Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/dma-mapping.h>
  18#include "ath9k.h"
  19#include "ar9003_mac.h"
  20
  21#define SKB_CB_ATHBUF(__skb)	(*((struct ath_rxbuf **)__skb->cb))
  22
  23static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
  24{
  25	return sc->ps_enabled &&
  26	       (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
  27}
  28
  29/*
  30 * Setup and link descriptors.
  31 *
  32 * 11N: we can no longer afford to self link the last descriptor.
  33 * MAC acknowledges BA status as long as it copies frames to host
  34 * buffer (or rx fifo). This can incorrectly acknowledge packets
  35 * to a sender if last desc is self-linked.
  36 */
  37static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf,
  38			    bool flush)
  39{
  40	struct ath_hw *ah = sc->sc_ah;
  41	struct ath_common *common = ath9k_hw_common(ah);
  42	struct ath_desc *ds;
  43	struct sk_buff *skb;
  44
  45	ds = bf->bf_desc;
  46	ds->ds_link = 0; /* link to null */
  47	ds->ds_data = bf->bf_buf_addr;
  48
  49	/* virtual addr of the beginning of the buffer. */
  50	skb = bf->bf_mpdu;
  51	BUG_ON(skb == NULL);
  52	ds->ds_vdata = skb->data;
  53
  54	/*
  55	 * setup rx descriptors. The rx_bufsize here tells the hardware
  56	 * how much data it can DMA to us and that we are prepared
  57	 * to process
  58	 */
  59	ath9k_hw_setuprxdesc(ah, ds,
  60			     common->rx_bufsize,
  61			     0);
  62
  63	if (sc->rx.rxlink)
  64		*sc->rx.rxlink = bf->bf_daddr;
  65	else if (!flush)
  66		ath9k_hw_putrxbuf(ah, bf->bf_daddr);
  67
  68	sc->rx.rxlink = &ds->ds_link;
  69}
  70
  71static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf,
  72			      bool flush)
  73{
  74	if (sc->rx.buf_hold)
  75		ath_rx_buf_link(sc, sc->rx.buf_hold, flush);
  76
  77	sc->rx.buf_hold = bf;
  78}
  79
  80static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
  81{
  82	/* XXX block beacon interrupts */
  83	ath9k_hw_setantenna(sc->sc_ah, antenna);
  84	sc->rx.defant = antenna;
  85	sc->rx.rxotherant = 0;
  86}
  87
  88static void ath_opmode_init(struct ath_softc *sc)
  89{
  90	struct ath_hw *ah = sc->sc_ah;
  91	struct ath_common *common = ath9k_hw_common(ah);
  92
  93	u32 rfilt, mfilt[2];
  94
  95	/* configure rx filter */
  96	rfilt = ath_calcrxfilter(sc);
  97	ath9k_hw_setrxfilter(ah, rfilt);
  98
  99	/* configure bssid mask */
 100	ath_hw_setbssidmask(common);
 101
 102	/* configure operational mode */
 103	ath9k_hw_setopmode(ah);
 104
 105	/* calculate and install multicast filter */
 106	mfilt[0] = mfilt[1] = ~0;
 107	ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
 108}
 109
 110static bool ath_rx_edma_buf_link(struct ath_softc *sc,
 111				 enum ath9k_rx_qtype qtype)
 112{
 113	struct ath_hw *ah = sc->sc_ah;
 114	struct ath_rx_edma *rx_edma;
 115	struct sk_buff *skb;
 116	struct ath_rxbuf *bf;
 117
 118	rx_edma = &sc->rx.rx_edma[qtype];
 119	if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
 120		return false;
 121
 122	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
 123	list_del_init(&bf->list);
 124
 125	skb = bf->bf_mpdu;
 126
 127	memset(skb->data, 0, ah->caps.rx_status_len);
 128	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
 129				ah->caps.rx_status_len, DMA_TO_DEVICE);
 130
 131	SKB_CB_ATHBUF(skb) = bf;
 132	ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
 133	__skb_queue_tail(&rx_edma->rx_fifo, skb);
 134
 135	return true;
 136}
 137
 138static void ath_rx_addbuffer_edma(struct ath_softc *sc,
 139				  enum ath9k_rx_qtype qtype)
 140{
 141	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 142	struct ath_rxbuf *bf, *tbf;
 143
 144	if (list_empty(&sc->rx.rxbuf)) {
 145		ath_dbg(common, QUEUE, "No free rx buf available\n");
 146		return;
 147	}
 148
 149	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
 150		if (!ath_rx_edma_buf_link(sc, qtype))
 151			break;
 152
 153}
 154
 155static void ath_rx_remove_buffer(struct ath_softc *sc,
 156				 enum ath9k_rx_qtype qtype)
 157{
 158	struct ath_rxbuf *bf;
 159	struct ath_rx_edma *rx_edma;
 160	struct sk_buff *skb;
 161
 162	rx_edma = &sc->rx.rx_edma[qtype];
 163
 164	while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
 165		bf = SKB_CB_ATHBUF(skb);
 166		BUG_ON(!bf);
 167		list_add_tail(&bf->list, &sc->rx.rxbuf);
 168	}
 169}
 170
 171static void ath_rx_edma_cleanup(struct ath_softc *sc)
 172{
 173	struct ath_hw *ah = sc->sc_ah;
 174	struct ath_common *common = ath9k_hw_common(ah);
 175	struct ath_rxbuf *bf;
 176
 177	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
 178	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
 179
 180	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
 181		if (bf->bf_mpdu) {
 182			dma_unmap_single(sc->dev, bf->bf_buf_addr,
 183					common->rx_bufsize,
 184					DMA_BIDIRECTIONAL);
 185			dev_kfree_skb_any(bf->bf_mpdu);
 186			bf->bf_buf_addr = 0;
 187			bf->bf_mpdu = NULL;
 188		}
 189	}
 190}
 191
 192static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
 193{
 194	__skb_queue_head_init(&rx_edma->rx_fifo);
 195	rx_edma->rx_fifo_hwsize = size;
 196}
 197
 198static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
 199{
 200	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 201	struct ath_hw *ah = sc->sc_ah;
 202	struct sk_buff *skb;
 203	struct ath_rxbuf *bf;
 204	int error = 0, i;
 205	u32 size;
 206
 207	ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
 208				    ah->caps.rx_status_len);
 209
 210	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
 211			       ah->caps.rx_lp_qdepth);
 212	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
 213			       ah->caps.rx_hp_qdepth);
 214
 215	size = sizeof(struct ath_rxbuf) * nbufs;
 216	bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
 217	if (!bf)
 218		return -ENOMEM;
 219
 220	INIT_LIST_HEAD(&sc->rx.rxbuf);
 221
 222	for (i = 0; i < nbufs; i++, bf++) {
 223		skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
 224		if (!skb) {
 225			error = -ENOMEM;
 226			goto rx_init_fail;
 227		}
 228
 229		memset(skb->data, 0, common->rx_bufsize);
 230		bf->bf_mpdu = skb;
 231
 232		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
 233						 common->rx_bufsize,
 234						 DMA_BIDIRECTIONAL);
 235		if (unlikely(dma_mapping_error(sc->dev,
 236						bf->bf_buf_addr))) {
 237				dev_kfree_skb_any(skb);
 238				bf->bf_mpdu = NULL;
 239				bf->bf_buf_addr = 0;
 240				ath_err(common,
 241					"dma_mapping_error() on RX init\n");
 242				error = -ENOMEM;
 243				goto rx_init_fail;
 244		}
 245
 246		list_add_tail(&bf->list, &sc->rx.rxbuf);
 247	}
 248
 249	return 0;
 250
 251rx_init_fail:
 252	ath_rx_edma_cleanup(sc);
 253	return error;
 254}
 255
 256static void ath_edma_start_recv(struct ath_softc *sc)
 257{
 258	ath9k_hw_rxena(sc->sc_ah);
 259	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP);
 260	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP);
 261	ath_opmode_init(sc);
 262	ath9k_hw_startpcureceive(sc->sc_ah, sc->cur_chan->offchannel);
 263}
 264
 265static void ath_edma_stop_recv(struct ath_softc *sc)
 266{
 267	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
 268	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
 269}
 270
 271int ath_rx_init(struct ath_softc *sc, int nbufs)
 272{
 273	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 274	struct sk_buff *skb;
 275	struct ath_rxbuf *bf;
 276	int error = 0;
 277
 278	spin_lock_init(&sc->sc_pcu_lock);
 279
 280	common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
 281			     sc->sc_ah->caps.rx_status_len;
 282
 283	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
 284		return ath_rx_edma_init(sc, nbufs);
 285
 286	ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
 287		common->cachelsz, common->rx_bufsize);
 288
 289	/* Initialize rx descriptors */
 290
 291	error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
 292				  "rx", nbufs, 1, 0);
 293	if (error != 0) {
 294		ath_err(common,
 295			"failed to allocate rx descriptors: %d\n",
 296			error);
 297		goto err;
 298	}
 299
 300	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
 301		skb = ath_rxbuf_alloc(common, common->rx_bufsize,
 302				      GFP_KERNEL);
 303		if (skb == NULL) {
 304			error = -ENOMEM;
 305			goto err;
 306		}
 307
 308		bf->bf_mpdu = skb;
 309		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
 310						 common->rx_bufsize,
 311						 DMA_FROM_DEVICE);
 312		if (unlikely(dma_mapping_error(sc->dev,
 313					       bf->bf_buf_addr))) {
 314			dev_kfree_skb_any(skb);
 315			bf->bf_mpdu = NULL;
 316			bf->bf_buf_addr = 0;
 317			ath_err(common,
 318				"dma_mapping_error() on RX init\n");
 319			error = -ENOMEM;
 320			goto err;
