Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Copyright (c) 2013, 2021 Johannes Berg <johannes@sipsolutions.net>
   3 *
   4 *  This file is free software: you may copy, redistribute and/or modify it
   5 *  under the terms of the GNU General Public License as published by the
   6 *  Free Software Foundation, either version 2 of the License, or (at your
   7 *  option) any later version.
   8 *
   9 *  This file is distributed in the hope that it will be useful, but
  10 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 *  General Public License for more details.
  13 *
  14 *  You should have received a copy of the GNU General Public License
  15 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
  16 *
  17 * This file incorporates work covered by the following copyright and
  18 * permission notice:
  19 *
  20 * Copyright (c) 2012 Qualcomm Atheros, Inc.
  21 *
  22 * Permission to use, copy, modify, and/or distribute this software for any
  23 * purpose with or without fee is hereby granted, provided that the above
  24 * copyright notice and this permission notice appear in all copies.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  27 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  28 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  29 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  30 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  31 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  32 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/pci.h>
  37#include <linux/interrupt.h>
  38#include <linux/ip.h>
  39#include <linux/ipv6.h>
  40#include <linux/if_vlan.h>
  41#include <linux/mdio.h>
  42#include <linux/bitops.h>
  43#include <linux/netdevice.h>
  44#include <linux/etherdevice.h>
  45#include <net/ip6_checksum.h>
  46#include <linux/crc32.h>
  47#include "alx.h"
  48#include "hw.h"
  49#include "reg.h"
  50
  51static const char alx_drv_name[] = "alx";
  52
  53static void alx_free_txbuf(struct alx_tx_queue *txq, int entry)
  54{
  55	struct alx_buffer *txb = &txq->bufs[entry];
  56
  57	if (dma_unmap_len(txb, size)) {
  58		dma_unmap_single(txq->dev,
  59				 dma_unmap_addr(txb, dma),
  60				 dma_unmap_len(txb, size),
  61				 DMA_TO_DEVICE);
  62		dma_unmap_len_set(txb, size, 0);
  63	}
  64
  65	if (txb->skb) {
  66		dev_kfree_skb_any(txb->skb);
  67		txb->skb = NULL;
  68	}
  69}
  70
  71static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
  72{
  73	struct alx_rx_queue *rxq = alx->qnapi[0]->rxq;
  74	struct sk_buff *skb;
  75	struct alx_buffer *cur_buf;
  76	dma_addr_t dma;
  77	u16 cur, next, count = 0;
  78
  79	next = cur = rxq->write_idx;
  80	if (++next == alx->rx_ringsz)
  81		next = 0;
  82	cur_buf = &rxq->bufs[cur];
  83
  84	while (!cur_buf->skb && next != rxq->read_idx) {
  85		struct alx_rfd *rfd = &rxq->rfd[cur];
  86
  87		/*
  88		 * When DMA RX address is set to something like
  89		 * 0x....fc0, it will be very likely to cause DMA
  90		 * RFD overflow issue.
  91		 *
  92		 * To work around it, we apply rx skb with 64 bytes
  93		 * longer space, and offset the address whenever
  94		 * 0x....fc0 is detected.
  95		 */
  96		skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp);
  97		if (!skb)
  98			break;
  99
 100		if (((unsigned long)skb->data & 0xfff) == 0xfc0)
 101			skb_reserve(skb, 64);
 102
 103		dma = dma_map_single(&alx->hw.pdev->dev,
 104				     skb->data, alx->rxbuf_size,
 105				     DMA_FROM_DEVICE);
 106		if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
 107			dev_kfree_skb(skb);
 108			break;
 109		}
 110
 111		/* Unfortunately, RX descriptor buffers must be 4-byte
 112		 * aligned, so we can't use IP alignment.
 113		 */
 114		if (WARN_ON(dma & 3)) {
 115			dev_kfree_skb(skb);
 116			break;
 117		}
 118
 119		cur_buf->skb = skb;
 120		dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
 121		dma_unmap_addr_set(cur_buf, dma, dma);
 122		rfd->addr = cpu_to_le64(dma);
 123
 124		cur = next;
 125		if (++next == alx->rx_ringsz)
 126			next = 0;
 127		cur_buf = &rxq->bufs[cur];
 128		count++;
 129	}
 130
 131	if (count) {
 132		/* flush all updates before updating hardware */
 133		wmb();
 134		rxq->write_idx = cur;
 135		alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
 136	}
 137
 138	return count;
 139}
 140
 141static struct alx_tx_queue *alx_tx_queue_mapping(struct alx_priv *alx,
 142						 struct sk_buff *skb)
 143{
 144	unsigned int r_idx = skb->queue_mapping;
 145
 146	if (r_idx >= alx->num_txq)
 147		r_idx = r_idx % alx->num_txq;
 148
 149	return alx->qnapi[r_idx]->txq;
 150}
 151
 152static struct netdev_queue *alx_get_tx_queue(const struct alx_tx_queue *txq)
 153{
 154	return netdev_get_tx_queue(txq->netdev, txq->queue_idx);
 155}
 156
 157static inline int alx_tpd_avail(struct alx_tx_queue *txq)
 158{
 159	if (txq->write_idx >= txq->read_idx)
 160		return txq->count + txq->read_idx - txq->write_idx - 1;
 161	return txq->read_idx - txq->write_idx - 1;
 162}
 163
 164static bool alx_clean_tx_irq(struct alx_tx_queue *txq)
 165{
 166	struct alx_priv *alx;
 167	struct netdev_queue *tx_queue;
 168	u16 hw_read_idx, sw_read_idx;
 169	unsigned int total_bytes = 0, total_packets = 0;
 170	int budget = ALX_DEFAULT_TX_WORK;
 171
 172	alx = netdev_priv(txq->netdev);
 173	tx_queue = alx_get_tx_queue(txq);
 174
 175	sw_read_idx = txq->read_idx;
 176	hw_read_idx = alx_read_mem16(&alx->hw, txq->c_reg);
 177
 178	if (sw_read_idx != hw_read_idx) {
 179		while (sw_read_idx != hw_read_idx && budget > 0) {
 180			struct sk_buff *skb;
 181
 182			skb = txq->bufs[sw_read_idx].skb;
 183			if (skb) {
 184				total_bytes += skb->len;
 185				total_packets++;
 186				budget--;
 187			}
 188
 189			alx_free_txbuf(txq, sw_read_idx);
 190
 191			if (++sw_read_idx == txq->count)
 192				sw_read_idx = 0;
 193		}
 194		txq->read_idx = sw_read_idx;
 195
 196		netdev_tx_completed_queue(tx_queue, total_packets, total_bytes);
 197	}
 198
 199	if (netif_tx_queue_stopped(tx_queue) && netif_carrier_ok(alx->dev) &&
 200	    alx_tpd_avail(txq) > txq->count / 4)
 201		netif_tx_wake_queue(tx_queue);
 202
 203	return sw_read_idx == hw_read_idx;
 204}
 205
 206static void alx_schedule_link_check(struct alx_priv *alx)
 207{
 208	schedule_work(&alx->link_check_wk);
 209}
 210
 211static void alx_schedule_reset(struct alx_priv *alx)
 212{
 213	schedule_work(&alx->reset_wk);
 214}
 215
 216static int alx_clean_rx_irq(struct alx_rx_queue *rxq, int budget)
 217{
 218	struct alx_priv *alx;
 219	struct alx_rrd *rrd;
 220	struct alx_buffer *rxb;
 221	struct sk_buff *skb;
 222	u16 length, rfd_cleaned = 0;
 223	int work = 0;
 224
 225	alx = netdev_priv(rxq->netdev);
 226
 227	while (work < budget) {
 228		rrd = &rxq->rrd[rxq->rrd_read_idx];
 229		if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
 230			break;
