#include <linux/slab.h>
  34#include <linux/dmaengine.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/scatterlist.h>
  37#include <linux/delay.h>
  38#include <linux/types.h>
  39#include <linux/of.h>
  40#include <linux/pinctrl/consumer.h>
  41#include <linux/sizes.h>
  42#include <linux/io.h>
  43#include <linux/acpi.h>
  44
  45#define UART_NR			14
  46
  47#define SERIAL_AMBA_MAJOR	204
  48#define SERIAL_AMBA_MINOR	64
  49#define SERIAL_AMBA_NR		UART_NR
  50
  51#define AMBA_ISR_PASS_LIMIT	256
  52
  53#define UART_DR_ERROR		(UART011_DR_OE | UART011_DR_BE | UART011_DR_PE | UART011_DR_FE)
  54#define UART_DUMMY_DR_RX	BIT(16)
  55
  56enum {
  57	REG_DR,
  58	REG_ST_DMAWM,
  59	REG_ST_TIMEOUT,
  60	REG_FR,
  61	REG_LCRH_RX,
  62	REG_LCRH_TX,
  63	REG_IBRD,
  64	REG_FBRD,
  65	REG_CR,
  66	REG_IFLS,
  67	REG_IMSC,
  68	REG_RIS,
  69	REG_MIS,
  70	REG_ICR,
  71	REG_DMACR,
  72	REG_ST_XFCR,
  73	REG_ST_XON1,
  74	REG_ST_XON2,
  75	REG_ST_XOFF1,
  76	REG_ST_XOFF2,
  77	REG_ST_ITCR,
  78	REG_ST_ITIP,
  79	REG_ST_ABCR,
  80	REG_ST_ABIMSC,
  81
  82	/* The size of the array - must be last */
  83	REG_ARRAY_SIZE,
  84};
  85
  86static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
  87	[REG_DR] = UART01x_DR,
  88	[REG_FR] = UART01x_FR,
  89	[REG_LCRH_RX] = UART011_LCRH,
  90	[REG_LCRH_TX] = UART011_LCRH,
  91	[REG_IBRD] = UART011_IBRD,
  92	[REG_FBRD] = UART011_FBRD,
  93	[REG_CR] = UART011_CR,
  94	[REG_IFLS] = UART011_IFLS,
  95	[REG_IMSC] = UART011_IMSC,
  96	[REG_RIS] = UART011_RIS,
  97	[REG_MIS] = UART011_MIS,
  98	[REG_ICR] = UART011_ICR,
  99	[REG_DMACR] = UART011_DMACR,
 100};
 101
 102/* There is by now at least one vendor with differing details, so handle it */
 103struct vendor_data {
 104	const u16		*reg_offset;
 105	unsigned int		ifls;
 106	unsigned int		fr_busy;
 107	unsigned int		fr_dsr;
 108	unsigned int		fr_cts;
 109	unsigned int		fr_ri;
 110	unsigned int		inv_fr;
 111	bool			access_32b;
 112	bool			oversampling;
 113	bool			dma_threshold;
 114	bool			cts_event_workaround;
 115	bool			always_enabled;
 116	bool			fixed_options;
 117
 118	unsigned int (*get_fifosize)(struct amba_device *dev);
 119};
 120
 121static unsigned int get_fifosize_arm(struct amba_device *dev)
 122{
 123	return amba_rev(dev) < 3 ? 16 : 32;
 124}
 125
 126static struct vendor_data vendor_arm = {
 127	.reg_offset		= pl011_std_offsets,
 128	.ifls			= UART011_IFLS_RX4_8 | UART011_IFLS_TX4_8,
 129	.fr_busy		= UART01x_FR_BUSY,
 130	.fr_dsr			= UART01x_FR_DSR,
 131	.fr_cts			= UART01x_FR_CTS,
 132	.fr_ri			= UART011_FR_RI,
 133	.oversampling		= false,
 134	.dma_threshold		= false,
 135	.cts_event_workaround	= false,
 136	.always_enabled		= false,
 137	.fixed_options		= false,
 138	.get_fifosize		= get_fifosize_arm,
 139};
 140
 141static const struct vendor_data vendor_sbsa = {
 142	.reg_offset		= pl011_std_offsets,
 143	.fr_busy		= UART01x_FR_BUSY,
 144	.fr_dsr			= UART01x_FR_DSR,
 145	.fr_cts			= UART01x_FR_CTS,
 146	.fr_ri			= UART011_FR_RI,
 147	.access_32b		= true,
 148	.oversampling		= false,
 149	.dma_threshold		= false,
 150	.cts_event_workaround	= false,
 151	.always_enabled		= true,
 152	.fixed_options		= true,
 153};
 154
 155#ifdef CONFIG_ACPI_SPCR_TABLE
 156static const struct vendor_data vendor_qdt_qdf2400_e44 = {
 157	.reg_offset		= pl011_std_offsets,
 158	.fr_busy		= UART011_FR_TXFE,
 159	.fr_dsr			= UART01x_FR_DSR,
 160	.fr_cts			= UART01x_FR_CTS,
 161	.fr_ri			= UART011_FR_RI,
 162	.inv_fr			= UART011_FR_TXFE,
 163	.access_32b		= true,
 164	.oversampling		= false,
 165	.dma_threshold		= false,
 166	.cts_event_workaround	= false,
 167	.always_enabled		= true,
 168	.fixed_options		= true,
 169};
 170#endif
 171
 172static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
 173	[REG_DR] = UART01x_DR,
 174	[REG_ST_DMAWM] = ST_UART011_DMAWM,
 175	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
 176	[REG_FR] = UART01x_FR,
 177	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
 178	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
 179	[REG_IBRD] = UART011_IBRD,
 180	[REG_FBRD] = UART011_FBRD,
 181	[REG_CR] = UART011_CR,
 182	[REG_IFLS] = UART011_IFLS,
 183	[REG_IMSC] = UART011_IMSC,
 184	[REG_RIS] = UART011_RIS,
 185	[REG_MIS] = UART011_MIS,
 186	[REG_ICR] = UART011_ICR,
 187	[REG_DMACR] = UART011_DMACR,
 188	[REG_ST_XFCR] = ST_UART011_XFCR,
 189	[REG_ST_XON1] = ST_UART011_XON1,
 190	[REG_ST_XON2] = ST_UART011_XON2,
 191	[REG_ST_XOFF1] = ST_UART011_XOFF1,
 192	[REG_ST_XOFF2] = ST_UART011_XOFF2,
 193	[REG_ST_ITCR] = ST_UART011_ITCR,
 194	[REG_ST_ITIP] = ST_UART011_ITIP,
 195	[REG_ST_ABCR] = ST_UART011_ABCR,
 196	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
 197};
 198
 199static unsigned int get_fifosize_st(struct amba_device *dev)
 200{
 201	return 64;
 202}
 203
 204static struct vendor_data vendor_st = {
 205	.reg_offset		= pl011_st_offsets,
 206	.ifls			= UART011_IFLS_RX_HALF | UART011_IFLS_TX_HALF,
 207	.fr_busy		= UART01x_FR_BUSY,
 208	.fr_dsr			= UART01x_FR_DSR,
 209	.fr_cts			= UART01x_FR_CTS,
 210	.fr_ri			= UART011_FR_RI,
 211	.oversampling		= true,
 212	.dma_threshold		= true,
 213	.cts_event_workaround	= true,
 214	.always_enabled		= false,
 215	.fixed_options		= false,
 216	.get_fifosize		= get_fifosize_st,
 217};
 218
 219/* Deals with DMA transactions */
 220
 221struct pl011_dmabuf {
 222	dma_addr_t		dma;
 223	size_t			len;
 224	char			*buf;
 225};
 226
 227struct pl011_dmarx_data {
 228	struct dma_chan		*chan;
 229	struct completion	complete;
 230	bool			use_buf_b;
 231	struct pl011_dmabuf	dbuf_a;
 232	struct pl011_dmabuf	dbuf_b;
 233	dma_cookie_t		cookie;
 234	bool			running;
 235	struct timer_list	timer;
 236	unsigned int last_residue;
 237	unsigned long last_jiffies;
 238	bool auto_poll_rate;
 239	unsigned int poll_rate;
 240	unsigned int poll_timeout;
 241};
 242
 243struct pl011_dmatx_data {
 244	struct dma_chan		*chan;
 245	dma_addr_t		dma;
 246	size_t			len;
 247	char			*buf;
 248	bool			queued;
 249};
 250
 251/*
 252 * We wrap our port structure around the generic uart_port.
 253 */
 254struct uart_amba_port {
 255	struct uart_port	port;
 256	const u16		*reg_offset;
 257	struct clk		*clk;
 258	const struct vendor_data *vendor;
 259	unsigned int		dmacr;		/* dma control reg */
 260	unsigned int		im;		/* interrupt mask */
 261	unsigned int		old_status;
 262	unsigned int		fifosize;	/* vendor-specific */
 263	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
 264	char			type[12];
 265	bool			rs485_tx_started;
 266	unsigned int		rs485_tx_drain_interval; /* usecs */
 267#ifdef CONFIG_DMA_ENGINE
 268	/* DMA stuff */
 
 269	bool			using_tx_dma;
 270	bool			using_rx_dma;
 271	struct pl011_dmarx_data dmarx;
 272	struct pl011_dmatx_data	dmatx;
 273	bool			dma_probed;
 274#endif
 275};
 276
 277static unsigned int pl011_tx_empty(struct uart_port *port);
 278
 279static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
 280					unsigned int reg)
 281{
 282	return uap->reg_offset[reg];
 283}
 284
 285static unsigned int pl011_read(const struct uart_amba_port *uap,
 286			       unsigned int reg)
 287{
 288	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 289
 290	return (uap->port.iotype == UPIO_MEM32) ?
 291		readl_relaxed(addr) : readw_relaxed(addr);
 292}
 293
 294static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
 295			unsigned int reg)
 296{
 297	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 298
 299	if (uap->port.iotype == UPIO_MEM32)
 300		writel_relaxed(val, addr);
 301	else
 302		writew_relaxed(val, addr);
 303}
 304
 305/*
 306 * Reads up to 256 characters from the FIFO or until it's empty and
 307 * inserts them into the TTY layer. Returns the number of characters
 308 * read from the FIFO.
 309 */
 310static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 311{
 312	unsigned int ch, fifotaken;
 313	int sysrq;
 314	u16 status;
 315	u8 flag;
 316
 317	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
 318		status = pl011_read(uap, REG_FR);
 319		if (status & UART01x_FR_RXFE)
 320			break;
 321
 322		/* Take chars from the FIFO and update status */
 323		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
 324		flag = TTY_NORMAL;
 325		uap->port.icount.rx++;
 326
 327		if (unlikely(ch & UART_DR_ERROR)) {
 328			if (ch & UART011_DR_BE) {
 329				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 330				uap->port.icount.brk++;
 331				if (uart_handle_break(&uap->port))
 332					continue;
 333			} else if (ch & UART011_DR_PE) {
 334				uap->port.icount.parity++;
 335			} else if (ch & UART011_DR_FE) {
 336				uap->port.icount.frame++;
 337			}
 338			if (ch & UART011_DR_OE)
 339				uap->port.icount.overrun++;
 340
 341			ch &= uap->port.read_status_mask;
 342
 343			if (ch & UART011_DR_BE)
 344				flag = TTY_BREAK;
 345			else if (ch & UART011_DR_PE)
 346				flag = TTY_PARITY;
 347			else if (ch & UART011_DR_FE)
 348				flag = TTY_FRAME;
 349		}
 350
 351		uart_port_unlock(&uap->port);
 352		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
 353		uart_port_lock(&uap->port);
 354
 355		if (!sysrq)
 356			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 357	}
 358
 359	return fifotaken;
 360}
 361
 362/*
 363 * All the DMA operation mode stuff goes inside this ifdef.
 364 * This assumes that you have a generic DMA device interface,
 365 * no custom DMA interfaces are supported.
 366 */
 367#ifdef CONFIG_DMA_ENGINE
 368
 369#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 370
 371static int pl011_dmabuf_init(struct dma_chan *chan, struct pl011_dmabuf *db,
 372			     enum dma_data_direction dir)
 373{
 374	db->buf = dma_alloc_coherent(chan->device->dev, PL011_DMA_BUFFER_SIZE,
 375				     &db->dma, GFP_KERNEL);
 376	if (!db->buf)
 377		return -ENOMEM;
 378	db->len = PL011_DMA_BUFFER_SIZE;
 379
 380	return 0;
 381}
 382
 383static void pl011_dmabuf_free(struct dma_chan *chan, struct pl011_dmabuf *db,
 384			      enum dma_data_direction dir)
 385{
 386	if (db->buf) {
 387		dma_free_coherent(chan->device->dev,
 388				  PL011_DMA_BUFFER_SIZE, db->buf, db->dma);
 389	}
 390}
 391
 392static void pl011_dma_probe(struct uart_amba_port *uap)
 393{
 394	/* DMA is the sole user of the platform data right now */
 395	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
 396	struct device *dev = uap->port.dev;
 397	struct dma_slave_config tx_conf = {
 398		.dst_addr = uap->port.mapbase +
 399				 pl011_reg_to_offset(uap, REG_DR),
 400		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 401		.direction = DMA_MEM_TO_DEV,
 402		.dst_maxburst = uap->fifosize >> 1,
 403		.device_fc = false,
 404	};
 405	struct dma_chan *chan;
 406	dma_cap_mask_t mask;
 407
 408	uap->dma_probed = true;
 409	chan = dma_request_chan(dev, "tx");
 410	if (IS_ERR(chan)) {
 411		if (PTR_ERR(chan) == -EPROBE_DEFER) {
 412			uap->dma_probed = false;
 413			return;
 414		}
 415
 416		/* We need platform data */
 417		if (!plat || !plat->dma_filter) {
 418			dev_dbg(uap->port.dev, "no DMA platform data\n");
 419			return;
 420		}
 421
 422		/* Try to acquire a generic DMA engine slave TX channel */
 423		dma_cap_zero(mask);
 424		dma_cap_set(DMA_SLAVE, mask);
 425
 426		chan = dma_request_channel(mask, plat->dma_filter,
 427					   plat->dma_tx_param);
 428		if (!chan) {
 429			dev_err(uap->port.dev, "no TX DMA channel!\n");
 430			return;
 431		}
 432	}
 433
 434	dmaengine_slave_config(chan, &tx_conf);
 435	uap->dmatx.chan = chan;
 436
 437	dev_info(uap->port.dev, "DMA channel TX %s\n",
 438		 dma_chan_name(uap->dmatx.chan));
 439
 440	/* Optionally make use of an RX channel as well */
 441	chan = dma_request_chan(dev, "rx");
 442
 443	if (IS_ERR(chan) && plat && plat->dma_rx_param) {
 444		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 445
 446		if (!chan) {
 447			dev_err(uap->port.dev, "no RX DMA channel!\n");
 448			return;
 449		}
 450	}
 451
 452	if (!IS_ERR(chan)) {
 453		struct dma_slave_config rx_conf = {
 454			.src_addr = uap->port.mapbase +
 455				pl011_reg_to_offset(uap, REG_DR),
 456			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 457			.direction = DMA_DEV_TO_MEM,
 458			.src_maxburst = uap->fifosize >> 2,
 459			.device_fc = false,
 460		};
 461		struct dma_slave_caps caps;
 462
 463		/*
 464		 * Some DMA controllers provide information on their capabilities.
 465		 * If the controller does, check for suitable residue processing
 466		 * otherwise assime all is well.
 467		 */
 468		if (dma_get_slave_caps(chan, &caps) == 0) {
 469			if (caps.residue_granularity ==
 470					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
 471				dma_release_channel(chan);
 472				dev_info(uap->port.dev,
 473					 "RX DMA disabled - no residue processing\n");
 474				return;
 475			}
 476		}
 477		dmaengine_slave_config(chan, &rx_conf);
 478		uap->dmarx.chan = chan;
 479
 480		uap->dmarx.auto_poll_rate = false;
 481		if (plat && plat->dma_rx_poll_enable) {
 482			/* Set poll rate if specified. */
 483			if (plat->dma_rx_poll_rate) {
 484				uap->dmarx.auto_poll_rate = false;
 485				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
 486			} else {
 487				/*
 488				 * 100 ms defaults to poll rate if not
 489				 * specified. This will be adjusted with
 490				 * the baud rate at set_termios.
 491				 */
 492				uap->dmarx.auto_poll_rate = true;
 493				uap->dmarx.poll_rate =  100;
 494			}
 495			/* 3 secs defaults poll_timeout if not specified. */
 496			if (plat->dma_rx_poll_timeout)
 497				uap->dmarx.poll_timeout =
 498					plat->dma_rx_poll_timeout;
 499			else
 500				uap->dmarx.poll_timeout = 3000;
 501		} else if (!plat && dev->of_node) {
 502			uap->dmarx.auto_poll_rate =
 503					of_property_read_bool(dev->of_node, "auto-poll");
 504			if (uap->dmarx.auto_poll_rate) {
 505				u32 x;
 506
 507				if (of_property_read_u32(dev->of_node, "poll-rate-ms", &x) == 0)
 508					uap->dmarx.poll_rate = x;
 509				else
 510					uap->dmarx.poll_rate = 100;
 511				if (of_property_read_u32(dev->of_node, "poll-timeout-ms", &x) == 0)
 512					uap->dmarx.poll_timeout = x;
 513				else
 514					uap->dmarx.poll_timeout = 3000;
 515			}
 516		}
 517		dev_info(uap->port.dev, "DMA channel RX %s\n",
 518			 dma_chan_name(uap->dmarx.chan));
 519	}
 520}
 521
 522static void pl011_dma_remove(struct uart_amba_port *uap)
 523{
 524	if (uap->dmatx.chan)
 525		dma_release_channel(uap->dmatx.chan);
 526	if (uap->dmarx.chan)
 527		dma_release_channel(uap->dmarx.chan);
 528}
 529
 530/* Forward declare these for the refill routine */
 531static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 532static void pl011_start_tx_pio(struct uart_amba_port *uap);
 533
 534/*
 535 * The current DMA TX buffer has been sent.
 536 * Try to queue up another DMA buffer.
 537 */
 538static void pl011_dma_tx_callback(void *data)
 539{
 540	struct uart_amba_port *uap = data;
 
