Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/pci_hotplug.h>
  31#include <linux/vmalloc.h>
  32#include <asm/dma.h>
  33#include <linux/aer.h>
  34#include <linux/bitfield.h>
  35#include "pci.h"
  36
  37DEFINE_MUTEX(pci_slot_mutex);
  38
  39const char *pci_power_names[] = {
  40	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  41};
  42EXPORT_SYMBOL_GPL(pci_power_names);
  43
  44#ifdef CONFIG_X86_32
  45int isa_dma_bridge_buggy;
  46EXPORT_SYMBOL(isa_dma_bridge_buggy);
  47#endif
  48
  49int pci_pci_problems;
  50EXPORT_SYMBOL(pci_pci_problems);
  51
  52unsigned int pci_pm_d3hot_delay;
  53
  54static void pci_pme_list_scan(struct work_struct *work);
  55
  56static LIST_HEAD(pci_pme_list);
  57static DEFINE_MUTEX(pci_pme_list_mutex);
  58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  59
  60struct pci_pme_device {
  61	struct list_head list;
  62	struct pci_dev *dev;
  63};
  64
  65#define PME_TIMEOUT 1000 /* How long between PME checks */
  66
  67/*
  68 * Following exit from Conventional Reset, devices must be ready within 1 sec
  69 * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
  70 * Reset (PCIe r6.0 sec 5.8).
  71 */
  72#define PCI_RESET_WAIT 1000 /* msec */
  73
  74/*
  75 * Devices may extend the 1 sec period through Request Retry Status
  76 * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
  77 * limit, but 60 sec ought to be enough for any device to become
  78 * responsive.
  79 */
  80#define PCIE_RESET_READY_POLL_MS 60000 /* msec */
  81
  82static void pci_dev_d3_sleep(struct pci_dev *dev)
  83{
  84	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
  85	unsigned int upper;
  86
  87	if (delay_ms) {
  88		/* Use a 20% upper bound, 1ms minimum */
  89		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
  90		usleep_range(delay_ms * USEC_PER_MSEC,
  91			     (delay_ms + upper) * USEC_PER_MSEC);
  92	}
  93}
  94
  95bool pci_reset_supported(struct pci_dev *dev)
  96{
  97	return dev->reset_methods[0] != 0;
  98}
  99
 100#ifdef CONFIG_PCI_DOMAINS
 101int pci_domains_supported = 1;
 102#endif
 103
 104#define DEFAULT_CARDBUS_IO_SIZE		(256)
 105#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
 106/* pci=cbmemsize=nnM,cbiosize=nn can override this */
 107unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
 108unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
 109
 110#define DEFAULT_HOTPLUG_IO_SIZE		(256)
 111#define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
 112#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
 113/* hpiosize=nn can override this */
 114unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
 115/*
 116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
 117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
 118 * pci=hpmemsize=nnM overrides both
 119 */
 120unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
 121unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
 122
 123#define DEFAULT_HOTPLUG_BUS_SIZE	1
 124unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 125
 126
 127/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
 128#ifdef CONFIG_PCIE_BUS_TUNE_OFF
 129enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 130#elif defined CONFIG_PCIE_BUS_SAFE
 131enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
 132#elif defined CONFIG_PCIE_BUS_PERFORMANCE
 133enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
 134#elif defined CONFIG_PCIE_BUS_PEER2PEER
 135enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
 136#else
 137enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 138#endif
 139
 140/*
 141 * The default CLS is used if arch didn't set CLS explicitly and not
 142 * all pci devices agree on the same value.  Arch can override either
 143 * the dfl or actual value as it sees fit.  Don't forget this is
 144 * measured in 32-bit words, not bytes.
 145 */
 146u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 147u8 pci_cache_line_size;
 148
 149/*
 150 * If we set up a device for bus mastering, we need to check the latency
 151 * timer as certain BIOSes forget to set it properly.
 152 */
 153unsigned int pcibios_max_latency = 255;
 154
 155/* If set, the PCIe ARI capability will not be used. */
 156static bool pcie_ari_disabled;
 157
 158/* If set, the PCIe ATS capability will not be used. */
 159static bool pcie_ats_disabled;
 160
 161/* If set, the PCI config space of each device is printed during boot. */
 162bool pci_early_dump;
 163
 164bool pci_ats_disabled(void)
 165{
 166	return pcie_ats_disabled;
 167}
 168EXPORT_SYMBOL_GPL(pci_ats_disabled);
 169
 170/* Disable bridge_d3 for all PCIe ports */
 171static bool pci_bridge_d3_disable;
 172/* Force bridge_d3 for all PCIe ports */
 173static bool pci_bridge_d3_force;
 174
 175static int __init pcie_port_pm_setup(char *str)
 176{
 177	if (!strcmp(str, "off"))
 178		pci_bridge_d3_disable = true;
 179	else if (!strcmp(str, "force"))
 180		pci_bridge_d3_force = true;
 181	return 1;
 182}
 183__setup("pcie_port_pm=", pcie_port_pm_setup);
 184
 185/**
 186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 187 * @bus: pointer to PCI bus structure to search
 188 *
 189 * Given a PCI bus, returns the highest PCI bus number present in the set
 190 * including the given PCI bus and its list of child PCI buses.
 191 */
 192unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 193{
 194	struct pci_bus *tmp;
 195	unsigned char max, n;
 196
 197	max = bus->busn_res.end;
 198	list_for_each_entry(tmp, &bus->children, node) {
 199		n = pci_bus_max_busnr(tmp);
 200		if (n > max)
 201			max = n;
 202	}
 203	return max;
 204}
 205EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 206
 207/**
 208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 209 * @pdev: the PCI device
 210 *
 211 * Returns error bits set in PCI_STATUS and clears them.
 212 */
 213int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 214{
 215	u16 status;
 216	int ret;
 217
 218	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 219	if (ret != PCIBIOS_SUCCESSFUL)
 220		return -EIO;
 221
 222	status &= PCI_STATUS_ERROR_BITS;
 223	if (status)
 224		pci_write_config_word(pdev, PCI_STATUS, status);
 225
 226	return status;
 227}
 228EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 229
 230#ifdef CONFIG_HAS_IOMEM
 231static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
 232					    bool write_combine)
 233{
 234	struct resource *res = &pdev->resource[bar];
 235	resource_size_t start = res->start;
 236	resource_size_t size = resource_size(res);
 237
 238	/*
 239	 * Make sure the BAR is actually a memory resource, not an IO resource
 240	 */
 241	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 242		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 243		return NULL;
 244	}
 245
 246	if (write_combine)
 247		return ioremap_wc(start, size);
 248
 249	return ioremap(start, size);
 250}
 251
 252void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 253{
 254	return __pci_ioremap_resource(pdev, bar, false);
 255}
 256EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 257
 258void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 259{
 260	return __pci_ioremap_resource(pdev, bar, true);
 261}
 262EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 263#endif
 264
 265/**
 266 * pci_dev_str_match_path - test if a path string matches a device
 267 * @dev: the PCI device to test
 268 * @path: string to match the device against
 269 * @endptr: pointer to the string after the match
 270 *
 271 * Test if a string (typically from a kernel parameter) formatted as a
 272 * path of device/function addresses matches a PCI device. The string must
 273 * be of the form:
 274 *
 275 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 276 *
 277 * A path for a device can be obtained using 'lspci -t'.  Using a path
 278 * is more robust against bus renumbering than using only a single bus,
 279 * device and function address.
 280 *
 281 * Returns 1 if the string matches the device, 0 if it does not and
 282 * a negative error code if it fails to parse the string.
 283 */
 284static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 285				  const char **endptr)
 286{
 287	int ret;
 288	unsigned int seg, bus, slot, func;
 289	char *wpath, *p;
 290	char end;
 291
 292	*endptr = strchrnul(path, ';');
 293
 294	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
 295	if (!wpath)
 296		return -ENOMEM;
 297
 298	while (1) {
 299		p = strrchr(wpath, '/');
 300		if (!p)
 301			break;
 302		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 303		if (ret != 2) {
 304			ret = -EINVAL;
 305			goto free_and_exit;
 306		}
 307
 308		if (dev->devfn != PCI_DEVFN(slot, func)) {
 309			ret = 0;
 310			goto free_and_exit;
 311		}
 312
 313		/*
 314		 * Note: we don't need to get a reference to the upstream
 315		 * bridge because we hold a reference to the top level
 316		 * device which should hold a reference to the bridge,
 317		 * and so on.
 318		 */
 319		dev = pci_upstream_bridge(dev);
 320		if (!dev) {
 321			ret = 0;
 322			goto free_and_exit;
 323		}
 324
 325		*p = 0;
 326	}
 327
 328	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 329		     &func, &end);
 330	if (ret != 4) {
 331		seg = 0;
 332		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 333		if (ret != 3) {
 334			ret = -EINVAL;
 335			goto free_and_exit;
 336		}
 337	}
 338
 339	ret = (seg == pci_domain_nr(dev->bus) &&
 340	       bus == dev->bus->number &&
 341	       dev->devfn == PCI_DEVFN(slot, func));
 342
 343free_and_exit:
 344	kfree(wpath);
 345	return ret;
 346}
 347
 348/**
 349 * pci_dev_str_match - test if a string matches a device
 350 * @dev: the PCI device to test
 351 * @p: string to match the device against
 352 * @endptr: pointer to the string after the match
 353 *
 354 * Test if a string (typically from a kernel parameter) matches a specified
 355 * PCI device. The string may be of one of the following formats:
 356 *
 357 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 358 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 359 *
 360 * The first format specifies a PCI bus/device/function address which
 361 * may change if new hardware is inserted, if motherboard firmware changes,
 362 * or due to changes caused in kernel parameters. If the domain is
 363 * left unspecified, it is taken to be 0.  In order to be robust against
 364 * bus renumbering issues, a path of PCI device/function numbers may be used
 365 * to address the specific device.  The path for a device can be determined
 366 * through the use of 'lspci -t'.
 367 *
 368 * The second format matches devices using IDs in the configuration
 369 * space which may match multiple devices in the system. A value of 0
 370 * for any field will match all devices. (Note: this differs from
 371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 372 * legacy reasons and convenience so users don't have to specify
 373 * FFFFFFFFs on the command line.)
 374 *
 375 * Returns 1 if the string matches the device, 0 if it does not and
 376 * a negative error code if the string cannot be parsed.
 377 */
 378static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 379			     const char **endptr)
 380{
 381	int ret;
 382	int count;
 383	unsigned short vendor, device, subsystem_vendor, subsystem_device;
 384
 385	if (strncmp(p, "pci:", 4) == 0) {
 386		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
 387		p += 4;
 388		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 389			     &subsystem_vendor, &subsystem_device, &count);
 390		if (ret != 4) {
 391			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 392			if (ret != 2)
 393				return -EINVAL;
 394
 395			subsystem_vendor = 0;
 396			subsystem_device = 0;
 397		}
 398
 399		p += count;
 400
 401		if ((!vendor || vendor == dev->vendor) &&
 402		    (!device || device == dev->device) &&
 403		    (!subsystem_vendor ||
 404			    subsystem_vendor == dev->subsystem_vendor) &&
 405		    (!subsystem_device ||
 406			    subsystem_device == dev->subsystem_device))
 407			goto found;
 408	} else {
 409		/*
 410		 * PCI Bus, Device, Function IDs are specified
 411		 * (optionally, may include a path of devfns following it)
 412		 */
 413		ret = pci_dev_str_match_path(dev, p, &p);
 414		if (ret < 0)
 415			return ret;
 416		else if (ret)
 417			goto found;
 418	}
 419
 420	*endptr = p;
 421	return 0;
 422
 423found:
 424	*endptr = p;
 425	return 1;
 426}
 427
 428static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 429				  u8 pos, int cap, int *ttl)
 430{
 431	u8 id;
 432	u16 ent;
 433
 434	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 435
 436	while ((*ttl)--) {
 437		if (pos < 0x40)
 438			break;
 439		pos &= ~3;
 440		pci_bus_read_config_word(bus, devfn, pos, &ent);
 441
 442		id = ent & 0xff;
 443		if (id == 0xff)
 444			break;
 445		if (id == cap)
 446			return pos;
 447		pos = (ent >> 8);
 448	}
 449	return 0;
 450}
 451
 452static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 453			      u8 pos, int cap)
 454{
 455	int ttl = PCI_FIND_CAP_TTL;
 456
 457	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 458}
 459
 460u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 461{
 462	return __pci_find_next_cap(dev->bus, dev->devfn,
 463				   pos + PCI_CAP_LIST_NEXT, cap);
 464}
 465EXPORT_SYMBOL_GPL(pci_find_next_capability);
 466
 467static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
 468				    unsigned int devfn, u8 hdr_type)
 469{
 470	u16 status;
 471
 472	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 473	if (!(status & PCI_STATUS_CAP_LIST))
 474		return 0;
 475
 476	switch (hdr_type) {
 477	case PCI_HEADER_TYPE_NORMAL:
 478	case PCI_HEADER_TYPE_BRIDGE:
 479		return PCI_CAPABILITY_LIST;
 480	case PCI_HEADER_TYPE_CARDBUS:
 481		return PCI_CB_CAPABILITY_LIST;
 482	}
 483
 484	return 0;
 485}
 486
 487/**
 488 * pci_find_capability - query for devices' capabilities
 489 * @dev: PCI device to query
 490 * @cap: capability code
 491 *
 492 * Tell if a device supports a given PCI capability.
 493 * Returns the address of the requested capability structure within the
 494 * device's PCI configuration space or 0 in case the device does not
 495 * support it.  Possible values for @cap include:
 496 *
 497 *  %PCI_CAP_ID_PM           Power Management
 498 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 499 *  %PCI_CAP_ID_VPD          Vital Product Data
 500 *  %PCI_CAP_ID_SLOTID       Slot Identification
 501 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 502 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 503 *  %PCI_CAP_ID_PCIX         PCI-X
 504 *  %PCI_CAP_ID_EXP          PCI Express
 505 */
 506u8 pci_find_capability(struct pci_dev *dev, int cap)
 507{
 508	u8 pos;
 509
 510	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 511	if (pos)
 512		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 513
 514	return pos;
 515}
 516EXPORT_SYMBOL(pci_find_capability);
 517
 518/**
 519 * pci_bus_find_capability - query for devices' capabilities
 520 * @bus: the PCI bus to query
 521 * @devfn: PCI device to query
 522 * @cap: capability code
 523 *
 524 * Like pci_find_capability() but works for PCI devices that do not have a
 525 * pci_dev structure set up yet.
 526 *
 527 * Returns the address of the requested capability structure within the
 528 * device's PCI configuration space or 0 in case the device does not
 529 * support it.
 530 */
 531u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 532{
 533	u8 hdr_type, pos;
 534
 535	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 536
 537	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
 538	if (pos)
 539		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 540
 541	return pos;
 542}
 543EXPORT_SYMBOL(pci_bus_find_capability);
 544
 545/**
 546 * pci_find_next_ext_capability - Find an extended capability
 547 * @dev: PCI device to query
 548 * @start: address at which to start looking (0 to start at beginning of list)
 549 * @cap: capability code
 550 *
 551 * Returns the address of the next matching extended capability structure
 552 * within the device's PCI configuration space or 0 if the device does
 553 * not support it.  Some capabilities can occur several times, e.g., the
 554 * vendor-specific capability, and this provides a way to find them all.
 555 */
 556u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
 557{
 558	u32 header;
 559	int ttl;
 560	u16 pos = PCI_CFG_SPACE_SIZE;
 561
 562	/* minimum 8 bytes per capability */
 563	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 564
 565	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 566		return 0;
 567
 568	if (start)
 569		pos = start;
 570
 571	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 572		return 0;
 573
 574	/*
 575	 * If we have no capabilities, this is indicated by cap ID,
 576	 * cap version and next pointer all being 0.
 577	 */
 578	if (header == 0)
 579		return 0;
 580
 581	while (ttl-- > 0) {
 582		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 583			return pos;
 584
 585		pos = PCI_EXT_CAP_NEXT(header);
 586		if (pos < PCI_CFG_SPACE_SIZE)
 587			break;
 588
 589		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 590			break;
 591	}
 592
 593	return 0;
 594}
 595EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 596
 597/**
 598 * pci_find_ext_capability - Find an extended capability
 599 * @dev: PCI device to query
 600 * @cap: capability code
 601 *
 602 * Returns the address of the requested extended capability structure
 603 * within the device's PCI configuration space or 0 if the device does
 604 * not support it.  Possible values for @cap include:
 605 *
 606 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 607 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 608 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 609 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 610 */
 611u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
 612{
 613	return pci_find_next_ext_capability(dev, 0, cap);
 614}
 615EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 616
 617/**
 618 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 619 * @dev: PCI device to query
 620 *
 621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 622 * Number.
 623 *
 624 * Returns the DSN, or zero if the capability does not exist.
 625 */
 626u64 pci_get_dsn(struct pci_dev *dev)
 627{
 628	u32 dword;
 629	u64 dsn;
 630	int pos;
 631
 632	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 633	if (!pos)
 634		return 0;
 635
 636	/*
 637	 * The Device Serial Number is two dwords offset 4 bytes from the
 638	 * capability position. The specification says that the first dword is
 639	 * the lower half, and the second dword is the upper half.
 640	 */
 641	pos += 4;
 642	pci_read_config_dword(dev, pos, &dword);
 643	dsn = (u64)dword;
 644	pci_read_config_dword(dev, pos + 4, &dword);
 645	dsn |= ((u64)dword) << 32;
 646
 647	return dsn;
 648}
 649EXPORT_SYMBOL_GPL(pci_get_dsn);
 650
 651static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
 652{
 653	int rc, ttl = PCI_FIND_CAP_TTL;
 654	u8 cap, mask;
 655
 656	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 657		mask = HT_3BIT_CAP_MASK;
 658	else
 659		mask = HT_5BIT_CAP_MASK;
 660
 661	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 662				      PCI_CAP_ID_HT, &ttl);
 663	while (pos) {
 664		rc = pci_read_config_byte(dev, pos + 3, &cap);
 665		if (rc != PCIBIOS_SUCCESSFUL)
 666			return 0;
 667
 668		if ((cap & mask) == ht_cap)
 669			return pos;
 670
 671		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 672					      pos + PCI_CAP_LIST_NEXT,
 673					      PCI_CAP_ID_HT, &ttl);
 674	}
 675
 676	return 0;
 677}
 678
 679/**
 680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
 681 * @dev: PCI device to query
 682 * @pos: Position from which to continue searching
 683 * @ht_cap: HyperTransport capability code
 684 *
 685 * To be used in conjunction with pci_find_ht_capability() to search for
 686 * all capabilities matching @ht_cap. @pos should always be a value returned
 687 * from pci_find_ht_capability().
 688 *
 689 * NB. To be 100% safe against broken PCI devices, the caller should take
 690 * steps to avoid an infinite loop.
 691 */
 692u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
 693{
 694	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 695}
 696EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 697
 698/**
 699 * pci_find_ht_capability - query a device's HyperTransport capabilities
 700 * @dev: PCI device to query
 701 * @ht_cap: HyperTransport capability code
 702 *
 703 * Tell if a device supports a given HyperTransport capability.
 704 * Returns an address within the device's PCI configuration space
 705 * or 0 in case the device does not support the request capability.
 706 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 707 * which has a HyperTransport capability matching @ht_cap.
 708 */
 709u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 710{
 711	u8 pos;
 712
 713	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 714	if (pos)
 715		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 716
 717	return pos;
 718}
 719EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 720
 721/**
 722 * pci_find_vsec_capability - Find a vendor-specific extended capability
 723 * @dev: PCI device to query
 724 * @vendor: Vendor ID for which capability is defined
 725 * @cap: Vendor-specific capability ID
 726 *
 727 * If @dev has Vendor ID @vendor, search for a VSEC capability with
 728 * VSEC ID @cap. If found, return the capability offset in
 729 * config space; otherwise return 0.
 730 */
 731u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
 732{
 733	u16 vsec = 0;
 734	u32 header;
 735	int ret;
 736
 737	if (vendor != dev->vendor)
 738		return 0;
 739
 740	while ((vsec = pci_find_next_ext_capability(dev, vsec,
 741						     PCI_EXT_CAP_ID_VNDR))) {
 742		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
 743		if (ret != PCIBIOS_SUCCESSFUL)
 744			continue;
 745
 746		if (PCI_VNDR_HEADER_ID(header) == cap)
 747			return vsec;
 748	}
 749
 750	return 0;
 751}
 752EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
 753
 754/**
 755 * pci_find_dvsec_capability - Find DVSEC for vendor
 756 * @dev: PCI device to query
 757 * @vendor: Vendor ID to match for the DVSEC
 758 * @dvsec: Designated Vendor-specific capability ID
 759 *
 760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
 761 * offset in config space; otherwise return 0.
 762 */
 763u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
 764{
 765	int pos;
 766
 767	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
 768	if (!pos)
 769		return 0;
 770
 771	while (pos) {
 772		u16 v, id;
 773
 774		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
 775		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
 776		if (vendor == v && dvsec == id)
 777			return pos;
 778
 779		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
 780	}
 781
 782	return 0;
 783}
 784EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
 785
 786/**
 787 * pci_find_parent_resource - return resource region of parent bus of given
 788 *			      region
 789 * @dev: PCI device structure contains resources to be searched
 790 * @res: child resource record for which parent is sought
 791 *
 792 * For given resource region of given device, return the resource region of
 793 * parent bus the given region is contained in.
 794 */
 795struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 796					  struct resource *res)
 797{
 798	const struct pci_bus *bus = dev->bus;
 799	struct resource *r;
 800
 801	pci_bus_for_each_resource(bus, r) {
 802		if (!r)
 803			continue;
 804		if (resource_contains(r, res)) {
 805
 806			/*
 807			 * If the window is prefetchable but the BAR is
 808			 * not, the allocator made a mistake.
 809			 */
 810			if (r->flags & IORESOURCE_PREFETCH &&
 811			    !(res->flags & IORESOURCE_PREFETCH))
 812				return NULL;
 813
 814			/*
 815			 * If we're below a transparent bridge, there may
 816			 * be both a positively-decoded aperture and a
 817			 * subtractively-decoded region that contain the BAR.
 818			 * We want the positively-decoded one, so this depends
 819			 * on pci_bus_for_each_resource() giving us those
 820			 * first.
 821			 */
 822			return r;
 823		}
 824	}
 825	return NULL;
 826}
 827EXPORT_SYMBOL(pci_find_parent_resource);
 828
 829/**
 830 * pci_find_resource - Return matching PCI device resource
 831 * @dev: PCI device to query
 832 * @res: Resource to look for
 833 *
 834 * Goes over standard PCI resources (BARs) and checks if the given resource
 835 * is partially or fully contained in any of them. In that case the
 836 * matching resource is returned, %NULL otherwise.
 837 */
 838struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 839{
 840	int i;
 841
 842	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 843		struct resource *r = &dev->resource[i];
 844
 845		if (r->start && resource_contains(r, res))
 846			return r;
 847	}
 848
 849	return NULL;
 850}
 851EXPORT_SYMBOL(pci_find_resource);
 852
 853/**
 854 * pci_resource_name - Return the name of the PCI resource
 855 * @dev: PCI device to query
 856 * @i: index of the resource
 857 *
 858 * Return the standard PCI resource (BAR) name according to their index.
 859 */
 860const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
 861{
 862	static const char * const bar_name[] = {
 863		"BAR 0",
 864		"BAR 1",
 865		"BAR 2",
 866		"BAR 3",
 867		"BAR 4",
 868		"BAR 5",
 869		"ROM",
 870#ifdef CONFIG_PCI_IOV
 871		"VF BAR 0",
 872		"VF BAR 1",
 873		"VF BAR 2",
 874		"VF BAR 3",
 875		"VF BAR 4",
 876		"VF BAR 5",
 877#endif
 878		"bridge window",	/* "io" included in %pR */
 879		"bridge window",	/* "mem" included in %pR */
 880		"bridge window",	/* "mem pref" included in %pR */
 881	};
 882	static const char * const cardbus_name[] = {
 883		"BAR 1",
 884		"unknown",
 885		"unknown",
 886		"unknown",
 887		"unknown",
 888		"unknown",
 889#ifdef CONFIG_PCI_IOV
 890		"unknown",
 891		"unknown",
 892		"unknown",
 893		"unknown",
 894		"unknown",
 895		"unknown",
 896#endif
 897		"CardBus bridge window 0",	/* I/O */
 898		"CardBus bridge window 1",	/* I/O */
 899		"CardBus bridge window 0",	/* mem */
 900		"CardBus bridge window 1",	/* mem */
 901	};
 902
 903	if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
 904	    i < ARRAY_SIZE(cardbus_name))
 905		return cardbus_name[i];
 906
 907	if (i < ARRAY_SIZE(bar_name))
 908		return bar_name[i];
 909
 910	return "unknown";
 911}
 912
 913/**
 914 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 915 * @dev: the PCI device to operate on
 916 * @pos: config space offset of status word
 917 * @mask: mask of bit(s) to care about in status word
 918 *
 919 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 920 */
 921int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 922{
 923	int i;
 924
 925	/* Wait for Transaction Pending bit clean */
 926	for (i = 0; i < 4; i++) {
 927		u16 status;
 928		if (i)
 929			msleep((1 << (i - 1)) * 100);
 930
 931		pci_read_config_word(dev, pos, &status);
 932		if (!(status & mask))
 933			return 1;
 934	}
 935
 936	return 0;
 937}
 938
 939static int pci_acs_enable;
 940
 941/**
 942 * pci_request_acs - ask for ACS to be enabled if supported
 943 */
 944void pci_request_acs(void)
 945{
 946	pci_acs_enable = 1;
 947}
 948
 949static const char *disable_acs_redir_param;
 
 950
 951/**
 952 * pci_disable_acs_redir - disable ACS redirect capabilities
 953 * @dev: the PCI device
 954 *
 955 * For only devices specified in the disable_acs_redir parameter.
 956 */
 957static void pci_disable_acs_redir(struct pci_dev *dev)
 
 958{
 
 959	int ret = 0;
 960	const char *p;
 961	int pos;
 962	u16 ctrl;
 963
 964	if (!disable_acs_redir_param)
 965		return;
 966
 967	p = disable_acs_redir_param;
 968	while (*p) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969		ret = pci_dev_str_match(dev, p, &p);
 970		if (ret < 0) {
 971			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
 972				     disable_acs_redir_param);
 973
 974			break;
 975		} else if (ret == 1) {
 976			/* Found a match */
 977			break;
 978		}
 979
 980		if (*p != ';' && *p != ',') {
 981			/* End of param or invalid format */
 982			break;
 983		}
 984		p++;
 985	}
 986
 987	if (ret != 1)
 988		return;
 989
 990	if (!pci_dev_specific_disable_acs_redir(dev))
 991		return;
 992
 993	pos = dev->acs_cap;
 994	if (!pos) {
 995		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
 996		return;
 997	}
 998
 999	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1000
1001	/* P2P Request & Completion Redirect */
1002	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
 
1003
1004	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1005
1006	pci_info(dev, "disabled ACS redirect\n");
1007}
1008
1009/**
1010 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1011 * @dev: the PCI device
 
1012 */
1013static void pci_std_enable_acs(struct pci_dev *dev)
1014{
1015	int pos;
1016	u16 cap;
1017	u16 ctrl;
1018
1019	pos = dev->acs_cap;
1020	if (!pos)
1021		return;
1022
1023	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1024	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1025
1026	/* Source Validation */
1027	ctrl |= (cap & PCI_ACS_SV);
1028
1029	/* P2P Request Redirect */
1030	ctrl |= (cap & PCI_ACS_RR);
1031
1032	/* P2P Completion Redirect */
1033	ctrl |= (cap & PCI_ACS_CR);
1034
1035	/* Upstream Forwarding */
1036	ctrl |= (cap & PCI_ACS_UF);
1037
1038	/* Enable Translation Blocking for external devices and noats */
1039	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1040		ctrl |= (cap & PCI_ACS_TB);
1041
1042	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1043}
1044
1045/**
1046 * pci_enable_acs - enable ACS if hardware support it
1047 * @dev: the PCI device
1048 */
1049static void pci_enable_acs(struct pci_dev *dev)
1050{
1051	if (!pci_acs_enable)
1052		goto disable_acs_redir;
 
 
 
 
 
 
 
1053
1054	if (!pci_dev_specific_enable_acs(dev))
1055		goto disable_acs_redir;
 
1056
1057	pci_std_enable_acs(dev);
 
 
 
 
 
1058
1059disable_acs_redir:
1060	/*
1061	 * Note: pci_disable_acs_redir() must be called even if ACS was not
1062	 * enabled by the kernel because it may have been enabled by
1063	 * platform firmware.  So if we are told to disable it, we should
1064	 * always disable it after setting the kernel's default
1065	 * preferences.
1066	 */
1067	pci_disable_acs_redir(dev);
 
 
 
 
 
1068}
1069
1070/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1072 * @dev: PCI device to have its BARs restored
1073 *
1074 * Restore the BAR values for a given device, so as to make it
1075 * accessible by its driver.
1076 */
1077static void pci_restore_bars(struct pci_dev *dev)
1078{
1079	int i;
1080
1081	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1082		pci_update_resource(dev, i);
1083}
1084
1085static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1086{
1087	if (pci_use_mid_pm())
1088		return true;
1089
1090	return acpi_pci_power_manageable(dev);
1091}
1092
1093static inline int platform_pci_set_power_state(struct pci_dev *dev,
1094					       pci_power_t t)
1095{
1096	if (pci_use_mid_pm())
1097		return mid_pci_set_power_state(dev, t);
1098
1099	return acpi_pci_set_power_state(dev, t);
1100}
1101
1102static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1103{
1104	if (pci_use_mid_pm())
1105		return mid_pci_get_power_state(dev);
1106
1107	return acpi_pci_get_power_state(dev);
1108}
1109
1110static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1111{
1112	if (!pci_use_mid_pm())
1113		acpi_pci_refresh_power_state(dev);
1114}
1115
1116static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1117{
1118	if (pci_use_mid_pm())
1119		return PCI_POWER_ERROR;
1120
1121	return acpi_pci_choose_state(dev);
1122}
1123
1124static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1125{
1126	if (pci_use_mid_pm())
1127		return PCI_POWER_ERROR;
1128
1129	return acpi_pci_wakeup(dev, enable);
1130}
1131
1132static inline bool platform_pci_need_resume(struct pci_dev *dev)
1133{
1134	if (pci_use_mid_pm())
1135		return false;
1136
1137	return acpi_pci_need_resume(dev);
1138}
1139
1140static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1141{
1142	if (pci_use_mid_pm())
1143		return false;
1144
1145	return acpi_pci_bridge_d3(dev);
1146}
1147
1148/**
1149 * pci_update_current_state - Read power state of given device and cache it
1150 * @dev: PCI device to handle.
1151 * @state: State to cache in case the device doesn't have the PM capability
1152 *
1153 * The power state is read from the PMCSR register, which however is
1154 * inaccessible in D3cold.  The platform firmware is therefore queried first
1155 * to detect accessibility of the register.  In case the platform firmware
1156 * reports an incorrect state or the device isn't power manageable by the
1157 * platform at all, we try to detect D3cold by testing accessibility of the
1158 * vendor ID in config space.
1159 */
1160void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1161{
1162	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1163		dev->current_state = PCI_D3cold;
1164	} else if (dev->pm_cap) {
1165		u16 pmcsr;
1166
1167		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1168		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1169			dev->current_state = PCI_D3cold;
1170			return;
1171		}
1172		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1173	} else {
1174		dev->current_state = state;
1175	}
1176}
1177
1178/**
1179 * pci_refresh_power_state - Refresh the given device's power state data
1180 * @dev: Target PCI device.
1181 *
1182 * Ask the platform to refresh the devices power state information and invoke
1183 * pci_update_current_state() to update its current PCI power state.
1184 */
1185void pci_refresh_power_state(struct pci_dev *dev)
1186{
1187	platform_pci_refresh_power_state(dev);
1188	pci_update_current_state(dev, dev->current_state);
1189}
1190
1191/**
1192 * pci_platform_power_transition - Use platform to change device power state
1193 * @dev: PCI device to handle.
1194 * @state: State to put the device into.
1195 */
1196int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1197{
1198	int error;
1199
1200	error = platform_pci_set_power_state(dev, state);
1201	if (!error)
1202		pci_update_current_state(dev, state);
1203	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1204		dev->current_state = PCI_D0;
1205
1206	return error;
1207}
1208EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1209
1210static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1211{
1212	pm_request_resume(&pci_dev->dev);
1213	return 0;
1214}
1215
1216/**
1217 * pci_resume_bus - Walk given bus and runtime resume devices on it
1218 * @bus: Top bus of the subtree to walk.
1219 */
1220void pci_resume_bus(struct pci_bus *bus)
1221{
1222	if (bus)
1223		pci_walk_bus(bus, pci_resume_one, NULL);
1224}
1225
1226static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1227{
1228	int delay = 1;
1229	bool retrain = false;
1230	struct pci_dev *bridge;
 
 
1231
1232	if (pci_is_pcie(dev)) {
1233		bridge = pci_upstream_bridge(dev);
1234		if (bridge)
1235			retrain = true;
1236	}
1237
1238	/*
1239	 * After reset, the device should not silently discard config
1240	 * requests, but it may still indicate that it needs more time by
1241	 * responding to them with CRS completions.  The Root Port will
1242	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1243	 * the read (except when CRS SV is enabled and the read was for the
1244	 * Vendor ID; in that case it synthesizes 0x0001 data).
 
 
 
1245	 *
1246	 * Wait for the device to return a non-CRS completion.  Read the
1247	 * Command register instead of Vendor ID so we don't have to
1248	 * contend with the CRS SV value.
 
 
 
 
1249	 */
1250	for (;;) {
1251		u32 id;
1252
1253		pci_read_config_dword(dev, PCI_COMMAND, &id);
1254		if (!PCI_POSSIBLE_ERROR(id))
1255			break;
 
 
 
 
 
 
 
 
 
 
 
1256
1257		if (delay > timeout) {
1258			pci_warn(dev, "not ready %dms after %s; giving up\n",
1259				 delay - 1, reset_type);
1260			return -ENOTTY;
1261		}
1262
1263		if (delay > PCI_RESET_WAIT) {
1264			if (retrain) {
1265				retrain = false;
1266				if (pcie_failed_link_retrain(bridge)) {
1267					delay = 1;
1268					continue;
1269				}
1270			}
1271			pci_info(dev, "not ready %dms after %s; waiting\n",
1272				 delay - 1, reset_type);
1273		}
1274
1275		msleep(delay);
1276		delay *= 2;
1277	}
1278
1279	if (delay > PCI_RESET_WAIT)
1280		pci_info(dev, "ready %dms after %s\n", delay - 1,
1281			 reset_type);
1282	else
1283		pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1284			reset_type);
1285
1286	return 0;
1287}
1288
1289/**
1290 * pci_power_up - Put the given device into D0
1291 * @dev: PCI device to power up
1292 *
1293 * On success, return 0 or 1, depending on whether or not it is necessary to
1294 * restore the device's BARs subsequently (1 is returned in that case).
1295 *
1296 * On failure, return a negative error code.  Always return failure if @dev
1297 * lacks a Power Management Capability, even if the platform was able to
1298 * put the device in D0 via non-PCI means.
1299 */
1300int pci_power_up(struct pci_dev *dev)
1301{
1302	bool need_restore;
1303	pci_power_t state;
1304	u16 pmcsr;
1305
1306	platform_pci_set_power_state(dev, PCI_D0);
1307
1308	if (!dev->pm_cap) {
1309		state = platform_pci_get_power_state(dev);
1310		if (state == PCI_UNKNOWN)
1311			dev->current_state = PCI_D0;
1312		else
1313			dev->current_state = state;
1314
1315		return -EIO;
1316	}
1317
1318	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1319	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1320		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1321			pci_power_name(dev->current_state));
1322		dev->current_state = PCI_D3cold;
1323		return -EIO;
1324	}
1325
1326	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1327
1328	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1329			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1330
1331	if (state == PCI_D0)
1332		goto end;
1333
1334	/*
1335	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1336	 * PME_En, and sets PowerState to 0.
1337	 */
1338	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1339
1340	/* Mandatory transition delays; see PCI PM 1.2. */
1341	if (state == PCI_D3hot)
1342		pci_dev_d3_sleep(dev);
1343	else if (state == PCI_D2)
1344		udelay(PCI_PM_D2_DELAY);
1345
1346end:
1347	dev->current_state = PCI_D0;
1348	if (need_restore)
1349		return 1;
1350
1351	return 0;
1352}
1353
1354/**
1355 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1356 * @dev: PCI device to power up
1357 * @locked: whether pci_bus_sem is held
1358 *
1359 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1360 * to confirm the state change, restore its BARs if they might be lost and
1361 * reconfigure ASPM in accordance with the new power state.
1362 *
1363 * If pci_restore_state() is going to be called right after a power state change
1364 * to D0, it is more efficient to use pci_power_up() directly instead of this
1365 * function.
1366 */
1367static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1368{
1369	u16 pmcsr;
1370	int ret;
1371
1372	ret = pci_power_up(dev);
1373	if (ret < 0) {
1374		if (dev->current_state == PCI_D0)
1375			return 0;
1376
1377		return ret;
1378	}
1379
1380	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1381	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1382	if (dev->current_state != PCI_D0) {
1383		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1384				     pci_power_name(dev->current_state));
1385	} else if (ret > 0) {
1386		/*
1387		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1388		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1389		 * from D3hot to D0 _may_ perform an internal reset, thereby
1390		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1391		 * For example, at least some versions of the 3c905B and the
1392		 * 3c556B exhibit this behaviour.
1393		 *
1394		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1395		 * devices in a D3hot state at boot.  Consequently, we need to
1396		 * restore at least the BARs so that the device will be
1397		 * accessible to its driver.
1398		 */
1399		pci_restore_bars(dev);
1400	}
1401
1402	if (dev->bus->self)
1403		pcie_aspm_pm_state_change(dev->bus->self, locked);
1404
1405	return 0;
1406}
1407
1408/**
1409 * __pci_dev_set_current_state - Set current state of a PCI device
1410 * @dev: Device to handle
1411 * @data: pointer to state to be set
1412 */
1413static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1414{
1415	pci_power_t state = *(pci_power_t *)data;
1416
1417	dev->current_state = state;
1418	return 0;
1419}
1420
1421/**
1422 * pci_bus_set_current_state - Walk given bus and set current state of devices
1423 * @bus: Top bus of the subtree to walk.
1424 * @state: state to be set
1425 */
1426void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1427{
1428	if (bus)
1429		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1430}
1431
1432static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1433{
1434	if (!bus)
1435		return;
1436
1437	if (locked)
1438		pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1439	else
1440		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1441}
1442
1443/**
1444 * pci_set_low_power_state - Put a PCI device into a low-power state.
1445 * @dev: PCI device to handle.
1446 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1447 * @locked: whether pci_bus_sem is held
1448 *
1449 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1450 *
1451 * RETURN VALUE:
1452 * -EINVAL if the requested state is invalid.
1453 * -EIO if device does not support PCI PM or its PM capabilities register has a
1454 * wrong version, or device doesn't support the requested state.
1455 * 0 if device already is in the requested state.
1456 * 0 if device's power state has been successfully changed.
1457 */
1458static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1459{
1460	u16 pmcsr;
1461
1462	if (!dev->pm_cap)
1463		return -EIO;
1464
1465	/*
1466	 * Validate transition: We can enter D0 from any state, but if
1467	 * we're already in a low-power state, we can only go deeper.  E.g.,
1468	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1469	 * we'd have to go from D3 to D0, then to D1.
1470	 */
1471	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1472		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1473			pci_power_name(dev->current_state),
1474			pci_power_name(state));
1475		return -EINVAL;
1476	}
1477
1478	/* Check if this device supports the desired state */
1479	if ((state == PCI_D1 && !dev->d1_support)
1480	   || (state == PCI_D2 && !dev->d2_support))
1481		return -EIO;
1482
1483	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1484	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1485		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1486			pci_power_name(dev->current_state),
1487			pci_power_name(state));
1488		dev->current_state = PCI_D3cold;
1489		return -EIO;
1490	}
1491
1492	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1493	pmcsr |= state;
1494
1495	/* Enter specified state */
1496	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1497
1498	/* Mandatory power management transition delays; see PCI PM 1.2. */
1499	if (state == PCI_D3hot)
1500		pci_dev_d3_sleep(dev);
1501	else if (state == PCI_D2)
1502		udelay(PCI_PM_D2_DELAY);
1503
1504	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1505	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1506	if (dev->current_state != state)
1507		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1508				     pci_power_name(dev->current_state),
1509				     pci_power_name(state));
1510
1511	if (dev->bus->self)
1512		pcie_aspm_pm_state_change(dev->bus->self, locked);
1513
1514	return 0;
1515}
1516
1517static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1518{
1519	int error;
1520
1521	/* Bound the state we're entering */
1522	if (state > PCI_D3cold)
1523		state = PCI_D3cold;
1524	else if (state < PCI_D0)
1525		state = PCI_D0;
1526	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1527
1528		/*
1529		 * If the device or the parent bridge do not support PCI
1530		 * PM, ignore the request if we're doing anything other
1531		 * than putting it into D0 (which would only happen on
1532		 * boot).
1533		 */
1534		return 0;
1535
1536	/* Check if we're already there */
1537	if (dev->current_state == state)
1538		return 0;
1539
1540	if (state == PCI_D0)
1541		return pci_set_full_power_state(dev, locked);
1542
1543	/*
1544	 * This device is quirked not to be put into D3, so don't put it in
1545	 * D3
1546	 */
1547	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1548		return 0;
1549
1550	if (state == PCI_D3cold) {
1551		/*
1552		 * To put the device in D3cold, put it into D3hot in the native
1553		 * way, then put it into D3cold using platform ops.
1554		 */
1555		error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1556
1557		if (pci_platform_power_transition(dev, PCI_D3cold))
1558			return error;
1559
1560		/* Powering off a bridge may power off the whole hierarchy */
1561		if (dev->current_state == PCI_D3cold)
1562			__pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1563	} else {
1564		error = pci_set_low_power_state(dev, state, locked);
1565
1566		if (pci_platform_power_transition(dev, state))
1567			return error;
1568	}
1569
1570	return 0;
1571}
1572
1573/**
1574 * pci_set_power_state - Set the power state of a PCI device
1575 * @dev: PCI device to handle.
1576 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1577 *
1578 * Transition a device to a new power state, using the platform firmware and/or
1579 * the device's PCI PM registers.
1580 *
1581 * RETURN VALUE:
1582 * -EINVAL if the requested state is invalid.
1583 * -EIO if device does not support PCI PM or its PM capabilities register has a
1584 * wrong version, or device doesn't support the requested state.
1585 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1586 * 0 if device already is in the requested state.
1587 * 0 if the transition is to D3 but D3 is not supported.
1588 * 0 if device's power state has been successfully changed.
1589 */
1590int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1591{
1592	return __pci_set_power_state(dev, state, false);
1593}
1594EXPORT_SYMBOL(pci_set_power_state);
1595
1596int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1597{
1598	lockdep_assert_held(&pci_bus_sem);
1599
1600	return __pci_set_power_state(dev, state, true);
1601}
1602EXPORT_SYMBOL(pci_set_power_state_locked);
1603
1604#define PCI_EXP_SAVE_REGS	7
1605
1606static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1607						       u16 cap, bool extended)
1608{
1609	struct pci_cap_saved_state *tmp;
1610
1611	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1612		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1613			return tmp;
1614	}
1615	return NULL;
1616}
1617
1618struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1619{
1620	return _pci_find_saved_cap(dev, cap, false);
1621}
1622
1623struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1624{
1625	return _pci_find_saved_cap(dev, cap, true);
1626}
1627
1628static int pci_save_pcie_state(struct pci_dev *dev)
1629{
1630	int i = 0;
1631	struct pci_cap_saved_state *save_state;
1632	u16 *cap;
1633
1634	if (!pci_is_pcie(dev))
1635		return 0;
1636
1637	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1638	if (!save_state) {
1639		pci_err(dev, "buffer not found in %s\n", __func__);
1640		return -ENOMEM;
1641	}
1642
1643	cap = (u16 *)&save_state->cap.data[0];
1644	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1645	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1646	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1647	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1648	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1649	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1650	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1651
1652	return 0;
1653}
1654
1655void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1656{
1657#ifdef CONFIG_PCIEASPM
1658	struct pci_dev *bridge;
1659	u32 ctl;
1660
1661	bridge = pci_upstream_bridge(dev);
1662	if (bridge && bridge->ltr_path) {
1663		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1664		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1665			pci_dbg(bridge, "re-enabling LTR\n");
1666			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1667						 PCI_EXP_DEVCTL2_LTR_EN);
1668		}
1669	}
1670#endif
1671}
1672
1673static void pci_restore_pcie_state(struct pci_dev *dev)
1674{
1675	int i = 0;
1676	struct pci_cap_saved_state *save_state;
1677	u16 *cap;
1678
 
 
 
 
 
 
 
1679	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1680	if (!save_state)
1681		return;
1682
1683	/*
1684	 * Downstream ports reset the LTR enable bit when link goes down.
1685	 * Check and re-configure the bit here before restoring device.
1686	 * PCIe r5.0, sec 7.5.3.16.
1687	 */
1688	pci_bridge_reconfigure_ltr(dev);
1689
1690	cap = (u16 *)&save_state->cap.data[0];
1691	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1692	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1693	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1694	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1695	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1696	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1697	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1698}
1699
1700static int pci_save_pcix_state(struct pci_dev *dev)
1701{
1702	int pos;
1703	struct pci_cap_saved_state *save_state;
1704
1705	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1706	if (!pos)
1707		return 0;
1708
1709	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1710	if (!save_state) {
1711		pci_err(dev, "buffer not found in %s\n", __func__);
1712		return -ENOMEM;
1713	}
1714
1715	pci_read_config_word(dev, pos + PCI_X_CMD,
1716			     (u16 *)save_state->cap.data);
1717
1718	return 0;
1719}
1720
1721static void pci_restore_pcix_state(struct pci_dev *dev)
1722{
1723	int i = 0, pos;
1724	struct pci_cap_saved_state *save_state;
1725	u16 *cap;
1726
1727	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1728	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1729	if (!save_state || !pos)
1730		return;
1731	cap = (u16 *)&save_state->cap.data[0];
1732
1733	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1734}
1735
1736static void pci_save_ltr_state(struct pci_dev *dev)
1737{
1738	int ltr;
1739	struct pci_cap_saved_state *save_state;
1740	u32 *cap;
1741
1742	if (!pci_is_pcie(dev))
1743		return;
1744
1745	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1746	if (!ltr)
1747		return;
1748
1749	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1750	if (!save_state) {
1751		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1752		return;
1753	}
1754
1755	/* Some broken devices only support dword access to LTR */
1756	cap = &save_state->cap.data[0];
1757	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1758}
1759
1760static void pci_restore_ltr_state(struct pci_dev *dev)
1761{
1762	struct pci_cap_saved_state *save_state;
1763	int ltr;
1764	u32 *cap;
1765
1766	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1767	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1768	if (!save_state || !ltr)
1769		return;
1770
1771	/* Some broken devices only support dword access to LTR */
1772	cap = &save_state->cap.data[0];
1773	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1774}
1775
1776/**
1777 * pci_save_state - save the PCI configuration space of a device before
1778 *		    suspending
1779 * @dev: PCI device that we're dealing with
1780 */
1781int pci_save_state(struct pci_dev *dev)
1782{
1783	int i;
1784	/* XXX: 100% dword access ok here? */
1785	for (i = 0; i < 16; i++) {
1786		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1787		pci_dbg(dev, "save config %#04x: %#010x\n",
1788			i * 4, dev->saved_config_space[i]);
1789	}
1790	dev->state_saved = true;
1791
1792	i = pci_save_pcie_state(dev);
1793	if (i != 0)
1794		return i;
1795
1796	i = pci_save_pcix_state(dev);
1797	if (i != 0)
1798		return i;
1799
1800	pci_save_ltr_state(dev);
1801	pci_save_dpc_state(dev);
1802	pci_save_aer_state(dev);
1803	pci_save_ptm_state(dev);
 
1804	return pci_save_vc_state(dev);
1805}
1806EXPORT_SYMBOL(pci_save_state);
1807
1808static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1809				     u32 saved_val, int retry, bool force)
1810{
1811	u32 val;
1812
1813	pci_read_config_dword(pdev, offset, &val);
1814	if (!force && val == saved_val)
1815		return;
1816
1817	for (;;) {
1818		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1819			offset, val, saved_val);
1820		pci_write_config_dword(pdev, offset, saved_val);
1821		if (retry-- <= 0)
1822			return;
1823
1824		pci_read_config_dword(pdev, offset, &val);
1825		if (val == saved_val)
1826			return;
1827
1828		mdelay(1);
1829	}
1830}
1831
1832static void pci_restore_config_space_range(struct pci_dev *pdev,
1833					   int start, int end, int retry,
1834					   bool force)
1835{
1836	int index;
1837
1838	for (index = end; index >= start; index--)
1839		pci_restore_config_dword(pdev, 4 * index,
1840					 pdev->saved_config_space[index],
1841					 retry, force);
1842}
1843
1844static void pci_restore_config_space(struct pci_dev *pdev)
1845{
1846	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1847		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1848		/* Restore BARs before the command register. */
1849		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1850		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1851	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1852		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1853
1854		/*
1855		 * Force rewriting of prefetch registers to avoid S3 resume
1856		 * issues on Intel PCI bridges that occur when these
1857		 * registers are not explicitly written.
1858		 */
1859		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1860		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1861	} else {
1862		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1863	}
1864}
1865
1866static void pci_restore_rebar_state(struct pci_dev *pdev)
1867{
1868	unsigned int pos, nbars, i;
1869	u32 ctrl;
1870
1871	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1872	if (!pos)
1873		return;
1874
1875	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1876	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1877
1878	for (i = 0; i < nbars; i++, pos += 8) {
1879		struct resource *res;
1880		int bar_idx, size;
1881
1882		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1883		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1884		res = pdev->resource + bar_idx;
1885		size = pci_rebar_bytes_to_size(resource_size(res));
1886		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1887		ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1888		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1889	}
1890}
1891
1892/**
1893 * pci_restore_state - Restore the saved state of a PCI device
1894 * @dev: PCI device that we're dealing with
1895 */
1896void pci_restore_state(struct pci_dev *dev)
1897{
1898	if (!dev->state_saved)
1899		return;
1900
1901	/*
1902	 * Restore max latencies (in the LTR capability) before enabling
1903	 * LTR itself (in the PCIe capability).
1904	 */
1905	pci_restore_ltr_state(dev);
1906
1907	pci_restore_pcie_state(dev);
1908	pci_restore_pasid_state(dev);
1909	pci_restore_pri_state(dev);
1910	pci_restore_ats_state(dev);
1911	pci_restore_vc_state(dev);
1912	pci_restore_rebar_state(dev);
1913	pci_restore_dpc_state(dev);
1914	pci_restore_ptm_state(dev);
 