 231		rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
 232
 233		if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
 234				  RRD_SI) != rxq->read_idx ||
 235		    ALX_GET_FIELD(le32_to_cpu(rrd->word0),
 236				  RRD_NOR) != 1) {
 237			alx_schedule_reset(alx);
 238			return work;
 239		}
 240
 241		rxb = &rxq->bufs[rxq->read_idx];
 242		dma_unmap_single(rxq->dev,
 243				 dma_unmap_addr(rxb, dma),
 244				 dma_unmap_len(rxb, size),
 245				 DMA_FROM_DEVICE);
 246		dma_unmap_len_set(rxb, size, 0);
 247		skb = rxb->skb;
 248		rxb->skb = NULL;
 249
 250		if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
 251		    rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
 252			rrd->word3 = 0;
 253			dev_kfree_skb_any(skb);
 254			goto next_pkt;
 255		}
 256
 257		length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
 258				       RRD_PKTLEN) - ETH_FCS_LEN;
 259		skb_put(skb, length);
 260		skb->protocol = eth_type_trans(skb, rxq->netdev);
 261
 262		skb_checksum_none_assert(skb);
 263		if (alx->dev->features & NETIF_F_RXCSUM &&
 264		    !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
 265				    cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
 266			switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
 267					      RRD_PID)) {
 268			case RRD_PID_IPV6UDP:
 269			case RRD_PID_IPV4UDP:
 270			case RRD_PID_IPV4TCP:
 271			case RRD_PID_IPV6TCP:
 272				skb->ip_summed = CHECKSUM_UNNECESSARY;
 273				break;
 274			}
 275		}
 276
 277		napi_gro_receive(&rxq->np->napi, skb);
 278		work++;
 279
 280next_pkt:
 281		if (++rxq->read_idx == rxq->count)
 282			rxq->read_idx = 0;
 283		if (++rxq->rrd_read_idx == rxq->count)
 284			rxq->rrd_read_idx = 0;
 285
 286		if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
 287			rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
 288	}
 289
 290	if (rfd_cleaned)
 291		alx_refill_rx_ring(alx, GFP_ATOMIC);
 292
 293	return work;
 294}
 295
 296static int alx_poll(struct napi_struct *napi, int budget)
 297{
 298	struct alx_napi *np = container_of(napi, struct alx_napi, napi);
 299	struct alx_priv *alx = np->alx;
 300	struct alx_hw *hw = &alx->hw;
 301	unsigned long flags;
 302	bool tx_complete = true;
 303	int work = 0;
 304
 305	if (np->txq)
 306		tx_complete = alx_clean_tx_irq(np->txq);
 307	if (np->rxq)
 308		work = alx_clean_rx_irq(np->rxq, budget);
 309
 310	if (!tx_complete || work == budget)
 311		return budget;
 312
 313	napi_complete_done(&np->napi, work);
 314
 315	/* enable interrupt */
 316	if (alx->hw.pdev->msix_enabled) {
 317		alx_mask_msix(hw, np->vec_idx, false);
 318	} else {
 319		spin_lock_irqsave(&alx->irq_lock, flags);
 320		alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
 321		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 322		spin_unlock_irqrestore(&alx->irq_lock, flags);
 323	}
 324
 325	alx_post_write(hw);
 326
 327	return work;
 328}
 329
 330static bool alx_intr_handle_misc(struct alx_priv *alx, u32 intr)
 331{
 332	struct alx_hw *hw = &alx->hw;
 333
 334	if (intr & ALX_ISR_FATAL) {
 335		netif_warn(alx, hw, alx->dev,
 336			   "fatal interrupt 0x%x, resetting\n", intr);
 337		alx_schedule_reset(alx);
 338		return true;
 339	}
 340
 341	if (intr & ALX_ISR_ALERT)
 342		netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
 343
 344	if (intr & ALX_ISR_PHY) {
 345		/* suppress PHY interrupt, because the source
 346		 * is from PHY internal. only the internal status
 347		 * is cleared, the interrupt status could be cleared.
 348		 */
 349		alx->int_mask &= ~ALX_ISR_PHY;
 350		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 351		alx_schedule_link_check(alx);
 352	}
 353
 354	return false;
 355}
 356
 357static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
 358{
 359	struct alx_hw *hw = &alx->hw;
 360
 361	spin_lock(&alx->irq_lock);
 362
 363	/* ACK interrupt */
 364	alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
 365	intr &= alx->int_mask;
 366
 367	if (alx_intr_handle_misc(alx, intr))
 368		goto out;
 369
 370	if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
 371		napi_schedule(&alx->qnapi[0]->napi);
 372		/* mask rx/tx interrupt, enable them when napi complete */
 373		alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
 374		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 375	}
 376
 377	alx_write_mem32(hw, ALX_ISR, 0);
 378
 379 out:
 380	spin_unlock(&alx->irq_lock);
 381	return IRQ_HANDLED;
 382}
 383
 384static irqreturn_t alx_intr_msix_ring(int irq, void *data)
 385{
 386	struct alx_napi *np = data;
 387	struct alx_hw *hw = &np->alx->hw;
 388
 389	/* mask interrupt to ACK chip */
 390	alx_mask_msix(hw, np->vec_idx, true);
 391	/* clear interrupt status */
 392	alx_write_mem32(hw, ALX_ISR, np->vec_mask);
 393
 394	napi_schedule(&np->napi);
 395
 396	return IRQ_HANDLED;
 397}
 398
 399static irqreturn_t alx_intr_msix_misc(int irq, void *data)
 400{
 401	struct alx_priv *alx = data;
 402	struct alx_hw *hw = &alx->hw;
 403	u32 intr;
 404
 405	/* mask interrupt to ACK chip */
 406	alx_mask_msix(hw, 0, true);
 407
 408	/* read interrupt status */
 409	intr = alx_read_mem32(hw, ALX_ISR);
 410	intr &= (alx->int_mask & ~ALX_ISR_ALL_QUEUES);
 411
 412	if (alx_intr_handle_misc(alx, intr))
 413		return IRQ_HANDLED;
 414
 415	/* clear interrupt status */
 416	alx_write_mem32(hw, ALX_ISR, intr);
 417
 418	/* enable interrupt again */
 419	alx_mask_msix(hw, 0, false);
 420
 421	return IRQ_HANDLED;
 422}
 423
 424static irqreturn_t alx_intr_msi(int irq, void *data)
 425{
 426	struct alx_priv *alx = data;
 427
 428	return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
 429}
 430
 431static irqreturn_t alx_intr_legacy(int irq, void *data)
 432{
 433	struct alx_priv *alx = data;
 434	struct alx_hw *hw = &alx->hw;
 435	u32 intr;
 436
 437	intr = alx_read_mem32(hw, ALX_ISR);
 438
 439	if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
 440		return IRQ_NONE;
 441
 442	return alx_intr_handle(alx, intr);
 443}
 444
 445static const u16 txring_header_reg[] = {ALX_TPD_PRI0_ADDR_LO,
 446					ALX_TPD_PRI1_ADDR_LO,
 447					ALX_TPD_PRI2_ADDR_LO,
 448					ALX_TPD_PRI3_ADDR_LO};
 449
 450static void alx_init_ring_ptrs(struct alx_priv *alx)
 451{
 452	struct alx_hw *hw = &alx->hw;
 453	u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
 454	struct alx_napi *np;
 455	int i;
 456
 457	for (i = 0; i < alx->num_napi; i++) {
 458		np = alx->qnapi[i];
 459		if (np->txq) {
 460			np->txq->read_idx = 0;
 461			np->txq->write_idx = 0;
 462			alx_write_mem32(hw,
 463					txring_header_reg[np->txq->queue_idx],
 464					np->txq->tpd_dma);
 465		}
 466
 467		if (np->rxq) {
 468			np->rxq->read_idx = 0;
 469			np->rxq->write_idx = 0;
 470			np->rxq->rrd_read_idx = 0;
 471			alx_write_mem32(hw, ALX_RRD_ADDR_LO, np->rxq->rrd_dma);
 472			alx_write_mem32(hw, ALX_RFD_ADDR_LO, np->rxq->rfd_dma);