 541	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 542	unsigned long flags;
 543	u16 dmacr;
 544
 545	uart_port_lock_irqsave(&uap->port, &flags);
 546	if (uap->dmatx.queued)
 547		dma_unmap_single(dmatx->chan->device->dev, dmatx->dma,
 548				 dmatx->len, DMA_TO_DEVICE);
 549
 550	dmacr = uap->dmacr;
 551	uap->dmacr = dmacr & ~UART011_TXDMAE;
 552	pl011_write(uap->dmacr, uap, REG_DMACR);
 553
 554	/*
 555	 * If TX DMA was disabled, it means that we've stopped the DMA for
 556	 * some reason (eg, XOFF received, or we want to send an X-char.)
 557	 *
 558	 * Note: we need to be careful here of a potential race between DMA
 559	 * and the rest of the driver - if the driver disables TX DMA while
 560	 * a TX buffer completing, we must update the tx queued status to
 561	 * get further refills (hence we check dmacr).
 562	 */
 563	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 564	    uart_circ_empty(&uap->port.state->xmit)) {
 565		uap->dmatx.queued = false;
 566		uart_port_unlock_irqrestore(&uap->port, flags);
 567		return;
 568	}
 569
 570	if (pl011_dma_tx_refill(uap) <= 0)
 571		/*
 572		 * We didn't queue a DMA buffer for some reason, but we
 573		 * have data pending to be sent.  Re-enable the TX IRQ.
 574		 */
 575		pl011_start_tx_pio(uap);
 576
 577	uart_port_unlock_irqrestore(&uap->port, flags);
 578}
 579
 580/*
 581 * Try to refill the TX DMA buffer.
 582 * Locking: called with port lock held and IRQs disabled.
 583 * Returns:
 584 *   1 if we queued up a TX DMA buffer.
 585 *   0 if we didn't want to handle this by DMA
 586 *  <0 on error
 587 */
 588static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 589{
 590	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 591	struct dma_chan *chan = dmatx->chan;
 592	struct dma_device *dma_dev = chan->device;
 593	struct dma_async_tx_descriptor *desc;
 594	struct circ_buf *xmit = &uap->port.state->xmit;
 595	unsigned int count;
 596
 597	/*
 598	 * Try to avoid the overhead involved in using DMA if the
 599	 * transaction fits in the first half of the FIFO, by using
 600	 * the standard interrupt handling.  This ensures that we
 601	 * issue a uart_write_wakeup() at the appropriate time.
 602	 */
 603	count = uart_circ_chars_pending(xmit);
 604	if (count < (uap->fifosize >> 1)) {
 605		uap->dmatx.queued = false;
 606		return 0;
 607	}
 608
 609	/*
 610	 * Bodge: don't send the last character by DMA, as this
 611	 * will prevent XON from notifying us to restart DMA.
 612	 */
 613	count -= 1;
 614
 615	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 616	if (count > PL011_DMA_BUFFER_SIZE)
 617		count = PL011_DMA_BUFFER_SIZE;
 618
 619	if (xmit->tail < xmit->head) {
 620		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 621	} else {
 622		size_t first = UART_XMIT_SIZE - xmit->tail;
 623		size_t second;
 624
 625		if (first > count)
 626			first = count;
 627		second = count - first;
 628
 629		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 630		if (second)
 631			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 632	}
 633
 634	dmatx->len = count;
 635	dmatx->dma = dma_map_single(dma_dev->dev, dmatx->buf, count,
 636				    DMA_TO_DEVICE);
 637	if (dmatx->dma == DMA_MAPPING_ERROR) {
 638		uap->dmatx.queued = false;
 639		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 640		return -EBUSY;
 641	}
 642
 643	desc = dmaengine_prep_slave_single(chan, dmatx->dma, dmatx->len, DMA_MEM_TO_DEV,
 644					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 645	if (!desc) {
 646		dma_unmap_single(dma_dev->dev, dmatx->dma, dmatx->len, DMA_TO_DEVICE);
 647		uap->dmatx.queued = false;
 648		/*
 649		 * If DMA cannot be used right now, we complete this
 650		 * transaction via IRQ and let the TTY layer retry.
 651		 */
 652		dev_dbg(uap->port.dev, "TX DMA busy\n");
 653		return -EBUSY;
 654	}
 655
 656	/* Some data to go along to the callback */
 657	desc->callback = pl011_dma_tx_callback;
 658	desc->callback_param = uap;
 659
 660	/* All errors should happen at prepare time */
 661	dmaengine_submit(desc);
 662
 663	/* Fire the DMA transaction */
 664	dma_dev->device_issue_pending(chan);
 665
 666	uap->dmacr |= UART011_TXDMAE;
 667	pl011_write(uap->dmacr, uap, REG_DMACR);
 668	uap->dmatx.queued = true;
 669
 670	/*
 671	 * Now we know that DMA will fire, so advance the ring buffer
 672	 * with the stuff we just dispatched.
 673	 */
 674	uart_xmit_advance(&uap->port, count);
 675
 676	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 677		uart_write_wakeup(&uap->port);
 678
 679	return 1;
 680}
 681
 682/*
 683 * We received a transmit interrupt without a pending X-char but with
 684 * pending characters.
 685 * Locking: called with port lock held and IRQs disabled.
 686 * Returns:
 687 *   false if we want to use PIO to transmit
 688 *   true if we queued a DMA buffer
 689 */
 690static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 691{
 692	if (!uap->using_tx_dma)
 693		return false;
 694
 695	/*
 696	 * If we already have a TX buffer queued, but received a
 697	 * TX interrupt, it will be because we've just sent an X-char.
 698	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 699	 */
 700	if (uap->dmatx.queued) {
 701		uap->dmacr |= UART011_TXDMAE;
 702		pl011_write(uap->dmacr, uap, REG_DMACR);
 703		uap->im &= ~UART011_TXIM;
 704		pl011_write(uap->im, uap, REG_IMSC);
 705		return true;
 706	}
 707
 708	/*
 709	 * We don't have a TX buffer queued, so try to queue one.
 710	 * If we successfully queued a buffer, mask the TX IRQ.
 711	 */
 712	if (pl011_dma_tx_refill(uap) > 0) {
 713		uap->im &= ~UART011_TXIM;
 714		pl011_write(uap->im, uap, REG_IMSC);
 715		return true;
 716	}
 717	return false;
 718}
 719
 720/*
 721 * Stop the DMA transmit (eg, due to received XOFF).
 722 * Locking: called with port lock held and IRQs disabled.
 723 */
 724static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 725{
 726	if (uap->dmatx.queued) {
 727		uap->dmacr &= ~UART011_TXDMAE;
 728		pl011_write(uap->dmacr, uap, REG_DMACR);
 729	}
 730}
 731
 732/*
 733 * Try to start a DMA transmit, or in the case of an XON/OFF
 734 * character queued for send, try to get that character out ASAP.
 735 * Locking: called with port lock held and IRQs disabled.
 736 * Returns:
 737 *   false if we want the TX IRQ to be enabled
 738 *   true if we have a buffer queued
 739 */
 740static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 741{
 742	u16 dmacr;
 743
 744	if (!uap->using_tx_dma)
 745		return false;
 746
 747	if (!uap->port.x_char) {
 748		/* no X-char, try to push chars out in DMA mode */
 749		bool ret = true;
 750
 751		if (!uap->dmatx.queued) {
 752			if (pl011_dma_tx_refill(uap) > 0) {
 753				uap->im &= ~UART011_TXIM;
 754				pl011_write(uap->im, uap, REG_IMSC);
 755			} else {
 756				ret = false;
 757			}
 758		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 759			uap->dmacr |= UART011_TXDMAE;
 760			pl011_write(uap->dmacr, uap, REG_DMACR);
 761		}
 762		return ret;
 763	}
 764
 765	/*
 766	 * We have an X-char to send.  Disable DMA to prevent it loading
 767	 * the TX fifo, and then see if we can stuff it into the FIFO.
 768	 */
 769	dmacr = uap->dmacr;
 770	uap->dmacr &= ~UART011_TXDMAE;
 771	pl011_write(uap->dmacr, uap, REG_DMACR);
 772
 773	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
 774		/*
 775		 * No space in the FIFO, so enable the transmit interrupt
 776		 * so we know when there is space.  Note that once we've
 777		 * loaded the character, we should just re-enable DMA.
 778		 */
 779		return false;
 780	}
 781
 782	pl011_write(uap->port.x_char, uap, REG_DR);
 783	uap->port.icount.tx++;
 784	uap->port.x_char = 0;
 785
 786	/* Success - restore the DMA state */
 787	uap->dmacr = dmacr;
 788	pl011_write(dmacr, uap, REG_DMACR);
 789
 790	return true;
 791}
 792
 793/*
 794 * Flush the transmit buffer.
 795 * Locking: called with port lock held and IRQs disabled.
 796 */
 797static void pl011_dma_flush_buffer(struct uart_port *port)
 798__releases(&uap->port.lock)
 799__acquires(&uap->port.lock)
 800{
 801	struct uart_amba_port *uap =
 802	    container_of(port, struct uart_amba_port, port);
 803
 804	if (!uap->using_tx_dma)
 805		return;
 806
 807	dmaengine_terminate_async(uap->dmatx.chan);
 808
 809	if (uap->dmatx.queued) {
 810		dma_unmap_single(uap->dmatx.chan->device->dev, uap->dmatx.dma,
 811				 uap->dmatx.len, DMA_TO_DEVICE);
 812		uap->dmatx.queued = false;
 813		uap->dmacr &= ~UART011_TXDMAE;
 814		pl011_write(uap->dmacr, uap, REG_DMACR);
 815	}
 816}
 817
 818static void pl011_dma_rx_callback(void *data);
 819
 820static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 821{
 822	struct dma_chan *rxchan = uap->dmarx.chan;
 823	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 824	struct dma_async_tx_descriptor *desc;
 825	struct pl011_dmabuf *dbuf;
 826
 827	if (!rxchan)
 828		return -EIO;
 829
 830	/* Start the RX DMA job */
 831	dbuf = uap->dmarx.use_buf_b ?
 832		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
 833	desc = dmaengine_prep_slave_single(rxchan, dbuf->dma, dbuf->len,
 834					   DMA_DEV_TO_MEM,
 835					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 836	/*
 837	 * If the DMA engine is busy and cannot prepare a
 838	 * channel, no big deal, the driver will fall back
 839	 * to interrupt mode as a result of this error code.
 840	 */
 841	if (!desc) {
 842		uap->dmarx.running = false;
 843		dmaengine_terminate_all(rxchan);
 844		return -EBUSY;
 845	}
 846
 847	/* Some data to go along to the callback */
 848	desc->callback = pl011_dma_rx_callback;
 849	desc->callback_param = uap;
 850	dmarx->cookie = dmaengine_submit(desc);
 851	dma_async_issue_pending(rxchan);
 852
 853	uap->dmacr |= UART011_RXDMAE;
 854	pl011_write(uap->dmacr, uap, REG_DMACR);
 855	uap->dmarx.running = true;
 856
 857	uap->im &= ~UART011_RXIM;
 858	pl011_write(uap->im, uap, REG_IMSC);
 859
 860	return 0;
 861}
 862
 863/*
 864 * This is called when either the DMA job is complete, or
 865 * the FIFO timeout interrupt occurred. This must be called
 866 * with the port spinlock uap->port.lock held.
 867 */
 868static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 869			       u32 pending, bool use_buf_b,
 870			       bool readfifo)
 871{
 872	struct tty_port *port = &uap->port.state->port;
 873	struct pl011_dmabuf *dbuf = use_buf_b ?
 874		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
 875	int dma_count = 0;
 876	u32 fifotaken = 0; /* only used for vdbg() */
 877
 878	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 879	int dmataken = 0;
 880
 881	if (uap->dmarx.poll_rate) {
 882		/* The data can be taken by polling */
 883		dmataken = dbuf->len - dmarx->last_residue;
 884		/* Recalculate the pending size */
 885		if (pending >= dmataken)
 886			pending -= dmataken;
 887	}
 888
 889	/* Pick the remain data from the DMA */
 890	if (pending) {
 891		/*
 892		 * First take all chars in the DMA pipe, then look in the FIFO.
 893		 * Note that tty_insert_flip_buf() tries to take as many chars
 894		 * as it can.
 895		 */
 896		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken, pending);
 897
 898		uap->port.icount.rx += dma_count;
 899		if (dma_count < pending)
 900			dev_warn(uap->port.dev,
 901				 "couldn't insert all characters (TTY is full?)\n");
 902	}
 903
 904	/* Reset the last_residue for Rx DMA poll */
 905	if (uap->dmarx.poll_rate)
 906		dmarx->last_residue = dbuf->len;
 907
 908	/*
 909	 * Only continue with trying to read the FIFO if all DMA chars have
 910	 * been taken first.
 911	 */
 912	if (dma_count == pending && readfifo) {
 913		/* Clear any error flags */
 914		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
 915			    UART011_FEIS, uap, REG_ICR);
 916
 917		/*
 918		 * If we read all the DMA'd characters, and we had an
 919		 * incomplete buffer, that could be due to an rx error, or
 920		 * maybe we just timed out. Read any pending chars and check
 921		 * the error status.
 922		 *
 923		 * Error conditions will only occur in the FIFO, these will
 924		 * trigger an immediate interrupt and stop the DMA job, so we
 925		 * will always find the error in the FIFO, never in the DMA
 926		 * buffer.
 927		 */
 928		fifotaken = pl011_fifo_to_tty(uap);
 929	}
 930
 931	dev_vdbg(uap->port.dev,
 932		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 933		 dma_count, fifotaken);
 934	tty_flip_buffer_push(port);
 935}
 936
 937static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 938{
 939	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 940	struct dma_chan *rxchan = dmarx->chan;
 941	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
 942		&dmarx->dbuf_b : &dmarx->dbuf_a;
 943	size_t pending;
 944	struct dma_tx_state state;
 945	enum dma_status dmastat;
 946
 947	/*
 948	 * Pause the transfer so we can trust the current counter,
 949	 * do this before we pause the PL011 block, else we may
 950	 * overflow the FIFO.
 951	 */
 952	if (dmaengine_pause(rxchan))
 953		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 954	dmastat = rxchan->device->device_tx_status(rxchan,
 955						   dmarx->cookie, &state);
 956	if (dmastat != DMA_PAUSED)
 957		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 958
 959	/* Disable RX DMA - incoming data will wait in the FIFO */
 960	uap->dmacr &= ~UART011_RXDMAE;
 961	pl011_write(uap->dmacr, uap, REG_DMACR);
 962	uap->dmarx.running = false;
 963
 964	pending = dbuf->len - state.residue;
 965	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 966	/* Then we terminate the transfer - we now know our residue */
 967	dmaengine_terminate_all(rxchan);
 968
 969	/*
 970	 * This will take the chars we have so far and insert
 971	 * into the framework.
 972	 */
 973	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 974
 975	/* Switch buffer & re-trigger DMA job */
 976	dmarx->use_buf_b = !dmarx->use_buf_b;
 977	if (pl011_dma_rx_trigger_dma(uap)) {
 978		dev_dbg(uap->port.dev,
 979			"could not retrigger RX DMA job fall back to interrupt mode\n");
 980		uap->im |= UART011_RXIM;
 981		pl011_write(uap->im, uap, REG_IMSC);
 982	}
 983}
 984
 985static void pl011_dma_rx_callback(void *data)
 986{
 987	struct uart_amba_port *uap = data;
 988	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 989	struct dma_chan *rxchan = dmarx->chan;
 990	bool lastbuf = dmarx->use_buf_b;
 991	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
 992		&dmarx->dbuf_b : &dmarx->dbuf_a;
 993	size_t pending;
 994	struct dma_tx_state state;
 995	int ret;
 996
 997	/*
 998	 * This completion interrupt occurs typically when the
 999	 * RX buffer is totally stuffed but no timeout has yet
1000	 * occurred. When that happens, we just want the RX
1001	 * routine to flush out the secondary DMA buffer while
1002	 * we immediately trigger the next DMA job.
1003	 */
1004	uart_port_lock_irq(&uap->port);
1005	/*
1006	 * Rx data can be taken by the UART interrupts during
1007	 * the DMA irq handler. So we check the residue here.
1008	 */
1009	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1010	pending = dbuf->len - state.residue;
1011	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1012	/* Then we terminate the transfer - we now know our residue */
1013	dmaengine_terminate_all(rxchan);
1014
1015	uap->dmarx.running = false;
1016	dmarx->use_buf_b = !lastbuf;
1017	ret = pl011_dma_rx_trigger_dma(uap);
1018
1019	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1020	uart_port_unlock_irq(&uap->port);
1021	/*
1022	 * Do this check after we picked the DMA chars so we don't
1023	 * get some IRQ immediately from RX.
1024	 */
1025	if (ret) {
1026		dev_dbg(uap->port.dev,
1027			"could not retrigger RX DMA job fall back to interrupt mode\n");
1028		uap->im |= UART011_RXIM;
1029		pl011_write(uap->im, uap, REG_IMSC);
1030	}
1031}
1032
1033/*
1034 * Stop accepting received characters, when we're shutting down or
1035 * suspending this port.
1036 * Locking: called with port lock held and IRQs disabled.
1037 */
1038static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1039{
1040	if (!uap->using_rx_dma)
1041		return;
1042
1043	/* FIXME.  Just disable the DMA enable */
1044	uap->dmacr &= ~UART011_RXDMAE;
1045	pl011_write(uap->dmacr, uap, REG_DMACR);
1046}
1047
1048/*
1049 * Timer handler for Rx DMA polling.
1050 * Every polling, It checks the residue in the dma buffer and transfer
1051 * data to the tty. Also, last_residue is updated for the next polling.
1052 */
1053static void pl011_dma_rx_poll(struct timer_list *t)
1054{
1055	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1056	struct tty_port *port = &uap->port.state->port;
1057	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1058	struct dma_chan *rxchan = uap->dmarx.chan;
1059	unsigned long flags;
1060	unsigned int dmataken = 0;
1061	unsigned int size = 0;
1062	struct pl011_dmabuf *dbuf;
1063	int dma_count;
1064	struct dma_tx_state state;
1065
1066	dbuf = dmarx->use_buf_b ? &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
1067	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1068	if (likely(state.residue < dmarx->last_residue)) {
1069		dmataken = dbuf->len - dmarx->last_residue;
1070		size = dmarx->last_residue - state.residue;
1071		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken,
1072						   size);
1073		if (dma_count == size)
1074			dmarx->last_residue =  state.residue;
1075		dmarx->last_jiffies = jiffies;
1076	}
1077	tty_flip_buffer_push(port);
1078
1079	/*
1080	 * If no data is received in poll_timeout, the driver will fall back
1081	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1082	 */
1083	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1084			> uap->dmarx.poll_timeout) {
1085		uart_port_lock_irqsave(&uap->port, &flags);
1086		pl011_dma_rx_stop(uap);
1087		uap->im |= UART011_RXIM;
1088		pl011_write(uap->im, uap, REG_IMSC);
1089		uart_port_unlock_irqrestore(&uap->port, flags);
1090
1091		uap->dmarx.running = false;
1092		dmaengine_terminate_all(rxchan);
1093		del_timer(&uap->dmarx.timer);
1094	} else {
1095		mod_timer(&uap->dmarx.timer,
1096			  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1097	}
1098}
1099
1100static void pl011_dma_startup(struct uart_amba_port *uap)
1101{
1102	int ret;
1103
1104	if (!uap->dma_probed)
1105		pl011_dma_probe(uap);
1106
1107	if (!uap->dmatx.chan)
1108		return;
1109
1110	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1111	if (!uap->dmatx.buf) {
1112		uap->port.fifosize = uap->fifosize;
1113		return;
1114	}
1115
1116	uap->dmatx.len = PL011_DMA_BUFFER_SIZE;
1117
1118	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1119	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1120	uap->using_tx_dma = true;
1121
1122	if (!uap->dmarx.chan)
1123		goto skip_rx;
1124
1125	/* Allocate and map DMA RX buffers */
1126	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1127				DMA_FROM_DEVICE);
1128	if (ret) {
1129		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1130			"RX buffer A", ret);
1131		goto skip_rx;
1132	}
1133
1134	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_b,
1135				DMA_FROM_DEVICE);
1136	if (ret) {
1137		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1138			"RX buffer B", ret);
1139		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1140				  DMA_FROM_DEVICE);
1141		goto skip_rx;
1142	}
1143
1144	uap->using_rx_dma = true;
1145
1146skip_rx:
1147	/* Turn on DMA error (RX/TX will be enabled on demand) */
1148	uap->dmacr |= UART011_DMAONERR;
1149	pl011_write(uap->dmacr, uap, REG_DMACR);
1150
1151	/*
1152	 * ST Micro variants has some specific dma burst threshold
1153	 * compensation. Set this to 16 bytes, so burst will only
1154	 * be issued above/below 16 bytes.
1155	 */
1156	if (uap->vendor->dma_threshold)
1157		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1158			    uap, REG_ST_DMAWM);
1159
1160	if (uap->using_rx_dma) {
1161		if (pl011_dma_rx_trigger_dma(uap))
1162			dev_dbg(uap->port.dev,
1163				"could not trigger initial RX DMA job, fall back to interrupt mode\n");
1164		if (uap->dmarx.poll_rate) {
1165			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1166			mod_timer(&uap->dmarx.timer,
1167				  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1168			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1169			uap->dmarx.last_jiffies = jiffies;
1170		}
1171	}
1172}
1173
1174static void pl011_dma_shutdown(struct uart_amba_port *uap)
1175{
1176	if (!(uap->using_tx_dma || uap->using_rx_dma))
1177		return;
1178
1179	/* Disable RX and TX DMA */
1180	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1181		cpu_relax();
1182
1183	uart_port_lock_irq(&uap->port);
1184	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1185	pl011_write(uap->dmacr, uap, REG_DMACR);
1186	uart_port_unlock_irq(&uap->port);
1187
1188	if (uap->using_tx_dma) {
1189		/* In theory, this should already be done by pl011_dma_flush_buffer */
1190		dmaengine_terminate_all(uap->dmatx.chan);
1191		if (uap->dmatx.queued) {
1192			dma_unmap_single(uap->dmatx.chan->device->dev,
1193					 uap->dmatx.dma, uap->dmatx.len,
1194					 DMA_TO_DEVICE);
1195			uap->dmatx.queued = false;
1196		}
1197
1198		kfree(uap->dmatx.buf);
1199		uap->using_tx_dma = false;
1200	}
1201
1202	if (uap->using_rx_dma) {
1203		dmaengine_terminate_all(uap->dmarx.chan);
1204		/* Clean up the RX DMA */
1205		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a, DMA_FROM_DEVICE);
1206		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_b, DMA_FROM_DEVICE);
1207		if (uap->dmarx.poll_rate)
1208			del_timer_sync(&uap->dmarx.timer);
1209		uap->using_rx_dma = false;
1210	}
1211}
1212
1213static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1214{
1215	return uap->using_rx_dma;
1216}
1217
1218static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1219{
1220	return uap->using_rx_dma && uap->dmarx.running;
1221}
1222
1223#else
1224/* Blank functions if the DMA engine is not available */
1225static inline void pl011_dma_remove(struct uart_amba_port *uap)
1226{
1227}
1228
1229static inline void pl011_dma_startup(struct uart_amba_port *uap)
1230{
1231}
1232
1233static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1234{
1235}
1236
1237static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1238{
1239	return false;
1240}
1241
1242static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1243{
1244}
1245
1246static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1247{
1248	return false;
1249}
1250
1251static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1252{
1253}
1254
1255static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1256{
1257}
1258
1259static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1260{
1261	return -EIO;
1262}
1263
1264static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1265{
1266	return false;
1267}
1268
1269static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1270{
1271	return false;
1272}
1273
1274#define pl011_dma_flush_buffer	NULL
1275#endif
1276
1277static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1278{
1279	/*
1280	 * To be on the safe side only time out after twice as many iterations
1281	 * as fifo size.
1282	 */
1283	const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1284	struct uart_port *port = &uap->port;
1285	int i = 0;
1286	u32 cr;
1287
1288	/* Wait until hardware tx queue is empty */
1289	while (!pl011_tx_empty(port)) {
1290		if (i > MAX_TX_DRAIN_ITERS) {
1291			dev_warn(port->dev,
1292				 "timeout while draining hardware tx queue\n");
1293			break;
1294		}
1295
1296		udelay(uap->rs485_tx_drain_interval);
1297		i++;
1298	}
1299
1300	if (port->rs485.delay_rts_after_send)
1301		mdelay(port->rs485.delay_rts_after_send);
1302
1303	cr = pl011_read(uap, REG_CR);
1304
1305	if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1306		cr &= ~UART011_CR_RTS;
1307	else
1308		cr |= UART011_CR_RTS;
1309
1310	/* Disable the transmitter and reenable the transceiver */
1311	cr &= ~UART011_CR_TXE;
1312	cr |= UART011_CR_RXE;
1313	pl011_write(cr, uap, REG_CR);
1314
1315	uap->rs485_tx_started = false;
1316}
1317
1318static void pl011_stop_tx(struct uart_port *port)
1319{
1320	struct uart_amba_port *uap =
1321	    container_of(port, struct uart_amba_port, port);
1322
1323	uap->im &= ~UART011_TXIM;
1324	pl011_write(uap->im, uap, REG_IMSC);
1325	pl011_dma_tx_stop(uap);
1326
1327	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1328		pl011_rs485_tx_stop(uap);
1329}
1330
1331static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1332
1333/* Start TX with programmed I/O only (no DMA) */
1334static void pl011_start_tx_pio(struct uart_amba_port *uap)
1335{
1336	if (pl011_tx_chars(uap, false)) {
1337		uap->im |= UART011_TXIM;
1338		pl011_write(uap->im, uap, REG_IMSC);
1339	}
1340}
1341
1342static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1343{
1344	struct uart_port *port = &uap->port;
1345	u32 cr;
1346
1347	/* Enable transmitter */
1348	cr = pl011_read(uap, REG_CR);
1349	cr |= UART011_CR_TXE;
1350
1351	/* Disable receiver if half-duplex */
1352	if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1353		cr &= ~UART011_CR_RXE;
1354
1355	if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1356		cr &= ~UART011_CR_RTS;
1357	else
1358		cr |= UART011_CR_RTS;
1359
1360	pl011_write(cr, uap, REG_CR);
1361
1362	if (port->rs485.delay_rts_before_send)
1363		mdelay(port->rs485.delay_rts_before_send);
1364
1365	uap->rs485_tx_started = true;
1366}
1367
1368static void pl011_start_tx(struct uart_port *port)
1369{
1370	struct uart_amba_port *uap =
1371	    container_of(port, struct uart_amba_port, port);
1372
1373	if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1374	    !uap->rs485_tx_started)
1375		pl011_rs485_tx_start(uap);
1376
1377	if (!pl011_dma_tx_start(uap))
1378		pl011_start_tx_pio(uap);
1379}
1380
1381static void pl011_stop_rx(struct uart_port *port)
1382{
1383	struct uart_amba_port *uap =
1384	    container_of(port, struct uart_amba_port, port);
1385
1386	uap->im &= ~(UART011_RXIM | UART011_RTIM | UART011_FEIM |
1387		     UART011_PEIM | UART011_BEIM | UART011_OEIM);
1388	pl011_write(uap->im, uap, REG_IMSC);
1389
1390	pl011_dma_rx_stop(uap);
1391}
1392
1393static void pl011_throttle_rx(struct uart_port *port)
1394{
1395	unsigned long flags;
1396
1397	uart_port_lock_irqsave(port, &flags);
1398	pl011_stop_rx(port);
1399	uart_port_unlock_irqrestore(port, flags);
1400}
1401
1402static void pl011_enable_ms(struct uart_port *port)
1403{
1404	struct uart_amba_port *uap =
1405	    container_of(port, struct uart_amba_port, port);
1406
1407	uap->im |= UART011_RIMIM | UART011_CTSMIM | UART011_DCDMIM | UART011_DSRMIM;
1408	pl011_write(uap->im, uap, REG_IMSC);
1409}
1410
1411static void pl011_rx_chars(struct uart_amba_port *uap)
1412__releases(&uap->port.lock)
1413__acquires(&uap->port.lock)
1414{
1415	pl011_fifo_to_tty(uap);
1416
1417	uart_port_unlock(&uap->port);
1418	tty_flip_buffer_push(&uap->port.state->port);
1419	/*
1420	 * If we were temporarily out of DMA mode for a while,
1421	 * attempt to switch back to DMA mode again.
1422	 */
1423	if (pl011_dma_rx_available(uap)) {
1424		if (pl011_dma_rx_trigger_dma(uap)) {
1425			dev_dbg(uap->port.dev,
1426				"could not trigger RX DMA job fall back to interrupt mode again\n");
1427			uap->im |= UART011_RXIM;
1428			pl011_write(uap->im, uap, REG_IMSC);
1429		} else {
1430#ifdef CONFIG_DMA_ENGINE
1431			/* Start Rx DMA poll */
1432			if (uap->dmarx.poll_rate) {
1433				uap->dmarx.last_jiffies = jiffies;
1434				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1435				mod_timer(&uap->dmarx.timer,
1436					  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1437			}
1438#endif
1439		}
1440	}
1441	uart_port_lock(&uap->port);
1442}
1443
1444static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1445			  bool from_irq)
1446{
1447	if (unlikely(!from_irq) &&
1448	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1449		return false; /* unable to transmit character */
1450
1451	pl011_write(c, uap, REG_DR);
1452	uap->port.icount.tx++;
1453
1454	return true;
1455}
1456
1457/* Returns true if tx interrupts have to be (kept) enabled  */
1458static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1459{
1460	struct circ_buf *xmit = &uap->port.state->xmit;
1461	int count = uap->fifosize >> 1;
1462
1463	if (uap->port.x_char) {
1464		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1465			return true;
1466		uap->port.x_char = 0;
1467		--count;
1468	}
1469	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1470		pl011_stop_tx(&uap->port);
1471		return false;
1472	}
1473
1474	/* If we are using DMA mode, try to send some characters. */
1475	if (pl011_dma_tx_irq(uap))
1476		return true;
1477
1478	do {
 