1915
1916	pci_aer_clear_status(dev);
1917	pci_restore_aer_state(dev);
1918
1919	pci_restore_config_space(dev);
1920
1921	pci_restore_pcix_state(dev);
1922	pci_restore_msi_state(dev);
1923
1924	/* Restore ACS and IOV configuration state */
1925	pci_enable_acs(dev);
1926	pci_restore_iov_state(dev);
1927
1928	dev->state_saved = false;
1929}
1930EXPORT_SYMBOL(pci_restore_state);
1931
1932struct pci_saved_state {
1933	u32 config_space[16];
1934	struct pci_cap_saved_data cap[];
1935};
1936
1937/**
1938 * pci_store_saved_state - Allocate and return an opaque struct containing
1939 *			   the device saved state.
1940 * @dev: PCI device that we're dealing with
1941 *
1942 * Return NULL if no state or error.
1943 */
1944struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1945{
1946	struct pci_saved_state *state;
1947	struct pci_cap_saved_state *tmp;
1948	struct pci_cap_saved_data *cap;
1949	size_t size;
1950
1951	if (!dev->state_saved)
1952		return NULL;
1953
1954	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1955
1956	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1957		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1958
1959	state = kzalloc(size, GFP_KERNEL);
1960	if (!state)
1961		return NULL;
1962
1963	memcpy(state->config_space, dev->saved_config_space,
1964	       sizeof(state->config_space));
1965
1966	cap = state->cap;
1967	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1968		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1969		memcpy(cap, &tmp->cap, len);
1970		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1971	}
1972	/* Empty cap_save terminates list */
1973
1974	return state;
1975}
1976EXPORT_SYMBOL_GPL(pci_store_saved_state);
1977
1978/**
1979 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1980 * @dev: PCI device that we're dealing with
1981 * @state: Saved state returned from pci_store_saved_state()
1982 */
1983int pci_load_saved_state(struct pci_dev *dev,
1984			 struct pci_saved_state *state)
1985{
1986	struct pci_cap_saved_data *cap;
1987
1988	dev->state_saved = false;
1989
1990	if (!state)
1991		return 0;
1992
1993	memcpy(dev->saved_config_space, state->config_space,
1994	       sizeof(state->config_space));
1995
1996	cap = state->cap;
1997	while (cap->size) {
1998		struct pci_cap_saved_state *tmp;
1999
2000		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2001		if (!tmp || tmp->cap.size != cap->size)
2002			return -EINVAL;
2003
2004		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2005		cap = (struct pci_cap_saved_data *)((u8 *)cap +
2006		       sizeof(struct pci_cap_saved_data) + cap->size);
2007	}
2008
2009	dev->state_saved = true;
2010	return 0;
2011}
2012EXPORT_SYMBOL_GPL(pci_load_saved_state);
2013
2014/**
2015 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2016 *				   and free the memory allocated for it.
2017 * @dev: PCI device that we're dealing with
2018 * @state: Pointer to saved state returned from pci_store_saved_state()
2019 */
2020int pci_load_and_free_saved_state(struct pci_dev *dev,
2021				  struct pci_saved_state **state)
2022{
2023	int ret = pci_load_saved_state(dev, *state);
2024	kfree(*state);
2025	*state = NULL;
2026	return ret;
2027}
2028EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2029
2030int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2031{
2032	return pci_enable_resources(dev, bars);
2033}
2034
2035static int do_pci_enable_device(struct pci_dev *dev, int bars)
2036{
2037	int err;
2038	struct pci_dev *bridge;
2039	u16 cmd;
2040	u8 pin;
2041
2042	err = pci_set_power_state(dev, PCI_D0);
2043	if (err < 0 && err != -EIO)
2044		return err;
2045
2046	bridge = pci_upstream_bridge(dev);
2047	if (bridge)
2048		pcie_aspm_powersave_config_link(bridge);
2049
2050	err = pcibios_enable_device(dev, bars);
2051	if (err < 0)
2052		return err;
2053	pci_fixup_device(pci_fixup_enable, dev);
2054
2055	if (dev->msi_enabled || dev->msix_enabled)
2056		return 0;
2057
2058	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2059	if (pin) {
2060		pci_read_config_word(dev, PCI_COMMAND, &cmd);
2061		if (cmd & PCI_COMMAND_INTX_DISABLE)
2062			pci_write_config_word(dev, PCI_COMMAND,
2063					      cmd & ~PCI_COMMAND_INTX_DISABLE);
2064	}
2065
2066	return 0;
2067}
2068
2069/**
2070 * pci_reenable_device - Resume abandoned device
2071 * @dev: PCI device to be resumed
2072 *
2073 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2074 * to be called by normal code, write proper resume handler and use it instead.
2075 */
2076int pci_reenable_device(struct pci_dev *dev)
2077{
2078	if (pci_is_enabled(dev))
2079		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2080	return 0;
2081}
2082EXPORT_SYMBOL(pci_reenable_device);
2083
2084static void pci_enable_bridge(struct pci_dev *dev)
2085{
2086	struct pci_dev *bridge;
2087	int retval;
2088
2089	bridge = pci_upstream_bridge(dev);
2090	if (bridge)
2091		pci_enable_bridge(bridge);
2092
2093	if (pci_is_enabled(dev)) {
2094		if (!dev->is_busmaster)
2095			pci_set_master(dev);
2096		return;
2097	}
2098
2099	retval = pci_enable_device(dev);
2100	if (retval)
2101		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2102			retval);
2103	pci_set_master(dev);
2104}
2105
2106static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2107{
2108	struct pci_dev *bridge;
2109	int err;
2110	int i, bars = 0;
2111
2112	/*
2113	 * Power state could be unknown at this point, either due to a fresh
2114	 * boot or a device removal call.  So get the current power state
2115	 * so that things like MSI message writing will behave as expected
2116	 * (e.g. if the device really is in D0 at enable time).
2117	 */
2118	pci_update_current_state(dev, dev->current_state);
2119
2120	if (atomic_inc_return(&dev->enable_cnt) > 1)
2121		return 0;		/* already enabled */
2122
2123	bridge = pci_upstream_bridge(dev);
2124	if (bridge)
2125		pci_enable_bridge(bridge);
2126
2127	/* only skip sriov related */
2128	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2129		if (dev->resource[i].flags & flags)
2130			bars |= (1 << i);
2131	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2132		if (dev->resource[i].flags & flags)
2133			bars |= (1 << i);
2134
2135	err = do_pci_enable_device(dev, bars);
2136	if (err < 0)
2137		atomic_dec(&dev->enable_cnt);
2138	return err;
2139}
2140
2141/**
2142 * pci_enable_device_io - Initialize a device for use with IO space
2143 * @dev: PCI device to be initialized
2144 *
2145 * Initialize device before it's used by a driver. Ask low-level code
2146 * to enable I/O resources. Wake up the device if it was suspended.
2147 * Beware, this function can fail.
2148 */
2149int pci_enable_device_io(struct pci_dev *dev)
2150{
2151	return pci_enable_device_flags(dev, IORESOURCE_IO);
2152}
2153EXPORT_SYMBOL(pci_enable_device_io);
2154
2155/**
2156 * pci_enable_device_mem - Initialize a device for use with Memory space
2157 * @dev: PCI device to be initialized
2158 *
2159 * Initialize device before it's used by a driver. Ask low-level code
2160 * to enable Memory resources. Wake up the device if it was suspended.
2161 * Beware, this function can fail.
2162 */
2163int pci_enable_device_mem(struct pci_dev *dev)
2164{
2165	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2166}
2167EXPORT_SYMBOL(pci_enable_device_mem);
2168
2169/**
2170 * pci_enable_device - Initialize device before it's used by a driver.
2171 * @dev: PCI device to be initialized
2172 *
2173 * Initialize device before it's used by a driver. Ask low-level code
2174 * to enable I/O and memory. Wake up the device if it was suspended.
2175 * Beware, this function can fail.
2176 *
2177 * Note we don't actually enable the device many times if we call
2178 * this function repeatedly (we just increment the count).
2179 */
2180int pci_enable_device(struct pci_dev *dev)
2181{
2182	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2183}
2184EXPORT_SYMBOL(pci_enable_device);
2185
2186/*
2187 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2188 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2189 * there's no need to track it separately.  pci_devres is initialized
2190 * when a device is enabled using managed PCI device enable interface.
2191 */
2192struct pci_devres {
2193	unsigned int enabled:1;
2194	unsigned int pinned:1;
2195	unsigned int orig_intx:1;
2196	unsigned int restore_intx:1;
2197	unsigned int mwi:1;
2198	u32 region_mask;
2199};
2200
2201static void pcim_release(struct device *gendev, void *res)
2202{
2203	struct pci_dev *dev = to_pci_dev(gendev);
2204	struct pci_devres *this = res;
2205	int i;
2206
2207	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2208		if (this->region_mask & (1 << i))
2209			pci_release_region(dev, i);
2210
2211	if (this->mwi)
2212		pci_clear_mwi(dev);
2213
2214	if (this->restore_intx)
2215		pci_intx(dev, this->orig_intx);
2216
2217	if (this->enabled && !this->pinned)
2218		pci_disable_device(dev);
2219}
2220
2221static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2222{
2223	struct pci_devres *dr, *new_dr;
2224
2225	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2226	if (dr)
2227		return dr;
2228
2229	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2230	if (!new_dr)
2231		return NULL;
2232	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2233}
2234
2235static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2236{
2237	if (pci_is_managed(pdev))
2238		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2239	return NULL;
2240}
2241
2242/**
2243 * pcim_enable_device - Managed pci_enable_device()
2244 * @pdev: PCI device to be initialized
2245 *
2246 * Managed pci_enable_device().
2247 */
2248int pcim_enable_device(struct pci_dev *pdev)
2249{
2250	struct pci_devres *dr;
2251	int rc;
2252
2253	dr = get_pci_dr(pdev);
2254	if (unlikely(!dr))
2255		return -ENOMEM;
2256	if (dr->enabled)
2257		return 0;
2258
2259	rc = pci_enable_device(pdev);
2260	if (!rc) {
2261		pdev->is_managed = 1;
2262		dr->enabled = 1;
2263	}
2264	return rc;
2265}
2266EXPORT_SYMBOL(pcim_enable_device);
2267
2268/**
2269 * pcim_pin_device - Pin managed PCI device
2270 * @pdev: PCI device to pin
2271 *
2272 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2273 * driver detach.  @pdev must have been enabled with
2274 * pcim_enable_device().
2275 */
2276void pcim_pin_device(struct pci_dev *pdev)
2277{
2278	struct pci_devres *dr;
2279
2280	dr = find_pci_dr(pdev);
2281	WARN_ON(!dr || !dr->enabled);
2282	if (dr)
2283		dr->pinned = 1;
2284}
2285EXPORT_SYMBOL(pcim_pin_device);
2286
2287/*
2288 * pcibios_device_add - provide arch specific hooks when adding device dev
2289 * @dev: the PCI device being added
2290 *
2291 * Permits the platform to provide architecture specific functionality when
2292 * devices are added. This is the default implementation. Architecture
2293 * implementations can override this.
2294 */
2295int __weak pcibios_device_add(struct pci_dev *dev)
2296{
2297	return 0;
2298}
2299
2300/**
2301 * pcibios_release_device - provide arch specific hooks when releasing
2302 *			    device dev
2303 * @dev: the PCI device being released
2304 *
2305 * Permits the platform to provide architecture specific functionality when
2306 * devices are released. This is the default implementation. Architecture
2307 * implementations can override this.
2308 */
2309void __weak pcibios_release_device(struct pci_dev *dev) {}
2310
2311/**
2312 * pcibios_disable_device - disable arch specific PCI resources for device dev
2313 * @dev: the PCI device to disable
2314 *
2315 * Disables architecture specific PCI resources for the device. This
2316 * is the default implementation. Architecture implementations can
2317 * override this.
2318 */
2319void __weak pcibios_disable_device(struct pci_dev *dev) {}
2320
2321/**
2322 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2323 * @irq: ISA IRQ to penalize
2324 * @active: IRQ active or not
2325 *
2326 * Permits the platform to provide architecture-specific functionality when
2327 * penalizing ISA IRQs. This is the default implementation. Architecture
2328 * implementations can override this.
2329 */
2330void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2331
2332static void do_pci_disable_device(struct pci_dev *dev)
2333{
2334	u16 pci_command;
2335
2336	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2337	if (pci_command & PCI_COMMAND_MASTER) {
2338		pci_command &= ~PCI_COMMAND_MASTER;
2339		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2340	}
2341
2342	pcibios_disable_device(dev);
2343}
2344
2345/**
2346 * pci_disable_enabled_device - Disable device without updating enable_cnt
2347 * @dev: PCI device to disable
2348 *
2349 * NOTE: This function is a backend of PCI power management routines and is
2350 * not supposed to be called drivers.
2351 */
2352void pci_disable_enabled_device(struct pci_dev *dev)
2353{
2354	if (pci_is_enabled(dev))
2355		do_pci_disable_device(dev);
2356}
2357
2358/**
2359 * pci_disable_device - Disable PCI device after use
2360 * @dev: PCI device to be disabled
2361 *
2362 * Signal to the system that the PCI device is not in use by the system
2363 * anymore.  This only involves disabling PCI bus-mastering, if active.
2364 *
2365 * Note we don't actually disable the device until all callers of
2366 * pci_enable_device() have called pci_disable_device().
2367 */
2368void pci_disable_device(struct pci_dev *dev)
2369{
2370	struct pci_devres *dr;
2371
2372	dr = find_pci_dr(dev);
2373	if (dr)
2374		dr->enabled = 0;
2375
2376	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2377		      "disabling already-disabled device");
2378
2379	if (atomic_dec_return(&dev->enable_cnt) != 0)
2380		return;
2381
2382	do_pci_disable_device(dev);
2383
2384	dev->is_busmaster = 0;
2385}
2386EXPORT_SYMBOL(pci_disable_device);
2387
2388/**
2389 * pcibios_set_pcie_reset_state - set reset state for device dev
2390 * @dev: the PCIe device reset
2391 * @state: Reset state to enter into
2392 *
2393 * Set the PCIe reset state for the device. This is the default
2394 * implementation. Architecture implementations can override this.
2395 */
2396int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2397					enum pcie_reset_state state)
2398{
2399	return -EINVAL;
2400}
2401
2402/**
2403 * pci_set_pcie_reset_state - set reset state for device dev
2404 * @dev: the PCIe device reset
2405 * @state: Reset state to enter into
2406 *
2407 * Sets the PCI reset state for the device.
2408 */
2409int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2410{
2411	return pcibios_set_pcie_reset_state(dev, state);
2412}
2413EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2414
2415#ifdef CONFIG_PCIEAER
2416void pcie_clear_device_status(struct pci_dev *dev)
2417{
2418	u16 sta;
2419
2420	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2421	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2422}
2423#endif
2424
2425/**
2426 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2427 * @dev: PCIe root port or event collector.
2428 */
2429void pcie_clear_root_pme_status(struct pci_dev *dev)
2430{
2431	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2432}
2433
2434/**
2435 * pci_check_pme_status - Check if given device has generated PME.
2436 * @dev: Device to check.
2437 *
2438 * Check the PME status of the device and if set, clear it and clear PME enable
2439 * (if set).  Return 'true' if PME status and PME enable were both set or
2440 * 'false' otherwise.
2441 */
2442bool pci_check_pme_status(struct pci_dev *dev)
2443{
2444	int pmcsr_pos;
2445	u16 pmcsr;
2446	bool ret = false;
2447
2448	if (!dev->pm_cap)
2449		return false;
2450
2451	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2452	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2453	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2454		return false;
2455
2456	/* Clear PME status. */
2457	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2458	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2459		/* Disable PME to avoid interrupt flood. */
2460		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2461		ret = true;
2462	}
2463
2464	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2465
2466	return ret;
2467}
2468
2469/**
2470 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2471 * @dev: Device to handle.
2472 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2473 *
2474 * Check if @dev has generated PME and queue a resume request for it in that
2475 * case.
2476 */
2477static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2478{
2479	if (pme_poll_reset && dev->pme_poll)
2480		dev->pme_poll = false;
2481
2482	if (pci_check_pme_status(dev)) {
2483		pci_wakeup_event(dev);
2484		pm_request_resume(&dev->dev);
2485	}
2486	return 0;
2487}
2488
2489/**
2490 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2491 * @bus: Top bus of the subtree to walk.
2492 */
2493void pci_pme_wakeup_bus(struct pci_bus *bus)
2494{
2495	if (bus)
2496		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2497}
2498
2499
2500/**
2501 * pci_pme_capable - check the capability of PCI device to generate PME#
2502 * @dev: PCI device to handle.
2503 * @state: PCI state from which device will issue PME#.
2504 */
2505bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2506{
2507	if (!dev->pm_cap)
2508		return false;
2509
2510	return !!(dev->pme_support & (1 << state));
2511}
2512EXPORT_SYMBOL(pci_pme_capable);
2513
2514static void pci_pme_list_scan(struct work_struct *work)
2515{
2516	struct pci_pme_device *pme_dev, *n;
2517
2518	mutex_lock(&pci_pme_list_mutex);
2519	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2520		struct pci_dev *pdev = pme_dev->dev;
2521
2522		if (pdev->pme_poll) {
2523			struct pci_dev *bridge = pdev->bus->self;
2524			struct device *dev = &pdev->dev;
2525			struct device *bdev = bridge ? &bridge->dev : NULL;
2526			int bref = 0;
2527
2528			/*
2529			 * If we have a bridge, it should be in an active/D0
2530			 * state or the configuration space of subordinate
2531			 * devices may not be accessible or stable over the
2532			 * course of the call.
2533			 */
2534			if (bdev) {
2535				bref = pm_runtime_get_if_active(bdev, true);
2536				if (!bref)
2537					continue;
2538
2539				if (bridge->current_state != PCI_D0)
2540					goto put_bridge;
2541			}
2542
2543			/*
2544			 * The device itself should be suspended but config
2545			 * space must be accessible, therefore it cannot be in
2546			 * D3cold.
2547			 */
2548			if (pm_runtime_suspended(dev) &&
2549			    pdev->current_state != PCI_D3cold)
2550				pci_pme_wakeup(pdev, NULL);
2551
2552put_bridge:
2553			if (bref > 0)
2554				pm_runtime_put(bdev);
2555		} else {
2556			list_del(&pme_dev->list);
2557			kfree(pme_dev);
2558		}
2559	}
2560	if (!list_empty(&pci_pme_list))
2561		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2562				   msecs_to_jiffies(PME_TIMEOUT));
2563	mutex_unlock(&pci_pme_list_mutex);
2564}
2565
2566static void __pci_pme_active(struct pci_dev *dev, bool enable)
2567{
2568	u16 pmcsr;
2569
2570	if (!dev->pme_support)
2571		return;
2572
2573	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2574	/* Clear PME_Status by writing 1 to it and enable PME# */
2575	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2576	if (!enable)
2577		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2578
2579	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2580}
2581
2582/**
2583 * pci_pme_restore - Restore PME configuration after config space restore.
2584 * @dev: PCI device to update.
2585 */
2586void pci_pme_restore(struct pci_dev *dev)
2587{
2588	u16 pmcsr;
2589
2590	if (!dev->pme_support)
2591		return;
2592
2593	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2594	if (dev->wakeup_prepared) {
2595		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2596		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2597	} else {
2598		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2599		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2600	}
2601	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2602}
2603
2604/**
2605 * pci_pme_active - enable or disable PCI device's PME# function
2606 * @dev: PCI device to handle.
2607 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2608 *
2609 * The caller must verify that the device is capable of generating PME# before
2610 * calling this function with @enable equal to 'true'.
2611 */
2612void pci_pme_active(struct pci_dev *dev, bool enable)
2613{
2614	__pci_pme_active(dev, enable);
2615
2616	/*
2617	 * PCI (as opposed to PCIe) PME requires that the device have
2618	 * its PME# line hooked up correctly. Not all hardware vendors
2619	 * do this, so the PME never gets delivered and the device
2620	 * remains asleep. The easiest way around this is to
2621	 * periodically walk the list of suspended devices and check
2622	 * whether any have their PME flag set. The assumption is that
2623	 * we'll wake up often enough anyway that this won't be a huge
2624	 * hit, and the power savings from the devices will still be a
2625	 * win.
2626	 *
2627	 * Although PCIe uses in-band PME message instead of PME# line
2628	 * to report PME, PME does not work for some PCIe devices in
2629	 * reality.  For example, there are devices that set their PME
2630	 * status bits, but don't really bother to send a PME message;
2631	 * there are PCI Express Root Ports that don't bother to
2632	 * trigger interrupts when they receive PME messages from the
2633	 * devices below.  So PME poll is used for PCIe devices too.
2634	 */
2635
2636	if (dev->pme_poll) {
2637		struct pci_pme_device *pme_dev;
2638		if (enable) {
2639			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2640					  GFP_KERNEL);
2641			if (!pme_dev) {
2642				pci_warn(dev, "can't enable PME#\n");
2643				return;
2644			}
2645			pme_dev->dev = dev;
2646			mutex_lock(&pci_pme_list_mutex);
2647			list_add(&pme_dev->list, &pci_pme_list);
2648			if (list_is_singular(&pci_pme_list))
2649				queue_delayed_work(system_freezable_wq,
2650						   &pci_pme_work,
2651						   msecs_to_jiffies(PME_TIMEOUT));
2652			mutex_unlock(&pci_pme_list_mutex);
2653		} else {
2654			mutex_lock(&pci_pme_list_mutex);
2655			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2656				if (pme_dev->dev == dev) {
2657					list_del(&pme_dev->list);
2658					kfree(pme_dev);
2659					break;
2660				}
2661			}
2662			mutex_unlock(&pci_pme_list_mutex);
2663		}
2664	}
2665
2666	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2667}
2668EXPORT_SYMBOL(pci_pme_active);
2669
2670/**
2671 * __pci_enable_wake - enable PCI device as wakeup event source
2672 * @dev: PCI device affected
2673 * @state: PCI state from which device will issue wakeup events
2674 * @enable: True to enable event generation; false to disable
2675 *
2676 * This enables the device as a wakeup event source, or disables it.
2677 * When such events involves platform-specific hooks, those hooks are
2678 * called automatically by this routine.
2679 *
2680 * Devices with legacy power management (no standard PCI PM capabilities)
2681 * always require such platform hooks.
2682 *
2683 * RETURN VALUE:
2684 * 0 is returned on success
2685 * -EINVAL is returned if device is not supposed to wake up the system
2686 * Error code depending on the platform is returned if both the platform and
2687 * the native mechanism fail to enable the generation of wake-up events
2688 */
2689static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2690{
2691	int ret = 0;
2692
2693	/*
2694	 * Bridges that are not power-manageable directly only signal
2695	 * wakeup on behalf of subordinate devices which is set up
2696	 * elsewhere, so skip them. However, bridges that are
2697	 * power-manageable may signal wakeup for themselves (for example,
2698	 * on a hotplug event) and they need to be covered here.
2699	 */
2700	if (!pci_power_manageable(dev))
2701		return 0;
2702
2703	/* Don't do the same thing twice in a row for one device. */
2704	if (!!enable == !!dev->wakeup_prepared)
2705		return 0;
2706
2707	/*
2708	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2709	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2710	 * enable.  To disable wake-up we call the platform first, for symmetry.
2711	 */
2712
2713	if (enable) {
2714		int error;
2715
2716		/*
2717		 * Enable PME signaling if the device can signal PME from
2718		 * D3cold regardless of whether or not it can signal PME from
2719		 * the current target state, because that will allow it to
2720		 * signal PME when the hierarchy above it goes into D3cold and
2721		 * the device itself ends up in D3cold as a result of that.
2722		 */
2723		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2724			pci_pme_active(dev, true);
2725		else
2726			ret = 1;
2727		error = platform_pci_set_wakeup(dev, true);
2728		if (ret)
2729			ret = error;
2730		if (!ret)
2731			dev->wakeup_prepared = true;
2732	} else {
2733		platform_pci_set_wakeup(dev, false);
2734		pci_pme_active(dev, false);
2735		dev->wakeup_prepared = false;
2736	}
2737
2738	return ret;
2739}
2740
2741/**
2742 * pci_enable_wake - change wakeup settings for a PCI device
2743 * @pci_dev: Target device
2744 * @state: PCI state from which device will issue wakeup events
2745 * @enable: Whether or not to enable event generation
2746 *
2747 * If @enable is set, check device_may_wakeup() for the device before calling
2748 * __pci_enable_wake() for it.
2749 */
2750int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2751{
2752	if (enable && !device_may_wakeup(&pci_dev->dev))
2753		return -EINVAL;
2754
2755	return __pci_enable_wake(pci_dev, state, enable);
2756}
2757EXPORT_SYMBOL(pci_enable_wake);
2758
2759/**
2760 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2761 * @dev: PCI device to prepare
2762 * @enable: True to enable wake-up event generation; false to disable
2763 *
2764 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2765 * and this function allows them to set that up cleanly - pci_enable_wake()
2766 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2767 * ordering constraints.
2768 *
2769 * This function only returns error code if the device is not allowed to wake
2770 * up the system from sleep or it is not capable of generating PME# from both
2771 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2772 */
2773int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2774{
2775	return pci_pme_capable(dev, PCI_D3cold) ?
2776			pci_enable_wake(dev, PCI_D3cold, enable) :
2777			pci_enable_wake(dev, PCI_D3hot, enable);
2778}
2779EXPORT_SYMBOL(pci_wake_from_d3);
2780
2781/**
2782 * pci_target_state - find an appropriate low power state for a given PCI dev
2783 * @dev: PCI device
2784 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2785 *
2786 * Use underlying platform code to find a supported low power state for @dev.
2787 * If the platform can't manage @dev, return the deepest state from which it
2788 * can generate wake events, based on any available PME info.
2789 */
2790static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2791{
2792	if (platform_pci_power_manageable(dev)) {
2793		/*
2794		 * Call the platform to find the target state for the device.
2795		 */
2796		pci_power_t state = platform_pci_choose_state(dev);
2797
2798		switch (state) {
2799		case PCI_POWER_ERROR:
2800		case PCI_UNKNOWN:
2801			return PCI_D3hot;
2802
2803		case PCI_D1:
2804		case PCI_D2:
2805			if (pci_no_d1d2(dev))
2806				return PCI_D3hot;
2807		}
2808
2809		return state;
2810	}
2811
2812	/*
2813	 * If the device is in D3cold even though it's not power-manageable by
2814	 * the platform, it may have been powered down by non-standard means.
2815	 * Best to let it slumber.
2816	 */
2817	if (dev->current_state == PCI_D3cold)
2818		return PCI_D3cold;
2819	else if (!dev->pm_cap)
2820		return PCI_D0;
2821
2822	if (wakeup && dev->pme_support) {
2823		pci_power_t state = PCI_D3hot;
2824
2825		/*
2826		 * Find the deepest state from which the device can generate
2827		 * PME#.
2828		 */
2829		while (state && !(dev->pme_support & (1 << state)))
2830			state--;
2831
2832		if (state)
2833			return state;
2834		else if (dev->pme_support & 1)
2835			return PCI_D0;
2836	}
2837
2838	return PCI_D3hot;
2839}
2840
2841/**
2842 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2843 *			  into a sleep state
2844 * @dev: Device to handle.
2845 *
2846 * Choose the power state appropriate for the device depending on whether
2847 * it can wake up the system and/or is power manageable by the platform
2848 * (PCI_D3hot is the default) and put the device into that state.
2849 */
2850int pci_prepare_to_sleep(struct pci_dev *dev)
2851{
2852	bool wakeup = device_may_wakeup(&dev->dev);
2853	pci_power_t target_state = pci_target_state(dev, wakeup);
2854	int error;
2855
2856	if (target_state == PCI_POWER_ERROR)
2857		return -EIO;
2858
2859	pci_enable_wake(dev, target_state, wakeup);
2860
2861	error = pci_set_power_state(dev, target_state);
2862
2863	if (error)
2864		pci_enable_wake(dev, target_state, false);
2865
2866	return error;
2867}
2868EXPORT_SYMBOL(pci_prepare_to_sleep);
2869
2870/**
2871 * pci_back_from_sleep - turn PCI device on during system-wide transition
2872 *			 into working state
2873 * @dev: Device to handle.
2874 *
2875 * Disable device's system wake-up capability and put it into D0.
2876 */
2877int pci_back_from_sleep(struct pci_dev *dev)
2878{
2879	int ret = pci_set_power_state(dev, PCI_D0);
2880
2881	if (ret)
2882		return ret;
2883
2884	pci_enable_wake(dev, PCI_D0, false);
2885	return 0;
2886}
2887EXPORT_SYMBOL(pci_back_from_sleep);
2888
2889/**
2890 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2891 * @dev: PCI device being suspended.
2892 *
2893 * Prepare @dev to generate wake-up events at run time and put it into a low
2894 * power state.
2895 */
2896int pci_finish_runtime_suspend(struct pci_dev *dev)
2897{
2898	pci_power_t target_state;
2899	int error;
2900
2901	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2902	if (target_state == PCI_POWER_ERROR)
2903		return -EIO;
2904
2905	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2906
2907	error = pci_set_power_state(dev, target_state);
2908
2909	if (error)
2910		pci_enable_wake(dev, target_state, false);
2911
2912	return error;
2913}
2914
2915/**
2916 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2917 * @dev: Device to check.
2918 *
2919 * Return true if the device itself is capable of generating wake-up events
2920 * (through the platform or using the native PCIe PME) or if the device supports
2921 * PME and one of its upstream bridges can generate wake-up events.
2922 */
2923bool pci_dev_run_wake(struct pci_dev *dev)
2924{
2925	struct pci_bus *bus = dev->bus;
2926
2927	if (!dev->pme_support)
2928		return false;
2929
2930	/* PME-capable in principle, but not from the target power state */
2931	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2932		return false;
2933
2934	if (device_can_wakeup(&dev->dev))
2935		return true;
2936
2937	while (bus->parent) {
2938		struct pci_dev *bridge = bus->self;
2939
2940		if (device_can_wakeup(&bridge->dev))
2941			return true;
2942
2943		bus = bus->parent;
2944	}
2945
2946	/* We have reached the root bus. */
2947	if (bus->bridge)
2948		return device_can_wakeup(bus->bridge);
2949
2950	return false;
2951}
2952EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2953
2954/**
2955 * pci_dev_need_resume - Check if it is necessary to resume the device.
2956 * @pci_dev: Device to check.
2957 *
2958 * Return 'true' if the device is not runtime-suspended or it has to be
2959 * reconfigured due to wakeup settings difference between system and runtime
2960 * suspend, or the current power state of it is not suitable for the upcoming
2961 * (system-wide) transition.
2962 */
2963bool pci_dev_need_resume(struct pci_dev *pci_dev)
2964{
2965	struct device *dev = &pci_dev->dev;
2966	pci_power_t target_state;
2967
2968	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2969		return true;
2970
2971	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2972
2973	/*
2974	 * If the earlier platform check has not triggered, D3cold is just power
2975	 * removal on top of D3hot, so no need to resume the device in that
2976	 * case.
2977	 */
2978	return target_state != pci_dev->current_state &&
2979		target_state != PCI_D3cold &&
2980		pci_dev->current_state != PCI_D3hot;
2981}
2982
2983/**
2984 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2985 * @pci_dev: Device to check.
2986 *
2987 * If the device is suspended and it is not configured for system wakeup,
2988 * disable PME for it to prevent it from waking up the system unnecessarily.
2989 *
2990 * Note that if the device's power state is D3cold and the platform check in
2991 * pci_dev_need_resume() has not triggered, the device's configuration need not
2992 * be changed.
2993 */
2994void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2995{
2996	struct device *dev = &pci_dev->dev;
2997
2998	spin_lock_irq(&dev->power.lock);
2999
3000	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
3001	    pci_dev->current_state < PCI_D3cold)
3002		__pci_pme_active(pci_dev, false);
3003
3004	spin_unlock_irq(&dev->power.lock);
3005}
3006
3007/**
3008 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
3009 * @pci_dev: Device to handle.
3010 *
3011 * If the device is runtime suspended and wakeup-capable, enable PME for it as
3012 * it might have been disabled during the prepare phase of system suspend if
3013 * the device was not configured for system wakeup.
3014 */
3015void pci_dev_complete_resume(struct pci_dev *pci_dev)
3016{
3017	struct device *dev = &pci_dev->dev;
3018
3019	if (!pci_dev_run_wake(pci_dev))
3020		return;
3021
3022	spin_lock_irq(&dev->power.lock);
3023
3024	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
3025		__pci_pme_active(pci_dev, true);
3026
3027	spin_unlock_irq(&dev->power.lock);
3028}
3029
3030/**
3031 * pci_choose_state - Choose the power state of a PCI device.
3032 * @dev: Target PCI device.
3033 * @state: Target state for the whole system.
3034 *
3035 * Returns PCI power state suitable for @dev and @state.
3036 */
3037pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
3038{
3039	if (state.event == PM_EVENT_ON)
3040		return PCI_D0;
3041
3042	return pci_target_state(dev, false);
3043}
3044EXPORT_SYMBOL(pci_choose_state);
3045
3046void pci_config_pm_runtime_get(struct pci_dev *pdev)
3047{
3048	struct device *dev = &pdev->dev;
3049	struct device *parent = dev->parent;
3050
3051	if (parent)
3052		pm_runtime_get_sync(parent);
3053	pm_runtime_get_noresume(dev);
3054	/*
3055	 * pdev->current_state is set to PCI_D3cold during suspending,
3056	 * so wait until suspending completes
3057	 */
3058	pm_runtime_barrier(dev);
3059	/*
3060	 * Only need to resume devices in D3cold, because config
3061	 * registers are still accessible for devices suspended but
3062	 * not in D3cold.
3063	 */
3064	if (pdev->current_state == PCI_D3cold)
3065		pm_runtime_resume(dev);
3066}
3067
3068void pci_config_pm_runtime_put(struct pci_dev *pdev)
3069{
3070	struct device *dev = &pdev->dev;
3071	struct device *parent = dev->parent;
3072
3073	pm_runtime_put(dev);
3074	if (parent)
3075		pm_runtime_put_sync(parent);
3076}
3077
3078static const struct dmi_system_id bridge_d3_blacklist[] = {
3079#ifdef CONFIG_X86
3080	{
3081		/*
3082		 * Gigabyte X299 root port is not marked as hotplug capable
3083		 * which allows Linux to power manage it.  However, this
3084		 * confuses the BIOS SMI handler so don't power manage root
3085		 * ports on that system.
3086		 */
3087		.ident = "X299 DESIGNARE EX-CF",
3088		.matches = {
3089			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
3090			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
3091		},
3092	},
3093	{
3094		/*
3095		 * Downstream device is not accessible after putting a root port
3096		 * into D3cold and back into D0 on Elo Continental Z2 board
3097		 */
3098		.ident = "Elo Continental Z2",
3099		.matches = {
3100			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
3101			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3102			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3103		},
3104	},
 
 
 
 
 
 
 
 
 
 
 
 
3105#endif
3106	{ }
3107};
3108
3109/**
3110 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3111 * @bridge: Bridge to check
3112 *
3113 * This function checks if it is possible to move the bridge to D3.
3114 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3115 */
3116bool pci_bridge_d3_possible(struct pci_dev *bridge)
3117{
3118	if (!pci_is_pcie(bridge))
3119		return false;
3120
3121	switch (pci_pcie_type(bridge)) {
3122	case PCI_EXP_TYPE_ROOT_PORT:
3123	case PCI_EXP_TYPE_UPSTREAM:
3124	case PCI_EXP_TYPE_DOWNSTREAM:
3125		if (pci_bridge_d3_disable)
3126			return false;
3127
3128		/*
3129		 * Hotplug ports handled by firmware in System Management Mode
3130		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3131		 */
3132		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3133			return false;
3134
3135		if (pci_bridge_d3_force)
3136			return true;
3137
3138		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3139		if (bridge->is_thunderbolt)
3140			return true;
3141
3142		/* Platform might know better if the bridge supports D3 */
3143		if (platform_pci_bridge_d3(bridge))
3144			return true;
3145
3146		/*
3147		 * Hotplug ports handled natively by the OS were not validated
3148		 * by vendors for runtime D3 at least until 2018 because there
3149		 * was no OS support.
3150		 */
3151		if (bridge->is_hotplug_bridge)
3152			return false;
3153
3154		if (dmi_check_system(bridge_d3_blacklist))
3155			return false;
3156
3157		/*
3158		 * It should be safe to put PCIe ports from 2015 or newer
3159		 * to D3.
3160		 */
3161		if (dmi_get_bios_year() >= 2015)
3162			return true;
3163		break;
3164	}
3165
3166	return false;
3167}
3168
3169static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3170{
3171	bool *d3cold_ok = data;
3172
3173	if (/* The device needs to be allowed to go D3cold ... */
3174	    dev->no_d3cold || !dev->d3cold_allowed ||
3175
3176	    /* ... and if it is wakeup capable to do so from D3cold. */
3177	    (device_may_wakeup(&dev->dev) &&
3178	     !pci_pme_capable(dev, PCI_D3cold)) ||
3179
3180	    /* If it is a bridge it must be allowed to go to D3. */
3181	    !pci_power_manageable(dev))
3182
3183		*d3cold_ok = false;
3184
3185	return !*d3cold_ok;
3186}
3187
3188/*
3189 * pci_bridge_d3_update - Update bridge D3 capabilities
3190 * @dev: PCI device which is changed
3191 *
3192 * Update upstream bridge PM capabilities accordingly depending on if the
3193 * device PM configuration was changed or the device is being removed.  The
3194 * change is also propagated upstream.
3195 */
3196void pci_bridge_d3_update(struct pci_dev *dev)
3197{
3198	bool remove = !device_is_registered(&dev->dev);
3199	struct pci_dev *bridge;
3200	bool d3cold_ok = true;
3201
3202	bridge = pci_upstream_bridge(dev);
3203	if (!bridge || !pci_bridge_d3_possible(bridge))
3204		return;
3205
3206	/*
3207	 * If D3 is currently allowed for the bridge, removing one of its
3208	 * children won't change that.
3209	 */
3210	if (remove && bridge->bridge_d3)
3211		return;
3212
3213	/*
3214	 * If D3 is currently allowed for the bridge and a child is added or
3215	 * changed, disallowance of D3 can only be caused by that child, so
3216	 * we only need to check that single device, not any of its siblings.
3217	 *
3218	 * If D3 is currently not allowed for the bridge, checking the device
3219	 * first may allow us to skip checking its siblings.
3220	 */
3221	if (!remove)
3222		pci_dev_check_d3cold(dev, &d3cold_ok);
3223
3224	/*
3225	 * If D3 is currently not allowed for the bridge, this may be caused
3226	 * either by the device being changed/removed or any of its siblings,
3227	 * so we need to go through all children to find out if one of them
3228	 * continues to block D3.
3229	 */
3230	if (d3cold_ok && !bridge->bridge_d3)
3231		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3232			     &d3cold_ok);
3233
3234	if (bridge->bridge_d3 != d3cold_ok) {
3235		bridge->bridge_d3 = d3cold_ok;
3236		/* Propagate change to upstream bridges */
3237		pci_bridge_d3_update(bridge);
3238	}
3239}
3240
3241/**
3242 * pci_d3cold_enable - Enable D3cold for device
3243 * @dev: PCI device to handle
3244 *
3245 * This function can be used in drivers to enable D3cold from the device
3246 * they handle.  It also updates upstream PCI bridge PM capabilities
3247 * accordingly.
3248 */
3249void pci_d3cold_enable(struct pci_dev *dev)
3250{
3251	if (dev->no_d3cold) {
3252		dev->no_d3cold = false;
3253		pci_bridge_d3_update(dev);
3254	}
3255}
3256EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3257
3258/**
3259 * pci_d3cold_disable - Disable D3cold for device
3260 * @dev: PCI device to handle
3261 *
3262 * This function can be used in drivers to disable D3cold from the device
3263 * they handle.  It also updates upstream PCI bridge PM capabilities
3264 * accordingly.
3265 */
3266void pci_d3cold_disable(struct pci_dev *dev)
3267{
3268	if (!dev->no_d3cold) {
3269		dev->no_d3cold = true;
3270		pci_bridge_d3_update(dev);
3271	}
3272}
3273EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3274
3275/**
3276 * pci_pm_init - Initialize PM functions of given PCI device
3277 * @dev: PCI device to handle.
3278 */
3279void pci_pm_init(struct pci_dev *dev)
3280{
3281	int pm;
3282	u16 status;
3283	u16 pmc;
3284
3285	pm_runtime_forbid(&dev->dev);
3286	pm_runtime_set_active(&dev->dev);
3287	pm_runtime_enable(&dev->dev);
3288	device_enable_async_suspend(&dev->dev);
3289	dev->wakeup_prepared = false;
3290
3291	dev->pm_cap = 0;
3292	dev->pme_support = 0;
3293
3294	/* find PCI PM capability in list */
3295	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3296	if (!pm)
3297		return;
3298	/* Check device's ability to generate PME# */
3299	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3300
3301	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3302		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3303			pmc & PCI_PM_CAP_VER_MASK);
3304		return;
3305	}
3306
3307	dev->pm_cap = pm;
3308	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3309	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3310	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3311	dev->d3cold_allowed = true;
3312
3313	dev->d1_support = false;
3314	dev->d2_support = false;
3315	if (!pci_no_d1d2(dev)) {
3316		if (pmc & PCI_PM_CAP_D1)
3317			dev->d1_support = true;
3318		if (pmc & PCI_PM_CAP_D2)
3319			dev->d2_support = true;
3320
3321		if (dev->d1_support || dev->d2_support)
3322			pci_info(dev, "supports%s%s\n",
3323				   dev->d1_support ? " D1" : "",
3324				   dev->d2_support ? " D2" : "");
3325	}
3326
3327	pmc &= PCI_PM_CAP_PME_MASK;
3328	if (pmc) {
3329		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3330			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3331			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3332			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3333			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3334			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3335		dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3336		dev->pme_poll = true;
3337		/*
3338		 * Make device's PM flags reflect the wake-up capability, but
3339		 * let the user space enable it to wake up the system as needed.
3340		 */
3341		device_set_wakeup_capable(&dev->dev, true);
3342		/* Disable the PME# generation functionality */
3343		pci_pme_active(dev, false);
3344	}
3345
3346	pci_read_config_word(dev, PCI_STATUS, &status);
3347	if (status & PCI_STATUS_IMM_READY)
3348		dev->imm_ready = 1;
3349}
3350
3351static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3352{
3353	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3354
3355	switch (prop) {
3356	case PCI_EA_P_MEM:
3357	case PCI_EA_P_VF_MEM:
3358		flags |= IORESOURCE_MEM;
3359		break;
3360	case PCI_EA_P_MEM_PREFETCH:
3361	case PCI_EA_P_VF_MEM_PREFETCH:
3362		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3363		break;
3364	case PCI_EA_P_IO:
3365		flags |= IORESOURCE_IO;
3366		break;
3367	default:
3368		return 0;
3369	}
3370
3371	return flags;
3372}
3373
3374static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3375					    u8 prop)
3376{
3377	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3378		return &dev->resource[bei];
3379#ifdef CONFIG_PCI_IOV
3380	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3381		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3382		return &dev->resource[PCI_IOV_RESOURCES +
3383				      bei - PCI_EA_BEI_VF_BAR0];
3384#endif
3385	else if (bei == PCI_EA_BEI_ROM)
3386		return &dev->resource[PCI_ROM_RESOURCE];
3387	else
3388		return NULL;
3389}
3390
3391/* Read an Enhanced Allocation (EA) entry */
3392static int pci_ea_read(struct pci_dev *dev, int offset)
3393{
3394	struct resource *res;
3395	const char *res_name;
3396	int ent_size, ent_offset = offset;
3397	resource_size_t start, end;
3398	unsigned long flags;
3399	u32 dw0, bei, base, max_offset;
3400	u8 prop;
3401	bool support_64 = (sizeof(resource_size_t) >= 8);
3402
3403	pci_read_config_dword(dev, ent_offset, &dw0);
3404	ent_offset += 4;
3405
3406	/* Entry size field indicates DWORDs after 1st */
3407	ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3408
3409	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3410		goto out;
3411
3412	bei = FIELD_GET(PCI_EA_BEI, dw0);
3413	prop = FIELD_GET(PCI_EA_PP, dw0);
3414
3415	/*
3416	 * If the Property is in the reserved range, try the Secondary
3417	 * Property instead.
3418	 */
3419	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3420		prop = FIELD_GET(PCI_EA_SP, dw0);
3421	if (prop > PCI_EA_P_BRIDGE_IO)
3422		goto out;
3423
3424	res = pci_ea_get_resource(dev, bei, prop);
3425	res_name = pci_resource_name(dev, bei);
3426	if (!res) {
3427		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3428		goto out;
3429	}
3430
3431	flags = pci_ea_flags(dev, prop);
3432	if (!flags) {
3433		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3434		goto out;
3435	}
3436
3437	/* Read Base */
3438	pci_read_config_dword(dev, ent_offset, &base);
3439	start = (base & PCI_EA_FIELD_MASK);
3440	ent_offset += 4;
3441
3442	/* Read MaxOffset */
3443	pci_read_config_dword(dev, ent_offset, &max_offset);
3444	ent_offset += 4;
3445
3446	/* Read Base MSBs (if 64-bit entry) */
3447	if (base & PCI_EA_IS_64) {
3448		u32 base_upper;
3449
3450		pci_read_config_dword(dev, ent_offset, &base_upper);
3451		ent_offset += 4;
3452
3453		flags |= IORESOURCE_MEM_64;
3454
3455		/* entry starts above 32-bit boundary, can't use */
3456		if (!support_64 && base_upper)
3457			goto out;
3458
3459		if (support_64)
3460			start |= ((u64)base_upper << 32);
3461	}
3462
3463	end = start + (max_offset | 0x03);
3464
3465	/* Read MaxOffset MSBs (if 64-bit entry) */
3466	if (max_offset & PCI_EA_IS_64) {
3467		u32 max_offset_upper;
3468
3469		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3470		ent_offset += 4;
3471
3472		flags |= IORESOURCE_MEM_64;
3473
3474		/* entry too big, can't use */
3475		if (!support_64 && max_offset_upper)
3476			goto out;
3477
3478		if (support_64)
3479			end += ((u64)max_offset_upper << 32);
3480	}
3481
3482	if (end < start) {
3483		pci_err(dev, "EA Entry crosses address boundary\n");
3484		goto out;
3485	}
3486
3487	if (ent_size != ent_offset - offset) {
3488		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3489			ent_size, ent_offset - offset);
3490		goto out;
3491	}
3492
3493	res->name = pci_name(dev);
3494	res->start = start;
3495	res->end = end;
3496	res->flags = flags;
3497
3498	if (bei <= PCI_EA_BEI_BAR5)
3499		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3500			 res_name, res, prop);
3501	else if (bei == PCI_EA_BEI_ROM)
3502		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3503			 res_name, res, prop);
3504	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3505		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3506			 res_name, res, prop);
3507	else
3508		pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3509			   bei, res, prop);
3510
3511out:
3512	return offset + ent_size;
3513}
3514
3515/* Enhanced Allocation Initialization */
3516void pci_ea_init(struct pci_dev *dev)
3517{
3518	int ea;
3519	u8 num_ent;
3520	int offset;
3521	int i;
3522
3523	/* find PCI EA capability in list */
3524	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3525	if (!ea)
3526		return;
3527
3528	/* determine the number of entries */
3529	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3530					&num_ent);
3531	num_ent &= PCI_EA_NUM_ENT_MASK;
3532
3533	offset = ea + PCI_EA_FIRST_ENT;
3534
3535	/* Skip DWORD 2 for type 1 functions */
3536	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3537		offset += 4;
3538
3539	/* parse each EA entry */
3540	for (i = 0; i < num_ent; ++i)
3541		offset = pci_ea_read(dev, offset);
3542}
3543
3544static void pci_add_saved_cap(struct pci_dev *pci_dev,
3545	struct pci_cap_saved_state *new_cap)
3546{
3547	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3548}
3549
3550/**
3551 * _pci_add_cap_save_buffer - allocate buffer for saving given
3552 *			      capability registers
3553 * @dev: the PCI device
3554 * @cap: the capability to allocate the buffer for
3555 * @extended: Standard or Extended capability ID
3556 * @size: requested size of the buffer
3557 */
3558static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3559				    bool extended, unsigned int size)
3560{
3561	int pos;
3562	struct pci_cap_saved_state *save_state;
3563
3564	if (extended)
3565		pos = pci_find_ext_capability(dev, cap);
3566	else
3567		pos = pci_find_capability(dev, cap);
3568
3569	if (!pos)
3570		return 0;
3571
3572	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3573	if (!save_state)
3574		return -ENOMEM;
3575
3576	save_state->cap.cap_nr = cap;
3577	save_state->cap.cap_extended = extended;
3578	save_state->cap.size = size;
3579	pci_add_saved_cap(dev, save_state);
3580
3581	return 0;
3582}
3583
3584int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3585{
3586	return _pci_add_cap_save_buffer(dev, cap, false, size);
3587}
3588
3589int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3590{
3591	return _pci_add_cap_save_buffer(dev, cap, true, size);
3592}
3593
3594/**
3595 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3596 * @dev: the PCI device
3597 */
3598void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3599{
3600	int error;
3601
3602	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3603					PCI_EXP_SAVE_REGS * sizeof(u16));
3604	if (error)
3605		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3606
3607	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3608	if (error)
3609		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3610
3611	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3612					    2 * sizeof(u16));
3613	if (error)
3614		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3615
3616	pci_allocate_vc_save_buffers(dev);
3617}
3618
3619void pci_free_cap_save_buffers(struct pci_dev *dev)
3620{
3621	struct pci_cap_saved_state *tmp;
3622	struct hlist_node *n;
3623
3624	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3625		kfree(tmp);
3626}
3627
3628/**
3629 * pci_configure_ari - enable or disable ARI forwarding
3630 * @dev: the PCI device
3631 *
3632 * If @dev and its upstream bridge both support ARI, enable ARI in the
3633 * bridge.  Otherwise, disable ARI in the bridge.
3634 */
3635void pci_configure_ari(struct pci_dev *dev)
3636{
3637	u32 cap;
3638	struct pci_dev *bridge;
3639
3640	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3641		return;
3642
3643	bridge = dev->bus->self;
3644	if (!bridge)
3645		return;
3646
3647	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3648	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3649		return;
3650
3651	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3652		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3653					 PCI_EXP_DEVCTL2_ARI);
3654		bridge->ari_enabled = 1;
3655	} else {
3656		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3657					   PCI_EXP_DEVCTL2_ARI);
3658		bridge->ari_enabled = 0;
3659	}
3660}
3661
3662static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3663{
3664	int pos;
3665	u16 cap, ctrl;
3666
3667	pos = pdev->acs_cap;
3668	if (!pos)
3669		return false;
3670
3671	/*
3672	 * Except for egress control, capabilities are either required
3673	 * or only required if controllable.  Features missing from the
3674	 * capability field can therefore be assumed as hard-wired enabled.
3675	 */
3676	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3677	acs_flags &= (cap | PCI_ACS_EC);
3678
3679	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3680	return (ctrl & acs_flags) == acs_flags;
3681}
3682
3683/**
3684 * pci_acs_enabled - test ACS against required flags for a given device
3685 * @pdev: device to test
3686 * @acs_flags: required PCI ACS flags
3687 *
3688 * Return true if the device supports the provided flags.  Automatically
3689 * filters out flags that are not implemented on multifunction devices.
3690 *
3691 * Note that this interface checks the effective ACS capabilities of the
3692 * device rather than the actual capabilities.  For instance, most single
3693 * function endpoints are not required to support ACS because they have no
3694 * opportunity for peer-to-peer access.  We therefore return 'true'
3695 * regardless of whether the device exposes an ACS capability.  This makes
3696 * it much easier for callers of this function to ignore the actual type
3697 * or topology of the device when testing ACS support.
3698 */
3699bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3700{
3701	int ret;
3702
3703	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3704	if (ret >= 0)
3705		return ret > 0;
3706
3707	/*
3708	 * Conventional PCI and PCI-X devices never support ACS, either
3709	 * effectively or actually.  The shared bus topology implies that
3710	 * any device on the bus can receive or snoop DMA.
3711	 */
3712	if (!pci_is_pcie(pdev))
3713		return false;
3714
3715	switch (pci_pcie_type(pdev)) {
3716	/*
3717	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3718	 * but since their primary interface is PCI/X, we conservatively
3719	 * handle them as we would a non-PCIe device.
3720	 */
3721	case PCI_EXP_TYPE_PCIE_BRIDGE:
3722	/*
3723	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3724	 * applicable... must never implement an ACS Extended Capability...".
3725	 * This seems arbitrary, but we take a conservative interpretation
3726	 * of this statement.
3727	 */
3728	case PCI_EXP_TYPE_PCI_BRIDGE:
3729	case PCI_EXP_TYPE_RC_EC:
3730		return false;
3731	/*
3732	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3733	 * implement ACS in order to indicate their peer-to-peer capabilities,
3734	 * regardless of whether they are single- or multi-function devices.
3735	 */
3736	case PCI_EXP_TYPE_DOWNSTREAM:
3737	case PCI_EXP_TYPE_ROOT_PORT:
3738		return pci_acs_flags_enabled(pdev, acs_flags);
3739	/*
3740	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3741	 * implemented by the remaining PCIe types to indicate peer-to-peer
3742	 * capabilities, but only when they are part of a multifunction
3743	 * device.  The footnote for section 6.12 indicates the specific
3744	 * PCIe types included here.
3745	 */
3746	case PCI_EXP_TYPE_ENDPOINT:
3747	case PCI_EXP_TYPE_UPSTREAM:
3748	case PCI_EXP_TYPE_LEG_END:
3749	case PCI_EXP_TYPE_RC_END:
3750		if (!pdev->multifunction)
3751			break;
3752
3753		return pci_acs_flags_enabled(pdev, acs_flags);
3754	}
3755
3756	/*
3757	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3758	 * to single function devices with the exception of downstream ports.
3759	 */
3760	return true;
3761}
3762
3763/**
3764 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3765 * @start: starting downstream device
3766 * @end: ending upstream device or NULL to search to the root bus
3767 * @acs_flags: required flags
3768 *
3769 * Walk up a device tree from start to end testing PCI ACS support.  If
3770 * any step along the way does not support the required flags, return false.
3771 */
3772bool pci_acs_path_enabled(struct pci_dev *start,
3773			  struct pci_dev *end, u16 acs_flags)
3774{
3775	struct pci_dev *pdev, *parent = start;
3776
3777	do {
3778		pdev = parent;
3779
3780		if (!pci_acs_enabled(pdev, acs_flags))
3781			return false;
3782
3783		if (pci_is_root_bus(pdev->bus))
3784			return (end == NULL);
3785
3786		parent = pdev->bus->self;
3787	} while (pdev != end);
3788
3789	return true;
3790}
3791
3792/**
3793 * pci_acs_init - Initialize ACS if hardware supports it
3794 * @dev: the PCI device
3795 */
3796void pci_acs_init(struct pci_dev *dev)
3797{
3798	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3799
3800	/*
3801	 * Attempt to enable ACS regardless of capability because some Root
3802	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3803	 * the standard ACS capability but still support ACS via those
3804	 * quirks.
3805	 */
3806	pci_enable_acs(dev);
3807}
3808
3809/**
3810 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3811 * @pdev: PCI device
3812 * @bar: BAR to find
3813 *
3814 * Helper to find the position of the ctrl register for a BAR.
3815 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3816 * Returns -ENOENT if no ctrl register for the BAR could be found.
3817 */
3818static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3819{
3820	unsigned int pos, nbars, i;
3821	u32 ctrl;
3822
3823	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3824	if (!pos)
3825		return -ENOTSUPP;
3826
3827	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3828	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3829
3830	for (i = 0; i < nbars; i++, pos += 8) {
3831		int bar_idx;
3832
3833		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3834		bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3835		if (bar_idx == bar)
3836			return pos;
3837	}
3838
3839	return -ENOENT;
3840}
3841
3842/**
3843 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3844 * @pdev: PCI device
3845 * @bar: BAR to query
3846 *
3847 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3848 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3849 */
3850u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3851{
3852	int pos;
3853	u32 cap;
3854
3855	pos = pci_rebar_find_pos(pdev, bar);
3856	if (pos < 0)
3857		return 0;
3858
3859	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3860	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3861
3862	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3863	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3864	    bar == 0 && cap == 0x700)
3865		return 0x3f00;
3866
3867	return cap;
3868}
3869EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3870
3871/**
3872 * pci_rebar_get_current_size - get the current size of a BAR
3873 * @pdev: PCI device
3874 * @bar: BAR to set size to
3875 *
3876 * Read the size of a BAR from the resizable BAR config.
3877 * Returns size if found or negative error code.
3878 */
3879int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3880{
3881	int pos;
3882	u32 ctrl;
3883
3884	pos = pci_rebar_find_pos(pdev, bar);
3885	if (pos < 0)
3886		return pos;
3887
3888	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3889	return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3890}
3891
3892/**
3893 * pci_rebar_set_size - set a new size for a BAR
3894 * @pdev: PCI device
3895 * @bar: BAR to set size to
3896 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3897 *
3898 * Set the new size of a BAR as defined in the spec.
3899 * Returns zero if resizing was successful, error code otherwise.
3900 */
3901int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3902{
3903	int pos;
3904	u32 ctrl;
3905
3906	pos = pci_rebar_find_pos(pdev, bar);
3907	if (pos < 0)
3908		return pos;
3909
3910	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3911	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3912	ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3913	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3914	return 0;
3915}
3916
3917/**
3918 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3919 * @dev: the PCI device
3920 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3921 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3922 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3923 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3924 *
3925 * Return 0 if all upstream bridges support AtomicOp routing, egress
3926 * blocking is disabled on all upstream ports, and the root port supports
3927 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3928 * AtomicOp completion), or negative otherwise.
3929 */
3930int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3931{
3932	struct pci_bus *bus = dev->bus;
3933	struct pci_dev *bridge;
3934	u32 cap, ctl2;
3935
3936	/*
3937	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3938	 * in Device Control 2 is reserved in VFs and the PF value applies
3939	 * to all associated VFs.
3940	 */
3941	if (dev->is_virtfn)
3942		return -EINVAL;
3943
3944	if (!pci_is_pcie(dev))
3945		return -EINVAL;
3946
3947	/*
3948	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3949	 * AtomicOp requesters.  For now, we only support endpoints as
3950	 * requesters and root ports as completers.  No endpoints as
3951	 * completers, and no peer-to-peer.
3952	 */
3953
3954	switch (pci_pcie_type(dev)) {
3955	case PCI_EXP_TYPE_ENDPOINT:
3956	case PCI_EXP_TYPE_LEG_END:
3957	case PCI_EXP_TYPE_RC_END:
3958		break;
3959	default:
3960		return -EINVAL;
3961	}
3962
3963	while (bus->parent) {
3964		bridge = bus->self;
3965
3966		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3967
3968		switch (pci_pcie_type(bridge)) {
3969		/* Ensure switch ports support AtomicOp routing */
3970		case PCI_EXP_TYPE_UPSTREAM:
3971		case PCI_EXP_TYPE_DOWNSTREAM:
3972			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3973				return -EINVAL;
3974			break;
3975
3976		/* Ensure root port supports all the sizes we care about */
3977		case PCI_EXP_TYPE_ROOT_PORT:
3978			if ((cap & cap_mask) != cap_mask)
3979				return -EINVAL;
3980			break;
3981		}
3982
3983		/* Ensure upstream ports don't block AtomicOps on egress */
3984		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3985			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3986						   &ctl2);
3987			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3988				return -EINVAL;
3989		}
3990
3991		bus = bus->parent;
3992	}
3993
3994	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3995				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3996	return 0;
3997}
3998EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3999
4000/**
4001 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
4002 * @dev: the PCI device
4003 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
4004 *
4005 * Perform INTx swizzling for a device behind one level of bridge.  This is
4006 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
4007 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
4008 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
4009 * the PCI Express Base Specification, Revision 2.1)
4010 */
4011u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
4012{
4013	int slot;
4014
4015	if (pci_ari_enabled(dev->bus))
4016		slot = 0;
4017	else
4018		slot = PCI_SLOT(dev->devfn);
4019
4020	return (((pin - 1) + slot) % 4) + 1;
4021}
4022
4023int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
4024{
4025	u8 pin;
4026
4027	pin = dev->pin;
4028	if (!pin)
4029		return -1;
4030
4031	while (!pci_is_root_bus(dev->bus)) {
4032		pin = pci_swizzle_interrupt_pin(dev, pin);
4033		dev = dev->bus->self;
4034	}
4035	*bridge = dev;
4036	return pin;
4037}
4038
4039/**
4040 * pci_common_swizzle - swizzle INTx all the way to root bridge
4041 * @dev: the PCI device
4042 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
4043 *
4044 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
4045 * bridges all the way up to a PCI root bus.
4046 */
4047u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
4048{
4049	u8 pin = *pinp;
4050
4051	while (!pci_is_root_bus(dev->bus)) {
4052		pin = pci_swizzle_interrupt_pin(dev, pin);
4053		dev = dev->bus->self;
4054	}
4055	*pinp = pin;
4056	return PCI_SLOT(dev->devfn);
4057}
4058EXPORT_SYMBOL_GPL(pci_common_swizzle);
4059
4060/**
4061 * pci_release_region - Release a PCI bar
4062 * @pdev: PCI device whose resources were previously reserved by
4063 *	  pci_request_region()
4064 * @bar: BAR to release
4065 *
4066 * Releases the PCI I/O and memory resources previously reserved by a
4067 * successful call to pci_request_region().  Call this function only
4068 * after all use of the PCI regions has ceased.
4069 */
4070void pci_release_region(struct pci_dev *pdev, int bar)
4071{
4072	struct pci_devres *dr;
 