 321		}
 322	}
 323	sc->rx.rxlink = NULL;
 324err:
 325	if (error)
 326		ath_rx_cleanup(sc);
 327
 328	return error;
 329}
 330
 331void ath_rx_cleanup(struct ath_softc *sc)
 332{
 333	struct ath_hw *ah = sc->sc_ah;
 334	struct ath_common *common = ath9k_hw_common(ah);
 335	struct sk_buff *skb;
 336	struct ath_rxbuf *bf;
 337
 338	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
 339		ath_rx_edma_cleanup(sc);
 340		return;
 341	}
 342
 343	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
 344		skb = bf->bf_mpdu;
 345		if (skb) {
 346			dma_unmap_single(sc->dev, bf->bf_buf_addr,
 347					 common->rx_bufsize,
 348					 DMA_FROM_DEVICE);
 349			dev_kfree_skb(skb);
 350			bf->bf_buf_addr = 0;
 351			bf->bf_mpdu = NULL;
 352		}
 353	}
 354}
 355
 356/*
 357 * Calculate the receive filter according to the
 358 * operating mode and state:
 359 *
 360 * o always accept unicast, broadcast, and multicast traffic
 361 * o maintain current state of phy error reception (the hal
 362 *   may enable phy error frames for noise immunity work)
 363 * o probe request frames are accepted only when operating in
 364 *   hostap, adhoc, or monitor modes
 365 * o enable promiscuous mode according to the interface state
 366 * o accept beacons:
 367 *   - when operating in adhoc mode so the 802.11 layer creates
 368 *     node table entries for peers,
 369 *   - when operating in station mode for collecting rssi data when
 370 *     the station is otherwise quiet, or
 371 *   - when operating as a repeater so we see repeater-sta beacons
 372 *   - when scanning
 373 */
 374
 375u32 ath_calcrxfilter(struct ath_softc *sc)
 376{
 377	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 378	u32 rfilt;
 379
 380	if (IS_ENABLED(CONFIG_ATH9K_TX99))
 381		return 0;
 382
 383	rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
 384		| ATH9K_RX_FILTER_MCAST;
 385
 386	/* if operating on a DFS channel, enable radar pulse detection */
 387	if (sc->hw->conf.radar_enabled)
 388		rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR;
 389
 390	spin_lock_bh(&sc->chan_lock);
 391
 392	if (sc->cur_chan->rxfilter & FIF_PROBE_REQ)
 393		rfilt |= ATH9K_RX_FILTER_PROBEREQ;
 394
 395	if (sc->sc_ah->is_monitoring)
 396		rfilt |= ATH9K_RX_FILTER_PROM;
 397
 398	if ((sc->cur_chan->rxfilter & FIF_CONTROL) ||
 399	    sc->sc_ah->dynack.enabled)
 400		rfilt |= ATH9K_RX_FILTER_CONTROL;
 401
 402	if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
 403	    (sc->cur_chan->nvifs <= 1) &&
 404	    !(sc->cur_chan->rxfilter & FIF_BCN_PRBRESP_PROMISC))
 405		rfilt |= ATH9K_RX_FILTER_MYBEACON;
 406	else if (sc->sc_ah->opmode != NL80211_IFTYPE_OCB)
 407		rfilt |= ATH9K_RX_FILTER_BEACON;
 408
 409	if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
 410	    (sc->cur_chan->rxfilter & FIF_PSPOLL))
 411		rfilt |= ATH9K_RX_FILTER_PSPOLL;
 412
 413	if (sc->cur_chandef.width != NL80211_CHAN_WIDTH_20_NOHT)
 414		rfilt |= ATH9K_RX_FILTER_COMP_BAR;
 415
 416	if (sc->cur_chan->nvifs > 1 ||
 417	    (sc->cur_chan->rxfilter & (FIF_OTHER_BSS | FIF_MCAST_ACTION))) {
 418		/* This is needed for older chips */
 419		if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
 420			rfilt |= ATH9K_RX_FILTER_PROM;
 421		rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
 422	}
 423
 424	if (AR_SREV_9550(sc->sc_ah) || AR_SREV_9531(sc->sc_ah) ||
 425	    AR_SREV_9561(sc->sc_ah))
 426		rfilt |= ATH9K_RX_FILTER_4ADDRESS;
 427
 428	if (AR_SREV_9462(sc->sc_ah) || AR_SREV_9565(sc->sc_ah))
 429		rfilt |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
 430
 431	if (ath9k_is_chanctx_enabled() &&
 432	    test_bit(ATH_OP_SCANNING, &common->op_flags))
 433		rfilt |= ATH9K_RX_FILTER_BEACON;
 434
 435	spin_unlock_bh(&sc->chan_lock);
 436
 437	return rfilt;
 438
 439}
 440
 441void ath_startrecv(struct ath_softc *sc)
 442{
 443	struct ath_hw *ah = sc->sc_ah;
 444	struct ath_rxbuf *bf, *tbf;
 445
 446	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
 447		ath_edma_start_recv(sc);
 448		return;
 449	}
 450
 451	if (list_empty(&sc->rx.rxbuf))
 452		goto start_recv;
 453
 454	sc->rx.buf_hold = NULL;
 455	sc->rx.rxlink = NULL;
 456	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
 457		ath_rx_buf_link(sc, bf, false);
 458	}
 459
 460	/* We could have deleted elements so the list may be empty now */
 461	if (list_empty(&sc->rx.rxbuf))
 462		goto start_recv;
 463
 464	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
 465	ath9k_hw_putrxbuf(ah, bf->bf_daddr);
 466	ath9k_hw_rxena(ah);
 467
 468start_recv:
 469	ath_opmode_init(sc);
 470	ath9k_hw_startpcureceive(ah, sc->cur_chan->offchannel);
 471}
 472
 473static void ath_flushrecv(struct ath_softc *sc)
 474{
 475	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
 476		ath_rx_tasklet(sc, 1, true);
 477	ath_rx_tasklet(sc, 1, false);
 478}
 479
 480bool ath_stoprecv(struct ath_softc *sc)
 481{
 482	struct ath_hw *ah = sc->sc_ah;
 483	bool stopped, reset = false;
 484
 485	ath9k_hw_abortpcurecv(ah);
 486	ath9k_hw_setrxfilter(ah, 0);
 487	stopped = ath9k_hw_stopdmarecv(ah, &reset);
 488
 489	ath_flushrecv(sc);
 490
 491	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
 492		ath_edma_stop_recv(sc);
 493	else
 494		sc->rx.rxlink = NULL;
 495
 496	if (!(ah->ah_flags & AH_UNPLUGGED) &&
 497	    unlikely(!stopped)) {
 498		ath_dbg(ath9k_hw_common(sc->sc_ah), RESET,
 499			"Failed to stop Rx DMA\n");
 500		RESET_STAT_INC(sc, RESET_RX_DMA_ERROR);
 501	}
 502	return stopped && !reset;
 503}
 504
 505static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
 506{
 507	/* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
 508	struct ieee80211_mgmt *mgmt;
 509	u8 *pos, *end, id, elen;
 510	struct ieee80211_tim_ie *tim;
 511
 512	mgmt = (struct ieee80211_mgmt *)skb->data;
 513	pos = mgmt->u.beacon.variable;
 514	end = skb->data + skb->len;
 515
 516	while (pos + 2 < end) {
 517		id = *pos++;
 518		elen = *pos++;
 519		if (pos + elen > end)
 520			break;
 521
 522		if (id == WLAN_EID_TIM) {
 523			if (elen < sizeof(*tim))
 524				break;
 525			tim = (struct ieee80211_tim_ie *) pos;
 526			if (tim->dtim_count != 0)
 527				break;
 528			return tim->bitmap_ctrl & 0x01;
 529		}
 530
 531		pos += elen;
 532	}
 533
 534	return false;
 535}
 536
 537static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
 538{
 539	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 540	bool skip_beacon = false;
 541
 542	if (skb->len < 24 + 8 + 2 + 2)
 543		return;
 544
 545	sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
 546
 547	if (sc->ps_flags & PS_BEACON_SYNC) {
 548		sc->ps_flags &= ~PS_BEACON_SYNC;
 549		ath_dbg(common, PS,
 550			"Reconfigure beacon timers based on synchronized timestamp\n");
 551
 552#ifdef CONFIG_ATH9K_CHANNEL_CONTEXT
 553		if (ath9k_is_chanctx_enabled()) {
 554			if (sc->cur_chan == &sc->offchannel.chan)
 555				skip_beacon = true;
 556		}
 557#endif
 558
 559		if (!skip_beacon &&
 560		    !(WARN_ON_ONCE(sc->cur_chan->beacon.beacon_interval == 0)))
 561			ath9k_set_beacon(sc);
 562
 563		ath9k_p2p_beacon_sync(sc);
 564	}
 565
 566	if (ath_beacon_dtim_pending_cab(skb)) {
 567		/*
 568		 * Remain awake waiting for buffered broadcast/multicast
 569		 * frames. If the last broadcast/multicast frame is not
 570		 * received properly, the next beacon frame will work as
 571		 * a backup trigger for returning into NETWORK SLEEP state,
 572		 * so we are waiting for it as well.
 573		 */
 574		ath_dbg(common, PS,
 575			"Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
 576		sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
 577		return;
 578	}
 579
 580	if (sc->ps_flags & PS_WAIT_FOR_CAB) {
 581		/*
 582		 * This can happen if a broadcast frame is dropped or the AP
 583		 * fails to send a frame indicating that all CAB frames have
 584		 * been delivered.
 585		 */
 586		sc->ps_flags &= ~PS_WAIT_FOR_CAB;
 587		ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
 588	}
 589}
 590
 591static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
 592{
 593	struct ieee80211_hdr *hdr;
 594	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 595
 596	hdr = (struct ieee80211_hdr *)skb->data;
 597
 598	/* Process Beacon and CAB receive in PS state */
 599	if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
 600	    && mybeacon) {
 601		ath_rx_ps_beacon(sc, skb);
 602	} else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
 603		   (ieee80211_is_data(hdr->frame_control) ||
 604		    ieee80211_is_action(hdr->frame_control)) &&
 605		   is_multicast_ether_addr(hdr->addr1) &&
 606		   !ieee80211_has_moredata(hdr->frame_control)) {
 607		/*
 608		 * No more broadcast/multicast frames to be received at this
 609		 * point.