 
1479		if (likely(from_irq) && count-- == 0)
1480			break;
1481
1482		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1483			break;
1484
1485		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1486	} while (!uart_circ_empty(xmit));
 
 
 
1487
1488	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1489		uart_write_wakeup(&uap->port);
1490
1491	if (uart_circ_empty(xmit)) {
1492		pl011_stop_tx(&uap->port);
1493		return false;
1494	}
1495	return true;
1496}
1497
1498static void pl011_modem_status(struct uart_amba_port *uap)
1499{
1500	unsigned int status, delta;
1501
1502	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1503
1504	delta = status ^ uap->old_status;
1505	uap->old_status = status;
1506
1507	if (!delta)
1508		return;
1509
1510	if (delta & UART01x_FR_DCD)
1511		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1512
1513	if (delta & uap->vendor->fr_dsr)
1514		uap->port.icount.dsr++;
1515
1516	if (delta & uap->vendor->fr_cts)
1517		uart_handle_cts_change(&uap->port,
1518				       status & uap->vendor->fr_cts);
1519
1520	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1521}
1522
1523static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1524{
1525	if (!uap->vendor->cts_event_workaround)
1526		return;
1527
1528	/* workaround to make sure that all bits are unlocked.. */
1529	pl011_write(0x00, uap, REG_ICR);
1530
1531	/*
1532	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1533	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1534	 * so add 2 dummy reads
1535	 */
1536	pl011_read(uap, REG_ICR);
1537	pl011_read(uap, REG_ICR);
1538}
1539
1540static irqreturn_t pl011_int(int irq, void *dev_id)
1541{
1542	struct uart_amba_port *uap = dev_id;
1543	unsigned long flags;
1544	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1545	int handled = 0;
1546
1547	uart_port_lock_irqsave(&uap->port, &flags);
1548	status = pl011_read(uap, REG_RIS) & uap->im;
1549	if (status) {
1550		do {
1551			check_apply_cts_event_workaround(uap);
1552
1553			pl011_write(status & ~(UART011_TXIS | UART011_RTIS | UART011_RXIS),
1554				    uap, REG_ICR);
1555
1556			if (status & (UART011_RTIS | UART011_RXIS)) {
1557				if (pl011_dma_rx_running(uap))
1558					pl011_dma_rx_irq(uap);
1559				else
1560					pl011_rx_chars(uap);
1561			}
1562			if (status & (UART011_DSRMIS | UART011_DCDMIS |
1563				      UART011_CTSMIS | UART011_RIMIS))
1564				pl011_modem_status(uap);
1565			if (status & UART011_TXIS)
1566				pl011_tx_chars(uap, true);
1567
1568			if (pass_counter-- == 0)
1569				break;
1570
1571			status = pl011_read(uap, REG_RIS) & uap->im;
1572		} while (status != 0);
1573		handled = 1;
1574	}
1575
1576	uart_port_unlock_irqrestore(&uap->port, flags);
1577
1578	return IRQ_RETVAL(handled);
1579}
1580
1581static unsigned int pl011_tx_empty(struct uart_port *port)
1582{
1583	struct uart_amba_port *uap =
1584	    container_of(port, struct uart_amba_port, port);
1585
1586	/* Allow feature register bits to be inverted to work around errata */
1587	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1588
1589	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1590							0 : TIOCSER_TEMT;
1591}
1592
1593static void pl011_maybe_set_bit(bool cond, unsigned int *ptr, unsigned int mask)
1594{
1595	if (cond)
1596		*ptr |= mask;
1597}
1598
1599static unsigned int pl011_get_mctrl(struct uart_port *port)
1600{
1601	struct uart_amba_port *uap =
1602	    container_of(port, struct uart_amba_port, port);
1603	unsigned int result = 0;
1604	unsigned int status = pl011_read(uap, REG_FR);
1605
1606	pl011_maybe_set_bit(status & UART01x_FR_DCD, &result, TIOCM_CAR);
1607	pl011_maybe_set_bit(status & uap->vendor->fr_dsr, &result, TIOCM_DSR);
1608	pl011_maybe_set_bit(status & uap->vendor->fr_cts, &result, TIOCM_CTS);
1609	pl011_maybe_set_bit(status & uap->vendor->fr_ri, &result, TIOCM_RNG);
1610
1611	return result;
1612}
1613
1614static void pl011_assign_bit(bool cond, unsigned int *ptr, unsigned int mask)
1615{
1616	if (cond)
1617		*ptr |= mask;
1618	else
1619		*ptr &= ~mask;
1620}
1621
1622static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1623{
1624	struct uart_amba_port *uap =
1625	    container_of(port, struct uart_amba_port, port);
1626	unsigned int cr;
1627
1628	cr = pl011_read(uap, REG_CR);
1629
1630	pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTS);
1631	pl011_assign_bit(mctrl & TIOCM_DTR, &cr, UART011_CR_DTR);
1632	pl011_assign_bit(mctrl & TIOCM_OUT1, &cr, UART011_CR_OUT1);
1633	pl011_assign_bit(mctrl & TIOCM_OUT2, &cr, UART011_CR_OUT2);
1634	pl011_assign_bit(mctrl & TIOCM_LOOP, &cr, UART011_CR_LBE);
1635
1636	if (port->status & UPSTAT_AUTORTS) {
1637		/* We need to disable auto-RTS if we want to turn RTS off */
1638		pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTSEN);
1639	}
1640
1641	pl011_write(cr, uap, REG_CR);
1642}
1643
1644static void pl011_break_ctl(struct uart_port *port, int break_state)
1645{
1646	struct uart_amba_port *uap =
1647	    container_of(port, struct uart_amba_port, port);
1648	unsigned long flags;
1649	unsigned int lcr_h;
1650
1651	uart_port_lock_irqsave(&uap->port, &flags);
1652	lcr_h = pl011_read(uap, REG_LCRH_TX);
1653	if (break_state == -1)
1654		lcr_h |= UART01x_LCRH_BRK;
1655	else
1656		lcr_h &= ~UART01x_LCRH_BRK;
1657	pl011_write(lcr_h, uap, REG_LCRH_TX);
1658	uart_port_unlock_irqrestore(&uap->port, flags);
1659}
1660
1661#ifdef CONFIG_CONSOLE_POLL
1662
1663static void pl011_quiesce_irqs(struct uart_port *port)
1664{
1665	struct uart_amba_port *uap =
1666	    container_of(port, struct uart_amba_port, port);
1667
1668	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1669	/*
1670	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1671	 * we simply mask it. start_tx() will unmask it.
1672	 *
1673	 * Note we can race with start_tx(), and if the race happens, the
1674	 * polling user might get another interrupt just after we clear it.
1675	 * But it should be OK and can happen even w/o the race, e.g.
1676	 * controller immediately got some new data and raised the IRQ.
1677	 *
1678	 * And whoever uses polling routines assumes that it manages the device
1679	 * (including tx queue), so we're also fine with start_tx()'s caller
1680	 * side.
1681	 */
1682	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1683		    REG_IMSC);
1684}
1685
1686static int pl011_get_poll_char(struct uart_port *port)
1687{
1688	struct uart_amba_port *uap =
1689	    container_of(port, struct uart_amba_port, port);
1690	unsigned int status;
1691
1692	/*
1693	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1694	 * debugger.
1695	 */
1696	pl011_quiesce_irqs(port);
1697
1698	status = pl011_read(uap, REG_FR);
1699	if (status & UART01x_FR_RXFE)
1700		return NO_POLL_CHAR;
1701
1702	return pl011_read(uap, REG_DR);
1703}
1704
1705static void pl011_put_poll_char(struct uart_port *port, unsigned char ch)
1706{
1707	struct uart_amba_port *uap =
1708	    container_of(port, struct uart_amba_port, port);
1709
1710	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1711		cpu_relax();
1712
1713	pl011_write(ch, uap, REG_DR);
1714}
1715
1716#endif /* CONFIG_CONSOLE_POLL */
1717
1718static int pl011_hwinit(struct uart_port *port)
1719{
1720	struct uart_amba_port *uap =
1721	    container_of(port, struct uart_amba_port, port);
1722	int retval;
1723
1724	/* Optionaly enable pins to be muxed in and configured */
1725	pinctrl_pm_select_default_state(port->dev);
1726
1727	/*
1728	 * Try to enable the clock producer.
1729	 */
1730	retval = clk_prepare_enable(uap->clk);
1731	if (retval)
1732		return retval;
1733
1734	uap->port.uartclk = clk_get_rate(uap->clk);
1735
1736	/* Clear pending error and receive interrupts */
1737	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1738		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1739		    uap, REG_ICR);
1740
1741	/*
1742	 * Save interrupts enable mask, and enable RX interrupts in case if
1743	 * the interrupt is used for NMI entry.
1744	 */
1745	uap->im = pl011_read(uap, REG_IMSC);
1746	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1747
1748	if (dev_get_platdata(uap->port.dev)) {
1749		struct amba_pl011_data *plat;
1750
1751		plat = dev_get_platdata(uap->port.dev);
1752		if (plat->init)
1753			plat->init();
1754	}
1755	return 0;
1756}
1757
1758static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1759{
1760	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1761	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1762}
1763
1764static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1765{
1766	pl011_write(lcr_h, uap, REG_LCRH_RX);
1767	if (pl011_split_lcrh(uap)) {
1768		int i;
1769		/*
1770		 * Wait 10 PCLKs before writing LCRH_TX register,
1771		 * to get this delay write read only register 10 times
1772		 */
1773		for (i = 0; i < 10; ++i)
1774			pl011_write(0xff, uap, REG_MIS);
1775		pl011_write(lcr_h, uap, REG_LCRH_TX);
1776	}
1777}
1778
1779static int pl011_allocate_irq(struct uart_amba_port *uap)
1780{
1781	pl011_write(uap->im, uap, REG_IMSC);
1782
1783	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1784}
1785
1786/*
1787 * Enable interrupts, only timeouts when using DMA
1788 * if initial RX DMA job failed, start in interrupt mode
1789 * as well.
1790 */
1791static void pl011_enable_interrupts(struct uart_amba_port *uap)
1792{
1793	unsigned long flags;
1794	unsigned int i;
1795
1796	uart_port_lock_irqsave(&uap->port, &flags);
1797
1798	/* Clear out any spuriously appearing RX interrupts */
1799	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1800
1801	/*
1802	 * RXIS is asserted only when the RX FIFO transitions from below
1803	 * to above the trigger threshold.  If the RX FIFO is already
1804	 * full to the threshold this can't happen and RXIS will now be
1805	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1806	 */
1807	for (i = 0; i < uap->fifosize * 2; ++i) {
1808		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1809			break;
1810
1811		pl011_read(uap, REG_DR);
1812	}
1813
1814	uap->im = UART011_RTIM;
1815	if (!pl011_dma_rx_running(uap))
1816		uap->im |= UART011_RXIM;
1817	pl011_write(uap->im, uap, REG_IMSC);
1818	uart_port_unlock_irqrestore(&uap->port, flags);
1819}
1820
1821static void pl011_unthrottle_rx(struct uart_port *port)
1822{
1823	struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1824	unsigned long flags;
1825
1826	uart_port_lock_irqsave(&uap->port, &flags);
1827
1828	uap->im = UART011_RTIM;
1829	if (!pl011_dma_rx_running(uap))
1830		uap->im |= UART011_RXIM;
1831
1832	pl011_write(uap->im, uap, REG_IMSC);
1833
 
 
 
 
 
 
 