 
 
 
 
 
 
 
4073
4074	if (pci_resource_len(pdev, bar) == 0)
4075		return;
4076	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
4077		release_region(pci_resource_start(pdev, bar),
4078				pci_resource_len(pdev, bar));
4079	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
4080		release_mem_region(pci_resource_start(pdev, bar),
4081				pci_resource_len(pdev, bar));
4082
4083	dr = find_pci_dr(pdev);
4084	if (dr)
4085		dr->region_mask &= ~(1 << bar);
4086}
4087EXPORT_SYMBOL(pci_release_region);
4088
4089/**
4090 * __pci_request_region - Reserved PCI I/O and memory resource
4091 * @pdev: PCI device whose resources are to be reserved
4092 * @bar: BAR to be reserved
4093 * @res_name: Name to be associated with resource.
4094 * @exclusive: whether the region access is exclusive or not
4095 *
 
 
4096 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4097 * being reserved by owner @res_name.  Do not access any
4098 * address inside the PCI regions unless this call returns
4099 * successfully.
4100 *
4101 * If @exclusive is set, then the region is marked so that userspace
4102 * is explicitly not allowed to map the resource via /dev/mem or
4103 * sysfs MMIO access.
4104 *
4105 * Returns 0 on success, or %EBUSY on error.  A warning
4106 * message is also printed on failure.
4107 */
4108static int __pci_request_region(struct pci_dev *pdev, int bar,
4109				const char *res_name, int exclusive)
4110{
4111	struct pci_devres *dr;
 
 
 
 
 
4112
4113	if (pci_resource_len(pdev, bar) == 0)
4114		return 0;
4115
4116	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4117		if (!request_region(pci_resource_start(pdev, bar),
4118			    pci_resource_len(pdev, bar), res_name))
4119			goto err_out;
4120	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4121		if (!__request_mem_region(pci_resource_start(pdev, bar),
4122					pci_resource_len(pdev, bar), res_name,
4123					exclusive))
4124			goto err_out;
4125	}
4126
4127	dr = find_pci_dr(pdev);
4128	if (dr)
4129		dr->region_mask |= 1 << bar;
4130
4131	return 0;
4132
4133err_out:
4134	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4135		 &pdev->resource[bar]);
4136	return -EBUSY;
4137}
4138
4139/**
4140 * pci_request_region - Reserve PCI I/O and memory resource
4141 * @pdev: PCI device whose resources are to be reserved
4142 * @bar: BAR to be reserved
4143 * @res_name: Name to be associated with resource
4144 *
 
 
4145 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4146 * being reserved by owner @res_name.  Do not access any
4147 * address inside the PCI regions unless this call returns
4148 * successfully.
4149 *
4150 * Returns 0 on success, or %EBUSY on error.  A warning
4151 * message is also printed on failure.
 
 
 
 
 
4152 */
4153int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4154{
4155	return __pci_request_region(pdev, bar, res_name, 0);
4156}
4157EXPORT_SYMBOL(pci_request_region);
4158
4159/**
4160 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4161 * @pdev: PCI device whose resources were previously reserved
4162 * @bars: Bitmask of BARs to be released
4163 *
4164 * Release selected PCI I/O and memory resources previously reserved.
4165 * Call this function only after all use of the PCI regions has ceased.
4166 */
4167void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4168{
4169	int i;
4170
4171	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4172		if (bars & (1 << i))
4173			pci_release_region(pdev, i);
4174}
4175EXPORT_SYMBOL(pci_release_selected_regions);
4176
4177static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4178					  const char *res_name, int excl)
4179{
4180	int i;
4181
4182	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4183		if (bars & (1 << i))
4184			if (__pci_request_region(pdev, i, res_name, excl))
4185				goto err_out;
4186	return 0;
4187
4188err_out:
4189	while (--i >= 0)
4190		if (bars & (1 << i))
4191			pci_release_region(pdev, i);
4192
4193	return -EBUSY;
4194}
4195
4196
4197/**
4198 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4199 * @pdev: PCI device whose resources are to be reserved
4200 * @bars: Bitmask of BARs to be requested
4201 * @res_name: Name to be associated with resource
 
 
 
 
 
 
 
4202 */
4203int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4204				 const char *res_name)
4205{
4206	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4207}
4208EXPORT_SYMBOL(pci_request_selected_regions);
4209
 
 
 
 
 
 
 
 
 
 
 
 
 
4210int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4211					   const char *res_name)
4212{
4213	return __pci_request_selected_regions(pdev, bars, res_name,
4214			IORESOURCE_EXCLUSIVE);
4215}
4216EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4217
4218/**
4219 * pci_release_regions - Release reserved PCI I/O and memory resources
4220 * @pdev: PCI device whose resources were previously reserved by
4221 *	  pci_request_regions()
4222 *
4223 * Releases all PCI I/O and memory resources previously reserved by a
4224 * successful call to pci_request_regions().  Call this function only
4225 * after all use of the PCI regions has ceased.
4226 */
4227
4228void pci_release_regions(struct pci_dev *pdev)
4229{
4230	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4231}
4232EXPORT_SYMBOL(pci_release_regions);
4233
4234/**
4235 * pci_request_regions - Reserve PCI I/O and memory resources
4236 * @pdev: PCI device whose resources are to be reserved
4237 * @res_name: Name to be associated with resource.
4238 *
4239 * Mark all PCI regions associated with PCI device @pdev as
4240 * being reserved by owner @res_name.  Do not access any
4241 * address inside the PCI regions unless this call returns
4242 * successfully.
4243 *
4244 * Returns 0 on success, or %EBUSY on error.  A warning
4245 * message is also printed on failure.
 
 
 
 
 
4246 */
4247int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4248{
4249	return pci_request_selected_regions(pdev,
4250			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4251}
4252EXPORT_SYMBOL(pci_request_regions);
4253
4254/**
4255 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4256 * @pdev: PCI device whose resources are to be reserved
4257 * @res_name: Name to be associated with resource.
4258 *
 
 
4259 * Mark all PCI regions associated with PCI device @pdev as being reserved
4260 * by owner @res_name.  Do not access any address inside the PCI regions
4261 * unless this call returns successfully.
4262 *
4263 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4264 * and the sysfs MMIO access will not be allowed.
4265 *
4266 * Returns 0 on success, or %EBUSY on error.  A warning message is also
4267 * printed on failure.
 
 
 
 
 
4268 */
4269int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4270{
4271	return pci_request_selected_regions_exclusive(pdev,
4272				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4273}
4274EXPORT_SYMBOL(pci_request_regions_exclusive);
4275
4276/*
4277 * Record the PCI IO range (expressed as CPU physical address + size).
4278 * Return a negative value if an error has occurred, zero otherwise
4279 */
4280int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4281			resource_size_t	size)
4282{
4283	int ret = 0;
4284#ifdef PCI_IOBASE
4285	struct logic_pio_hwaddr *range;
4286
4287	if (!size || addr + size < addr)
4288		return -EINVAL;
4289
4290	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4291	if (!range)
4292		return -ENOMEM;
4293
4294	range->fwnode = fwnode;
4295	range->size = size;
4296	range->hw_start = addr;
4297	range->flags = LOGIC_PIO_CPU_MMIO;
4298
4299	ret = logic_pio_register_range(range);
4300	if (ret)
4301		kfree(range);
4302
4303	/* Ignore duplicates due to deferred probing */
4304	if (ret == -EEXIST)
4305		ret = 0;
4306#endif
4307
4308	return ret;
4309}
4310
4311phys_addr_t pci_pio_to_address(unsigned long pio)
4312{
4313#ifdef PCI_IOBASE
4314	if (pio < MMIO_UPPER_LIMIT)
4315		return logic_pio_to_hwaddr(pio);
4316#endif
4317
4318	return (phys_addr_t) OF_BAD_ADDR;
4319}
4320EXPORT_SYMBOL_GPL(pci_pio_to_address);
4321
4322unsigned long __weak pci_address_to_pio(phys_addr_t address)
4323{
4324#ifdef PCI_IOBASE
4325	return logic_pio_trans_cpuaddr(address);
4326#else
4327	if (address > IO_SPACE_LIMIT)
4328		return (unsigned long)-1;
4329
4330	return (unsigned long) address;
4331#endif
4332}
4333
4334/**
4335 * pci_remap_iospace - Remap the memory mapped I/O space
4336 * @res: Resource describing the I/O space
4337 * @phys_addr: physical address of range to be mapped
4338 *
4339 * Remap the memory mapped I/O space described by the @res and the CPU
4340 * physical address @phys_addr into virtual address space.  Only
4341 * architectures that have memory mapped IO functions defined (and the
4342 * PCI_IOBASE value defined) should call this function.
4343 */
4344#ifndef pci_remap_iospace
4345int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4346{
4347#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4348	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4349
4350	if (!(res->flags & IORESOURCE_IO))
4351		return -EINVAL;
4352
4353	if (res->end > IO_SPACE_LIMIT)
4354		return -EINVAL;
4355
4356	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4357				  pgprot_device(PAGE_KERNEL));
4358#else
4359	/*
4360	 * This architecture does not have memory mapped I/O space,
4361	 * so this function should never be called
4362	 */
4363	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4364	return -ENODEV;
4365#endif
4366}
4367EXPORT_SYMBOL(pci_remap_iospace);
4368#endif
4369
4370/**
4371 * pci_unmap_iospace - Unmap the memory mapped I/O space
4372 * @res: resource to be unmapped
4373 *
4374 * Unmap the CPU virtual address @res from virtual address space.  Only
4375 * architectures that have memory mapped IO functions defined (and the
4376 * PCI_IOBASE value defined) should call this function.
4377 */
4378void pci_unmap_iospace(struct resource *res)
4379{
4380#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4381	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4382
4383	vunmap_range(vaddr, vaddr + resource_size(res));
4384#endif
4385}
4386EXPORT_SYMBOL(pci_unmap_iospace);
4387
4388static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4389{
4390	struct resource **res = ptr;
4391
4392	pci_unmap_iospace(*res);
4393}
4394
4395/**
4396 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4397 * @dev: Generic device to remap IO address for
4398 * @res: Resource describing the I/O space
4399 * @phys_addr: physical address of range to be mapped
4400 *
4401 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4402 * detach.
4403 */
4404int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4405			   phys_addr_t phys_addr)
4406{
4407	const struct resource **ptr;
4408	int error;
4409
4410	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4411	if (!ptr)
4412		return -ENOMEM;
4413
4414	error = pci_remap_iospace(res, phys_addr);
4415	if (error) {
4416		devres_free(ptr);
4417	} else	{
4418		*ptr = res;
4419		devres_add(dev, ptr);
4420	}
4421
4422	return error;
4423}
4424EXPORT_SYMBOL(devm_pci_remap_iospace);
4425
4426/**
4427 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4428 * @dev: Generic device to remap IO address for
4429 * @offset: Resource address to map
4430 * @size: Size of map
4431 *
4432 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4433 * detach.
4434 */
4435void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4436				      resource_size_t offset,
4437				      resource_size_t size)
4438{
4439	void __iomem **ptr, *addr;
4440
4441	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4442	if (!ptr)
4443		return NULL;
4444
4445	addr = pci_remap_cfgspace(offset, size);
4446	if (addr) {
4447		*ptr = addr;
4448		devres_add(dev, ptr);
4449	} else
4450		devres_free(ptr);
4451
4452	return addr;
4453}
4454EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4455
4456/**
4457 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4458 * @dev: generic device to handle the resource for
4459 * @res: configuration space resource to be handled
4460 *
4461 * Checks that a resource is a valid memory region, requests the memory
4462 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4463 * proper PCI configuration space memory attributes are guaranteed.
4464 *
4465 * All operations are managed and will be undone on driver detach.
4466 *
4467 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4468 * on failure. Usage example::
4469 *
4470 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4471 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4472 *	if (IS_ERR(base))
4473 *		return PTR_ERR(base);
4474 */
4475void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4476					  struct resource *res)
4477{
4478	resource_size_t size;
4479	const char *name;
4480	void __iomem *dest_ptr;
4481
4482	BUG_ON(!dev);
4483
4484	if (!res || resource_type(res) != IORESOURCE_MEM) {
4485		dev_err(dev, "invalid resource\n");
4486		return IOMEM_ERR_PTR(-EINVAL);
4487	}
4488
4489	size = resource_size(res);
4490
4491	if (res->name)
4492		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4493				      res->name);
4494	else
4495		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4496	if (!name)
4497		return IOMEM_ERR_PTR(-ENOMEM);
4498
4499	if (!devm_request_mem_region(dev, res->start, size, name)) {
4500		dev_err(dev, "can't request region for resource %pR\n", res);
4501		return IOMEM_ERR_PTR(-EBUSY);
4502	}
4503
4504	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4505	if (!dest_ptr) {
4506		dev_err(dev, "ioremap failed for resource %pR\n", res);
4507		devm_release_mem_region(dev, res->start, size);
4508		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4509	}
4510
4511	return dest_ptr;
4512}
4513EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4514
4515static void __pci_set_master(struct pci_dev *dev, bool enable)
4516{
4517	u16 old_cmd, cmd;
4518
4519	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4520	if (enable)
4521		cmd = old_cmd | PCI_COMMAND_MASTER;
4522	else
4523		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4524	if (cmd != old_cmd) {
4525		pci_dbg(dev, "%s bus mastering\n",
4526			enable ? "enabling" : "disabling");
4527		pci_write_config_word(dev, PCI_COMMAND, cmd);
4528	}
4529	dev->is_busmaster = enable;
4530}
4531
4532/**
4533 * pcibios_setup - process "pci=" kernel boot arguments
4534 * @str: string used to pass in "pci=" kernel boot arguments
4535 *
4536 * Process kernel boot arguments.  This is the default implementation.
4537 * Architecture specific implementations can override this as necessary.
4538 */
4539char * __weak __init pcibios_setup(char *str)
4540{
4541	return str;
4542}
4543
4544/**
4545 * pcibios_set_master - enable PCI bus-mastering for device dev
4546 * @dev: the PCI device to enable
4547 *
4548 * Enables PCI bus-mastering for the device.  This is the default
4549 * implementation.  Architecture specific implementations can override
4550 * this if necessary.
4551 */
4552void __weak pcibios_set_master(struct pci_dev *dev)
4553{
4554	u8 lat;
4555
4556	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4557	if (pci_is_pcie(dev))
4558		return;
4559
4560	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4561	if (lat < 16)
4562		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4563	else if (lat > pcibios_max_latency)
4564		lat = pcibios_max_latency;
4565	else
4566		return;
4567
4568	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4569}
4570
4571/**
4572 * pci_set_master - enables bus-mastering for device dev
4573 * @dev: the PCI device to enable
4574 *
4575 * Enables bus-mastering on the device and calls pcibios_set_master()
4576 * to do the needed arch specific settings.
4577 */
4578void pci_set_master(struct pci_dev *dev)
4579{
4580	__pci_set_master(dev, true);
4581	pcibios_set_master(dev);
4582}
4583EXPORT_SYMBOL(pci_set_master);
4584
4585/**
4586 * pci_clear_master - disables bus-mastering for device dev
4587 * @dev: the PCI device to disable
4588 */
4589void pci_clear_master(struct pci_dev *dev)
4590{
4591	__pci_set_master(dev, false);
4592}
4593EXPORT_SYMBOL(pci_clear_master);
4594
4595/**
4596 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4597 * @dev: the PCI device for which MWI is to be enabled
4598 *
4599 * Helper function for pci_set_mwi.
4600 * Originally copied from drivers/net/acenic.c.
4601 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4602 *
4603 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4604 */
4605int pci_set_cacheline_size(struct pci_dev *dev)
4606{
4607	u8 cacheline_size;
4608
4609	if (!pci_cache_line_size)
4610		return -EINVAL;
4611
4612	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4613	   equal to or multiple of the right value. */
4614	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4615	if (cacheline_size >= pci_cache_line_size &&
4616	    (cacheline_size % pci_cache_line_size) == 0)
4617		return 0;
4618
4619	/* Write the correct value. */
4620	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4621	/* Read it back. */
4622	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4623	if (cacheline_size == pci_cache_line_size)
4624		return 0;
4625
4626	pci_dbg(dev, "cache line size of %d is not supported\n",
4627		   pci_cache_line_size << 2);
4628
4629	return -EINVAL;
4630}
4631EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4632
4633/**
4634 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4635 * @dev: the PCI device for which MWI is enabled
4636 *
4637 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4638 *
4639 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4640 */
4641int pci_set_mwi(struct pci_dev *dev)
4642{
4643#ifdef PCI_DISABLE_MWI
4644	return 0;
4645#else
4646	int rc;
4647	u16 cmd;
4648
4649	rc = pci_set_cacheline_size(dev);
4650	if (rc)
4651		return rc;
4652
4653	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4654	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4655		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4656		cmd |= PCI_COMMAND_INVALIDATE;
4657		pci_write_config_word(dev, PCI_COMMAND, cmd);
4658	}
4659	return 0;
4660#endif
4661}
4662EXPORT_SYMBOL(pci_set_mwi);
4663
4664/**
4665 * pcim_set_mwi - a device-managed pci_set_mwi()
4666 * @dev: the PCI device for which MWI is enabled
4667 *
4668 * Managed pci_set_mwi().
4669 *
4670 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4671 */
4672int pcim_set_mwi(struct pci_dev *dev)
4673{
4674	struct pci_devres *dr;
4675
4676	dr = find_pci_dr(dev);
4677	if (!dr)
4678		return -ENOMEM;
4679
4680	dr->mwi = 1;
4681	return pci_set_mwi(dev);
4682}
4683EXPORT_SYMBOL(pcim_set_mwi);
4684
4685/**
4686 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4687 * @dev: the PCI device for which MWI is enabled
4688 *
4689 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4690 * Callers are not required to check the return value.
4691 *
4692 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4693 */
4694int pci_try_set_mwi(struct pci_dev *dev)
4695{
4696#ifdef PCI_DISABLE_MWI
4697	return 0;
4698#else
4699	return pci_set_mwi(dev);
4700#endif
4701}
4702EXPORT_SYMBOL(pci_try_set_mwi);
4703
4704/**
4705 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4706 * @dev: the PCI device to disable
4707 *
4708 * Disables PCI Memory-Write-Invalidate transaction on the device
4709 */
4710void pci_clear_mwi(struct pci_dev *dev)
4711{
4712#ifndef PCI_DISABLE_MWI
4713	u16 cmd;
4714
4715	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4716	if (cmd & PCI_COMMAND_INVALIDATE) {
4717		cmd &= ~PCI_COMMAND_INVALIDATE;
4718		pci_write_config_word(dev, PCI_COMMAND, cmd);
4719	}
4720#endif
4721}
4722EXPORT_SYMBOL(pci_clear_mwi);
4723
4724/**
4725 * pci_disable_parity - disable parity checking for device
4726 * @dev: the PCI device to operate on
4727 *
4728 * Disable parity checking for device @dev
4729 */
4730void pci_disable_parity(struct pci_dev *dev)
4731{
4732	u16 cmd;
4733
4734	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4735	if (cmd & PCI_COMMAND_PARITY) {
4736		cmd &= ~PCI_COMMAND_PARITY;
4737		pci_write_config_word(dev, PCI_COMMAND, cmd);
4738	}
4739}
4740
4741/**
4742 * pci_intx - enables/disables PCI INTx for device dev
4743 * @pdev: the PCI device to operate on
4744 * @enable: boolean: whether to enable or disable PCI INTx
4745 *
4746 * Enables/disables PCI INTx for device @pdev
4747 */
4748void pci_intx(struct pci_dev *pdev, int enable)
4749{
4750	u16 pci_command, new;
4751
4752	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4753
4754	if (enable)
4755		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4756	else
4757		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4758
4759	if (new != pci_command) {
4760		struct pci_devres *dr;
4761
4762		pci_write_config_word(pdev, PCI_COMMAND, new);
4763
4764		dr = find_pci_dr(pdev);
4765		if (dr && !dr->restore_intx) {
4766			dr->restore_intx = 1;
4767			dr->orig_intx = !enable;
4768		}
4769	}
4770}
4771EXPORT_SYMBOL_GPL(pci_intx);
4772
4773static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4774{
4775	struct pci_bus *bus = dev->bus;
4776	bool mask_updated = true;
4777	u32 cmd_status_dword;
4778	u16 origcmd, newcmd;
4779	unsigned long flags;
4780	bool irq_pending;
4781
4782	/*
4783	 * We do a single dword read to retrieve both command and status.
4784	 * Document assumptions that make this possible.
4785	 */
4786	BUILD_BUG_ON(PCI_COMMAND % 4);
4787	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4788
4789	raw_spin_lock_irqsave(&pci_lock, flags);
4790
4791	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4792
4793	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4794
4795	/*
4796	 * Check interrupt status register to see whether our device
4797	 * triggered the interrupt (when masking) or the next IRQ is
4798	 * already pending (when unmasking).
4799	 */
4800	if (mask != irq_pending) {
4801		mask_updated = false;
4802		goto done;
4803	}
4804
4805	origcmd = cmd_status_dword;
4806	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4807	if (mask)
4808		newcmd |= PCI_COMMAND_INTX_DISABLE;
4809	if (newcmd != origcmd)
4810		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4811
4812done:
4813	raw_spin_unlock_irqrestore(&pci_lock, flags);
4814
4815	return mask_updated;
4816}
4817
4818/**
4819 * pci_check_and_mask_intx - mask INTx on pending interrupt
4820 * @dev: the PCI device to operate on
4821 *
4822 * Check if the device dev has its INTx line asserted, mask it and return
4823 * true in that case. False is returned if no interrupt was pending.
4824 */
4825bool pci_check_and_mask_intx(struct pci_dev *dev)
4826{
4827	return pci_check_and_set_intx_mask(dev, true);
4828}
4829EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4830
4831/**
4832 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4833 * @dev: the PCI device to operate on
4834 *
4835 * Check if the device dev has its INTx line asserted, unmask it if not and
4836 * return true. False is returned and the mask remains active if there was
4837 * still an interrupt pending.
4838 */
4839bool pci_check_and_unmask_intx(struct pci_dev *dev)
4840{
4841	return pci_check_and_set_intx_mask(dev, false);
4842}
4843EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4844
4845/**
4846 * pci_wait_for_pending_transaction - wait for pending transaction
4847 * @dev: the PCI device to operate on
4848 *
4849 * Return 0 if transaction is pending 1 otherwise.
4850 */
4851int pci_wait_for_pending_transaction(struct pci_dev *dev)
4852{
4853	if (!pci_is_pcie(dev))
4854		return 1;
4855
4856	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4857				    PCI_EXP_DEVSTA_TRPND);
4858}
4859EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4860
4861/**
4862 * pcie_flr - initiate a PCIe function level reset
4863 * @dev: device to reset
4864 *
4865 * Initiate a function level reset unconditionally on @dev without
4866 * checking any flags and DEVCAP
4867 */
4868int pcie_flr(struct pci_dev *dev)
4869{
4870	if (!pci_wait_for_pending_transaction(dev))
4871		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4872
4873	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4874
4875	if (dev->imm_ready)
4876		return 0;
4877
4878	/*
4879	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4880	 * 100ms, but may silently discard requests while the FLR is in
4881	 * progress.  Wait 100ms before trying to access the device.
4882	 */
4883	msleep(100);
4884
4885	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4886}
4887EXPORT_SYMBOL_GPL(pcie_flr);
4888
4889/**
4890 * pcie_reset_flr - initiate a PCIe function level reset
4891 * @dev: device to reset
4892 * @probe: if true, return 0 if device can be reset this way
4893 *
4894 * Initiate a function level reset on @dev.
4895 */
4896int pcie_reset_flr(struct pci_dev *dev, bool probe)
4897{
4898	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4899		return -ENOTTY;
4900
4901	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4902		return -ENOTTY;
4903
4904	if (probe)
4905		return 0;
4906
4907	return pcie_flr(dev);
4908}
4909EXPORT_SYMBOL_GPL(pcie_reset_flr);
4910
4911static int pci_af_flr(struct pci_dev *dev, bool probe)
4912{
4913	int pos;
4914	u8 cap;
4915
4916	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4917	if (!pos)
4918		return -ENOTTY;
4919
4920	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4921		return -ENOTTY;
4922
4923	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4924	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4925		return -ENOTTY;
4926
4927	if (probe)
4928		return 0;
4929
4930	/*
4931	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4932	 * is used, so we use the control offset rather than status and shift
4933	 * the test bit to match.
4934	 */
4935	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4936				 PCI_AF_STATUS_TP << 8))
4937		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4938
4939	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4940
4941	if (dev->imm_ready)
4942		return 0;
4943
4944	/*
4945	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4946	 * updated 27 July 2006; a device must complete an FLR within
4947	 * 100ms, but may silently discard requests while the FLR is in
4948	 * progress.  Wait 100ms before trying to access the device.
4949	 */
4950	msleep(100);
4951
4952	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4953}
4954
4955/**
4956 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4957 * @dev: Device to reset.
4958 * @probe: if true, return 0 if the device can be reset this way.
4959 *
4960 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4961 * unset, it will be reinitialized internally when going from PCI_D3hot to
4962 * PCI_D0.  If that's the case and the device is not in a low-power state
4963 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4964 *
4965 * NOTE: This causes the caller to sleep for twice the device power transition
4966 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4967 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4968 * Moreover, only devices in D0 can be reset by this function.
4969 */
4970static int pci_pm_reset(struct pci_dev *dev, bool probe)
4971{
4972	u16 csr;
4973
4974	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4975		return -ENOTTY;
4976
4977	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4978	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4979		return -ENOTTY;
4980
4981	if (probe)
4982		return 0;
4983
4984	if (dev->current_state != PCI_D0)
4985		return -EINVAL;
4986
4987	csr &= ~PCI_PM_CTRL_STATE_MASK;
4988	csr |= PCI_D3hot;
4989	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4990	pci_dev_d3_sleep(dev);
4991
4992	csr &= ~PCI_PM_CTRL_STATE_MASK;
4993	csr |= PCI_D0;
4994	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4995	pci_dev_d3_sleep(dev);
4996
4997	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4998}
4999
5000/**
5001 * pcie_wait_for_link_status - Wait for link status change
5002 * @pdev: Device whose link to wait for.
5003 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
5004 * @active: Waiting for active or inactive?
5005 *
5006 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
5007 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
5008 */
5009static int pcie_wait_for_link_status(struct pci_dev *pdev,
5010				     bool use_lt, bool active)
5011{
5012	u16 lnksta_mask, lnksta_match;
5013	unsigned long end_jiffies;
5014	u16 lnksta;
5015
5016	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
5017	lnksta_match = active ? lnksta_mask : 0;
5018
5019	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
5020	do {
5021		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
5022		if ((lnksta & lnksta_mask) == lnksta_match)
5023			return 0;
5024		msleep(1);
5025	} while (time_before(jiffies, end_jiffies));
5026
5027	return -ETIMEDOUT;
5028}
5029
5030/**
5031 * pcie_retrain_link - Request a link retrain and wait for it to complete
5032 * @pdev: Device whose link to retrain.
5033 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
5034 *
5035 * Retrain completion status is retrieved from the Link Status Register
5036 * according to @use_lt.  It is not verified whether the use of the DLLLA
5037 * bit is valid.
5038 *
5039 * Return 0 if successful, or -ETIMEDOUT if training has not completed
5040 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
5041 */
5042int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
5043{
5044	int rc;
5045
5046	/*
5047	 * Ensure the updated LNKCTL parameters are used during link
5048	 * training by checking that there is no ongoing link training to
5049	 * avoid LTSSM race as recommended in Implementation Note at the
5050	 * end of PCIe r6.0.1 sec 7.5.3.7.
 
5051	 */
5052	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
5053	if (rc)
5054		return rc;
5055
5056	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
5057	if (pdev->clear_retrain_link) {
5058		/*
5059		 * Due to an erratum in some devices the Retrain Link bit
5060		 * needs to be cleared again manually to allow the link
5061		 * training to succeed.
5062		 */
5063		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
5064	}
5065
5066	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
 
 
 
 
 
 
 
 
5067}
5068
5069/**
5070 * pcie_wait_for_link_delay - Wait until link is active or inactive
5071 * @pdev: Bridge device
5072 * @active: waiting for active or inactive?
5073 * @delay: Delay to wait after link has become active (in ms)
5074 *
5075 * Use this to wait till link becomes active or inactive.
5076 */
5077static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
5078				     int delay)
5079{
5080	int rc;
5081
5082	/*
5083	 * Some controllers might not implement link active reporting. In this
5084	 * case, we wait for 1000 ms + any delay requested by the caller.
5085	 */
5086	if (!pdev->link_active_reporting) {
5087		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
5088		return true;
5089	}
5090
5091	/*
5092	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
5093	 * after which we should expect an link active if the reset was
5094	 * successful. If so, software must wait a minimum 100ms before sending
5095	 * configuration requests to devices downstream this port.
5096	 *
5097	 * If the link fails to activate, either the device was physically
5098	 * removed or the link is permanently failed.
5099	 */
5100	if (active)
5101		msleep(20);
5102	rc = pcie_wait_for_link_status(pdev, false, active);
5103	if (active) {
5104		if (rc)
5105			rc = pcie_failed_link_retrain(pdev);
5106		if (rc)
5107			return false;
5108
5109		msleep(delay);
5110		return true;
5111	}
5112
5113	if (rc)
5114		return false;
5115
5116	return true;
5117}
5118
5119/**
5120 * pcie_wait_for_link - Wait until link is active or inactive
5121 * @pdev: Bridge device
5122 * @active: waiting for active or inactive?
5123 *
5124 * Use this to wait till link becomes active or inactive.
5125 */
5126bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5127{
5128	return pcie_wait_for_link_delay(pdev, active, 100);
5129}
5130
5131/*
5132 * Find maximum D3cold delay required by all the devices on the bus.  The
5133 * spec says 100 ms, but firmware can lower it and we allow drivers to
5134 * increase it as well.
5135 *
5136 * Called with @pci_bus_sem locked for reading.
5137 */
5138static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5139{
5140	const struct pci_dev *pdev;
5141	int min_delay = 100;
5142	int max_delay = 0;
5143
5144	list_for_each_entry(pdev, &bus->devices, bus_list) {
5145		if (pdev->d3cold_delay < min_delay)
5146			min_delay = pdev->d3cold_delay;
5147		if (pdev->d3cold_delay > max_delay)
5148			max_delay = pdev->d3cold_delay;
5149	}
5150
5151	return max(min_delay, max_delay);
5152}
5153
5154/**
5155 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5156 * @dev: PCI bridge
5157 * @reset_type: reset type in human-readable form
5158 *
5159 * Handle necessary delays before access to the devices on the secondary
5160 * side of the bridge are permitted after D3cold to D0 transition
5161 * or Conventional Reset.
5162 *
5163 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5164 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5165 * 4.3.2.
5166 *
5167 * Return 0 on success or -ENOTTY if the first device on the secondary bus
5168 * failed to become accessible.
5169 */
5170int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5171{
5172	struct pci_dev *child;
5173	int delay;
5174
5175	if (pci_dev_is_disconnected(dev))
5176		return 0;
5177
5178	if (!pci_is_bridge(dev))
5179		return 0;
5180
5181	down_read(&pci_bus_sem);
5182
5183	/*
5184	 * We only deal with devices that are present currently on the bus.
5185	 * For any hot-added devices the access delay is handled in pciehp
5186	 * board_added(). In case of ACPI hotplug the firmware is expected
5187	 * to configure the devices before OS is notified.
5188	 */
5189	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5190		up_read(&pci_bus_sem);
5191		return 0;
5192	}
5193
5194	/* Take d3cold_delay requirements into account */
5195	delay = pci_bus_max_d3cold_delay(dev->subordinate);
5196	if (!delay) {
5197		up_read(&pci_bus_sem);
5198		return 0;
5199	}
5200
5201	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5202				 bus_list);
5203	up_read(&pci_bus_sem);
5204
5205	/*
5206	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5207	 * accessing the device after reset (that is 1000 ms + 100 ms).
5208	 */
5209	if (!pci_is_pcie(dev)) {
5210		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5211		msleep(1000 + delay);
5212		return 0;
5213	}
5214
5215	/*
5216	 * For PCIe downstream and root ports that do not support speeds
5217	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5218	 * speeds (gen3) we need to wait first for the data link layer to
5219	 * become active.
5220	 *
5221	 * However, 100 ms is the minimum and the PCIe spec says the
5222	 * software must allow at least 1s before it can determine that the
5223	 * device that did not respond is a broken device. Also device can
5224	 * take longer than that to respond if it indicates so through Request
5225	 * Retry Status completions.
5226	 *
5227	 * Therefore we wait for 100 ms and check for the device presence
5228	 * until the timeout expires.
5229	 */
5230	if (!pcie_downstream_port(dev))
5231		return 0;
5232
5233	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5234		u16 status;
5235
5236		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5237		msleep(delay);
5238
5239		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5240			return 0;
5241
5242		/*
5243		 * If the port supports active link reporting we now check
5244		 * whether the link is active and if not bail out early with
5245		 * the assumption that the device is not present anymore.
5246		 */
5247		if (!dev->link_active_reporting)
5248			return -ENOTTY;
5249
5250		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5251		if (!(status & PCI_EXP_LNKSTA_DLLLA))
5252			return -ENOTTY;
5253
5254		return pci_dev_wait(child, reset_type,
5255				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5256	}
5257
5258	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5259		delay);
5260	if (!pcie_wait_for_link_delay(dev, true, delay)) {
5261		/* Did not train, no need to wait any further */
5262		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5263		return -ENOTTY;
5264	}
5265
5266	return pci_dev_wait(child, reset_type,
5267			    PCIE_RESET_READY_POLL_MS - delay);
5268}
5269
5270void pci_reset_secondary_bus(struct pci_dev *dev)
5271{
5272	u16 ctrl;
5273
5274	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5275	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5276	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5277
5278	/*
5279	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5280	 * this to 2ms to ensure that we meet the minimum requirement.
5281	 */
5282	msleep(2);
5283
5284	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5285	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5286}
5287
5288void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5289{
5290	pci_reset_secondary_bus(dev);
5291}
5292
5293/**
5294 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5295 * @dev: Bridge device
5296 *
5297 * Use the bridge control register to assert reset on the secondary bus.
5298 * Devices on the secondary bus are left in power-on state.
5299 */
5300int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5301{
 
 
 
5302	pcibios_reset_secondary_bus(dev);
5303
5304	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5305}
5306EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5307
5308static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5309{
5310	struct pci_dev *pdev;
5311
5312	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5313	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5314		return -ENOTTY;
5315
5316	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5317		if (pdev != dev)
5318			return -ENOTTY;
5319
5320	if (probe)
5321		return 0;
5322
5323	return pci_bridge_secondary_bus_reset(dev->bus->self);
5324}
5325
5326static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5327{
5328	int rc = -ENOTTY;
5329
5330	if (!hotplug || !try_module_get(hotplug->owner))
5331		return rc;
5332
5333	if (hotplug->ops->reset_slot)
5334		rc = hotplug->ops->reset_slot(hotplug, probe);
5335
5336	module_put(hotplug->owner);
5337
5338	return rc;
5339}
5340
5341static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5342{
5343	if (dev->multifunction || dev->subordinate || !dev->slot ||
5344	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5345		return -ENOTTY;
5346
5347	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5348}
5349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5350static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5351{
 
5352	int rc;
5353
 
 
 
 
 
 
 
 
 
 
 
5354	rc = pci_dev_reset_slot_function(dev, probe);
5355	if (rc != -ENOTTY)
5356		return rc;
5357	return pci_parent_bus_reset(dev, probe);
5358}
5359
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5360void pci_dev_lock(struct pci_dev *dev)
5361{
5362	/* block PM suspend, driver probe, etc. */
5363	device_lock(&dev->dev);
5364	pci_cfg_access_lock(dev);
5365}
5366EXPORT_SYMBOL_GPL(pci_dev_lock);
5367
5368/* Return 1 on successful lock, 0 on contention */
5369int pci_dev_trylock(struct pci_dev *dev)
5370{
5371	if (device_trylock(&dev->dev)) {
5372		if (pci_cfg_access_trylock(dev))
5373			return 1;
5374		device_unlock(&dev->dev);
5375	}
5376
5377	return 0;
5378}
5379EXPORT_SYMBOL_GPL(pci_dev_trylock);
5380
5381void pci_dev_unlock(struct pci_dev *dev)
5382{
5383	pci_cfg_access_unlock(dev);
5384	device_unlock(&dev->dev);
5385}
5386EXPORT_SYMBOL_GPL(pci_dev_unlock);
5387
5388static void pci_dev_save_and_disable(struct pci_dev *dev)
5389{
5390	const struct pci_error_handlers *err_handler =
5391			dev->driver ? dev->driver->err_handler : NULL;
5392
5393	/*
5394	 * dev->driver->err_handler->reset_prepare() is protected against
5395	 * races with ->remove() by the device lock, which must be held by
5396	 * the caller.
5397	 */
5398	if (err_handler && err_handler->reset_prepare)
5399		err_handler->reset_prepare(dev);
 