 473		}
 474	}
 475
 476	alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
 477	alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
 478
 479	alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
 480	alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
 481	alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
 482	alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
 483
 484	/* load these pointers into the chip */
 485	alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
 486}
 487
 488static void alx_free_txring_buf(struct alx_tx_queue *txq)
 489{
 490	int i;
 491
 492	if (!txq->bufs)
 493		return;
 494
 495	for (i = 0; i < txq->count; i++)
 496		alx_free_txbuf(txq, i);
 497
 498	memset(txq->bufs, 0, txq->count * sizeof(struct alx_buffer));
 499	memset(txq->tpd, 0, txq->count * sizeof(struct alx_txd));
 500	txq->write_idx = 0;
 501	txq->read_idx = 0;
 502
 503	netdev_tx_reset_queue(alx_get_tx_queue(txq));
 504}
 505
 506static void alx_free_rxring_buf(struct alx_rx_queue *rxq)
 507{
 508	struct alx_buffer *cur_buf;
 509	u16 i;
 510
 511	if (!rxq->bufs)
 512		return;
 513
 514	for (i = 0; i < rxq->count; i++) {
 515		cur_buf = rxq->bufs + i;
 516		if (cur_buf->skb) {
 517			dma_unmap_single(rxq->dev,
 518					 dma_unmap_addr(cur_buf, dma),
 519					 dma_unmap_len(cur_buf, size),
 520					 DMA_FROM_DEVICE);
 521			dev_kfree_skb(cur_buf->skb);
 522			cur_buf->skb = NULL;
 523			dma_unmap_len_set(cur_buf, size, 0);
 524			dma_unmap_addr_set(cur_buf, dma, 0);
 525		}
 526	}
 527
 528	rxq->write_idx = 0;
 529	rxq->read_idx = 0;
 530	rxq->rrd_read_idx = 0;
 531}
 532
 533static void alx_free_buffers(struct alx_priv *alx)
 534{
 535	int i;
 536
 537	for (i = 0; i < alx->num_txq; i++)
 538		if (alx->qnapi[i] && alx->qnapi[i]->txq)
 539			alx_free_txring_buf(alx->qnapi[i]->txq);
 540
 541	if (alx->qnapi[0] && alx->qnapi[0]->rxq)
 542		alx_free_rxring_buf(alx->qnapi[0]->rxq);
 543}
 544
 545static int alx_reinit_rings(struct alx_priv *alx)
 546{
 547	alx_free_buffers(alx);
 548
 549	alx_init_ring_ptrs(alx);
 550
 551	if (!alx_refill_rx_ring(alx, GFP_KERNEL))
 552		return -ENOMEM;
 553
 554	return 0;
 555}
 556
 557static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
 558{
 559	u32 crc32, bit, reg;
 560
 561	crc32 = ether_crc(ETH_ALEN, addr);
 562	reg = (crc32 >> 31) & 0x1;
 563	bit = (crc32 >> 26) & 0x1F;
 564
 565	mc_hash[reg] |= BIT(bit);
 566}
 567
 568static void __alx_set_rx_mode(struct net_device *netdev)
 569{
 570	struct alx_priv *alx = netdev_priv(netdev);
 571	struct alx_hw *hw = &alx->hw;
 572	struct netdev_hw_addr *ha;
 573	u32 mc_hash[2] = {};
 574
 575	if (!(netdev->flags & IFF_ALLMULTI)) {
 576		netdev_for_each_mc_addr(ha, netdev)
 577			alx_add_mc_addr(hw, ha->addr, mc_hash);
 578
 579		alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
 580		alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
 581	}
 582
 583	hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
 584	if (netdev->flags & IFF_PROMISC)
 585		hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
 586	if (netdev->flags & IFF_ALLMULTI)
 587		hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
 588
 589	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
 590}
 591
 592static void alx_set_rx_mode(struct net_device *netdev)
 593{
 594	__alx_set_rx_mode(netdev);
 595}
 596
 597static int alx_set_mac_address(struct net_device *netdev, void *data)
 598{
 599	struct alx_priv *alx = netdev_priv(netdev);
 600	struct alx_hw *hw = &alx->hw;
 601	struct sockaddr *addr = data;
 602
 603	if (!is_valid_ether_addr(addr->sa_data))
 604		return -EADDRNOTAVAIL;
 605
 606	if (netdev->addr_assign_type & NET_ADDR_RANDOM)
 607		netdev->addr_assign_type ^= NET_ADDR_RANDOM;
 608
 609	eth_hw_addr_set(netdev, addr->sa_data);
 610	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
 611	alx_set_macaddr(hw, hw->mac_addr);
 612
 613	return 0;
 614}
 615
 616static int alx_alloc_tx_ring(struct alx_priv *alx, struct alx_tx_queue *txq,
 617			     int offset)
 618{
 619	txq->bufs = kcalloc(txq->count, sizeof(struct alx_buffer), GFP_KERNEL);
 620	if (!txq->bufs)
 621		return -ENOMEM;
 622
 623	txq->tpd = alx->descmem.virt + offset;
 624	txq->tpd_dma = alx->descmem.dma + offset;
 625	offset += sizeof(struct alx_txd) * txq->count;
 626
 627	return offset;
 628}
 629
 630static int alx_alloc_rx_ring(struct alx_priv *alx, struct alx_rx_queue *rxq,
 631			     int offset)
 632{
 633	rxq->bufs = kcalloc(rxq->count, sizeof(struct alx_buffer), GFP_KERNEL);
 634	if (!rxq->bufs)
 635		return -ENOMEM;
 636
 637	rxq->rrd = alx->descmem.virt + offset;
 638	rxq->rrd_dma = alx->descmem.dma + offset;
 639	offset += sizeof(struct alx_rrd) * rxq->count;
 640
 641	rxq->rfd = alx->descmem.virt + offset;
 642	rxq->rfd_dma = alx->descmem.dma + offset;
 643	offset += sizeof(struct alx_rfd) * rxq->count;
 644
 645	return offset;
 646}
 647
 648static int alx_alloc_rings(struct alx_priv *alx)
 649{
 650	int i, offset = 0;
 651
 652	/* physical tx/rx ring descriptors
 653	 *
 654	 * Allocate them as a single chunk because they must not cross a
 655	 * 4G boundary (hardware has a single register for high 32 bits
 656	 * of addresses only)
 657	 */
 658	alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz *
 659			    alx->num_txq +
 660			    sizeof(struct alx_rrd) * alx->rx_ringsz +
 661			    sizeof(struct alx_rfd) * alx->rx_ringsz;
 662	alx->descmem.virt = dma_alloc_coherent(&alx->hw.pdev->dev,
 663					       alx->descmem.size,
 664					       &alx->descmem.dma, GFP_KERNEL);
 665	if (!alx->descmem.virt)
 666		return -ENOMEM;
 667
 668	/* alignment requirements */
 669	BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
 670	BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
 671
 672	for (i = 0; i < alx->num_txq; i++) {
 673		offset = alx_alloc_tx_ring(alx, alx->qnapi[i]->txq, offset);
 674		if (offset < 0) {
 675			netdev_err(alx->dev, "Allocation of tx buffer failed!\n");
 676			return -ENOMEM;
 677		}
 678	}
 679
 680	offset = alx_alloc_rx_ring(alx, alx->qnapi[0]->rxq, offset);
 681	if (offset < 0) {
 682		netdev_err(alx->dev, "Allocation of rx buffer failed!\n");
 683		return -ENOMEM;
 684	}
 685
 686	return 0;
 687}
 688
 689static void alx_free_rings(struct alx_priv *alx)
 690{
 691	int i;
 692
 693	alx_free_buffers(alx);
 694
 695	for (i = 0; i < alx->num_txq; i++)
 696		if (alx->qnapi[i] && alx->qnapi[i]->txq)
 697			kfree(alx->qnapi[i]->txq->bufs);
 698
 699	if (alx->qnapi[0] && alx->qnapi[0]->rxq)
 700		kfree(alx->qnapi[0]->rxq->bufs);
 701
 702	if (alx->descmem.virt)
 703		dma_free_coherent(&alx->hw.pdev->dev,
 704				  alx->descmem.size,
 705				  alx->descmem.virt,
 706				  alx->descmem.dma);
 707}
 708
 709static void alx_free_napis(struct alx_priv *alx)
 710{
 711	struct alx_napi *np;
 712	int i;
 713
 714	for (i = 0; i < alx->num_napi; i++) {