1834	uart_port_unlock_irqrestore(&uap->port, flags);
1835}
1836
1837static int pl011_startup(struct uart_port *port)
1838{
1839	struct uart_amba_port *uap =
1840	    container_of(port, struct uart_amba_port, port);
1841	unsigned int cr;
1842	int retval;
1843
1844	retval = pl011_hwinit(port);
1845	if (retval)
1846		goto clk_dis;
1847
1848	retval = pl011_allocate_irq(uap);
1849	if (retval)
1850		goto clk_dis;
1851
1852	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1853
1854	uart_port_lock_irq(&uap->port);
1855
1856	cr = pl011_read(uap, REG_CR);
1857	cr &= UART011_CR_RTS | UART011_CR_DTR;
1858	cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1859
1860	if (!(port->rs485.flags & SER_RS485_ENABLED))
1861		cr |= UART011_CR_TXE;
1862
1863	pl011_write(cr, uap, REG_CR);
1864
1865	uart_port_unlock_irq(&uap->port);
1866
1867	/*
1868	 * initialise the old status of the modem signals
1869	 */
1870	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1871
1872	/* Startup DMA */
1873	pl011_dma_startup(uap);
1874
1875	pl011_enable_interrupts(uap);
1876
1877	return 0;
1878
1879 clk_dis:
1880	clk_disable_unprepare(uap->clk);
1881	return retval;
1882}
1883
1884static int sbsa_uart_startup(struct uart_port *port)
1885{
1886	struct uart_amba_port *uap =
1887		container_of(port, struct uart_amba_port, port);
1888	int retval;
1889
1890	retval = pl011_hwinit(port);
1891	if (retval)
1892		return retval;
1893
1894	retval = pl011_allocate_irq(uap);
1895	if (retval)
1896		return retval;
1897
1898	/* The SBSA UART does not support any modem status lines. */
1899	uap->old_status = 0;
1900
1901	pl011_enable_interrupts(uap);
1902
1903	return 0;
1904}
1905
1906static void pl011_shutdown_channel(struct uart_amba_port *uap, unsigned int lcrh)
1907{
1908	unsigned long val;
1909
1910	val = pl011_read(uap, lcrh);
1911	val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1912	pl011_write(val, uap, lcrh);
1913}
1914
1915/*
1916 * disable the port. It should not disable RTS and DTR.
1917 * Also RTS and DTR state should be preserved to restore
1918 * it during startup().
1919 */
1920static void pl011_disable_uart(struct uart_amba_port *uap)
1921{
1922	unsigned int cr;
1923
1924	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1925	uart_port_lock_irq(&uap->port);
1926	cr = pl011_read(uap, REG_CR);
1927	cr &= UART011_CR_RTS | UART011_CR_DTR;
1928	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1929	pl011_write(cr, uap, REG_CR);
1930	uart_port_unlock_irq(&uap->port);
1931
1932	/*
1933	 * disable break condition and fifos
1934	 */
1935	pl011_shutdown_channel(uap, REG_LCRH_RX);
1936	if (pl011_split_lcrh(uap))
1937		pl011_shutdown_channel(uap, REG_LCRH_TX);
1938}
1939
1940static void pl011_disable_interrupts(struct uart_amba_port *uap)
1941{
1942	uart_port_lock_irq(&uap->port);
1943
1944	/* mask all interrupts and clear all pending ones */
1945	uap->im = 0;
1946	pl011_write(uap->im, uap, REG_IMSC);
1947	pl011_write(0xffff, uap, REG_ICR);
1948
1949	uart_port_unlock_irq(&uap->port);
1950}
1951
1952static void pl011_shutdown(struct uart_port *port)
1953{
1954	struct uart_amba_port *uap =
1955		container_of(port, struct uart_amba_port, port);
1956
1957	pl011_disable_interrupts(uap);
1958
1959	pl011_dma_shutdown(uap);
1960
1961	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1962		pl011_rs485_tx_stop(uap);
1963
1964	free_irq(uap->port.irq, uap);
1965
1966	pl011_disable_uart(uap);
1967
1968	/*
1969	 * Shut down the clock producer
1970	 */
1971	clk_disable_unprepare(uap->clk);
1972	/* Optionally let pins go into sleep states */
1973	pinctrl_pm_select_sleep_state(port->dev);
1974
1975	if (dev_get_platdata(uap->port.dev)) {
1976		struct amba_pl011_data *plat;
1977
1978		plat = dev_get_platdata(uap->port.dev);
1979		if (plat->exit)
1980			plat->exit();
1981	}
1982
1983	if (uap->port.ops->flush_buffer)
1984		uap->port.ops->flush_buffer(port);
1985}
1986
1987static void sbsa_uart_shutdown(struct uart_port *port)
1988{
1989	struct uart_amba_port *uap =
1990		container_of(port, struct uart_amba_port, port);
1991
1992	pl011_disable_interrupts(uap);
1993
1994	free_irq(uap->port.irq, uap);
1995
1996	if (uap->port.ops->flush_buffer)
1997		uap->port.ops->flush_buffer(port);
1998}
1999
2000static void
2001pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
2002{
2003	port->read_status_mask = UART011_DR_OE | 255;
2004	if (termios->c_iflag & INPCK)
2005		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2006	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2007		port->read_status_mask |= UART011_DR_BE;
2008
2009	/*
2010	 * Characters to ignore
2011	 */
2012	port->ignore_status_mask = 0;
2013	if (termios->c_iflag & IGNPAR)
2014		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2015	if (termios->c_iflag & IGNBRK) {
2016		port->ignore_status_mask |= UART011_DR_BE;
2017		/*
2018		 * If we're ignoring parity and break indicators,
2019		 * ignore overruns too (for real raw support).
2020		 */
2021		if (termios->c_iflag & IGNPAR)
2022			port->ignore_status_mask |= UART011_DR_OE;
2023	}
2024
2025	/*
2026	 * Ignore all characters if CREAD is not set.
2027	 */
2028	if ((termios->c_cflag & CREAD) == 0)
2029		port->ignore_status_mask |= UART_DUMMY_DR_RX;
2030}
2031
2032static void
2033pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2034		  const struct ktermios *old)
2035{
2036	struct uart_amba_port *uap =
2037	    container_of(port, struct uart_amba_port, port);
2038	unsigned int lcr_h, old_cr;
2039	unsigned long flags;
2040	unsigned int baud, quot, clkdiv;
2041	unsigned int bits;
2042
2043	if (uap->vendor->oversampling)
2044		clkdiv = 8;
2045	else
2046		clkdiv = 16;
2047
2048	/*
2049	 * Ask the core to calculate the divisor for us.
2050	 */
2051	baud = uart_get_baud_rate(port, termios, old, 0,
2052				  port->uartclk / clkdiv);
2053#ifdef CONFIG_DMA_ENGINE
2054	/*
2055	 * Adjust RX DMA polling rate with baud rate if not specified.
2056	 */
2057	if (uap->dmarx.auto_poll_rate)
2058		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2059#endif
2060
2061	if (baud > port->uartclk / 16)
2062		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2063	else
2064		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2065
2066	switch (termios->c_cflag & CSIZE) {
2067	case CS5:
2068		lcr_h = UART01x_LCRH_WLEN_5;
2069		break;
2070	case CS6:
2071		lcr_h = UART01x_LCRH_WLEN_6;
2072		break;
2073	case CS7:
2074		lcr_h = UART01x_LCRH_WLEN_7;
2075		break;
2076	default: // CS8
2077		lcr_h = UART01x_LCRH_WLEN_8;
2078		break;
2079	}
2080	if (termios->c_cflag & CSTOPB)
2081		lcr_h |= UART01x_LCRH_STP2;
2082	if (termios->c_cflag & PARENB) {
2083		lcr_h |= UART01x_LCRH_PEN;
2084		if (!(termios->c_cflag & PARODD))
2085			lcr_h |= UART01x_LCRH_EPS;
2086		if (termios->c_cflag & CMSPAR)
2087			lcr_h |= UART011_LCRH_SPS;
2088	}
2089	if (uap->fifosize > 1)
2090		lcr_h |= UART01x_LCRH_FEN;
2091
2092	bits = tty_get_frame_size(termios->c_cflag);
2093
2094	uart_port_lock_irqsave(port, &flags);
2095
2096	/*
2097	 * Update the per-port timeout.
2098	 */
2099	uart_update_timeout(port, termios->c_cflag, baud);
2100
2101	/*
2102	 * Calculate the approximated time it takes to transmit one character
2103	 * with the given baud rate. We use this as the poll interval when we
2104	 * wait for the tx queue to empty.
2105	 */
2106	uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
2107
2108	pl011_setup_status_masks(port, termios);
2109
2110	if (UART_ENABLE_MS(port, termios->c_cflag))
2111		pl011_enable_ms(port);
2112
2113	if (port->rs485.flags & SER_RS485_ENABLED)
2114		termios->c_cflag &= ~CRTSCTS;
2115
2116	old_cr = pl011_read(uap, REG_CR);
2117
2118	if (termios->c_cflag & CRTSCTS) {
2119		if (old_cr & UART011_CR_RTS)
2120			old_cr |= UART011_CR_RTSEN;
2121
2122		old_cr |= UART011_CR_CTSEN;
2123		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2124	} else {
2125		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2126		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2127	}
2128
2129	if (uap->vendor->oversampling) {
2130		if (baud > port->uartclk / 16)
2131			old_cr |= ST_UART011_CR_OVSFACT;
2132		else
2133			old_cr &= ~ST_UART011_CR_OVSFACT;
2134	}
2135
2136	/*
2137	 * Workaround for the ST Micro oversampling variants to
2138	 * increase the bitrate slightly, by lowering the divisor,
2139	 * to avoid delayed sampling of start bit at high speeds,
2140	 * else we see data corruption.
2141	 */
2142	if (uap->vendor->oversampling) {
2143		if (baud >= 3000000 && baud < 3250000 && quot > 1)
2144			quot -= 1;
2145		else if (baud > 3250000 && quot > 2)
2146			quot -= 2;
2147	}
2148	/* Set baud rate */
2149	pl011_write(quot & 0x3f, uap, REG_FBRD);
2150	pl011_write(quot >> 6, uap, REG_IBRD);
2151
2152	/*
2153	 * ----------v----------v----------v----------v-----
2154	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2155	 * REG_FBRD & REG_IBRD.
2156	 * ----------^----------^----------^----------^-----
2157	 */
2158	pl011_write_lcr_h(uap, lcr_h);
2159
2160	/*
2161	 * Receive was disabled by pl011_disable_uart during shutdown.
2162	 * Need to reenable receive if you need to use a tty_driver
2163	 * returns from tty_find_polling_driver() after a port shutdown.
2164	 */
2165	old_cr |= UART011_CR_RXE;
2166	pl011_write(old_cr, uap, REG_CR);
2167
2168	uart_port_unlock_irqrestore(port, flags);
2169}
2170
2171static void
2172sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2173		      const struct ktermios *old)
2174{
2175	struct uart_amba_port *uap =
2176	    container_of(port, struct uart_amba_port, port);
2177	unsigned long flags;
2178
2179	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2180
2181	/* The SBSA UART only supports 8n1 without hardware flow control. */
2182	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2183	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2184	termios->c_cflag |= CS8 | CLOCAL;
2185
2186	uart_port_lock_irqsave(port, &flags);
2187	uart_update_timeout(port, CS8, uap->fixed_baud);
2188	pl011_setup_status_masks(port, termios);
2189	uart_port_unlock_irqrestore(port, flags);
2190}
2191
2192static const char *pl011_type(struct uart_port *port)
2193{
2194	struct uart_amba_port *uap =
2195	    container_of(port, struct uart_amba_port, port);
2196	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2197}
2198
2199/*
2200 * Configure/autoconfigure the port.
2201 */
2202static void pl011_config_port(struct uart_port *port, int flags)
2203{
2204	if (flags & UART_CONFIG_TYPE)
2205		port->type = PORT_AMBA;
2206}
2207
2208/*
2209 * verify the new serial_struct (for TIOCSSERIAL).
2210 */
2211static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2212{
2213	int ret = 0;
2214
2215	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2216		ret = -EINVAL;
2217	if (ser->irq < 0 || ser->irq >= nr_irqs)
2218		ret = -EINVAL;
2219	if (ser->baud_base < 9600)
2220		ret = -EINVAL;
2221	if (port->mapbase != (unsigned long)ser->iomem_base)
2222		ret = -EINVAL;
2223	return ret;
2224}
2225
2226static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2227			      struct serial_rs485 *rs485)
2228{
2229	struct uart_amba_port *uap =
2230		container_of(port, struct uart_amba_port, port);
2231
2232	if (port->rs485.flags & SER_RS485_ENABLED)
2233		pl011_rs485_tx_stop(uap);
2234
2235	/* Make sure auto RTS is disabled */
2236	if (rs485->flags & SER_RS485_ENABLED) {
2237		u32 cr = pl011_read(uap, REG_CR);
2238
2239		cr &= ~UART011_CR_RTSEN;
2240		pl011_write(cr, uap, REG_CR);
2241		port->status &= ~UPSTAT_AUTORTS;
2242	}
2243
2244	return 0;
2245}
2246
2247static const struct uart_ops amba_pl011_pops = {
2248	.tx_empty	= pl011_tx_empty,
2249	.set_mctrl	= pl011_set_mctrl,
2250	.get_mctrl	= pl011_get_mctrl,
2251	.stop_tx	= pl011_stop_tx,
2252	.start_tx	= pl011_start_tx,
2253	.stop_rx	= pl011_stop_rx,
2254	.throttle	= pl011_throttle_rx,
2255	.unthrottle	= pl011_unthrottle_rx,
2256	.enable_ms	= pl011_enable_ms,
2257	.break_ctl	= pl011_break_ctl,
2258	.startup	= pl011_startup,
2259	.shutdown	= pl011_shutdown,
2260	.flush_buffer	= pl011_dma_flush_buffer,
2261	.set_termios	= pl011_set_termios,
2262	.type		= pl011_type,
2263	.config_port	= pl011_config_port,
2264	.verify_port	= pl011_verify_port,
2265#ifdef CONFIG_CONSOLE_POLL
2266	.poll_init     = pl011_hwinit,
2267	.poll_get_char = pl011_get_poll_char,
2268	.poll_put_char = pl011_put_poll_char,
2269#endif
2270};
2271
2272static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2273{
2274}
2275
2276static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2277{
2278	return 0;
2279}
2280
2281static const struct uart_ops sbsa_uart_pops = {
2282	.tx_empty	= pl011_tx_empty,
2283	.set_mctrl	= sbsa_uart_set_mctrl,
2284	.get_mctrl	= sbsa_uart_get_mctrl,
2285	.stop_tx	= pl011_stop_tx,
2286	.start_tx	= pl011_start_tx,
2287	.stop_rx	= pl011_stop_rx,
2288	.startup	= sbsa_uart_startup,
2289	.shutdown	= sbsa_uart_shutdown,
2290	.set_termios	= sbsa_uart_set_termios,
2291	.type		= pl011_type,
2292	.config_port	= pl011_config_port,
2293	.verify_port	= pl011_verify_port,
2294#ifdef CONFIG_CONSOLE_POLL
2295	.poll_init     = pl011_hwinit,
2296	.poll_get_char = pl011_get_poll_char,
2297	.poll_put_char = pl011_put_poll_char,
2298#endif
2299};
2300
2301static struct uart_amba_port *amba_ports[UART_NR];
2302
2303#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2304
2305static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2306{
2307	struct uart_amba_port *uap =
2308	    container_of(port, struct uart_amba_port, port);
2309
2310	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2311		cpu_relax();
2312	pl011_write(ch, uap, REG_DR);
2313}
2314
2315static void
2316pl011_console_write(struct console *co, const char *s, unsigned int count)
2317{
2318	struct uart_amba_port *uap = amba_ports[co->index];
2319	unsigned int old_cr = 0, new_cr;
2320	unsigned long flags;
2321	int locked = 1;
2322
2323	clk_enable(uap->clk);
2324
2325	local_irq_save(flags);
2326	if (uap->port.sysrq)
2327		locked = 0;
2328	else if (oops_in_progress)
2329		locked = uart_port_trylock(&uap->port);
2330	else
2331		uart_port_lock(&uap->port);
2332
2333	/*
2334	 *	First save the CR then disable the interrupts
2335	 */
2336	if (!uap->vendor->always_enabled) {
2337		old_cr = pl011_read(uap, REG_CR);
2338		new_cr = old_cr & ~UART011_CR_CTSEN;
2339		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2340		pl011_write(new_cr, uap, REG_CR);
2341	}
2342
2343	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2344
2345	/*
2346	 *	Finally, wait for transmitter to become empty and restore the
2347	 *	TCR. Allow feature register bits to be inverted to work around
2348	 *	errata.
2349	 */
2350	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2351						& uap->vendor->fr_busy)
2352		cpu_relax();
2353	if (!uap->vendor->always_enabled)
2354		pl011_write(old_cr, uap, REG_CR);
2355
2356	if (locked)
2357		uart_port_unlock(&uap->port);
2358	local_irq_restore(flags);
2359
2360	clk_disable(uap->clk);
2361}
2362
2363static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2364				      int *parity, int *bits)
2365{
2366	unsigned int lcr_h, ibrd, fbrd;
2367
2368	if (!(pl011_read(uap, REG_CR) & UART01x_CR_UARTEN))
2369		return;
2370
2371	lcr_h = pl011_read(uap, REG_LCRH_TX);
2372
2373	*parity = 'n';
2374	if (lcr_h & UART01x_LCRH_PEN) {
2375		if (lcr_h & UART01x_LCRH_EPS)
2376			*parity = 'e';
2377		else
2378			*parity = 'o';
2379	}
2380
2381	if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2382		*bits = 7;
2383	else
2384		*bits = 8;
2385
2386	ibrd = pl011_read(uap, REG_IBRD);
2387	fbrd = pl011_read(uap, REG_FBRD);
2388
2389	*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2390
2391	if (uap->vendor->oversampling &&
2392	    (pl011_read(uap, REG_CR) & ST_UART011_CR_OVSFACT))
2393		*baud *= 2;
2394}
2395
2396static int pl011_console_setup(struct console *co, char *options)
2397{
2398	struct uart_amba_port *uap;
2399	int baud = 38400;
2400	int bits = 8;
2401	int parity = 'n';
2402	int flow = 'n';
2403	int ret;
2404
2405	/*
2406	 * Check whether an invalid uart number has been specified, and
2407	 * if so, search for the first available port that does have
2408	 * console support.
2409	 */
2410	if (co->index >= UART_NR)
2411		co->index = 0;
2412	uap = amba_ports[co->index];
2413	if (!uap)
2414		return -ENODEV;
2415
2416	/* Allow pins to be muxed in and configured */
2417	pinctrl_pm_select_default_state(uap->port.dev);
2418
2419	ret = clk_prepare(uap->clk);
2420	if (ret)
2421		return ret;
2422
2423	if (dev_get_platdata(uap->port.dev)) {
2424		struct amba_pl011_data *plat;
2425
2426		plat = dev_get_platdata(uap->port.dev);
2427		if (plat->init)
2428			plat->init();
2429	}
2430
2431	uap->port.uartclk = clk_get_rate(uap->clk);
2432
2433	if (uap->vendor->fixed_options) {
2434		baud = uap->fixed_baud;
2435	} else {
2436		if (options)
2437			uart_parse_options(options,
2438					   &baud, &parity, &bits, &flow);
2439		else
2440			pl011_console_get_options(uap, &baud, &parity, &bits);
2441	}
2442
2443	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2444}
2445
2446/**
2447 *	pl011_console_match - non-standard console matching
2448 *	@co:	  registering console
2449 *	@name:	  name from console command line
2450 *	@idx:	  index from console command line
2451 *	@options: ptr to option string from console command line
2452 *
2453 *	Only attempts to match console command lines of the form:
2454 *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2455 *	    console=pl011,0x<addr>[,<options>]
2456 *	This form is used to register an initial earlycon boot console and
2457 *	replace it with the amba_console at pl011 driver init.
2458 *
2459 *	Performs console setup for a match (as required by interface)
2460 *	If no <options> are specified, then assume the h/w is already setup.
2461 *
2462 *	Returns 0 if console matches; otherwise non-zero to use default matching
2463 */
2464static int pl011_console_match(struct console *co, char *name, int idx,
2465			       char *options)
2466{
2467	unsigned char iotype;
2468	resource_size_t addr;
2469	int i;
2470
2471	/*
2472	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2473	 * have a distinct console name, so make sure we check for that.
2474	 * The actual implementation of the erratum occurs in the probe
2475	 * function.
2476	 */
2477	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2478		return -ENODEV;
2479
2480	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2481		return -ENODEV;
2482
2483	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2484		return -ENODEV;
2485
2486	/* try to match the port specified on the command line */
2487	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2488		struct uart_port *port;
2489
2490		if (!amba_ports[i])
2491			continue;
2492
2493		port = &amba_ports[i]->port;
2494
2495		if (port->mapbase != addr)
2496			continue;
2497
2498		co->index = i;
2499		port->cons = co;
2500		return pl011_console_setup(co, options);
2501	}
2502
2503	return -ENODEV;
2504}
2505
2506static struct uart_driver amba_reg;
2507static struct console amba_console = {
2508	.name		= "ttyAMA",
2509	.write		= pl011_console_write,
2510	.device		= uart_console_device,
2511	.setup		= pl011_console_setup,
2512	.match		= pl011_console_match,
2513	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2514	.index		= -1,
2515	.data		= &amba_reg,
2516};
2517
2518#define AMBA_CONSOLE	(&amba_console)
2519
2520static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2521{
2522	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2523		cpu_relax();
2524	writel(c, port->membase + UART01x_DR);
2525	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2526		cpu_relax();
2527}
2528
2529static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned int n)
2530{
2531	struct earlycon_device *dev = con->data;
2532
2533	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2534}
2535
2536static void pl011_putc(struct uart_port *port, unsigned char c)
2537{
2538	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2539		cpu_relax();
2540	if (port->iotype == UPIO_MEM32)
2541		writel(c, port->membase + UART01x_DR);
2542	else
2543		writeb(c, port->membase + UART01x_DR);
2544	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2545		cpu_relax();
2546}
2547
2548static void pl011_early_write(struct console *con, const char *s, unsigned int n)
2549{
2550	struct earlycon_device *dev = con->data;
2551
2552	uart_console_write(&dev->port, s, n, pl011_putc);
2553}
2554
2555#ifdef CONFIG_CONSOLE_POLL
2556static int pl011_getc(struct uart_port *port)
2557{
2558	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2559		return NO_POLL_CHAR;
2560
2561	if (port->iotype == UPIO_MEM32)
2562		return readl(port->membase + UART01x_DR);
2563	else
2564		return readb(port->membase + UART01x_DR);
2565}
2566
2567static int pl011_early_read(struct console *con, char *s, unsigned int n)
2568{
2569	struct earlycon_device *dev = con->data;
2570	int ch, num_read = 0;
2571
2572	while (num_read < n) {
2573		ch = pl011_getc(&dev->port);
2574		if (ch == NO_POLL_CHAR)
2575			break;
2576
2577		s[num_read++] = ch;
2578	}
2579
2580	return num_read;
2581}
2582#else
2583#define pl011_early_read NULL
2584#endif
2585
2586/*
2587 * On non-ACPI systems, earlycon is enabled by specifying
2588 * "earlycon=pl011,<address>" on the kernel command line.
2589 *
2590 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2591 * by specifying only "earlycon" on the command line.  Because it requires
2592 * SPCR, the console starts after ACPI is parsed, which is later than a
2593 * traditional early console.
2594 *
2595 * To get the traditional early console that starts before ACPI is parsed,
2596 * specify the full "earlycon=pl011,<address>" option.
2597 */
2598static int __init pl011_early_console_setup(struct earlycon_device *device,
2599					    const char *opt)
2600{
2601	if (!device->port.membase)
2602		return -ENODEV;
2603
2604	device->con->write = pl011_early_write;
2605	device->con->read = pl011_early_read;
2606
2607	return 0;
2608}
2609
2610OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2611
2612OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2613
2614/*
2615 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2616 * Erratum 44, traditional earlycon can be enabled by specifying
2617 * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2618 *
2619 * Alternatively, you can just specify "earlycon", and the early console
2620 * will be enabled with the information from the SPCR table.  In this
2621 * case, the SPCR code will detect the need for the E44 work-around,
2622 * and set the console name to "qdf2400_e44".
2623 */
2624static int __init
2625qdf2400_e44_early_console_setup(struct earlycon_device *device,
2626				const char *opt)
2627{
2628	if (!device->port.membase)
2629		return -ENODEV;
2630
2631	device->con->write = qdf2400_e44_early_write;
2632	return 0;
2633}
2634
2635EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2636
2637#else
2638#define AMBA_CONSOLE	NULL
2639#endif
2640
2641static struct uart_driver amba_reg = {
2642	.owner			= THIS_MODULE,
2643	.driver_name		= "ttyAMA",
2644	.dev_name		= "ttyAMA",
2645	.major			= SERIAL_AMBA_MAJOR,
2646	.minor			= SERIAL_AMBA_MINOR,
2647	.nr			= UART_NR,
2648	.cons			= AMBA_CONSOLE,
2649};
2650
2651static int pl011_probe_dt_alias(int index, struct device *dev)
2652{
2653	struct device_node *np;
2654	static bool seen_dev_with_alias;
2655	static bool seen_dev_without_alias;
2656	int ret = index;
2657
2658	if (!IS_ENABLED(CONFIG_OF))
2659		return ret;
2660
2661	np = dev->of_node;
2662	if (!np)
2663		return ret;
2664
2665	ret = of_alias_get_id(np, "serial");
2666	if (ret < 0) {
2667		seen_dev_without_alias = true;
2668		ret = index;
2669	} else {
2670		seen_dev_with_alias = true;
2671		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret]) {
2672			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2673			ret = index;
2674		}
2675	}
2676
2677	if (seen_dev_with_alias && seen_dev_without_alias)
2678		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2679
2680	return ret;
2681}
2682
2683/* unregisters the driver also if no more ports are left */
2684static void pl011_unregister_port(struct uart_amba_port *uap)
2685{
2686	int i;
2687	bool busy = false;
2688
2689	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2690		if (amba_ports[i] == uap)
2691			amba_ports[i] = NULL;
2692		else if (amba_ports[i])
2693			busy = true;
2694	}
2695	pl011_dma_remove(uap);
2696	if (!busy)
2697		uart_unregister_driver(&amba_reg);
2698}
2699
2700static int pl011_find_free_port(void)
2701{
2702	int i;
2703
2704	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2705		if (!amba_ports[i])
2706			return i;
2707
2708	return -EBUSY;
2709}
2710
2711static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2712{
2713	struct uart_port *port = &uap->port;
2714	int ret;
2715
2716	ret = uart_get_rs485_mode(port);
2717	if (ret)
2718		return ret;
2719
2720	return 0;
2721}
2722
2723static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2724			    struct resource *mmiobase, int index)
2725{
2726	void __iomem *base;
2727	int ret;
2728
2729	base = devm_ioremap_resource(dev, mmiobase);
2730	if (IS_ERR(base))
2731		return PTR_ERR(base);
2732
2733	index = pl011_probe_dt_alias(index, dev);
2734
2735	uap->port.dev = dev;
2736	uap->port.mapbase = mmiobase->start;
2737	uap->port.membase = base;
2738	uap->port.fifosize = uap->fifosize;
2739	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2740	uap->port.flags = UPF_BOOT_AUTOCONF;
2741	uap->port.line = index;
2742
2743	ret = pl011_get_rs485_mode(uap);
2744	if (ret)
2745		return ret;
2746
2747	amba_ports[index] = uap;
2748
2749	return 0;
2750}
2751
2752static int pl011_register_port(struct uart_amba_port *uap)
2753{
2754	int ret, i;
2755
2756	/* Ensure interrupts from this UART are masked and cleared */
2757	pl011_write(0, uap, REG_IMSC);
2758	pl011_write(0xffff, uap, REG_ICR);
2759
2760	if (!amba_reg.state) {
2761		ret = uart_register_driver(&amba_reg);
2762		if (ret < 0) {
2763			dev_err(uap->port.dev,
2764				"Failed to register AMBA-PL011 driver\n");
2765			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2766				if (amba_ports[i] == uap)
2767					amba_ports[i] = NULL;
2768			return ret;
2769		}
2770	}
2771
2772	ret = uart_add_one_port(&amba_reg, &uap->port);
2773	if (ret)
2774		pl011_unregister_port(uap);
2775
2776	return ret;
2777}
2778
2779static const struct serial_rs485 pl011_rs485_supported = {
2780	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2781		 SER_RS485_RX_DURING_TX,
2782	.delay_rts_before_send = 1,
2783	.delay_rts_after_send = 1,
2784};
2785
2786static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2787{
2788	struct uart_amba_port *uap;
2789	struct vendor_data *vendor = id->data;
2790	int portnr, ret;
2791	u32 val;
2792
2793	portnr = pl011_find_free_port();
2794	if (portnr < 0)
2795		return portnr;
2796
2797	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2798			   GFP_KERNEL);
2799	if (!uap)
2800		return -ENOMEM;
2801
2802	uap->clk = devm_clk_get(&dev->dev, NULL);
2803	if (IS_ERR(uap->clk))
2804		return PTR_ERR(uap->clk);
2805
2806	uap->reg_offset = vendor->reg_offset;
2807	uap->vendor = vendor;
2808	uap->fifosize = vendor->get_fifosize(dev);
2809	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2810	uap->port.irq = dev->irq[0];
2811	uap->port.ops = &amba_pl011_pops;
2812	uap->port.rs485_config = pl011_rs485_config;
2813	uap->port.rs485_supported = pl011_rs485_supported;
2814	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2815
2816	if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2817		switch (val) {
2818		case 1:
2819			uap->port.iotype = UPIO_MEM;
2820			break;
2821		case 4:
2822			uap->port.iotype = UPIO_MEM32;
2823			break;
2824		default:
2825			dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2826				 val);
2827			return -EINVAL;
2828		}
2829	}
2830
2831	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2832	if (ret)
2833		return ret;
2834
2835	amba_set_drvdata(dev, uap);
2836
2837	return pl011_register_port(uap);
2838}
2839
2840static void pl011_remove(struct amba_device *dev)
2841{
2842	struct uart_amba_port *uap = amba_get_drvdata(dev);
2843
2844	uart_remove_one_port(&amba_reg, &uap->port);
2845	pl011_unregister_port(uap);
2846}
2847
2848#ifdef CONFIG_PM_SLEEP
2849static int pl011_suspend(struct device *dev)
2850{
2851	struct uart_amba_port *uap = dev_get_drvdata(dev);
2852
2853	if (!uap)
2854		return -EINVAL;
2855
2856	return uart_suspend_port(&amba_reg, &uap->port);
2857}
2858
2859static int pl011_resume(struct device *dev)
2860{
2861	struct uart_amba_port *uap = dev_get_drvdata(dev);
2862
2863	if (!uap)
2864		return -EINVAL;
2865
2866	return uart_resume_port(&amba_reg, &uap->port);
2867}
2868#endif
2869
2870static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2871
2872#ifdef CONFIG_ACPI_SPCR_TABLE
2873static void qpdf2400_erratum44_workaround(struct device *dev,
2874					  struct uart_amba_port *uap)
2875{
2876	if (!qdf2400_e44_present)
2877		return;
2878
2879	dev_info(dev, "working around QDF2400 SoC erratum 44\n");
2880	uap->vendor = &vendor_qdt_qdf2400_e44;
2881}
2882#else
2883static void qpdf2400_erratum44_workaround(struct device *dev,
2884					  struct uart_amba_port *uap)
2885{ /* empty */ }
2886#endif
2887
2888static int sbsa_uart_probe(struct platform_device *pdev)
2889{
2890	struct uart_amba_port *uap;
2891	struct resource *r;
2892	int portnr, ret;
2893	int baudrate;
2894
2895	/*
2896	 * Check the mandatory baud rate parameter in the DT node early
2897	 * so that we can easily exit with the error.
2898	 */
2899	if (pdev->dev.of_node) {
2900		struct device_node *np = pdev->dev.of_node;
2901
2902		ret = of_property_read_u32(np, "current-speed", &baudrate);
2903		if (ret)
2904			return ret;
2905	} else {
2906		baudrate = 115200;
2907	}
2908
2909	portnr = pl011_find_free_port();
2910	if (portnr < 0)
2911		return portnr;
2912
2913	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2914			   GFP_KERNEL);
2915	if (!uap)
2916		return -ENOMEM;
2917
2918	ret = platform_get_irq(pdev, 0);
2919	if (ret < 0)
2920		return ret;
2921	uap->port.irq	= ret;
2922
2923	uap->vendor = &vendor_sbsa;
2924	qpdf2400_erratum44_workaround(&pdev->dev, uap);
2925
2926	uap->reg_offset	= uap->vendor->reg_offset;
2927	uap->fifosize	= 32;
2928	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2929	uap->port.ops	= &sbsa_uart_pops;
2930	uap->fixed_baud = baudrate;
2931
2932	snprintf(uap->type, sizeof(uap->type), "SBSA");
2933
2934	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2935
2936	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2937	if (ret)
2938		return ret;
2939
2940	platform_set_drvdata(pdev, uap);
2941
2942	return pl011_register_port(uap);
2943}
2944
2945static void sbsa_uart_remove(struct platform_device *pdev)
2946{
2947	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2948
2949	uart_remove_one_port(&amba_reg, &uap->port);
2950	pl011_unregister_port(uap);
2951}
2952
2953static const struct of_device_id sbsa_uart_of_match[] = {
2954	{ .compatible = "arm,sbsa-uart", },
2955	{},
2956};
2957MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2958
2959static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2960	{ "ARMH0011", 0 },
2961	{ "ARMHB000", 0 },
2962	{},
2963};
2964MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2965
2966static struct platform_driver arm_sbsa_uart_platform_driver = {
2967	.probe		= sbsa_uart_probe,
2968	.remove_new	= sbsa_uart_remove,
2969	.driver	= {
2970		.name	= "sbsa-uart",
2971		.pm	= &pl011_dev_pm_ops,
2972		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2973		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2974		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2975	},
2976};
2977
2978static const struct amba_id pl011_ids[] = {
2979	{
2980		.id	= 0x00041011,
2981		.mask	= 0x000fffff,
2982		.data	= &vendor_arm,
2983	},
2984	{
2985		.id	= 0x00380802,
2986		.mask	= 0x00ffffff,
2987		.data	= &vendor_st,
2988	},
2989	{ 0, 0 },
2990};
2991
2992MODULE_DEVICE_TABLE(amba, pl011_ids);
2993
2994static struct amba_driver pl011_driver = {
2995	.drv = {
2996		.name	= "uart-pl011",
2997		.pm	= &pl011_dev_pm_ops,
2998		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2999	},
3000	.id_table	= pl011_ids,
3001	.probe		= pl011_probe,
3002	.remove		= pl011_remove,
3003};
3004
3005static int __init pl011_init(void)
3006{
3007	pr_info("Serial: AMBA PL011 UART driver\n");
3008
3009	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
3010		pr_warn("could not register SBSA UART platform driver\n");
3011	return amba_driver_register(&pl011_driver);
3012}
3013
3014static void __exit pl011_exit(void)
3015{
3016	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
3017	amba_driver_unregister(&pl011_driver);
3018}
3019
3020/*
3021 * While this can be a module, if builtin it's most likely the console
3022 * So let's leave module_exit but move module_init to an earlier place
3023 */
3024arch_initcall(pl011_init);
3025module_exit(pl011_exit);
3026
3027MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3028MODULE_DESCRIPTION("ARM AMBA serial port driver");
3029MODULE_LICENSE("GPL");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 *  Driver for AMBA serial ports
   4 *
   5 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   6 *
   7 *  Copyright 1999 ARM Limited
   8 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   9 *  Copyright (C) 2010 ST-Ericsson SA
  10 *
  11 * This is a generic driver for ARM AMBA-type serial ports.  They
  12 * have a lot of 16550-like features, but are not register compatible.
  13 * Note that although they do have CTS, DCD and DSR inputs, they do
  14 * not have an RI input, nor do they have DTR or RTS outputs.  If
  15 * required, these have to be supplied via some other means (eg, GPIO)
  16 * and hooked into this driver.
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/ioport.h>
  21#include <linux/init.h>
  22#include <linux/console.h>
  23#include <linux/platform_device.h>
  24#include <linux/sysrq.h>
  25#include <linux/device.h>
  26#include <linux/tty.h>
  27#include <linux/tty_flip.h>
  28#include <linux/serial_core.h>
  29#include <linux/serial.h>
  30#include <linux/amba/bus.h>
  31#include <linux/amba/serial.h>
  32#include <linux/clk.h>
  33#include <linux/slab.h>
  34#include <linux/dmaengine.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/scatterlist.h>
  37#include <linux/delay.h>
  38#include <linux/types.h>
  39#include <linux/of.h>
  40#include <linux/pinctrl/consumer.h>
  41#include <linux/sizes.h>
  42#include <linux/io.h>
  43#include <linux/acpi.h>
  44
  45#define UART_NR			14
  46
  47#define SERIAL_AMBA_MAJOR	204
  48#define SERIAL_AMBA_MINOR	64
  49#define SERIAL_AMBA_NR		UART_NR
  50
  51#define AMBA_ISR_PASS_LIMIT	256
  52
  53#define UART_DR_ERROR		(UART011_DR_OE | UART011_DR_BE | UART011_DR_PE | UART011_DR_FE)
  54#define UART_DUMMY_DR_RX	BIT(16)
  55
  56enum {
  57	REG_DR,
  58	REG_ST_DMAWM,
  59	REG_ST_TIMEOUT,
  60	REG_FR,
  61	REG_LCRH_RX,
  62	REG_LCRH_TX,
  63	REG_IBRD,
  64	REG_FBRD,
  65	REG_CR,
  66	REG_IFLS,
  67	REG_IMSC,
  68	REG_RIS,
  69	REG_MIS,
  70	REG_ICR,
  71	REG_DMACR,
  72	REG_ST_XFCR,
  73	REG_ST_XON1,
  74	REG_ST_XON2,
  75	REG_ST_XOFF1,
  76	REG_ST_XOFF2,
  77	REG_ST_ITCR,
  78	REG_ST_ITIP,
  79	REG_ST_ABCR,
  80	REG_ST_ABIMSC,
  81
  82	/* The size of the array - must be last */
  83	REG_ARRAY_SIZE,
  84};
  85
  86static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
  87	[REG_DR] = UART01x_DR,
  88	[REG_FR] = UART01x_FR,
  89	[REG_LCRH_RX] = UART011_LCRH,
  90	[REG_LCRH_TX] = UART011_LCRH,
  91	[REG_IBRD] = UART011_IBRD,
  92	[REG_FBRD] = UART011_FBRD,
  93	[REG_CR] = UART011_CR,
  94	[REG_IFLS] = UART011_IFLS,
  95	[REG_IMSC] = UART011_IMSC,
  96	[REG_RIS] = UART011_RIS,
  97	[REG_MIS] = UART011_MIS,
  98	[REG_ICR] = UART011_ICR,
  99	[REG_DMACR] = UART011_DMACR,
 100};
 101
 102/* There is by now at least one vendor with differing details, so handle it */
 103struct vendor_data {
 104	const u16		*reg_offset;
 105	unsigned int		ifls;
 106	unsigned int		fr_busy;
 107	unsigned int		fr_dsr;
 108	unsigned int		fr_cts;
 109	unsigned int		fr_ri;
 110	unsigned int		inv_fr;
 111	bool			access_32b;
 112	bool			oversampling;
 113	bool			dma_threshold;
 114	bool			cts_event_workaround;
 115	bool			always_enabled;
 116	bool			fixed_options;
 117
 118	unsigned int (*get_fifosize)(struct amba_device *dev);
 119};
 120
 121static unsigned int get_fifosize_arm(struct amba_device *dev)
 122{
 123	return amba_rev(dev) < 3 ? 16 : 32;
 124}
 125
 126static struct vendor_data vendor_arm = {
 127	.reg_offset		= pl011_std_offsets,
 128	.ifls			= UART011_IFLS_RX4_8 | UART011_IFLS_TX4_8,
 129	.fr_busy		= UART01x_FR_BUSY,
 130	.fr_dsr			= UART01x_FR_DSR,
 131	.fr_cts			= UART01x_FR_CTS,
 132	.fr_ri			= UART011_FR_RI,
 133	.oversampling		= false,
 134	.dma_threshold		= false,
 135	.cts_event_workaround	= false,
 136	.always_enabled		= false,
 137	.fixed_options		= false,
 138	.get_fifosize		= get_fifosize_arm,
 139};
 140
 141static const struct vendor_data vendor_sbsa = {
 142	.reg_offset		= pl011_std_offsets,
 143	.fr_busy		= UART01x_FR_BUSY,
 144	.fr_dsr			= UART01x_FR_DSR,
 145	.fr_cts			= UART01x_FR_CTS,
 146	.fr_ri			= UART011_FR_RI,
 147	.access_32b		= true,
 148	.oversampling		= false,
 149	.dma_threshold		= false,
 150	.cts_event_workaround	= false,
 151	.always_enabled		= true,
 152	.fixed_options		= true,
 153};
 154
 155#ifdef CONFIG_ACPI_SPCR_TABLE
 156static const struct vendor_data vendor_qdt_qdf2400_e44 = {
 157	.reg_offset		= pl011_std_offsets,
 158	.fr_busy		= UART011_FR_TXFE,
 159	.fr_dsr			= UART01x_FR_DSR,
 160	.fr_cts			= UART01x_FR_CTS,
 161	.fr_ri			= UART011_FR_RI,
 162	.inv_fr			= UART011_FR_TXFE,
 163	.access_32b		= true,
 164	.oversampling		= false,
 165	.dma_threshold		= false,
 166	.cts_event_workaround	= false,
 167	.always_enabled		= true,
 168	.fixed_options		= true,
 169};
 170#endif
 171
 172static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
 173	[REG_DR] = UART01x_DR,
 174	[REG_ST_DMAWM] = ST_UART011_DMAWM,
 175	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
 176	[REG_FR] = UART01x_FR,
 177	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
 178	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
 179	[REG_IBRD] = UART011_IBRD,
 180	[REG_FBRD] = UART011_FBRD,
 181	[REG_CR] = UART011_CR,
 182	[REG_IFLS] = UART011_IFLS,
 183	[REG_IMSC] = UART011_IMSC,
 184	[REG_RIS] = UART011_RIS,
 185	[REG_MIS] = UART011_MIS,
 186	[REG_ICR] = UART011_ICR,
 187	[REG_DMACR] = UART011_DMACR,
 188	[REG_ST_XFCR] = ST_UART011_XFCR,
 189	[REG_ST_XON1] = ST_UART011_XON1,
 190	[REG_ST_XON2] = ST_UART011_XON2,
 191	[REG_ST_XOFF1] = ST_UART011_XOFF1,
 192	[REG_ST_XOFF2] = ST_UART011_XOFF2,
 193	[REG_ST_ITCR] = ST_UART011_ITCR,
 194	[REG_ST_ITIP] = ST_UART011_ITIP,
 195	[REG_ST_ABCR] = ST_UART011_ABCR,
 196	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
 197};
 198
 199static unsigned int get_fifosize_st(struct amba_device *dev)
 200{
 201	return 64;
 202}
 203
 204static struct vendor_data vendor_st = {
 205	.reg_offset		= pl011_st_offsets,
 206	.ifls			= UART011_IFLS_RX_HALF | UART011_IFLS_TX_HALF,
 207	.fr_busy		= UART01x_FR_BUSY,
 208	.fr_dsr			= UART01x_FR_DSR,
 209	.fr_cts			= UART01x_FR_CTS,
 210	.fr_ri			= UART011_FR_RI,
 211	.oversampling		= true,
 212	.dma_threshold		= true,
 213	.cts_event_workaround	= true,
 214	.always_enabled		= false,
 215	.fixed_options		= false,
 216	.get_fifosize		= get_fifosize_st,
 217};
 218
 219/* Deals with DMA transactions */
 220
 221struct pl011_dmabuf {
 222	dma_addr_t		dma;
 223	size_t			len;
 224	char			*buf;
 225};
 226
 227struct pl011_dmarx_data {
 228	struct dma_chan		*chan;
 229	struct completion	complete;
 230	bool			use_buf_b;
 231	struct pl011_dmabuf	dbuf_a;
 232	struct pl011_dmabuf	dbuf_b;
 233	dma_cookie_t		cookie;
 234	bool			running;
 235	struct timer_list	timer;
 236	unsigned int last_residue;
 237	unsigned long last_jiffies;
 238	bool auto_poll_rate;
 239	unsigned int poll_rate;
 240	unsigned int poll_timeout;
 241};
 242
 243struct pl011_dmatx_data {
 244	struct dma_chan		*chan;
 245	dma_addr_t		dma;
 246	size_t			len;
 247	char			*buf;
 248	bool			queued;
 249};
 250
 251/*
 252 * We wrap our port structure around the generic uart_port.
 253 */
 254struct uart_amba_port {
 255	struct uart_port	port;
 256	const u16		*reg_offset;
 257	struct clk		*clk;
 258	const struct vendor_data *vendor;
 