 610		 */
 611		sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
 612		ath_dbg(common, PS,
 613			"All PS CAB frames received, back to sleep\n");
 614	} else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
 615		   !is_multicast_ether_addr(hdr->addr1) &&
 616		   !ieee80211_has_morefrags(hdr->frame_control)) {
 617		sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
 618		ath_dbg(common, PS,
 619			"Going back to sleep after having received PS-Poll data (0x%lx)\n",
 620			sc->ps_flags & (PS_WAIT_FOR_BEACON |
 621					PS_WAIT_FOR_CAB |
 622					PS_WAIT_FOR_PSPOLL_DATA |
 623					PS_WAIT_FOR_TX_ACK));
 624	}
 625}
 626
 627static bool ath_edma_get_buffers(struct ath_softc *sc,
 628				 enum ath9k_rx_qtype qtype,
 629				 struct ath_rx_status *rs,
 630				 struct ath_rxbuf **dest)
 631{
 632	struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
 633	struct ath_hw *ah = sc->sc_ah;
 634	struct ath_common *common = ath9k_hw_common(ah);
 635	struct sk_buff *skb;
 636	struct ath_rxbuf *bf;
 637	int ret;
 638
 639	skb = skb_peek(&rx_edma->rx_fifo);
 640	if (!skb)
 641		return false;
 642
 643	bf = SKB_CB_ATHBUF(skb);
 644	BUG_ON(!bf);
 645
 646	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
 647				common->rx_bufsize, DMA_FROM_DEVICE);
 648
 649	ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
 650	if (ret == -EINPROGRESS) {
 651		/*let device gain the buffer again*/
 652		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
 653				common->rx_bufsize, DMA_FROM_DEVICE);
 654		return false;
 655	}
 656
 657	__skb_unlink(skb, &rx_edma->rx_fifo);
 658	if (ret == -EINVAL) {
 659		/* corrupt descriptor, skip this one and the following one */
 660		list_add_tail(&bf->list, &sc->rx.rxbuf);
 661		ath_rx_edma_buf_link(sc, qtype);
 662
 663		skb = skb_peek(&rx_edma->rx_fifo);
 664		if (skb) {
 665			bf = SKB_CB_ATHBUF(skb);
 666			BUG_ON(!bf);
 667
 668			__skb_unlink(skb, &rx_edma->rx_fifo);
 669			list_add_tail(&bf->list, &sc->rx.rxbuf);
 670			ath_rx_edma_buf_link(sc, qtype);
 671		}
 672
 673		bf = NULL;
 674	}
 675
 676	*dest = bf;
 677	return true;
 678}
 679
 680static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
 681						struct ath_rx_status *rs,
 682						enum ath9k_rx_qtype qtype)
 683{
 684	struct ath_rxbuf *bf = NULL;
 685
 686	while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
 687		if (!bf)
 688			continue;
 689
 690		return bf;
 691	}
 692	return NULL;
 693}
 694
 695static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc,
 696					   struct ath_rx_status *rs)
 697{
 698	struct ath_hw *ah = sc->sc_ah;
 699	struct ath_common *common = ath9k_hw_common(ah);
 700	struct ath_desc *ds;
 701	struct ath_rxbuf *bf;
 702	int ret;
 703
 704	if (list_empty(&sc->rx.rxbuf)) {
 705		sc->rx.rxlink = NULL;
 706		return NULL;
 707	}
 708
 709	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
 710	if (bf == sc->rx.buf_hold)
 711		return NULL;
 712
 713	ds = bf->bf_desc;
 714
 715	/*
 716	 * Must provide the virtual address of the current
 717	 * descriptor, the physical address, and the virtual
 718	 * address of the next descriptor in the h/w chain.
 719	 * This allows the HAL to look ahead to see if the
 720	 * hardware is done with a descriptor by checking the
 721	 * done bit in the following descriptor and the address
 722	 * of the current descriptor the DMA engine is working
 723	 * on.  All this is necessary because of our use of
 724	 * a self-linked list to avoid rx overruns.
 725	 */
 726	ret = ath9k_hw_rxprocdesc(ah, ds, rs);
 727	if (ret == -EINPROGRESS) {
 728		struct ath_rx_status trs;
 729		struct ath_rxbuf *tbf;
 730		struct ath_desc *tds;
 731
 732		memset(&trs, 0, sizeof(trs));
 733		if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
 734			sc->rx.rxlink = NULL;
 735			return NULL;
 736		}
 737
 738		tbf = list_entry(bf->list.next, struct ath_rxbuf, list);
 739
 740		/*
 741		 * On some hardware the descriptor status words could
 742		 * get corrupted, including the done bit. Because of
 743		 * this, check if the next descriptor's done bit is
 744		 * set or not.
 745		 *
 746		 * If the next descriptor's done bit is set, the current
 747		 * descriptor has been corrupted. Force s/w to discard
 748		 * this descriptor and continue...
 749		 */
 750
 751		tds = tbf->bf_desc;
 752		ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
 753		if (ret == -EINPROGRESS)
 754			return NULL;
 755
 756		/*
 757		 * Re-check previous descriptor, in case it has been filled
 758		 * in the mean time.
 759		 */
 760		ret = ath9k_hw_rxprocdesc(ah, ds, rs);
 761		if (ret == -EINPROGRESS) {
 762			/*
 763			 * mark descriptor as zero-length and set the 'more'
 764			 * flag to ensure that both buffers get discarded
 765			 */
 766			rs->rs_datalen = 0;
 767			rs->rs_more = true;
 768		}
 769	}
 770
 771	list_del(&bf->list);
 772	if (!bf->bf_mpdu)
 773		return bf;
 774
 775	/*
 776	 * Synchronize the DMA transfer with CPU before
 777	 * 1. accessing the frame
 778	 * 2. requeueing the same buffer to h/w
 779	 */
 780	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
 781			common->rx_bufsize,
 782			DMA_FROM_DEVICE);
 783
 784	return bf;
 785}
 786
 787static void ath9k_process_tsf(struct ath_rx_status *rs,
 788			      struct ieee80211_rx_status *rxs,
 789			      u64 tsf)
 790{
 791	u32 tsf_lower = tsf & 0xffffffff;
 792
 793	rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp;
 794	if (rs->rs_tstamp > tsf_lower &&
 795	    unlikely(rs->rs_tstamp - tsf_lower > 0x10000000))
 796		rxs->mactime -= 0x100000000ULL;
 797
 798	if (rs->rs_tstamp < tsf_lower &&
 799	    unlikely(tsf_lower - rs->rs_tstamp > 0x10000000))
 800		rxs->mactime += 0x100000000ULL;
 801}
 802
 803/*
 804 * For Decrypt or Demic errors, we only mark packet status here and always push
 805 * up the frame up to let mac80211 handle the actual error case, be it no
 806 * decryption key or real decryption error. This let us keep statistics there.
 807 */
 808static int ath9k_rx_skb_preprocess(struct ath_softc *sc,
 809				   struct sk_buff *skb,
 810				   struct ath_rx_status *rx_stats,
 811				   struct ieee80211_rx_status *rx_status,
 812				   bool *decrypt_error, u64 tsf)
 813{
 814	struct ieee80211_hw *hw = sc->hw;
 815	struct ath_hw *ah = sc->sc_ah;
 816	struct ath_common *common = ath9k_hw_common(ah);
 817	struct ieee80211_hdr *hdr;
 818	bool discard_current = sc->rx.discard_next;
 819	bool is_phyerr;
 820
 821	/*
 822	 * Discard corrupt descriptors which are marked in
 823	 * ath_get_next_rx_buf().
 824	 */
 825	if (discard_current)
 826		goto corrupt;
 827
 828	sc->rx.discard_next = false;
 829
 830	/*
 831	 * Discard zero-length packets and packets smaller than an ACK
 832	 * which are not PHY_ERROR (short radar pulses have a length of 3)
 833	 */
 834	is_phyerr = rx_stats->rs_status & ATH9K_RXERR_PHY;
 835	if (!rx_stats->rs_datalen ||
 836	    (rx_stats->rs_datalen < 10 && !is_phyerr)) {
 837		RX_STAT_INC(sc, rx_len_err);
 838		goto corrupt;
 839	}
 840
 841	/*
 842	 * rs_status follows rs_datalen so if rs_datalen is too large
 843	 * we can take a hint that hardware corrupted it, so ignore
 844	 * those frames.
 845	 */
 846	if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) {
 847		RX_STAT_INC(sc, rx_len_err);
 848		goto corrupt;
 849	}
 850
 851	/* Only use status info from the last fragment */
 852	if (rx_stats->rs_more)
 853		return 0;
 854
 855	/*
 856	 * Return immediately if the RX descriptor has been marked
 857	 * as corrupt based on the various error bits.
 858	 *
 859	 * This is different from the other corrupt descriptor
 860	 * condition handled above.
 861	 */
 862	if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC)
 863		goto corrupt;
 864
 865	hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len);
 866
 867	ath9k_process_tsf(rx_stats, rx_status, tsf);
 868	ath_debug_stat_rx(sc, rx_stats);
 869
 870	/*
 871	 * Process PHY errors and return so that the packet
 872	 * can be dropped.
 873	 */
 874	if (rx_stats->rs_status & ATH9K_RXERR_PHY) {
 875		/*
 876		 * DFS and spectral are mutually exclusive
 877		 *
 878		 * Since some chips use PHYERR_RADAR as indication for both, we
 879		 * need to double check which feature is enabled to prevent
 880		 * feeding spectral or dfs-detector with wrong frames.
 881		 */
 882		if (hw->conf.radar_enabled) {
 883			ath9k_dfs_process_phyerr(sc, hdr, rx_stats,
 884						 rx_status->mactime);
 885		} else if (sc->spec_priv.spectral_mode != SPECTRAL_DISABLED &&
 886			   ath_cmn_process_fft(&sc->spec_priv, hdr, rx_stats,
 887					       rx_status->mactime)) {
 888			RX_STAT_INC(sc, rx_spectral);
 889		}
 890		return -EINVAL;
 891	}
 892
 893	/*
 894	 * everything but the rate is checked here, the rate check is done
 895	 * separately to avoid doing two lookups for a rate for each frame.
 896	 */
 897	spin_lock_bh(&sc->chan_lock);
 898	if (!ath9k_cmn_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error,
 899				 sc->cur_chan->rxfilter)) {
 900		spin_unlock_bh(&sc->chan_lock);
 901		return -EINVAL;
 902	}
 903	spin_unlock_bh(&sc->chan_lock);
 904
 905	if (ath_is_mybeacon(common, hdr)) {
 906		RX_STAT_INC(sc, rx_beacons);
 907		rx_stats->is_mybeacon = true;
 908	}
 909
 910	/*
 911	 * This shouldn't happen, but have a safety check anyway.
 912	 */
 913	if (WARN_ON(!ah->curchan))
 914		return -EINVAL;
 915
 916	if (ath9k_cmn_process_rate(common, hw, rx_stats, rx_status)) {
 917		/*
 918		 * No valid hardware bitrate found -- we should not get here
 919		 * because hardware has already validated this frame as OK.