 
5400
5401	/*
5402	 * Wake-up device prior to save.  PM registers default to D0 after
5403	 * reset and a simple register restore doesn't reliably return
5404	 * to a non-D0 state anyway.
5405	 */
5406	pci_set_power_state(dev, PCI_D0);
5407
5408	pci_save_state(dev);
5409	/*
5410	 * Disable the device by clearing the Command register, except for
5411	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5412	 * BARs, but also prevents the device from being Bus Master, preventing
5413	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5414	 * compliant devices, INTx-disable prevents legacy interrupts.
5415	 */
5416	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5417}
5418
5419static void pci_dev_restore(struct pci_dev *dev)
5420{
5421	const struct pci_error_handlers *err_handler =
5422			dev->driver ? dev->driver->err_handler : NULL;
5423
5424	pci_restore_state(dev);
5425
5426	/*
5427	 * dev->driver->err_handler->reset_done() is protected against
5428	 * races with ->remove() by the device lock, which must be held by
5429	 * the caller.
5430	 */
5431	if (err_handler && err_handler->reset_done)
5432		err_handler->reset_done(dev);
 
 
5433}
5434
5435/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5436static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5437	{ },
5438	{ pci_dev_specific_reset, .name = "device_specific" },
5439	{ pci_dev_acpi_reset, .name = "acpi" },
5440	{ pcie_reset_flr, .name = "flr" },
5441	{ pci_af_flr, .name = "af_flr" },
5442	{ pci_pm_reset, .name = "pm" },
5443	{ pci_reset_bus_function, .name = "bus" },
 
5444};
5445
5446static ssize_t reset_method_show(struct device *dev,
5447				 struct device_attribute *attr, char *buf)
5448{
5449	struct pci_dev *pdev = to_pci_dev(dev);
5450	ssize_t len = 0;
5451	int i, m;
5452
5453	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5454		m = pdev->reset_methods[i];
5455		if (!m)
5456			break;
5457
5458		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5459				     pci_reset_fn_methods[m].name);
5460	}
5461
5462	if (len)
5463		len += sysfs_emit_at(buf, len, "\n");
5464
5465	return len;
5466}
5467
5468static int reset_method_lookup(const char *name)
5469{
5470	int m;
5471
5472	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5473		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5474			return m;
5475	}
5476
5477	return 0;	/* not found */
5478}
5479
5480static ssize_t reset_method_store(struct device *dev,
5481				  struct device_attribute *attr,
5482				  const char *buf, size_t count)
5483{
5484	struct pci_dev *pdev = to_pci_dev(dev);
5485	char *options, *name;
5486	int m, n;
5487	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5488
5489	if (sysfs_streq(buf, "")) {
5490		pdev->reset_methods[0] = 0;
5491		pci_warn(pdev, "All device reset methods disabled by user");
5492		return count;
5493	}
5494
5495	if (sysfs_streq(buf, "default")) {
5496		pci_init_reset_methods(pdev);
5497		return count;
5498	}
5499
5500	options = kstrndup(buf, count, GFP_KERNEL);
5501	if (!options)
5502		return -ENOMEM;
5503
5504	n = 0;
5505	while ((name = strsep(&options, " ")) != NULL) {
 
5506		if (sysfs_streq(name, ""))
5507			continue;
5508
5509		name = strim(name);
5510
5511		m = reset_method_lookup(name);
5512		if (!m) {
5513			pci_err(pdev, "Invalid reset method '%s'", name);
5514			goto error;
5515		}
5516
5517		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5518			pci_err(pdev, "Unsupported reset method '%s'", name);
5519			goto error;
5520		}
5521
5522		if (n == PCI_NUM_RESET_METHODS - 1) {
5523			pci_err(pdev, "Too many reset methods\n");
5524			goto error;
5525		}
5526
5527		reset_methods[n++] = m;
5528	}
5529
5530	reset_methods[n] = 0;
5531
5532	/* Warn if dev-specific supported but not highest priority */
5533	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5534	    reset_methods[0] != 1)
5535		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5536	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5537	kfree(options);
5538	return count;
5539
5540error:
5541	/* Leave previous methods unchanged */
5542	kfree(options);
5543	return -EINVAL;
5544}
5545static DEVICE_ATTR_RW(reset_method);
5546
5547static struct attribute *pci_dev_reset_method_attrs[] = {
5548	&dev_attr_reset_method.attr,
5549	NULL,
5550};
5551
5552static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5553						    struct attribute *a, int n)
5554{
5555	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5556
5557	if (!pci_reset_supported(pdev))
5558		return 0;
5559
5560	return a->mode;
5561}
5562
5563const struct attribute_group pci_dev_reset_method_attr_group = {
5564	.attrs = pci_dev_reset_method_attrs,
5565	.is_visible = pci_dev_reset_method_attr_is_visible,
5566};
5567
5568/**
5569 * __pci_reset_function_locked - reset a PCI device function while holding
5570 * the @dev mutex lock.
5571 * @dev: PCI device to reset
5572 *
5573 * Some devices allow an individual function to be reset without affecting
5574 * other functions in the same device.  The PCI device must be responsive
5575 * to PCI config space in order to use this function.
5576 *
5577 * The device function is presumed to be unused and the caller is holding
5578 * the device mutex lock when this function is called.
5579 *
5580 * Resetting the device will make the contents of PCI configuration space
5581 * random, so any caller of this must be prepared to reinitialise the
5582 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5583 * etc.
5584 *
5585 * Returns 0 if the device function was successfully reset or negative if the
5586 * device doesn't support resetting a single function.
5587 */
5588int __pci_reset_function_locked(struct pci_dev *dev)
5589{
5590	int i, m, rc;
5591
5592	might_sleep();
5593
5594	/*
5595	 * A reset method returns -ENOTTY if it doesn't support this device and
5596	 * we should try the next method.
5597	 *
5598	 * If it returns 0 (success), we're finished.  If it returns any other
5599	 * error, we're also finished: this indicates that further reset
5600	 * mechanisms might be broken on the device.
5601	 */
5602	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5603		m = dev->reset_methods[i];
5604		if (!m)
5605			return -ENOTTY;
5606
5607		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5608		if (!rc)
5609			return 0;
5610		if (rc != -ENOTTY)
5611			return rc;
5612	}
5613
5614	return -ENOTTY;
5615}
5616EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5617
5618/**
5619 * pci_init_reset_methods - check whether device can be safely reset
5620 * and store supported reset mechanisms.
5621 * @dev: PCI device to check for reset mechanisms
5622 *
5623 * Some devices allow an individual function to be reset without affecting
5624 * other functions in the same device.  The PCI device must be in D0-D3hot
5625 * state.
5626 *
5627 * Stores reset mechanisms supported by device in reset_methods byte array
5628 * which is a member of struct pci_dev.
5629 */
5630void pci_init_reset_methods(struct pci_dev *dev)
5631{
5632	int m, i, rc;
5633
5634	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5635
5636	might_sleep();
5637
5638	i = 0;
5639	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5640		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5641		if (!rc)
5642			dev->reset_methods[i++] = m;
5643		else if (rc != -ENOTTY)
5644			break;
5645	}
5646
5647	dev->reset_methods[i] = 0;
5648}
5649
5650/**
5651 * pci_reset_function - quiesce and reset a PCI device function
5652 * @dev: PCI device to reset
5653 *
5654 * Some devices allow an individual function to be reset without affecting
5655 * other functions in the same device.  The PCI device must be responsive
5656 * to PCI config space in order to use this function.
5657 *
5658 * This function does not just reset the PCI portion of a device, but
5659 * clears all the state associated with the device.  This function differs
5660 * from __pci_reset_function_locked() in that it saves and restores device state
5661 * over the reset and takes the PCI device lock.
5662 *
5663 * Returns 0 if the device function was successfully reset or negative if the
5664 * device doesn't support resetting a single function.
5665 */
5666int pci_reset_function(struct pci_dev *dev)
5667{
 
5668	int rc;
5669
5670	if (!pci_reset_supported(dev))
5671		return -ENOTTY;
5672
 
 
 
 
 
 
 
 
5673	pci_dev_lock(dev);
5674	pci_dev_save_and_disable(dev);
5675
5676	rc = __pci_reset_function_locked(dev);
5677
5678	pci_dev_restore(dev);
5679	pci_dev_unlock(dev);
5680
 
 
 
5681	return rc;
5682}
5683EXPORT_SYMBOL_GPL(pci_reset_function);
5684
5685/**
5686 * pci_reset_function_locked - quiesce and reset a PCI device function
5687 * @dev: PCI device to reset
5688 *
5689 * Some devices allow an individual function to be reset without affecting
5690 * other functions in the same device.  The PCI device must be responsive
5691 * to PCI config space in order to use this function.
5692 *
5693 * This function does not just reset the PCI portion of a device, but
5694 * clears all the state associated with the device.  This function differs
5695 * from __pci_reset_function_locked() in that it saves and restores device state
5696 * over the reset.  It also differs from pci_reset_function() in that it
5697 * requires the PCI device lock to be held.
5698 *
5699 * Returns 0 if the device function was successfully reset or negative if the
5700 * device doesn't support resetting a single function.
5701 */
5702int pci_reset_function_locked(struct pci_dev *dev)
5703{
5704	int rc;
5705
5706	if (!pci_reset_supported(dev))
5707		return -ENOTTY;
5708
5709	pci_dev_save_and_disable(dev);
5710
5711	rc = __pci_reset_function_locked(dev);
5712
5713	pci_dev_restore(dev);
5714
5715	return rc;
5716}
5717EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5718
5719/**
5720 * pci_try_reset_function - quiesce and reset a PCI device function
5721 * @dev: PCI device to reset
5722 *
5723 * Same as above, except return -EAGAIN if unable to lock device.
5724 */
5725int pci_try_reset_function(struct pci_dev *dev)
5726{
5727	int rc;
5728
5729	if (!pci_reset_supported(dev))
5730		return -ENOTTY;
5731
5732	if (!pci_dev_trylock(dev))
5733		return -EAGAIN;
5734
5735	pci_dev_save_and_disable(dev);
5736	rc = __pci_reset_function_locked(dev);
5737	pci_dev_restore(dev);
5738	pci_dev_unlock(dev);
5739
5740	return rc;
5741}
5742EXPORT_SYMBOL_GPL(pci_try_reset_function);
5743
5744/* Do any devices on or below this bus prevent a bus reset? */
5745static bool pci_bus_resettable(struct pci_bus *bus)
5746{
5747	struct pci_dev *dev;
5748
5749
5750	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5751		return false;
5752
5753	list_for_each_entry(dev, &bus->devices, bus_list) {
5754		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5755		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5756			return false;
5757	}
5758
5759	return true;
5760}
5761
5762/* Lock devices from the top of the tree down */
5763static void pci_bus_lock(struct pci_bus *bus)
5764{
5765	struct pci_dev *dev;
5766
 
5767	list_for_each_entry(dev, &bus->devices, bus_list) {
5768		pci_dev_lock(dev);
5769		if (dev->subordinate)
5770			pci_bus_lock(dev->subordinate);
 
 
5771	}
5772}
5773
5774/* Unlock devices from the bottom of the tree up */
5775static void pci_bus_unlock(struct pci_bus *bus)
5776{
5777	struct pci_dev *dev;
5778
5779	list_for_each_entry(dev, &bus->devices, bus_list) {
5780		if (dev->subordinate)
5781			pci_bus_unlock(dev->subordinate);
5782		pci_dev_unlock(dev);
 
5783	}
 
5784}
5785
5786/* Return 1 on successful lock, 0 on contention */
5787static int pci_bus_trylock(struct pci_bus *bus)
5788{
5789	struct pci_dev *dev;
5790
 
 
 
5791	list_for_each_entry(dev, &bus->devices, bus_list) {
5792		if (!pci_dev_trylock(dev))
5793			goto unlock;
5794		if (dev->subordinate) {
5795			if (!pci_bus_trylock(dev->subordinate)) {
5796				pci_dev_unlock(dev);
5797				goto unlock;
5798			}
5799		}
5800	}
5801	return 1;
5802
5803unlock:
5804	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5805		if (dev->subordinate)
5806			pci_bus_unlock(dev->subordinate);
5807		pci_dev_unlock(dev);
 
5808	}
 
5809	return 0;
5810}
5811
5812/* Do any devices on or below this slot prevent a bus reset? */
5813static bool pci_slot_resettable(struct pci_slot *slot)
5814{
5815	struct pci_dev *dev;
5816
5817	if (slot->bus->self &&
5818	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5819		return false;
5820
5821	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5822		if (!dev->slot || dev->slot != slot)
5823			continue;
5824		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5825		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5826			return false;
5827	}
5828
5829	return true;
5830}
5831
5832/* Lock devices from the top of the tree down */
5833static void pci_slot_lock(struct pci_slot *slot)
5834{
5835	struct pci_dev *dev;
5836
5837	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5838		if (!dev->slot || dev->slot != slot)
5839			continue;
5840		pci_dev_lock(dev);
5841		if (dev->subordinate)
5842			pci_bus_lock(dev->subordinate);
 
 
5843	}
5844}
5845
5846/* Unlock devices from the bottom of the tree up */
5847static void pci_slot_unlock(struct pci_slot *slot)
5848{
5849	struct pci_dev *dev;
5850
5851	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5852		if (!dev->slot || dev->slot != slot)
5853			continue;
5854		if (dev->subordinate)
5855			pci_bus_unlock(dev->subordinate);
5856		pci_dev_unlock(dev);
5857	}
5858}
5859
5860/* Return 1 on successful lock, 0 on contention */
5861static int pci_slot_trylock(struct pci_slot *slot)
5862{
5863	struct pci_dev *dev;
5864
5865	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5866		if (!dev->slot || dev->slot != slot)
5867			continue;
5868		if (!pci_dev_trylock(dev))
5869			goto unlock;
5870		if (dev->subordinate) {
5871			if (!pci_bus_trylock(dev->subordinate)) {
5872				pci_dev_unlock(dev);
5873				goto unlock;
5874			}
5875		}
 
5876	}
5877	return 1;
5878
5879unlock:
5880	list_for_each_entry_continue_reverse(dev,
5881					     &slot->bus->devices, bus_list) {
5882		if (!dev->slot || dev->slot != slot)
5883			continue;
5884		if (dev->subordinate)
5885			pci_bus_unlock(dev->subordinate);
5886		pci_dev_unlock(dev);
 
5887	}
5888	return 0;
5889}
5890
5891/*
5892 * Save and disable devices from the top of the tree down while holding
5893 * the @dev mutex lock for the entire tree.
5894 */
5895static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5896{
5897	struct pci_dev *dev;
5898
5899	list_for_each_entry(dev, &bus->devices, bus_list) {
5900		pci_dev_save_and_disable(dev);
5901		if (dev->subordinate)
5902			pci_bus_save_and_disable_locked(dev->subordinate);
5903	}
5904}
5905
5906/*
5907 * Restore devices from top of the tree down while holding @dev mutex lock
5908 * for the entire tree.  Parent bridges need to be restored before we can
5909 * get to subordinate devices.
5910 */
5911static void pci_bus_restore_locked(struct pci_bus *bus)
5912{
5913	struct pci_dev *dev;
5914
5915	list_for_each_entry(dev, &bus->devices, bus_list) {
5916		pci_dev_restore(dev);
5917		if (dev->subordinate)
 
5918			pci_bus_restore_locked(dev->subordinate);
 
5919	}
5920}
5921
5922/*
5923 * Save and disable devices from the top of the tree down while holding
5924 * the @dev mutex lock for the entire tree.
5925 */
5926static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5927{
5928	struct pci_dev *dev;
5929
5930	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5931		if (!dev->slot || dev->slot != slot)
5932			continue;
5933		pci_dev_save_and_disable(dev);
5934		if (dev->subordinate)
5935			pci_bus_save_and_disable_locked(dev->subordinate);
5936	}
5937}
5938
5939/*
5940 * Restore devices from top of the tree down while holding @dev mutex lock
5941 * for the entire tree.  Parent bridges need to be restored before we can
5942 * get to subordinate devices.
5943 */
5944static void pci_slot_restore_locked(struct pci_slot *slot)
5945{
5946	struct pci_dev *dev;
5947
5948	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5949		if (!dev->slot || dev->slot != slot)
5950			continue;
5951		pci_dev_restore(dev);
5952		if (dev->subordinate)
 
5953			pci_bus_restore_locked(dev->subordinate);
 
5954	}
5955}
5956
5957static int pci_slot_reset(struct pci_slot *slot, bool probe)
5958{
5959	int rc;
5960
5961	if (!slot || !pci_slot_resettable(slot))
5962		return -ENOTTY;
5963
5964	if (!probe)
5965		pci_slot_lock(slot);
5966
5967	might_sleep();
5968
5969	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5970
5971	if (!probe)
5972		pci_slot_unlock(slot);
5973
5974	return rc;
5975}
5976
5977/**
5978 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5979 * @slot: PCI slot to probe
5980 *
5981 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5982 */
5983int pci_probe_reset_slot(struct pci_slot *slot)
5984{
5985	return pci_slot_reset(slot, PCI_RESET_PROBE);
5986}
5987EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5988
5989/**
5990 * __pci_reset_slot - Try to reset a PCI slot
5991 * @slot: PCI slot to reset
5992 *
5993 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5994 * independent of other slots.  For instance, some slots may support slot power
5995 * control.  In the case of a 1:1 bus to slot architecture, this function may
5996 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5997 * Generally a slot reset should be attempted before a bus reset.  All of the
5998 * function of the slot and any subordinate buses behind the slot are reset
5999 * through this function.  PCI config space of all devices in the slot and
6000 * behind the slot is saved before and restored after reset.
6001 *
6002 * Same as above except return -EAGAIN if the slot cannot be locked
6003 */
6004static int __pci_reset_slot(struct pci_slot *slot)
6005{
6006	int rc;
6007
6008	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
6009	if (rc)
6010		return rc;
6011
6012	if (pci_slot_trylock(slot)) {
6013		pci_slot_save_and_disable_locked(slot);
6014		might_sleep();
6015		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
6016		pci_slot_restore_locked(slot);
6017		pci_slot_unlock(slot);
6018	} else
6019		rc = -EAGAIN;
6020
6021	return rc;
6022}
6023
6024static int pci_bus_reset(struct pci_bus *bus, bool probe)
6025{
6026	int ret;
6027
6028	if (!bus->self || !pci_bus_resettable(bus))
6029		return -ENOTTY;
6030
6031	if (probe)
6032		return 0;
6033
6034	pci_bus_lock(bus);
6035
6036	might_sleep();
6037
6038	ret = pci_bridge_secondary_bus_reset(bus->self);
6039
6040	pci_bus_unlock(bus);
6041
6042	return ret;
6043}
6044
6045/**
6046 * pci_bus_error_reset - reset the bridge's subordinate bus
6047 * @bridge: The parent device that connects to the bus to reset
6048 *
6049 * This function will first try to reset the slots on this bus if the method is
6050 * available. If slot reset fails or is not available, this will fall back to a
6051 * secondary bus reset.
6052 */
6053int pci_bus_error_reset(struct pci_dev *bridge)
6054{
6055	struct pci_bus *bus = bridge->subordinate;
6056	struct pci_slot *slot;
6057
6058	if (!bus)
6059		return -ENOTTY;
6060
6061	mutex_lock(&pci_slot_mutex);
6062	if (list_empty(&bus->slots))
6063		goto bus_reset;
6064
6065	list_for_each_entry(slot, &bus->slots, list)
6066		if (pci_probe_reset_slot(slot))
6067			goto bus_reset;
6068
6069	list_for_each_entry(slot, &bus->slots, list)
6070		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
6071			goto bus_reset;
6072
6073	mutex_unlock(&pci_slot_mutex);
6074	return 0;
6075bus_reset:
6076	mutex_unlock(&pci_slot_mutex);
6077	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
6078}
6079
6080/**
6081 * pci_probe_reset_bus - probe whether a PCI bus can be reset
6082 * @bus: PCI bus to probe
6083 *
6084 * Return 0 if bus can be reset, negative if a bus reset is not supported.
6085 */
6086int pci_probe_reset_bus(struct pci_bus *bus)
6087{
6088	return pci_bus_reset(bus, PCI_RESET_PROBE);
6089}
6090EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
6091
6092/**
6093 * __pci_reset_bus - Try to reset a PCI bus
6094 * @bus: top level PCI bus to reset
6095 *
6096 * Same as above except return -EAGAIN if the bus cannot be locked
6097 */
6098static int __pci_reset_bus(struct pci_bus *bus)
6099{
6100	int rc;
6101
6102	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
6103	if (rc)
6104		return rc;
6105
6106	if (pci_bus_trylock(bus)) {
6107		pci_bus_save_and_disable_locked(bus);
6108		might_sleep();
6109		rc = pci_bridge_secondary_bus_reset(bus->self);
6110		pci_bus_restore_locked(bus);
6111		pci_bus_unlock(bus);
6112	} else
6113		rc = -EAGAIN;
6114
6115	return rc;
6116}
6117
6118/**
6119 * pci_reset_bus - Try to reset a PCI bus
6120 * @pdev: top level PCI device to reset via slot/bus
6121 *
6122 * Same as above except return -EAGAIN if the bus cannot be locked
6123 */
6124int pci_reset_bus(struct pci_dev *pdev)
6125{
6126	return (!pci_probe_reset_slot(pdev->slot)) ?
6127	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6128}
6129EXPORT_SYMBOL_GPL(pci_reset_bus);
6130
6131/**
6132 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6133 * @dev: PCI device to query
6134 *
6135 * Returns mmrbc: maximum designed memory read count in bytes or
6136 * appropriate error value.
6137 */
6138int pcix_get_max_mmrbc(struct pci_dev *dev)
6139{
6140	int cap;
6141	u32 stat;
6142
6143	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6144	if (!cap)
6145		return -EINVAL;
6146
6147	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6148		return -EINVAL;
6149
6150	return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
6151}
6152EXPORT_SYMBOL(pcix_get_max_mmrbc);
6153
6154/**
6155 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6156 * @dev: PCI device to query
6157 *
6158 * Returns mmrbc: maximum memory read count in bytes or appropriate error
6159 * value.
6160 */
6161int pcix_get_mmrbc(struct pci_dev *dev)
6162{
6163	int cap;
6164	u16 cmd;
6165
6166	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6167	if (!cap)
6168		return -EINVAL;
6169
6170	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6171		return -EINVAL;
6172
6173	return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6174}
6175EXPORT_SYMBOL(pcix_get_mmrbc);
6176
6177/**
6178 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6179 * @dev: PCI device to query
6180 * @mmrbc: maximum memory read count in bytes
6181 *    valid values are 512, 1024, 2048, 4096
6182 *
6183 * If possible sets maximum memory read byte count, some bridges have errata
6184 * that prevent this.
6185 */
6186int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6187{
6188	int cap;
6189	u32 stat, v, o;
6190	u16 cmd;
6191
6192	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6193		return -EINVAL;
6194
6195	v = ffs(mmrbc) - 10;
6196
6197	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6198	if (!cap)
6199		return -EINVAL;
6200
6201	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6202		return -EINVAL;
6203
6204	if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
6205		return -E2BIG;
6206
6207	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6208		return -EINVAL;
6209
6210	o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6211	if (o != v) {
6212		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6213			return -EIO;
6214
6215		cmd &= ~PCI_X_CMD_MAX_READ;
6216		cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6217		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6218			return -EIO;
6219	}
6220	return 0;
6221}
6222EXPORT_SYMBOL(pcix_set_mmrbc);
6223
6224/**
6225 * pcie_get_readrq - get PCI Express read request size
6226 * @dev: PCI device to query
6227 *
6228 * Returns maximum memory read request in bytes or appropriate error value.
6229 */
6230int pcie_get_readrq(struct pci_dev *dev)
6231{
6232	u16 ctl;
6233
6234	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6235
6236	return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6237}
6238EXPORT_SYMBOL(pcie_get_readrq);
6239
6240/**
6241 * pcie_set_readrq - set PCI Express maximum memory read request
6242 * @dev: PCI device to query
6243 * @rq: maximum memory read count in bytes
6244 *    valid values are 128, 256, 512, 1024, 2048, 4096
6245 *
6246 * If possible sets maximum memory read request in bytes
6247 */
6248int pcie_set_readrq(struct pci_dev *dev, int rq)
6249{
6250	u16 v;
6251	int ret;
6252	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6253
6254	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6255		return -EINVAL;
6256
6257	/*
6258	 * If using the "performance" PCIe config, we clamp the read rq
6259	 * size to the max packet size to keep the host bridge from
6260	 * generating requests larger than we can cope with.
6261	 */
6262	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6263		int mps = pcie_get_mps(dev);
6264
6265		if (mps < rq)
6266			rq = mps;
6267	}
6268
6269	v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6270
6271	if (bridge->no_inc_mrrs) {
6272		int max_mrrs = pcie_get_readrq(dev);
6273
6274		if (rq > max_mrrs) {
6275			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6276			return -EINVAL;
6277		}
6278	}
6279
6280	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6281						  PCI_EXP_DEVCTL_READRQ, v);
6282
6283	return pcibios_err_to_errno(ret);
6284}
6285EXPORT_SYMBOL(pcie_set_readrq);
6286
6287/**
6288 * pcie_get_mps - get PCI Express maximum payload size
6289 * @dev: PCI device to query
6290 *
6291 * Returns maximum payload size in bytes
6292 */
6293int pcie_get_mps(struct pci_dev *dev)
6294{
6295	u16 ctl;
6296
6297	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6298
6299	return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6300}
6301EXPORT_SYMBOL(pcie_get_mps);
6302
6303/**
6304 * pcie_set_mps - set PCI Express maximum payload size
6305 * @dev: PCI device to query
6306 * @mps: maximum payload size in bytes
6307 *    valid values are 128, 256, 512, 1024, 2048, 4096
6308 *
6309 * If possible sets maximum payload size
6310 */
6311int pcie_set_mps(struct pci_dev *dev, int mps)
6312{
6313	u16 v;
6314	int ret;
6315
6316	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6317		return -EINVAL;
6318
6319	v = ffs(mps) - 8;
6320	if (v > dev->pcie_mpss)
6321		return -EINVAL;
6322	v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6323
6324	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6325						  PCI_EXP_DEVCTL_PAYLOAD, v);
6326
6327	return pcibios_err_to_errno(ret);
6328}
6329EXPORT_SYMBOL(pcie_set_mps);
6330
6331static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6332{
6333	return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6334}
6335
6336int pcie_link_speed_mbps(struct pci_dev *pdev)
6337{
6338	u16 lnksta;
6339	int err;
6340
6341	err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6342	if (err)
6343		return err;
6344
6345	switch (to_pcie_link_speed(lnksta)) {
6346	case PCIE_SPEED_2_5GT:
6347		return 2500;
6348	case PCIE_SPEED_5_0GT:
6349		return 5000;
6350	case PCIE_SPEED_8_0GT:
6351		return 8000;
6352	case PCIE_SPEED_16_0GT:
6353		return 16000;
6354	case PCIE_SPEED_32_0GT:
6355		return 32000;
6356	case PCIE_SPEED_64_0GT:
6357		return 64000;
6358	default:
6359		break;
6360	}
6361
6362	return -EINVAL;
6363}
6364EXPORT_SYMBOL(pcie_link_speed_mbps);
6365
6366/**
6367 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6368 *			      device and its bandwidth limitation
6369 * @dev: PCI device to query
6370 * @limiting_dev: storage for device causing the bandwidth limitation
6371 * @speed: storage for speed of limiting device
6372 * @width: storage for width of limiting device
6373 *
6374 * Walk up the PCI device chain and find the point where the minimum
6375 * bandwidth is available.  Return the bandwidth available there and (if
6376 * limiting_dev, speed, and width pointers are supplied) information about
6377 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6378 * raw bandwidth.
6379 */
6380u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6381			     enum pci_bus_speed *speed,
6382			     enum pcie_link_width *width)
6383{
6384	u16 lnksta;
6385	enum pci_bus_speed next_speed;
6386	enum pcie_link_width next_width;
6387	u32 bw, next_bw;
6388
6389	if (speed)
6390		*speed = PCI_SPEED_UNKNOWN;
6391	if (width)
6392		*width = PCIE_LNK_WIDTH_UNKNOWN;
6393
6394	bw = 0;
6395
6396	while (dev) {
6397		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6398
6399		next_speed = to_pcie_link_speed(lnksta);
6400		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6401
6402		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6403
6404		/* Check if current device limits the total bandwidth */
6405		if (!bw || next_bw <= bw) {
6406			bw = next_bw;
6407
6408			if (limiting_dev)
6409				*limiting_dev = dev;
6410			if (speed)
6411				*speed = next_speed;
6412			if (width)
6413				*width = next_width;
6414		}
6415
6416		dev = pci_upstream_bridge(dev);
6417	}
6418
6419	return bw;
6420}
6421EXPORT_SYMBOL(pcie_bandwidth_available);
6422
6423/**
6424 * pcie_get_speed_cap - query for the PCI device's link speed capability
6425 * @dev: PCI device to query
6426 *
6427 * Query the PCI device speed capability.  Return the maximum link speed
6428 * supported by the device.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6429 */
6430enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6431{
6432	u32 lnkcap2, lnkcap;
 
6433
6434	/*
6435	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6436	 * implementation note there recommends using the Supported Link
6437	 * Speeds Vector in Link Capabilities 2 when supported.
6438	 *
6439	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6440	 * should use the Supported Link Speeds field in Link Capabilities,
6441	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6442	 */
6443	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
 
 
 
 
 
6444
6445	/* PCIe r3.0-compliant */
6446	if (lnkcap2)
6447		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6448
6449	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6450	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6451		return PCIE_SPEED_5_0GT;
6452	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6453		return PCIE_SPEED_2_5GT;
6454
6455	return PCI_SPEED_UNKNOWN;
 
 
 
 
 
 
 
 
 
 
 
 
 
6456}
6457EXPORT_SYMBOL(pcie_get_speed_cap);
6458
6459/**
6460 * pcie_get_width_cap - query for the PCI device's link width capability
6461 * @dev: PCI device to query
6462 *
6463 * Query the PCI device width capability.  Return the maximum link width
6464 * supported by the device.
6465 */
6466enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6467{
6468	u32 lnkcap;
6469
6470	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6471	if (lnkcap)
6472		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6473
6474	return PCIE_LNK_WIDTH_UNKNOWN;
6475}
6476EXPORT_SYMBOL(pcie_get_width_cap);
6477
6478/**
6479 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6480 * @dev: PCI device
6481 * @speed: storage for link speed
6482 * @width: storage for link width
6483 *
6484 * Calculate a PCI device's link bandwidth by querying for its link speed
6485 * and width, multiplying them, and applying encoding overhead.  The result
6486 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6487 */
6488u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6489			   enum pcie_link_width *width)
 
6490{
6491	*speed = pcie_get_speed_cap(dev);
6492	*width = pcie_get_width_cap(dev);
6493
6494	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6495		return 0;
6496
6497	return *width * PCIE_SPEED2MBS_ENC(*speed);
6498}
6499
6500/**
6501 * __pcie_print_link_status - Report the PCI device's link speed and width
6502 * @dev: PCI device to query
6503 * @verbose: Print info even when enough bandwidth is available
6504 *
6505 * If the available bandwidth at the device is less than the device is
6506 * capable of, report the device's maximum possible bandwidth and the
6507 * upstream link that limits its performance.  If @verbose, always print
6508 * the available bandwidth, even if the device isn't constrained.
6509 */
6510void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6511{
6512	enum pcie_link_width width, width_cap;
6513	enum pci_bus_speed speed, speed_cap;
6514	struct pci_dev *limiting_dev = NULL;
6515	u32 bw_avail, bw_cap;
6516
6517	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6518	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6519
6520	if (bw_avail >= bw_cap && verbose)
6521		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6522			 bw_cap / 1000, bw_cap % 1000,
6523			 pci_speed_string(speed_cap), width_cap);
6524	else if (bw_avail < bw_cap)
6525		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6526			 bw_avail / 1000, bw_avail % 1000,
6527			 pci_speed_string(speed), width,
6528			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6529			 bw_cap / 1000, bw_cap % 1000,
6530			 pci_speed_string(speed_cap), width_cap);
6531}
6532
6533/**
6534 * pcie_print_link_status - Report the PCI device's link speed and width
6535 * @dev: PCI device to query
6536 *
6537 * Report the available bandwidth at the device.
6538 */
6539void pcie_print_link_status(struct pci_dev *dev)
6540{
6541	__pcie_print_link_status(dev, true);
6542}
6543EXPORT_SYMBOL(pcie_print_link_status);
6544
6545/**
6546 * pci_select_bars - Make BAR mask from the type of resource
6547 * @dev: the PCI device for which BAR mask is made
6548 * @flags: resource type mask to be selected
6549 *
6550 * This helper routine makes bar mask from the type of resource.
6551 */
6552int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6553{
6554	int i, bars = 0;
6555	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6556		if (pci_resource_flags(dev, i) & flags)
6557			bars |= (1 << i);
6558	return bars;
6559}
6560EXPORT_SYMBOL(pci_select_bars);
6561
6562/* Some architectures require additional programming to enable VGA */
6563static arch_set_vga_state_t arch_set_vga_state;
6564
6565void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6566{
6567	arch_set_vga_state = func;	/* NULL disables */
6568}
6569
6570static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6571				  unsigned int command_bits, u32 flags)
6572{
6573	if (arch_set_vga_state)
6574		return arch_set_vga_state(dev, decode, command_bits,
6575						flags);
6576	return 0;
6577}
6578
6579/**
6580 * pci_set_vga_state - set VGA decode state on device and parents if requested
6581 * @dev: the PCI device
6582 * @decode: true = enable decoding, false = disable decoding
6583 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6584 * @flags: traverse ancestors and change bridges
6585 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6586 */
6587int pci_set_vga_state(struct pci_dev *dev, bool decode,
6588		      unsigned int command_bits, u32 flags)
6589{
6590	struct pci_bus *bus;
6591	struct pci_dev *bridge;
6592	u16 cmd;
6593	int rc;
6594
6595	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6596
6597	/* ARCH specific VGA enables */
6598	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6599	if (rc)
6600		return rc;
6601
6602	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6603		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6604		if (decode)
6605			cmd |= command_bits;
6606		else
6607			cmd &= ~command_bits;
6608		pci_write_config_word(dev, PCI_COMMAND, cmd);
6609	}
6610
6611	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6612		return 0;
6613
6614	bus = dev->bus;
6615	while (bus) {
6616		bridge = bus->self;
6617		if (bridge) {
6618			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6619					     &cmd);
6620			if (decode)
6621				cmd |= PCI_BRIDGE_CTL_VGA;
6622			else
6623				cmd &= ~PCI_BRIDGE_CTL_VGA;
6624			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6625					      cmd);
6626		}
6627		bus = bus->parent;
6628	}
6629	return 0;
6630}
6631
6632#ifdef CONFIG_ACPI
6633bool pci_pr3_present(struct pci_dev *pdev)
6634{
6635	struct acpi_device *adev;
6636
6637	if (acpi_disabled)
6638		return false;
6639
6640	adev = ACPI_COMPANION(&pdev->dev);
6641	if (!adev)
6642		return false;
6643
6644	return adev->power.flags.power_resources &&
6645		acpi_has_method(adev->handle, "_PR3");
6646}
6647EXPORT_SYMBOL_GPL(pci_pr3_present);
6648#endif
6649
6650/**
6651 * pci_add_dma_alias - Add a DMA devfn alias for a device
6652 * @dev: the PCI device for which alias is added
6653 * @devfn_from: alias slot and function
6654 * @nr_devfns: number of subsequent devfns to alias
6655 *
6656 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6657 * which is used to program permissible bus-devfn source addresses for DMA
6658 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6659 * and are useful for devices generating DMA requests beyond or different
6660 * from their logical bus-devfn.  Examples include device quirks where the
6661 * device simply uses the wrong devfn, as well as non-transparent bridges
6662 * where the alias may be a proxy for devices in another domain.
6663 *
6664 * IOMMU group creation is performed during device discovery or addition,
6665 * prior to any potential DMA mapping and therefore prior to driver probing
6666 * (especially for userspace assigned devices where IOMMU group definition
6667 * cannot be left as a userspace activity).  DMA aliases should therefore
6668 * be configured via quirks, such as the PCI fixup header quirk.
6669 */
6670void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6671		       unsigned int nr_devfns)
6672{
6673	int devfn_to;
6674
6675	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6676	devfn_to = devfn_from + nr_devfns - 1;
6677
6678	if (!dev->dma_alias_mask)
6679		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6680	if (!dev->dma_alias_mask) {
6681		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6682		return;
6683	}
6684
6685	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6686
6687	if (nr_devfns == 1)
6688		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6689				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6690	else if (nr_devfns > 1)
6691		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6692				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6693				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6694}
6695
6696bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6697{
6698	return (dev1->dma_alias_mask &&
6699		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6700	       (dev2->dma_alias_mask &&
6701		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6702	       pci_real_dma_dev(dev1) == dev2 ||
6703	       pci_real_dma_dev(dev2) == dev1;
6704}
6705
6706bool pci_device_is_present(struct pci_dev *pdev)
6707{
6708	u32 v;
6709
6710	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6711	pdev = pci_physfn(pdev);
6712	if (pci_dev_is_disconnected(pdev))
6713		return false;
6714	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6715}
6716EXPORT_SYMBOL_GPL(pci_device_is_present);
6717
6718void pci_ignore_hotplug(struct pci_dev *dev)
6719{
6720	struct pci_dev *bridge = dev->bus->self;
6721
6722	dev->ignore_hotplug = 1;
6723	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6724	if (bridge)
6725		bridge->ignore_hotplug = 1;
6726}
6727EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6728
6729/**
6730 * pci_real_dma_dev - Get PCI DMA device for PCI device
6731 * @dev: the PCI device that may have a PCI DMA alias
6732 *
6733 * Permits the platform to provide architecture-specific functionality to
6734 * devices needing to alias DMA to another PCI device on another PCI bus. If
6735 * the PCI device is on the same bus, it is recommended to use
6736 * pci_add_dma_alias(). This is the default implementation. Architecture
6737 * implementations can override this.
6738 */
6739struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6740{
6741	return dev;
6742}
6743
6744resource_size_t __weak pcibios_default_alignment(void)
6745{
6746	return 0;
6747}
6748
6749/*
6750 * Arches that don't want to expose struct resource to userland as-is in
6751 * sysfs and /proc can implement their own pci_resource_to_user().
6752 */
6753void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6754				 const struct resource *rsrc,
6755				 resource_size_t *start, resource_size_t *end)
6756{
6757	*start = rsrc->start;
6758	*end = rsrc->end;
6759}
6760
6761static char *resource_alignment_param;
6762static DEFINE_SPINLOCK(resource_alignment_lock);
6763
6764/**
6765 * pci_specified_resource_alignment - get resource alignment specified by user.
6766 * @dev: the PCI device to get
6767 * @resize: whether or not to change resources' size when reassigning alignment
6768 *
6769 * RETURNS: Resource alignment if it is specified.
6770 *          Zero if it is not specified.
6771 */
6772static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6773							bool *resize)
6774{
6775	int align_order, count;
6776	resource_size_t align = pcibios_default_alignment();
6777	const char *p;
6778	int ret;
6779
6780	spin_lock(&resource_alignment_lock);
6781	p = resource_alignment_param;
6782	if (!p || !*p)
6783		goto out;
6784	if (pci_has_flag(PCI_PROBE_ONLY)) {
6785		align = 0;
6786		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6787		goto out;
6788	}
6789
6790	while (*p) {
6791		count = 0;
6792		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6793		    p[count] == '@') {
6794			p += count + 1;
6795			if (align_order > 63) {
6796				pr_err("PCI: Invalid requested alignment (order %d)\n",
6797				       align_order);
6798				align_order = PAGE_SHIFT;
6799			}
6800		} else {
6801			align_order = PAGE_SHIFT;
6802		}
6803
6804		ret = pci_dev_str_match(dev, p, &p);
6805		if (ret == 1) {
6806			*resize = true;
6807			align = 1ULL << align_order;
6808			break;
6809		} else if (ret < 0) {
6810			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6811			       p);
6812			break;
6813		}
6814
6815		if (*p != ';' && *p != ',') {
6816			/* End of param or invalid format */
6817			break;
6818		}
6819		p++;
6820	}
6821out:
6822	spin_unlock(&resource_alignment_lock);
6823	return align;
6824}
6825
6826static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6827					   resource_size_t align, bool resize)
6828{
6829	struct resource *r = &dev->resource[bar];
6830	const char *r_name = pci_resource_name(dev, bar);
6831	resource_size_t size;
6832
6833	if (!(r->flags & IORESOURCE_MEM))
6834		return;
6835
6836	if (r->flags & IORESOURCE_PCI_FIXED) {
6837		pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6838			 r_name, r, (unsigned long long)align);
6839		return;
6840	}
6841
6842	size = resource_size(r);
6843	if (size >= align)
6844		return;
6845
6846	/*
6847	 * Increase the alignment of the resource.  There are two ways we
6848	 * can do this:
6849	 *
6850	 * 1) Increase the size of the resource.  BARs are aligned on their
6851	 *    size, so when we reallocate space for this resource, we'll
6852	 *    allocate it with the larger alignment.  This also prevents
6853	 *    assignment of any other BARs inside the alignment region, so
6854	 *    if we're requesting page alignment, this means no other BARs
6855	 *    will share the page.
6856	 *
6857	 *    The disadvantage is that this makes the resource larger than
6858	 *    the hardware BAR, which may break drivers that compute things
6859	 *    based on the resource size, e.g., to find registers at a
6860	 *    fixed offset before the end of the BAR.
6861	 *
6862	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6863	 *    set r->start to the desired alignment.  By itself this
6864	 *    doesn't prevent other BARs being put inside the alignment
6865	 *    region, but if we realign *every* resource of every device in
6866	 *    the system, none of them will share an alignment region.
6867	 *
6868	 * When the user has requested alignment for only some devices via
6869	 * the "pci=resource_alignment" argument, "resize" is true and we
6870	 * use the first method.  Otherwise we assume we're aligning all
6871	 * devices and we use the second.
6872	 */
6873
6874	pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6875		 r_name, r, (unsigned long long)align);
6876
6877	if (resize) {
6878		r->start = 0;
6879		r->end = align - 1;
6880	} else {
6881		r->flags &= ~IORESOURCE_SIZEALIGN;
6882		r->flags |= IORESOURCE_STARTALIGN;
6883		r->start = align;
6884		r->end = r->start + size - 1;
6885	}
6886	r->flags |= IORESOURCE_UNSET;
6887}
6888
6889/*
6890 * This function disables memory decoding and releases memory resources
6891 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6892 * It also rounds up size to specified alignment.
6893 * Later on, the kernel will assign page-aligned memory resource back
6894 * to the device.
6895 */
6896void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6897{
6898	int i;
6899	struct resource *r;
6900	resource_size_t align;
6901	u16 command;
6902	bool resize = false;
6903
6904	/*
6905	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6906	 * 3.4.1.11.  Their resources are allocated from the space
6907	 * described by the VF BARx register in the PF's SR-IOV capability.
6908	 * We can't influence their alignment here.
6909	 */
6910	if (dev->is_virtfn)
6911		return;
6912
6913	/* check if specified PCI is target device to reassign */
6914	align = pci_specified_resource_alignment(dev, &resize);
6915	if (!align)
6916		return;
6917
6918	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6919	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6920		pci_warn(dev, "Can't reassign resources to host bridge\n");
6921		return;
6922	}
6923
6924	pci_read_config_word(dev, PCI_COMMAND, &command);
6925	command &= ~PCI_COMMAND_MEMORY;
6926	pci_write_config_word(dev, PCI_COMMAND, command);
6927
6928	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6929		pci_request_resource_alignment(dev, i, align, resize);
6930
6931	/*
6932	 * Need to disable bridge's resource window,
6933	 * to enable the kernel to reassign new resource
6934	 * window later on.
6935	 */
6936	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6937		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6938			r = &dev->resource[i];
6939			if (!(r->flags & IORESOURCE_MEM))
6940				continue;
6941			r->flags |= IORESOURCE_UNSET;
6942			r->end = resource_size(r) - 1;
6943			r->start = 0;
6944		}
6945		pci_disable_bridge_window(dev);
6946	}
6947}
6948
6949static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6950{
6951	size_t count = 0;
6952
6953	spin_lock(&resource_alignment_lock);
6954	if (resource_alignment_param)
6955		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6956	spin_unlock(&resource_alignment_lock);
6957
6958	return count;
6959}
6960
6961static ssize_t resource_alignment_store(const struct bus_type *bus,
6962					const char *buf, size_t count)
6963{
6964	char *param, *old, *end;
6965
6966	if (count >= (PAGE_SIZE - 1))
6967		return -EINVAL;
6968
6969	param = kstrndup(buf, count, GFP_KERNEL);
6970	if (!param)
6971		return -ENOMEM;
6972
6973	end = strchr(param, '\n');
6974	if (end)
6975		*end = '\0';
6976
6977	spin_lock(&resource_alignment_lock);
6978	old = resource_alignment_param;
6979	if (strlen(param)) {
6980		resource_alignment_param = param;
6981	} else {
6982		kfree(param);
6983		resource_alignment_param = NULL;
6984	}
6985	spin_unlock(&resource_alignment_lock);
6986
6987	kfree(old);
6988
6989	return count;
6990}
6991
6992static BUS_ATTR_RW(resource_alignment);
6993
6994static int __init pci_resource_alignment_sysfs_init(void)
6995{
6996	return bus_create_file(&pci_bus_type,
6997					&bus_attr_resource_alignment);
6998}
6999late_initcall(pci_resource_alignment_sysfs_init);
7000
7001static void pci_no_domains(void)
7002{
7003#ifdef CONFIG_PCI_DOMAINS
7004	pci_domains_supported = 0;
7005#endif
7006}
7007
7008#ifdef CONFIG_PCI_DOMAINS_GENERIC
7009static DEFINE_IDA(pci_domain_nr_static_ida);
7010static DEFINE_IDA(pci_domain_nr_dynamic_ida);
7011
7012static void of_pci_reserve_static_domain_nr(void)
7013{
7014	struct device_node *np;
7015	int domain_nr;
7016
7017	for_each_node_by_type(np, "pci") {
7018		domain_nr = of_get_pci_domain_nr(np);
7019		if (domain_nr < 0)
7020			continue;
7021		/*
7022		 * Permanently allocate domain_nr in dynamic_ida
7023		 * to prevent it from dynamic allocation.
7024		 */
7025		ida_alloc_range(&pci_domain_nr_dynamic_ida,
7026				domain_nr, domain_nr, GFP_KERNEL);
7027	}
7028}
7029
7030static int of_pci_bus_find_domain_nr(struct device *parent)
7031{
7032	static bool static_domains_reserved = false;
7033	int domain_nr;
7034
7035	/* On the first call scan device tree for static allocations. */
7036	if (!static_domains_reserved) {
7037		of_pci_reserve_static_domain_nr();
7038		static_domains_reserved = true;
7039	}
7040
7041	if (parent) {
7042		/*
7043		 * If domain is in DT, allocate it in static IDA.  This
7044		 * prevents duplicate static allocations in case of errors
7045		 * in DT.
7046		 */
7047		domain_nr = of_get_pci_domain_nr(parent->of_node);
7048		if (domain_nr >= 0)
7049			return ida_alloc_range(&pci_domain_nr_static_ida,
7050					       domain_nr, domain_nr,
7051					       GFP_KERNEL);
7052	}
7053
7054	/*
7055	 * If domain was not specified in DT, choose a free ID from dynamic
7056	 * allocations. All domain numbers from DT are permanently in
7057	 * dynamic allocations to prevent assigning them to other DT nodes
7058	 * without static domain.
7059	 */
7060	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
7061}
7062
7063static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
7064{
7065	if (bus->domain_nr < 0)
7066		return;
7067
7068	/* Release domain from IDA where it was allocated. */
7069	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
7070		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
7071	else
7072		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
7073}
7074
7075int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
7076{
7077	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
7078			       acpi_pci_bus_find_domain_nr(bus);
7079}
7080
7081void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
7082{
7083	if (!acpi_disabled)
7084		return;
7085	of_pci_bus_release_domain_nr(bus, parent);
7086}
7087#endif
7088
7089/**
7090 * pci_ext_cfg_avail - can we access extended PCI config space?
7091 *
7092 * Returns 1 if we can access PCI extended config space (offsets
7093 * greater than 0xff). This is the default implementation. Architecture
7094 * implementations can override this.
7095 */
7096int __weak pci_ext_cfg_avail(void)
7097{
7098	return 1;
7099}
7100
7101void __weak pci_fixup_cardbus(struct pci_bus *bus)
7102{
7103}
7104EXPORT_SYMBOL(pci_fixup_cardbus);
7105
7106static int __init pci_setup(char *str)
7107{
7108	while (str) {
7109		char *k = strchr(str, ',');
7110		if (k)
7111			*k++ = 0;
7112		if (*str && (str = pcibios_setup(str)) && *str) {
7113			if (!strcmp(str, "nomsi")) {
7114				pci_no_msi();
7115			} else if (!strncmp(str, "noats", 5)) {
7116				pr_info("PCIe: ATS is disabled\n");
7117				pcie_ats_disabled = true;
7118			} else if (!strcmp(str, "noaer")) {
7119				pci_no_aer();
7120			} else if (!strcmp(str, "earlydump")) {
7121				pci_early_dump = true;
7122			} else if (!strncmp(str, "realloc=", 8)) {
7123				pci_realloc_get_opt(str + 8);
7124			} else if (!strncmp(str, "realloc", 7)) {
7125				pci_realloc_get_opt("on");
7126			} else if (!strcmp(str, "nodomains")) {
7127				pci_no_domains();
7128			} else if (!strncmp(str, "noari", 5)) {
7129				pcie_ari_disabled = true;
 