 259	unsigned int		im;		/* interrupt mask */
 260	unsigned int		old_status;
 261	unsigned int		fifosize;	/* vendor-specific */
 262	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
 263	char			type[12];
 264	bool			rs485_tx_started;
 265	unsigned int		rs485_tx_drain_interval; /* usecs */
 266#ifdef CONFIG_DMA_ENGINE
 267	/* DMA stuff */
 268	unsigned int		dmacr;		/* dma control reg */
 269	bool			using_tx_dma;
 270	bool			using_rx_dma;
 271	struct pl011_dmarx_data dmarx;
 272	struct pl011_dmatx_data	dmatx;
 273	bool			dma_probed;
 274#endif
 275};
 276
 277static unsigned int pl011_tx_empty(struct uart_port *port);
 278
 279static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
 280					unsigned int reg)
 281{
 282	return uap->reg_offset[reg];
 283}
 284
 285static unsigned int pl011_read(const struct uart_amba_port *uap,
 286			       unsigned int reg)
 287{
 288	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 289
 290	return (uap->port.iotype == UPIO_MEM32) ?
 291		readl_relaxed(addr) : readw_relaxed(addr);
 292}
 293
 294static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
 295			unsigned int reg)
 296{
 297	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 298
 299	if (uap->port.iotype == UPIO_MEM32)
 300		writel_relaxed(val, addr);
 301	else
 302		writew_relaxed(val, addr);
 303}
 304
 305/*
 306 * Reads up to 256 characters from the FIFO or until it's empty and
 307 * inserts them into the TTY layer. Returns the number of characters
 308 * read from the FIFO.
 309 */
 310static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 311{
 312	unsigned int ch, fifotaken;
 313	int sysrq;
 314	u16 status;
 315	u8 flag;
 316
 317	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
 318		status = pl011_read(uap, REG_FR);
 319		if (status & UART01x_FR_RXFE)
 320			break;
 321
 322		/* Take chars from the FIFO and update status */
 323		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
 324		flag = TTY_NORMAL;
 325		uap->port.icount.rx++;
 326
 327		if (unlikely(ch & UART_DR_ERROR)) {
 328			if (ch & UART011_DR_BE) {
 329				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 330				uap->port.icount.brk++;
 331				if (uart_handle_break(&uap->port))
 332					continue;
 333			} else if (ch & UART011_DR_PE) {
 334				uap->port.icount.parity++;
 335			} else if (ch & UART011_DR_FE) {
 336				uap->port.icount.frame++;
 337			}
 338			if (ch & UART011_DR_OE)
 339				uap->port.icount.overrun++;
 340
 341			ch &= uap->port.read_status_mask;
 342
 343			if (ch & UART011_DR_BE)
 344				flag = TTY_BREAK;
 345			else if (ch & UART011_DR_PE)
 346				flag = TTY_PARITY;
 347			else if (ch & UART011_DR_FE)
 348				flag = TTY_FRAME;
 349		}
 350
 351		sysrq = uart_prepare_sysrq_char(&uap->port, ch & 255);
 
 
 