 920		 */
 921		ath_dbg(common, ANY, "unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
 922			rx_stats->rs_rate);
 923		RX_STAT_INC(sc, rx_rate_err);
 924		return -EINVAL;
 925	}
 926
 927	if (ath9k_is_chanctx_enabled()) {
 928		if (rx_stats->is_mybeacon)
 929			ath_chanctx_beacon_recv_ev(sc,
 930					   ATH_CHANCTX_EVENT_BEACON_RECEIVED);
 931	}
 932
 933	ath9k_cmn_process_rssi(common, hw, rx_stats, rx_status);
 934
 935	rx_status->band = ah->curchan->chan->band;
 936	rx_status->freq = ah->curchan->chan->center_freq;
 937	rx_status->antenna = rx_stats->rs_antenna;
 938	rx_status->flag |= RX_FLAG_MACTIME_END;
 939
 940#ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
 941	if (ieee80211_is_data_present(hdr->frame_control) &&
 942	    !ieee80211_is_qos_nullfunc(hdr->frame_control))
 943		sc->rx.num_pkts++;
 944#endif
 945
 946	return 0;
 947
 948corrupt:
 949	sc->rx.discard_next = rx_stats->rs_more;
 950	return -EINVAL;
 951}
 952
 953/*
 954 * Run the LNA combining algorithm only in these cases:
 955 *
 956 * Standalone WLAN cards with both LNA/Antenna diversity
 957 * enabled in the EEPROM.
 958 *
 959 * WLAN+BT cards which are in the supported card list
 960 * in ath_pci_id_table and the user has loaded the
 961 * driver with "bt_ant_diversity" set to true.
 962 */
 963static void ath9k_antenna_check(struct ath_softc *sc,
 964				struct ath_rx_status *rs)
 965{
 966	struct ath_hw *ah = sc->sc_ah;
 967	struct ath9k_hw_capabilities *pCap = &ah->caps;
 968	struct ath_common *common = ath9k_hw_common(ah);
 969
 970	if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB))
 971		return;
 972
 973	/*
 974	 * Change the default rx antenna if rx diversity
 975	 * chooses the other antenna 3 times in a row.
 976	 */
 977	if (sc->rx.defant != rs->rs_antenna) {
 978		if (++sc->rx.rxotherant >= 3)
 979			ath_setdefantenna(sc, rs->rs_antenna);
 980	} else {
 981		sc->rx.rxotherant = 0;
 982	}
 983
 984	if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) {
 985		if (common->bt_ant_diversity)
 986			ath_ant_comb_scan(sc, rs);
 987	} else {
 988		ath_ant_comb_scan(sc, rs);
 989	}
 990}
 991
 992static void ath9k_apply_ampdu_details(struct ath_softc *sc,
 993	struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
 994{
 995	if (rs->rs_isaggr) {
 996		rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
 997
 998		rxs->ampdu_reference = sc->rx.ampdu_ref;
 999
1000		if (!rs->rs_moreaggr) {
1001			rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
1002			sc->rx.ampdu_ref++;
1003		}
1004
1005		if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
1006			rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
1007	}
1008}
1009
1010static void ath_rx_count_airtime(struct ath_softc *sc,
1011				 struct ath_rx_status *rs,
1012				 struct sk_buff *skb)
1013{
1014	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1015	struct ath_hw *ah = sc->sc_ah;
1016	struct ath_common *common = ath9k_hw_common(ah);
1017	struct ieee80211_sta *sta;
1018	struct ieee80211_rx_status *rxs;
1019	const struct ieee80211_rate *rate;
1020	bool is_sgi, is_40, is_sp;
1021	int phy;
1022	u16 len = rs->rs_datalen;
1023	u32 airtime = 0;
1024	u8 tidno;
1025
1026	if (!ieee80211_is_data(hdr->frame_control))
1027		return;
1028
1029	rcu_read_lock();
1030
1031	sta = ieee80211_find_sta_by_ifaddr(sc->hw, hdr->addr2, NULL);
1032	if (!sta)
1033		goto exit;
1034	tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
1035
1036	rxs = IEEE80211_SKB_RXCB(skb);
1037
1038	is_sgi = !!(rxs->enc_flags & RX_ENC_FLAG_SHORT_GI);
1039	is_40 = !!(rxs->bw == RATE_INFO_BW_40);
1040	is_sp = !!(rxs->enc_flags & RX_ENC_FLAG_SHORTPRE);
1041
1042	if (!!(rxs->encoding == RX_ENC_HT)) {
1043		/* MCS rates */
1044
1045		airtime += ath_pkt_duration(sc, rxs->rate_idx, len,
1046					is_40, is_sgi, is_sp);
1047	} else {
1048
1049		phy = IS_CCK_RATE(rs->rs_rate) ? WLAN_RC_PHY_CCK : WLAN_RC_PHY_OFDM;
1050		rate = &common->sbands[rxs->band].bitrates[rxs->rate_idx];
1051		airtime += ath9k_hw_computetxtime(ah, phy, rate->bitrate * 100,
1052						len, rxs->rate_idx, is_sp);
1053	}
1054
1055	ieee80211_sta_register_airtime(sta, tidno, 0, airtime);
1056exit:
1057	rcu_read_unlock();
1058}
1059
1060int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
1061{
1062	struct ath_rxbuf *bf;
1063	struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
1064	struct ieee80211_rx_status *rxs;
1065	struct ath_hw *ah = sc->sc_ah;
1066	struct ath_common *common = ath9k_hw_common(ah);
1067	struct ieee80211_hw *hw = sc->hw;
1068	int retval;
1069	struct ath_rx_status rs;
1070	enum ath9k_rx_qtype qtype;
1071	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1072	int dma_type;
1073	u64 tsf = 0;
1074	unsigned long flags;
1075	dma_addr_t new_buf_addr;
1076	unsigned int budget = 512;
1077	struct ieee80211_hdr *hdr;
1078
1079	if (edma)
1080		dma_type = DMA_BIDIRECTIONAL;
1081	else
1082		dma_type = DMA_FROM_DEVICE;
1083
1084	qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1085
1086	tsf = ath9k_hw_gettsf64(ah);
1087
1088	do {
1089		bool decrypt_error = false;
1090
1091		memset(&rs, 0, sizeof(rs));
1092		if (edma)
1093			bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1094		else
1095			bf = ath_get_next_rx_buf(sc, &rs);
1096
1097		if (!bf)
1098			break;
1099
1100		skb = bf->bf_mpdu;
1101		if (!skb)
1102			continue;
1103
1104		/*
1105		 * Take frame header from the first fragment and RX status from
1106		 * the last one.
1107		 */
1108		if (sc->rx.frag)
1109			hdr_skb = sc->rx.frag;
1110		else
1111			hdr_skb = skb;
1112
1113		rxs = IEEE80211_SKB_RXCB(hdr_skb);
1114		memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1115
1116		retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs,
1117						 &decrypt_error, tsf);
1118		if (retval)
1119			goto requeue_drop_frag;
1120
1121		/* Ensure we always have an skb to requeue once we are done
1122		 * processing the current buffer's skb */
1123		requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1124
1125		/* If there is no memory we ignore the current RX'd frame,
1126		 * tell hardware it can give us a new frame using the old
1127		 * skb and put it at the tail of the sc->rx.rxbuf list for
1128		 * processing. */
1129		if (!requeue_skb) {
1130			RX_STAT_INC(sc, rx_oom_err);
1131			goto requeue_drop_frag;
1132		}
1133
1134		/* We will now give hardware our shiny new allocated skb */
1135		new_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1136					      common->rx_bufsize, dma_type);
1137		if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) {
1138			dev_kfree_skb_any(requeue_skb);
1139			goto requeue_drop_frag;
1140		}
1141
1142		/* Unmap the frame */
1143		dma_unmap_single(sc->dev, bf->bf_buf_addr,
1144				 common->rx_bufsize, dma_type);
1145
1146		bf->bf_mpdu = requeue_skb;
1147		bf->bf_buf_addr = new_buf_addr;
1148
1149		skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1150		if (ah->caps.rx_status_len)
1151			skb_pull(skb, ah->caps.rx_status_len);
1152
1153		if (!rs.rs_more)
1154			ath9k_cmn_rx_skb_postprocess(common, hdr_skb, &rs,
1155						     rxs, decrypt_error);
1156
1157		if (rs.rs_more) {
1158			RX_STAT_INC(sc, rx_frags);
1159			/*
1160			 * rs_more indicates chained descriptors which can be
1161			 * used to link buffers together for a sort of
1162			 * scatter-gather operation.
1163			 */
1164			if (sc->rx.frag) {
1165				/* too many fragments - cannot handle frame */
1166				dev_kfree_skb_any(sc->rx.frag);
1167				dev_kfree_skb_any(skb);
1168				RX_STAT_INC(sc, rx_too_many_frags_err);
1169				skb = NULL;
1170			}
1171			sc->rx.frag = skb;
1172			goto requeue;
1173		}
1174
1175		if (sc->rx.frag) {
1176			int space = skb->len - skb_tailroom(hdr_skb);
1177
1178			if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1179				dev_kfree_skb(skb);
1180				RX_STAT_INC(sc, rx_oom_err);
1181				goto requeue_drop_frag;
1182			}
1183
1184			sc->rx.frag = NULL;
1185
1186			skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1187						  skb->len);
1188			dev_kfree_skb_any(skb);
1189			skb = hdr_skb;
1190		}
1191
1192		if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1193			skb_trim(skb, skb->len - 8);
1194
1195		spin_lock_irqsave(&sc->sc_pm_lock, flags);
1196		if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1197				     PS_WAIT_FOR_CAB |
1198				     PS_WAIT_FOR_PSPOLL_DATA)) ||
1199		    ath9k_check_auto_sleep(sc))
1200			ath_rx_ps(sc, skb, rs.is_mybeacon);
1201		spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1202
1203		ath9k_antenna_check(sc, &rs);
1204		ath9k_apply_ampdu_details(sc, &rs, rxs);
1205		ath_debug_rate_stats(sc, &rs, skb);
1206		ath_rx_count_airtime(sc, &rs, skb);
1207
1208		hdr = (struct ieee80211_hdr *)skb->data;
1209		if (ieee80211_is_ack(hdr->frame_control))
1210			ath_dynack_sample_ack_ts(sc->sc_ah, skb, rs.rs_tstamp);
1211
1212		ieee80211_rx(hw, skb);
1213
1214requeue_drop_frag:
1215		if (sc->rx.frag) {
1216			dev_kfree_skb_any(sc->rx.frag);
1217			sc->rx.frag = NULL;
1218		}
1219requeue:
1220		list_add_tail(&bf->list, &sc->rx.rxbuf);
1221
1222		if (!edma) {
1223			ath_rx_buf_relink(sc, bf, flush);
1224			if (!flush)
1225				ath9k_hw_rxena(ah);
1226		} else if (!flush) {
1227			ath_rx_edma_buf_link(sc, qtype);
1228		}
1229
1230		if (!budget--)
1231			break;
1232	} while (1);
1233
1234	if (!(ah->imask & ATH9K_INT_RXEOL)) {
1235		ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1236		ath9k_hw_set_interrupts(ah);
1237	}
1238
1239	return 0;
1240}
v6.13.7
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/dma-mapping.h>
  18#include "ath9k.h"
  19#include "ar9003_mac.h"
  20
  21#define SKB_CB_ATHBUF(__skb)	(*((struct ath_rxbuf **)__skb->cb))
  22
  23static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
  24{
  25	return sc->ps_enabled &&
  26	       (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
  27}
  28
  29/*
  30 * Setup and link descriptors.