 715		np = alx->qnapi[i];
 716		if (!np)
 717			continue;
 718
 719		netif_napi_del(&np->napi);
 720		kfree(np->txq);
 721		kfree(np->rxq);
 722		kfree(np);
 723		alx->qnapi[i] = NULL;
 724	}
 725}
 726
 727static const u16 tx_pidx_reg[] = {ALX_TPD_PRI0_PIDX, ALX_TPD_PRI1_PIDX,
 728				  ALX_TPD_PRI2_PIDX, ALX_TPD_PRI3_PIDX};
 729static const u16 tx_cidx_reg[] = {ALX_TPD_PRI0_CIDX, ALX_TPD_PRI1_CIDX,
 730				  ALX_TPD_PRI2_CIDX, ALX_TPD_PRI3_CIDX};
 731static const u32 tx_vect_mask[] = {ALX_ISR_TX_Q0, ALX_ISR_TX_Q1,
 732				   ALX_ISR_TX_Q2, ALX_ISR_TX_Q3};
 733static const u32 rx_vect_mask[] = {ALX_ISR_RX_Q0, ALX_ISR_RX_Q1,
 734				   ALX_ISR_RX_Q2, ALX_ISR_RX_Q3,
 735				   ALX_ISR_RX_Q4, ALX_ISR_RX_Q5,
 736				   ALX_ISR_RX_Q6, ALX_ISR_RX_Q7};
 737
 738static int alx_alloc_napis(struct alx_priv *alx)
 739{
 740	struct alx_napi *np;
 741	struct alx_rx_queue *rxq;
 742	struct alx_tx_queue *txq;
 743	int i;
 744
 745	alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
 746
 747	/* allocate alx_napi structures */
 748	for (i = 0; i < alx->num_napi; i++) {
 749		np = kzalloc(sizeof(struct alx_napi), GFP_KERNEL);
 750		if (!np)
 751			goto err_out;
 752
 753		np->alx = alx;
 754		netif_napi_add(alx->dev, &np->napi, alx_poll);
 755		alx->qnapi[i] = np;
 756	}
 757
 758	/* allocate tx queues */
 759	for (i = 0; i < alx->num_txq; i++) {
 760		np = alx->qnapi[i];
 761		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
 762		if (!txq)
 763			goto err_out;
 764
 765		np->txq = txq;
 766		txq->p_reg = tx_pidx_reg[i];
 767		txq->c_reg = tx_cidx_reg[i];
 768		txq->queue_idx = i;
 769		txq->count = alx->tx_ringsz;
 770		txq->netdev = alx->dev;
 771		txq->dev = &alx->hw.pdev->dev;
 772		np->vec_mask |= tx_vect_mask[i];
 773		alx->int_mask |= tx_vect_mask[i];
 774	}
 775
 776	/* allocate rx queues */
 777	np = alx->qnapi[0];
 778	rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
 779	if (!rxq)
 780		goto err_out;
 781
 782	np->rxq = rxq;
 783	rxq->np = alx->qnapi[0];
 784	rxq->queue_idx = 0;
 785	rxq->count = alx->rx_ringsz;
 786	rxq->netdev = alx->dev;
 787	rxq->dev = &alx->hw.pdev->dev;
 788	np->vec_mask |= rx_vect_mask[0];
 789	alx->int_mask |= rx_vect_mask[0];
 790
 791	return 0;
 792
 793err_out:
 794	netdev_err(alx->dev, "error allocating internal structures\n");
 795	alx_free_napis(alx);
 796	return -ENOMEM;
 797}
 798
 799static const int txq_vec_mapping_shift[] = {
 800	0, ALX_MSI_MAP_TBL1_TXQ0_SHIFT,
 801	0, ALX_MSI_MAP_TBL1_TXQ1_SHIFT,
 802	1, ALX_MSI_MAP_TBL2_TXQ2_SHIFT,
 803	1, ALX_MSI_MAP_TBL2_TXQ3_SHIFT,
 804};
 805
 806static void alx_config_vector_mapping(struct alx_priv *alx)
 807{
 808	struct alx_hw *hw = &alx->hw;
 809	u32 tbl[2] = {0, 0};
 810	int i, vector, idx, shift;
 811
 812	if (alx->hw.pdev->msix_enabled) {
 813		/* tx mappings */
 814		for (i = 0, vector = 1; i < alx->num_txq; i++, vector++) {
 815			idx = txq_vec_mapping_shift[i * 2];
 816			shift = txq_vec_mapping_shift[i * 2 + 1];
 817			tbl[idx] |= vector << shift;
 818		}
 819
 820		/* rx mapping */
 821		tbl[0] |= 1 << ALX_MSI_MAP_TBL1_RXQ0_SHIFT;
 822	}
 823
 824	alx_write_mem32(hw, ALX_MSI_MAP_TBL1, tbl[0]);
 825	alx_write_mem32(hw, ALX_MSI_MAP_TBL2, tbl[1]);
 826	alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
 827}
 828
 829static int alx_enable_msix(struct alx_priv *alx)
 830{
 831	int err, num_vec, num_txq, num_rxq;
 832
 833	num_txq = min_t(int, num_online_cpus(), ALX_MAX_TX_QUEUES);
 834	num_rxq = 1;
 835	num_vec = max_t(int, num_txq, num_rxq) + 1;
 836
 837	err = pci_alloc_irq_vectors(alx->hw.pdev, num_vec, num_vec,
 838			PCI_IRQ_MSIX);
 839	if (err < 0) {
 840		netdev_warn(alx->dev, "Enabling MSI-X interrupts failed!\n");
 841		return err;
 842	}
 843
 844	alx->num_vec = num_vec;
 845	alx->num_napi = num_vec - 1;
 846	alx->num_txq = num_txq;
 847	alx->num_rxq = num_rxq;
 848
 849	return err;
 850}
 851
 852static int alx_request_msix(struct alx_priv *alx)
 853{
 854	struct net_device *netdev = alx->dev;
 855	int i, err, vector = 0, free_vector = 0;
 856
 857	err = request_irq(pci_irq_vector(alx->hw.pdev, 0), alx_intr_msix_misc,
 858			  0, netdev->name, alx);
 859	if (err)
 860		goto out_err;
 861
 862	for (i = 0; i < alx->num_napi; i++) {
 863		struct alx_napi *np = alx->qnapi[i];
 864
 865		vector++;
 866
 867		if (np->txq && np->rxq)
 868			sprintf(np->irq_lbl, "%s-TxRx-%u", netdev->name,
 869				np->txq->queue_idx);
 870		else if (np->txq)
 871			sprintf(np->irq_lbl, "%s-tx-%u", netdev->name,
 872				np->txq->queue_idx);
 873		else if (np->rxq)
 874			sprintf(np->irq_lbl, "%s-rx-%u", netdev->name,
 875				np->rxq->queue_idx);
 876		else
 877			sprintf(np->irq_lbl, "%s-unused", netdev->name);
 878
 879		np->vec_idx = vector;
 880		err = request_irq(pci_irq_vector(alx->hw.pdev, vector),
 881				  alx_intr_msix_ring, 0, np->irq_lbl, np);
 882		if (err)
 883			goto out_free;
 884	}
 885	return 0;
 886
 887out_free:
 888	free_irq(pci_irq_vector(alx->hw.pdev, free_vector++), alx);
 889
 890	vector--;
 891	for (i = 0; i < vector; i++)
 892		free_irq(pci_irq_vector(alx->hw.pdev,free_vector++),
 893			 alx->qnapi[i]);
 894
 895out_err:
 896	return err;
 897}
 898
 899static int alx_init_intr(struct alx_priv *alx)
 900{
 901	int ret;
 902
 903	ret = pci_alloc_irq_vectors(alx->hw.pdev, 1, 1,
 904			PCI_IRQ_MSI | PCI_IRQ_LEGACY);
 905	if (ret < 0)
 906		return ret;
 907
 908	alx->num_vec = 1;
 909	alx->num_napi = 1;
 910	alx->num_txq = 1;
 911	alx->num_rxq = 1;
 912	return 0;
 913}
 914
 915static void alx_irq_enable(struct alx_priv *alx)
 916{
 917	struct alx_hw *hw = &alx->hw;
 918	int i;
 919
 920	/* level-1 interrupt switch */
 921	alx_write_mem32(hw, ALX_ISR, 0);
 922	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 923	alx_post_write(hw);
 924
 925	if (alx->hw.pdev->msix_enabled) {
 926		/* enable all msix irqs */
 927		for (i = 0; i < alx->num_vec; i++)
 928			alx_mask_msix(hw, i, false);
 929	}
 930}
 931
 932static void alx_irq_disable(struct alx_priv *alx)
 933{
 934	struct alx_hw *hw = &alx->hw;
 935	int i;
 936
 937	alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
 938	alx_write_mem32(hw, ALX_IMR, 0);
 939	alx_post_write(hw);
 940
 941	if (alx->hw.pdev->msix_enabled) {
 942		for (i = 0; i < alx->num_vec; i++) {
 943			alx_mask_msix(hw, i, true);
 944			synchronize_irq(pci_irq_vector(alx->hw.pdev, i));
 945		}
 946	} else {
 947		synchronize_irq(pci_irq_vector(alx->hw.pdev, 0));
 948	}
 949}
 950
 951static int alx_realloc_resources(struct alx_priv *alx)
 952{
 953	int err;
 954
 955	alx_free_rings(alx);
 956	alx_free_napis(alx);
 957	pci_free_irq_vectors(alx->hw.pdev);
 958
 959	err = alx_init_intr(alx);
 960	if (err)
 961		return err;
 962
 963	err = alx_alloc_napis(alx);
 964	if (err)
 965		return err;
 966
 967	err = alx_alloc_rings(alx);
 968	if (err)
 969		return err;
 970