 
7130			} else if (!strncmp(str, "cbiosize=", 9)) {
7131				pci_cardbus_io_size = memparse(str + 9, &str);
7132			} else if (!strncmp(str, "cbmemsize=", 10)) {
7133				pci_cardbus_mem_size = memparse(str + 10, &str);
7134			} else if (!strncmp(str, "resource_alignment=", 19)) {
7135				resource_alignment_param = str + 19;
7136			} else if (!strncmp(str, "ecrc=", 5)) {
7137				pcie_ecrc_get_policy(str + 5);
7138			} else if (!strncmp(str, "hpiosize=", 9)) {
7139				pci_hotplug_io_size = memparse(str + 9, &str);
7140			} else if (!strncmp(str, "hpmmiosize=", 11)) {
7141				pci_hotplug_mmio_size = memparse(str + 11, &str);
7142			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7143				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7144			} else if (!strncmp(str, "hpmemsize=", 10)) {
7145				pci_hotplug_mmio_size = memparse(str + 10, &str);
7146				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7147			} else if (!strncmp(str, "hpbussize=", 10)) {
7148				pci_hotplug_bus_size =
7149					simple_strtoul(str + 10, &str, 0);
7150				if (pci_hotplug_bus_size > 0xff)
7151					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7152			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7153				pcie_bus_config = PCIE_BUS_TUNE_OFF;
7154			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
7155				pcie_bus_config = PCIE_BUS_SAFE;
7156			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
7157				pcie_bus_config = PCIE_BUS_PERFORMANCE;
7158			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7159				pcie_bus_config = PCIE_BUS_PEER2PEER;
7160			} else if (!strncmp(str, "pcie_scan_all", 13)) {
7161				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7162			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
7163				disable_acs_redir_param = str + 18;
 
 
7164			} else {
7165				pr_err("PCI: Unknown option `%s'\n", str);
7166			}
7167		}
7168		str = k;
7169	}
7170	return 0;
7171}
7172early_param("pci", pci_setup);
7173
7174/*
7175 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7176 * in pci_setup(), above, to point to data in the __initdata section which
7177 * will be freed after the init sequence is complete. We can't allocate memory
7178 * in pci_setup() because some architectures do not have any memory allocation
7179 * service available during an early_param() call. So we allocate memory and
7180 * copy the variable here before the init section is freed.
7181 *
7182 */
7183static int __init pci_realloc_setup_params(void)
7184{
7185	resource_alignment_param = kstrdup(resource_alignment_param,
7186					   GFP_KERNEL);
7187	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
 
7188
7189	return 0;
7190}
7191pure_initcall(pci_realloc_setup_params);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
 
  27#include <linux/device.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/pci_hotplug.h>
  30#include <linux/vmalloc.h>
  31#include <asm/dma.h>
  32#include <linux/aer.h>
  33#include <linux/bitfield.h>
  34#include "pci.h"
  35
  36DEFINE_MUTEX(pci_slot_mutex);
  37
  38const char *pci_power_names[] = {
  39	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  40};
  41EXPORT_SYMBOL_GPL(pci_power_names);
  42
  43#ifdef CONFIG_X86_32
  44int isa_dma_bridge_buggy;
  45EXPORT_SYMBOL(isa_dma_bridge_buggy);
  46#endif
  47
  48int pci_pci_problems;
  49EXPORT_SYMBOL(pci_pci_problems);
  50
  51unsigned int pci_pm_d3hot_delay;
  52
  53static void pci_pme_list_scan(struct work_struct *work);
  54
  55static LIST_HEAD(pci_pme_list);
  56static DEFINE_MUTEX(pci_pme_list_mutex);
  57static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  58
  59struct pci_pme_device {
  60	struct list_head list;
  61	struct pci_dev *dev;
  62};
  63
  64#define PME_TIMEOUT 1000 /* How long between PME checks */
  65
  66/*
  67 * Following exit from Conventional Reset, devices must be ready within 1 sec
  68 * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
  69 * Reset (PCIe r6.0 sec 5.8).
  70 */
  71#define PCI_RESET_WAIT 1000 /* msec */
  72
  73/*
  74 * Devices may extend the 1 sec period through Request Retry Status
  75 * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
  76 * limit, but 60 sec ought to be enough for any device to become
  77 * responsive.
  78 */
  79#define PCIE_RESET_READY_POLL_MS 60000 /* msec */
  80
  81static void pci_dev_d3_sleep(struct pci_dev *dev)
  82{
  83	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
  84	unsigned int upper;
  85
  86	if (delay_ms) {
  87		/* Use a 20% upper bound, 1ms minimum */
  88		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
  89		usleep_range(delay_ms * USEC_PER_MSEC,
  90			     (delay_ms + upper) * USEC_PER_MSEC);
  91	}
  92}
  93
  94bool pci_reset_supported(struct pci_dev *dev)
  95{
  96	return dev->reset_methods[0] != 0;
  97}
  98
  99#ifdef CONFIG_PCI_DOMAINS
 100int pci_domains_supported = 1;
 101#endif
 102
 103#define DEFAULT_CARDBUS_IO_SIZE		(256)
 104#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
 105/* pci=cbmemsize=nnM,cbiosize=nn can override this */
 106unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
 107unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
 108
 109#define DEFAULT_HOTPLUG_IO_SIZE		(256)
 110#define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
 111#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
 112/* hpiosize=nn can override this */
 113unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
 114/*
 115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
 116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
 117 * pci=hpmemsize=nnM overrides both
 118 */
 119unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
 120unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
 121
 122#define DEFAULT_HOTPLUG_BUS_SIZE	1
 123unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 124
 125
 126/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
 127#ifdef CONFIG_PCIE_BUS_TUNE_OFF
 128enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 129#elif defined CONFIG_PCIE_BUS_SAFE
 130enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
 131#elif defined CONFIG_PCIE_BUS_PERFORMANCE
 132enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
 133#elif defined CONFIG_PCIE_BUS_PEER2PEER
 134enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
 135#else
 136enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 137#endif
 138
 139/*
 140 * The default CLS is used if arch didn't set CLS explicitly and not
 141 * all pci devices agree on the same value.  Arch can override either
 142 * the dfl or actual value as it sees fit.  Don't forget this is
 143 * measured in 32-bit words, not bytes.
 144 */
 145u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2;
 146u8 pci_cache_line_size __ro_after_init ;
 147
 148/*
 149 * If we set up a device for bus mastering, we need to check the latency
 150 * timer as certain BIOSes forget to set it properly.
 151 */
 152unsigned int pcibios_max_latency = 255;
 153
 154/* If set, the PCIe ARI capability will not be used. */
 155static bool pcie_ari_disabled;
 156
 157/* If set, the PCIe ATS capability will not be used. */
 158static bool pcie_ats_disabled;
 159
 160/* If set, the PCI config space of each device is printed during boot. */
 161bool pci_early_dump;
 162
 163bool pci_ats_disabled(void)
 164{
 165	return pcie_ats_disabled;
 166}
 167EXPORT_SYMBOL_GPL(pci_ats_disabled);
 168
 169/* Disable bridge_d3 for all PCIe ports */
 170static bool pci_bridge_d3_disable;
 171/* Force bridge_d3 for all PCIe ports */
 172static bool pci_bridge_d3_force;
 173
 174static int __init pcie_port_pm_setup(char *str)
 175{
 176	if (!strcmp(str, "off"))
 177		pci_bridge_d3_disable = true;
 178	else if (!strcmp(str, "force"))
 179		pci_bridge_d3_force = true;
 180	return 1;
 181}
 182__setup("pcie_port_pm=", pcie_port_pm_setup);
 183
 184/**
 185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 186 * @bus: pointer to PCI bus structure to search
 187 *
 188 * Given a PCI bus, returns the highest PCI bus number present in the set
 189 * including the given PCI bus and its list of child PCI buses.
 190 */
 191unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 192{
 193	struct pci_bus *tmp;
 194	unsigned char max, n;
 195
 196	max = bus->busn_res.end;
 197	list_for_each_entry(tmp, &bus->children, node) {
 198		n = pci_bus_max_busnr(tmp);
 199		if (n > max)
 200			max = n;
 201	}
 202	return max;
 203}
 204EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 205
 206/**
 207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 208 * @pdev: the PCI device
 209 *
 210 * Returns error bits set in PCI_STATUS and clears them.
 211 */
 212int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 213{
 214	u16 status;
 215	int ret;
 216
 217	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 218	if (ret != PCIBIOS_SUCCESSFUL)
 219		return -EIO;
 220
 221	status &= PCI_STATUS_ERROR_BITS;
 222	if (status)
 223		pci_write_config_word(pdev, PCI_STATUS, status);
 224
 225	return status;
 226}
 227EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 228
 229#ifdef CONFIG_HAS_IOMEM
 230static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
 231					    bool write_combine)
 232{
 233	struct resource *res = &pdev->resource[bar];
 234	resource_size_t start = res->start;
 235	resource_size_t size = resource_size(res);
 236
 237	/*
 238	 * Make sure the BAR is actually a memory resource, not an IO resource
 239	 */
 240	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 241		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 242		return NULL;
 243	}
 244
 245	if (write_combine)
 246		return ioremap_wc(start, size);
 247
 248	return ioremap(start, size);
 249}
 250
 251void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 252{
 253	return __pci_ioremap_resource(pdev, bar, false);
 254}
 255EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 256
 257void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 258{
 259	return __pci_ioremap_resource(pdev, bar, true);
 260}
 261EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 262#endif
 263
 264/**
 265 * pci_dev_str_match_path - test if a path string matches a device
 266 * @dev: the PCI device to test
 267 * @path: string to match the device against
 268 * @endptr: pointer to the string after the match
 269 *
 270 * Test if a string (typically from a kernel parameter) formatted as a
 271 * path of device/function addresses matches a PCI device. The string must
 272 * be of the form:
 273 *
 274 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 275 *
 276 * A path for a device can be obtained using 'lspci -t'.  Using a path
 277 * is more robust against bus renumbering than using only a single bus,
 278 * device and function address.
 279 *
 280 * Returns 1 if the string matches the device, 0 if it does not and
 281 * a negative error code if it fails to parse the string.
 282 */
 283static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 284				  const char **endptr)
 285{
 286	int ret;
 287	unsigned int seg, bus, slot, func;
 288	char *wpath, *p;
 289	char end;
 290
 291	*endptr = strchrnul(path, ';');
 292
 293	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
 294	if (!wpath)
 295		return -ENOMEM;
 296
 297	while (1) {
 298		p = strrchr(wpath, '/');
 299		if (!p)
 300			break;
 301		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 302		if (ret != 2) {
 303			ret = -EINVAL;
 304			goto free_and_exit;
 305		}
 306
 307		if (dev->devfn != PCI_DEVFN(slot, func)) {
 308			ret = 0;
 309			goto free_and_exit;
 310		}
 311
 312		/*
 313		 * Note: we don't need to get a reference to the upstream
 314		 * bridge because we hold a reference to the top level
 315		 * device which should hold a reference to the bridge,
 316		 * and so on.
 317		 */
 318		dev = pci_upstream_bridge(dev);
 319		if (!dev) {
 320			ret = 0;
 321			goto free_and_exit;
 322		}
 323
 324		*p = 0;
 325	}
 326
 327	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 328		     &func, &end);
 329	if (ret != 4) {
 330		seg = 0;
 331		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 332		if (ret != 3) {
 333			ret = -EINVAL;
 334			goto free_and_exit;
 335		}
 336	}
 337
 338	ret = (seg == pci_domain_nr(dev->bus) &&
 339	       bus == dev->bus->number &&
 340	       dev->devfn == PCI_DEVFN(slot, func));
 341
 342free_and_exit:
 343	kfree(wpath);
 344	return ret;
 345}
 346
 347/**
 348 * pci_dev_str_match - test if a string matches a device
 349 * @dev: the PCI device to test
 350 * @p: string to match the device against
 351 * @endptr: pointer to the string after the match
 352 *
 353 * Test if a string (typically from a kernel parameter) matches a specified
 354 * PCI device. The string may be of one of the following formats:
 355 *
 356 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 357 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 358 *
 359 * The first format specifies a PCI bus/device/function address which
 360 * may change if new hardware is inserted, if motherboard firmware changes,
 361 * or due to changes caused in kernel parameters. If the domain is
 362 * left unspecified, it is taken to be 0.  In order to be robust against
 363 * bus renumbering issues, a path of PCI device/function numbers may be used
 364 * to address the specific device.  The path for a device can be determined
 365 * through the use of 'lspci -t'.
 366 *
 367 * The second format matches devices using IDs in the configuration
 368 * space which may match multiple devices in the system. A value of 0
 369 * for any field will match all devices. (Note: this differs from
 370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 371 * legacy reasons and convenience so users don't have to specify
 372 * FFFFFFFFs on the command line.)
 373 *
 374 * Returns 1 if the string matches the device, 0 if it does not and
 375 * a negative error code if the string cannot be parsed.
 376 */
 377static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 378			     const char **endptr)
 379{
 380	int ret;
 381	int count;
 382	unsigned short vendor, device, subsystem_vendor, subsystem_device;
 383
 384	if (strncmp(p, "pci:", 4) == 0) {
 385		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
 386		p += 4;
 387		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 388			     &subsystem_vendor, &subsystem_device, &count);
 389		if (ret != 4) {
 390			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 391			if (ret != 2)
 392				return -EINVAL;
 393
 394			subsystem_vendor = 0;
 395			subsystem_device = 0;
 396		}
 397
 398		p += count;
 399
 400		if ((!vendor || vendor == dev->vendor) &&
 401		    (!device || device == dev->device) &&
 402		    (!subsystem_vendor ||
 403			    subsystem_vendor == dev->subsystem_vendor) &&
 404		    (!subsystem_device ||
 405			    subsystem_device == dev->subsystem_device))
 406			goto found;
 407	} else {
 408		/*
 409		 * PCI Bus, Device, Function IDs are specified
 410		 * (optionally, may include a path of devfns following it)
 411		 */
 412		ret = pci_dev_str_match_path(dev, p, &p);
 413		if (ret < 0)
 414			return ret;
 415		else if (ret)
 416			goto found;
 417	}
 418
 419	*endptr = p;
 420	return 0;
 421
 422found:
 423	*endptr = p;
 424	return 1;
 425}
 426
 427static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 428				  u8 pos, int cap, int *ttl)
 429{
 430	u8 id;
 431	u16 ent;
 432
 433	pci_bus_read_config_byte(bus, devfn, pos, &pos);
 434
 435	while ((*ttl)--) {
 436		if (pos < 0x40)
 437			break;
 438		pos &= ~3;
 439		pci_bus_read_config_word(bus, devfn, pos, &ent);
 440
 441		id = ent & 0xff;
 442		if (id == 0xff)
 443			break;
 444		if (id == cap)
 445			return pos;
 446		pos = (ent >> 8);
 447	}
 448	return 0;
 449}
 450
 451static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 452			      u8 pos, int cap)
 453{
 454	int ttl = PCI_FIND_CAP_TTL;
 455
 456	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 457}
 458
 459u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 460{
 461	return __pci_find_next_cap(dev->bus, dev->devfn,
 462				   pos + PCI_CAP_LIST_NEXT, cap);
 463}
 464EXPORT_SYMBOL_GPL(pci_find_next_capability);
 465
 466static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
 467				    unsigned int devfn, u8 hdr_type)
 468{
 469	u16 status;
 470
 471	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 472	if (!(status & PCI_STATUS_CAP_LIST))
 473		return 0;
 474
 475	switch (hdr_type) {
 476	case PCI_HEADER_TYPE_NORMAL:
 477	case PCI_HEADER_TYPE_BRIDGE:
 478		return PCI_CAPABILITY_LIST;
 479	case PCI_HEADER_TYPE_CARDBUS:
 480		return PCI_CB_CAPABILITY_LIST;
 481	}
 482
 483	return 0;
 484}
 485
 486/**
 487 * pci_find_capability - query for devices' capabilities
 488 * @dev: PCI device to query
 489 * @cap: capability code
 490 *
 491 * Tell if a device supports a given PCI capability.
 492 * Returns the address of the requested capability structure within the
 493 * device's PCI configuration space or 0 in case the device does not
 494 * support it.  Possible values for @cap include:
 495 *
 496 *  %PCI_CAP_ID_PM           Power Management
 497 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 498 *  %PCI_CAP_ID_VPD          Vital Product Data
 499 *  %PCI_CAP_ID_SLOTID       Slot Identification
 500 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 501 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 502 *  %PCI_CAP_ID_PCIX         PCI-X
 503 *  %PCI_CAP_ID_EXP          PCI Express
 504 */
 505u8 pci_find_capability(struct pci_dev *dev, int cap)
 506{
 507	u8 pos;
 508
 509	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 510	if (pos)
 511		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 512
 513	return pos;
 514}
 515EXPORT_SYMBOL(pci_find_capability);
 516
 517/**
 518 * pci_bus_find_capability - query for devices' capabilities
 519 * @bus: the PCI bus to query
 520 * @devfn: PCI device to query
 521 * @cap: capability code
 522 *
 523 * Like pci_find_capability() but works for PCI devices that do not have a
 524 * pci_dev structure set up yet.
 525 *
 526 * Returns the address of the requested capability structure within the
 527 * device's PCI configuration space or 0 in case the device does not
 528 * support it.
 529 */
 530u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 531{
 532	u8 hdr_type, pos;
 533
 534	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 535
 536	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
 537	if (pos)
 538		pos = __pci_find_next_cap(bus, devfn, pos, cap);
 539
 540	return pos;
 541}
 542EXPORT_SYMBOL(pci_bus_find_capability);
 543
 544/**
 545 * pci_find_next_ext_capability - Find an extended capability
 546 * @dev: PCI device to query
 547 * @start: address at which to start looking (0 to start at beginning of list)
 548 * @cap: capability code
 549 *
 550 * Returns the address of the next matching extended capability structure
 551 * within the device's PCI configuration space or 0 if the device does
 552 * not support it.  Some capabilities can occur several times, e.g., the
 553 * vendor-specific capability, and this provides a way to find them all.
 554 */
 555u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
 556{
 557	u32 header;
 558	int ttl;
 559	u16 pos = PCI_CFG_SPACE_SIZE;
 560
 561	/* minimum 8 bytes per capability */
 562	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 563
 564	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 565		return 0;
 566
 567	if (start)
 568		pos = start;
 569
 570	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 571		return 0;
 572
 573	/*
 574	 * If we have no capabilities, this is indicated by cap ID,
 575	 * cap version and next pointer all being 0.
 576	 */
 577	if (header == 0)
 578		return 0;
 579
 580	while (ttl-- > 0) {
 581		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 582			return pos;
 583
 584		pos = PCI_EXT_CAP_NEXT(header);
 585		if (pos < PCI_CFG_SPACE_SIZE)
 586			break;
 587
 588		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 589			break;
 590	}
 591
 592	return 0;
 593}
 594EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 595
 596/**
 597 * pci_find_ext_capability - Find an extended capability
 598 * @dev: PCI device to query
 599 * @cap: capability code
 600 *
 601 * Returns the address of the requested extended capability structure
 602 * within the device's PCI configuration space or 0 if the device does
 603 * not support it.  Possible values for @cap include:
 604 *
 605 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 606 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 607 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 608 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 609 */
 610u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
 611{
 612	return pci_find_next_ext_capability(dev, 0, cap);
 613}
 614EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 615
 616/**
 617 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 618 * @dev: PCI device to query
 619 *
 620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 621 * Number.
 622 *
 623 * Returns the DSN, or zero if the capability does not exist.
 624 */
 625u64 pci_get_dsn(struct pci_dev *dev)
 626{
 627	u32 dword;
 628	u64 dsn;
 629	int pos;
 630
 631	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 632	if (!pos)
 633		return 0;
 634
 635	/*
 636	 * The Device Serial Number is two dwords offset 4 bytes from the
 637	 * capability position. The specification says that the first dword is
 638	 * the lower half, and the second dword is the upper half.
 639	 */
 640	pos += 4;
 641	pci_read_config_dword(dev, pos, &dword);
 642	dsn = (u64)dword;
 643	pci_read_config_dword(dev, pos + 4, &dword);
 644	dsn |= ((u64)dword) << 32;
 645
 646	return dsn;
 647}
 648EXPORT_SYMBOL_GPL(pci_get_dsn);
 649
 650static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
 651{
 652	int rc, ttl = PCI_FIND_CAP_TTL;
 653	u8 cap, mask;
 654
 655	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 656		mask = HT_3BIT_CAP_MASK;
 657	else
 658		mask = HT_5BIT_CAP_MASK;
 659
 660	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 661				      PCI_CAP_ID_HT, &ttl);
 662	while (pos) {
 663		rc = pci_read_config_byte(dev, pos + 3, &cap);
 664		if (rc != PCIBIOS_SUCCESSFUL)
 665			return 0;
 666
 667		if ((cap & mask) == ht_cap)
 668			return pos;
 669
 670		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 671					      pos + PCI_CAP_LIST_NEXT,
 672					      PCI_CAP_ID_HT, &ttl);
 673	}
 674
 675	return 0;
 676}
 677
 678/**
 679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
 680 * @dev: PCI device to query
 681 * @pos: Position from which to continue searching
 682 * @ht_cap: HyperTransport capability code
 683 *
 684 * To be used in conjunction with pci_find_ht_capability() to search for
 685 * all capabilities matching @ht_cap. @pos should always be a value returned
 686 * from pci_find_ht_capability().
 687 *
 688 * NB. To be 100% safe against broken PCI devices, the caller should take
 689 * steps to avoid an infinite loop.
 690 */
 691u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
 692{
 693	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 694}
 695EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 696
 697/**
 698 * pci_find_ht_capability - query a device's HyperTransport capabilities
 699 * @dev: PCI device to query
 700 * @ht_cap: HyperTransport capability code
 701 *
 702 * Tell if a device supports a given HyperTransport capability.
 703 * Returns an address within the device's PCI configuration space
 704 * or 0 in case the device does not support the request capability.
 705 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 706 * which has a HyperTransport capability matching @ht_cap.
 707 */
 708u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 709{
 710	u8 pos;
 711
 712	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 713	if (pos)
 714		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 715
 716	return pos;
 717}
 718EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 719
 720/**
 721 * pci_find_vsec_capability - Find a vendor-specific extended capability
 722 * @dev: PCI device to query
 723 * @vendor: Vendor ID for which capability is defined
 724 * @cap: Vendor-specific capability ID
 725 *
 726 * If @dev has Vendor ID @vendor, search for a VSEC capability with
 727 * VSEC ID @cap. If found, return the capability offset in
 728 * config space; otherwise return 0.
 729 */
 730u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
 731{
 732	u16 vsec = 0;
 733	u32 header;
 734	int ret;
 735
 736	if (vendor != dev->vendor)
 737		return 0;
 738
 739	while ((vsec = pci_find_next_ext_capability(dev, vsec,
 740						     PCI_EXT_CAP_ID_VNDR))) {
 741		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
 742		if (ret != PCIBIOS_SUCCESSFUL)
 743			continue;
 744
 745		if (PCI_VNDR_HEADER_ID(header) == cap)
 746			return vsec;
 747	}
 748
 749	return 0;
 750}
 751EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
 752
 753/**
 754 * pci_find_dvsec_capability - Find DVSEC for vendor
 755 * @dev: PCI device to query
 756 * @vendor: Vendor ID to match for the DVSEC
 757 * @dvsec: Designated Vendor-specific capability ID
 758 *
 759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
 760 * offset in config space; otherwise return 0.
 761 */
 762u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
 763{
 764	int pos;
 765
 766	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
 767	if (!pos)
 768		return 0;
 769
 770	while (pos) {
 771		u16 v, id;
 772
 773		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
 774		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
 775		if (vendor == v && dvsec == id)
 776			return pos;
 777
 778		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
 779	}
 780
 781	return 0;
 782}
 783EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
 784
 785/**
 786 * pci_find_parent_resource - return resource region of parent bus of given
 787 *			      region
 788 * @dev: PCI device structure contains resources to be searched
 789 * @res: child resource record for which parent is sought
 790 *
 791 * For given resource region of given device, return the resource region of
 792 * parent bus the given region is contained in.
 793 */
 794struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 795					  struct resource *res)
 796{
 797	const struct pci_bus *bus = dev->bus;
 798	struct resource *r;
 799
 800	pci_bus_for_each_resource(bus, r) {
 801		if (!r)
 802			continue;
 803		if (resource_contains(r, res)) {
 804
 805			/*
 806			 * If the window is prefetchable but the BAR is
 807			 * not, the allocator made a mistake.
 808			 */
 809			if (r->flags & IORESOURCE_PREFETCH &&
 810			    !(res->flags & IORESOURCE_PREFETCH))
 811				return NULL;
 812
 813			/*
 814			 * If we're below a transparent bridge, there may
 815			 * be both a positively-decoded aperture and a
 816			 * subtractively-decoded region that contain the BAR.
 817			 * We want the positively-decoded one, so this depends
 818			 * on pci_bus_for_each_resource() giving us those
 819			 * first.
 820			 */
 821			return r;
 822		}
 823	}
 824	return NULL;
 825}
 826EXPORT_SYMBOL(pci_find_parent_resource);
 827
 828/**
 829 * pci_find_resource - Return matching PCI device resource
 830 * @dev: PCI device to query
 831 * @res: Resource to look for
 832 *
 833 * Goes over standard PCI resources (BARs) and checks if the given resource
 834 * is partially or fully contained in any of them. In that case the
 835 * matching resource is returned, %NULL otherwise.
 836 */
 837struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 838{
 839	int i;
 840
 841	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 842		struct resource *r = &dev->resource[i];
 843
 844		if (r->start && resource_contains(r, res))
 845			return r;
 846	}
 847
 848	return NULL;
 849}
 850EXPORT_SYMBOL(pci_find_resource);
 851
 852/**
 853 * pci_resource_name - Return the name of the PCI resource
 854 * @dev: PCI device to query
 855 * @i: index of the resource
 856 *
 857 * Return the standard PCI resource (BAR) name according to their index.
 858 */
 859const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
 860{
 861	static const char * const bar_name[] = {
 862		"BAR 0",
 863		"BAR 1",
 864		"BAR 2",
 865		"BAR 3",
 866		"BAR 4",
 867		"BAR 5",
 868		"ROM",
 869#ifdef CONFIG_PCI_IOV
 870		"VF BAR 0",
 871		"VF BAR 1",
 872		"VF BAR 2",
 873		"VF BAR 3",
 874		"VF BAR 4",
 875		"VF BAR 5",
 876#endif
 877		"bridge window",	/* "io" included in %pR */
 878		"bridge window",	/* "mem" included in %pR */
 879		"bridge window",	/* "mem pref" included in %pR */
 880	};
 881	static const char * const cardbus_name[] = {
 882		"BAR 1",
 883		"unknown",
 884		"unknown",
 885		"unknown",
 886		"unknown",
 887		"unknown",
 888#ifdef CONFIG_PCI_IOV
 889		"unknown",
 890		"unknown",
 891		"unknown",
 892		"unknown",
 893		"unknown",
 894		"unknown",
 895#endif
 896		"CardBus bridge window 0",	/* I/O */
 897		"CardBus bridge window 1",	/* I/O */
 898		"CardBus bridge window 0",	/* mem */
 899		"CardBus bridge window 1",	/* mem */
 900	};
 901
 902	if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
 903	    i < ARRAY_SIZE(cardbus_name))
 904		return cardbus_name[i];
 905
 906	if (i < ARRAY_SIZE(bar_name))
 907		return bar_name[i];
 908
 909	return "unknown";
 910}
 911
 912/**
 913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 914 * @dev: the PCI device to operate on
 915 * @pos: config space offset of status word
 916 * @mask: mask of bit(s) to care about in status word
 917 *
 918 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 919 */
 920int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 921{
 922	int i;
 923
 924	/* Wait for Transaction Pending bit clean */
 925	for (i = 0; i < 4; i++) {
 926		u16 status;
 927		if (i)
 928			msleep((1 << (i - 1)) * 100);
 929
 930		pci_read_config_word(dev, pos, &status);
 931		if (!(status & mask))
 932			return 1;
 933	}
 934
 935	return 0;
 936}
 937
 938static int pci_acs_enable;
 939
 940/**
 941 * pci_request_acs - ask for ACS to be enabled if supported
 942 */
 943void pci_request_acs(void)
 944{
 945	pci_acs_enable = 1;
 946}
 947
 948static const char *disable_acs_redir_param;
 949static const char *config_acs_param;
 950
 951struct pci_acs {
 952	u16 cap;
 953	u16 ctrl;
 954	u16 fw_ctrl;
 955};
 956
 957static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps,
 958			     const char *p, u16 mask, u16 flags)
 959{
 960	char *delimit;
 961	int ret = 0;
 
 
 
 962
 963	if (!p)
 964		return;
 965
 
 966	while (*p) {
 967		if (!mask) {
 968			/* Check for ACS flags */
 969			delimit = strstr(p, "@");
 970			if (delimit) {
 971				int end;
 972				u32 shift = 0;
 973
 974				end = delimit - p - 1;
 975
 976				while (end > -1) {
 977					if (*(p + end) == '0') {
 978						mask |= 1 << shift;
 979						shift++;
 980						end--;
 981					} else if (*(p + end) == '1') {
 982						mask |= 1 << shift;
 983						flags |= 1 << shift;
 984						shift++;
 985						end--;
 986					} else if ((*(p + end) == 'x') || (*(p + end) == 'X')) {
 987						shift++;
 988						end--;
 989					} else {
 990						pci_err(dev, "Invalid ACS flags... Ignoring\n");
 991						return;
 992					}
 993				}
 994				p = delimit + 1;
 995			} else {
 996				pci_err(dev, "ACS Flags missing\n");
 997				return;
 998			}
 999		}
1000
1001		if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR |
1002			    PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) {
1003			pci_err(dev, "Invalid ACS flags specified\n");
1004			return;
1005		}
1006
1007		ret = pci_dev_str_match(dev, p, &p);
1008		if (ret < 0) {
1009			pr_info_once("PCI: Can't parse ACS command line parameter\n");
 
 
1010			break;
1011		} else if (ret == 1) {
1012			/* Found a match */
1013			break;
1014		}
1015
1016		if (*p != ';' && *p != ',') {
1017			/* End of param or invalid format */
1018			break;
1019		}
1020		p++;
1021	}
1022
1023	if (ret != 1)
1024		return;
1025
1026	if (!pci_dev_specific_disable_acs_redir(dev))
1027		return;
1028
1029	pci_dbg(dev, "ACS mask  = %#06x\n", mask);
1030	pci_dbg(dev, "ACS flags = %#06x\n", flags);
 
 
 
 
 
1031
1032	/* If mask is 0 then we copy the bit from the firmware setting. */
1033	caps->ctrl = (caps->ctrl & ~mask) | (caps->fw_ctrl & mask);
1034	caps->ctrl |= flags;
1035
1036	pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl);
 
 
1037}
1038
1039/**
1040 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1041 * @dev: the PCI device
1042 * @caps: default ACS controls
1043 */
1044static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps)
1045{
 
 
 
 
 
 
 
 
 
 
 
1046	/* Source Validation */
1047	caps->ctrl |= (caps->cap & PCI_ACS_SV);
1048
1049	/* P2P Request Redirect */
1050	caps->ctrl |= (caps->cap & PCI_ACS_RR);
1051
1052	/* P2P Completion Redirect */
1053	caps->ctrl |= (caps->cap & PCI_ACS_CR);
1054
1055	/* Upstream Forwarding */
1056	caps->ctrl |= (caps->cap & PCI_ACS_UF);
1057
1058	/* Enable Translation Blocking for external devices and noats */
1059	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1060		caps->ctrl |= (caps->cap & PCI_ACS_TB);
 
 
1061}
1062
1063/**
1064 * pci_enable_acs - enable ACS if hardware support it
1065 * @dev: the PCI device
1066 */
1067static void pci_enable_acs(struct pci_dev *dev)
1068{
1069	struct pci_acs caps;
1070	bool enable_acs = false;
1071	int pos;
1072
1073	/* If an iommu is present we start with kernel default caps */
1074	if (pci_acs_enable) {
1075		if (pci_dev_specific_enable_acs(dev))
1076			enable_acs = true;
1077	}
1078
1079	pos = dev->acs_cap;
1080	if (!pos)
1081		return;
1082
1083	pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap);
1084	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl);
1085	caps.fw_ctrl = caps.ctrl;
1086
1087	if (enable_acs)
1088		pci_std_enable_acs(dev, &caps);
1089
 
1090	/*
1091	 * Always apply caps from the command line, even if there is no iommu.
1092	 * Trust that the admin has a reason to change the ACS settings.
 
 
 
1093	 */
1094	__pci_config_acs(dev, &caps, disable_acs_redir_param,
1095			 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC,
1096			 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC));
1097	__pci_config_acs(dev, &caps, config_acs_param, 0, 0);
1098
1099	pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl);
1100}
1101
1102/**
1103 * pcie_read_tlp_log - read TLP Header Log
1104 * @dev: PCIe device
1105 * @where: PCI Config offset of TLP Header Log
1106 * @tlp_log: TLP Log structure to fill
1107 *
1108 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1109 *
1110 * Return: 0 on success and filled TLP Log structure, <0 on error.
1111 */
1112int pcie_read_tlp_log(struct pci_dev *dev, int where,
1113		      struct pcie_tlp_log *tlp_log)
1114{
1115	int i, ret;
1116
1117	memset(tlp_log, 0, sizeof(*tlp_log));
1118
1119	for (i = 0; i < 4; i++) {
1120		ret = pci_read_config_dword(dev, where + i * 4,
1121					    &tlp_log->dw[i]);
1122		if (ret)
1123			return pcibios_err_to_errno(ret);
1124	}
1125
1126	return 0;
1127}
1128EXPORT_SYMBOL_GPL(pcie_read_tlp_log);
1129
1130/**
1131 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1132 * @dev: PCI device to have its BARs restored
1133 *
1134 * Restore the BAR values for a given device, so as to make it
1135 * accessible by its driver.
1136 */
1137static void pci_restore_bars(struct pci_dev *dev)
1138{
1139	int i;
1140
1141	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1142		pci_update_resource(dev, i);
1143}
1144
1145static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1146{
1147	if (pci_use_mid_pm())
1148		return true;
1149
1150	return acpi_pci_power_manageable(dev);
1151}
1152
1153static inline int platform_pci_set_power_state(struct pci_dev *dev,
1154					       pci_power_t t)
1155{
1156	if (pci_use_mid_pm())
1157		return mid_pci_set_power_state(dev, t);
1158
1159	return acpi_pci_set_power_state(dev, t);
1160}
1161
1162static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1163{
1164	if (pci_use_mid_pm())
1165		return mid_pci_get_power_state(dev);
1166
1167	return acpi_pci_get_power_state(dev);
1168}
1169
1170static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1171{
1172	if (!pci_use_mid_pm())
1173		acpi_pci_refresh_power_state(dev);
1174}
1175
1176static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1177{
1178	if (pci_use_mid_pm())
1179		return PCI_POWER_ERROR;
1180
1181	return acpi_pci_choose_state(dev);
1182}
1183
1184static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1185{
1186	if (pci_use_mid_pm())
1187		return PCI_POWER_ERROR;
1188
1189	return acpi_pci_wakeup(dev, enable);
1190}
1191
1192static inline bool platform_pci_need_resume(struct pci_dev *dev)
1193{
1194	if (pci_use_mid_pm())
1195		return false;
1196
1197	return acpi_pci_need_resume(dev);
1198}
1199
1200static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1201{
1202	if (pci_use_mid_pm())
1203		return false;
1204
1205	return acpi_pci_bridge_d3(dev);
1206}
1207
1208/**
1209 * pci_update_current_state - Read power state of given device and cache it
1210 * @dev: PCI device to handle.
1211 * @state: State to cache in case the device doesn't have the PM capability
1212 *
1213 * The power state is read from the PMCSR register, which however is
1214 * inaccessible in D3cold.  The platform firmware is therefore queried first
1215 * to detect accessibility of the register.  In case the platform firmware
1216 * reports an incorrect state or the device isn't power manageable by the
1217 * platform at all, we try to detect D3cold by testing accessibility of the
1218 * vendor ID in config space.
1219 */
1220void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1221{
1222	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1223		dev->current_state = PCI_D3cold;
1224	} else if (dev->pm_cap) {
1225		u16 pmcsr;
1226
1227		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1228		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1229			dev->current_state = PCI_D3cold;
1230			return;
1231		}
1232		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1233	} else {
1234		dev->current_state = state;
1235	}
1236}
1237
1238/**
1239 * pci_refresh_power_state - Refresh the given device's power state data
1240 * @dev: Target PCI device.
1241 *
1242 * Ask the platform to refresh the devices power state information and invoke
1243 * pci_update_current_state() to update its current PCI power state.
1244 */
1245void pci_refresh_power_state(struct pci_dev *dev)
1246{
1247	platform_pci_refresh_power_state(dev);
1248	pci_update_current_state(dev, dev->current_state);
1249}
1250
1251/**
1252 * pci_platform_power_transition - Use platform to change device power state
1253 * @dev: PCI device to handle.
1254 * @state: State to put the device into.
1255 */
1256int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1257{
1258	int error;
1259
1260	error = platform_pci_set_power_state(dev, state);
1261	if (!error)
1262		pci_update_current_state(dev, state);
1263	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1264		dev->current_state = PCI_D0;
1265
1266	return error;
1267}
1268EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1269
1270static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1271{
1272	pm_request_resume(&pci_dev->dev);
1273	return 0;
1274}
1275
1276/**
1277 * pci_resume_bus - Walk given bus and runtime resume devices on it
1278 * @bus: Top bus of the subtree to walk.
1279 */
1280void pci_resume_bus(struct pci_bus *bus)
1281{
1282	if (bus)
1283		pci_walk_bus(bus, pci_resume_one, NULL);
1284}
1285
1286static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1287{
1288	int delay = 1;
1289	bool retrain = false;
1290	struct pci_dev *root, *bridge;
1291
1292	root = pcie_find_root_port(dev);
1293
1294	if (pci_is_pcie(dev)) {
1295		bridge = pci_upstream_bridge(dev);
1296		if (bridge)
1297			retrain = true;
1298	}
1299
1300	/*
1301	 * The caller has already waited long enough after a reset that the
1302	 * device should respond to config requests, but it may respond
1303	 * with Request Retry Status (RRS) if it needs more time to
1304	 * initialize.
1305	 *
1306	 * If the device is below a Root Port with Configuration RRS
1307	 * Software Visibility enabled, reading the Vendor ID returns a
1308	 * special data value if the device responded with RRS.  Read the
1309	 * Vendor ID until we get non-RRS status.
1310	 *
1311	 * If there's no Root Port or Configuration RRS Software Visibility
1312	 * is not enabled, the device may still respond with RRS, but
1313	 * hardware may retry the config request.  If no retries receive
1314	 * Successful Completion, hardware generally synthesizes ~0
1315	 * (PCI_ERROR_RESPONSE) data to complete the read.  Reading Vendor
1316	 * ID for VFs and non-existent devices also returns ~0, so read the
1317	 * Command register until it returns something other than ~0.
1318	 */
1319	for (;;) {
1320		u32 id;
1321
1322		if (pci_dev_is_disconnected(dev)) {
1323			pci_dbg(dev, "disconnected; not waiting\n");
1324			return -ENOTTY;
1325		}
1326
1327		if (root && root->config_rrs_sv) {
1328			pci_read_config_dword(dev, PCI_VENDOR_ID, &id);
1329			if (!pci_bus_rrs_vendor_id(id))
1330				break;
1331		} else {
1332			pci_read_config_dword(dev, PCI_COMMAND, &id);
1333			if (!PCI_POSSIBLE_ERROR(id))
1334				break;
1335		}
1336
1337		if (delay > timeout) {
1338			pci_warn(dev, "not ready %dms after %s; giving up\n",
1339				 delay - 1, reset_type);
1340			return -ENOTTY;
1341		}
1342
1343		if (delay > PCI_RESET_WAIT) {
1344			if (retrain) {
1345				retrain = false;
1346				if (pcie_failed_link_retrain(bridge) == 0) {
1347					delay = 1;
1348					continue;
1349				}
1350			}
1351			pci_info(dev, "not ready %dms after %s; waiting\n",
1352				 delay - 1, reset_type);
1353		}
1354
1355		msleep(delay);
1356		delay *= 2;
1357	}
1358
1359	if (delay > PCI_RESET_WAIT)
1360		pci_info(dev, "ready %dms after %s\n", delay - 1,
1361			 reset_type);
1362	else
1363		pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1364			reset_type);
1365
1366	return 0;
1367}
1368
1369/**
1370 * pci_power_up - Put the given device into D0
1371 * @dev: PCI device to power up
1372 *
1373 * On success, return 0 or 1, depending on whether or not it is necessary to
1374 * restore the device's BARs subsequently (1 is returned in that case).
1375 *
1376 * On failure, return a negative error code.  Always return failure if @dev
1377 * lacks a Power Management Capability, even if the platform was able to
1378 * put the device in D0 via non-PCI means.
1379 */
1380int pci_power_up(struct pci_dev *dev)
1381{
1382	bool need_restore;
1383	pci_power_t state;
1384	u16 pmcsr;
1385
1386	platform_pci_set_power_state(dev, PCI_D0);
1387
1388	if (!dev->pm_cap) {
1389		state = platform_pci_get_power_state(dev);
1390		if (state == PCI_UNKNOWN)
1391			dev->current_state = PCI_D0;
1392		else
1393			dev->current_state = state;
1394
1395		return -EIO;
1396	}
1397
1398	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1399	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1400		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1401			pci_power_name(dev->current_state));
1402		dev->current_state = PCI_D3cold;
1403		return -EIO;
1404	}
1405
1406	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1407
1408	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1409			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1410
1411	if (state == PCI_D0)
1412		goto end;
1413
1414	/*
1415	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1416	 * PME_En, and sets PowerState to 0.
1417	 */
1418	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1419
1420	/* Mandatory transition delays; see PCI PM 1.2. */
1421	if (state == PCI_D3hot)
1422		pci_dev_d3_sleep(dev);
1423	else if (state == PCI_D2)
1424		udelay(PCI_PM_D2_DELAY);
1425
1426end:
1427	dev->current_state = PCI_D0;
1428	if (need_restore)
1429		return 1;
1430
1431	return 0;
1432}
1433
1434/**
1435 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1436 * @dev: PCI device to power up
1437 * @locked: whether pci_bus_sem is held
1438 *
1439 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1440 * to confirm the state change, restore its BARs if they might be lost and
1441 * reconfigure ASPM in accordance with the new power state.
1442 *
1443 * If pci_restore_state() is going to be called right after a power state change
1444 * to D0, it is more efficient to use pci_power_up() directly instead of this
1445 * function.
1446 */
1447static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1448{
1449	u16 pmcsr;
1450	int ret;
1451
1452	ret = pci_power_up(dev);
1453	if (ret < 0) {
1454		if (dev->current_state == PCI_D0)
1455			return 0;
1456
1457		return ret;
1458	}
1459
1460	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1461	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1462	if (dev->current_state != PCI_D0) {
1463		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1464				     pci_power_name(dev->current_state));
1465	} else if (ret > 0) {
1466		/*
1467		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1468		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1469		 * from D3hot to D0 _may_ perform an internal reset, thereby
1470		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1471		 * For example, at least some versions of the 3c905B and the
1472		 * 3c556B exhibit this behaviour.
1473		 *
1474		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1475		 * devices in a D3hot state at boot.  Consequently, we need to
1476		 * restore at least the BARs so that the device will be
1477		 * accessible to its driver.
1478		 */
1479		pci_restore_bars(dev);
1480	}
1481
1482	if (dev->bus->self)
1483		pcie_aspm_pm_state_change(dev->bus->self, locked);
1484
1485	return 0;
1486}
1487
1488/**
1489 * __pci_dev_set_current_state - Set current state of a PCI device
1490 * @dev: Device to handle
1491 * @data: pointer to state to be set
1492 */
1493static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1494{
1495	pci_power_t state = *(pci_power_t *)data;
1496
1497	dev->current_state = state;
1498	return 0;
1499}
1500
1501/**
1502 * pci_bus_set_current_state - Walk given bus and set current state of devices
1503 * @bus: Top bus of the subtree to walk.
1504 * @state: state to be set
1505 */
1506void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1507{
1508	if (bus)
1509		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1510}
1511
1512static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1513{
1514	if (!bus)
1515		return;
1516
1517	if (locked)
1518		pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1519	else
1520		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1521}
1522
1523/**
1524 * pci_set_low_power_state - Put a PCI device into a low-power state.
1525 * @dev: PCI device to handle.
1526 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1527 * @locked: whether pci_bus_sem is held
1528 *
1529 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1530 *
1531 * RETURN VALUE:
1532 * -EINVAL if the requested state is invalid.
1533 * -EIO if device does not support PCI PM or its PM capabilities register has a
1534 * wrong version, or device doesn't support the requested state.
1535 * 0 if device already is in the requested state.
1536 * 0 if device's power state has been successfully changed.
1537 */
1538static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1539{
1540	u16 pmcsr;
1541
1542	if (!dev->pm_cap)
1543		return -EIO;
1544
1545	/*
1546	 * Validate transition: We can enter D0 from any state, but if
1547	 * we're already in a low-power state, we can only go deeper.  E.g.,
1548	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1549	 * we'd have to go from D3 to D0, then to D1.
1550	 */
1551	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1552		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1553			pci_power_name(dev->current_state),
1554			pci_power_name(state));
1555		return -EINVAL;
1556	}
1557
1558	/* Check if this device supports the desired state */
1559	if ((state == PCI_D1 && !dev->d1_support)
1560	   || (state == PCI_D2 && !dev->d2_support))
1561		return -EIO;
1562
1563	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1564	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1565		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1566			pci_power_name(dev->current_state),
1567			pci_power_name(state));
1568		dev->current_state = PCI_D3cold;
1569		return -EIO;
1570	}
1571
1572	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1573	pmcsr |= state;
1574
1575	/* Enter specified state */
1576	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1577
1578	/* Mandatory power management transition delays; see PCI PM 1.2. */
1579	if (state == PCI_D3hot)
1580		pci_dev_d3_sleep(dev);
1581	else if (state == PCI_D2)
1582		udelay(PCI_PM_D2_DELAY);
1583
1584	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1585	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1586	if (dev->current_state != state)
1587		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1588				     pci_power_name(dev->current_state),
1589				     pci_power_name(state));
1590
1591	if (dev->bus->self)
1592		pcie_aspm_pm_state_change(dev->bus->self, locked);
1593
1594	return 0;
1595}
1596
1597static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1598{
1599	int error;
1600
1601	/* Bound the state we're entering */
1602	if (state > PCI_D3cold)
1603		state = PCI_D3cold;
1604	else if (state < PCI_D0)
1605		state = PCI_D0;
1606	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1607
1608		/*
1609		 * If the device or the parent bridge do not support PCI
1610		 * PM, ignore the request if we're doing anything other
1611		 * than putting it into D0 (which would only happen on
1612		 * boot).
1613		 */
1614		return 0;
1615
1616	/* Check if we're already there */
1617	if (dev->current_state == state)
1618		return 0;
1619
1620	if (state == PCI_D0)
1621		return pci_set_full_power_state(dev, locked);
1622
1623	/*
1624	 * This device is quirked not to be put into D3, so don't put it in
1625	 * D3
1626	 */
1627	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1628		return 0;
1629
1630	if (state == PCI_D3cold) {
1631		/*
1632		 * To put the device in D3cold, put it into D3hot in the native
1633		 * way, then put it into D3cold using platform ops.
1634		 */
1635		error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1636
1637		if (pci_platform_power_transition(dev, PCI_D3cold))
1638			return error;
1639
1640		/* Powering off a bridge may power off the whole hierarchy */
1641		if (dev->current_state == PCI_D3cold)
1642			__pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1643	} else {
1644		error = pci_set_low_power_state(dev, state, locked);
1645
1646		if (pci_platform_power_transition(dev, state))
1647			return error;
1648	}
1649
1650	return 0;
1651}
1652
1653/**
1654 * pci_set_power_state - Set the power state of a PCI device
1655 * @dev: PCI device to handle.
1656 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1657 *
1658 * Transition a device to a new power state, using the platform firmware and/or
1659 * the device's PCI PM registers.
1660 *
1661 * RETURN VALUE:
1662 * -EINVAL if the requested state is invalid.
1663 * -EIO if device does not support PCI PM or its PM capabilities register has a
1664 * wrong version, or device doesn't support the requested state.
1665 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1666 * 0 if device already is in the requested state.
1667 * 0 if the transition is to D3 but D3 is not supported.
1668 * 0 if device's power state has been successfully changed.
1669 */
1670int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1671{
1672	return __pci_set_power_state(dev, state, false);
1673}
1674EXPORT_SYMBOL(pci_set_power_state);
1675
1676int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1677{
1678	lockdep_assert_held(&pci_bus_sem);
1679
1680	return __pci_set_power_state(dev, state, true);
1681}
1682EXPORT_SYMBOL(pci_set_power_state_locked);
1683
1684#define PCI_EXP_SAVE_REGS	7
1685
1686static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1687						       u16 cap, bool extended)
1688{
1689	struct pci_cap_saved_state *tmp;
1690
1691	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1692		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1693			return tmp;
1694	}
1695	return NULL;
1696}
1697
1698struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1699{
1700	return _pci_find_saved_cap(dev, cap, false);
1701}
1702
1703struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1704{
1705	return _pci_find_saved_cap(dev, cap, true);
1706}
1707
1708static int pci_save_pcie_state(struct pci_dev *dev)
1709{
1710	int i = 0;
1711	struct pci_cap_saved_state *save_state;
1712	u16 *cap;
1713
1714	if (!pci_is_pcie(dev))
1715		return 0;
1716
1717	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1718	if (!save_state) {
1719		pci_err(dev, "buffer not found in %s\n", __func__);
1720		return -ENOMEM;
1721	}
1722
1723	cap = (u16 *)&save_state->cap.data[0];
1724	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1725	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1726	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1727	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1728	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1729	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1730	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1731
1732	pci_save_aspm_l1ss_state(dev);
1733	pci_save_ltr_state(dev);
 
 
 
 
 
 
1734
1735	return 0;
 
 
 
 
 
 
 
 
 