  31 *
  32 * 11N: we can no longer afford to self link the last descriptor.
  33 * MAC acknowledges BA status as long as it copies frames to host
  34 * buffer (or rx fifo). This can incorrectly acknowledge packets
  35 * to a sender if last desc is self-linked.
  36 */
  37static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf,
  38			    bool flush)
  39{
  40	struct ath_hw *ah = sc->sc_ah;
  41	struct ath_common *common = ath9k_hw_common(ah);
  42	struct ath_desc *ds;
  43	struct sk_buff *skb;
  44
  45	ds = bf->bf_desc;
  46	ds->ds_link = 0; /* link to null */
  47	ds->ds_data = bf->bf_buf_addr;
  48
  49	/* virtual addr of the beginning of the buffer. */
  50	skb = bf->bf_mpdu;
  51	BUG_ON(skb == NULL);
  52	ds->ds_vdata = skb->data;
  53
  54	/*
  55	 * setup rx descriptors. The rx_bufsize here tells the hardware
  56	 * how much data it can DMA to us and that we are prepared
  57	 * to process
  58	 */
  59	ath9k_hw_setuprxdesc(ah, ds,
  60			     common->rx_bufsize,
  61			     0);
  62
  63	if (sc->rx.rxlink)
  64		*sc->rx.rxlink = bf->bf_daddr;
  65	else if (!flush)
  66		ath9k_hw_putrxbuf(ah, bf->bf_daddr);
  67
  68	sc->rx.rxlink = &ds->ds_link;
  69}
  70
  71static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf,
  72			      bool flush)
  73{
  74	if (sc->rx.buf_hold)
  75		ath_rx_buf_link(sc, sc->rx.buf_hold, flush);
  76
  77	sc->rx.buf_hold = bf;
  78}
  79
  80static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
  81{
  82	/* XXX block beacon interrupts */
  83	ath9k_hw_setantenna(sc->sc_ah, antenna);
  84	sc->rx.defant = antenna;
  85	sc->rx.rxotherant = 0;
  86}
  87
  88static void ath_opmode_init(struct ath_softc *sc)
  89{
  90	struct ath_hw *ah = sc->sc_ah;
  91	struct ath_common *common = ath9k_hw_common(ah);
  92
  93	u32 rfilt, mfilt[2];
  94
  95	/* configure rx filter */
  96	rfilt = ath_calcrxfilter(sc);
  97	ath9k_hw_setrxfilter(ah, rfilt);
  98
  99	/* configure bssid mask */
 100	ath_hw_setbssidmask(common);
 101
 102	/* configure operational mode */
 103	ath9k_hw_setopmode(ah);
 104
 105	/* calculate and install multicast filter */
 106	mfilt[0] = mfilt[1] = ~0;
 107	ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
 108}
 109
 110static bool ath_rx_edma_buf_link(struct ath_softc *sc,
 111				 enum ath9k_rx_qtype qtype)
 112{
 113	struct ath_hw *ah = sc->sc_ah;
 114	struct ath_rx_edma *rx_edma;
 115	struct sk_buff *skb;
 116	struct ath_rxbuf *bf;
 117
 118	rx_edma = &sc->rx.rx_edma[qtype];
 119	if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
 120		return false;
 121
 122	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
 123	list_del_init(&bf->list);
 124
 125	skb = bf->bf_mpdu;
 126
 127	memset(skb->data, 0, ah->caps.rx_status_len);
 128	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
 129				ah->caps.rx_status_len, DMA_TO_DEVICE);
 130
 131	SKB_CB_ATHBUF(skb) = bf;
 132	ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
 133	__skb_queue_tail(&rx_edma->rx_fifo, skb);
 134
 135	return true;
 136}
 137
 138static void ath_rx_addbuffer_edma(struct ath_softc *sc,
 139				  enum ath9k_rx_qtype qtype)
 140{
 141	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 142	struct ath_rxbuf *bf, *tbf;
 143
 144	if (list_empty(&sc->rx.rxbuf)) {
 145		ath_dbg(common, QUEUE, "No free rx buf available\n");
 146		return;
 147	}
 148
 149	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
 150		if (!ath_rx_edma_buf_link(sc, qtype))
 151			break;
 152
 153}
 154
 155static void ath_rx_remove_buffer(struct ath_softc *sc,
 156				 enum ath9k_rx_qtype qtype)
 157{
 158	struct ath_rxbuf *bf;
 159	struct ath_rx_edma *rx_edma;
 160	struct sk_buff *skb;
 161
 162	rx_edma = &sc->rx.rx_edma[qtype];
 163
 164	while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
 165		bf = SKB_CB_ATHBUF(skb);
 166		BUG_ON(!bf);
 167		list_add_tail(&bf->list, &sc->rx.rxbuf);
 168	}
 169}
 170
 171static void ath_rx_edma_cleanup(struct ath_softc *sc)
 172{
 173	struct ath_hw *ah = sc->sc_ah;
 174	struct ath_common *common = ath9k_hw_common(ah);
 175	struct ath_rxbuf *bf;
 176
 177	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
 178	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
 179
 180	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
 181		if (bf->bf_mpdu) {
 182			dma_unmap_single(sc->dev, bf->bf_buf_addr,
 183					common->rx_bufsize,
 184					DMA_BIDIRECTIONAL);
 185			dev_kfree_skb_any(bf->bf_mpdu);
 186			bf->bf_buf_addr = 0;
 187			bf->bf_mpdu = NULL;
 188		}
 189	}
 190}
 191
 192static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
 193{
 194	__skb_queue_head_init(&rx_edma->rx_fifo);
 195	rx_edma->rx_fifo_hwsize = size;
 196}
 197
 198static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
 199{
 200	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 201	struct ath_hw *ah = sc->sc_ah;
 202	struct sk_buff *skb;
 203	struct ath_rxbuf *bf;
 204	int error = 0, i;
 205	u32 size;
 206
 207	ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
 208				    ah->caps.rx_status_len);
 209
 210	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
 211			       ah->caps.rx_lp_qdepth);
 212	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
 213			       ah->caps.rx_hp_qdepth);
 214
 215	size = sizeof(struct ath_rxbuf) * nbufs;
 216	bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
 217	if (!bf)
 218		return -ENOMEM;
 219
 220	INIT_LIST_HEAD(&sc->rx.rxbuf);
 221
 222	for (i = 0; i < nbufs; i++, bf++) {
 223		skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
 224		if (!skb) {
 225			error = -ENOMEM;
 226			goto rx_init_fail;
 227		}
 228
 229		memset(skb->data, 0, common->rx_bufsize);
 230		bf->bf_mpdu = skb;
 231
 232		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
 233						 common->rx_bufsize,
 234						 DMA_BIDIRECTIONAL);
 235		if (unlikely(dma_mapping_error(sc->dev,
 236						bf->bf_buf_addr))) {
 237				dev_kfree_skb_any(skb);
 238				bf->bf_mpdu = NULL;
 239				bf->bf_buf_addr = 0;
 240				ath_err(common,
 241					"dma_mapping_error() on RX init\n");
 242				error = -ENOMEM;
 243				goto rx_init_fail;
 244		}
 245
 246		list_add_tail(&bf->list, &sc->rx.rxbuf);
 247	}
 248
 249	return 0;
 250
 251rx_init_fail:
 252	ath_rx_edma_cleanup(sc);
 253	return error;
 254}
 255
 256static void ath_edma_start_recv(struct ath_softc *sc)
 257{
 258	ath9k_hw_rxena(sc->sc_ah);
 259	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP);
 260	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP);
 261	ath_opmode_init(sc);
 262	ath9k_hw_startpcureceive(sc->sc_ah, sc->cur_chan->offchannel);
 263}
 264
 265static void ath_edma_stop_recv(struct ath_softc *sc)
 266{
 267	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
 268	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
 269}
 270
 271int ath_rx_init(struct ath_softc *sc, int nbufs)
 272{
 273	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 274	struct sk_buff *skb;
 275	struct ath_rxbuf *bf;
 276	int error = 0;
 277
 278	spin_lock_init(&sc->sc_pcu_lock);
 279
 280	common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
 281			     sc->sc_ah->caps.rx_status_len;
 282
 283	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
 284		return ath_rx_edma_init(sc, nbufs);
 285
 286	ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
 287		common->cachelsz, common->rx_bufsize);
 288
 289	/* Initialize rx descriptors */
 290
 291	error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
 292				  "rx", nbufs, 1, 0);
 293	if (error != 0) {
 294		ath_err(common,
 295			"failed to allocate rx descriptors: %d\n",
 296			error);
 297		goto err;
 298	}
 299
 300	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
 301		skb = ath_rxbuf_alloc(common, common->rx_bufsize,
 302				      GFP_KERNEL);
 303		if (skb == NULL) {
 304			error = -ENOMEM;
 305			goto err;
 306		}
 307
 308		bf->bf_mpdu = skb;
 309		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
 310						 common->rx_bufsize,
 311						 DMA_FROM_DEVICE);
 312		if (unlikely(dma_mapping_error(sc->dev,
 313					       bf->bf_buf_addr))) {
 314			dev_kfree_skb_any(skb);
 315			bf->bf_mpdu = NULL;
 316			bf->bf_buf_addr = 0;
 317			ath_err(common,
 318				"dma_mapping_error() on RX init\n");
 319			error = -ENOMEM;
 320			goto err;
 321		}
 322	}
 323	sc->rx.rxlink = NULL;
 324err:
 325	if (error)
 326		ath_rx_cleanup(sc);
 327
 328	return error;
 329}
 330
 331void ath_rx_cleanup(struct ath_softc *sc)
 332{
 333	struct ath_hw *ah = sc->sc_ah;