 352		if (!sysrq)
 353			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 354	}
 355
 356	return fifotaken;
 357}
 358
 359/*
 360 * All the DMA operation mode stuff goes inside this ifdef.
 361 * This assumes that you have a generic DMA device interface,
 362 * no custom DMA interfaces are supported.
 363 */
 364#ifdef CONFIG_DMA_ENGINE
 365
 366#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 367
 368static int pl011_dmabuf_init(struct dma_chan *chan, struct pl011_dmabuf *db,
 369			     enum dma_data_direction dir)
 370{
 371	db->buf = dma_alloc_coherent(chan->device->dev, PL011_DMA_BUFFER_SIZE,
 372				     &db->dma, GFP_KERNEL);
 373	if (!db->buf)
 374		return -ENOMEM;
 375	db->len = PL011_DMA_BUFFER_SIZE;
 376
 377	return 0;
 378}
 379
 380static void pl011_dmabuf_free(struct dma_chan *chan, struct pl011_dmabuf *db,
 381			      enum dma_data_direction dir)
 382{
 383	if (db->buf) {
 384		dma_free_coherent(chan->device->dev,
 385				  PL011_DMA_BUFFER_SIZE, db->buf, db->dma);
 386	}
 387}
 388
 389static void pl011_dma_probe(struct uart_amba_port *uap)
 390{
 391	/* DMA is the sole user of the platform data right now */
 392	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
 393	struct device *dev = uap->port.dev;
 394	struct dma_slave_config tx_conf = {
 395		.dst_addr = uap->port.mapbase +
 396				 pl011_reg_to_offset(uap, REG_DR),
 397		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 398		.direction = DMA_MEM_TO_DEV,
 399		.dst_maxburst = uap->fifosize >> 1,
 400		.device_fc = false,
 401	};
 402	struct dma_chan *chan;
 403	dma_cap_mask_t mask;
 404
 405	uap->dma_probed = true;
 406	chan = dma_request_chan(dev, "tx");
 407	if (IS_ERR(chan)) {
 408		if (PTR_ERR(chan) == -EPROBE_DEFER) {
 409			uap->dma_probed = false;
 410			return;
 411		}
 412
 413		/* We need platform data */
 414		if (!plat || !plat->dma_filter) {
 415			dev_dbg(uap->port.dev, "no DMA platform data\n");
 416			return;
 417		}
 418
 419		/* Try to acquire a generic DMA engine slave TX channel */
 420		dma_cap_zero(mask);
 421		dma_cap_set(DMA_SLAVE, mask);
 422
 423		chan = dma_request_channel(mask, plat->dma_filter,
 424					   plat->dma_tx_param);
 425		if (!chan) {
 426			dev_err(uap->port.dev, "no TX DMA channel!\n");
 427			return;
 428		}
 429	}
 430
 431	dmaengine_slave_config(chan, &tx_conf);
 432	uap->dmatx.chan = chan;
 433
 434	dev_info(uap->port.dev, "DMA channel TX %s\n",
 435		 dma_chan_name(uap->dmatx.chan));
 436
 437	/* Optionally make use of an RX channel as well */
 438	chan = dma_request_chan(dev, "rx");
 439
 440	if (IS_ERR(chan) && plat && plat->dma_rx_param) {
 441		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 442
 443		if (!chan) {
 444			dev_err(uap->port.dev, "no RX DMA channel!\n");
 445			return;
 446		}
 447	}
 448
 449	if (!IS_ERR(chan)) {
 450		struct dma_slave_config rx_conf = {
 451			.src_addr = uap->port.mapbase +
 452				pl011_reg_to_offset(uap, REG_DR),
 453			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 454			.direction = DMA_DEV_TO_MEM,
 455			.src_maxburst = uap->fifosize >> 2,
 456			.device_fc = false,
 457		};
 458		struct dma_slave_caps caps;
 459
 460		/*
 461		 * Some DMA controllers provide information on their capabilities.
 462		 * If the controller does, check for suitable residue processing
 463		 * otherwise assime all is well.
 464		 */
 465		if (dma_get_slave_caps(chan, &caps) == 0) {
 466			if (caps.residue_granularity ==
 467					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
 468				dma_release_channel(chan);
 469				dev_info(uap->port.dev,
 470					 "RX DMA disabled - no residue processing\n");
 471				return;
 472			}
 473		}
 474		dmaengine_slave_config(chan, &rx_conf);
 475		uap->dmarx.chan = chan;
 476
 477		uap->dmarx.auto_poll_rate = false;
 478		if (plat && plat->dma_rx_poll_enable) {
 479			/* Set poll rate if specified. */
 480			if (plat->dma_rx_poll_rate) {
 481				uap->dmarx.auto_poll_rate = false;
 482				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
 483			} else {
 484				/*
 485				 * 100 ms defaults to poll rate if not
 486				 * specified. This will be adjusted with
 487				 * the baud rate at set_termios.
 488				 */
 489				uap->dmarx.auto_poll_rate = true;
 490				uap->dmarx.poll_rate =  100;
 491			}
 492			/* 3 secs defaults poll_timeout if not specified. */
 493			if (plat->dma_rx_poll_timeout)
 494				uap->dmarx.poll_timeout =
 495					plat->dma_rx_poll_timeout;
 496			else
 497				uap->dmarx.poll_timeout = 3000;
 498		} else if (!plat && dev->of_node) {
 499			uap->dmarx.auto_poll_rate =
 500					of_property_read_bool(dev->of_node, "auto-poll");
 501			if (uap->dmarx.auto_poll_rate) {
 502				u32 x;
 503
 504				if (of_property_read_u32(dev->of_node, "poll-rate-ms", &x) == 0)
 505					uap->dmarx.poll_rate = x;
 506				else
 507					uap->dmarx.poll_rate = 100;
 508				if (of_property_read_u32(dev->of_node, "poll-timeout-ms", &x) == 0)
 509					uap->dmarx.poll_timeout = x;
 510				else
 511					uap->dmarx.poll_timeout = 3000;
 512			}
 513		}
 514		dev_info(uap->port.dev, "DMA channel RX %s\n",
 515			 dma_chan_name(uap->dmarx.chan));
 516	}
 517}
 518
 519static void pl011_dma_remove(struct uart_amba_port *uap)
 520{
 521	if (uap->dmatx.chan)
 522		dma_release_channel(uap->dmatx.chan);
 523	if (uap->dmarx.chan)
 524		dma_release_channel(uap->dmarx.chan);
 525}
 526
 527/* Forward declare these for the refill routine */
 528static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 529static void pl011_start_tx_pio(struct uart_amba_port *uap);
 530
 531/*
 532 * The current DMA TX buffer has been sent.
 533 * Try to queue up another DMA buffer.
 534 */
 535static void pl011_dma_tx_callback(void *data)
 536{
 537	struct uart_amba_port *uap = data;
 538	struct tty_port *tport = &uap->port.state->port;
 539	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 540	unsigned long flags;
 541	u16 dmacr;
 542
 543	uart_port_lock_irqsave(&uap->port, &flags);
 544	if (uap->dmatx.queued)
 545		dma_unmap_single(dmatx->chan->device->dev, dmatx->dma,
 546				 dmatx->len, DMA_TO_DEVICE);
 547
 548	dmacr = uap->dmacr;
 549	uap->dmacr = dmacr & ~UART011_TXDMAE;
 550	pl011_write(uap->dmacr, uap, REG_DMACR);
 551
 552	/*
 553	 * If TX DMA was disabled, it means that we've stopped the DMA for
 554	 * some reason (eg, XOFF received, or we want to send an X-char.)
 555	 *
 556	 * Note: we need to be careful here of a potential race between DMA
 557	 * and the rest of the driver - if the driver disables TX DMA while
 558	 * a TX buffer completing, we must update the tx queued status to
 559	 * get further refills (hence we check dmacr).
 560	 */
 561	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 562	    kfifo_is_empty(&tport->xmit_fifo)) {
 563		uap->dmatx.queued = false;
 564		uart_port_unlock_irqrestore(&uap->port, flags);
 565		return;
 566	}
 567
 568	if (pl011_dma_tx_refill(uap) <= 0)
 569		/*
 570		 * We didn't queue a DMA buffer for some reason, but we
 571		 * have data pending to be sent.  Re-enable the TX IRQ.
 572		 */
 573		pl011_start_tx_pio(uap);
 574
 575	uart_port_unlock_irqrestore(&uap->port, flags);
 576}
 577
 578/*
 579 * Try to refill the TX DMA buffer.
 580 * Locking: called with port lock held and IRQs disabled.
 581 * Returns:
 582 *   1 if we queued up a TX DMA buffer.
 583 *   0 if we didn't want to handle this by DMA
 584 *  <0 on error
 585 */
 586static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 587{
 588	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 589	struct dma_chan *chan = dmatx->chan;
 590	struct dma_device *dma_dev = chan->device;
 591	struct dma_async_tx_descriptor *desc;
 592	struct tty_port *tport = &uap->port.state->port;
 593	unsigned int count;
 594
 595	/*
 596	 * Try to avoid the overhead involved in using DMA if the
 597	 * transaction fits in the first half of the FIFO, by using
 598	 * the standard interrupt handling.  This ensures that we
 599	 * issue a uart_write_wakeup() at the appropriate time.
 600	 */
 601	count = kfifo_len(&tport->xmit_fifo);
 602	if (count < (uap->fifosize >> 1)) {
 603		uap->dmatx.queued = false;
 604		return 0;
 605	}
 606
 607	/*
 608	 * Bodge: don't send the last character by DMA, as this
 609	 * will prevent XON from notifying us to restart DMA.
 610	 */
 611	count -= 1;
 612
 613	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 614	if (count > PL011_DMA_BUFFER_SIZE)
 615		count = PL011_DMA_BUFFER_SIZE;
 616
 617	count = kfifo_out_peek(&tport->xmit_fifo, dmatx->buf, count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 618	dmatx->len = count;
 619	dmatx->dma = dma_map_single(dma_dev->dev, dmatx->buf, count,
 620				    DMA_TO_DEVICE);
 621	if (dmatx->dma == DMA_MAPPING_ERROR) {
 622		uap->dmatx.queued = false;
 623		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 624		return -EBUSY;
 625	}
 626
 627	desc = dmaengine_prep_slave_single(chan, dmatx->dma, dmatx->len, DMA_MEM_TO_DEV,
 628					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 629	if (!desc) {
 630		dma_unmap_single(dma_dev->dev, dmatx->dma, dmatx->len, DMA_TO_DEVICE);
 631		uap->dmatx.queued = false;
 632		/*
 633		 * If DMA cannot be used right now, we complete this
 634		 * transaction via IRQ and let the TTY layer retry.
 635		 */
 636		dev_dbg(uap->port.dev, "TX DMA busy\n");
 637		return -EBUSY;
 638	}
 639
 640	/* Some data to go along to the callback */
 641	desc->callback = pl011_dma_tx_callback;
 642	desc->callback_param = uap;
 643
 644	/* All errors should happen at prepare time */
 645	dmaengine_submit(desc);
 646
 647	/* Fire the DMA transaction */
 648	dma_dev->device_issue_pending(chan);
 649
 650	uap->dmacr |= UART011_TXDMAE;
 651	pl011_write(uap->dmacr, uap, REG_DMACR);
 652	uap->dmatx.queued = true;
 653
 654	/*
 655	 * Now we know that DMA will fire, so advance the ring buffer
 656	 * with the stuff we just dispatched.
 657	 */
 658	uart_xmit_advance(&uap->port, count);
 659
 660	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
 661		uart_write_wakeup(&uap->port);
 662
 663	return 1;
 664}
 665
 666/*
 667 * We received a transmit interrupt without a pending X-char but with
 668 * pending characters.
 669 * Locking: called with port lock held and IRQs disabled.
 670 * Returns:
 671 *   false if we want to use PIO to transmit
 672 *   true if we queued a DMA buffer
 673 */
 674static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 675{
 676	if (!uap->using_tx_dma)
 677		return false;
 678
 679	/*
 680	 * If we already have a TX buffer queued, but received a
 681	 * TX interrupt, it will be because we've just sent an X-char.
 682	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 683	 */
 684	if (uap->dmatx.queued) {
 685		uap->dmacr |= UART011_TXDMAE;
 686		pl011_write(uap->dmacr, uap, REG_DMACR);
 687		uap->im &= ~UART011_TXIM;
 688		pl011_write(uap->im, uap, REG_IMSC);
 689		return true;
 690	}
 691
 692	/*
 693	 * We don't have a TX buffer queued, so try to queue one.
 694	 * If we successfully queued a buffer, mask the TX IRQ.
 695	 */
 696	if (pl011_dma_tx_refill(uap) > 0) {
 697		uap->im &= ~UART011_TXIM;
 698		pl011_write(uap->im, uap, REG_IMSC);
 699		return true;
 700	}
 701	return false;
 702}
 703
 704/*
 705 * Stop the DMA transmit (eg, due to received XOFF).
 706 * Locking: called with port lock held and IRQs disabled.
 707 */
 708static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 709{
 710	if (uap->dmatx.queued) {
 711		uap->dmacr &= ~UART011_TXDMAE;
 712		pl011_write(uap->dmacr, uap, REG_DMACR);
 713	}
 714}
 715
 716/*
 717 * Try to start a DMA transmit, or in the case of an XON/OFF
 718 * character queued for send, try to get that character out ASAP.
 719 * Locking: called with port lock held and IRQs disabled.
 720 * Returns:
 721 *   false if we want the TX IRQ to be enabled
 722 *   true if we have a buffer queued
 723 */
 724static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 725{
 726	u16 dmacr;
 727
 728	if (!uap->using_tx_dma)
 729		return false;
 730
 731	if (!uap->port.x_char) {
 732		/* no X-char, try to push chars out in DMA mode */
 733		bool ret = true;
 734
 735		if (!uap->dmatx.queued) {
 736			if (pl011_dma_tx_refill(uap) > 0) {
 737				uap->im &= ~UART011_TXIM;
 738				pl011_write(uap->im, uap, REG_IMSC);
 739			} else {
 740				ret = false;
 741			}
 742		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 743			uap->dmacr |= UART011_TXDMAE;
 744			pl011_write(uap->dmacr, uap, REG_DMACR);
 745		}
 746		return ret;
 747	}
 748
 749	/*
 750	 * We have an X-char to send.  Disable DMA to prevent it loading
 751	 * the TX fifo, and then see if we can stuff it into the FIFO.
 752	 */
 753	dmacr = uap->dmacr;
 754	uap->dmacr &= ~UART011_TXDMAE;
 755	pl011_write(uap->dmacr, uap, REG_DMACR);
 756
 757	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
 758		/*
 759		 * No space in the FIFO, so enable the transmit interrupt
 760		 * so we know when there is space.  Note that once we've
 761		 * loaded the character, we should just re-enable DMA.
 762		 */
 763		return false;
 764	}
 765
 766	pl011_write(uap->port.x_char, uap, REG_DR);
 767	uap->port.icount.tx++;
 768	uap->port.x_char = 0;
 769
 770	/* Success - restore the DMA state */
 771	uap->dmacr = dmacr;
 772	pl011_write(dmacr, uap, REG_DMACR);
 773
 774	return true;
 775}
 776
 777/*
 778 * Flush the transmit buffer.
 779 * Locking: called with port lock held and IRQs disabled.
 780 */
 781static void pl011_dma_flush_buffer(struct uart_port *port)
 782__releases(&uap->port.lock)
 783__acquires(&uap->port.lock)
 784{
 785	struct uart_amba_port *uap =
 786	    container_of(port, struct uart_amba_port, port);
 787
 788	if (!uap->using_tx_dma)
 789		return;
 790
 791	dmaengine_terminate_async(uap->dmatx.chan);
 792
 793	if (uap->dmatx.queued) {
 794		dma_unmap_single(uap->dmatx.chan->device->dev, uap->dmatx.dma,
 795				 uap->dmatx.len, DMA_TO_DEVICE);
 796		uap->dmatx.queued = false;
 797		uap->dmacr &= ~UART011_TXDMAE;
 798		pl011_write(uap->dmacr, uap, REG_DMACR);
 799	}
 800}
 801
 802static void pl011_dma_rx_callback(void *data);
 803
 804static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 805{
 806	struct dma_chan *rxchan = uap->dmarx.chan;
 807	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 808	struct dma_async_tx_descriptor *desc;
 809	struct pl011_dmabuf *dbuf;
 810
 811	if (!rxchan)
 812		return -EIO;
 813
 814	/* Start the RX DMA job */
 815	dbuf = uap->dmarx.use_buf_b ?
 816		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
 817	desc = dmaengine_prep_slave_single(rxchan, dbuf->dma, dbuf->len,
 818					   DMA_DEV_TO_MEM,
 819					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 820	/*
 821	 * If the DMA engine is busy and cannot prepare a
 822	 * channel, no big deal, the driver will fall back
 823	 * to interrupt mode as a result of this error code.
 824	 */
 825	if (!desc) {
 826		uap->dmarx.running = false;
 827		dmaengine_terminate_all(rxchan);
 828		return -EBUSY;
 829	}
 830
 831	/* Some data to go along to the callback */
 832	desc->callback = pl011_dma_rx_callback;
 833	desc->callback_param = uap;
 834	dmarx->cookie = dmaengine_submit(desc);
 835	dma_async_issue_pending(rxchan);
 836
 837	uap->dmacr |= UART011_RXDMAE;
 838	pl011_write(uap->dmacr, uap, REG_DMACR);
 839	uap->dmarx.running = true;
 840
 841	uap->im &= ~UART011_RXIM;
 842	pl011_write(uap->im, uap, REG_IMSC);
 843
 844	return 0;
 845}
 846
 847/*
 848 * This is called when either the DMA job is complete, or
 849 * the FIFO timeout interrupt occurred. This must be called
 850 * with the port spinlock uap->port.lock held.
 851 */
 852static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 853			       u32 pending, bool use_buf_b,
 854			       bool readfifo)
 855{
 856	struct tty_port *port = &uap->port.state->port;
 857	struct pl011_dmabuf *dbuf = use_buf_b ?
 858		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
 859	int dma_count = 0;
 860	u32 fifotaken = 0; /* only used for vdbg() */
 861
 862	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 863	int dmataken = 0;
 864
 865	if (uap->dmarx.poll_rate) {
 866		/* The data can be taken by polling */
 867		dmataken = dbuf->len - dmarx->last_residue;
 868		/* Recalculate the pending size */
 869		if (pending >= dmataken)
 870			pending -= dmataken;
 871	}
 872
 873	/* Pick the remain data from the DMA */
 874	if (pending) {
 875		/*
 876		 * First take all chars in the DMA pipe, then look in the FIFO.
 877		 * Note that tty_insert_flip_buf() tries to take as many chars
 878		 * as it can.
 879		 */
 880		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken, pending);
 881
 882		uap->port.icount.rx += dma_count;
 883		if (dma_count < pending)
 884			dev_warn(uap->port.dev,
 885				 "couldn't insert all characters (TTY is full?)\n");
 886	}
 887
 888	/* Reset the last_residue for Rx DMA poll */
 889	if (uap->dmarx.poll_rate)
 890		dmarx->last_residue = dbuf->len;
 891
 892	/*
 893	 * Only continue with trying to read the FIFO if all DMA chars have
 894	 * been taken first.
 895	 */
 896	if (dma_count == pending && readfifo) {
 897		/* Clear any error flags */
 898		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
 899			    UART011_FEIS, uap, REG_ICR);
 900
 901		/*
 902		 * If we read all the DMA'd characters, and we had an
 903		 * incomplete buffer, that could be due to an rx error, or
 904		 * maybe we just timed out. Read any pending chars and check
 905		 * the error status.
 906		 *
 907		 * Error conditions will only occur in the FIFO, these will
 908		 * trigger an immediate interrupt and stop the DMA job, so we
 909		 * will always find the error in the FIFO, never in the DMA
 910		 * buffer.
 911		 */
 912		fifotaken = pl011_fifo_to_tty(uap);
 913	}
 914
 915	dev_vdbg(uap->port.dev,
 916		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 917		 dma_count, fifotaken);
 918	tty_flip_buffer_push(port);
 919}
 920
 921static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 922{
 923	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 924	struct dma_chan *rxchan = dmarx->chan;
 925	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
 926		&dmarx->dbuf_b : &dmarx->dbuf_a;
 927	size_t pending;
 928	struct dma_tx_state state;
 929	enum dma_status dmastat;
 930
 931	/*
 932	 * Pause the transfer so we can trust the current counter,
 933	 * do this before we pause the PL011 block, else we may
 934	 * overflow the FIFO.
 935	 */
 936	if (dmaengine_pause(rxchan))
 937		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 938	dmastat = rxchan->device->device_tx_status(rxchan,
 939						   dmarx->cookie, &state);
 940	if (dmastat != DMA_PAUSED)
 941		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 942
 943	/* Disable RX DMA - incoming data will wait in the FIFO */
 944	uap->dmacr &= ~UART011_RXDMAE;
 945	pl011_write(uap->dmacr, uap, REG_DMACR);
 946	uap->dmarx.running = false;
 947
 948	pending = dbuf->len - state.residue;
 949	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 950	/* Then we terminate the transfer - we now know our residue */
 951	dmaengine_terminate_all(rxchan);
 952
 953	/*
 954	 * This will take the chars we have so far and insert
 955	 * into the framework.
 956	 */
 957	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 958
 959	/* Switch buffer & re-trigger DMA job */
 960	dmarx->use_buf_b = !dmarx->use_buf_b;
 961	if (pl011_dma_rx_trigger_dma(uap)) {
 962		dev_dbg(uap->port.dev,
 963			"could not retrigger RX DMA job fall back to interrupt mode\n");
 964		uap->im |= UART011_RXIM;
 965		pl011_write(uap->im, uap, REG_IMSC);
 966	}
 967}
 968
 969static void pl011_dma_rx_callback(void *data)
 970{
 971	struct uart_amba_port *uap = data;
 972	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 973	struct dma_chan *rxchan = dmarx->chan;
 974	bool lastbuf = dmarx->use_buf_b;
 975	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
 976		&dmarx->dbuf_b : &dmarx->dbuf_a;
 977	size_t pending;
 978	struct dma_tx_state state;
 979	int ret;
 980
 981	/*
 982	 * This completion interrupt occurs typically when the
 983	 * RX buffer is totally stuffed but no timeout has yet
 984	 * occurred. When that happens, we just want the RX
 985	 * routine to flush out the secondary DMA buffer while
 986	 * we immediately trigger the next DMA job.
 987	 */
 988	uart_port_lock_irq(&uap->port);
 989	/*
 990	 * Rx data can be taken by the UART interrupts during
 991	 * the DMA irq handler. So we check the residue here.
 992	 */
 993	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
 994	pending = dbuf->len - state.residue;
 995	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 996	/* Then we terminate the transfer - we now know our residue */
 997	dmaengine_terminate_all(rxchan);
 998
 999	uap->dmarx.running = false;
1000	dmarx->use_buf_b = !lastbuf;
1001	ret = pl011_dma_rx_trigger_dma(uap);
1002
1003	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1004	uart_unlock_and_check_sysrq(&uap->port);
1005	/*
1006	 * Do this check after we picked the DMA chars so we don't
1007	 * get some IRQ immediately from RX.
1008	 */
1009	if (ret) {
1010		dev_dbg(uap->port.dev,
1011			"could not retrigger RX DMA job fall back to interrupt mode\n");
1012		uap->im |= UART011_RXIM;
1013		pl011_write(uap->im, uap, REG_IMSC);
1014	}
1015}
1016
1017/*
1018 * Stop accepting received characters, when we're shutting down or
1019 * suspending this port.
1020 * Locking: called with port lock held and IRQs disabled.
1021 */
1022static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1023{
1024	if (!uap->using_rx_dma)
1025		return;
1026
1027	/* FIXME.  Just disable the DMA enable */
1028	uap->dmacr &= ~UART011_RXDMAE;
1029	pl011_write(uap->dmacr, uap, REG_DMACR);
1030}
1031
1032/*
1033 * Timer handler for Rx DMA polling.
1034 * Every polling, It checks the residue in the dma buffer and transfer
1035 * data to the tty. Also, last_residue is updated for the next polling.
1036 */
1037static void pl011_dma_rx_poll(struct timer_list *t)
1038{
1039	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1040	struct tty_port *port = &uap->port.state->port;
1041	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1042	struct dma_chan *rxchan = uap->dmarx.chan;
1043	unsigned long flags;
1044	unsigned int dmataken = 0;
1045	unsigned int size = 0;
1046	struct pl011_dmabuf *dbuf;
1047	int dma_count;
1048	struct dma_tx_state state;
1049
1050	dbuf = dmarx->use_buf_b ? &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
1051	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1052	if (likely(state.residue < dmarx->last_residue)) {
1053		dmataken = dbuf->len - dmarx->last_residue;
1054		size = dmarx->last_residue - state.residue;
1055		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken,
1056						   size);
1057		if (dma_count == size)
1058			dmarx->last_residue =  state.residue;
1059		dmarx->last_jiffies = jiffies;
1060	}
1061	tty_flip_buffer_push(port);
1062
1063	/*
1064	 * If no data is received in poll_timeout, the driver will fall back
1065	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1066	 */
1067	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1068			> uap->dmarx.poll_timeout) {
1069		uart_port_lock_irqsave(&uap->port, &flags);
1070		pl011_dma_rx_stop(uap);
1071		uap->im |= UART011_RXIM;
1072		pl011_write(uap->im, uap, REG_IMSC);
1073		uart_port_unlock_irqrestore(&uap->port, flags);
1074
1075		uap->dmarx.running = false;
1076		dmaengine_terminate_all(rxchan);
1077		del_timer(&uap->dmarx.timer);
1078	} else {
1079		mod_timer(&uap->dmarx.timer,
1080			  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1081	}
1082}
1083
1084static void pl011_dma_startup(struct uart_amba_port *uap)
1085{
1086	int ret;
1087
1088	if (!uap->dma_probed)
1089		pl011_dma_probe(uap);
1090
1091	if (!uap->dmatx.chan)
1092		return;
1093
1094	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1095	if (!uap->dmatx.buf) {
1096		uap->port.fifosize = uap->fifosize;
1097		return;
1098	}
1099
1100	uap->dmatx.len = PL011_DMA_BUFFER_SIZE;
1101
1102	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1103	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1104	uap->using_tx_dma = true;
1105
1106	if (!uap->dmarx.chan)
1107		goto skip_rx;
1108
1109	/* Allocate and map DMA RX buffers */
1110	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1111				DMA_FROM_DEVICE);
1112	if (ret) {
1113		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1114			"RX buffer A", ret);
1115		goto skip_rx;
1116	}
1117
1118	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_b,
1119				DMA_FROM_DEVICE);
1120	if (ret) {
1121		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1122			"RX buffer B", ret);
1123		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1124				  DMA_FROM_DEVICE);
1125		goto skip_rx;
1126	}
1127
1128	uap->using_rx_dma = true;
1129
1130skip_rx:
1131	/* Turn on DMA error (RX/TX will be enabled on demand) */
1132	uap->dmacr |= UART011_DMAONERR;
1133	pl011_write(uap->dmacr, uap, REG_DMACR);
1134
1135	/*
1136	 * ST Micro variants has some specific dma burst threshold
1137	 * compensation. Set this to 16 bytes, so burst will only
1138	 * be issued above/below 16 bytes.
1139	 */
1140	if (uap->vendor->dma_threshold)
1141		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1142			    uap, REG_ST_DMAWM);
1143
1144	if (uap->using_rx_dma) {
1145		if (pl011_dma_rx_trigger_dma(uap))
1146			dev_dbg(uap->port.dev,
1147				"could not trigger initial RX DMA job, fall back to interrupt mode\n");
1148		if (uap->dmarx.poll_rate) {
1149			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1150			mod_timer(&uap->dmarx.timer,
1151				  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1152			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1153			uap->dmarx.last_jiffies = jiffies;
1154		}
1155	}
1156}
1157
1158static void pl011_dma_shutdown(struct uart_amba_port *uap)
1159{
1160	if (!(uap->using_tx_dma || uap->using_rx_dma))
1161		return;
1162
1163	/* Disable RX and TX DMA */
1164	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1165		cpu_relax();
1166
1167	uart_port_lock_irq(&uap->port);
1168	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1169	pl011_write(uap->dmacr, uap, REG_DMACR);
1170	uart_port_unlock_irq(&uap->port);
1171
1172	if (uap->using_tx_dma) {
1173		/* In theory, this should already be done by pl011_dma_flush_buffer */
1174		dmaengine_terminate_all(uap->dmatx.chan);
1175		if (uap->dmatx.queued) {
1176			dma_unmap_single(uap->dmatx.chan->device->dev,
1177					 uap->dmatx.dma, uap->dmatx.len,
1178					 DMA_TO_DEVICE);
1179			uap->dmatx.queued = false;
1180		}
1181
1182		kfree(uap->dmatx.buf);
1183		uap->using_tx_dma = false;
1184	}
1185
1186	if (uap->using_rx_dma) {
1187		dmaengine_terminate_all(uap->dmarx.chan);
1188		/* Clean up the RX DMA */
1189		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a, DMA_FROM_DEVICE);
1190		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_b, DMA_FROM_DEVICE);
1191		if (uap->dmarx.poll_rate)
1192			del_timer_sync(&uap->dmarx.timer);
1193		uap->using_rx_dma = false;
1194	}
1195}
1196
1197static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1198{
1199	return uap->using_rx_dma;
1200}
1201
1202static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1203{
1204	return uap->using_rx_dma && uap->dmarx.running;
1205}
1206
1207#else
1208/* Blank functions if the DMA engine is not available */
1209static inline void pl011_dma_remove(struct uart_amba_port *uap)
1210{
1211}
1212
1213static inline void pl011_dma_startup(struct uart_amba_port *uap)
1214{
1215}
1216
1217static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1218{
1219}
1220
1221static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1222{
1223	return false;
1224}
1225
1226static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1227{
1228}
1229
1230static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1231{
1232	return false;
1233}
1234
1235static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1236{
1237}
1238
1239static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1240{
1241}
1242
1243static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1244{
1245	return -EIO;
1246}
1247
1248static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1249{
1250	return false;
1251}
1252
1253static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1254{
1255	return false;
1256}
1257
1258#define pl011_dma_flush_buffer	NULL
1259#endif
1260
1261static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1262{
1263	/*
1264	 * To be on the safe side only time out after twice as many iterations
1265	 * as fifo size.
1266	 */
1267	const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1268	struct uart_port *port = &uap->port;
1269	int i = 0;
1270	u32 cr;
1271
1272	/* Wait until hardware tx queue is empty */
1273	while (!pl011_tx_empty(port)) {
1274		if (i > MAX_TX_DRAIN_ITERS) {
1275			dev_warn(port->dev,
1276				 "timeout while draining hardware tx queue\n");
1277			break;
1278		}
1279
1280		udelay(uap->rs485_tx_drain_interval);
1281		i++;
1282	}
1283
1284	if (port->rs485.delay_rts_after_send)
1285		mdelay(port->rs485.delay_rts_after_send);
1286
1287	cr = pl011_read(uap, REG_CR);
1288
1289	if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1290		cr &= ~UART011_CR_RTS;
1291	else
1292		cr |= UART011_CR_RTS;
1293
1294	/* Disable the transmitter and reenable the transceiver */
1295	cr &= ~UART011_CR_TXE;
1296	cr |= UART011_CR_RXE;
1297	pl011_write(cr, uap, REG_CR);
1298
1299	uap->rs485_tx_started = false;
1300}
1301
1302static void pl011_stop_tx(struct uart_port *port)
1303{
1304	struct uart_amba_port *uap =
1305	    container_of(port, struct uart_amba_port, port);
1306
1307	uap->im &= ~UART011_TXIM;
1308	pl011_write(uap->im, uap, REG_IMSC);
1309	pl011_dma_tx_stop(uap);
1310
1311	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1312		pl011_rs485_tx_stop(uap);
1313}
1314
1315static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1316
1317/* Start TX with programmed I/O only (no DMA) */
1318static void pl011_start_tx_pio(struct uart_amba_port *uap)
1319{
1320	if (pl011_tx_chars(uap, false)) {
1321		uap->im |= UART011_TXIM;
1322		pl011_write(uap->im, uap, REG_IMSC);
1323	}
1324}
1325
1326static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1327{
1328	struct uart_port *port = &uap->port;
1329	u32 cr;
1330
1331	/* Enable transmitter */
1332	cr = pl011_read(uap, REG_CR);
1333	cr |= UART011_CR_TXE;
1334
1335	/* Disable receiver if half-duplex */
1336	if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1337		cr &= ~UART011_CR_RXE;
1338
1339	if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1340		cr &= ~UART011_CR_RTS;
1341	else
1342		cr |= UART011_CR_RTS;
1343
1344	pl011_write(cr, uap, REG_CR);
1345
1346	if (port->rs485.delay_rts_before_send)
1347		mdelay(port->rs485.delay_rts_before_send);
1348
1349	uap->rs485_tx_started = true;
1350}
1351
1352static void pl011_start_tx(struct uart_port *port)
1353{
1354	struct uart_amba_port *uap =
1355	    container_of(port, struct uart_amba_port, port);
1356
1357	if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1358	    !uap->rs485_tx_started)
1359		pl011_rs485_tx_start(uap);
1360
1361	if (!pl011_dma_tx_start(uap))
1362		pl011_start_tx_pio(uap);
1363}
1364
1365static void pl011_stop_rx(struct uart_port *port)
1366{
1367	struct uart_amba_port *uap =
1368	    container_of(port, struct uart_amba_port, port);
1369
1370	uap->im &= ~(UART011_RXIM | UART011_RTIM | UART011_FEIM |
1371		     UART011_PEIM | UART011_BEIM | UART011_OEIM);
1372	pl011_write(uap->im, uap, REG_IMSC);
1373
1374	pl011_dma_rx_stop(uap);
1375}
1376
1377static void pl011_throttle_rx(struct uart_port *port)
1378{
1379	unsigned long flags;
1380
1381	uart_port_lock_irqsave(port, &flags);
1382	pl011_stop_rx(port);
1383	uart_port_unlock_irqrestore(port, flags);
1384}
1385
1386static void pl011_enable_ms(struct uart_port *port)
1387{
1388	struct uart_amba_port *uap =
1389	    container_of(port, struct uart_amba_port, port);
1390
1391	uap->im |= UART011_RIMIM | UART011_CTSMIM | UART011_DCDMIM | UART011_DSRMIM;
1392	pl011_write(uap->im, uap, REG_IMSC);
1393}
1394
1395static void pl011_rx_chars(struct uart_amba_port *uap)
1396__releases(&uap->port.lock)
1397__acquires(&uap->port.lock)
1398{
1399	pl011_fifo_to_tty(uap);
1400
1401	uart_port_unlock(&uap->port);
1402	tty_flip_buffer_push(&uap->port.state->port);
1403	/*
1404	 * If we were temporarily out of DMA mode for a while,
1405	 * attempt to switch back to DMA mode again.
1406	 */
1407	if (pl011_dma_rx_available(uap)) {
1408		if (pl011_dma_rx_trigger_dma(uap)) {
1409			dev_dbg(uap->port.dev,
1410				"could not trigger RX DMA job fall back to interrupt mode again\n");
1411			uap->im |= UART011_RXIM;
1412			pl011_write(uap->im, uap, REG_IMSC);
1413		} else {
1414#ifdef CONFIG_DMA_ENGINE
1415			/* Start Rx DMA poll */
1416			if (uap->dmarx.poll_rate) {
1417				uap->dmarx.last_jiffies = jiffies;
1418				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1419				mod_timer(&uap->dmarx.timer,
1420					  jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1421			}
1422#endif
1423		}
1424	}
1425	uart_port_lock(&uap->port);
1426}
1427
1428static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1429			  bool from_irq)
1430{
1431	if (unlikely(!from_irq) &&
1432	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1433		return false; /* unable to transmit character */
1434
1435	pl011_write(c, uap, REG_DR);
1436	uap->port.icount.tx++;
1437
1438	return true;
1439}
1440
1441/* Returns true if tx interrupts have to be (kept) enabled  */
1442static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1443{
1444	struct tty_port *tport = &uap->port.state->port;
1445	int count = uap->fifosize >> 1;
1446
1447	if (uap->port.x_char) {
1448		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1449			return true;
1450		uap->port.x_char = 0;
1451		--count;
1452	}
1453	if (kfifo_is_empty(&tport->xmit_fifo) || uart_tx_stopped(&uap->port)) {
1454		pl011_stop_tx(&uap->port);
1455		return false;
1456	}
1457
1458	/* If we are using DMA mode, try to send some characters. */
1459	if (pl011_dma_tx_irq(uap))
1460		return true;
1461
1462	while (1) {
1463		unsigned char c;
1464
1465		if (likely(from_irq) && count-- == 0)
1466			break;
1467
1468		if (!kfifo_peek(&tport->xmit_fifo, &c))
1469			break;
1470
1471		if (!pl011_tx_char(uap, c, from_irq))
1472			break;
1473
1474		kfifo_skip(&tport->xmit_fifo);
1475	}
1476
1477	if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
1478		uart_write_wakeup(&uap->port);
1479
1480	if (kfifo_is_empty(&tport->xmit_fifo)) {
1481		pl011_stop_tx(&uap->port);
1482		return false;
1483	}
1484	return true;
1485}
1486
1487static void pl011_modem_status(struct uart_amba_port *uap)
1488{
1489	unsigned int status, delta;
1490
1491	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1492
1493	delta = status ^ uap->old_status;
1494	uap->old_status = status;
1495
1496	if (!delta)
1497		return;
1498
1499	if (delta & UART01x_FR_DCD)
1500		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1501
1502	if (delta & uap->vendor->fr_dsr)
1503		uap->port.icount.dsr++;
1504
1505	if (delta & uap->vendor->fr_cts)
1506		uart_handle_cts_change(&uap->port,
1507				       status & uap->vendor->fr_cts);
1508
1509	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1510}
1511
1512static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1513{
1514	if (!uap->vendor->cts_event_workaround)
1515		return;
1516
1517	/* workaround to make sure that all bits are unlocked.. */
1518	pl011_write(0x00, uap, REG_ICR);
1519
1520	/*
1521	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1522	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1523	 * so add 2 dummy reads
1524	 */
1525	pl011_read(uap, REG_ICR);
1526	pl011_read(uap, REG_ICR);
1527}
1528
1529static irqreturn_t pl011_int(int irq, void *dev_id)
1530{
1531	struct uart_amba_port *uap = dev_id;
 