1736}
1737
1738static void pci_restore_pcie_state(struct pci_dev *dev)
1739{
1740	int i = 0;
1741	struct pci_cap_saved_state *save_state;
1742	u16 *cap;
1743
1744	/*
1745	 * Restore max latencies (in the LTR capability) before enabling
1746	 * LTR itself in PCI_EXP_DEVCTL2.
1747	 */
1748	pci_restore_ltr_state(dev);
1749	pci_restore_aspm_l1ss_state(dev);
1750
1751	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1752	if (!save_state)
1753		return;
1754
1755	/*
1756	 * Downstream ports reset the LTR enable bit when link goes down.
1757	 * Check and re-configure the bit here before restoring device.
1758	 * PCIe r5.0, sec 7.5.3.16.
1759	 */
1760	pci_bridge_reconfigure_ltr(dev);
1761
1762	cap = (u16 *)&save_state->cap.data[0];
1763	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1764	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1765	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1766	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1767	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1768	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1769	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1770}
1771
1772static int pci_save_pcix_state(struct pci_dev *dev)
1773{
1774	int pos;
1775	struct pci_cap_saved_state *save_state;
1776
1777	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1778	if (!pos)
1779		return 0;
1780
1781	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1782	if (!save_state) {
1783		pci_err(dev, "buffer not found in %s\n", __func__);
1784		return -ENOMEM;
1785	}
1786
1787	pci_read_config_word(dev, pos + PCI_X_CMD,
1788			     (u16 *)save_state->cap.data);
1789
1790	return 0;
1791}
1792
1793static void pci_restore_pcix_state(struct pci_dev *dev)
1794{
1795	int i = 0, pos;
1796	struct pci_cap_saved_state *save_state;
1797	u16 *cap;
1798
1799	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1800	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1801	if (!save_state || !pos)
1802		return;
1803	cap = (u16 *)&save_state->cap.data[0];
1804
1805	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1806}
1807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808/**
1809 * pci_save_state - save the PCI configuration space of a device before
1810 *		    suspending
1811 * @dev: PCI device that we're dealing with
1812 */
1813int pci_save_state(struct pci_dev *dev)
1814{
1815	int i;
1816	/* XXX: 100% dword access ok here? */
1817	for (i = 0; i < 16; i++) {
1818		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1819		pci_dbg(dev, "save config %#04x: %#010x\n",
1820			i * 4, dev->saved_config_space[i]);
1821	}
1822	dev->state_saved = true;
1823
1824	i = pci_save_pcie_state(dev);
1825	if (i != 0)
1826		return i;
1827
1828	i = pci_save_pcix_state(dev);
1829	if (i != 0)
1830		return i;
1831
 
1832	pci_save_dpc_state(dev);
1833	pci_save_aer_state(dev);
1834	pci_save_ptm_state(dev);
1835	pci_save_tph_state(dev);
1836	return pci_save_vc_state(dev);
1837}
1838EXPORT_SYMBOL(pci_save_state);
1839
1840static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1841				     u32 saved_val, int retry, bool force)
1842{
1843	u32 val;
1844
1845	pci_read_config_dword(pdev, offset, &val);
1846	if (!force && val == saved_val)
1847		return;
1848
1849	for (;;) {
1850		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1851			offset, val, saved_val);
1852		pci_write_config_dword(pdev, offset, saved_val);
1853		if (retry-- <= 0)
1854			return;
1855
1856		pci_read_config_dword(pdev, offset, &val);
1857		if (val == saved_val)
1858			return;
1859
1860		mdelay(1);
1861	}
1862}
1863
1864static void pci_restore_config_space_range(struct pci_dev *pdev,
1865					   int start, int end, int retry,
1866					   bool force)
1867{
1868	int index;
1869
1870	for (index = end; index >= start; index--)
1871		pci_restore_config_dword(pdev, 4 * index,
1872					 pdev->saved_config_space[index],
1873					 retry, force);
1874}
1875
1876static void pci_restore_config_space(struct pci_dev *pdev)
1877{
1878	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1879		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1880		/* Restore BARs before the command register. */
1881		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1882		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1883	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1884		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1885
1886		/*
1887		 * Force rewriting of prefetch registers to avoid S3 resume
1888		 * issues on Intel PCI bridges that occur when these
1889		 * registers are not explicitly written.
1890		 */
1891		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1892		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1893	} else {
1894		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1895	}
1896}
1897
1898static void pci_restore_rebar_state(struct pci_dev *pdev)
1899{
1900	unsigned int pos, nbars, i;
1901	u32 ctrl;
1902
1903	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1904	if (!pos)
1905		return;
1906
1907	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1908	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1909
1910	for (i = 0; i < nbars; i++, pos += 8) {
1911		struct resource *res;
1912		int bar_idx, size;
1913
1914		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1915		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1916		res = pdev->resource + bar_idx;
1917		size = pci_rebar_bytes_to_size(resource_size(res));
1918		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1919		ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1920		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1921	}
1922}
1923
1924/**
1925 * pci_restore_state - Restore the saved state of a PCI device
1926 * @dev: PCI device that we're dealing with
1927 */
1928void pci_restore_state(struct pci_dev *dev)
1929{
1930	if (!dev->state_saved)
1931		return;
1932
 
 
 
 
 
 
1933	pci_restore_pcie_state(dev);
1934	pci_restore_pasid_state(dev);
1935	pci_restore_pri_state(dev);
1936	pci_restore_ats_state(dev);
1937	pci_restore_vc_state(dev);
1938	pci_restore_rebar_state(dev);
1939	pci_restore_dpc_state(dev);
1940	pci_restore_ptm_state(dev);
1941	pci_restore_tph_state(dev);
1942
1943	pci_aer_clear_status(dev);
1944	pci_restore_aer_state(dev);
1945
1946	pci_restore_config_space(dev);
1947
1948	pci_restore_pcix_state(dev);
1949	pci_restore_msi_state(dev);
1950
1951	/* Restore ACS and IOV configuration state */
1952	pci_enable_acs(dev);
1953	pci_restore_iov_state(dev);
1954
1955	dev->state_saved = false;
1956}
1957EXPORT_SYMBOL(pci_restore_state);
1958
1959struct pci_saved_state {
1960	u32 config_space[16];
1961	struct pci_cap_saved_data cap[];
1962};
1963
1964/**
1965 * pci_store_saved_state - Allocate and return an opaque struct containing
1966 *			   the device saved state.
1967 * @dev: PCI device that we're dealing with
1968 *
1969 * Return NULL if no state or error.
1970 */
1971struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1972{
1973	struct pci_saved_state *state;
1974	struct pci_cap_saved_state *tmp;
1975	struct pci_cap_saved_data *cap;
1976	size_t size;
1977
1978	if (!dev->state_saved)
1979		return NULL;
1980
1981	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1982
1983	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1984		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1985
1986	state = kzalloc(size, GFP_KERNEL);
1987	if (!state)
1988		return NULL;
1989
1990	memcpy(state->config_space, dev->saved_config_space,
1991	       sizeof(state->config_space));
1992
1993	cap = state->cap;
1994	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1995		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1996		memcpy(cap, &tmp->cap, len);
1997		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1998	}
1999	/* Empty cap_save terminates list */
2000
2001	return state;
2002}
2003EXPORT_SYMBOL_GPL(pci_store_saved_state);
2004
2005/**
2006 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
2007 * @dev: PCI device that we're dealing with
2008 * @state: Saved state returned from pci_store_saved_state()
2009 */
2010int pci_load_saved_state(struct pci_dev *dev,
2011			 struct pci_saved_state *state)
2012{
2013	struct pci_cap_saved_data *cap;
2014
2015	dev->state_saved = false;
2016
2017	if (!state)
2018		return 0;
2019
2020	memcpy(dev->saved_config_space, state->config_space,
2021	       sizeof(state->config_space));
2022
2023	cap = state->cap;
2024	while (cap->size) {
2025		struct pci_cap_saved_state *tmp;
2026
2027		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2028		if (!tmp || tmp->cap.size != cap->size)
2029			return -EINVAL;
2030
2031		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2032		cap = (struct pci_cap_saved_data *)((u8 *)cap +
2033		       sizeof(struct pci_cap_saved_data) + cap->size);
2034	}
2035
2036	dev->state_saved = true;
2037	return 0;
2038}
2039EXPORT_SYMBOL_GPL(pci_load_saved_state);
2040
2041/**
2042 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2043 *				   and free the memory allocated for it.
2044 * @dev: PCI device that we're dealing with
2045 * @state: Pointer to saved state returned from pci_store_saved_state()
2046 */
2047int pci_load_and_free_saved_state(struct pci_dev *dev,
2048				  struct pci_saved_state **state)
2049{
2050	int ret = pci_load_saved_state(dev, *state);
2051	kfree(*state);
2052	*state = NULL;
2053	return ret;
2054}
2055EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2056
2057int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2058{
2059	return pci_enable_resources(dev, bars);
2060}
2061
2062static int do_pci_enable_device(struct pci_dev *dev, int bars)
2063{
2064	int err;
2065	struct pci_dev *bridge;
2066	u16 cmd;
2067	u8 pin;
2068
2069	err = pci_set_power_state(dev, PCI_D0);
2070	if (err < 0 && err != -EIO)
2071		return err;
2072
2073	bridge = pci_upstream_bridge(dev);
2074	if (bridge)
2075		pcie_aspm_powersave_config_link(bridge);
2076
2077	err = pcibios_enable_device(dev, bars);
2078	if (err < 0)
2079		return err;
2080	pci_fixup_device(pci_fixup_enable, dev);
2081
2082	if (dev->msi_enabled || dev->msix_enabled)
2083		return 0;
2084
2085	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2086	if (pin) {
2087		pci_read_config_word(dev, PCI_COMMAND, &cmd);
2088		if (cmd & PCI_COMMAND_INTX_DISABLE)
2089			pci_write_config_word(dev, PCI_COMMAND,
2090					      cmd & ~PCI_COMMAND_INTX_DISABLE);
2091	}
2092
2093	return 0;
2094}
2095
2096/**
2097 * pci_reenable_device - Resume abandoned device
2098 * @dev: PCI device to be resumed
2099 *
2100 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2101 * to be called by normal code, write proper resume handler and use it instead.
2102 */
2103int pci_reenable_device(struct pci_dev *dev)
2104{
2105	if (pci_is_enabled(dev))
2106		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2107	return 0;
2108}
2109EXPORT_SYMBOL(pci_reenable_device);
2110
2111static void pci_enable_bridge(struct pci_dev *dev)
2112{
2113	struct pci_dev *bridge;
2114	int retval;
2115
2116	bridge = pci_upstream_bridge(dev);
2117	if (bridge)
2118		pci_enable_bridge(bridge);
2119
2120	if (pci_is_enabled(dev)) {
2121		if (!dev->is_busmaster)
2122			pci_set_master(dev);
2123		return;
2124	}
2125
2126	retval = pci_enable_device(dev);
2127	if (retval)
2128		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2129			retval);
2130	pci_set_master(dev);
2131}
2132
2133static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2134{
2135	struct pci_dev *bridge;
2136	int err;
2137	int i, bars = 0;
2138
2139	/*
2140	 * Power state could be unknown at this point, either due to a fresh
2141	 * boot or a device removal call.  So get the current power state
2142	 * so that things like MSI message writing will behave as expected
2143	 * (e.g. if the device really is in D0 at enable time).
2144	 */
2145	pci_update_current_state(dev, dev->current_state);
2146
2147	if (atomic_inc_return(&dev->enable_cnt) > 1)
2148		return 0;		/* already enabled */
2149
2150	bridge = pci_upstream_bridge(dev);
2151	if (bridge)
2152		pci_enable_bridge(bridge);
2153
2154	/* only skip sriov related */
2155	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2156		if (dev->resource[i].flags & flags)
2157			bars |= (1 << i);
2158	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2159		if (dev->resource[i].flags & flags)
2160			bars |= (1 << i);
2161
2162	err = do_pci_enable_device(dev, bars);
2163	if (err < 0)
2164		atomic_dec(&dev->enable_cnt);
2165	return err;
2166}
2167
2168/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2169 * pci_enable_device_mem - Initialize a device for use with Memory space
2170 * @dev: PCI device to be initialized
2171 *
2172 * Initialize device before it's used by a driver. Ask low-level code
2173 * to enable Memory resources. Wake up the device if it was suspended.
2174 * Beware, this function can fail.
2175 */
2176int pci_enable_device_mem(struct pci_dev *dev)
2177{
2178	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2179}
2180EXPORT_SYMBOL(pci_enable_device_mem);
2181
2182/**
2183 * pci_enable_device - Initialize device before it's used by a driver.
2184 * @dev: PCI device to be initialized
2185 *
2186 * Initialize device before it's used by a driver. Ask low-level code
2187 * to enable I/O and memory. Wake up the device if it was suspended.
2188 * Beware, this function can fail.
2189 *
2190 * Note we don't actually enable the device many times if we call
2191 * this function repeatedly (we just increment the count).
2192 */
2193int pci_enable_device(struct pci_dev *dev)
2194{
2195	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2196}
2197EXPORT_SYMBOL(pci_enable_device);
2198
2199/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2200 * pcibios_device_add - provide arch specific hooks when adding device dev
2201 * @dev: the PCI device being added
2202 *
2203 * Permits the platform to provide architecture specific functionality when
2204 * devices are added. This is the default implementation. Architecture
2205 * implementations can override this.
2206 */
2207int __weak pcibios_device_add(struct pci_dev *dev)
2208{
2209	return 0;
2210}
2211
2212/**
2213 * pcibios_release_device - provide arch specific hooks when releasing
2214 *			    device dev
2215 * @dev: the PCI device being released
2216 *
2217 * Permits the platform to provide architecture specific functionality when
2218 * devices are released. This is the default implementation. Architecture
2219 * implementations can override this.
2220 */
2221void __weak pcibios_release_device(struct pci_dev *dev) {}
2222
2223/**
2224 * pcibios_disable_device - disable arch specific PCI resources for device dev
2225 * @dev: the PCI device to disable
2226 *
2227 * Disables architecture specific PCI resources for the device. This
2228 * is the default implementation. Architecture implementations can
2229 * override this.
2230 */
2231void __weak pcibios_disable_device(struct pci_dev *dev) {}
2232
 
 
 
 
 
 
 
 
 
 
 
2233static void do_pci_disable_device(struct pci_dev *dev)
2234{
2235	u16 pci_command;
2236
2237	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2238	if (pci_command & PCI_COMMAND_MASTER) {
2239		pci_command &= ~PCI_COMMAND_MASTER;
2240		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2241	}
2242
2243	pcibios_disable_device(dev);
2244}
2245
2246/**
2247 * pci_disable_enabled_device - Disable device without updating enable_cnt
2248 * @dev: PCI device to disable
2249 *
2250 * NOTE: This function is a backend of PCI power management routines and is
2251 * not supposed to be called drivers.
2252 */
2253void pci_disable_enabled_device(struct pci_dev *dev)
2254{
2255	if (pci_is_enabled(dev))
2256		do_pci_disable_device(dev);
2257}
2258
2259/**
2260 * pci_disable_device - Disable PCI device after use
2261 * @dev: PCI device to be disabled
2262 *
2263 * Signal to the system that the PCI device is not in use by the system
2264 * anymore.  This only involves disabling PCI bus-mastering, if active.
2265 *
2266 * Note we don't actually disable the device until all callers of
2267 * pci_enable_device() have called pci_disable_device().
2268 */
2269void pci_disable_device(struct pci_dev *dev)
2270{
 
 
 
 
 
 
2271	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2272		      "disabling already-disabled device");
2273
2274	if (atomic_dec_return(&dev->enable_cnt) != 0)
2275		return;
2276
2277	do_pci_disable_device(dev);
2278
2279	dev->is_busmaster = 0;
2280}
2281EXPORT_SYMBOL(pci_disable_device);
2282
2283/**
2284 * pcibios_set_pcie_reset_state - set reset state for device dev
2285 * @dev: the PCIe device reset
2286 * @state: Reset state to enter into
2287 *
2288 * Set the PCIe reset state for the device. This is the default
2289 * implementation. Architecture implementations can override this.
2290 */
2291int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2292					enum pcie_reset_state state)
2293{
2294	return -EINVAL;
2295}
2296
2297/**
2298 * pci_set_pcie_reset_state - set reset state for device dev
2299 * @dev: the PCIe device reset
2300 * @state: Reset state to enter into
2301 *
2302 * Sets the PCI reset state for the device.
2303 */
2304int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2305{
2306	return pcibios_set_pcie_reset_state(dev, state);
2307}
2308EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2309
2310#ifdef CONFIG_PCIEAER
2311void pcie_clear_device_status(struct pci_dev *dev)
2312{
2313	u16 sta;
2314
2315	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2316	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2317}
2318#endif
2319
2320/**
2321 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2322 * @dev: PCIe root port or event collector.
2323 */
2324void pcie_clear_root_pme_status(struct pci_dev *dev)
2325{
2326	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2327}
2328
2329/**
2330 * pci_check_pme_status - Check if given device has generated PME.
2331 * @dev: Device to check.
2332 *
2333 * Check the PME status of the device and if set, clear it and clear PME enable
2334 * (if set).  Return 'true' if PME status and PME enable were both set or
2335 * 'false' otherwise.
2336 */
2337bool pci_check_pme_status(struct pci_dev *dev)
2338{
2339	int pmcsr_pos;
2340	u16 pmcsr;
2341	bool ret = false;
2342
2343	if (!dev->pm_cap)
2344		return false;
2345
2346	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2347	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2348	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2349		return false;
2350
2351	/* Clear PME status. */
2352	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2353	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2354		/* Disable PME to avoid interrupt flood. */
2355		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2356		ret = true;
2357	}
2358
2359	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2360
2361	return ret;
2362}
2363
2364/**
2365 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2366 * @dev: Device to handle.
2367 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2368 *
2369 * Check if @dev has generated PME and queue a resume request for it in that
2370 * case.
2371 */
2372static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2373{
2374	if (pme_poll_reset && dev->pme_poll)
2375		dev->pme_poll = false;
2376
2377	if (pci_check_pme_status(dev)) {
2378		pci_wakeup_event(dev);
2379		pm_request_resume(&dev->dev);
2380	}
2381	return 0;
2382}
2383
2384/**
2385 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2386 * @bus: Top bus of the subtree to walk.
2387 */
2388void pci_pme_wakeup_bus(struct pci_bus *bus)
2389{
2390	if (bus)
2391		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2392}
2393
2394
2395/**
2396 * pci_pme_capable - check the capability of PCI device to generate PME#
2397 * @dev: PCI device to handle.
2398 * @state: PCI state from which device will issue PME#.
2399 */
2400bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2401{
2402	if (!dev->pm_cap)
2403		return false;
2404
2405	return !!(dev->pme_support & (1 << state));
2406}
2407EXPORT_SYMBOL(pci_pme_capable);
2408
2409static void pci_pme_list_scan(struct work_struct *work)
2410{
2411	struct pci_pme_device *pme_dev, *n;
2412
2413	mutex_lock(&pci_pme_list_mutex);
2414	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2415		struct pci_dev *pdev = pme_dev->dev;
2416
2417		if (pdev->pme_poll) {
2418			struct pci_dev *bridge = pdev->bus->self;
2419			struct device *dev = &pdev->dev;
2420			struct device *bdev = bridge ? &bridge->dev : NULL;
2421			int bref = 0;
2422
2423			/*
2424			 * If we have a bridge, it should be in an active/D0
2425			 * state or the configuration space of subordinate
2426			 * devices may not be accessible or stable over the
2427			 * course of the call.
2428			 */
2429			if (bdev) {
2430				bref = pm_runtime_get_if_active(bdev);
2431				if (!bref)
2432					continue;
2433
2434				if (bridge->current_state != PCI_D0)
2435					goto put_bridge;
2436			}
2437
2438			/*
2439			 * The device itself should be suspended but config
2440			 * space must be accessible, therefore it cannot be in
2441			 * D3cold.
2442			 */
2443			if (pm_runtime_suspended(dev) &&
2444			    pdev->current_state != PCI_D3cold)
2445				pci_pme_wakeup(pdev, NULL);
2446
2447put_bridge:
2448			if (bref > 0)
2449				pm_runtime_put(bdev);
2450		} else {
2451			list_del(&pme_dev->list);
2452			kfree(pme_dev);
2453		}
2454	}
2455	if (!list_empty(&pci_pme_list))
2456		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2457				   msecs_to_jiffies(PME_TIMEOUT));
2458	mutex_unlock(&pci_pme_list_mutex);
2459}
2460
2461static void __pci_pme_active(struct pci_dev *dev, bool enable)
2462{
2463	u16 pmcsr;
2464
2465	if (!dev->pme_support)
2466		return;
2467
2468	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2469	/* Clear PME_Status by writing 1 to it and enable PME# */
2470	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2471	if (!enable)
2472		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2473
2474	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2475}
2476
2477/**
2478 * pci_pme_restore - Restore PME configuration after config space restore.
2479 * @dev: PCI device to update.
2480 */
2481void pci_pme_restore(struct pci_dev *dev)
2482{
2483	u16 pmcsr;
2484
2485	if (!dev->pme_support)
2486		return;
2487
2488	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2489	if (dev->wakeup_prepared) {
2490		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2491		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2492	} else {
2493		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2494		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2495	}
2496	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2497}
2498
2499/**
2500 * pci_pme_active - enable or disable PCI device's PME# function
2501 * @dev: PCI device to handle.
2502 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2503 *
2504 * The caller must verify that the device is capable of generating PME# before
2505 * calling this function with @enable equal to 'true'.
2506 */
2507void pci_pme_active(struct pci_dev *dev, bool enable)
2508{
2509	__pci_pme_active(dev, enable);
2510
2511	/*
2512	 * PCI (as opposed to PCIe) PME requires that the device have
2513	 * its PME# line hooked up correctly. Not all hardware vendors
2514	 * do this, so the PME never gets delivered and the device
2515	 * remains asleep. The easiest way around this is to
2516	 * periodically walk the list of suspended devices and check
2517	 * whether any have their PME flag set. The assumption is that
2518	 * we'll wake up often enough anyway that this won't be a huge
2519	 * hit, and the power savings from the devices will still be a
2520	 * win.
2521	 *
2522	 * Although PCIe uses in-band PME message instead of PME# line
2523	 * to report PME, PME does not work for some PCIe devices in
2524	 * reality.  For example, there are devices that set their PME
2525	 * status bits, but don't really bother to send a PME message;
2526	 * there are PCI Express Root Ports that don't bother to
2527	 * trigger interrupts when they receive PME messages from the
2528	 * devices below.  So PME poll is used for PCIe devices too.
2529	 */
2530
2531	if (dev->pme_poll) {
2532		struct pci_pme_device *pme_dev;
2533		if (enable) {
2534			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2535					  GFP_KERNEL);
2536			if (!pme_dev) {
2537				pci_warn(dev, "can't enable PME#\n");
2538				return;
2539			}
2540			pme_dev->dev = dev;
2541			mutex_lock(&pci_pme_list_mutex);
2542			list_add(&pme_dev->list, &pci_pme_list);
2543			if (list_is_singular(&pci_pme_list))
2544				queue_delayed_work(system_freezable_wq,
2545						   &pci_pme_work,
2546						   msecs_to_jiffies(PME_TIMEOUT));
2547			mutex_unlock(&pci_pme_list_mutex);
2548		} else {
2549			mutex_lock(&pci_pme_list_mutex);
2550			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2551				if (pme_dev->dev == dev) {
2552					list_del(&pme_dev->list);
2553					kfree(pme_dev);
2554					break;
2555				}
2556			}
2557			mutex_unlock(&pci_pme_list_mutex);
2558		}
2559	}
2560
2561	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2562}
2563EXPORT_SYMBOL(pci_pme_active);
2564
2565/**
2566 * __pci_enable_wake - enable PCI device as wakeup event source
2567 * @dev: PCI device affected
2568 * @state: PCI state from which device will issue wakeup events
2569 * @enable: True to enable event generation; false to disable
2570 *
2571 * This enables the device as a wakeup event source, or disables it.
2572 * When such events involves platform-specific hooks, those hooks are
2573 * called automatically by this routine.
2574 *
2575 * Devices with legacy power management (no standard PCI PM capabilities)
2576 * always require such platform hooks.
2577 *
2578 * RETURN VALUE:
2579 * 0 is returned on success
2580 * -EINVAL is returned if device is not supposed to wake up the system
2581 * Error code depending on the platform is returned if both the platform and
2582 * the native mechanism fail to enable the generation of wake-up events
2583 */
2584static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2585{
2586	int ret = 0;
2587
2588	/*
2589	 * Bridges that are not power-manageable directly only signal
2590	 * wakeup on behalf of subordinate devices which is set up
2591	 * elsewhere, so skip them. However, bridges that are
2592	 * power-manageable may signal wakeup for themselves (for example,
2593	 * on a hotplug event) and they need to be covered here.
2594	 */
2595	if (!pci_power_manageable(dev))
2596		return 0;
2597
2598	/* Don't do the same thing twice in a row for one device. */
2599	if (!!enable == !!dev->wakeup_prepared)
2600		return 0;
2601
2602	/*
2603	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2604	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2605	 * enable.  To disable wake-up we call the platform first, for symmetry.
2606	 */
2607
2608	if (enable) {
2609		int error;
2610
2611		/*
2612		 * Enable PME signaling if the device can signal PME from
2613		 * D3cold regardless of whether or not it can signal PME from
2614		 * the current target state, because that will allow it to
2615		 * signal PME when the hierarchy above it goes into D3cold and
2616		 * the device itself ends up in D3cold as a result of that.
2617		 */
2618		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2619			pci_pme_active(dev, true);
2620		else
2621			ret = 1;
2622		error = platform_pci_set_wakeup(dev, true);
2623		if (ret)
2624			ret = error;
2625		if (!ret)
2626			dev->wakeup_prepared = true;
2627	} else {
2628		platform_pci_set_wakeup(dev, false);
2629		pci_pme_active(dev, false);
2630		dev->wakeup_prepared = false;
2631	}
2632
2633	return ret;
2634}
2635
2636/**
2637 * pci_enable_wake - change wakeup settings for a PCI device
2638 * @pci_dev: Target device
2639 * @state: PCI state from which device will issue wakeup events
2640 * @enable: Whether or not to enable event generation
2641 *
2642 * If @enable is set, check device_may_wakeup() for the device before calling
2643 * __pci_enable_wake() for it.
2644 */
2645int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2646{
2647	if (enable && !device_may_wakeup(&pci_dev->dev))
2648		return -EINVAL;
2649
2650	return __pci_enable_wake(pci_dev, state, enable);
2651}
2652EXPORT_SYMBOL(pci_enable_wake);
2653
2654/**
2655 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2656 * @dev: PCI device to prepare
2657 * @enable: True to enable wake-up event generation; false to disable
2658 *
2659 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2660 * and this function allows them to set that up cleanly - pci_enable_wake()
2661 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2662 * ordering constraints.
2663 *
2664 * This function only returns error code if the device is not allowed to wake
2665 * up the system from sleep or it is not capable of generating PME# from both
2666 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2667 */
2668int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2669{
2670	return pci_pme_capable(dev, PCI_D3cold) ?
2671			pci_enable_wake(dev, PCI_D3cold, enable) :
2672			pci_enable_wake(dev, PCI_D3hot, enable);
2673}
2674EXPORT_SYMBOL(pci_wake_from_d3);
2675
2676/**
2677 * pci_target_state - find an appropriate low power state for a given PCI dev
2678 * @dev: PCI device
2679 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2680 *
2681 * Use underlying platform code to find a supported low power state for @dev.
2682 * If the platform can't manage @dev, return the deepest state from which it
2683 * can generate wake events, based on any available PME info.
2684 */
2685static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2686{
2687	if (platform_pci_power_manageable(dev)) {
2688		/*
2689		 * Call the platform to find the target state for the device.
2690		 */
2691		pci_power_t state = platform_pci_choose_state(dev);
2692
2693		switch (state) {
2694		case PCI_POWER_ERROR:
2695		case PCI_UNKNOWN:
2696			return PCI_D3hot;
2697
2698		case PCI_D1:
2699		case PCI_D2:
2700			if (pci_no_d1d2(dev))
2701				return PCI_D3hot;
2702		}
2703
2704		return state;
2705	}
2706
2707	/*
2708	 * If the device is in D3cold even though it's not power-manageable by
2709	 * the platform, it may have been powered down by non-standard means.
2710	 * Best to let it slumber.
2711	 */
2712	if (dev->current_state == PCI_D3cold)
2713		return PCI_D3cold;
2714	else if (!dev->pm_cap)
2715		return PCI_D0;
2716
2717	if (wakeup && dev->pme_support) {
2718		pci_power_t state = PCI_D3hot;
2719
2720		/*
2721		 * Find the deepest state from which the device can generate
2722		 * PME#.
2723		 */
2724		while (state && !(dev->pme_support & (1 << state)))
2725			state--;
2726
2727		if (state)
2728			return state;
2729		else if (dev->pme_support & 1)
2730			return PCI_D0;
2731	}
2732
2733	return PCI_D3hot;
2734}
2735
2736/**
2737 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2738 *			  into a sleep state
2739 * @dev: Device to handle.
2740 *
2741 * Choose the power state appropriate for the device depending on whether
2742 * it can wake up the system and/or is power manageable by the platform
2743 * (PCI_D3hot is the default) and put the device into that state.
2744 */
2745int pci_prepare_to_sleep(struct pci_dev *dev)
2746{
2747	bool wakeup = device_may_wakeup(&dev->dev);
2748	pci_power_t target_state = pci_target_state(dev, wakeup);
2749	int error;
2750
2751	if (target_state == PCI_POWER_ERROR)
2752		return -EIO;
2753
2754	pci_enable_wake(dev, target_state, wakeup);
2755
2756	error = pci_set_power_state(dev, target_state);
2757
2758	if (error)
2759		pci_enable_wake(dev, target_state, false);
2760
2761	return error;
2762}
2763EXPORT_SYMBOL(pci_prepare_to_sleep);
2764
2765/**
2766 * pci_back_from_sleep - turn PCI device on during system-wide transition
2767 *			 into working state
2768 * @dev: Device to handle.
2769 *
2770 * Disable device's system wake-up capability and put it into D0.
2771 */
2772int pci_back_from_sleep(struct pci_dev *dev)
2773{
2774	int ret = pci_set_power_state(dev, PCI_D0);
2775
2776	if (ret)
2777		return ret;
2778
2779	pci_enable_wake(dev, PCI_D0, false);
2780	return 0;
2781}
2782EXPORT_SYMBOL(pci_back_from_sleep);
2783
2784/**
2785 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2786 * @dev: PCI device being suspended.
2787 *
2788 * Prepare @dev to generate wake-up events at run time and put it into a low
2789 * power state.
2790 */
2791int pci_finish_runtime_suspend(struct pci_dev *dev)
2792{
2793	pci_power_t target_state;
2794	int error;
2795
2796	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2797	if (target_state == PCI_POWER_ERROR)
2798		return -EIO;
2799
2800	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2801
2802	error = pci_set_power_state(dev, target_state);
2803
2804	if (error)
2805		pci_enable_wake(dev, target_state, false);
2806
2807	return error;
2808}
2809
2810/**
2811 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2812 * @dev: Device to check.
2813 *
2814 * Return true if the device itself is capable of generating wake-up events
2815 * (through the platform or using the native PCIe PME) or if the device supports
2816 * PME and one of its upstream bridges can generate wake-up events.
2817 */
2818bool pci_dev_run_wake(struct pci_dev *dev)
2819{
2820	struct pci_bus *bus = dev->bus;
2821
2822	if (!dev->pme_support)
2823		return false;
2824
2825	/* PME-capable in principle, but not from the target power state */
2826	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2827		return false;
2828
2829	if (device_can_wakeup(&dev->dev))
2830		return true;
2831
2832	while (bus->parent) {
2833		struct pci_dev *bridge = bus->self;
2834
2835		if (device_can_wakeup(&bridge->dev))
2836			return true;
2837
2838		bus = bus->parent;
2839	}
2840
2841	/* We have reached the root bus. */
2842	if (bus->bridge)
2843		return device_can_wakeup(bus->bridge);
2844
2845	return false;
2846}
2847EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2848
2849/**
2850 * pci_dev_need_resume - Check if it is necessary to resume the device.
2851 * @pci_dev: Device to check.
2852 *
2853 * Return 'true' if the device is not runtime-suspended or it has to be
2854 * reconfigured due to wakeup settings difference between system and runtime
2855 * suspend, or the current power state of it is not suitable for the upcoming
2856 * (system-wide) transition.
2857 */
2858bool pci_dev_need_resume(struct pci_dev *pci_dev)
2859{
2860	struct device *dev = &pci_dev->dev;
2861	pci_power_t target_state;
2862
2863	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2864		return true;
2865
2866	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2867
2868	/*
2869	 * If the earlier platform check has not triggered, D3cold is just power
2870	 * removal on top of D3hot, so no need to resume the device in that
2871	 * case.
2872	 */
2873	return target_state != pci_dev->current_state &&
2874		target_state != PCI_D3cold &&
2875		pci_dev->current_state != PCI_D3hot;
2876}
2877
2878/**
2879 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2880 * @pci_dev: Device to check.
2881 *
2882 * If the device is suspended and it is not configured for system wakeup,
2883 * disable PME for it to prevent it from waking up the system unnecessarily.
2884 *
2885 * Note that if the device's power state is D3cold and the platform check in
2886 * pci_dev_need_resume() has not triggered, the device's configuration need not
2887 * be changed.
2888 */
2889void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2890{
2891	struct device *dev = &pci_dev->dev;
2892
2893	spin_lock_irq(&dev->power.lock);
2894
2895	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2896	    pci_dev->current_state < PCI_D3cold)
2897		__pci_pme_active(pci_dev, false);
2898
2899	spin_unlock_irq(&dev->power.lock);
2900}
2901
2902/**
2903 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2904 * @pci_dev: Device to handle.
2905 *
2906 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2907 * it might have been disabled during the prepare phase of system suspend if
2908 * the device was not configured for system wakeup.
2909 */
2910void pci_dev_complete_resume(struct pci_dev *pci_dev)
2911{
2912	struct device *dev = &pci_dev->dev;
2913
2914	if (!pci_dev_run_wake(pci_dev))
2915		return;
2916
2917	spin_lock_irq(&dev->power.lock);
2918
2919	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2920		__pci_pme_active(pci_dev, true);
2921
2922	spin_unlock_irq(&dev->power.lock);
2923}
2924
2925/**
2926 * pci_choose_state - Choose the power state of a PCI device.
2927 * @dev: Target PCI device.
2928 * @state: Target state for the whole system.
2929 *
2930 * Returns PCI power state suitable for @dev and @state.
2931 */
2932pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2933{
2934	if (state.event == PM_EVENT_ON)
2935		return PCI_D0;
2936
2937	return pci_target_state(dev, false);
2938}
2939EXPORT_SYMBOL(pci_choose_state);
2940
2941void pci_config_pm_runtime_get(struct pci_dev *pdev)
2942{
2943	struct device *dev = &pdev->dev;
2944	struct device *parent = dev->parent;
2945
2946	if (parent)
2947		pm_runtime_get_sync(parent);
2948	pm_runtime_get_noresume(dev);
2949	/*
2950	 * pdev->current_state is set to PCI_D3cold during suspending,
2951	 * so wait until suspending completes
2952	 */
2953	pm_runtime_barrier(dev);
2954	/*
2955	 * Only need to resume devices in D3cold, because config
2956	 * registers are still accessible for devices suspended but
2957	 * not in D3cold.
2958	 */
2959	if (pdev->current_state == PCI_D3cold)
2960		pm_runtime_resume(dev);
2961}
2962
2963void pci_config_pm_runtime_put(struct pci_dev *pdev)
2964{
2965	struct device *dev = &pdev->dev;
2966	struct device *parent = dev->parent;
2967
2968	pm_runtime_put(dev);
2969	if (parent)
2970		pm_runtime_put_sync(parent);
2971}
2972
2973static const struct dmi_system_id bridge_d3_blacklist[] = {
2974#ifdef CONFIG_X86
2975	{
2976		/*
2977		 * Gigabyte X299 root port is not marked as hotplug capable
2978		 * which allows Linux to power manage it.  However, this
2979		 * confuses the BIOS SMI handler so don't power manage root
2980		 * ports on that system.
2981		 */
2982		.ident = "X299 DESIGNARE EX-CF",
2983		.matches = {
2984			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2985			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2986		},
2987	},
2988	{
2989		/*
2990		 * Downstream device is not accessible after putting a root port
2991		 * into D3cold and back into D0 on Elo Continental Z2 board
2992		 */
2993		.ident = "Elo Continental Z2",
2994		.matches = {
2995			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2996			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2997			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2998		},
2999	},
3000	{
3001		/*
3002		 * Changing power state of root port dGPU is connected fails
3003		 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
3004		 */
3005		.ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
3006		.matches = {
3007			DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
3008			DMI_MATCH(DMI_BOARD_NAME, "1972"),
3009			DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
3010		},
3011	},
3012#endif
3013	{ }
3014};
3015
3016/**
3017 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3018 * @bridge: Bridge to check
3019 *
3020 * This function checks if it is possible to move the bridge to D3.
3021 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3022 */
3023bool pci_bridge_d3_possible(struct pci_dev *bridge)
3024{
3025	if (!pci_is_pcie(bridge))
3026		return false;
3027
3028	switch (pci_pcie_type(bridge)) {
3029	case PCI_EXP_TYPE_ROOT_PORT:
3030	case PCI_EXP_TYPE_UPSTREAM:
3031	case PCI_EXP_TYPE_DOWNSTREAM:
3032		if (pci_bridge_d3_disable)
3033			return false;
3034
3035		/*
3036		 * Hotplug ports handled by firmware in System Management Mode
3037		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3038		 */
3039		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3040			return false;
3041
3042		if (pci_bridge_d3_force)
3043			return true;
3044
3045		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3046		if (bridge->is_thunderbolt)
3047			return true;
3048
3049		/* Platform might know better if the bridge supports D3 */
3050		if (platform_pci_bridge_d3(bridge))
3051			return true;
3052
3053		/*
3054		 * Hotplug ports handled natively by the OS were not validated
3055		 * by vendors for runtime D3 at least until 2018 because there
3056		 * was no OS support.
3057		 */
3058		if (bridge->is_hotplug_bridge)
3059			return false;
3060
3061		if (dmi_check_system(bridge_d3_blacklist))
3062			return false;
3063
3064		/*
3065		 * It should be safe to put PCIe ports from 2015 or newer
3066		 * to D3.
3067		 */
3068		if (dmi_get_bios_year() >= 2015)
3069			return true;
3070		break;
3071	}
3072
3073	return false;
3074}
3075
3076static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3077{
3078	bool *d3cold_ok = data;
3079
3080	if (/* The device needs to be allowed to go D3cold ... */
3081	    dev->no_d3cold || !dev->d3cold_allowed ||
3082
3083	    /* ... and if it is wakeup capable to do so from D3cold. */
3084	    (device_may_wakeup(&dev->dev) &&
3085	     !pci_pme_capable(dev, PCI_D3cold)) ||
3086
3087	    /* If it is a bridge it must be allowed to go to D3. */
3088	    !pci_power_manageable(dev))
3089
3090		*d3cold_ok = false;
3091
3092	return !*d3cold_ok;
3093}
3094
3095/*
3096 * pci_bridge_d3_update - Update bridge D3 capabilities
3097 * @dev: PCI device which is changed
3098 *
3099 * Update upstream bridge PM capabilities accordingly depending on if the
3100 * device PM configuration was changed or the device is being removed.  The
3101 * change is also propagated upstream.
3102 */
3103void pci_bridge_d3_update(struct pci_dev *dev)
3104{
3105	bool remove = !device_is_registered(&dev->dev);
3106	struct pci_dev *bridge;
3107	bool d3cold_ok = true;
3108
3109	bridge = pci_upstream_bridge(dev);
3110	if (!bridge || !pci_bridge_d3_possible(bridge))
3111		return;
3112
3113	/*
3114	 * If D3 is currently allowed for the bridge, removing one of its
3115	 * children won't change that.
3116	 */
3117	if (remove && bridge->bridge_d3)
3118		return;
3119
3120	/*
3121	 * If D3 is currently allowed for the bridge and a child is added or
3122	 * changed, disallowance of D3 can only be caused by that child, so
3123	 * we only need to check that single device, not any of its siblings.
3124	 *
3125	 * If D3 is currently not allowed for the bridge, checking the device
3126	 * first may allow us to skip checking its siblings.
3127	 */
3128	if (!remove)
3129		pci_dev_check_d3cold(dev, &d3cold_ok);
3130
3131	/*
3132	 * If D3 is currently not allowed for the bridge, this may be caused
3133	 * either by the device being changed/removed or any of its siblings,
3134	 * so we need to go through all children to find out if one of them
3135	 * continues to block D3.
3136	 */
3137	if (d3cold_ok && !bridge->bridge_d3)
3138		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3139			     &d3cold_ok);
3140
3141	if (bridge->bridge_d3 != d3cold_ok) {
3142		bridge->bridge_d3 = d3cold_ok;
3143		/* Propagate change to upstream bridges */
3144		pci_bridge_d3_update(bridge);
3145	}
3146}
3147
3148/**
3149 * pci_d3cold_enable - Enable D3cold for device
3150 * @dev: PCI device to handle
3151 *
3152 * This function can be used in drivers to enable D3cold from the device
3153 * they handle.  It also updates upstream PCI bridge PM capabilities
3154 * accordingly.
3155 */
3156void pci_d3cold_enable(struct pci_dev *dev)
3157{
3158	if (dev->no_d3cold) {
3159		dev->no_d3cold = false;
3160		pci_bridge_d3_update(dev);
3161	}
3162}
3163EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3164
3165/**
3166 * pci_d3cold_disable - Disable D3cold for device
3167 * @dev: PCI device to handle
3168 *
3169 * This function can be used in drivers to disable D3cold from the device
3170 * they handle.  It also updates upstream PCI bridge PM capabilities
3171 * accordingly.
3172 */
3173void pci_d3cold_disable(struct pci_dev *dev)
3174{
3175	if (!dev->no_d3cold) {
3176		dev->no_d3cold = true;
3177		pci_bridge_d3_update(dev);
3178	}
3179}
3180EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3181
3182/**
3183 * pci_pm_init - Initialize PM functions of given PCI device
3184 * @dev: PCI device to handle.
3185 */
3186void pci_pm_init(struct pci_dev *dev)
3187{
3188	int pm;
3189	u16 status;
3190	u16 pmc;
3191
3192	pm_runtime_forbid(&dev->dev);
3193	pm_runtime_set_active(&dev->dev);
3194	pm_runtime_enable(&dev->dev);
3195	device_enable_async_suspend(&dev->dev);
3196	dev->wakeup_prepared = false;
3197
3198	dev->pm_cap = 0;
3199	dev->pme_support = 0;
3200
3201	/* find PCI PM capability in list */
3202	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3203	if (!pm)
3204		return;
3205	/* Check device's ability to generate PME# */
3206	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3207
3208	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3209		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3210			pmc & PCI_PM_CAP_VER_MASK);
3211		return;
3212	}
3213
3214	dev->pm_cap = pm;
3215	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3216	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3217	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3218	dev->d3cold_allowed = true;
3219
3220	dev->d1_support = false;
3221	dev->d2_support = false;
3222	if (!pci_no_d1d2(dev)) {
3223		if (pmc & PCI_PM_CAP_D1)
3224			dev->d1_support = true;
3225		if (pmc & PCI_PM_CAP_D2)
3226			dev->d2_support = true;
3227
3228		if (dev->d1_support || dev->d2_support)
3229			pci_info(dev, "supports%s%s\n",
3230				   dev->d1_support ? " D1" : "",
3231				   dev->d2_support ? " D2" : "");
3232	}
3233
3234	pmc &= PCI_PM_CAP_PME_MASK;
3235	if (pmc) {
3236		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3237			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3238			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3239			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3240			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3241			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3242		dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3243		dev->pme_poll = true;
3244		/*
3245		 * Make device's PM flags reflect the wake-up capability, but
3246		 * let the user space enable it to wake up the system as needed.
3247		 */
3248		device_set_wakeup_capable(&dev->dev, true);
3249		/* Disable the PME# generation functionality */
3250		pci_pme_active(dev, false);
3251	}
3252
3253	pci_read_config_word(dev, PCI_STATUS, &status);
3254	if (status & PCI_STATUS_IMM_READY)
3255		dev->imm_ready = 1;
3256}
3257
3258static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3259{
3260	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3261
3262	switch (prop) {
3263	case PCI_EA_P_MEM:
3264	case PCI_EA_P_VF_MEM:
3265		flags |= IORESOURCE_MEM;
3266		break;
3267	case PCI_EA_P_MEM_PREFETCH:
3268	case PCI_EA_P_VF_MEM_PREFETCH:
3269		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3270		break;
3271	case PCI_EA_P_IO:
3272		flags |= IORESOURCE_IO;
3273		break;
3274	default:
3275		return 0;
3276	}
3277
3278	return flags;
3279}
3280
3281static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3282					    u8 prop)
3283{
3284	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3285		return &dev->resource[bei];
3286#ifdef CONFIG_PCI_IOV
3287	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3288		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3289		return &dev->resource[PCI_IOV_RESOURCES +
3290				      bei - PCI_EA_BEI_VF_BAR0];
3291#endif
3292	else if (bei == PCI_EA_BEI_ROM)
3293		return &dev->resource[PCI_ROM_RESOURCE];
3294	else
3295		return NULL;
3296}
3297
3298/* Read an Enhanced Allocation (EA) entry */
3299static int pci_ea_read(struct pci_dev *dev, int offset)
3300{
3301	struct resource *res;
3302	const char *res_name;
3303	int ent_size, ent_offset = offset;
3304	resource_size_t start, end;
3305	unsigned long flags;
3306	u32 dw0, bei, base, max_offset;
3307	u8 prop;
3308	bool support_64 = (sizeof(resource_size_t) >= 8);
3309
3310	pci_read_config_dword(dev, ent_offset, &dw0);
3311	ent_offset += 4;
3312
3313	/* Entry size field indicates DWORDs after 1st */
3314	ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3315
3316	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3317		goto out;
3318
3319	bei = FIELD_GET(PCI_EA_BEI, dw0);
3320	prop = FIELD_GET(PCI_EA_PP, dw0);
3321
3322	/*
3323	 * If the Property is in the reserved range, try the Secondary
3324	 * Property instead.
3325	 */
3326	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3327		prop = FIELD_GET(PCI_EA_SP, dw0);
3328	if (prop > PCI_EA_P_BRIDGE_IO)
3329		goto out;
3330
3331	res = pci_ea_get_resource(dev, bei, prop);
3332	res_name = pci_resource_name(dev, bei);
3333	if (!res) {
3334		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3335		goto out;
3336	}
3337
3338	flags = pci_ea_flags(dev, prop);
3339	if (!flags) {
3340		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3341		goto out;
3342	}
3343
3344	/* Read Base */
3345	pci_read_config_dword(dev, ent_offset, &base);
3346	start = (base & PCI_EA_FIELD_MASK);
3347	ent_offset += 4;
3348
3349	/* Read MaxOffset */
3350	pci_read_config_dword(dev, ent_offset, &max_offset);
3351	ent_offset += 4;
3352
3353	/* Read Base MSBs (if 64-bit entry) */
3354	if (base & PCI_EA_IS_64) {
3355		u32 base_upper;
3356
3357		pci_read_config_dword(dev, ent_offset, &base_upper);
3358		ent_offset += 4;
3359
3360		flags |= IORESOURCE_MEM_64;
3361
3362		/* entry starts above 32-bit boundary, can't use */
3363		if (!support_64 && base_upper)
3364			goto out;
3365
3366		if (support_64)
3367			start |= ((u64)base_upper << 32);
3368	}
3369
3370	end = start + (max_offset | 0x03);
3371
3372	/* Read MaxOffset MSBs (if 64-bit entry) */
3373	if (max_offset & PCI_EA_IS_64) {
3374		u32 max_offset_upper;
3375
3376		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3377		ent_offset += 4;
3378
3379		flags |= IORESOURCE_MEM_64;
3380
3381		/* entry too big, can't use */
3382		if (!support_64 && max_offset_upper)
3383			goto out;
3384
3385		if (support_64)
3386			end += ((u64)max_offset_upper << 32);
3387	}
3388
3389	if (end < start) {
3390		pci_err(dev, "EA Entry crosses address boundary\n");
3391		goto out;
3392	}
3393
3394	if (ent_size != ent_offset - offset) {
3395		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3396			ent_size, ent_offset - offset);
3397		goto out;
3398	}
3399
3400	res->name = pci_name(dev);
3401	res->start = start;
3402	res->end = end;
3403	res->flags = flags;
3404
3405	if (bei <= PCI_EA_BEI_BAR5)
3406		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3407			 res_name, res, prop);
3408	else if (bei == PCI_EA_BEI_ROM)
3409		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3410			 res_name, res, prop);
3411	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3412		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3413			 res_name, res, prop);
3414	else
3415		pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3416			   bei, res, prop);
3417
3418out:
3419	return offset + ent_size;
3420}
3421
3422/* Enhanced Allocation Initialization */
3423void pci_ea_init(struct pci_dev *dev)
3424{
3425	int ea;
3426	u8 num_ent;
3427	int offset;
3428	int i;
3429
3430	/* find PCI EA capability in list */
3431	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3432	if (!ea)
3433		return;
3434
3435	/* determine the number of entries */
3436	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3437					&num_ent);
3438	num_ent &= PCI_EA_NUM_ENT_MASK;
3439
3440	offset = ea + PCI_EA_FIRST_ENT;
3441
3442	/* Skip DWORD 2 for type 1 functions */
3443	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3444		offset += 4;
3445
3446	/* parse each EA entry */
3447	for (i = 0; i < num_ent; ++i)
3448		offset = pci_ea_read(dev, offset);
3449}
3450
3451static void pci_add_saved_cap(struct pci_dev *pci_dev,
3452	struct pci_cap_saved_state *new_cap)
3453{
3454	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3455}
3456
3457/**
3458 * _pci_add_cap_save_buffer - allocate buffer for saving given
3459 *			      capability registers
3460 * @dev: the PCI device
3461 * @cap: the capability to allocate the buffer for
3462 * @extended: Standard or Extended capability ID
3463 * @size: requested size of the buffer
3464 */
3465static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3466				    bool extended, unsigned int size)
3467{
3468	int pos;
3469	struct pci_cap_saved_state *save_state;
3470
3471	if (extended)
3472		pos = pci_find_ext_capability(dev, cap);
3473	else
3474		pos = pci_find_capability(dev, cap);
3475
3476	if (!pos)
3477		return 0;
3478
3479	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3480	if (!save_state)
3481		return -ENOMEM;
3482
3483	save_state->cap.cap_nr = cap;
3484	save_state->cap.cap_extended = extended;
3485	save_state->cap.size = size;
3486	pci_add_saved_cap(dev, save_state);
3487
3488	return 0;
3489}
3490
3491int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3492{
3493	return _pci_add_cap_save_buffer(dev, cap, false, size);
3494}
3495
3496int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3497{
3498	return _pci_add_cap_save_buffer(dev, cap, true, size);
3499}
3500
3501/**
3502 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3503 * @dev: the PCI device
3504 */
3505void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3506{
3507	int error;
3508
3509	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3510					PCI_EXP_SAVE_REGS * sizeof(u16));
3511	if (error)
3512		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3513
3514	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3515	if (error)
3516		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3517
3518	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3519					    2 * sizeof(u16));
3520	if (error)
3521		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3522
3523	pci_allocate_vc_save_buffers(dev);
3524}
3525
3526void pci_free_cap_save_buffers(struct pci_dev *dev)
3527{
3528	struct pci_cap_saved_state *tmp;
3529	struct hlist_node *n;
3530
3531	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3532		kfree(tmp);
3533}
3534
3535/**
3536 * pci_configure_ari - enable or disable ARI forwarding
3537 * @dev: the PCI device
3538 *
3539 * If @dev and its upstream bridge both support ARI, enable ARI in the
3540 * bridge.  Otherwise, disable ARI in the bridge.
3541 */
3542void pci_configure_ari(struct pci_dev *dev)
3543{
3544	u32 cap;
3545	struct pci_dev *bridge;
3546
3547	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3548		return;
3549
3550	bridge = dev->bus->self;
3551	if (!bridge)
3552		return;
3553
3554	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3555	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3556		return;
3557
3558	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3559		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3560					 PCI_EXP_DEVCTL2_ARI);
3561		bridge->ari_enabled = 1;
3562	} else {
3563		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3564					   PCI_EXP_DEVCTL2_ARI);
3565		bridge->ari_enabled = 0;
3566	}
3567}
3568
3569static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3570{
3571	int pos;
3572	u16 cap, ctrl;
3573
3574	pos = pdev->acs_cap;
3575	if (!pos)
3576		return false;
3577
3578	/*
3579	 * Except for egress control, capabilities are either required
3580	 * or only required if controllable.  Features missing from the
3581	 * capability field can therefore be assumed as hard-wired enabled.
3582	 */
3583	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3584	acs_flags &= (cap | PCI_ACS_EC);
3585
3586	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3587	return (ctrl & acs_flags) == acs_flags;
3588}
3589
3590/**
3591 * pci_acs_enabled - test ACS against required flags for a given device
3592 * @pdev: device to test
3593 * @acs_flags: required PCI ACS flags
3594 *
3595 * Return true if the device supports the provided flags.  Automatically
3596 * filters out flags that are not implemented on multifunction devices.
3597 *
3598 * Note that this interface checks the effective ACS capabilities of the
3599 * device rather than the actual capabilities.  For instance, most single
3600 * function endpoints are not required to support ACS because they have no
3601 * opportunity for peer-to-peer access.  We therefore return 'true'
3602 * regardless of whether the device exposes an ACS capability.  This makes
3603 * it much easier for callers of this function to ignore the actual type
3604 * or topology of the device when testing ACS support.
3605 */
3606bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3607{
3608	int ret;
3609
3610	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3611	if (ret >= 0)
3612		return ret > 0;
3613
3614	/*
3615	 * Conventional PCI and PCI-X devices never support ACS, either
3616	 * effectively or actually.  The shared bus topology implies that
3617	 * any device on the bus can receive or snoop DMA.
3618	 */
3619	if (!pci_is_pcie(pdev))
3620		return false;
3621
3622	switch (pci_pcie_type(pdev)) {
3623	/*
3624	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3625	 * but since their primary interface is PCI/X, we conservatively
3626	 * handle them as we would a non-PCIe device.
3627	 */
3628	case PCI_EXP_TYPE_PCIE_BRIDGE:
3629	/*
3630	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3631	 * applicable... must never implement an ACS Extended Capability...".
3632	 * This seems arbitrary, but we take a conservative interpretation
3633	 * of this statement.
3634	 */
3635	case PCI_EXP_TYPE_PCI_BRIDGE:
3636	case PCI_EXP_TYPE_RC_EC:
3637		return false;
3638	/*
3639	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3640	 * implement ACS in order to indicate their peer-to-peer capabilities,
3641	 * regardless of whether they are single- or multi-function devices.
3642	 */
3643	case PCI_EXP_TYPE_DOWNSTREAM:
3644	case PCI_EXP_TYPE_ROOT_PORT:
3645		return pci_acs_flags_enabled(pdev, acs_flags);
3646	/*
3647	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3648	 * implemented by the remaining PCIe types to indicate peer-to-peer
3649	 * capabilities, but only when they are part of a multifunction
3650	 * device.  The footnote for section 6.12 indicates the specific
3651	 * PCIe types included here.
3652	 */
3653	case PCI_EXP_TYPE_ENDPOINT:
3654	case PCI_EXP_TYPE_UPSTREAM:
3655	case PCI_EXP_TYPE_LEG_END:
3656	case PCI_EXP_TYPE_RC_END:
3657		if (!pdev->multifunction)
3658			break;
3659
3660		return pci_acs_flags_enabled(pdev, acs_flags);
3661	}
3662
3663	/*
3664	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3665	 * to single function devices with the exception of downstream ports.
3666	 */
3667	return true;
3668}
3669
3670/**
3671 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3672 * @start: starting downstream device
3673 * @end: ending upstream device or NULL to search to the root bus
3674 * @acs_flags: required flags
3675 *
3676 * Walk up a device tree from start to end testing PCI ACS support.  If
3677 * any step along the way does not support the required flags, return false.
3678 */
3679bool pci_acs_path_enabled(struct pci_dev *start,
3680			  struct pci_dev *end, u16 acs_flags)
3681{
3682	struct pci_dev *pdev, *parent = start;
3683
3684	do {
3685		pdev = parent;
3686
3687		if (!pci_acs_enabled(pdev, acs_flags))
3688			return false;
3689
3690		if (pci_is_root_bus(pdev->bus))
3691			return (end == NULL);
3692
3693		parent = pdev->bus->self;
3694	} while (pdev != end);
3695
3696	return true;
3697}
3698
3699/**
3700 * pci_acs_init - Initialize ACS if hardware supports it
3701 * @dev: the PCI device
3702 */
3703void pci_acs_init(struct pci_dev *dev)
3704{
3705	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3706
3707	/*
3708	 * Attempt to enable ACS regardless of capability because some Root
3709	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3710	 * the standard ACS capability but still support ACS via those
3711	 * quirks.
3712	 */
3713	pci_enable_acs(dev);
3714}
3715
3716/**
3717 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3718 * @pdev: PCI device
3719 * @bar: BAR to find
3720 *
3721 * Helper to find the position of the ctrl register for a BAR.
3722 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3723 * Returns -ENOENT if no ctrl register for the BAR could be found.
3724 */
3725static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3726{
3727	unsigned int pos, nbars, i;
3728	u32 ctrl;
3729
3730	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3731	if (!pos)
3732		return -ENOTSUPP;
3733
3734	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3735	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3736
3737	for (i = 0; i < nbars; i++, pos += 8) {
3738		int bar_idx;
3739
3740		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3741		bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3742		if (bar_idx == bar)
3743			return pos;
3744	}
3745
3746	return -ENOENT;
3747}
3748
3749/**
3750 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3751 * @pdev: PCI device
3752 * @bar: BAR to query
3753 *
3754 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3755 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3756 */
3757u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3758{
3759	int pos;
3760	u32 cap;
3761
3762	pos = pci_rebar_find_pos(pdev, bar);
3763	if (pos < 0)
3764		return 0;
3765
3766	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3767	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3768
3769	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3770	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3771	    bar == 0 && cap == 0x700)
3772		return 0x3f00;
3773
3774	return cap;
3775}
3776EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3777
3778/**
3779 * pci_rebar_get_current_size - get the current size of a BAR
3780 * @pdev: PCI device
3781 * @bar: BAR to set size to
3782 *
3783 * Read the size of a BAR from the resizable BAR config.
3784 * Returns size if found or negative error code.
3785 */
3786int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3787{
3788	int pos;
3789	u32 ctrl;
3790
3791	pos = pci_rebar_find_pos(pdev, bar);
3792	if (pos < 0)
3793		return pos;
3794
3795	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3796	return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3797}
3798
3799/**
3800 * pci_rebar_set_size - set a new size for a BAR
3801 * @pdev: PCI device
3802 * @bar: BAR to set size to
3803 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3804 *
3805 * Set the new size of a BAR as defined in the spec.
3806 * Returns zero if resizing was successful, error code otherwise.
3807 */
3808int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3809{
3810	int pos;
3811	u32 ctrl;
3812
3813	pos = pci_rebar_find_pos(pdev, bar);
3814	if (pos < 0)
3815		return pos;
3816
3817	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3818	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3819	ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3820	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3821	return 0;
3822}
3823
3824/**
3825 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3826 * @dev: the PCI device
3827 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3828 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3829 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3830 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3831 *
3832 * Return 0 if all upstream bridges support AtomicOp routing, egress
3833 * blocking is disabled on all upstream ports, and the root port supports
3834 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3835 * AtomicOp completion), or negative otherwise.
3836 */
3837int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3838{
3839	struct pci_bus *bus = dev->bus;
3840	struct pci_dev *bridge;
3841	u32 cap, ctl2;
3842
3843	/*
3844	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3845	 * in Device Control 2 is reserved in VFs and the PF value applies
3846	 * to all associated VFs.
3847	 */
3848	if (dev->is_virtfn)
3849		return -EINVAL;
3850
3851	if (!pci_is_pcie(dev))
3852		return -EINVAL;
3853
3854	/*
3855	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3856	 * AtomicOp requesters.  For now, we only support endpoints as
3857	 * requesters and root ports as completers.  No endpoints as
3858	 * completers, and no peer-to-peer.
3859	 */
3860
3861	switch (pci_pcie_type(dev)) {
3862	case PCI_EXP_TYPE_ENDPOINT:
3863	case PCI_EXP_TYPE_LEG_END:
3864	case PCI_EXP_TYPE_RC_END:
3865		break;
3866	default:
3867		return -EINVAL;
3868	}
3869
3870	while (bus->parent) {
3871		bridge = bus->self;
3872
3873		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3874
3875		switch (pci_pcie_type(bridge)) {
3876		/* Ensure switch ports support AtomicOp routing */
3877		case PCI_EXP_TYPE_UPSTREAM:
3878		case PCI_EXP_TYPE_DOWNSTREAM:
3879			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3880				return -EINVAL;
3881			break;
3882
3883		/* Ensure root port supports all the sizes we care about */
3884		case PCI_EXP_TYPE_ROOT_PORT:
3885			if ((cap & cap_mask) != cap_mask)
3886				return -EINVAL;
3887			break;
3888		}
3889
3890		/* Ensure upstream ports don't block AtomicOps on egress */
3891		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3892			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3893						   &ctl2);
3894			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3895				return -EINVAL;
3896		}
3897
3898		bus = bus->parent;
3899	}
3900
3901	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3902				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3903	return 0;
3904}
3905EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3906
3907/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3908 * pci_release_region - Release a PCI bar
3909 * @pdev: PCI device whose resources were previously reserved by
3910 *	  pci_request_region()
3911 * @bar: BAR to release
3912 *
3913 * Releases the PCI I/O and memory resources previously reserved by a
3914 * successful call to pci_request_region().  Call this function only
3915 * after all use of the PCI regions has ceased.
3916 */
3917void pci_release_region(struct pci_dev *pdev, int bar)
3918{
3919	/*
3920	 * This is done for backwards compatibility, because the old PCI devres
3921	 * API had a mode in which the function became managed if it had been
3922	 * enabled with pcim_enable_device() instead of pci_enable_device().
3923	 */
3924	if (pci_is_managed(pdev)) {
3925		pcim_release_region(pdev, bar);
3926		return;
3927	}
3928
3929	if (pci_resource_len(pdev, bar) == 0)
3930		return;
3931	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3932		release_region(pci_resource_start(pdev, bar),
3933				pci_resource_len(pdev, bar));
3934	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3935		release_mem_region(pci_resource_start(pdev, bar),
3936				pci_resource_len(pdev, bar));
 