 334	struct ath_common *common = ath9k_hw_common(ah);
 335	struct sk_buff *skb;
 336	struct ath_rxbuf *bf;
 337
 338	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
 339		ath_rx_edma_cleanup(sc);
 340		return;
 341	}
 342
 343	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
 344		skb = bf->bf_mpdu;
 345		if (skb) {
 346			dma_unmap_single(sc->dev, bf->bf_buf_addr,
 347					 common->rx_bufsize,
 348					 DMA_FROM_DEVICE);
 349			dev_kfree_skb(skb);
 350			bf->bf_buf_addr = 0;
 351			bf->bf_mpdu = NULL;
 352		}
 353	}
 354}
 355
 356/*
 357 * Calculate the receive filter according to the
 358 * operating mode and state:
 359 *
 360 * o always accept unicast, broadcast, and multicast traffic
 361 * o maintain current state of phy error reception (the hal
 362 *   may enable phy error frames for noise immunity work)
 363 * o probe request frames are accepted only when operating in
 364 *   hostap, adhoc, or monitor modes
 365 * o enable promiscuous mode according to the interface state
 366 * o accept beacons:
 367 *   - when operating in adhoc mode so the 802.11 layer creates
 368 *     node table entries for peers,
 369 *   - when operating in station mode for collecting rssi data when
 370 *     the station is otherwise quiet, or
 371 *   - when operating as a repeater so we see repeater-sta beacons
 372 *   - when scanning
 373 */
 374
 375u32 ath_calcrxfilter(struct ath_softc *sc)
 376{
 377	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 378	u32 rfilt;
 379
 380	if (IS_ENABLED(CONFIG_ATH9K_TX99))
 381		return 0;
 382
 383	rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
 384		| ATH9K_RX_FILTER_MCAST;
 385
 386	/* if operating on a DFS channel, enable radar pulse detection */
 387	if (sc->hw->conf.radar_enabled)
 388		rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR;
 389
 390	spin_lock_bh(&sc->chan_lock);
 391
 392	if (sc->cur_chan->rxfilter & FIF_PROBE_REQ)
 393		rfilt |= ATH9K_RX_FILTER_PROBEREQ;
 394
 395	if (sc->sc_ah->is_monitoring)
 396		rfilt |= ATH9K_RX_FILTER_PROM;
 397
 398	if ((sc->cur_chan->rxfilter & FIF_CONTROL) ||
 399	    sc->sc_ah->dynack.enabled)
 400		rfilt |= ATH9K_RX_FILTER_CONTROL;
 401
 402	if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
 403	    (sc->cur_chan->nvifs <= 1) &&
 404	    !(sc->cur_chan->rxfilter & FIF_BCN_PRBRESP_PROMISC))
 405		rfilt |= ATH9K_RX_FILTER_MYBEACON;
 406	else if (sc->sc_ah->opmode != NL80211_IFTYPE_OCB)
 407		rfilt |= ATH9K_RX_FILTER_BEACON;
 408
 409	if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
 410	    (sc->cur_chan->rxfilter & FIF_PSPOLL))
 411		rfilt |= ATH9K_RX_FILTER_PSPOLL;
 412
 413	if (sc->cur_chandef.width != NL80211_CHAN_WIDTH_20_NOHT)
 414		rfilt |= ATH9K_RX_FILTER_COMP_BAR;
 415
 416	if (sc->cur_chan->nvifs > 1 ||
 417	    (sc->cur_chan->rxfilter & (FIF_OTHER_BSS | FIF_MCAST_ACTION))) {
 418		/* This is needed for older chips */
 419		if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
 420			rfilt |= ATH9K_RX_FILTER_PROM;
 421		rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
 422	}
 423
 424	if (AR_SREV_9550(sc->sc_ah) || AR_SREV_9531(sc->sc_ah) ||
 425	    AR_SREV_9561(sc->sc_ah))
 426		rfilt |= ATH9K_RX_FILTER_4ADDRESS;
 427
 428	if (AR_SREV_9462(sc->sc_ah) || AR_SREV_9565(sc->sc_ah))
 429		rfilt |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
 430
 431	if (ath9k_is_chanctx_enabled() &&
 432	    test_bit(ATH_OP_SCANNING, &common->op_flags))
 433		rfilt |= ATH9K_RX_FILTER_BEACON;
 434
 435	spin_unlock_bh(&sc->chan_lock);
 436
 437	return rfilt;
 438
 439}
 440
 441void ath_startrecv(struct ath_softc *sc)
 442{
 443	struct ath_hw *ah = sc->sc_ah;
 444	struct ath_rxbuf *bf, *tbf;
 445
 446	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
 447		ath_edma_start_recv(sc);
 448		return;
 449	}
 450
 451	if (list_empty(&sc->rx.rxbuf))
 452		goto start_recv;
 453
 454	sc->rx.buf_hold = NULL;
 455	sc->rx.rxlink = NULL;
 456	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
 457		ath_rx_buf_link(sc, bf, false);
 458	}
 459
 460	/* We could have deleted elements so the list may be empty now */
 461	if (list_empty(&sc->rx.rxbuf))
 462		goto start_recv;
 463
 464	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
 465	ath9k_hw_putrxbuf(ah, bf->bf_daddr);
 466	ath9k_hw_rxena(ah);
 467
 468start_recv:
 469	ath_opmode_init(sc);
 470	ath9k_hw_startpcureceive(ah, sc->cur_chan->offchannel);
 471}
 472
 473static void ath_flushrecv(struct ath_softc *sc)
 474{
 475	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
 476		ath_rx_tasklet(sc, 1, true);
 477	ath_rx_tasklet(sc, 1, false);
 478}
 479
 480bool ath_stoprecv(struct ath_softc *sc)
 481{
 482	struct ath_hw *ah = sc->sc_ah;
 483	bool stopped, reset = false;
 484
 485	ath9k_hw_abortpcurecv(ah);
 486	ath9k_hw_setrxfilter(ah, 0);
 487	stopped = ath9k_hw_stopdmarecv(ah, &reset);
 488
 489	ath_flushrecv(sc);
 490
 491	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
 492		ath_edma_stop_recv(sc);
 493	else
 494		sc->rx.rxlink = NULL;
 495
 496	if (!(ah->ah_flags & AH_UNPLUGGED) &&
 497	    unlikely(!stopped)) {
 498		ath_dbg(ath9k_hw_common(sc->sc_ah), RESET,
 499			"Failed to stop Rx DMA\n");
 500		RESET_STAT_INC(sc, RESET_RX_DMA_ERROR);
 501	}
 502	return stopped && !reset;
 503}
 504
 505static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
 506{
 507	/* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
 508	struct ieee80211_mgmt *mgmt;
 509	u8 *pos, *end, id, elen;
 510	struct ieee80211_tim_ie *tim;
 511
 512	mgmt = (struct ieee80211_mgmt *)skb->data;
 513	pos = mgmt->u.beacon.variable;
 514	end = skb->data + skb->len;
 515
 516	while (pos + 2 < end) {
 517		id = *pos++;
 518		elen = *pos++;
 519		if (pos + elen > end)
 520			break;
 521
 522		if (id == WLAN_EID_TIM) {
 523			if (elen < sizeof(*tim))
 524				break;
 525			tim = (struct ieee80211_tim_ie *) pos;
 526			if (tim->dtim_count != 0)
 527				break;
 528			return tim->bitmap_ctrl & 0x01;
 529		}
 530
 531		pos += elen;
 532	}
 533
 534	return false;
 535}
 536
 537static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
 538{
 539	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 540	bool skip_beacon = false;
 541
 542	if (skb->len < 24 + 8 + 2 + 2)
 543		return;
 544
 545	sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
 546
 547	if (sc->ps_flags & PS_BEACON_SYNC) {
 548		sc->ps_flags &= ~PS_BEACON_SYNC;
 549		ath_dbg(common, PS,
 550			"Reconfigure beacon timers based on synchronized timestamp\n");
 551
 552#ifdef CONFIG_ATH9K_CHANNEL_CONTEXT
 553		if (ath9k_is_chanctx_enabled()) {
 554			if (sc->cur_chan == &sc->offchannel.chan)
 555				skip_beacon = true;
 556		}
 557#endif
 558
 559		if (!skip_beacon &&
 560		    !(WARN_ON_ONCE(sc->cur_chan->beacon.beacon_interval == 0)))
 561			ath9k_set_beacon(sc);
 562
 563		ath9k_p2p_beacon_sync(sc);
 564	}
 565
 566	if (ath_beacon_dtim_pending_cab(skb)) {
 567		/*
 568		 * Remain awake waiting for buffered broadcast/multicast
 569		 * frames. If the last broadcast/multicast frame is not
 570		 * received properly, the next beacon frame will work as
 571		 * a backup trigger for returning into NETWORK SLEEP state,
 572		 * so we are waiting for it as well.
 573		 */
 574		ath_dbg(common, PS,
 575			"Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
 576		sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
 577		return;
 578	}
 579
 580	if (sc->ps_flags & PS_WAIT_FOR_CAB) {
 581		/*
 582		 * This can happen if a broadcast frame is dropped or the AP
 583		 * fails to send a frame indicating that all CAB frames have
 584		 * been delivered.
 585		 */
 586		sc->ps_flags &= ~PS_WAIT_FOR_CAB;
 587		ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
 588	}
 589}
 590
 591static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
 592{
 593	struct ieee80211_hdr *hdr;
 594	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
 595
 596	hdr = (struct ieee80211_hdr *)skb->data;
 597
 598	/* Process Beacon and CAB receive in PS state */
 599	if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
 600	    && mybeacon) {
 601		ath_rx_ps_beacon(sc, skb);
 602	} else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
 603		   (ieee80211_is_data(hdr->frame_control) ||
 604		    ieee80211_is_action(hdr->frame_control)) &&
 605		   is_multicast_ether_addr(hdr->addr1) &&
 606		   !ieee80211_has_moredata(hdr->frame_control)) {
 607		/*
 608		 * No more broadcast/multicast frames to be received at this
 609		 * point.