 971	return 0;
 972}
 973
 974static int alx_request_irq(struct alx_priv *alx)
 975{
 976	struct pci_dev *pdev = alx->hw.pdev;
 977	struct alx_hw *hw = &alx->hw;
 978	int err;
 979	u32 msi_ctrl;
 980
 981	msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
 982
 983	if (alx->hw.pdev->msix_enabled) {
 984		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, msi_ctrl);
 985		err = alx_request_msix(alx);
 986		if (!err)
 987			goto out;
 988
 989		/* msix request failed, realloc resources */
 990		err = alx_realloc_resources(alx);
 991		if (err)
 992			goto out;
 993	}
 994
 995	if (alx->hw.pdev->msi_enabled) {
 996		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
 997				msi_ctrl | ALX_MSI_MASK_SEL_LINE);
 998		err = request_irq(pci_irq_vector(pdev, 0), alx_intr_msi, 0,
 999				  alx->dev->name, alx);
1000		if (!err)
1001			goto out;
1002
1003		/* fall back to legacy interrupt */
1004		pci_free_irq_vectors(alx->hw.pdev);
1005	}
1006
1007	alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
1008	err = request_irq(pci_irq_vector(pdev, 0), alx_intr_legacy, IRQF_SHARED,
1009			  alx->dev->name, alx);
1010out:
1011	if (!err)
1012		alx_config_vector_mapping(alx);
1013	else
1014		netdev_err(alx->dev, "IRQ registration failed!\n");
1015	return err;
1016}
1017
1018static void alx_free_irq(struct alx_priv *alx)
1019{
1020	struct pci_dev *pdev = alx->hw.pdev;
1021	int i;
1022
1023	free_irq(pci_irq_vector(pdev, 0), alx);
1024	if (alx->hw.pdev->msix_enabled) {
1025		for (i = 0; i < alx->num_napi; i++)
1026			free_irq(pci_irq_vector(pdev, i + 1), alx->qnapi[i]);
1027	}
1028
1029	pci_free_irq_vectors(pdev);
1030}
1031
1032static int alx_identify_hw(struct alx_priv *alx)
1033{
1034	struct alx_hw *hw = &alx->hw;
1035	int rev = alx_hw_revision(hw);
1036
1037	if (rev > ALX_REV_C0)
1038		return -EINVAL;
1039
1040	hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
1041
1042	return 0;
1043}
1044
1045static int alx_init_sw(struct alx_priv *alx)
1046{
1047	struct pci_dev *pdev = alx->hw.pdev;
1048	struct alx_hw *hw = &alx->hw;
1049	int err;
1050
1051	err = alx_identify_hw(alx);
1052	if (err) {
1053		dev_err(&pdev->dev, "unrecognized chip, aborting\n");
1054		return err;
1055	}
1056
1057	alx->hw.lnk_patch =
1058		pdev->device == ALX_DEV_ID_AR8161 &&
1059		pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
1060		pdev->subsystem_device == 0x0091 &&
1061		pdev->revision == 0;
1062
1063	hw->smb_timer = 400;
1064	hw->mtu = alx->dev->mtu;
1065	alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu);
1066	/* MTU range: 34 - 9256 */
1067	alx->dev->min_mtu = 34;
1068	alx->dev->max_mtu = ALX_MAX_FRAME_LEN(ALX_MAX_FRAME_SIZE);
1069	alx->tx_ringsz = 256;
1070	alx->rx_ringsz = 512;
1071	hw->imt = 200;
1072	alx->int_mask = ALX_ISR_MISC;
1073	hw->dma_chnl = hw->max_dma_chnl;
1074	hw->ith_tpd = alx->tx_ringsz / 3;
1075	hw->link_speed = SPEED_UNKNOWN;
1076	hw->duplex = DUPLEX_UNKNOWN;
1077	hw->adv_cfg = ADVERTISED_Autoneg |
1078		      ADVERTISED_10baseT_Half |
1079		      ADVERTISED_10baseT_Full |
1080		      ADVERTISED_100baseT_Full |
1081		      ADVERTISED_100baseT_Half |
1082		      ADVERTISED_1000baseT_Full;
1083	hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
1084
1085	hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
1086		      ALX_MAC_CTRL_MHASH_ALG_HI5B |
1087		      ALX_MAC_CTRL_BRD_EN |
1088		      ALX_MAC_CTRL_PCRCE |
1089		      ALX_MAC_CTRL_CRCE |
1090		      ALX_MAC_CTRL_RXFC_EN |
1091		      ALX_MAC_CTRL_TXFC_EN |
1092		      7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
1093	mutex_init(&alx->mtx);
1094
1095	return 0;
1096}
1097
1098
1099static netdev_features_t alx_fix_features(struct net_device *netdev,
1100					  netdev_features_t features)
1101{
1102	if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
1103		features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1104
1105	return features;
1106}
1107
1108static void alx_netif_stop(struct alx_priv *alx)
1109{
1110	int i;
1111
1112	netif_trans_update(alx->dev);
1113	if (netif_carrier_ok(alx->dev)) {
1114		netif_carrier_off(alx->dev);
1115		netif_tx_disable(alx->dev);
1116		for (i = 0; i < alx->num_napi; i++)
1117			napi_disable(&alx->qnapi[i]->napi);
1118	}
1119}
1120
1121static void alx_halt(struct alx_priv *alx)
1122{
1123	struct alx_hw *hw = &alx->hw;
1124
1125	lockdep_assert_held(&alx->mtx);
1126
1127	alx_netif_stop(alx);
1128	hw->link_speed = SPEED_UNKNOWN;
1129	hw->duplex = DUPLEX_UNKNOWN;
1130
1131	alx_reset_mac(hw);
1132
1133	/* disable l0s/l1 */
1134	alx_enable_aspm(hw, false, false);
1135	alx_irq_disable(alx);
1136	alx_free_buffers(alx);
1137}
1138
1139static void alx_configure(struct alx_priv *alx)
1140{
1141	struct alx_hw *hw = &alx->hw;
1142
1143	alx_configure_basic(hw);
1144	alx_disable_rss(hw);
1145	__alx_set_rx_mode(alx->dev);
1146
1147	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
1148}
1149
1150static void alx_activate(struct alx_priv *alx)
1151{
1152	lockdep_assert_held(&alx->mtx);
1153
1154	/* hardware setting lost, restore it */
1155	alx_reinit_rings(alx);
1156	alx_configure(alx);
1157
1158	/* clear old interrupts */
1159	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1160
1161	alx_irq_enable(alx);
1162
1163	alx_schedule_link_check(alx);
1164}
1165
1166static void alx_reinit(struct alx_priv *alx)
1167{
1168	lockdep_assert_held(&alx->mtx);
1169
1170	alx_halt(alx);
1171	alx_activate(alx);
1172}
1173
1174static int alx_change_mtu(struct net_device *netdev, int mtu)
1175{
1176	struct alx_priv *alx = netdev_priv(netdev);
1177	int max_frame = ALX_MAX_FRAME_LEN(mtu);
1178
1179	netdev->mtu = mtu;
1180	alx->hw.mtu = mtu;
1181	alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE);
1182	netdev_update_features(netdev);
1183	if (netif_running(netdev)) {
1184		mutex_lock(&alx->mtx);
1185		alx_reinit(alx);
1186		mutex_unlock(&alx->mtx);
1187	}
1188	return 0;
1189}
1190
1191static void alx_netif_start(struct alx_priv *alx)
1192{
1193	int i;
1194
1195	netif_tx_wake_all_queues(alx->dev);
1196	for (i = 0; i < alx->num_napi; i++)
1197		napi_enable(&alx->qnapi[i]->napi);
1198	netif_carrier_on(alx->dev);
1199}
1200
1201static int __alx_open(struct alx_priv *alx, bool resume)
1202{
1203	int err;
1204
1205	err = alx_enable_msix(alx);
1206	if (err < 0) {
1207		err = alx_init_intr(alx);
1208		if (err)
1209			return err;
1210	}
1211
1212	if (!resume)
1213		netif_carrier_off(alx->dev);
1214
1215	err = alx_alloc_napis(alx);
1216	if (err)
1217		goto out_disable_adv_intr;
1218
1219	err = alx_alloc_rings(alx);
1220	if (err)
1221		goto out_free_rings;
1222
1223	alx_configure(alx);
1224
1225	err = alx_request_irq(alx);
1226	if (err)
1227		goto out_free_rings;
1228
1229	/* must be called after alx_request_irq because the chip stops working
1230	 * if we copy the dma addresses in alx_init_ring_ptrs twice when