 
 
 
3937}
3938EXPORT_SYMBOL(pci_release_region);
3939
3940/**
3941 * __pci_request_region - Reserved PCI I/O and memory resource
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @bar: BAR to be reserved
3944 * @res_name: Name to be associated with resource.
3945 * @exclusive: whether the region access is exclusive or not
3946 *
3947 * Returns: 0 on success, negative error code on failure.
3948 *
3949 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3950 * being reserved by owner @res_name.  Do not access any
3951 * address inside the PCI regions unless this call returns
3952 * successfully.
3953 *
3954 * If @exclusive is set, then the region is marked so that userspace
3955 * is explicitly not allowed to map the resource via /dev/mem or
3956 * sysfs MMIO access.
3957 *
3958 * Returns 0 on success, or %EBUSY on error.  A warning
3959 * message is also printed on failure.
3960 */
3961static int __pci_request_region(struct pci_dev *pdev, int bar,
3962				const char *res_name, int exclusive)
3963{
3964	if (pci_is_managed(pdev)) {
3965		if (exclusive == IORESOURCE_EXCLUSIVE)
3966			return pcim_request_region_exclusive(pdev, bar, res_name);
3967
3968		return pcim_request_region(pdev, bar, res_name);
3969	}
3970
3971	if (pci_resource_len(pdev, bar) == 0)
3972		return 0;
3973
3974	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3975		if (!request_region(pci_resource_start(pdev, bar),
3976			    pci_resource_len(pdev, bar), res_name))
3977			goto err_out;
3978	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3979		if (!__request_mem_region(pci_resource_start(pdev, bar),
3980					pci_resource_len(pdev, bar), res_name,
3981					exclusive))
3982			goto err_out;
3983	}
3984
 
 
 
 
3985	return 0;
3986
3987err_out:
3988	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3989		 &pdev->resource[bar]);
3990	return -EBUSY;
3991}
3992
3993/**
3994 * pci_request_region - Reserve PCI I/O and memory resource
3995 * @pdev: PCI device whose resources are to be reserved
3996 * @bar: BAR to be reserved
3997 * @res_name: Name to be associated with resource
3998 *
3999 * Returns: 0 on success, negative error code on failure.
4000 *
4001 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4002 * being reserved by owner @res_name.  Do not access any
4003 * address inside the PCI regions unless this call returns
4004 * successfully.
4005 *
4006 * Returns 0 on success, or %EBUSY on error.  A warning
4007 * message is also printed on failure.
4008 *
4009 * NOTE:
4010 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4011 * when pcim_enable_device() has been called in advance. This hybrid feature is
4012 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4013 */
4014int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4015{
4016	return __pci_request_region(pdev, bar, res_name, 0);
4017}
4018EXPORT_SYMBOL(pci_request_region);
4019
4020/**
4021 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4022 * @pdev: PCI device whose resources were previously reserved
4023 * @bars: Bitmask of BARs to be released
4024 *
4025 * Release selected PCI I/O and memory resources previously reserved.
4026 * Call this function only after all use of the PCI regions has ceased.
4027 */
4028void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4029{
4030	int i;
4031
4032	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4033		if (bars & (1 << i))
4034			pci_release_region(pdev, i);
4035}
4036EXPORT_SYMBOL(pci_release_selected_regions);
4037
4038static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4039					  const char *res_name, int excl)
4040{
4041	int i;
4042
4043	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4044		if (bars & (1 << i))
4045			if (__pci_request_region(pdev, i, res_name, excl))
4046				goto err_out;
4047	return 0;
4048
4049err_out:
4050	while (--i >= 0)
4051		if (bars & (1 << i))
4052			pci_release_region(pdev, i);
4053
4054	return -EBUSY;
4055}
4056
4057
4058/**
4059 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4060 * @pdev: PCI device whose resources are to be reserved
4061 * @bars: Bitmask of BARs to be requested
4062 * @res_name: Name to be associated with resource
4063 *
4064 * Returns: 0 on success, negative error code on failure.
4065 *
4066 * NOTE:
4067 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4068 * when pcim_enable_device() has been called in advance. This hybrid feature is
4069 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4070 */
4071int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4072				 const char *res_name)
4073{
4074	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4075}
4076EXPORT_SYMBOL(pci_request_selected_regions);
4077
4078/**
4079 * pci_request_selected_regions_exclusive - Request regions exclusively
4080 * @pdev: PCI device to request regions from
4081 * @bars: bit mask of BARs to request
4082 * @res_name: name to be associated with the requests
4083 *
4084 * Returns: 0 on success, negative error code on failure.
4085 *
4086 * NOTE:
4087 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4088 * when pcim_enable_device() has been called in advance. This hybrid feature is
4089 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4090 */
4091int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4092					   const char *res_name)
4093{
4094	return __pci_request_selected_regions(pdev, bars, res_name,
4095			IORESOURCE_EXCLUSIVE);
4096}
4097EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4098
4099/**
4100 * pci_release_regions - Release reserved PCI I/O and memory resources
4101 * @pdev: PCI device whose resources were previously reserved by
4102 *	  pci_request_regions()
4103 *
4104 * Releases all PCI I/O and memory resources previously reserved by a
4105 * successful call to pci_request_regions().  Call this function only
4106 * after all use of the PCI regions has ceased.
4107 */
 
4108void pci_release_regions(struct pci_dev *pdev)
4109{
4110	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4111}
4112EXPORT_SYMBOL(pci_release_regions);
4113
4114/**
4115 * pci_request_regions - Reserve PCI I/O and memory resources
4116 * @pdev: PCI device whose resources are to be reserved
4117 * @res_name: Name to be associated with resource.
4118 *
4119 * Mark all PCI regions associated with PCI device @pdev as
4120 * being reserved by owner @res_name.  Do not access any
4121 * address inside the PCI regions unless this call returns
4122 * successfully.
4123 *
4124 * Returns 0 on success, or %EBUSY on error.  A warning
4125 * message is also printed on failure.
4126 *
4127 * NOTE:
4128 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4129 * when pcim_enable_device() has been called in advance. This hybrid feature is
4130 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4131 */
4132int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4133{
4134	return pci_request_selected_regions(pdev,
4135			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4136}
4137EXPORT_SYMBOL(pci_request_regions);
4138
4139/**
4140 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4141 * @pdev: PCI device whose resources are to be reserved
4142 * @res_name: Name to be associated with resource.
4143 *
4144 * Returns: 0 on success, negative error code on failure.
4145 *
4146 * Mark all PCI regions associated with PCI device @pdev as being reserved
4147 * by owner @res_name.  Do not access any address inside the PCI regions
4148 * unless this call returns successfully.
4149 *
4150 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4151 * and the sysfs MMIO access will not be allowed.
4152 *
4153 * Returns 0 on success, or %EBUSY on error.  A warning message is also
4154 * printed on failure.
4155 *
4156 * NOTE:
4157 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4158 * when pcim_enable_device() has been called in advance. This hybrid feature is
4159 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4160 */
4161int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4162{
4163	return pci_request_selected_regions_exclusive(pdev,
4164				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4165}
4166EXPORT_SYMBOL(pci_request_regions_exclusive);
4167
4168/*
4169 * Record the PCI IO range (expressed as CPU physical address + size).
4170 * Return a negative value if an error has occurred, zero otherwise
4171 */
4172int pci_register_io_range(const struct fwnode_handle *fwnode, phys_addr_t addr,
4173			resource_size_t	size)
4174{
4175	int ret = 0;
4176#ifdef PCI_IOBASE
4177	struct logic_pio_hwaddr *range;
4178
4179	if (!size || addr + size < addr)
4180		return -EINVAL;
4181
4182	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4183	if (!range)
4184		return -ENOMEM;
4185
4186	range->fwnode = fwnode;
4187	range->size = size;
4188	range->hw_start = addr;
4189	range->flags = LOGIC_PIO_CPU_MMIO;
4190
4191	ret = logic_pio_register_range(range);
4192	if (ret)
4193		kfree(range);
4194
4195	/* Ignore duplicates due to deferred probing */
4196	if (ret == -EEXIST)
4197		ret = 0;
4198#endif
4199
4200	return ret;
4201}
4202
4203phys_addr_t pci_pio_to_address(unsigned long pio)
4204{
4205#ifdef PCI_IOBASE
4206	if (pio < MMIO_UPPER_LIMIT)
4207		return logic_pio_to_hwaddr(pio);
4208#endif
4209
4210	return (phys_addr_t) OF_BAD_ADDR;
4211}
4212EXPORT_SYMBOL_GPL(pci_pio_to_address);
4213
4214unsigned long __weak pci_address_to_pio(phys_addr_t address)
4215{
4216#ifdef PCI_IOBASE
4217	return logic_pio_trans_cpuaddr(address);
4218#else
4219	if (address > IO_SPACE_LIMIT)
4220		return (unsigned long)-1;
4221
4222	return (unsigned long) address;
4223#endif
4224}
4225
4226/**
4227 * pci_remap_iospace - Remap the memory mapped I/O space
4228 * @res: Resource describing the I/O space
4229 * @phys_addr: physical address of range to be mapped
4230 *
4231 * Remap the memory mapped I/O space described by the @res and the CPU
4232 * physical address @phys_addr into virtual address space.  Only
4233 * architectures that have memory mapped IO functions defined (and the
4234 * PCI_IOBASE value defined) should call this function.
4235 */
4236#ifndef pci_remap_iospace
4237int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4238{
4239#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4240	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4241
4242	if (!(res->flags & IORESOURCE_IO))
4243		return -EINVAL;
4244
4245	if (res->end > IO_SPACE_LIMIT)
4246		return -EINVAL;
4247
4248	return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4249			       pgprot_device(PAGE_KERNEL));
4250#else
4251	/*
4252	 * This architecture does not have memory mapped I/O space,
4253	 * so this function should never be called
4254	 */
4255	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4256	return -ENODEV;
4257#endif
4258}
4259EXPORT_SYMBOL(pci_remap_iospace);
4260#endif
4261
4262/**
4263 * pci_unmap_iospace - Unmap the memory mapped I/O space
4264 * @res: resource to be unmapped
4265 *
4266 * Unmap the CPU virtual address @res from virtual address space.  Only
4267 * architectures that have memory mapped IO functions defined (and the
4268 * PCI_IOBASE value defined) should call this function.
4269 */
4270void pci_unmap_iospace(struct resource *res)
4271{
4272#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4273	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4274
4275	vunmap_range(vaddr, vaddr + resource_size(res));
4276#endif
4277}
4278EXPORT_SYMBOL(pci_unmap_iospace);
4279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4280static void __pci_set_master(struct pci_dev *dev, bool enable)
4281{
4282	u16 old_cmd, cmd;
4283
4284	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4285	if (enable)
4286		cmd = old_cmd | PCI_COMMAND_MASTER;
4287	else
4288		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4289	if (cmd != old_cmd) {
4290		pci_dbg(dev, "%s bus mastering\n",
4291			enable ? "enabling" : "disabling");
4292		pci_write_config_word(dev, PCI_COMMAND, cmd);
4293	}
4294	dev->is_busmaster = enable;
4295}
4296
4297/**
4298 * pcibios_setup - process "pci=" kernel boot arguments
4299 * @str: string used to pass in "pci=" kernel boot arguments
4300 *
4301 * Process kernel boot arguments.  This is the default implementation.
4302 * Architecture specific implementations can override this as necessary.
4303 */
4304char * __weak __init pcibios_setup(char *str)
4305{
4306	return str;
4307}
4308
4309/**
4310 * pcibios_set_master - enable PCI bus-mastering for device dev
4311 * @dev: the PCI device to enable
4312 *
4313 * Enables PCI bus-mastering for the device.  This is the default
4314 * implementation.  Architecture specific implementations can override
4315 * this if necessary.
4316 */
4317void __weak pcibios_set_master(struct pci_dev *dev)
4318{
4319	u8 lat;
4320
4321	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4322	if (pci_is_pcie(dev))
4323		return;
4324
4325	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4326	if (lat < 16)
4327		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4328	else if (lat > pcibios_max_latency)
4329		lat = pcibios_max_latency;
4330	else
4331		return;
4332
4333	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4334}
4335
4336/**
4337 * pci_set_master - enables bus-mastering for device dev
4338 * @dev: the PCI device to enable
4339 *
4340 * Enables bus-mastering on the device and calls pcibios_set_master()
4341 * to do the needed arch specific settings.
4342 */
4343void pci_set_master(struct pci_dev *dev)
4344{
4345	__pci_set_master(dev, true);
4346	pcibios_set_master(dev);
4347}
4348EXPORT_SYMBOL(pci_set_master);
4349
4350/**
4351 * pci_clear_master - disables bus-mastering for device dev
4352 * @dev: the PCI device to disable
4353 */
4354void pci_clear_master(struct pci_dev *dev)
4355{
4356	__pci_set_master(dev, false);
4357}
4358EXPORT_SYMBOL(pci_clear_master);
4359
4360/**
4361 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4362 * @dev: the PCI device for which MWI is to be enabled
4363 *
4364 * Helper function for pci_set_mwi.
4365 * Originally copied from drivers/net/acenic.c.
4366 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4367 *
4368 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4369 */
4370int pci_set_cacheline_size(struct pci_dev *dev)
4371{
4372	u8 cacheline_size;
4373
4374	if (!pci_cache_line_size)
4375		return -EINVAL;
4376
4377	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4378	   equal to or multiple of the right value. */
4379	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4380	if (cacheline_size >= pci_cache_line_size &&
4381	    (cacheline_size % pci_cache_line_size) == 0)
4382		return 0;
4383
4384	/* Write the correct value. */
4385	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4386	/* Read it back. */
4387	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4388	if (cacheline_size == pci_cache_line_size)
4389		return 0;
4390
4391	pci_dbg(dev, "cache line size of %d is not supported\n",
4392		   pci_cache_line_size << 2);
4393
4394	return -EINVAL;
4395}
4396EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4397
4398/**
4399 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4400 * @dev: the PCI device for which MWI is enabled
4401 *
4402 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4403 *
4404 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4405 */
4406int pci_set_mwi(struct pci_dev *dev)
4407{
4408#ifdef PCI_DISABLE_MWI
4409	return 0;
4410#else
4411	int rc;
4412	u16 cmd;
4413
4414	rc = pci_set_cacheline_size(dev);
4415	if (rc)
4416		return rc;
4417
4418	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4419	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4420		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4421		cmd |= PCI_COMMAND_INVALIDATE;
4422		pci_write_config_word(dev, PCI_COMMAND, cmd);
4423	}
4424	return 0;
4425#endif
4426}
4427EXPORT_SYMBOL(pci_set_mwi);
4428
4429/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4430 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4431 * @dev: the PCI device for which MWI is enabled
4432 *
4433 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4434 * Callers are not required to check the return value.
4435 *
4436 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4437 */
4438int pci_try_set_mwi(struct pci_dev *dev)
4439{
4440#ifdef PCI_DISABLE_MWI
4441	return 0;
4442#else
4443	return pci_set_mwi(dev);
4444#endif
4445}
4446EXPORT_SYMBOL(pci_try_set_mwi);
4447
4448/**
4449 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4450 * @dev: the PCI device to disable
4451 *
4452 * Disables PCI Memory-Write-Invalidate transaction on the device
4453 */
4454void pci_clear_mwi(struct pci_dev *dev)
4455{
4456#ifndef PCI_DISABLE_MWI
4457	u16 cmd;
4458
4459	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4460	if (cmd & PCI_COMMAND_INVALIDATE) {
4461		cmd &= ~PCI_COMMAND_INVALIDATE;
4462		pci_write_config_word(dev, PCI_COMMAND, cmd);
4463	}
4464#endif
4465}
4466EXPORT_SYMBOL(pci_clear_mwi);
4467
4468/**
4469 * pci_disable_parity - disable parity checking for device
4470 * @dev: the PCI device to operate on
4471 *
4472 * Disable parity checking for device @dev
4473 */
4474void pci_disable_parity(struct pci_dev *dev)
4475{
4476	u16 cmd;
4477
4478	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4479	if (cmd & PCI_COMMAND_PARITY) {
4480		cmd &= ~PCI_COMMAND_PARITY;
4481		pci_write_config_word(dev, PCI_COMMAND, cmd);
4482	}
4483}
4484
4485/**
4486 * pci_intx - enables/disables PCI INTx for device dev
4487 * @pdev: the PCI device to operate on
4488 * @enable: boolean: whether to enable or disable PCI INTx
4489 *
4490 * Enables/disables PCI INTx for device @pdev
4491 */
4492void pci_intx(struct pci_dev *pdev, int enable)
4493{
4494	u16 pci_command, new;
4495
4496	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4497
4498	if (enable)
4499		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4500	else
4501		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4502
4503	if (new == pci_command)
4504		return;
 
 
4505
4506	pci_write_config_word(pdev, PCI_COMMAND, new);
 
 
 
 
 
4507}
4508EXPORT_SYMBOL_GPL(pci_intx);
4509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4510/**
4511 * pci_wait_for_pending_transaction - wait for pending transaction
4512 * @dev: the PCI device to operate on
4513 *
4514 * Return 0 if transaction is pending 1 otherwise.
4515 */
4516int pci_wait_for_pending_transaction(struct pci_dev *dev)
4517{
4518	if (!pci_is_pcie(dev))
4519		return 1;
4520
4521	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4522				    PCI_EXP_DEVSTA_TRPND);
4523}
4524EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4525
4526/**
4527 * pcie_flr - initiate a PCIe function level reset
4528 * @dev: device to reset
4529 *
4530 * Initiate a function level reset unconditionally on @dev without
4531 * checking any flags and DEVCAP
4532 */
4533int pcie_flr(struct pci_dev *dev)
4534{
4535	if (!pci_wait_for_pending_transaction(dev))
4536		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4537
4538	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4539
4540	if (dev->imm_ready)
4541		return 0;
4542
4543	/*
4544	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4545	 * 100ms, but may silently discard requests while the FLR is in
4546	 * progress.  Wait 100ms before trying to access the device.
4547	 */
4548	msleep(100);
4549
4550	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4551}
4552EXPORT_SYMBOL_GPL(pcie_flr);
4553
4554/**
4555 * pcie_reset_flr - initiate a PCIe function level reset
4556 * @dev: device to reset
4557 * @probe: if true, return 0 if device can be reset this way
4558 *
4559 * Initiate a function level reset on @dev.
4560 */
4561int pcie_reset_flr(struct pci_dev *dev, bool probe)
4562{
4563	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4564		return -ENOTTY;
4565
4566	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4567		return -ENOTTY;
4568
4569	if (probe)
4570		return 0;
4571
4572	return pcie_flr(dev);
4573}
4574EXPORT_SYMBOL_GPL(pcie_reset_flr);
4575
4576static int pci_af_flr(struct pci_dev *dev, bool probe)
4577{
4578	int pos;
4579	u8 cap;
4580
4581	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4582	if (!pos)
4583		return -ENOTTY;
4584
4585	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4586		return -ENOTTY;
4587
4588	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4589	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4590		return -ENOTTY;
4591
4592	if (probe)
4593		return 0;
4594
4595	/*
4596	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4597	 * is used, so we use the control offset rather than status and shift
4598	 * the test bit to match.
4599	 */
4600	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4601				 PCI_AF_STATUS_TP << 8))
4602		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4603
4604	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4605
4606	if (dev->imm_ready)
4607		return 0;
4608
4609	/*
4610	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4611	 * updated 27 July 2006; a device must complete an FLR within
4612	 * 100ms, but may silently discard requests while the FLR is in
4613	 * progress.  Wait 100ms before trying to access the device.
4614	 */
4615	msleep(100);
4616
4617	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4618}
4619
4620/**
4621 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4622 * @dev: Device to reset.
4623 * @probe: if true, return 0 if the device can be reset this way.
4624 *
4625 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4626 * unset, it will be reinitialized internally when going from PCI_D3hot to
4627 * PCI_D0.  If that's the case and the device is not in a low-power state
4628 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4629 *
4630 * NOTE: This causes the caller to sleep for twice the device power transition
4631 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4632 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4633 * Moreover, only devices in D0 can be reset by this function.
4634 */
4635static int pci_pm_reset(struct pci_dev *dev, bool probe)
4636{
4637	u16 csr;
4638
4639	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4640		return -ENOTTY;
4641
4642	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4643	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4644		return -ENOTTY;
4645
4646	if (probe)
4647		return 0;
4648
4649	if (dev->current_state != PCI_D0)
4650		return -EINVAL;
4651
4652	csr &= ~PCI_PM_CTRL_STATE_MASK;
4653	csr |= PCI_D3hot;
4654	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4655	pci_dev_d3_sleep(dev);
4656
4657	csr &= ~PCI_PM_CTRL_STATE_MASK;
4658	csr |= PCI_D0;
4659	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4660	pci_dev_d3_sleep(dev);
4661
4662	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4663}
4664
4665/**
4666 * pcie_wait_for_link_status - Wait for link status change
4667 * @pdev: Device whose link to wait for.
4668 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4669 * @active: Waiting for active or inactive?
4670 *
4671 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4672 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4673 */
4674static int pcie_wait_for_link_status(struct pci_dev *pdev,
4675				     bool use_lt, bool active)
4676{
4677	u16 lnksta_mask, lnksta_match;
4678	unsigned long end_jiffies;
4679	u16 lnksta;
4680
4681	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4682	lnksta_match = active ? lnksta_mask : 0;
4683
4684	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4685	do {
4686		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4687		if ((lnksta & lnksta_mask) == lnksta_match)
4688			return 0;
4689		msleep(1);
4690	} while (time_before(jiffies, end_jiffies));
4691
4692	return -ETIMEDOUT;
4693}
4694
4695/**
4696 * pcie_retrain_link - Request a link retrain and wait for it to complete
4697 * @pdev: Device whose link to retrain.
4698 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4699 *
4700 * Retrain completion status is retrieved from the Link Status Register
4701 * according to @use_lt.  It is not verified whether the use of the DLLLA
4702 * bit is valid.
4703 *
4704 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4705 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4706 */
4707int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4708{
4709	int rc;
4710
4711	/*
4712	 * Ensure the updated LNKCTL parameters are used during link
4713	 * training by checking that there is no ongoing link training that
4714	 * may have started before link parameters were changed, so as to
4715	 * avoid LTSSM race as recommended in Implementation Note at the end
4716	 * of PCIe r6.1 sec 7.5.3.7.
4717	 */
4718	rc = pcie_wait_for_link_status(pdev, true, false);
4719	if (rc)
4720		return rc;
4721
4722	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4723	if (pdev->clear_retrain_link) {
4724		/*
4725		 * Due to an erratum in some devices the Retrain Link bit
4726		 * needs to be cleared again manually to allow the link
4727		 * training to succeed.
4728		 */
4729		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4730	}
4731
4732	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4733
4734	/*
4735	 * Clear LBMS after a manual retrain so that the bit can be used
4736	 * to track link speed or width changes made by hardware itself
4737	 * in attempt to correct unreliable link operation.
4738	 */
4739	pcie_reset_lbms_count(pdev);
4740	return rc;
4741}
4742
4743/**
4744 * pcie_wait_for_link_delay - Wait until link is active or inactive
4745 * @pdev: Bridge device
4746 * @active: waiting for active or inactive?
4747 * @delay: Delay to wait after link has become active (in ms)
4748 *
4749 * Use this to wait till link becomes active or inactive.
4750 */
4751static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4752				     int delay)
4753{
4754	int rc;
4755
4756	/*
4757	 * Some controllers might not implement link active reporting. In this
4758	 * case, we wait for 1000 ms + any delay requested by the caller.
4759	 */
4760	if (!pdev->link_active_reporting) {
4761		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4762		return true;
4763	}
4764
4765	/*
4766	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4767	 * after which we should expect an link active if the reset was
4768	 * successful. If so, software must wait a minimum 100ms before sending
4769	 * configuration requests to devices downstream this port.
4770	 *
4771	 * If the link fails to activate, either the device was physically
4772	 * removed or the link is permanently failed.
4773	 */
4774	if (active)
4775		msleep(20);
4776	rc = pcie_wait_for_link_status(pdev, false, active);
4777	if (active) {
4778		if (rc)
4779			rc = pcie_failed_link_retrain(pdev);
4780		if (rc)
4781			return false;
4782
4783		msleep(delay);
4784		return true;
4785	}
4786
4787	if (rc)
4788		return false;
4789
4790	return true;
4791}
4792
4793/**
4794 * pcie_wait_for_link - Wait until link is active or inactive
4795 * @pdev: Bridge device
4796 * @active: waiting for active or inactive?
4797 *
4798 * Use this to wait till link becomes active or inactive.
4799 */
4800bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4801{
4802	return pcie_wait_for_link_delay(pdev, active, 100);
4803}
4804
4805/*
4806 * Find maximum D3cold delay required by all the devices on the bus.  The
4807 * spec says 100 ms, but firmware can lower it and we allow drivers to
4808 * increase it as well.
4809 *
4810 * Called with @pci_bus_sem locked for reading.
4811 */
4812static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4813{
4814	const struct pci_dev *pdev;
4815	int min_delay = 100;
4816	int max_delay = 0;
4817
4818	list_for_each_entry(pdev, &bus->devices, bus_list) {
4819		if (pdev->d3cold_delay < min_delay)
4820			min_delay = pdev->d3cold_delay;
4821		if (pdev->d3cold_delay > max_delay)
4822			max_delay = pdev->d3cold_delay;
4823	}
4824
4825	return max(min_delay, max_delay);
4826}
4827
4828/**
4829 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4830 * @dev: PCI bridge
4831 * @reset_type: reset type in human-readable form
4832 *
4833 * Handle necessary delays before access to the devices on the secondary
4834 * side of the bridge are permitted after D3cold to D0 transition
4835 * or Conventional Reset.
4836 *
4837 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4838 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4839 * 4.3.2.
4840 *
4841 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4842 * failed to become accessible.
4843 */
4844int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4845{
4846	struct pci_dev *child __free(pci_dev_put) = NULL;
4847	int delay;
4848
4849	if (pci_dev_is_disconnected(dev))
4850		return 0;
4851
4852	if (!pci_is_bridge(dev))
4853		return 0;
4854
4855	down_read(&pci_bus_sem);
4856
4857	/*
4858	 * We only deal with devices that are present currently on the bus.
4859	 * For any hot-added devices the access delay is handled in pciehp
4860	 * board_added(). In case of ACPI hotplug the firmware is expected
4861	 * to configure the devices before OS is notified.
4862	 */
4863	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4864		up_read(&pci_bus_sem);
4865		return 0;
4866	}
4867
4868	/* Take d3cold_delay requirements into account */
4869	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4870	if (!delay) {
4871		up_read(&pci_bus_sem);
4872		return 0;
4873	}
4874
4875	child = pci_dev_get(list_first_entry(&dev->subordinate->devices,
4876					     struct pci_dev, bus_list));
4877	up_read(&pci_bus_sem);
4878
4879	/*
4880	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4881	 * accessing the device after reset (that is 1000 ms + 100 ms).
4882	 */
4883	if (!pci_is_pcie(dev)) {
4884		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4885		msleep(1000 + delay);
4886		return 0;
4887	}
4888
4889	/*
4890	 * For PCIe downstream and root ports that do not support speeds
4891	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4892	 * speeds (gen3) we need to wait first for the data link layer to
4893	 * become active.
4894	 *
4895	 * However, 100 ms is the minimum and the PCIe spec says the
4896	 * software must allow at least 1s before it can determine that the
4897	 * device that did not respond is a broken device. Also device can
4898	 * take longer than that to respond if it indicates so through Request
4899	 * Retry Status completions.
4900	 *
4901	 * Therefore we wait for 100 ms and check for the device presence
4902	 * until the timeout expires.
4903	 */
4904	if (!pcie_downstream_port(dev))
4905		return 0;
4906
4907	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4908		u16 status;
4909
4910		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4911		msleep(delay);
4912
4913		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4914			return 0;
4915
4916		/*
4917		 * If the port supports active link reporting we now check
4918		 * whether the link is active and if not bail out early with
4919		 * the assumption that the device is not present anymore.
4920		 */
4921		if (!dev->link_active_reporting)
4922			return -ENOTTY;
4923
4924		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4925		if (!(status & PCI_EXP_LNKSTA_DLLLA))
4926			return -ENOTTY;
4927
4928		return pci_dev_wait(child, reset_type,
4929				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4930	}
4931
4932	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4933		delay);
4934	if (!pcie_wait_for_link_delay(dev, true, delay)) {
4935		/* Did not train, no need to wait any further */
4936		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4937		return -ENOTTY;
4938	}
4939
4940	return pci_dev_wait(child, reset_type,
4941			    PCIE_RESET_READY_POLL_MS - delay);
4942}
4943
4944void pci_reset_secondary_bus(struct pci_dev *dev)
4945{
4946	u16 ctrl;
4947
4948	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4949	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4950	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4951
4952	/*
4953	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4954	 * this to 2ms to ensure that we meet the minimum requirement.
4955	 */
4956	msleep(2);
4957
4958	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4959	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4960}
4961
4962void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4963{
4964	pci_reset_secondary_bus(dev);
4965}
4966
4967/**
4968 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4969 * @dev: Bridge device
4970 *
4971 * Use the bridge control register to assert reset on the secondary bus.
4972 * Devices on the secondary bus are left in power-on state.
4973 */
4974int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4975{
4976	if (!dev->block_cfg_access)
4977		pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n",
4978			      __builtin_return_address(0));
4979	pcibios_reset_secondary_bus(dev);
4980
4981	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4982}
4983EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4984
4985static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4986{
4987	struct pci_dev *pdev;
4988
4989	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4990	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4991		return -ENOTTY;
4992
4993	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4994		if (pdev != dev)
4995			return -ENOTTY;
4996
4997	if (probe)
4998		return 0;
4999
5000	return pci_bridge_secondary_bus_reset(dev->bus->self);
5001}
5002
5003static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5004{
5005	int rc = -ENOTTY;
5006
5007	if (!hotplug || !try_module_get(hotplug->owner))
5008		return rc;
5009
5010	if (hotplug->ops->reset_slot)
5011		rc = hotplug->ops->reset_slot(hotplug, probe);
5012
5013	module_put(hotplug->owner);
5014
5015	return rc;
5016}
5017
5018static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5019{
5020	if (dev->multifunction || dev->subordinate || !dev->slot ||
5021	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5022		return -ENOTTY;
5023
5024	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5025}
5026
5027static u16 cxl_port_dvsec(struct pci_dev *dev)
5028{
5029	return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL,
5030					 PCI_DVSEC_CXL_PORT);
5031}
5032
5033static bool cxl_sbr_masked(struct pci_dev *dev)
5034{
5035	u16 dvsec, reg;
5036	int rc;
5037
5038	dvsec = cxl_port_dvsec(dev);
5039	if (!dvsec)
5040		return false;
5041
5042	rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, &reg);
5043	if (rc || PCI_POSSIBLE_ERROR(reg))
5044		return false;
5045
5046	/*
5047	 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR
5048	 * bit in Bridge Control has no effect.  When 1, the Port generates
5049	 * hot reset when the SBR bit is set to 1.
5050	 */
5051	if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR)
5052		return false;
5053
5054	return true;
5055}
5056
5057static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5058{
5059	struct pci_dev *bridge = pci_upstream_bridge(dev);
5060	int rc;
5061
5062	/*
5063	 * If "dev" is below a CXL port that has SBR control masked, SBR
5064	 * won't do anything, so return error.
5065	 */
5066	if (bridge && cxl_sbr_masked(bridge)) {
5067		if (probe)
5068			return 0;
5069
5070		return -ENOTTY;
5071	}
5072
5073	rc = pci_dev_reset_slot_function(dev, probe);
5074	if (rc != -ENOTTY)
5075		return rc;
5076	return pci_parent_bus_reset(dev, probe);
5077}
5078
5079static int cxl_reset_bus_function(struct pci_dev *dev, bool probe)
5080{
5081	struct pci_dev *bridge;
5082	u16 dvsec, reg, val;
5083	int rc;
5084
5085	bridge = pci_upstream_bridge(dev);
5086	if (!bridge)
5087		return -ENOTTY;
5088
5089	dvsec = cxl_port_dvsec(bridge);
5090	if (!dvsec)
5091		return -ENOTTY;
5092
5093	if (probe)
5094		return 0;
5095
5096	rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, &reg);
5097	if (rc)
5098		return -ENOTTY;
5099
5100	if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) {
5101		val = reg;
5102	} else {
5103		val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR;
5104		pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5105				      val);
5106	}
5107
5108	rc = pci_reset_bus_function(dev, probe);
5109
5110	if (reg != val)
5111		pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5112				      reg);
5113
5114	return rc;
5115}
5116
5117void pci_dev_lock(struct pci_dev *dev)
5118{
5119	/* block PM suspend, driver probe, etc. */
5120	device_lock(&dev->dev);
5121	pci_cfg_access_lock(dev);
5122}
5123EXPORT_SYMBOL_GPL(pci_dev_lock);
5124
5125/* Return 1 on successful lock, 0 on contention */
5126int pci_dev_trylock(struct pci_dev *dev)
5127{
5128	if (device_trylock(&dev->dev)) {
5129		if (pci_cfg_access_trylock(dev))
5130			return 1;
5131		device_unlock(&dev->dev);
5132	}
5133
5134	return 0;
5135}
5136EXPORT_SYMBOL_GPL(pci_dev_trylock);
5137
5138void pci_dev_unlock(struct pci_dev *dev)
5139{
5140	pci_cfg_access_unlock(dev);
5141	device_unlock(&dev->dev);
5142}
5143EXPORT_SYMBOL_GPL(pci_dev_unlock);
5144
5145static void pci_dev_save_and_disable(struct pci_dev *dev)
5146{
5147	const struct pci_error_handlers *err_handler =
5148			dev->driver ? dev->driver->err_handler : NULL;
5149
5150	/*
5151	 * dev->driver->err_handler->reset_prepare() is protected against
5152	 * races with ->remove() by the device lock, which must be held by
5153	 * the caller.
5154	 */
5155	if (err_handler && err_handler->reset_prepare)
5156		err_handler->reset_prepare(dev);
5157	else if (dev->driver)
5158		pci_warn(dev, "resetting");
5159
5160	/*
5161	 * Wake-up device prior to save.  PM registers default to D0 after
5162	 * reset and a simple register restore doesn't reliably return
5163	 * to a non-D0 state anyway.
5164	 */
5165	pci_set_power_state(dev, PCI_D0);
5166
5167	pci_save_state(dev);
5168	/*
5169	 * Disable the device by clearing the Command register, except for
5170	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5171	 * BARs, but also prevents the device from being Bus Master, preventing
5172	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5173	 * compliant devices, INTx-disable prevents legacy interrupts.
5174	 */
5175	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5176}
5177
5178static void pci_dev_restore(struct pci_dev *dev)
5179{
5180	const struct pci_error_handlers *err_handler =
5181			dev->driver ? dev->driver->err_handler : NULL;
5182
5183	pci_restore_state(dev);
5184
5185	/*
5186	 * dev->driver->err_handler->reset_done() is protected against
5187	 * races with ->remove() by the device lock, which must be held by
5188	 * the caller.
5189	 */
5190	if (err_handler && err_handler->reset_done)
5191		err_handler->reset_done(dev);
5192	else if (dev->driver)
5193		pci_warn(dev, "reset done");
5194}
5195
5196/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5197static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5198	{ },
5199	{ pci_dev_specific_reset, .name = "device_specific" },
5200	{ pci_dev_acpi_reset, .name = "acpi" },
5201	{ pcie_reset_flr, .name = "flr" },
5202	{ pci_af_flr, .name = "af_flr" },
5203	{ pci_pm_reset, .name = "pm" },
5204	{ pci_reset_bus_function, .name = "bus" },
5205	{ cxl_reset_bus_function, .name = "cxl_bus" },
5206};
5207
5208static ssize_t reset_method_show(struct device *dev,
5209				 struct device_attribute *attr, char *buf)
5210{
5211	struct pci_dev *pdev = to_pci_dev(dev);
5212	ssize_t len = 0;
5213	int i, m;
5214
5215	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5216		m = pdev->reset_methods[i];
5217		if (!m)
5218			break;
5219
5220		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5221				     pci_reset_fn_methods[m].name);
5222	}
5223
5224	if (len)
5225		len += sysfs_emit_at(buf, len, "\n");
5226
5227	return len;
5228}
5229
5230static int reset_method_lookup(const char *name)
5231{
5232	int m;
5233
5234	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5235		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5236			return m;
5237	}
5238
5239	return 0;	/* not found */
5240}
5241
5242static ssize_t reset_method_store(struct device *dev,
5243				  struct device_attribute *attr,
5244				  const char *buf, size_t count)
5245{
5246	struct pci_dev *pdev = to_pci_dev(dev);
5247	char *options, *tmp_options, *name;
5248	int m, n;
5249	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5250
5251	if (sysfs_streq(buf, "")) {
5252		pdev->reset_methods[0] = 0;
5253		pci_warn(pdev, "All device reset methods disabled by user");
5254		return count;
5255	}
5256
5257	if (sysfs_streq(buf, "default")) {
5258		pci_init_reset_methods(pdev);
5259		return count;
5260	}
5261
5262	options = kstrndup(buf, count, GFP_KERNEL);
5263	if (!options)
5264		return -ENOMEM;
5265
5266	n = 0;
5267	tmp_options = options;
5268	while ((name = strsep(&tmp_options, " ")) != NULL) {
5269		if (sysfs_streq(name, ""))
5270			continue;
5271
5272		name = strim(name);
5273
5274		m = reset_method_lookup(name);
5275		if (!m) {
5276			pci_err(pdev, "Invalid reset method '%s'", name);
5277			goto error;
5278		}
5279
5280		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5281			pci_err(pdev, "Unsupported reset method '%s'", name);
5282			goto error;
5283		}
5284
5285		if (n == PCI_NUM_RESET_METHODS - 1) {
5286			pci_err(pdev, "Too many reset methods\n");
5287			goto error;
5288		}
5289
5290		reset_methods[n++] = m;
5291	}
5292
5293	reset_methods[n] = 0;
5294
5295	/* Warn if dev-specific supported but not highest priority */
5296	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5297	    reset_methods[0] != 1)
5298		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5299	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5300	kfree(options);
5301	return count;
5302
5303error:
5304	/* Leave previous methods unchanged */
5305	kfree(options);
5306	return -EINVAL;
5307}
5308static DEVICE_ATTR_RW(reset_method);
5309
5310static struct attribute *pci_dev_reset_method_attrs[] = {
5311	&dev_attr_reset_method.attr,
5312	NULL,
5313};
5314
5315static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5316						    struct attribute *a, int n)
5317{
5318	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5319
5320	if (!pci_reset_supported(pdev))
5321		return 0;
5322
5323	return a->mode;
5324}
5325
5326const struct attribute_group pci_dev_reset_method_attr_group = {
5327	.attrs = pci_dev_reset_method_attrs,
5328	.is_visible = pci_dev_reset_method_attr_is_visible,
5329};
5330
5331/**
5332 * __pci_reset_function_locked - reset a PCI device function while holding
5333 * the @dev mutex lock.
5334 * @dev: PCI device to reset
5335 *
5336 * Some devices allow an individual function to be reset without affecting
5337 * other functions in the same device.  The PCI device must be responsive
5338 * to PCI config space in order to use this function.
5339 *
5340 * The device function is presumed to be unused and the caller is holding
5341 * the device mutex lock when this function is called.
5342 *
5343 * Resetting the device will make the contents of PCI configuration space
5344 * random, so any caller of this must be prepared to reinitialise the
5345 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5346 * etc.
5347 *
5348 * Returns 0 if the device function was successfully reset or negative if the
5349 * device doesn't support resetting a single function.
5350 */
5351int __pci_reset_function_locked(struct pci_dev *dev)
5352{
5353	int i, m, rc;
5354
5355	might_sleep();
5356
5357	/*
5358	 * A reset method returns -ENOTTY if it doesn't support this device and
5359	 * we should try the next method.
5360	 *
5361	 * If it returns 0 (success), we're finished.  If it returns any other
5362	 * error, we're also finished: this indicates that further reset
5363	 * mechanisms might be broken on the device.
5364	 */
5365	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5366		m = dev->reset_methods[i];
5367		if (!m)
5368			return -ENOTTY;
5369
5370		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5371		if (!rc)
5372			return 0;
5373		if (rc != -ENOTTY)
5374			return rc;
5375	}
5376
5377	return -ENOTTY;
5378}
5379EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5380
5381/**
5382 * pci_init_reset_methods - check whether device can be safely reset
5383 * and store supported reset mechanisms.
5384 * @dev: PCI device to check for reset mechanisms
5385 *
5386 * Some devices allow an individual function to be reset without affecting
5387 * other functions in the same device.  The PCI device must be in D0-D3hot
5388 * state.
5389 *
5390 * Stores reset mechanisms supported by device in reset_methods byte array
5391 * which is a member of struct pci_dev.
5392 */
5393void pci_init_reset_methods(struct pci_dev *dev)
5394{
5395	int m, i, rc;
5396
5397	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5398
5399	might_sleep();
5400
5401	i = 0;
5402	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5403		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5404		if (!rc)
5405			dev->reset_methods[i++] = m;
5406		else if (rc != -ENOTTY)
5407			break;
5408	}
5409
5410	dev->reset_methods[i] = 0;
5411}
5412
5413/**
5414 * pci_reset_function - quiesce and reset a PCI device function
5415 * @dev: PCI device to reset
5416 *
5417 * Some devices allow an individual function to be reset without affecting
5418 * other functions in the same device.  The PCI device must be responsive
5419 * to PCI config space in order to use this function.
5420 *
5421 * This function does not just reset the PCI portion of a device, but
5422 * clears all the state associated with the device.  This function differs
5423 * from __pci_reset_function_locked() in that it saves and restores device state
5424 * over the reset and takes the PCI device lock.
5425 *
5426 * Returns 0 if the device function was successfully reset or negative if the
5427 * device doesn't support resetting a single function.
5428 */
5429int pci_reset_function(struct pci_dev *dev)
5430{
5431	struct pci_dev *bridge;
5432	int rc;
5433
5434	if (!pci_reset_supported(dev))
5435		return -ENOTTY;
5436
5437	/*
5438	 * If there's no upstream bridge, no locking is needed since there is
5439	 * no upstream bridge configuration to hold consistent.
5440	 */
5441	bridge = pci_upstream_bridge(dev);
5442	if (bridge)
5443		pci_dev_lock(bridge);
5444
5445	pci_dev_lock(dev);
5446	pci_dev_save_and_disable(dev);
5447
5448	rc = __pci_reset_function_locked(dev);
5449
5450	pci_dev_restore(dev);
5451	pci_dev_unlock(dev);
5452
5453	if (bridge)
5454		pci_dev_unlock(bridge);
5455
5456	return rc;
5457}
5458EXPORT_SYMBOL_GPL(pci_reset_function);
5459
5460/**
5461 * pci_reset_function_locked - quiesce and reset a PCI device function
5462 * @dev: PCI device to reset
5463 *
5464 * Some devices allow an individual function to be reset without affecting
5465 * other functions in the same device.  The PCI device must be responsive
5466 * to PCI config space in order to use this function.
5467 *
5468 * This function does not just reset the PCI portion of a device, but
5469 * clears all the state associated with the device.  This function differs
5470 * from __pci_reset_function_locked() in that it saves and restores device state
5471 * over the reset.  It also differs from pci_reset_function() in that it
5472 * requires the PCI device lock to be held.
5473 *
5474 * Returns 0 if the device function was successfully reset or negative if the
5475 * device doesn't support resetting a single function.
5476 */
5477int pci_reset_function_locked(struct pci_dev *dev)
5478{
5479	int rc;
5480
5481	if (!pci_reset_supported(dev))
5482		return -ENOTTY;
5483
5484	pci_dev_save_and_disable(dev);
5485
5486	rc = __pci_reset_function_locked(dev);
5487
5488	pci_dev_restore(dev);
5489
5490	return rc;
5491}
5492EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5493
5494/**
5495 * pci_try_reset_function - quiesce and reset a PCI device function
5496 * @dev: PCI device to reset
5497 *
5498 * Same as above, except return -EAGAIN if unable to lock device.
5499 */
5500int pci_try_reset_function(struct pci_dev *dev)
5501{
5502	int rc;
5503
5504	if (!pci_reset_supported(dev))
5505		return -ENOTTY;
5506
5507	if (!pci_dev_trylock(dev))
5508		return -EAGAIN;
5509
5510	pci_dev_save_and_disable(dev);
5511	rc = __pci_reset_function_locked(dev);
5512	pci_dev_restore(dev);
5513	pci_dev_unlock(dev);
5514
5515	return rc;
5516}
5517EXPORT_SYMBOL_GPL(pci_try_reset_function);
5518
5519/* Do any devices on or below this bus prevent a bus reset? */
5520static bool pci_bus_resettable(struct pci_bus *bus)
5521{
5522	struct pci_dev *dev;
5523
5524
5525	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5526		return false;
5527
5528	list_for_each_entry(dev, &bus->devices, bus_list) {
5529		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5530		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5531			return false;
5532	}
5533
5534	return true;
5535}
5536
5537/* Lock devices from the top of the tree down */
5538static void pci_bus_lock(struct pci_bus *bus)
5539{
5540	struct pci_dev *dev;
5541
5542	pci_dev_lock(bus->self);
5543	list_for_each_entry(dev, &bus->devices, bus_list) {
 