 610		 */
 611		sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
 612		ath_dbg(common, PS,
 613			"All PS CAB frames received, back to sleep\n");
 614	} else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
 615		   !is_multicast_ether_addr(hdr->addr1) &&
 616		   !ieee80211_has_morefrags(hdr->frame_control)) {
 617		sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
 618		ath_dbg(common, PS,
 619			"Going back to sleep after having received PS-Poll data (0x%lx)\n",
 620			sc->ps_flags & (PS_WAIT_FOR_BEACON |
 621					PS_WAIT_FOR_CAB |
 622					PS_WAIT_FOR_PSPOLL_DATA |
 623					PS_WAIT_FOR_TX_ACK));
 624	}
 625}
 626
 627static bool ath_edma_get_buffers(struct ath_softc *sc,
 628				 enum ath9k_rx_qtype qtype,
 629				 struct ath_rx_status *rs,
 630				 struct ath_rxbuf **dest)
 631{
 632	struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
 633	struct ath_hw *ah = sc->sc_ah;
 634	struct ath_common *common = ath9k_hw_common(ah);
 635	struct sk_buff *skb;
 636	struct ath_rxbuf *bf;
 637	int ret;
 638
 639	skb = skb_peek(&rx_edma->rx_fifo);
 640	if (!skb)
 641		return false;
 642
 643	bf = SKB_CB_ATHBUF(skb);
 644	BUG_ON(!bf);
 645
 646	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
 647				common->rx_bufsize, DMA_FROM_DEVICE);
 648
 649	ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
 650	if (ret == -EINPROGRESS) {
 651		/*let device gain the buffer again*/
 652		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
 653				common->rx_bufsize, DMA_FROM_DEVICE);
 654		return false;
 655	}
 656
 657	__skb_unlink(skb, &rx_edma->rx_fifo);
 658	if (ret == -EINVAL) {
 659		/* corrupt descriptor, skip this one and the following one */
 660		list_add_tail(&bf->list, &sc->rx.rxbuf);
 661		ath_rx_edma_buf_link(sc, qtype);
 662
 663		skb = skb_peek(&rx_edma->rx_fifo);
 664		if (skb) {
 665			bf = SKB_CB_ATHBUF(skb);
 666			BUG_ON(!bf);
 667
 668			__skb_unlink(skb, &rx_edma->rx_fifo);
 669			list_add_tail(&bf->list, &sc->rx.rxbuf);
 670			ath_rx_edma_buf_link(sc, qtype);
 671		}
 672
 673		bf = NULL;
 674	}
 675
 676	*dest = bf;
 677	return true;
 678}
 679
 680static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
 681						struct ath_rx_status *rs,
 682						enum ath9k_rx_qtype qtype)
 683{
 684	struct ath_rxbuf *bf = NULL;
 685
 686	while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
 687		if (!bf)
 688			continue;
 689
 690		return bf;
 691	}
 692	return NULL;
 693}
 694
 695static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc,
 696					   struct ath_rx_status *rs)
 697{
 698	struct ath_hw *ah = sc->sc_ah;
 699	struct ath_common *common = ath9k_hw_common(ah);
 700	struct ath_desc *ds;
 701	struct ath_rxbuf *bf;
 702	int ret;
 703
 704	if (list_empty(&sc->rx.rxbuf)) {
 705		sc->rx.rxlink = NULL;
 706		return NULL;
 707	}
 708
 709	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
 710	if (bf == sc->rx.buf_hold)
 711		return NULL;
 712
 713	ds = bf->bf_desc;
 714
 715	/*
 716	 * Must provide the virtual address of the current
 717	 * descriptor, the physical address, and the virtual
 718	 * address of the next descriptor in the h/w chain.
 719	 * This allows the HAL to look ahead to see if the
 720	 * hardware is done with a descriptor by checking the
 721	 * done bit in the following descriptor and the address
 722	 * of the current descriptor the DMA engine is working
 723	 * on.  All this is necessary because of our use of
 724	 * a self-linked list to avoid rx overruns.
 725	 */
 726	ret = ath9k_hw_rxprocdesc(ah, ds, rs);
 727	if (ret == -EINPROGRESS) {
 728		struct ath_rx_status trs;
 729		struct ath_rxbuf *tbf;
 730		struct ath_desc *tds;
 731
 732		memset(&trs, 0, sizeof(trs));
 733		if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
 734			sc->rx.rxlink = NULL;
 735			return NULL;
 736		}
 737
 738		tbf = list_entry(bf->list.next, struct ath_rxbuf, list);
 739
 740		/*
 741		 * On some hardware the descriptor status words could
 742		 * get corrupted, including the done bit. Because of
 743		 * this, check if the next descriptor's done bit is
 744		 * set or not.
 745		 *
 746		 * If the next descriptor's done bit is set, the current
 747		 * descriptor has been corrupted. Force s/w to discard
 748		 * this descriptor and continue...
 749		 */
 750
 751		tds = tbf->bf_desc;
 752		ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
 753		if (ret == -EINPROGRESS)
 754			return NULL;
 755
 756		/*
 757		 * Re-check previous descriptor, in case it has been filled
 758		 * in the mean time.
 759		 */
 760		ret = ath9k_hw_rxprocdesc(ah, ds, rs);
 761		if (ret == -EINPROGRESS) {
 762			/*
 763			 * mark descriptor as zero-length and set the 'more'
 764			 * flag to ensure that both buffers get discarded
 765			 */
 766			rs->rs_datalen = 0;
 767			rs->rs_more = true;
 768		}
 769	}
 770
 771	list_del(&bf->list);
 772	if (!bf->bf_mpdu)
 773		return bf;
 774
 775	/*
 776	 * Synchronize the DMA transfer with CPU before
 777	 * 1. accessing the frame
 778	 * 2. requeueing the same buffer to h/w
 779	 */
 780	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
 781			common->rx_bufsize,
 782			DMA_FROM_DEVICE);
 783
 784	return bf;
 785}
 786
 787static void ath9k_process_tsf(struct ath_rx_status *rs,
 788			      struct ieee80211_rx_status *rxs,
 789			      u64 tsf)
 790{
 791	u32 tsf_lower = tsf & 0xffffffff;
 792
 793	rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp;
 794	if (rs->rs_tstamp > tsf_lower &&
 795	    unlikely(rs->rs_tstamp - tsf_lower > 0x10000000))
 796		rxs->mactime -= 0x100000000ULL;
 797
 798	if (rs->rs_tstamp < tsf_lower &&
 799	    unlikely(tsf_lower - rs->rs_tstamp > 0x10000000))
 800		rxs->mactime += 0x100000000ULL;
 801}
 802
 803/*
 804 * For Decrypt or Demic errors, we only mark packet status here and always push
 805 * up the frame up to let mac80211 handle the actual error case, be it no
 806 * decryption key or real decryption error. This let us keep statistics there.
 807 */
 808static int ath9k_rx_skb_preprocess(struct ath_softc *sc,
 809				   struct sk_buff *skb,
 810				   struct ath_rx_status *rx_stats,
 811				   struct ieee80211_rx_status *rx_status,
 812				   bool *decrypt_error, u64 tsf)
 813{
 814	struct ieee80211_hw *hw = sc->hw;
 815	struct ath_hw *ah = sc->sc_ah;
 816	struct ath_common *common = ath9k_hw_common(ah);
 817	struct ieee80211_hdr *hdr;
 818	bool discard_current = sc->rx.discard_next;
 819	bool is_phyerr;
 820
 821	/*
 822	 * Discard corrupt descriptors which are marked in
 823	 * ath_get_next_rx_buf().
 824	 */
 825	if (discard_current)
 826		goto corrupt;
 827
 828	sc->rx.discard_next = false;
 829
 830	/*
 831	 * Discard zero-length packets and packets smaller than an ACK
 832	 * which are not PHY_ERROR (short radar pulses have a length of 3)
 833	 */
 834	is_phyerr = rx_stats->rs_status & ATH9K_RXERR_PHY;
 835	if (!rx_stats->rs_datalen ||
 836	    (rx_stats->rs_datalen < 10 && !is_phyerr)) {
 837		RX_STAT_INC(sc, rx_len_err);
 838		goto corrupt;
 839	}
 840
 841	/*
 842	 * rs_status follows rs_datalen so if rs_datalen is too large
 843	 * we can take a hint that hardware corrupted it, so ignore
 844	 * those frames.
 845	 */
 846	if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) {
 847		RX_STAT_INC(sc, rx_len_err);
 848		goto corrupt;
 849	}
 850
 851	/* Only use status info from the last fragment */
 852	if (rx_stats->rs_more)
 853		return 0;
 854
 855	/*
 856	 * Return immediately if the RX descriptor has been marked
 857	 * as corrupt based on the various error bits.
 858	 *
 859	 * This is different from the other corrupt descriptor
 860	 * condition handled above.
 861	 */
 862	if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC)
 863		goto corrupt;
 864
 865	hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len);
 866
 867	ath9k_process_tsf(rx_stats, rx_status, tsf);
 868	ath_debug_stat_rx(sc, rx_stats);
 869
 870	/*
 871	 * Process PHY errors and return so that the packet
 872	 * can be dropped.
 873	 */
 874	if (rx_stats->rs_status & ATH9K_RXERR_PHY) {
 875		/*
 876		 * DFS and spectral are mutually exclusive
 877		 *
 878		 * Since some chips use PHYERR_RADAR as indication for both, we
 879		 * need to double check which feature is enabled to prevent
 880		 * feeding spectral or dfs-detector with wrong frames.
 881		 */
 882		if (hw->conf.radar_enabled) {
 883			ath9k_dfs_process_phyerr(sc, hdr, rx_stats,
 884						 rx_status->mactime);
 885		} else if (sc->spec_priv.spectral_mode != SPECTRAL_DISABLED &&
 886			   ath_cmn_process_fft(&sc->spec_priv, hdr, rx_stats,
 887					       rx_status->mactime)) {
 888			RX_STAT_INC(sc, rx_spectral);
 889		}
 890		return -EINVAL;
 891	}
 892
 893	/*
 894	 * everything but the rate is checked here, the rate check is done
 895	 * separately to avoid doing two lookups for a rate for each frame.
 896	 */
 897	spin_lock_bh(&sc->chan_lock);
 898	if (!ath9k_cmn_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error,
 899				 sc->cur_chan->rxfilter)) {
 900		spin_unlock_bh(&sc->chan_lock);
 901		return -EINVAL;
 902	}
 903	spin_unlock_bh(&sc->chan_lock);
 904
 905	if (ath_is_mybeacon(common, hdr)) {
 906		RX_STAT_INC(sc, rx_beacons);
 907		rx_stats->is_mybeacon = true;
 908	}
 909
 910	/*
 911	 * This shouldn't happen, but have a safety check anyway.
 912	 */
 913	if (WARN_ON(!ah->curchan))
 914		return -EINVAL;
 915
 916	if (ath9k_cmn_process_rate(common, hw, rx_stats, rx_status)) {
 917		/*
 918		 * No valid hardware bitrate found -- we should not get here
 919		 * because hardware has already validated this frame as OK.