1532	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1533	int handled = 0;
1534
1535	uart_port_lock(&uap->port);
1536	status = pl011_read(uap, REG_RIS) & uap->im;
1537	if (status) {
1538		do {
1539			check_apply_cts_event_workaround(uap);
1540
1541			pl011_write(status & ~(UART011_TXIS | UART011_RTIS | UART011_RXIS),
1542				    uap, REG_ICR);
1543
1544			if (status & (UART011_RTIS | UART011_RXIS)) {
1545				if (pl011_dma_rx_running(uap))
1546					pl011_dma_rx_irq(uap);
1547				else
1548					pl011_rx_chars(uap);
1549			}
1550			if (status & (UART011_DSRMIS | UART011_DCDMIS |
1551				      UART011_CTSMIS | UART011_RIMIS))
1552				pl011_modem_status(uap);
1553			if (status & UART011_TXIS)
1554				pl011_tx_chars(uap, true);
1555
1556			if (pass_counter-- == 0)
1557				break;
1558
1559			status = pl011_read(uap, REG_RIS) & uap->im;
1560		} while (status != 0);
1561		handled = 1;
1562	}
1563
1564	uart_unlock_and_check_sysrq(&uap->port);
1565
1566	return IRQ_RETVAL(handled);
1567}
1568
1569static unsigned int pl011_tx_empty(struct uart_port *port)
1570{
1571	struct uart_amba_port *uap =
1572	    container_of(port, struct uart_amba_port, port);
1573
1574	/* Allow feature register bits to be inverted to work around errata */
1575	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1576
1577	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1578							0 : TIOCSER_TEMT;
1579}
1580
1581static void pl011_maybe_set_bit(bool cond, unsigned int *ptr, unsigned int mask)
1582{
1583	if (cond)
1584		*ptr |= mask;
1585}
1586
1587static unsigned int pl011_get_mctrl(struct uart_port *port)
1588{
1589	struct uart_amba_port *uap =
1590	    container_of(port, struct uart_amba_port, port);
1591	unsigned int result = 0;
1592	unsigned int status = pl011_read(uap, REG_FR);
1593
1594	pl011_maybe_set_bit(status & UART01x_FR_DCD, &result, TIOCM_CAR);
1595	pl011_maybe_set_bit(status & uap->vendor->fr_dsr, &result, TIOCM_DSR);
1596	pl011_maybe_set_bit(status & uap->vendor->fr_cts, &result, TIOCM_CTS);
1597	pl011_maybe_set_bit(status & uap->vendor->fr_ri, &result, TIOCM_RNG);
1598
1599	return result;
1600}
1601
1602static void pl011_assign_bit(bool cond, unsigned int *ptr, unsigned int mask)
1603{
1604	if (cond)
1605		*ptr |= mask;
1606	else
1607		*ptr &= ~mask;
1608}
1609
1610static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1611{
1612	struct uart_amba_port *uap =
1613	    container_of(port, struct uart_amba_port, port);
1614	unsigned int cr;
1615
1616	cr = pl011_read(uap, REG_CR);
1617
1618	pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTS);
1619	pl011_assign_bit(mctrl & TIOCM_DTR, &cr, UART011_CR_DTR);
1620	pl011_assign_bit(mctrl & TIOCM_OUT1, &cr, UART011_CR_OUT1);
1621	pl011_assign_bit(mctrl & TIOCM_OUT2, &cr, UART011_CR_OUT2);
1622	pl011_assign_bit(mctrl & TIOCM_LOOP, &cr, UART011_CR_LBE);
1623
1624	if (port->status & UPSTAT_AUTORTS) {
1625		/* We need to disable auto-RTS if we want to turn RTS off */
1626		pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTSEN);
1627	}
1628
1629	pl011_write(cr, uap, REG_CR);
1630}
1631
1632static void pl011_break_ctl(struct uart_port *port, int break_state)
1633{
1634	struct uart_amba_port *uap =
1635	    container_of(port, struct uart_amba_port, port);
1636	unsigned long flags;
1637	unsigned int lcr_h;
1638
1639	uart_port_lock_irqsave(&uap->port, &flags);
1640	lcr_h = pl011_read(uap, REG_LCRH_TX);
1641	if (break_state == -1)
1642		lcr_h |= UART01x_LCRH_BRK;
1643	else
1644		lcr_h &= ~UART01x_LCRH_BRK;
1645	pl011_write(lcr_h, uap, REG_LCRH_TX);
1646	uart_port_unlock_irqrestore(&uap->port, flags);
1647}
1648
1649#ifdef CONFIG_CONSOLE_POLL
1650
1651static void pl011_quiesce_irqs(struct uart_port *port)
1652{
1653	struct uart_amba_port *uap =
1654	    container_of(port, struct uart_amba_port, port);
1655
1656	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1657	/*
1658	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1659	 * we simply mask it. start_tx() will unmask it.
1660	 *
1661	 * Note we can race with start_tx(), and if the race happens, the
1662	 * polling user might get another interrupt just after we clear it.
1663	 * But it should be OK and can happen even w/o the race, e.g.
1664	 * controller immediately got some new data and raised the IRQ.
1665	 *
1666	 * And whoever uses polling routines assumes that it manages the device
1667	 * (including tx queue), so we're also fine with start_tx()'s caller
1668	 * side.
1669	 */
1670	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1671		    REG_IMSC);
1672}
1673
1674static int pl011_get_poll_char(struct uart_port *port)
1675{
1676	struct uart_amba_port *uap =
1677	    container_of(port, struct uart_amba_port, port);
1678	unsigned int status;
1679
1680	/*
1681	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1682	 * debugger.
1683	 */
1684	pl011_quiesce_irqs(port);
1685
1686	status = pl011_read(uap, REG_FR);
1687	if (status & UART01x_FR_RXFE)
1688		return NO_POLL_CHAR;
1689
1690	return pl011_read(uap, REG_DR);
1691}
1692
1693static void pl011_put_poll_char(struct uart_port *port, unsigned char ch)
1694{
1695	struct uart_amba_port *uap =
1696	    container_of(port, struct uart_amba_port, port);
1697
1698	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1699		cpu_relax();
1700
1701	pl011_write(ch, uap, REG_DR);
1702}
1703
1704#endif /* CONFIG_CONSOLE_POLL */
1705
1706static int pl011_hwinit(struct uart_port *port)
1707{
1708	struct uart_amba_port *uap =
1709	    container_of(port, struct uart_amba_port, port);
1710	int retval;
1711
1712	/* Optionaly enable pins to be muxed in and configured */
1713	pinctrl_pm_select_default_state(port->dev);
1714
1715	/*
1716	 * Try to enable the clock producer.
1717	 */
1718	retval = clk_prepare_enable(uap->clk);
1719	if (retval)
1720		return retval;
1721
1722	uap->port.uartclk = clk_get_rate(uap->clk);
1723
1724	/* Clear pending error and receive interrupts */
1725	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1726		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1727		    uap, REG_ICR);
1728
1729	/*
1730	 * Save interrupts enable mask, and enable RX interrupts in case if
1731	 * the interrupt is used for NMI entry.
1732	 */
1733	uap->im = pl011_read(uap, REG_IMSC);
1734	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1735
1736	if (dev_get_platdata(uap->port.dev)) {
1737		struct amba_pl011_data *plat;
1738
1739		plat = dev_get_platdata(uap->port.dev);
1740		if (plat->init)
1741			plat->init();
1742	}
1743	return 0;
1744}
1745
1746static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1747{
1748	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1749	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1750}
1751
1752static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1753{
1754	pl011_write(lcr_h, uap, REG_LCRH_RX);
1755	if (pl011_split_lcrh(uap)) {
1756		int i;
1757		/*
1758		 * Wait 10 PCLKs before writing LCRH_TX register,
1759		 * to get this delay write read only register 10 times
1760		 */
1761		for (i = 0; i < 10; ++i)
1762			pl011_write(0xff, uap, REG_MIS);
1763		pl011_write(lcr_h, uap, REG_LCRH_TX);
1764	}
1765}
1766
1767static int pl011_allocate_irq(struct uart_amba_port *uap)
1768{
1769	pl011_write(uap->im, uap, REG_IMSC);
1770
1771	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1772}
1773
1774/*
1775 * Enable interrupts, only timeouts when using DMA
1776 * if initial RX DMA job failed, start in interrupt mode
1777 * as well.
1778 */
1779static void pl011_enable_interrupts(struct uart_amba_port *uap)
1780{
1781	unsigned long flags;
1782	unsigned int i;
1783
1784	uart_port_lock_irqsave(&uap->port, &flags);
1785
1786	/* Clear out any spuriously appearing RX interrupts */
1787	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1788
1789	/*
1790	 * RXIS is asserted only when the RX FIFO transitions from below
1791	 * to above the trigger threshold.  If the RX FIFO is already
1792	 * full to the threshold this can't happen and RXIS will now be
1793	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1794	 */
1795	for (i = 0; i < uap->fifosize * 2; ++i) {
1796		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1797			break;
1798
1799		pl011_read(uap, REG_DR);
1800	}
1801
1802	uap->im = UART011_RTIM;
1803	if (!pl011_dma_rx_running(uap))
1804		uap->im |= UART011_RXIM;
1805	pl011_write(uap->im, uap, REG_IMSC);
1806	uart_port_unlock_irqrestore(&uap->port, flags);
1807}
1808
1809static void pl011_unthrottle_rx(struct uart_port *port)
1810{
1811	struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1812	unsigned long flags;
1813
1814	uart_port_lock_irqsave(&uap->port, &flags);
1815
1816	uap->im = UART011_RTIM;
1817	if (!pl011_dma_rx_running(uap))
1818		uap->im |= UART011_RXIM;
1819
1820	pl011_write(uap->im, uap, REG_IMSC);
1821
1822#ifdef CONFIG_DMA_ENGINE
1823	if (uap->using_rx_dma) {
1824		uap->dmacr |= UART011_RXDMAE;
1825		pl011_write(uap->dmacr, uap, REG_DMACR);
1826	}
1827#endif
1828
1829	uart_port_unlock_irqrestore(&uap->port, flags);
1830}
1831
1832static int pl011_startup(struct uart_port *port)
1833{
1834	struct uart_amba_port *uap =
1835	    container_of(port, struct uart_amba_port, port);
1836	unsigned int cr;
1837	int retval;
1838
1839	retval = pl011_hwinit(port);
1840	if (retval)
1841		goto clk_dis;
1842
1843	retval = pl011_allocate_irq(uap);
1844	if (retval)
1845		goto clk_dis;
1846
1847	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1848
1849	uart_port_lock_irq(&uap->port);
1850
1851	cr = pl011_read(uap, REG_CR);
1852	cr &= UART011_CR_RTS | UART011_CR_DTR;
1853	cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1854
1855	if (!(port->rs485.flags & SER_RS485_ENABLED))
1856		cr |= UART011_CR_TXE;
1857
1858	pl011_write(cr, uap, REG_CR);
1859
1860	uart_port_unlock_irq(&uap->port);
1861
1862	/*
1863	 * initialise the old status of the modem signals
1864	 */
1865	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1866
1867	/* Startup DMA */
1868	pl011_dma_startup(uap);
1869
1870	pl011_enable_interrupts(uap);
1871
1872	return 0;
1873
1874 clk_dis:
1875	clk_disable_unprepare(uap->clk);
1876	return retval;
1877}
1878
1879static int sbsa_uart_startup(struct uart_port *port)
1880{
1881	struct uart_amba_port *uap =
1882		container_of(port, struct uart_amba_port, port);
1883	int retval;
1884
1885	retval = pl011_hwinit(port);
1886	if (retval)
1887		return retval;
1888
1889	retval = pl011_allocate_irq(uap);
1890	if (retval)
1891		return retval;
1892
1893	/* The SBSA UART does not support any modem status lines. */
1894	uap->old_status = 0;
1895
1896	pl011_enable_interrupts(uap);
1897
1898	return 0;
1899}
1900
1901static void pl011_shutdown_channel(struct uart_amba_port *uap, unsigned int lcrh)
1902{
1903	unsigned long val;
1904
1905	val = pl011_read(uap, lcrh);
1906	val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1907	pl011_write(val, uap, lcrh);
1908}
1909
1910/*
1911 * disable the port. It should not disable RTS and DTR.
1912 * Also RTS and DTR state should be preserved to restore
1913 * it during startup().
1914 */
1915static void pl011_disable_uart(struct uart_amba_port *uap)
1916{
1917	unsigned int cr;
1918
1919	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1920	uart_port_lock_irq(&uap->port);
1921	cr = pl011_read(uap, REG_CR);
1922	cr &= UART011_CR_RTS | UART011_CR_DTR;
1923	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1924	pl011_write(cr, uap, REG_CR);
1925	uart_port_unlock_irq(&uap->port);
1926
1927	/*
1928	 * disable break condition and fifos
1929	 */
1930	pl011_shutdown_channel(uap, REG_LCRH_RX);
1931	if (pl011_split_lcrh(uap))
1932		pl011_shutdown_channel(uap, REG_LCRH_TX);
1933}
1934
1935static void pl011_disable_interrupts(struct uart_amba_port *uap)
1936{
1937	uart_port_lock_irq(&uap->port);
1938
1939	/* mask all interrupts and clear all pending ones */
1940	uap->im = 0;
1941	pl011_write(uap->im, uap, REG_IMSC);
1942	pl011_write(0xffff, uap, REG_ICR);
1943
1944	uart_port_unlock_irq(&uap->port);
1945}
1946
1947static void pl011_shutdown(struct uart_port *port)
1948{
1949	struct uart_amba_port *uap =
1950		container_of(port, struct uart_amba_port, port);
1951
1952	pl011_disable_interrupts(uap);
1953
1954	pl011_dma_shutdown(uap);
1955
1956	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1957		pl011_rs485_tx_stop(uap);
1958
1959	free_irq(uap->port.irq, uap);
1960
1961	pl011_disable_uart(uap);
1962
1963	/*
1964	 * Shut down the clock producer
1965	 */
1966	clk_disable_unprepare(uap->clk);
1967	/* Optionally let pins go into sleep states */
1968	pinctrl_pm_select_sleep_state(port->dev);
1969
1970	if (dev_get_platdata(uap->port.dev)) {
1971		struct amba_pl011_data *plat;
1972
1973		plat = dev_get_platdata(uap->port.dev);
1974		if (plat->exit)
1975			plat->exit();
1976	}
1977
1978	if (uap->port.ops->flush_buffer)
1979		uap->port.ops->flush_buffer(port);
1980}
1981
1982static void sbsa_uart_shutdown(struct uart_port *port)
1983{
1984	struct uart_amba_port *uap =
1985		container_of(port, struct uart_amba_port, port);
1986
1987	pl011_disable_interrupts(uap);
1988
1989	free_irq(uap->port.irq, uap);
1990
1991	if (uap->port.ops->flush_buffer)
1992		uap->port.ops->flush_buffer(port);
1993}
1994
1995static void
1996pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1997{
1998	port->read_status_mask = UART011_DR_OE | 255;
1999	if (termios->c_iflag & INPCK)
2000		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2001	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2002		port->read_status_mask |= UART011_DR_BE;
2003
2004	/*
2005	 * Characters to ignore
2006	 */
2007	port->ignore_status_mask = 0;
2008	if (termios->c_iflag & IGNPAR)
2009		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2010	if (termios->c_iflag & IGNBRK) {
2011		port->ignore_status_mask |= UART011_DR_BE;
2012		/*
2013		 * If we're ignoring parity and break indicators,
2014		 * ignore overruns too (for real raw support).
2015		 */
2016		if (termios->c_iflag & IGNPAR)
2017			port->ignore_status_mask |= UART011_DR_OE;
2018	}
2019
2020	/*
2021	 * Ignore all characters if CREAD is not set.
2022	 */
2023	if ((termios->c_cflag & CREAD) == 0)
2024		port->ignore_status_mask |= UART_DUMMY_DR_RX;
2025}
2026
2027static void
2028pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2029		  const struct ktermios *old)
2030{
2031	struct uart_amba_port *uap =
2032	    container_of(port, struct uart_amba_port, port);
2033	unsigned int lcr_h, old_cr;
2034	unsigned long flags;
2035	unsigned int baud, quot, clkdiv;
2036	unsigned int bits;
2037
2038	if (uap->vendor->oversampling)
2039		clkdiv = 8;
2040	else
2041		clkdiv = 16;
2042
2043	/*
2044	 * Ask the core to calculate the divisor for us.
2045	 */
2046	baud = uart_get_baud_rate(port, termios, old, 0,
2047				  port->uartclk / clkdiv);
2048#ifdef CONFIG_DMA_ENGINE
2049	/*
2050	 * Adjust RX DMA polling rate with baud rate if not specified.
2051	 */
2052	if (uap->dmarx.auto_poll_rate)
2053		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2054#endif
2055
2056	if (baud > port->uartclk / 16)
2057		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2058	else
2059		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2060
2061	switch (termios->c_cflag & CSIZE) {
2062	case CS5:
2063		lcr_h = UART01x_LCRH_WLEN_5;
2064		break;
2065	case CS6:
2066		lcr_h = UART01x_LCRH_WLEN_6;
2067		break;
2068	case CS7:
2069		lcr_h = UART01x_LCRH_WLEN_7;
2070		break;
2071	default: // CS8
2072		lcr_h = UART01x_LCRH_WLEN_8;
2073		break;
2074	}
2075	if (termios->c_cflag & CSTOPB)
2076		lcr_h |= UART01x_LCRH_STP2;
2077	if (termios->c_cflag & PARENB) {
2078		lcr_h |= UART01x_LCRH_PEN;
2079		if (!(termios->c_cflag & PARODD))
2080			lcr_h |= UART01x_LCRH_EPS;
2081		if (termios->c_cflag & CMSPAR)
2082			lcr_h |= UART011_LCRH_SPS;
2083	}
2084	if (uap->fifosize > 1)
2085		lcr_h |= UART01x_LCRH_FEN;
2086
2087	bits = tty_get_frame_size(termios->c_cflag);
2088
2089	uart_port_lock_irqsave(port, &flags);
2090
2091	/*
2092	 * Update the per-port timeout.
2093	 */
2094	uart_update_timeout(port, termios->c_cflag, baud);
2095
2096	/*
2097	 * Calculate the approximated time it takes to transmit one character
2098	 * with the given baud rate. We use this as the poll interval when we
2099	 * wait for the tx queue to empty.
2100	 */
2101	uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
2102
2103	pl011_setup_status_masks(port, termios);
2104
2105	if (UART_ENABLE_MS(port, termios->c_cflag))
2106		pl011_enable_ms(port);
2107
2108	if (port->rs485.flags & SER_RS485_ENABLED)
2109		termios->c_cflag &= ~CRTSCTS;
2110
2111	old_cr = pl011_read(uap, REG_CR);
2112
2113	if (termios->c_cflag & CRTSCTS) {
2114		if (old_cr & UART011_CR_RTS)
2115			old_cr |= UART011_CR_RTSEN;
2116
2117		old_cr |= UART011_CR_CTSEN;
2118		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2119	} else {
2120		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2121		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2122	}
2123
2124	if (uap->vendor->oversampling) {
2125		if (baud > port->uartclk / 16)
2126			old_cr |= ST_UART011_CR_OVSFACT;
2127		else
2128			old_cr &= ~ST_UART011_CR_OVSFACT;
2129	}
2130
2131	/*
2132	 * Workaround for the ST Micro oversampling variants to
2133	 * increase the bitrate slightly, by lowering the divisor,
2134	 * to avoid delayed sampling of start bit at high speeds,
2135	 * else we see data corruption.
2136	 */
2137	if (uap->vendor->oversampling) {
2138		if (baud >= 3000000 && baud < 3250000 && quot > 1)
2139			quot -= 1;
2140		else if (baud > 3250000 && quot > 2)
2141			quot -= 2;
2142	}
2143	/* Set baud rate */
2144	pl011_write(quot & 0x3f, uap, REG_FBRD);
2145	pl011_write(quot >> 6, uap, REG_IBRD);
2146
2147	/*
2148	 * ----------v----------v----------v----------v-----
2149	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2150	 * REG_FBRD & REG_IBRD.
2151	 * ----------^----------^----------^----------^-----
2152	 */
2153	pl011_write_lcr_h(uap, lcr_h);
2154
2155	/*
2156	 * Receive was disabled by pl011_disable_uart during shutdown.
2157	 * Need to reenable receive if you need to use a tty_driver
2158	 * returns from tty_find_polling_driver() after a port shutdown.
2159	 */
2160	old_cr |= UART011_CR_RXE;
2161	pl011_write(old_cr, uap, REG_CR);
2162
2163	uart_port_unlock_irqrestore(port, flags);
2164}
2165
2166static void
2167sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2168		      const struct ktermios *old)
2169{
2170	struct uart_amba_port *uap =
2171	    container_of(port, struct uart_amba_port, port);
2172	unsigned long flags;
2173
2174	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2175
2176	/* The SBSA UART only supports 8n1 without hardware flow control. */
2177	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2178	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2179	termios->c_cflag |= CS8 | CLOCAL;
2180
2181	uart_port_lock_irqsave(port, &flags);
2182	uart_update_timeout(port, CS8, uap->fixed_baud);
2183	pl011_setup_status_masks(port, termios);
2184	uart_port_unlock_irqrestore(port, flags);
2185}
2186
2187static const char *pl011_type(struct uart_port *port)
2188{
2189	struct uart_amba_port *uap =
2190	    container_of(port, struct uart_amba_port, port);
2191	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2192}
2193
2194/*
2195 * Configure/autoconfigure the port.
2196 */
2197static void pl011_config_port(struct uart_port *port, int flags)
2198{
2199	if (flags & UART_CONFIG_TYPE)
2200		port->type = PORT_AMBA;
2201}
2202
2203/*
2204 * verify the new serial_struct (for TIOCSSERIAL).
2205 */
2206static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2207{
2208	int ret = 0;
2209
2210	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2211		ret = -EINVAL;
2212	if (ser->irq < 0 || ser->irq >= irq_get_nr_irqs())
2213		ret = -EINVAL;
2214	if (ser->baud_base < 9600)
2215		ret = -EINVAL;
2216	if (port->mapbase != (unsigned long)ser->iomem_base)
2217		ret = -EINVAL;
2218	return ret;
2219}
2220
2221static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2222			      struct serial_rs485 *rs485)
2223{
2224	struct uart_amba_port *uap =
2225		container_of(port, struct uart_amba_port, port);
2226
2227	if (port->rs485.flags & SER_RS485_ENABLED)
2228		pl011_rs485_tx_stop(uap);
2229
2230	/* Make sure auto RTS is disabled */
2231	if (rs485->flags & SER_RS485_ENABLED) {
2232		u32 cr = pl011_read(uap, REG_CR);
2233
2234		cr &= ~UART011_CR_RTSEN;
2235		pl011_write(cr, uap, REG_CR);
2236		port->status &= ~UPSTAT_AUTORTS;
2237	}
2238
2239	return 0;
2240}
2241
2242static const struct uart_ops amba_pl011_pops = {
2243	.tx_empty	= pl011_tx_empty,
2244	.set_mctrl	= pl011_set_mctrl,
2245	.get_mctrl	= pl011_get_mctrl,
2246	.stop_tx	= pl011_stop_tx,
2247	.start_tx	= pl011_start_tx,
2248	.stop_rx	= pl011_stop_rx,
2249	.throttle	= pl011_throttle_rx,
2250	.unthrottle	= pl011_unthrottle_rx,
2251	.enable_ms	= pl011_enable_ms,
2252	.break_ctl	= pl011_break_ctl,
2253	.startup	= pl011_startup,
2254	.shutdown	= pl011_shutdown,
2255	.flush_buffer	= pl011_dma_flush_buffer,
2256	.set_termios	= pl011_set_termios,
2257	.type		= pl011_type,
2258	.config_port	= pl011_config_port,
2259	.verify_port	= pl011_verify_port,
2260#ifdef CONFIG_CONSOLE_POLL
2261	.poll_init     = pl011_hwinit,
2262	.poll_get_char = pl011_get_poll_char,
2263	.poll_put_char = pl011_put_poll_char,
2264#endif
2265};
2266
2267static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2268{
2269}
2270
2271static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2272{
2273	return 0;
2274}
2275
2276static const struct uart_ops sbsa_uart_pops = {
2277	.tx_empty	= pl011_tx_empty,
2278	.set_mctrl	= sbsa_uart_set_mctrl,
2279	.get_mctrl	= sbsa_uart_get_mctrl,
2280	.stop_tx	= pl011_stop_tx,
2281	.start_tx	= pl011_start_tx,
2282	.stop_rx	= pl011_stop_rx,
2283	.startup	= sbsa_uart_startup,
2284	.shutdown	= sbsa_uart_shutdown,
2285	.set_termios	= sbsa_uart_set_termios,
2286	.type		= pl011_type,
2287	.config_port	= pl011_config_port,
2288	.verify_port	= pl011_verify_port,
2289#ifdef CONFIG_CONSOLE_POLL
2290	.poll_init     = pl011_hwinit,
2291	.poll_get_char = pl011_get_poll_char,
2292	.poll_put_char = pl011_put_poll_char,
2293#endif
2294};
2295
2296static struct uart_amba_port *amba_ports[UART_NR];
2297
2298#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2299
2300static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2301{
2302	struct uart_amba_port *uap =
2303	    container_of(port, struct uart_amba_port, port);
2304
2305	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2306		cpu_relax();
2307	pl011_write(ch, uap, REG_DR);
2308}
2309
2310static void
2311pl011_console_write(struct console *co, const char *s, unsigned int count)
2312{
2313	struct uart_amba_port *uap = amba_ports[co->index];
2314	unsigned int old_cr = 0, new_cr;
2315	unsigned long flags;
2316	int locked = 1;
2317
2318	clk_enable(uap->clk);
2319
2320	if (oops_in_progress)
2321		locked = uart_port_trylock_irqsave(&uap->port, &flags);
 