5544		if (dev->subordinate)
5545			pci_bus_lock(dev->subordinate);
5546		else
5547			pci_dev_lock(dev);
5548	}
5549}
5550
5551/* Unlock devices from the bottom of the tree up */
5552static void pci_bus_unlock(struct pci_bus *bus)
5553{
5554	struct pci_dev *dev;
5555
5556	list_for_each_entry(dev, &bus->devices, bus_list) {
5557		if (dev->subordinate)
5558			pci_bus_unlock(dev->subordinate);
5559		else
5560			pci_dev_unlock(dev);
5561	}
5562	pci_dev_unlock(bus->self);
5563}
5564
5565/* Return 1 on successful lock, 0 on contention */
5566static int pci_bus_trylock(struct pci_bus *bus)
5567{
5568	struct pci_dev *dev;
5569
5570	if (!pci_dev_trylock(bus->self))
5571		return 0;
5572
5573	list_for_each_entry(dev, &bus->devices, bus_list) {
 
 
5574		if (dev->subordinate) {
5575			if (!pci_bus_trylock(dev->subordinate))
 
5576				goto unlock;
5577		} else if (!pci_dev_trylock(dev))
5578			goto unlock;
5579	}
5580	return 1;
5581
5582unlock:
5583	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5584		if (dev->subordinate)
5585			pci_bus_unlock(dev->subordinate);
5586		else
5587			pci_dev_unlock(dev);
5588	}
5589	pci_dev_unlock(bus->self);
5590	return 0;
5591}
5592
5593/* Do any devices on or below this slot prevent a bus reset? */
5594static bool pci_slot_resettable(struct pci_slot *slot)
5595{
5596	struct pci_dev *dev;
5597
5598	if (slot->bus->self &&
5599	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5600		return false;
5601
5602	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5603		if (!dev->slot || dev->slot != slot)
5604			continue;
5605		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5606		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5607			return false;
5608	}
5609
5610	return true;
5611}
5612
5613/* Lock devices from the top of the tree down */
5614static void pci_slot_lock(struct pci_slot *slot)
5615{
5616	struct pci_dev *dev;
5617
5618	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5619		if (!dev->slot || dev->slot != slot)
5620			continue;
 
5621		if (dev->subordinate)
5622			pci_bus_lock(dev->subordinate);
5623		else
5624			pci_dev_lock(dev);
5625	}
5626}
5627
5628/* Unlock devices from the bottom of the tree up */
5629static void pci_slot_unlock(struct pci_slot *slot)
5630{
5631	struct pci_dev *dev;
5632
5633	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5634		if (!dev->slot || dev->slot != slot)
5635			continue;
5636		if (dev->subordinate)
5637			pci_bus_unlock(dev->subordinate);
5638		pci_dev_unlock(dev);
5639	}
5640}
5641
5642/* Return 1 on successful lock, 0 on contention */
5643static int pci_slot_trylock(struct pci_slot *slot)
5644{
5645	struct pci_dev *dev;
5646
5647	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5648		if (!dev->slot || dev->slot != slot)
5649			continue;
 
 
5650		if (dev->subordinate) {
5651			if (!pci_bus_trylock(dev->subordinate)) {
5652				pci_dev_unlock(dev);
5653				goto unlock;
5654			}
5655		} else if (!pci_dev_trylock(dev))
5656			goto unlock;
5657	}
5658	return 1;
5659
5660unlock:
5661	list_for_each_entry_continue_reverse(dev,
5662					     &slot->bus->devices, bus_list) {
5663		if (!dev->slot || dev->slot != slot)
5664			continue;
5665		if (dev->subordinate)
5666			pci_bus_unlock(dev->subordinate);
5667		else
5668			pci_dev_unlock(dev);
5669	}
5670	return 0;
5671}
5672
5673/*
5674 * Save and disable devices from the top of the tree down while holding
5675 * the @dev mutex lock for the entire tree.
5676 */
5677static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5678{
5679	struct pci_dev *dev;
5680
5681	list_for_each_entry(dev, &bus->devices, bus_list) {
5682		pci_dev_save_and_disable(dev);
5683		if (dev->subordinate)
5684			pci_bus_save_and_disable_locked(dev->subordinate);
5685	}
5686}
5687
5688/*
5689 * Restore devices from top of the tree down while holding @dev mutex lock
5690 * for the entire tree.  Parent bridges need to be restored before we can
5691 * get to subordinate devices.
5692 */
5693static void pci_bus_restore_locked(struct pci_bus *bus)
5694{
5695	struct pci_dev *dev;
5696
5697	list_for_each_entry(dev, &bus->devices, bus_list) {
5698		pci_dev_restore(dev);
5699		if (dev->subordinate) {
5700			pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5701			pci_bus_restore_locked(dev->subordinate);
5702		}
5703	}
5704}
5705
5706/*
5707 * Save and disable devices from the top of the tree down while holding
5708 * the @dev mutex lock for the entire tree.
5709 */
5710static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5711{
5712	struct pci_dev *dev;
5713
5714	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5715		if (!dev->slot || dev->slot != slot)
5716			continue;
5717		pci_dev_save_and_disable(dev);
5718		if (dev->subordinate)
5719			pci_bus_save_and_disable_locked(dev->subordinate);
5720	}
5721}
5722
5723/*
5724 * Restore devices from top of the tree down while holding @dev mutex lock
5725 * for the entire tree.  Parent bridges need to be restored before we can
5726 * get to subordinate devices.
5727 */
5728static void pci_slot_restore_locked(struct pci_slot *slot)
5729{
5730	struct pci_dev *dev;
5731
5732	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5733		if (!dev->slot || dev->slot != slot)
5734			continue;
5735		pci_dev_restore(dev);
5736		if (dev->subordinate) {
5737			pci_bridge_wait_for_secondary_bus(dev, "slot reset");
5738			pci_bus_restore_locked(dev->subordinate);
5739		}
5740	}
5741}
5742
5743static int pci_slot_reset(struct pci_slot *slot, bool probe)
5744{
5745	int rc;
5746
5747	if (!slot || !pci_slot_resettable(slot))
5748		return -ENOTTY;
5749
5750	if (!probe)
5751		pci_slot_lock(slot);
5752
5753	might_sleep();
5754
5755	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5756
5757	if (!probe)
5758		pci_slot_unlock(slot);
5759
5760	return rc;
5761}
5762
5763/**
5764 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5765 * @slot: PCI slot to probe
5766 *
5767 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5768 */
5769int pci_probe_reset_slot(struct pci_slot *slot)
5770{
5771	return pci_slot_reset(slot, PCI_RESET_PROBE);
5772}
5773EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5774
5775/**
5776 * __pci_reset_slot - Try to reset a PCI slot
5777 * @slot: PCI slot to reset
5778 *
5779 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5780 * independent of other slots.  For instance, some slots may support slot power
5781 * control.  In the case of a 1:1 bus to slot architecture, this function may
5782 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5783 * Generally a slot reset should be attempted before a bus reset.  All of the
5784 * function of the slot and any subordinate buses behind the slot are reset
5785 * through this function.  PCI config space of all devices in the slot and
5786 * behind the slot is saved before and restored after reset.
5787 *
5788 * Same as above except return -EAGAIN if the slot cannot be locked
5789 */
5790static int __pci_reset_slot(struct pci_slot *slot)
5791{
5792	int rc;
5793
5794	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5795	if (rc)
5796		return rc;
5797
5798	if (pci_slot_trylock(slot)) {
5799		pci_slot_save_and_disable_locked(slot);
5800		might_sleep();
5801		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5802		pci_slot_restore_locked(slot);
5803		pci_slot_unlock(slot);
5804	} else
5805		rc = -EAGAIN;
5806
5807	return rc;
5808}
5809
5810static int pci_bus_reset(struct pci_bus *bus, bool probe)
5811{
5812	int ret;
5813
5814	if (!bus->self || !pci_bus_resettable(bus))
5815		return -ENOTTY;
5816
5817	if (probe)
5818		return 0;
5819
5820	pci_bus_lock(bus);
5821
5822	might_sleep();
5823
5824	ret = pci_bridge_secondary_bus_reset(bus->self);
5825
5826	pci_bus_unlock(bus);
5827
5828	return ret;
5829}
5830
5831/**
5832 * pci_bus_error_reset - reset the bridge's subordinate bus
5833 * @bridge: The parent device that connects to the bus to reset
5834 *
5835 * This function will first try to reset the slots on this bus if the method is
5836 * available. If slot reset fails or is not available, this will fall back to a
5837 * secondary bus reset.
5838 */
5839int pci_bus_error_reset(struct pci_dev *bridge)
5840{
5841	struct pci_bus *bus = bridge->subordinate;
5842	struct pci_slot *slot;
5843
5844	if (!bus)
5845		return -ENOTTY;
5846
5847	mutex_lock(&pci_slot_mutex);
5848	if (list_empty(&bus->slots))
5849		goto bus_reset;
5850
5851	list_for_each_entry(slot, &bus->slots, list)
5852		if (pci_probe_reset_slot(slot))
5853			goto bus_reset;
5854
5855	list_for_each_entry(slot, &bus->slots, list)
5856		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5857			goto bus_reset;
5858
5859	mutex_unlock(&pci_slot_mutex);
5860	return 0;
5861bus_reset:
5862	mutex_unlock(&pci_slot_mutex);
5863	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5864}
5865
5866/**
5867 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5868 * @bus: PCI bus to probe
5869 *
5870 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5871 */
5872int pci_probe_reset_bus(struct pci_bus *bus)
5873{
5874	return pci_bus_reset(bus, PCI_RESET_PROBE);
5875}
5876EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5877
5878/**
5879 * __pci_reset_bus - Try to reset a PCI bus
5880 * @bus: top level PCI bus to reset
5881 *
5882 * Same as above except return -EAGAIN if the bus cannot be locked
5883 */
5884int __pci_reset_bus(struct pci_bus *bus)
5885{
5886	int rc;
5887
5888	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5889	if (rc)
5890		return rc;
5891
5892	if (pci_bus_trylock(bus)) {
5893		pci_bus_save_and_disable_locked(bus);
5894		might_sleep();
5895		rc = pci_bridge_secondary_bus_reset(bus->self);
5896		pci_bus_restore_locked(bus);
5897		pci_bus_unlock(bus);
5898	} else
5899		rc = -EAGAIN;
5900
5901	return rc;
5902}
5903
5904/**
5905 * pci_reset_bus - Try to reset a PCI bus
5906 * @pdev: top level PCI device to reset via slot/bus
5907 *
5908 * Same as above except return -EAGAIN if the bus cannot be locked
5909 */
5910int pci_reset_bus(struct pci_dev *pdev)
5911{
5912	return (!pci_probe_reset_slot(pdev->slot)) ?
5913	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5914}
5915EXPORT_SYMBOL_GPL(pci_reset_bus);
5916
5917/**
5918 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5919 * @dev: PCI device to query
5920 *
5921 * Returns mmrbc: maximum designed memory read count in bytes or
5922 * appropriate error value.
5923 */
5924int pcix_get_max_mmrbc(struct pci_dev *dev)
5925{
5926	int cap;
5927	u32 stat;
5928
5929	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5930	if (!cap)
5931		return -EINVAL;
5932
5933	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5934		return -EINVAL;
5935
5936	return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5937}
5938EXPORT_SYMBOL(pcix_get_max_mmrbc);
5939
5940/**
5941 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5942 * @dev: PCI device to query
5943 *
5944 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5945 * value.
5946 */
5947int pcix_get_mmrbc(struct pci_dev *dev)
5948{
5949	int cap;
5950	u16 cmd;
5951
5952	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5953	if (!cap)
5954		return -EINVAL;
5955
5956	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5957		return -EINVAL;
5958
5959	return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5960}
5961EXPORT_SYMBOL(pcix_get_mmrbc);
5962
5963/**
5964 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5965 * @dev: PCI device to query
5966 * @mmrbc: maximum memory read count in bytes
5967 *    valid values are 512, 1024, 2048, 4096
5968 *
5969 * If possible sets maximum memory read byte count, some bridges have errata
5970 * that prevent this.
5971 */
5972int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5973{
5974	int cap;
5975	u32 stat, v, o;
5976	u16 cmd;
5977
5978	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5979		return -EINVAL;
5980
5981	v = ffs(mmrbc) - 10;
5982
5983	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5984	if (!cap)
5985		return -EINVAL;
5986
5987	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5988		return -EINVAL;
5989
5990	if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5991		return -E2BIG;
5992
5993	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5994		return -EINVAL;
5995
5996	o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5997	if (o != v) {
5998		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5999			return -EIO;
6000
6001		cmd &= ~PCI_X_CMD_MAX_READ;
6002		cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6003		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6004			return -EIO;
6005	}
6006	return 0;
6007}
6008EXPORT_SYMBOL(pcix_set_mmrbc);
6009
6010/**
6011 * pcie_get_readrq - get PCI Express read request size
6012 * @dev: PCI device to query
6013 *
6014 * Returns maximum memory read request in bytes or appropriate error value.
6015 */
6016int pcie_get_readrq(struct pci_dev *dev)
6017{
6018	u16 ctl;
6019
6020	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6021
6022	return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6023}
6024EXPORT_SYMBOL(pcie_get_readrq);
6025
6026/**
6027 * pcie_set_readrq - set PCI Express maximum memory read request
6028 * @dev: PCI device to query
6029 * @rq: maximum memory read count in bytes
6030 *    valid values are 128, 256, 512, 1024, 2048, 4096
6031 *
6032 * If possible sets maximum memory read request in bytes
6033 */
6034int pcie_set_readrq(struct pci_dev *dev, int rq)
6035{
6036	u16 v;
6037	int ret;
6038	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6039
6040	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6041		return -EINVAL;
6042
6043	/*
6044	 * If using the "performance" PCIe config, we clamp the read rq
6045	 * size to the max packet size to keep the host bridge from
6046	 * generating requests larger than we can cope with.
6047	 */
6048	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6049		int mps = pcie_get_mps(dev);
6050
6051		if (mps < rq)
6052			rq = mps;
6053	}
6054
6055	v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6056
6057	if (bridge->no_inc_mrrs) {
6058		int max_mrrs = pcie_get_readrq(dev);
6059
6060		if (rq > max_mrrs) {
6061			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6062			return -EINVAL;
6063		}
6064	}
6065
6066	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6067						  PCI_EXP_DEVCTL_READRQ, v);
6068
6069	return pcibios_err_to_errno(ret);
6070}
6071EXPORT_SYMBOL(pcie_set_readrq);
6072
6073/**
6074 * pcie_get_mps - get PCI Express maximum payload size
6075 * @dev: PCI device to query
6076 *
6077 * Returns maximum payload size in bytes
6078 */
6079int pcie_get_mps(struct pci_dev *dev)
6080{
6081	u16 ctl;
6082
6083	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6084
6085	return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6086}
6087EXPORT_SYMBOL(pcie_get_mps);
6088
6089/**
6090 * pcie_set_mps - set PCI Express maximum payload size
6091 * @dev: PCI device to query
6092 * @mps: maximum payload size in bytes
6093 *    valid values are 128, 256, 512, 1024, 2048, 4096
6094 *
6095 * If possible sets maximum payload size
6096 */
6097int pcie_set_mps(struct pci_dev *dev, int mps)
6098{
6099	u16 v;
6100	int ret;
6101
6102	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6103		return -EINVAL;
6104
6105	v = ffs(mps) - 8;
6106	if (v > dev->pcie_mpss)
6107		return -EINVAL;
6108	v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6109
6110	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6111						  PCI_EXP_DEVCTL_PAYLOAD, v);
6112
6113	return pcibios_err_to_errno(ret);
6114}
6115EXPORT_SYMBOL(pcie_set_mps);
6116
6117static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6118{
6119	return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6120}
6121
6122int pcie_link_speed_mbps(struct pci_dev *pdev)
6123{
6124	u16 lnksta;
6125	int err;
6126
6127	err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6128	if (err)
6129		return err;
6130
6131	return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6132}
6133EXPORT_SYMBOL(pcie_link_speed_mbps);
6134
6135/**
6136 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6137 *			      device and its bandwidth limitation
6138 * @dev: PCI device to query
6139 * @limiting_dev: storage for device causing the bandwidth limitation
6140 * @speed: storage for speed of limiting device
6141 * @width: storage for width of limiting device
6142 *
6143 * Walk up the PCI device chain and find the point where the minimum
6144 * bandwidth is available.  Return the bandwidth available there and (if
6145 * limiting_dev, speed, and width pointers are supplied) information about
6146 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6147 * raw bandwidth.
6148 */
6149u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6150			     enum pci_bus_speed *speed,
6151			     enum pcie_link_width *width)
6152{
6153	u16 lnksta;
6154	enum pci_bus_speed next_speed;
6155	enum pcie_link_width next_width;
6156	u32 bw, next_bw;
6157
6158	if (speed)
6159		*speed = PCI_SPEED_UNKNOWN;
6160	if (width)
6161		*width = PCIE_LNK_WIDTH_UNKNOWN;
6162
6163	bw = 0;
6164
6165	while (dev) {
6166		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6167
6168		next_speed = to_pcie_link_speed(lnksta);
6169		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6170
6171		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6172
6173		/* Check if current device limits the total bandwidth */
6174		if (!bw || next_bw <= bw) {
6175			bw = next_bw;
6176
6177			if (limiting_dev)
6178				*limiting_dev = dev;
6179			if (speed)
6180				*speed = next_speed;
6181			if (width)
6182				*width = next_width;
6183		}
6184
6185		dev = pci_upstream_bridge(dev);
6186	}
6187
6188	return bw;
6189}
6190EXPORT_SYMBOL(pcie_bandwidth_available);
6191
6192/**
6193 * pcie_get_supported_speeds - query Supported Link Speed Vector
6194 * @dev: PCI device to query
6195 *
6196 * Query @dev supported link speeds.
6197 *
6198 * Implementation Note in PCIe r6.0 sec 7.5.3.18 recommends determining
6199 * supported link speeds using the Supported Link Speeds Vector in the Link
6200 * Capabilities 2 Register (when available).
6201 *
6202 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.
6203 *
6204 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, Supported Link
6205 * Speeds field in Link Capabilities is used and only 2.5 GT/s and 5.0 GT/s
6206 * speeds were defined.
6207 *
6208 * For @dev without Supported Link Speed Vector, the field is synthesized
6209 * from the Max Link Speed field in the Link Capabilities Register.
6210 *
6211 * Return: Supported Link Speeds Vector (+ reserved 0 at LSB).
6212 */
6213u8 pcie_get_supported_speeds(struct pci_dev *dev)
6214{
6215	u32 lnkcap2, lnkcap;
6216	u8 speeds;
6217
6218	/*
6219	 * Speeds retain the reserved 0 at LSB before PCIe Supported Link
6220	 * Speeds Vector to allow using SLS Vector bit defines directly.
 
 
 
 
 
6221	 */
6222	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6223	speeds = lnkcap2 & PCI_EXP_LNKCAP2_SLS;
6224
6225	/* Ignore speeds higher than Max Link Speed */
6226	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6227	speeds &= GENMASK(lnkcap & PCI_EXP_LNKCAP_SLS, 0);
6228
6229	/* PCIe r3.0-compliant */
6230	if (speeds)
6231		return speeds;
6232
6233	/* Synthesize from the Max Link Speed field */
6234	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6235		speeds = PCI_EXP_LNKCAP2_SLS_5_0GB | PCI_EXP_LNKCAP2_SLS_2_5GB;
6236	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6237		speeds = PCI_EXP_LNKCAP2_SLS_2_5GB;
6238
6239	return speeds;
6240}
6241
6242/**
6243 * pcie_get_speed_cap - query for the PCI device's link speed capability
6244 * @dev: PCI device to query
6245 *
6246 * Query the PCI device speed capability.
6247 *
6248 * Return: the maximum link speed supported by the device.
6249 */
6250enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6251{
6252	return PCIE_LNKCAP2_SLS2SPEED(dev->supported_speeds);
6253}
6254EXPORT_SYMBOL(pcie_get_speed_cap);
6255
6256/**
6257 * pcie_get_width_cap - query for the PCI device's link width capability
6258 * @dev: PCI device to query
6259 *
6260 * Query the PCI device width capability.  Return the maximum link width
6261 * supported by the device.
6262 */
6263enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6264{
6265	u32 lnkcap;
6266
6267	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6268	if (lnkcap)
6269		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6270
6271	return PCIE_LNK_WIDTH_UNKNOWN;
6272}
6273EXPORT_SYMBOL(pcie_get_width_cap);
6274
6275/**
6276 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6277 * @dev: PCI device
6278 * @speed: storage for link speed
6279 * @width: storage for link width
6280 *
6281 * Calculate a PCI device's link bandwidth by querying for its link speed
6282 * and width, multiplying them, and applying encoding overhead.  The result
6283 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6284 */
6285static u32 pcie_bandwidth_capable(struct pci_dev *dev,
6286				  enum pci_bus_speed *speed,
6287				  enum pcie_link_width *width)
6288{
6289	*speed = pcie_get_speed_cap(dev);
6290	*width = pcie_get_width_cap(dev);
6291
6292	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6293		return 0;
6294
6295	return *width * PCIE_SPEED2MBS_ENC(*speed);
6296}
6297
6298/**
6299 * __pcie_print_link_status - Report the PCI device's link speed and width
6300 * @dev: PCI device to query
6301 * @verbose: Print info even when enough bandwidth is available
6302 *
6303 * If the available bandwidth at the device is less than the device is
6304 * capable of, report the device's maximum possible bandwidth and the
6305 * upstream link that limits its performance.  If @verbose, always print
6306 * the available bandwidth, even if the device isn't constrained.
6307 */
6308void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6309{
6310	enum pcie_link_width width, width_cap;
6311	enum pci_bus_speed speed, speed_cap;
6312	struct pci_dev *limiting_dev = NULL;
6313	u32 bw_avail, bw_cap;
6314
6315	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6316	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6317
6318	if (bw_avail >= bw_cap && verbose)
6319		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6320			 bw_cap / 1000, bw_cap % 1000,
6321			 pci_speed_string(speed_cap), width_cap);
6322	else if (bw_avail < bw_cap)
6323		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6324			 bw_avail / 1000, bw_avail % 1000,
6325			 pci_speed_string(speed), width,
6326			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6327			 bw_cap / 1000, bw_cap % 1000,
6328			 pci_speed_string(speed_cap), width_cap);
6329}
6330
6331/**
6332 * pcie_print_link_status - Report the PCI device's link speed and width
6333 * @dev: PCI device to query
6334 *
6335 * Report the available bandwidth at the device.
6336 */
6337void pcie_print_link_status(struct pci_dev *dev)
6338{
6339	__pcie_print_link_status(dev, true);
6340}
6341EXPORT_SYMBOL(pcie_print_link_status);
6342
6343/**
6344 * pci_select_bars - Make BAR mask from the type of resource
6345 * @dev: the PCI device for which BAR mask is made
6346 * @flags: resource type mask to be selected
6347 *
6348 * This helper routine makes bar mask from the type of resource.
6349 */
6350int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6351{
6352	int i, bars = 0;
6353	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6354		if (pci_resource_flags(dev, i) & flags)
6355			bars |= (1 << i);
6356	return bars;
6357}
6358EXPORT_SYMBOL(pci_select_bars);
6359
6360/* Some architectures require additional programming to enable VGA */
6361static arch_set_vga_state_t arch_set_vga_state;
6362
6363void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6364{
6365	arch_set_vga_state = func;	/* NULL disables */
6366}
6367
6368static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6369				  unsigned int command_bits, u32 flags)
6370{
6371	if (arch_set_vga_state)
6372		return arch_set_vga_state(dev, decode, command_bits,
6373						flags);
6374	return 0;
6375}
6376
6377/**
6378 * pci_set_vga_state - set VGA decode state on device and parents if requested
6379 * @dev: the PCI device
6380 * @decode: true = enable decoding, false = disable decoding
6381 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6382 * @flags: traverse ancestors and change bridges
6383 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6384 */
6385int pci_set_vga_state(struct pci_dev *dev, bool decode,
6386		      unsigned int command_bits, u32 flags)
6387{
6388	struct pci_bus *bus;
6389	struct pci_dev *bridge;
6390	u16 cmd;
6391	int rc;
6392
6393	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6394
6395	/* ARCH specific VGA enables */
6396	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6397	if (rc)
6398		return rc;
6399
6400	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6401		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6402		if (decode)
6403			cmd |= command_bits;
6404		else
6405			cmd &= ~command_bits;
6406		pci_write_config_word(dev, PCI_COMMAND, cmd);
6407	}
6408
6409	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6410		return 0;
6411
6412	bus = dev->bus;
6413	while (bus) {
6414		bridge = bus->self;
6415		if (bridge) {
6416			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6417					     &cmd);
6418			if (decode)
6419				cmd |= PCI_BRIDGE_CTL_VGA;
6420			else
6421				cmd &= ~PCI_BRIDGE_CTL_VGA;
6422			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6423					      cmd);
6424		}
6425		bus = bus->parent;
6426	}
6427	return 0;
6428}
6429
6430#ifdef CONFIG_ACPI
6431bool pci_pr3_present(struct pci_dev *pdev)
6432{
6433	struct acpi_device *adev;
6434
6435	if (acpi_disabled)
6436		return false;
6437
6438	adev = ACPI_COMPANION(&pdev->dev);
6439	if (!adev)
6440		return false;
6441
6442	return adev->power.flags.power_resources &&
6443		acpi_has_method(adev->handle, "_PR3");
6444}
6445EXPORT_SYMBOL_GPL(pci_pr3_present);
6446#endif
6447
6448/**
6449 * pci_add_dma_alias - Add a DMA devfn alias for a device
6450 * @dev: the PCI device for which alias is added
6451 * @devfn_from: alias slot and function
6452 * @nr_devfns: number of subsequent devfns to alias
6453 *
6454 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6455 * which is used to program permissible bus-devfn source addresses for DMA
6456 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6457 * and are useful for devices generating DMA requests beyond or different
6458 * from their logical bus-devfn.  Examples include device quirks where the
6459 * device simply uses the wrong devfn, as well as non-transparent bridges
6460 * where the alias may be a proxy for devices in another domain.
6461 *
6462 * IOMMU group creation is performed during device discovery or addition,
6463 * prior to any potential DMA mapping and therefore prior to driver probing
6464 * (especially for userspace assigned devices where IOMMU group definition
6465 * cannot be left as a userspace activity).  DMA aliases should therefore
6466 * be configured via quirks, such as the PCI fixup header quirk.
6467 */
6468void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6469		       unsigned int nr_devfns)
6470{
6471	int devfn_to;
6472
6473	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6474	devfn_to = devfn_from + nr_devfns - 1;
6475
6476	if (!dev->dma_alias_mask)
6477		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6478	if (!dev->dma_alias_mask) {
6479		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6480		return;
6481	}
6482
6483	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6484
6485	if (nr_devfns == 1)
6486		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6487				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6488	else if (nr_devfns > 1)
6489		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6490				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6491				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6492}
6493
6494bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6495{
6496	return (dev1->dma_alias_mask &&
6497		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6498	       (dev2->dma_alias_mask &&
6499		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6500	       pci_real_dma_dev(dev1) == dev2 ||
6501	       pci_real_dma_dev(dev2) == dev1;
6502}
6503
6504bool pci_device_is_present(struct pci_dev *pdev)
6505{
6506	u32 v;
6507
6508	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6509	pdev = pci_physfn(pdev);
6510	if (pci_dev_is_disconnected(pdev))
6511		return false;
6512	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6513}
6514EXPORT_SYMBOL_GPL(pci_device_is_present);
6515
6516void pci_ignore_hotplug(struct pci_dev *dev)
6517{
6518	struct pci_dev *bridge = dev->bus->self;
6519
6520	dev->ignore_hotplug = 1;
6521	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6522	if (bridge)
6523		bridge->ignore_hotplug = 1;
6524}
6525EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6526
6527/**
6528 * pci_real_dma_dev - Get PCI DMA device for PCI device
6529 * @dev: the PCI device that may have a PCI DMA alias
6530 *
6531 * Permits the platform to provide architecture-specific functionality to
6532 * devices needing to alias DMA to another PCI device on another PCI bus. If
6533 * the PCI device is on the same bus, it is recommended to use
6534 * pci_add_dma_alias(). This is the default implementation. Architecture
6535 * implementations can override this.
6536 */
6537struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6538{
6539	return dev;
6540}
6541
6542resource_size_t __weak pcibios_default_alignment(void)
6543{
6544	return 0;
6545}
6546
6547/*
6548 * Arches that don't want to expose struct resource to userland as-is in
6549 * sysfs and /proc can implement their own pci_resource_to_user().
6550 */
6551void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6552				 const struct resource *rsrc,
6553				 resource_size_t *start, resource_size_t *end)
6554{
6555	*start = rsrc->start;
6556	*end = rsrc->end;
6557}
6558
6559static char *resource_alignment_param;
6560static DEFINE_SPINLOCK(resource_alignment_lock);
6561
6562/**
6563 * pci_specified_resource_alignment - get resource alignment specified by user.
6564 * @dev: the PCI device to get
6565 * @resize: whether or not to change resources' size when reassigning alignment
6566 *
6567 * RETURNS: Resource alignment if it is specified.
6568 *          Zero if it is not specified.
6569 */
6570static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6571							bool *resize)
6572{
6573	int align_order, count;
6574	resource_size_t align = pcibios_default_alignment();
6575	const char *p;
6576	int ret;
6577
6578	spin_lock(&resource_alignment_lock);
6579	p = resource_alignment_param;
6580	if (!p || !*p)
6581		goto out;
6582	if (pci_has_flag(PCI_PROBE_ONLY)) {
6583		align = 0;
6584		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6585		goto out;
6586	}
6587
6588	while (*p) {
6589		count = 0;
6590		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6591		    p[count] == '@') {
6592			p += count + 1;
6593			if (align_order > 63) {
6594				pr_err("PCI: Invalid requested alignment (order %d)\n",
6595				       align_order);
6596				align_order = PAGE_SHIFT;
6597			}
6598		} else {
6599			align_order = PAGE_SHIFT;
6600		}
6601
6602		ret = pci_dev_str_match(dev, p, &p);
6603		if (ret == 1) {
6604			*resize = true;
6605			align = 1ULL << align_order;
6606			break;
6607		} else if (ret < 0) {
6608			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6609			       p);
6610			break;
6611		}
6612
6613		if (*p != ';' && *p != ',') {
6614			/* End of param or invalid format */
6615			break;
6616		}
6617		p++;
6618	}
6619out:
6620	spin_unlock(&resource_alignment_lock);
6621	return align;
6622}
6623
6624static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6625					   resource_size_t align, bool resize)
6626{
6627	struct resource *r = &dev->resource[bar];
6628	const char *r_name = pci_resource_name(dev, bar);
6629	resource_size_t size;
6630
6631	if (!(r->flags & IORESOURCE_MEM))
6632		return;
6633
6634	if (r->flags & IORESOURCE_PCI_FIXED) {
6635		pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6636			 r_name, r, (unsigned long long)align);
6637		return;
6638	}
6639
6640	size = resource_size(r);
6641	if (size >= align)
6642		return;
6643
6644	/*
6645	 * Increase the alignment of the resource.  There are two ways we
6646	 * can do this:
6647	 *
6648	 * 1) Increase the size of the resource.  BARs are aligned on their
6649	 *    size, so when we reallocate space for this resource, we'll
6650	 *    allocate it with the larger alignment.  This also prevents
6651	 *    assignment of any other BARs inside the alignment region, so
6652	 *    if we're requesting page alignment, this means no other BARs
6653	 *    will share the page.
6654	 *
6655	 *    The disadvantage is that this makes the resource larger than
6656	 *    the hardware BAR, which may break drivers that compute things
6657	 *    based on the resource size, e.g., to find registers at a
6658	 *    fixed offset before the end of the BAR.
6659	 *
6660	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6661	 *    set r->start to the desired alignment.  By itself this
6662	 *    doesn't prevent other BARs being put inside the alignment
6663	 *    region, but if we realign *every* resource of every device in
6664	 *    the system, none of them will share an alignment region.
6665	 *
6666	 * When the user has requested alignment for only some devices via
6667	 * the "pci=resource_alignment" argument, "resize" is true and we
6668	 * use the first method.  Otherwise we assume we're aligning all
6669	 * devices and we use the second.
6670	 */
6671
6672	pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6673		 r_name, r, (unsigned long long)align);
6674
6675	if (resize) {
6676		r->start = 0;
6677		r->end = align - 1;
6678	} else {
6679		r->flags &= ~IORESOURCE_SIZEALIGN;
6680		r->flags |= IORESOURCE_STARTALIGN;
6681		resource_set_range(r, align, size);
 
6682	}
6683	r->flags |= IORESOURCE_UNSET;
6684}
6685
6686/*
6687 * This function disables memory decoding and releases memory resources
6688 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6689 * It also rounds up size to specified alignment.
6690 * Later on, the kernel will assign page-aligned memory resource back
6691 * to the device.
6692 */
6693void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6694{
6695	int i;
6696	struct resource *r;
6697	resource_size_t align;
6698	u16 command;
6699	bool resize = false;
6700
6701	/*
6702	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6703	 * 3.4.1.11.  Their resources are allocated from the space
6704	 * described by the VF BARx register in the PF's SR-IOV capability.
6705	 * We can't influence their alignment here.
6706	 */
6707	if (dev->is_virtfn)
6708		return;
6709
6710	/* check if specified PCI is target device to reassign */
6711	align = pci_specified_resource_alignment(dev, &resize);
6712	if (!align)
6713		return;
6714
6715	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6716	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6717		pci_warn(dev, "Can't reassign resources to host bridge\n");
6718		return;
6719	}
6720
6721	pci_read_config_word(dev, PCI_COMMAND, &command);
6722	command &= ~PCI_COMMAND_MEMORY;
6723	pci_write_config_word(dev, PCI_COMMAND, command);
6724
6725	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6726		pci_request_resource_alignment(dev, i, align, resize);
6727
6728	/*
6729	 * Need to disable bridge's resource window,
6730	 * to enable the kernel to reassign new resource
6731	 * window later on.
6732	 */
6733	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6734		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6735			r = &dev->resource[i];
6736			if (!(r->flags & IORESOURCE_MEM))
6737				continue;
6738			r->flags |= IORESOURCE_UNSET;
6739			r->end = resource_size(r) - 1;
6740			r->start = 0;
6741		}
6742		pci_disable_bridge_window(dev);
6743	}
6744}
6745
6746static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6747{
6748	size_t count = 0;
6749
6750	spin_lock(&resource_alignment_lock);
6751	if (resource_alignment_param)
6752		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6753	spin_unlock(&resource_alignment_lock);
6754
6755	return count;
6756}
6757
6758static ssize_t resource_alignment_store(const struct bus_type *bus,
6759					const char *buf, size_t count)
6760{
6761	char *param, *old, *end;
6762
6763	if (count >= (PAGE_SIZE - 1))
6764		return -EINVAL;
6765
6766	param = kstrndup(buf, count, GFP_KERNEL);
6767	if (!param)
6768		return -ENOMEM;
6769
6770	end = strchr(param, '\n');
6771	if (end)
6772		*end = '\0';
6773
6774	spin_lock(&resource_alignment_lock);
6775	old = resource_alignment_param;
6776	if (strlen(param)) {
6777		resource_alignment_param = param;
6778	} else {
6779		kfree(param);
6780		resource_alignment_param = NULL;
6781	}
6782	spin_unlock(&resource_alignment_lock);
6783
6784	kfree(old);
6785
6786	return count;
6787}
6788
6789static BUS_ATTR_RW(resource_alignment);
6790
6791static int __init pci_resource_alignment_sysfs_init(void)
6792{
6793	return bus_create_file(&pci_bus_type,
6794					&bus_attr_resource_alignment);
6795}
6796late_initcall(pci_resource_alignment_sysfs_init);
6797
6798static void pci_no_domains(void)
6799{
6800#ifdef CONFIG_PCI_DOMAINS
6801	pci_domains_supported = 0;
6802#endif
6803}
6804
6805#ifdef CONFIG_PCI_DOMAINS_GENERIC
6806static DEFINE_IDA(pci_domain_nr_static_ida);
6807static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6808
6809static void of_pci_reserve_static_domain_nr(void)
6810{
6811	struct device_node *np;
6812	int domain_nr;
6813
6814	for_each_node_by_type(np, "pci") {
6815		domain_nr = of_get_pci_domain_nr(np);
6816		if (domain_nr < 0)
6817			continue;
6818		/*
6819		 * Permanently allocate domain_nr in dynamic_ida
6820		 * to prevent it from dynamic allocation.
6821		 */
6822		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6823				domain_nr, domain_nr, GFP_KERNEL);
6824	}
6825}
6826
6827static int of_pci_bus_find_domain_nr(struct device *parent)
6828{
6829	static bool static_domains_reserved = false;
6830	int domain_nr;
6831
6832	/* On the first call scan device tree for static allocations. */
6833	if (!static_domains_reserved) {
6834		of_pci_reserve_static_domain_nr();
6835		static_domains_reserved = true;
6836	}
6837
6838	if (parent) {
6839		/*
6840		 * If domain is in DT, allocate it in static IDA.  This
6841		 * prevents duplicate static allocations in case of errors
6842		 * in DT.
6843		 */
6844		domain_nr = of_get_pci_domain_nr(parent->of_node);
6845		if (domain_nr >= 0)
6846			return ida_alloc_range(&pci_domain_nr_static_ida,
6847					       domain_nr, domain_nr,
6848					       GFP_KERNEL);
6849	}
6850
6851	/*
6852	 * If domain was not specified in DT, choose a free ID from dynamic
6853	 * allocations. All domain numbers from DT are permanently in
6854	 * dynamic allocations to prevent assigning them to other DT nodes
6855	 * without static domain.
6856	 */
6857	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6858}
6859
6860static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6861{
6862	if (domain_nr < 0)
6863		return;
6864
6865	/* Release domain from IDA where it was allocated. */
6866	if (of_get_pci_domain_nr(parent->of_node) == domain_nr)
6867		ida_free(&pci_domain_nr_static_ida, domain_nr);
6868	else
6869		ida_free(&pci_domain_nr_dynamic_ida, domain_nr);
6870}
6871
6872int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6873{
6874	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6875			       acpi_pci_bus_find_domain_nr(bus);
6876}
6877
6878void pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6879{
6880	if (!acpi_disabled)
6881		return;
6882	of_pci_bus_release_domain_nr(parent, domain_nr);
6883}
6884#endif
6885
6886/**
6887 * pci_ext_cfg_avail - can we access extended PCI config space?
6888 *
6889 * Returns 1 if we can access PCI extended config space (offsets
6890 * greater than 0xff). This is the default implementation. Architecture
6891 * implementations can override this.
6892 */
6893int __weak pci_ext_cfg_avail(void)
6894{
6895	return 1;
6896}
6897
6898void __weak pci_fixup_cardbus(struct pci_bus *bus)
6899{
6900}
6901EXPORT_SYMBOL(pci_fixup_cardbus);
6902
6903static int __init pci_setup(char *str)
6904{
6905	while (str) {
6906		char *k = strchr(str, ',');
6907		if (k)
6908			*k++ = 0;
6909		if (*str && (str = pcibios_setup(str)) && *str) {
6910			if (!strcmp(str, "nomsi")) {
6911				pci_no_msi();
6912			} else if (!strncmp(str, "noats", 5)) {
6913				pr_info("PCIe: ATS is disabled\n");
6914				pcie_ats_disabled = true;
6915			} else if (!strcmp(str, "noaer")) {
6916				pci_no_aer();
6917			} else if (!strcmp(str, "earlydump")) {
6918				pci_early_dump = true;
6919			} else if (!strncmp(str, "realloc=", 8)) {
6920				pci_realloc_get_opt(str + 8);
6921			} else if (!strncmp(str, "realloc", 7)) {
6922				pci_realloc_get_opt("on");
6923			} else if (!strcmp(str, "nodomains")) {
6924				pci_no_domains();
6925			} else if (!strncmp(str, "noari", 5)) {
6926				pcie_ari_disabled = true;
6927			} else if (!strncmp(str, "notph", 5)) {
6928				pci_no_tph();
6929			} else if (!strncmp(str, "cbiosize=", 9)) {
6930				pci_cardbus_io_size = memparse(str + 9, &str);
6931			} else if (!strncmp(str, "cbmemsize=", 10)) {
6932				pci_cardbus_mem_size = memparse(str + 10, &str);
6933			} else if (!strncmp(str, "resource_alignment=", 19)) {
6934				resource_alignment_param = str + 19;
6935			} else if (!strncmp(str, "ecrc=", 5)) {
6936				pcie_ecrc_get_policy(str + 5);
6937			} else if (!strncmp(str, "hpiosize=", 9)) {
6938				pci_hotplug_io_size = memparse(str + 9, &str);
6939			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6940				pci_hotplug_mmio_size = memparse(str + 11, &str);
6941			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6942				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6943			} else if (!strncmp(str, "hpmemsize=", 10)) {
6944				pci_hotplug_mmio_size = memparse(str + 10, &str);
6945				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6946			} else if (!strncmp(str, "hpbussize=", 10)) {
6947				pci_hotplug_bus_size =
6948					simple_strtoul(str + 10, &str, 0);
6949				if (pci_hotplug_bus_size > 0xff)
6950					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6951			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6952				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6953			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6954				pcie_bus_config = PCIE_BUS_SAFE;
6955			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6956				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6957			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6958				pcie_bus_config = PCIE_BUS_PEER2PEER;
6959			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6960				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6961			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6962				disable_acs_redir_param = str + 18;
6963			} else if (!strncmp(str, "config_acs=", 11)) {
6964				config_acs_param = str + 11;
6965			} else {
6966				pr_err("PCI: Unknown option `%s'\n", str);
6967			}
6968		}
6969		str = k;
6970	}
6971	return 0;
6972}
6973early_param("pci", pci_setup);
6974
6975/*
6976 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6977 * in pci_setup(), above, to point to data in the __initdata section which
6978 * will be freed after the init sequence is complete. We can't allocate memory
6979 * in pci_setup() because some architectures do not have any memory allocation
6980 * service available during an early_param() call. So we allocate memory and
6981 * copy the variable here before the init section is freed.
6982 *
6983 */
6984static int __init pci_realloc_setup_params(void)
6985{
6986	resource_alignment_param = kstrdup(resource_alignment_param,
6987					   GFP_KERNEL);
6988	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6989	config_acs_param = kstrdup(config_acs_param, GFP_KERNEL);
6990
6991	return 0;
6992}
6993pure_initcall(pci_realloc_setup_params);