 920		 */
 921		ath_dbg(common, ANY, "unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
 922			rx_stats->rs_rate);
 923		RX_STAT_INC(sc, rx_rate_err);
 924		return -EINVAL;
 925	}
 926
 927	if (ath9k_is_chanctx_enabled()) {
 928		if (rx_stats->is_mybeacon)
 929			ath_chanctx_beacon_recv_ev(sc,
 930					   ATH_CHANCTX_EVENT_BEACON_RECEIVED);
 931	}
 932
 933	ath9k_cmn_process_rssi(common, hw, rx_stats, rx_status);
 934
 935	rx_status->band = ah->curchan->chan->band;
 936	rx_status->freq = ah->curchan->chan->center_freq;
 937	rx_status->antenna = rx_stats->rs_antenna;
 938	rx_status->flag |= RX_FLAG_MACTIME_END;
 939
 940#ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
 941	if (ieee80211_is_data_present(hdr->frame_control) &&
 942	    !ieee80211_is_qos_nullfunc(hdr->frame_control))
 943		sc->rx.num_pkts++;
 944#endif
 945
 946	return 0;
 947
 948corrupt:
 949	sc->rx.discard_next = rx_stats->rs_more;
 950	return -EINVAL;
 951}
 952
 953/*
 954 * Run the LNA combining algorithm only in these cases:
 955 *
 956 * Standalone WLAN cards with both LNA/Antenna diversity
 957 * enabled in the EEPROM.
 958 *
 959 * WLAN+BT cards which are in the supported card list
 960 * in ath_pci_id_table and the user has loaded the
 961 * driver with "bt_ant_diversity" set to true.
 962 */
 963static void ath9k_antenna_check(struct ath_softc *sc,
 964				struct ath_rx_status *rs)
 965{
 966	struct ath_hw *ah = sc->sc_ah;
 967	struct ath9k_hw_capabilities *pCap = &ah->caps;
 968	struct ath_common *common = ath9k_hw_common(ah);
 969
 970	if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB))
 971		return;
 972
 973	/*
 974	 * Change the default rx antenna if rx diversity
 975	 * chooses the other antenna 3 times in a row.
 976	 */
 977	if (sc->rx.defant != rs->rs_antenna) {
 978		if (++sc->rx.rxotherant >= 3)
 979			ath_setdefantenna(sc, rs->rs_antenna);
 980	} else {
 981		sc->rx.rxotherant = 0;
 982	}
 983
 984	if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) {
 985		if (common->bt_ant_diversity)
 986			ath_ant_comb_scan(sc, rs);
 987	} else {
 988		ath_ant_comb_scan(sc, rs);
 989	}
 990}
 991
 992static void ath9k_apply_ampdu_details(struct ath_softc *sc,
 993	struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
 994{
 995	if (rs->rs_isaggr) {
 996		rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
 997
 998		rxs->ampdu_reference = sc->rx.ampdu_ref;
 999
1000		if (!rs->rs_moreaggr) {
1001			rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
1002			sc->rx.ampdu_ref++;
1003		}
1004
1005		if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
1006			rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
1007	}
1008}
1009
1010static void ath_rx_count_airtime(struct ath_softc *sc,
1011				 struct ath_rx_status *rs,
1012				 struct sk_buff *skb)
1013{
1014	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1015	struct ath_hw *ah = sc->sc_ah;
1016	struct ath_common *common = ath9k_hw_common(ah);
1017	struct ieee80211_sta *sta;
1018	struct ieee80211_rx_status *rxs;
1019	const struct ieee80211_rate *rate;
1020	bool is_sgi, is_40, is_sp;
1021	int phy;
1022	u16 len = rs->rs_datalen;
1023	u32 airtime = 0;
1024	u8 tidno;
1025
1026	if (!ieee80211_is_data(hdr->frame_control))
1027		return;
1028
1029	rcu_read_lock();
1030
1031	sta = ieee80211_find_sta_by_ifaddr(sc->hw, hdr->addr2, NULL);
1032	if (!sta)
1033		goto exit;
1034	tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
1035
1036	rxs = IEEE80211_SKB_RXCB(skb);
1037
1038	is_sgi = !!(rxs->enc_flags & RX_ENC_FLAG_SHORT_GI);
1039	is_40 = !!(rxs->bw == RATE_INFO_BW_40);
1040	is_sp = !!(rxs->enc_flags & RX_ENC_FLAG_SHORTPRE);
1041
1042	if (!!(rxs->encoding == RX_ENC_HT)) {
1043		/* MCS rates */
1044
1045		airtime += ath_pkt_duration(sc, rxs->rate_idx, len,
1046					is_40, is_sgi, is_sp);
1047	} else {
1048
1049		phy = IS_CCK_RATE(rs->rs_rate) ? WLAN_RC_PHY_CCK : WLAN_RC_PHY_OFDM;
1050		rate = &common->sbands[rxs->band].bitrates[rxs->rate_idx];
1051		airtime += ath9k_hw_computetxtime(ah, phy, rate->bitrate * 100,
1052						len, rxs->rate_idx, is_sp);
1053	}
1054
1055	ieee80211_sta_register_airtime(sta, tidno, 0, airtime);
1056exit:
1057	rcu_read_unlock();
1058}
1059
1060int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
1061{
1062	struct ath_rxbuf *bf;
1063	struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
1064	struct ieee80211_rx_status *rxs;
1065	struct ath_hw *ah = sc->sc_ah;
1066	struct ath_common *common = ath9k_hw_common(ah);
1067	struct ieee80211_hw *hw = sc->hw;
1068	int retval;
1069	struct ath_rx_status rs;
1070	enum ath9k_rx_qtype qtype;
1071	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1072	int dma_type;
1073	u64 tsf = 0;
1074	unsigned long flags;
1075	dma_addr_t new_buf_addr;
1076	unsigned int budget = 512;
1077	struct ieee80211_hdr *hdr;
1078
1079	if (edma)
1080		dma_type = DMA_BIDIRECTIONAL;
1081	else
1082		dma_type = DMA_FROM_DEVICE;
1083
1084	qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1085
1086	tsf = ath9k_hw_gettsf64(ah);
1087
1088	do {
1089		bool decrypt_error = false;
1090
1091		memset(&rs, 0, sizeof(rs));
1092		if (edma)
1093			bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1094		else
1095			bf = ath_get_next_rx_buf(sc, &rs);
1096
1097		if (!bf)
1098			break;
1099
1100		skb = bf->bf_mpdu;
1101		if (!skb)
1102			continue;
1103
1104		/*
1105		 * Take frame header from the first fragment and RX status from
1106		 * the last one.
1107		 */
1108		if (sc->rx.frag)
1109			hdr_skb = sc->rx.frag;
1110		else
1111			hdr_skb = skb;
1112
1113		rxs = IEEE80211_SKB_RXCB(hdr_skb);
1114		memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1115
1116		retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs,
1117						 &decrypt_error, tsf);
1118		if (retval)
1119			goto requeue_drop_frag;
1120
1121		/* Ensure we always have an skb to requeue once we are done
1122		 * processing the current buffer's skb */
1123		requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1124
1125		/* If there is no memory we ignore the current RX'd frame,
1126		 * tell hardware it can give us a new frame using the old
1127		 * skb and put it at the tail of the sc->rx.rxbuf list for
1128		 * processing. */
1129		if (!requeue_skb) {
1130			RX_STAT_INC(sc, rx_oom_err);
1131			goto requeue_drop_frag;
1132		}
1133
1134		/* We will now give hardware our shiny new allocated skb */
1135		new_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1136					      common->rx_bufsize, dma_type);
1137		if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) {
1138			dev_kfree_skb_any(requeue_skb);
1139			goto requeue_drop_frag;
1140		}
1141
1142		/* Unmap the frame */
1143		dma_unmap_single(sc->dev, bf->bf_buf_addr,
1144				 common->rx_bufsize, dma_type);
1145
1146		bf->bf_mpdu = requeue_skb;
1147		bf->bf_buf_addr = new_buf_addr;
1148
1149		skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1150		if (ah->caps.rx_status_len)
1151			skb_pull(skb, ah->caps.rx_status_len);
1152
1153		if (!rs.rs_more)
1154			ath9k_cmn_rx_skb_postprocess(common, hdr_skb, &rs,
1155						     rxs, decrypt_error);
1156
1157		if (rs.rs_more) {
1158			RX_STAT_INC(sc, rx_frags);
1159			/*
1160			 * rs_more indicates chained descriptors which can be
1161			 * used to link buffers together for a sort of
1162			 * scatter-gather operation.
1163			 */
1164			if (sc->rx.frag) {
1165				/* too many fragments - cannot handle frame */
1166				dev_kfree_skb_any(sc->rx.frag);
1167				dev_kfree_skb_any(skb);
1168				RX_STAT_INC(sc, rx_too_many_frags_err);
1169				skb = NULL;
1170			}
1171			sc->rx.frag = skb;
1172			goto requeue;
1173		}
1174
1175		if (sc->rx.frag) {
1176			int space = skb->len - skb_tailroom(hdr_skb);
1177
1178			if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1179				dev_kfree_skb(skb);
1180				RX_STAT_INC(sc, rx_oom_err);
1181				goto requeue_drop_frag;
1182			}
1183
1184			sc->rx.frag = NULL;
1185
1186			skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1187						  skb->len);
1188			dev_kfree_skb_any(skb);
1189			skb = hdr_skb;
1190		}
1191
1192		if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1193			skb_trim(skb, skb->len - 8);
1194
1195		spin_lock_irqsave(&sc->sc_pm_lock, flags);
1196		if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1197				     PS_WAIT_FOR_CAB |
1198				     PS_WAIT_FOR_PSPOLL_DATA)) ||
1199		    ath9k_check_auto_sleep(sc))
1200			ath_rx_ps(sc, skb, rs.is_mybeacon);
1201		spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1202
1203		ath9k_antenna_check(sc, &rs);
1204		ath9k_apply_ampdu_details(sc, &rs, rxs);
1205		ath_debug_rate_stats(sc, &rs, skb);
1206		ath_rx_count_airtime(sc, &rs, skb);
1207
1208		hdr = (struct ieee80211_hdr *)skb->data;
1209		if (ieee80211_is_ack(hdr->frame_control))
1210			ath_dynack_sample_ack_ts(sc->sc_ah, skb, rs.rs_tstamp);
1211
1212		ieee80211_rx(hw, skb);
1213
1214requeue_drop_frag:
1215		if (sc->rx.frag) {
1216			dev_kfree_skb_any(sc->rx.frag);
1217			sc->rx.frag = NULL;
1218		}
1219requeue:
1220		list_add_tail(&bf->list, &sc->rx.rxbuf);
1221
1222		if (!edma) {
1223			ath_rx_buf_relink(sc, bf, flush);
1224			if (!flush)
1225				ath9k_hw_rxena(ah);
1226		} else if (!flush) {
1227			ath_rx_edma_buf_link(sc, qtype);
1228		}
1229
1230		if (!budget--)
1231			break;
1232	} while (1);
1233
1234	if (!(ah->imask & ATH9K_INT_RXEOL)) {
1235		ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1236		ath9k_hw_set_interrupts(ah);
1237	}
1238
1239	return 0;
1240}