1231	 * requesting msi-x interrupts failed
1232	 */
1233	alx_reinit_rings(alx);
1234
1235	netif_set_real_num_tx_queues(alx->dev, alx->num_txq);
1236	netif_set_real_num_rx_queues(alx->dev, alx->num_rxq);
1237
1238	/* clear old interrupts */
1239	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1240
1241	alx_irq_enable(alx);
1242
1243	if (!resume)
1244		netif_tx_start_all_queues(alx->dev);
1245
1246	alx_schedule_link_check(alx);
1247	return 0;
1248
1249out_free_rings:
1250	alx_free_rings(alx);
1251	alx_free_napis(alx);
1252out_disable_adv_intr:
1253	pci_free_irq_vectors(alx->hw.pdev);
1254	return err;
1255}
1256
1257static void __alx_stop(struct alx_priv *alx)
1258{
1259	lockdep_assert_held(&alx->mtx);
1260
1261	alx_free_irq(alx);
1262
1263	cancel_work_sync(&alx->link_check_wk);
1264	cancel_work_sync(&alx->reset_wk);
1265
1266	alx_halt(alx);
1267	alx_free_rings(alx);
1268	alx_free_napis(alx);
1269}
1270
1271static const char *alx_speed_desc(struct alx_hw *hw)
1272{
1273	switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
1274	case ADVERTISED_1000baseT_Full:
1275		return "1 Gbps Full";
1276	case ADVERTISED_100baseT_Full:
1277		return "100 Mbps Full";
1278	case ADVERTISED_100baseT_Half:
1279		return "100 Mbps Half";
1280	case ADVERTISED_10baseT_Full:
1281		return "10 Mbps Full";
1282	case ADVERTISED_10baseT_Half:
1283		return "10 Mbps Half";
1284	default:
1285		return "Unknown speed";
1286	}
1287}
1288
1289static void alx_check_link(struct alx_priv *alx)
1290{
1291	struct alx_hw *hw = &alx->hw;
1292	unsigned long flags;
1293	int old_speed;
1294	int err;
1295
1296	lockdep_assert_held(&alx->mtx);
1297
1298	/* clear PHY internal interrupt status, otherwise the main
1299	 * interrupt status will be asserted forever
1300	 */
1301	alx_clear_phy_intr(hw);
1302
1303	old_speed = hw->link_speed;
1304	err = alx_read_phy_link(hw);
1305	if (err < 0)
1306		goto reset;
1307
1308	spin_lock_irqsave(&alx->irq_lock, flags);
1309	alx->int_mask |= ALX_ISR_PHY;
1310	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
1311	spin_unlock_irqrestore(&alx->irq_lock, flags);
1312
1313	if (old_speed == hw->link_speed)
1314		return;
1315
1316	if (hw->link_speed != SPEED_UNKNOWN) {
1317		netif_info(alx, link, alx->dev,
1318			   "NIC Up: %s\n", alx_speed_desc(hw));
1319		alx_post_phy_link(hw);
1320		alx_enable_aspm(hw, true, true);
1321		alx_start_mac(hw);
1322
1323		if (old_speed == SPEED_UNKNOWN)
1324			alx_netif_start(alx);
1325	} else {
1326		/* link is now down */
1327		alx_netif_stop(alx);
1328		netif_info(alx, link, alx->dev, "Link Down\n");
1329		err = alx_reset_mac(hw);
1330		if (err)
1331			goto reset;
1332		alx_irq_disable(alx);
1333
1334		/* MAC reset causes all HW settings to be lost, restore all */
1335		err = alx_reinit_rings(alx);
1336		if (err)
1337			goto reset;
1338		alx_configure(alx);
1339		alx_enable_aspm(hw, false, true);
1340		alx_post_phy_link(hw);
1341		alx_irq_enable(alx);
1342	}
1343
1344	return;
1345
1346reset:
1347	alx_schedule_reset(alx);
1348}
1349
1350static int alx_open(struct net_device *netdev)
1351{
1352	struct alx_priv *alx = netdev_priv(netdev);
1353	int ret;
1354
1355	mutex_lock(&alx->mtx);
1356	ret = __alx_open(alx, false);
1357	mutex_unlock(&alx->mtx);
1358
1359	return ret;
1360}
1361
1362static int alx_stop(struct net_device *netdev)
1363{
1364	struct alx_priv *alx = netdev_priv(netdev);
1365
1366	mutex_lock(&alx->mtx);
1367	__alx_stop(alx);
1368	mutex_unlock(&alx->mtx);
1369
1370	return 0;
1371}
1372
1373static void alx_link_check(struct work_struct *work)
1374{
1375	struct alx_priv *alx;
1376
1377	alx = container_of(work, struct alx_priv, link_check_wk);
1378
1379	mutex_lock(&alx->mtx);
1380	alx_check_link(alx);
1381	mutex_unlock(&alx->mtx);
1382}
1383
1384static void alx_reset(struct work_struct *work)
1385{
1386	struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
1387
1388	mutex_lock(&alx->mtx);
1389	alx_reinit(alx);
1390	mutex_unlock(&alx->mtx);
1391}
1392
1393static int alx_tpd_req(struct sk_buff *skb)
1394{
1395	int num;
1396
1397	num = skb_shinfo(skb)->nr_frags + 1;
1398	/* we need one extra descriptor for LSOv2 */
1399	if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
1400		num++;
1401
1402	return num;
1403}
1404
1405static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
1406{
1407	u8 cso, css;
1408
1409	if (skb->ip_summed != CHECKSUM_PARTIAL)
1410		return 0;
1411
1412	cso = skb_checksum_start_offset(skb);
1413	if (cso & 1)
1414		return -EINVAL;
1415
1416	css = cso + skb->csum_offset;
1417	first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
1418	first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
1419	first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
1420
1421	return 0;
1422}
1423
1424static int alx_tso(struct sk_buff *skb, struct alx_txd *first)
1425{
1426	int err;
1427
1428	if (skb->ip_summed != CHECKSUM_PARTIAL)
1429		return 0;
1430
1431	if (!skb_is_gso(skb))
1432		return 0;
1433
1434	err = skb_cow_head(skb, 0);
1435	if (err < 0)
1436		return err;
1437
1438	if (skb->protocol == htons(ETH_P_IP)) {
1439		struct iphdr *iph = ip_hdr(skb);
1440
1441		iph->check = 0;
1442		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1443							 0, IPPROTO_TCP, 0);
1444		first->word1 |= 1 << TPD_IPV4_SHIFT;
1445	} else if (skb_is_gso_v6(skb)) {
1446		tcp_v6_gso_csum_prep(skb);
1447		/* LSOv2: the first TPD only provides the packet length */
1448		first->adrl.l.pkt_len = skb->len;
1449		first->word1 |= 1 << TPD_LSO_V2_SHIFT;
1450	}
1451
1452	first->word1 |= 1 << TPD_LSO_EN_SHIFT;
1453	first->word1 |= (skb_transport_offset(skb) &
1454			 TPD_L4HDROFFSET_MASK) << TPD_L4HDROFFSET_SHIFT;
1455	first->word1 |= (skb_shinfo(skb)->gso_size &
1456			 TPD_MSS_MASK) << TPD_MSS_SHIFT;
1457	return 1;
1458}
1459
1460static int alx_map_tx_skb(struct alx_tx_queue *txq, struct sk_buff *skb)
1461{
1462	struct alx_txd *tpd, *first_tpd;
1463	dma_addr_t dma;
1464	int maplen, f, first_idx = txq->write_idx;
1465
1466	first_tpd = &txq->tpd[txq->write_idx];
1467	tpd = first_tpd;
1468
1469	if (tpd->word1 & (1 << TPD_LSO_V2_SHIFT)) {
1470		if (++txq->write_idx == txq->count)
1471			txq->write_idx = 0;
1472
1473		tpd = &txq->tpd[txq->write_idx];
1474		tpd->len = first_tpd->len;
1475		tpd->vlan_tag = first_tpd->vlan_tag;
1476		tpd->word1 = first_tpd->word1;
1477	}
1478
1479	maplen = skb_headlen(skb);
1480	dma = dma_map_single(txq->dev, skb->data, maplen,
1481			     DMA_TO_DEVICE);
1482	if (dma_mapping_error(txq->dev, dma))
1483		goto err_dma;
1484
1485	dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1486	dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1487
1488	tpd->adrl.addr = cpu_to_le64(dma);
1489	tpd->len = cpu_to_le16(maplen);
1490
1491	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1492		skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1493
1494		if (++txq->write_idx == txq->count)