 
 
2322	else
2323		uart_port_lock_irqsave(&uap->port, &flags);
2324
2325	/*
2326	 *	First save the CR then disable the interrupts
2327	 */
2328	if (!uap->vendor->always_enabled) {
2329		old_cr = pl011_read(uap, REG_CR);
2330		new_cr = old_cr & ~UART011_CR_CTSEN;
2331		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2332		pl011_write(new_cr, uap, REG_CR);
2333	}
2334
2335	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2336
2337	/*
2338	 *	Finally, wait for transmitter to become empty and restore the
2339	 *	TCR. Allow feature register bits to be inverted to work around
2340	 *	errata.
2341	 */
2342	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2343						& uap->vendor->fr_busy)
2344		cpu_relax();
2345	if (!uap->vendor->always_enabled)
2346		pl011_write(old_cr, uap, REG_CR);
2347
2348	if (locked)
2349		uart_port_unlock_irqrestore(&uap->port, flags);
 
2350
2351	clk_disable(uap->clk);
2352}
2353
2354static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2355				      int *parity, int *bits)
2356{
2357	unsigned int lcr_h, ibrd, fbrd;
2358
2359	if (!(pl011_read(uap, REG_CR) & UART01x_CR_UARTEN))
2360		return;
2361
2362	lcr_h = pl011_read(uap, REG_LCRH_TX);
2363
2364	*parity = 'n';
2365	if (lcr_h & UART01x_LCRH_PEN) {
2366		if (lcr_h & UART01x_LCRH_EPS)
2367			*parity = 'e';
2368		else
2369			*parity = 'o';
2370	}
2371
2372	if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2373		*bits = 7;
2374	else
2375		*bits = 8;
2376
2377	ibrd = pl011_read(uap, REG_IBRD);
2378	fbrd = pl011_read(uap, REG_FBRD);
2379
2380	*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2381
2382	if (uap->vendor->oversampling &&
2383	    (pl011_read(uap, REG_CR) & ST_UART011_CR_OVSFACT))
2384		*baud *= 2;
2385}
2386
2387static int pl011_console_setup(struct console *co, char *options)
2388{
2389	struct uart_amba_port *uap;
2390	int baud = 38400;
2391	int bits = 8;
2392	int parity = 'n';
2393	int flow = 'n';
2394	int ret;
2395
2396	/*
2397	 * Check whether an invalid uart number has been specified, and
2398	 * if so, search for the first available port that does have
2399	 * console support.
2400	 */
2401	if (co->index >= UART_NR)
2402		co->index = 0;
2403	uap = amba_ports[co->index];
2404	if (!uap)
2405		return -ENODEV;
2406
2407	/* Allow pins to be muxed in and configured */
2408	pinctrl_pm_select_default_state(uap->port.dev);
2409
2410	ret = clk_prepare(uap->clk);
2411	if (ret)
2412		return ret;
2413
2414	if (dev_get_platdata(uap->port.dev)) {
2415		struct amba_pl011_data *plat;
2416
2417		plat = dev_get_platdata(uap->port.dev);
2418		if (plat->init)
2419			plat->init();
2420	}
2421
2422	uap->port.uartclk = clk_get_rate(uap->clk);
2423
2424	if (uap->vendor->fixed_options) {
2425		baud = uap->fixed_baud;
2426	} else {
2427		if (options)
2428			uart_parse_options(options,
2429					   &baud, &parity, &bits, &flow);
2430		else
2431			pl011_console_get_options(uap, &baud, &parity, &bits);
2432	}
2433
2434	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2435}
2436
2437/**
2438 *	pl011_console_match - non-standard console matching
2439 *	@co:	  registering console
2440 *	@name:	  name from console command line
2441 *	@idx:	  index from console command line
2442 *	@options: ptr to option string from console command line
2443 *
2444 *	Only attempts to match console command lines of the form:
2445 *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2446 *	    console=pl011,0x<addr>[,<options>]
2447 *	This form is used to register an initial earlycon boot console and
2448 *	replace it with the amba_console at pl011 driver init.
2449 *
2450 *	Performs console setup for a match (as required by interface)
2451 *	If no <options> are specified, then assume the h/w is already setup.
2452 *
2453 *	Returns 0 if console matches; otherwise non-zero to use default matching
2454 */
2455static int pl011_console_match(struct console *co, char *name, int idx,
2456			       char *options)
2457{
2458	unsigned char iotype;
2459	resource_size_t addr;
2460	int i;
2461
2462	/*
2463	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2464	 * have a distinct console name, so make sure we check for that.
2465	 * The actual implementation of the erratum occurs in the probe
2466	 * function.
2467	 */
2468	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2469		return -ENODEV;
2470
2471	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2472		return -ENODEV;
2473
2474	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2475		return -ENODEV;
2476
2477	/* try to match the port specified on the command line */
2478	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2479		struct uart_port *port;
2480
2481		if (!amba_ports[i])
2482			continue;
2483
2484		port = &amba_ports[i]->port;
2485
2486		if (port->mapbase != addr)
2487			continue;
2488
2489		co->index = i;
2490		uart_port_set_cons(port, co);
2491		return pl011_console_setup(co, options);
2492	}
2493
2494	return -ENODEV;
2495}
2496
2497static struct uart_driver amba_reg;
2498static struct console amba_console = {
2499	.name		= "ttyAMA",
2500	.write		= pl011_console_write,
2501	.device		= uart_console_device,
2502	.setup		= pl011_console_setup,
2503	.match		= pl011_console_match,
2504	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2505	.index		= -1,
2506	.data		= &amba_reg,
2507};
2508
2509#define AMBA_CONSOLE	(&amba_console)
2510
2511static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2512{
2513	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2514		cpu_relax();
2515	writel(c, port->membase + UART01x_DR);
2516	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2517		cpu_relax();
2518}
2519
2520static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned int n)
2521{
2522	struct earlycon_device *dev = con->data;
2523
2524	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2525}
2526
2527static void pl011_putc(struct uart_port *port, unsigned char c)
2528{
2529	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2530		cpu_relax();
2531	if (port->iotype == UPIO_MEM32)
2532		writel(c, port->membase + UART01x_DR);
2533	else
2534		writeb(c, port->membase + UART01x_DR);
2535	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2536		cpu_relax();
2537}
2538
2539static void pl011_early_write(struct console *con, const char *s, unsigned int n)
2540{
2541	struct earlycon_device *dev = con->data;
2542
2543	uart_console_write(&dev->port, s, n, pl011_putc);
2544}
2545
2546#ifdef CONFIG_CONSOLE_POLL
2547static int pl011_getc(struct uart_port *port)
2548{
2549	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2550		return NO_POLL_CHAR;
2551
2552	if (port->iotype == UPIO_MEM32)
2553		return readl(port->membase + UART01x_DR);
2554	else
2555		return readb(port->membase + UART01x_DR);
2556}
2557
2558static int pl011_early_read(struct console *con, char *s, unsigned int n)
2559{
2560	struct earlycon_device *dev = con->data;
2561	int ch, num_read = 0;
2562
2563	while (num_read < n) {
2564		ch = pl011_getc(&dev->port);
2565		if (ch == NO_POLL_CHAR)
2566			break;
2567
2568		s[num_read++] = ch;
2569	}
2570
2571	return num_read;
2572}
2573#else
2574#define pl011_early_read NULL
2575#endif
2576
2577/*
2578 * On non-ACPI systems, earlycon is enabled by specifying
2579 * "earlycon=pl011,<address>" on the kernel command line.
2580 *
2581 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2582 * by specifying only "earlycon" on the command line.  Because it requires
2583 * SPCR, the console starts after ACPI is parsed, which is later than a
2584 * traditional early console.
2585 *
2586 * To get the traditional early console that starts before ACPI is parsed,
2587 * specify the full "earlycon=pl011,<address>" option.
2588 */
2589static int __init pl011_early_console_setup(struct earlycon_device *device,
2590					    const char *opt)
2591{
2592	if (!device->port.membase)
2593		return -ENODEV;
2594
2595	device->con->write = pl011_early_write;
2596	device->con->read = pl011_early_read;
2597
2598	return 0;
2599}
2600
2601OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2602
2603OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2604
2605/*
2606 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2607 * Erratum 44, traditional earlycon can be enabled by specifying
2608 * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2609 *
2610 * Alternatively, you can just specify "earlycon", and the early console
2611 * will be enabled with the information from the SPCR table.  In this
2612 * case, the SPCR code will detect the need for the E44 work-around,
2613 * and set the console name to "qdf2400_e44".
2614 */
2615static int __init
2616qdf2400_e44_early_console_setup(struct earlycon_device *device,
2617				const char *opt)
2618{
2619	if (!device->port.membase)
2620		return -ENODEV;
2621
2622	device->con->write = qdf2400_e44_early_write;
2623	return 0;
2624}
2625
2626EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2627
2628#else
2629#define AMBA_CONSOLE	NULL
2630#endif
2631
2632static struct uart_driver amba_reg = {
2633	.owner			= THIS_MODULE,
2634	.driver_name		= "ttyAMA",
2635	.dev_name		= "ttyAMA",
2636	.major			= SERIAL_AMBA_MAJOR,
2637	.minor			= SERIAL_AMBA_MINOR,
2638	.nr			= UART_NR,
2639	.cons			= AMBA_CONSOLE,
2640};
2641
2642static int pl011_probe_dt_alias(int index, struct device *dev)
2643{
2644	struct device_node *np;
2645	static bool seen_dev_with_alias;
2646	static bool seen_dev_without_alias;
2647	int ret = index;
2648
2649	if (!IS_ENABLED(CONFIG_OF))
2650		return ret;
2651
2652	np = dev->of_node;
2653	if (!np)
2654		return ret;
2655
2656	ret = of_alias_get_id(np, "serial");
2657	if (ret < 0) {
2658		seen_dev_without_alias = true;
2659		ret = index;
2660	} else {
2661		seen_dev_with_alias = true;
2662		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret]) {
2663			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2664			ret = index;
2665		}
2666	}
2667
2668	if (seen_dev_with_alias && seen_dev_without_alias)
2669		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2670
2671	return ret;
2672}
2673
2674/* unregisters the driver also if no more ports are left */
2675static void pl011_unregister_port(struct uart_amba_port *uap)
2676{
2677	int i;
2678	bool busy = false;
2679
2680	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2681		if (amba_ports[i] == uap)
2682			amba_ports[i] = NULL;
2683		else if (amba_ports[i])
2684			busy = true;
2685	}
2686	pl011_dma_remove(uap);
2687	if (!busy)
2688		uart_unregister_driver(&amba_reg);
2689}
2690
2691static int pl011_find_free_port(void)
2692{
2693	int i;
2694
2695	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2696		if (!amba_ports[i])
2697			return i;
2698
2699	return -EBUSY;
2700}
2701
 
 
 
 
 
 
 
 
 
 
 
 
2702static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2703			    struct resource *mmiobase, int index)
2704{
2705	void __iomem *base;
2706	int ret;
2707
2708	base = devm_ioremap_resource(dev, mmiobase);
2709	if (IS_ERR(base))
2710		return PTR_ERR(base);
2711
2712	index = pl011_probe_dt_alias(index, dev);
2713
2714	uap->port.dev = dev;
2715	uap->port.mapbase = mmiobase->start;
2716	uap->port.membase = base;
2717	uap->port.fifosize = uap->fifosize;
2718	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2719	uap->port.flags = UPF_BOOT_AUTOCONF;
2720	uap->port.line = index;
2721
2722	ret = uart_get_rs485_mode(&uap->port);
2723	if (ret)
2724		return ret;
2725
2726	amba_ports[index] = uap;
2727
2728	return 0;
2729}
2730
2731static int pl011_register_port(struct uart_amba_port *uap)
2732{
2733	int ret, i;
2734
2735	/* Ensure interrupts from this UART are masked and cleared */
2736	pl011_write(0, uap, REG_IMSC);
2737	pl011_write(0xffff, uap, REG_ICR);
2738
2739	if (!amba_reg.state) {
2740		ret = uart_register_driver(&amba_reg);
2741		if (ret < 0) {
2742			dev_err(uap->port.dev,
2743				"Failed to register AMBA-PL011 driver\n");
2744			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2745				if (amba_ports[i] == uap)
2746					amba_ports[i] = NULL;
2747			return ret;
2748		}
2749	}
2750
2751	ret = uart_add_one_port(&amba_reg, &uap->port);
2752	if (ret)
2753		pl011_unregister_port(uap);
2754
2755	return ret;
2756}
2757
2758static const struct serial_rs485 pl011_rs485_supported = {
2759	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2760		 SER_RS485_RX_DURING_TX,
2761	.delay_rts_before_send = 1,
2762	.delay_rts_after_send = 1,
2763};
2764
2765static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2766{
2767	struct uart_amba_port *uap;
2768	struct vendor_data *vendor = id->data;
2769	int portnr, ret;
2770	u32 val;
2771
2772	portnr = pl011_find_free_port();
2773	if (portnr < 0)
2774		return portnr;
2775
2776	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2777			   GFP_KERNEL);
2778	if (!uap)
2779		return -ENOMEM;
2780
2781	uap->clk = devm_clk_get(&dev->dev, NULL);
2782	if (IS_ERR(uap->clk))
2783		return PTR_ERR(uap->clk);
2784
2785	uap->reg_offset = vendor->reg_offset;
2786	uap->vendor = vendor;
2787	uap->fifosize = vendor->get_fifosize(dev);
2788	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2789	uap->port.irq = dev->irq[0];
2790	uap->port.ops = &amba_pl011_pops;
2791	uap->port.rs485_config = pl011_rs485_config;
2792	uap->port.rs485_supported = pl011_rs485_supported;
2793	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2794
2795	if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2796		switch (val) {
2797		case 1:
2798			uap->port.iotype = UPIO_MEM;
2799			break;
2800		case 4:
2801			uap->port.iotype = UPIO_MEM32;
2802			break;
2803		default:
2804			dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2805				 val);
2806			return -EINVAL;
2807		}
2808	}
2809
2810	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2811	if (ret)
2812		return ret;
2813
2814	amba_set_drvdata(dev, uap);
2815
2816	return pl011_register_port(uap);
2817}
2818
2819static void pl011_remove(struct amba_device *dev)
2820{
2821	struct uart_amba_port *uap = amba_get_drvdata(dev);
2822
2823	uart_remove_one_port(&amba_reg, &uap->port);
2824	pl011_unregister_port(uap);
2825}
2826
2827#ifdef CONFIG_PM_SLEEP
2828static int pl011_suspend(struct device *dev)
2829{
2830	struct uart_amba_port *uap = dev_get_drvdata(dev);
2831
2832	if (!uap)
2833		return -EINVAL;
2834
2835	return uart_suspend_port(&amba_reg, &uap->port);
2836}
2837
2838static int pl011_resume(struct device *dev)
2839{
2840	struct uart_amba_port *uap = dev_get_drvdata(dev);
2841
2842	if (!uap)
2843		return -EINVAL;
2844
2845	return uart_resume_port(&amba_reg, &uap->port);
2846}
2847#endif
2848
2849static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2850
2851#ifdef CONFIG_ACPI_SPCR_TABLE
2852static void qpdf2400_erratum44_workaround(struct device *dev,
2853					  struct uart_amba_port *uap)
2854{
2855	if (!qdf2400_e44_present)
2856		return;
2857
2858	dev_info(dev, "working around QDF2400 SoC erratum 44\n");
2859	uap->vendor = &vendor_qdt_qdf2400_e44;
2860}
2861#else
2862static void qpdf2400_erratum44_workaround(struct device *dev,
2863					  struct uart_amba_port *uap)
2864{ /* empty */ }
2865#endif
2866
2867static int sbsa_uart_probe(struct platform_device *pdev)
2868{
2869	struct uart_amba_port *uap;
2870	struct resource *r;
2871	int portnr, ret;
2872	int baudrate;
2873
2874	/*
2875	 * Check the mandatory baud rate parameter in the DT node early
2876	 * so that we can easily exit with the error.
2877	 */
2878	if (pdev->dev.of_node) {
2879		struct device_node *np = pdev->dev.of_node;
2880
2881		ret = of_property_read_u32(np, "current-speed", &baudrate);
2882		if (ret)
2883			return ret;
2884	} else {
2885		baudrate = 115200;
2886	}
2887
2888	portnr = pl011_find_free_port();
2889	if (portnr < 0)
2890		return portnr;
2891
2892	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2893			   GFP_KERNEL);
2894	if (!uap)
2895		return -ENOMEM;
2896
2897	ret = platform_get_irq(pdev, 0);
2898	if (ret < 0)
2899		return ret;
2900	uap->port.irq	= ret;
2901
2902	uap->vendor = &vendor_sbsa;
2903	qpdf2400_erratum44_workaround(&pdev->dev, uap);
2904
2905	uap->reg_offset	= uap->vendor->reg_offset;
2906	uap->fifosize	= 32;
2907	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2908	uap->port.ops	= &sbsa_uart_pops;
2909	uap->fixed_baud = baudrate;
2910
2911	snprintf(uap->type, sizeof(uap->type), "SBSA");
2912
2913	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2914
2915	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2916	if (ret)
2917		return ret;
2918
2919	platform_set_drvdata(pdev, uap);
2920
2921	return pl011_register_port(uap);
2922}
2923
2924static void sbsa_uart_remove(struct platform_device *pdev)
2925{
2926	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2927
2928	uart_remove_one_port(&amba_reg, &uap->port);
2929	pl011_unregister_port(uap);
2930}
2931
2932static const struct of_device_id sbsa_uart_of_match[] = {
2933	{ .compatible = "arm,sbsa-uart", },
2934	{},
2935};
2936MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2937
2938static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2939	{ "ARMH0011", 0 },
2940	{ "ARMHB000", 0 },
2941	{},
2942};
2943MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2944
2945static struct platform_driver arm_sbsa_uart_platform_driver = {
2946	.probe		= sbsa_uart_probe,
2947	.remove		= sbsa_uart_remove,
2948	.driver	= {
2949		.name	= "sbsa-uart",
2950		.pm	= &pl011_dev_pm_ops,
2951		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2952		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2953		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2954	},
2955};
2956
2957static const struct amba_id pl011_ids[] = {
2958	{
2959		.id	= 0x00041011,
2960		.mask	= 0x000fffff,
2961		.data	= &vendor_arm,
2962	},
2963	{
2964		.id	= 0x00380802,
2965		.mask	= 0x00ffffff,
2966		.data	= &vendor_st,
2967	},
2968	{ 0, 0 },
2969};
2970
2971MODULE_DEVICE_TABLE(amba, pl011_ids);
2972
2973static struct amba_driver pl011_driver = {
2974	.drv = {
2975		.name	= "uart-pl011",
2976		.pm	= &pl011_dev_pm_ops,
2977		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2978	},
2979	.id_table	= pl011_ids,
2980	.probe		= pl011_probe,
2981	.remove		= pl011_remove,
2982};
2983
2984static int __init pl011_init(void)
2985{
2986	pr_info("Serial: AMBA PL011 UART driver\n");
2987
2988	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2989		pr_warn("could not register SBSA UART platform driver\n");
2990	return amba_driver_register(&pl011_driver);
2991}
2992
2993static void __exit pl011_exit(void)
2994{
2995	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2996	amba_driver_unregister(&pl011_driver);
2997}
2998
2999/*
3000 * While this can be a module, if builtin it's most likely the console
3001 * So let's leave module_exit but move module_init to an earlier place
3002 */
3003arch_initcall(pl011_init);
3004module_exit(pl011_exit);
3005
3006MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3007MODULE_DESCRIPTION("ARM AMBA serial port driver");
3008MODULE_LICENSE("GPL");