1495			txq->write_idx = 0;
1496		tpd = &txq->tpd[txq->write_idx];
1497
1498		tpd->word1 = first_tpd->word1;
1499
1500		maplen = skb_frag_size(frag);
1501		dma = skb_frag_dma_map(txq->dev, frag, 0,
1502				       maplen, DMA_TO_DEVICE);
1503		if (dma_mapping_error(txq->dev, dma))
1504			goto err_dma;
1505		dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1506		dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1507
1508		tpd->adrl.addr = cpu_to_le64(dma);
1509		tpd->len = cpu_to_le16(maplen);
1510	}
1511
1512	/* last TPD, set EOP flag and store skb */
1513	tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1514	txq->bufs[txq->write_idx].skb = skb;
1515
1516	if (++txq->write_idx == txq->count)
1517		txq->write_idx = 0;
1518
1519	return 0;
1520
1521err_dma:
1522	f = first_idx;
1523	while (f != txq->write_idx) {
1524		alx_free_txbuf(txq, f);
1525		if (++f == txq->count)
1526			f = 0;
1527	}
1528	return -ENOMEM;
1529}
1530
1531static netdev_tx_t alx_start_xmit_ring(struct sk_buff *skb,
1532				       struct alx_tx_queue *txq)
1533{
1534	struct alx_priv *alx;
1535	struct alx_txd *first;
1536	int tso;
1537
1538	alx = netdev_priv(txq->netdev);
1539
1540	if (alx_tpd_avail(txq) < alx_tpd_req(skb)) {
1541		netif_tx_stop_queue(alx_get_tx_queue(txq));
1542		goto drop;
1543	}
1544
1545	first = &txq->tpd[txq->write_idx];
1546	memset(first, 0, sizeof(*first));
1547
1548	tso = alx_tso(skb, first);
1549	if (tso < 0)
1550		goto drop;
1551	else if (!tso && alx_tx_csum(skb, first))
1552		goto drop;
1553
1554	if (alx_map_tx_skb(txq, skb) < 0)
1555		goto drop;
1556
1557	netdev_tx_sent_queue(alx_get_tx_queue(txq), skb->len);
1558
1559	/* flush updates before updating hardware */
1560	wmb();
1561	alx_write_mem16(&alx->hw, txq->p_reg, txq->write_idx);
1562
1563	if (alx_tpd_avail(txq) < txq->count / 8)
1564		netif_tx_stop_queue(alx_get_tx_queue(txq));
1565
1566	return NETDEV_TX_OK;
1567
1568drop:
1569	dev_kfree_skb_any(skb);
1570	return NETDEV_TX_OK;
1571}
1572
1573static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1574				  struct net_device *netdev)
1575{
1576	struct alx_priv *alx = netdev_priv(netdev);
1577	return alx_start_xmit_ring(skb, alx_tx_queue_mapping(alx, skb));
1578}
1579
1580static void alx_tx_timeout(struct net_device *dev, unsigned int txqueue)
1581{
1582	struct alx_priv *alx = netdev_priv(dev);
1583
1584	alx_schedule_reset(alx);
1585}
1586
1587static int alx_mdio_read(struct net_device *netdev,
1588			 int prtad, int devad, u16 addr)
1589{
1590	struct alx_priv *alx = netdev_priv(netdev);
1591	struct alx_hw *hw = &alx->hw;
1592	u16 val;
1593	int err;
1594
1595	if (prtad != hw->mdio.prtad)
1596		return -EINVAL;
1597
1598	if (devad == MDIO_DEVAD_NONE)
1599		err = alx_read_phy_reg(hw, addr, &val);
1600	else
1601		err = alx_read_phy_ext(hw, devad, addr, &val);
1602
1603	if (err)
1604		return err;
1605	return val;
1606}
1607
1608static int alx_mdio_write(struct net_device *netdev,
1609			  int prtad, int devad, u16 addr, u16 val)
1610{
1611	struct alx_priv *alx = netdev_priv(netdev);
1612	struct alx_hw *hw = &alx->hw;
1613
1614	if (prtad != hw->mdio.prtad)
1615		return -EINVAL;
1616
1617	if (devad == MDIO_DEVAD_NONE)
1618		return alx_write_phy_reg(hw, addr, val);
1619
1620	return alx_write_phy_ext(hw, devad, addr, val);
1621}
1622
1623static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1624{
1625	struct alx_priv *alx = netdev_priv(netdev);
1626
1627	if (!netif_running(netdev))
1628		return -EAGAIN;
1629
1630	return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1631}
1632
1633#ifdef CONFIG_NET_POLL_CONTROLLER
1634static void alx_poll_controller(struct net_device *netdev)
1635{
1636	struct alx_priv *alx = netdev_priv(netdev);
1637	int i;
1638
1639	if (alx->hw.pdev->msix_enabled) {
1640		alx_intr_msix_misc(0, alx);
1641		for (i = 0; i < alx->num_txq; i++)
1642			alx_intr_msix_ring(0, alx->qnapi[i]);
1643	} else if (alx->hw.pdev->msi_enabled)
1644		alx_intr_msi(0, alx);
1645	else
1646		alx_intr_legacy(0, alx);
1647}
1648#endif
1649
1650static void alx_get_stats64(struct net_device *dev,
1651			    struct rtnl_link_stats64 *net_stats)
1652{
1653	struct alx_priv *alx = netdev_priv(dev);
1654	struct alx_hw_stats *hw_stats = &alx->hw.stats;
1655
1656	spin_lock(&alx->stats_lock);
1657
1658	alx_update_hw_stats(&alx->hw);
1659
1660	net_stats->tx_bytes   = hw_stats->tx_byte_cnt;
1661	net_stats->rx_bytes   = hw_stats->rx_byte_cnt;
1662	net_stats->multicast  = hw_stats->rx_mcast;
1663	net_stats->collisions = hw_stats->tx_single_col +
1664				hw_stats->tx_multi_col +
1665				hw_stats->tx_late_col +
1666				hw_stats->tx_abort_col;
1667
1668	net_stats->rx_errors  = hw_stats->rx_frag +
1669				hw_stats->rx_fcs_err +
1670				hw_stats->rx_len_err +
1671				hw_stats->rx_ov_sz +
1672				hw_stats->rx_ov_rrd +
1673				hw_stats->rx_align_err +
1674				hw_stats->rx_ov_rxf;
1675
1676	net_stats->rx_fifo_errors   = hw_stats->rx_ov_rxf;
1677	net_stats->rx_length_errors = hw_stats->rx_len_err;
1678	net_stats->rx_crc_errors    = hw_stats->rx_fcs_err;
1679	net_stats->rx_frame_errors  = hw_stats->rx_align_err;
1680	net_stats->rx_dropped       = hw_stats->rx_ov_rrd;
1681
1682	net_stats->tx_errors = hw_stats->tx_late_col +
1683			       hw_stats->tx_abort_col +
1684			       hw_stats->tx_underrun +
1685			       hw_stats->tx_trunc;
1686
1687	net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1688	net_stats->tx_fifo_errors    = hw_stats->tx_underrun;
1689	net_stats->tx_window_errors  = hw_stats->tx_late_col;
1690
1691	net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1692	net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1693
1694	spin_unlock(&alx->stats_lock);
1695}
1696
1697static const struct net_device_ops alx_netdev_ops = {
1698	.ndo_open               = alx_open,
1699	.ndo_stop               = alx_stop,
1700	.ndo_start_xmit         = alx_start_xmit,
1701	.ndo_get_stats64        = alx_get_stats64,
1702	.ndo_set_rx_mode        = alx_set_rx_mode,
1703	.ndo_validate_addr      = eth_validate_addr,
1704	.ndo_set_mac_address    = alx_set_mac_address,
1705	.ndo_change_mtu         = alx_change_mtu,
1706	.ndo_eth_ioctl           = alx_ioctl,
1707	.ndo_tx_timeout         = alx_tx_timeout,
1708	.ndo_fix_features	= alx_fix_features,
1709#ifdef CONFIG_NET_POLL_CONTROLLER
1710	.ndo_poll_controller    = alx_poll_controller,
1711#endif
1712};
1713
1714static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1715{
1716	struct net_device *netdev;
1717	struct alx_priv *alx;
1718	struct alx_hw *hw;
1719	bool phy_configured;
1720	int err;
1721
1722	err = pci_enable_device_mem(pdev);
1723	if (err)
1724		return err;
1725
1726	/* The alx chip can DMA to 64-bit addresses, but it uses a single
1727	 * shared register for the high 32 bits, so only a single, aligned,
1728	 * 4 GB physical address range can be used for descriptors.
1729	 */
1730	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1731		dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1732	} else {
1733		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1734		if (err) {
1735			dev_err(&pdev->dev, "No usable DMA config, aborting\n");
1736			goto out_pci_disable;
1737		}
1738	}
1739
1740	err = pci_request_mem_regions(pdev, alx_drv_name);
1741	if (err) {
1742		dev_err(&pdev->dev,
1743			"pci_request_mem_regions failed\n");
1744		goto out_pci_disable;
1745	}
1746
1747	pci_set_master(pdev);
1748
1749	if (!pdev->pm_cap) {
1750		dev_err(&pdev->dev,
1751			"Can't find power management capability, aborting\n");
1752		err = -EIO;
1753		goto out_pci_release;
1754	}
1755
1756	netdev = alloc_etherdev_mqs(sizeof(*alx),
1757				    ALX_MAX_TX_QUEUES, 1);
1758	if (!netdev) {
1759		err = -ENOMEM;
1760		goto out_pci_release;
1761	}
1762
1763	SET_NETDEV_DEV(netdev, &pdev->dev);
1764	alx = netdev_priv(netdev);
1765	spin_lock_init(&alx->hw.mdio_lock);
1766	spin_lock_init(&alx->irq_lock);
1767	spin_lock_init(&alx->stats_lock);
1768	alx->dev = netdev;
1769	alx->hw.pdev = pdev;
1770	alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1771			  NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1772	hw = &alx->hw;
1773	pci_set_drvdata(pdev, alx);
1774
1775	hw->hw_addr = pci_ioremap_bar(pdev, 0);
1776	if (!hw->hw_addr) {
1777		dev_err(&pdev->dev, "cannot map device registers\n");
1778		err = -EIO;
1779		goto out_free_netdev;
1780	}
1781
1782	netdev->netdev_ops = &alx_netdev_ops;
1783	netdev->ethtool_ops = &alx_ethtool_ops;
1784	netdev->irq = pci_irq_vector(pdev, 0);
1785	netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1786
1787	if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1788		pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1789
1790	err = alx_init_sw(alx);
1791	if (err) {
1792		dev_err(&pdev->dev, "net device private data init failed\n");
1793		goto out_unmap;
1794	}
1795
1796	mutex_lock(&alx->mtx);
1797
1798	alx_reset_pcie(hw);
1799
1800	phy_configured = alx_phy_configured(hw);
1801
1802	if (!phy_configured)
1803		alx_reset_phy(hw);
1804
1805	err = alx_reset_mac(hw);
1806	if (err) {
1807		dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1808		goto out_unlock;
1809	}
1810
1811	/* setup link to put it in a known good starting state */
1812	if (!phy_configured) {
1813		err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1814		if (err) {
1815			dev_err(&pdev->dev,
1816				"failed to configure PHY speed/duplex (err=%d)\n",
1817				err);
1818			goto out_unlock;
1819		}
1820	}
1821
1822	netdev->hw_features = NETIF_F_SG |
1823			      NETIF_F_HW_CSUM |
1824			      NETIF_F_RXCSUM |
1825			      NETIF_F_TSO |
1826			      NETIF_F_TSO6;
1827
1828	if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1829		dev_warn(&pdev->dev,
1830			 "Invalid permanent address programmed, using random one\n");
1831		eth_hw_addr_random(netdev);
1832		memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1833	}
1834
1835	memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1836	eth_hw_addr_set(netdev, hw->mac_addr);
1837	memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1838
1839	hw->mdio.prtad = 0;
1840	hw->mdio.mmds = 0;
1841	hw->mdio.dev = netdev;
1842	hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1843				MDIO_SUPPORTS_C22 |
1844				MDIO_EMULATE_C22;
1845	hw->mdio.mdio_read = alx_mdio_read;
1846	hw->mdio.mdio_write = alx_mdio_write;
1847
1848	if (!alx_get_phy_info(hw)) {
1849		dev_err(&pdev->dev, "failed to identify PHY\n");
1850		err = -EIO;
1851		goto out_unlock;
1852	}
1853
1854	mutex_unlock(&alx->mtx);
1855
1856	INIT_WORK(&alx->link_check_wk, alx_link_check);
1857	INIT_WORK(&alx->reset_wk, alx_reset);
1858	netif_carrier_off(netdev);
1859
1860	err = register_netdev(netdev);
1861	if (err) {
1862		dev_err(&pdev->dev, "register netdevice failed\n");
1863		goto out_unmap;
1864	}
1865
1866	netdev_info(netdev,
1867		    "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1868		    netdev->dev_addr);
1869
1870	return 0;
1871
1872out_unlock:
1873	mutex_unlock(&alx->mtx);
1874out_unmap:
1875	iounmap(hw->hw_addr);
1876out_free_netdev:
1877	free_netdev(netdev);
1878out_pci_release:
1879	pci_release_mem_regions(pdev);
1880out_pci_disable:
1881	pci_disable_device(pdev);
1882	return err;
1883}
1884
1885static void alx_remove(struct pci_dev *pdev)
1886{
1887	struct alx_priv *alx = pci_get_drvdata(pdev);
1888	struct alx_hw *hw = &alx->hw;
1889
1890	/* restore permanent mac address */
1891	alx_set_macaddr(hw, hw->perm_addr);
1892
1893	unregister_netdev(alx->dev);
1894	iounmap(hw->hw_addr);
1895	pci_release_mem_regions(pdev);
1896
1897	pci_disable_device(pdev);
1898
1899	mutex_destroy(&alx->mtx);
1900
1901	free_netdev(alx->dev);
1902}
1903
1904static int alx_suspend(struct device *dev)
1905{
1906	struct alx_priv *alx = dev_get_drvdata(dev);
1907
1908	if (!netif_running(alx->dev))
1909		return 0;
1910
1911	rtnl_lock();
1912	netif_device_detach(alx->dev);
1913
1914	mutex_lock(&alx->mtx);
1915	__alx_stop(alx);
1916	mutex_unlock(&alx->mtx);
1917	rtnl_unlock();
1918
1919	return 0;
1920}
1921
1922static int alx_resume(struct device *dev)
1923{
1924	struct alx_priv *alx = dev_get_drvdata(dev);
1925	struct alx_hw *hw = &alx->hw;
1926	int err;
1927
1928	rtnl_lock();
1929	mutex_lock(&alx->mtx);
1930	alx_reset_phy(hw);
1931
1932	if (!netif_running(alx->dev)) {
1933		err = 0;
1934		goto unlock;
1935	}
1936
1937	err = __alx_open(alx, true);
1938	if (err)
1939		goto unlock;
1940
1941	netif_device_attach(alx->dev);
1942
1943unlock:
1944	mutex_unlock(&alx->mtx);
1945	rtnl_unlock();
1946	return err;
1947}
1948
1949static DEFINE_SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1950
1951static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1952					       pci_channel_state_t state)
1953{
1954	struct alx_priv *alx = pci_get_drvdata(pdev);
1955	struct net_device *netdev = alx->dev;
1956	pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1957
1958	dev_info(&pdev->dev, "pci error detected\n");
1959
1960	mutex_lock(&alx->mtx);
1961
1962	if (netif_running(netdev)) {
1963		netif_device_detach(netdev);
1964		alx_halt(alx);
1965	}
1966
1967	if (state == pci_channel_io_perm_failure)
1968		rc = PCI_ERS_RESULT_DISCONNECT;
1969	else
1970		pci_disable_device(pdev);
1971
1972	mutex_unlock(&alx->mtx);
1973
1974	return rc;
1975}
1976
1977static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1978{
1979	struct alx_priv *alx = pci_get_drvdata(pdev);
1980	struct alx_hw *hw = &alx->hw;
1981	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1982
1983	dev_info(&pdev->dev, "pci error slot reset\n");
1984
1985	mutex_lock(&alx->mtx);
1986
1987	if (pci_enable_device(pdev)) {
1988		dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1989		goto out;
1990	}
1991
1992	pci_set_master(pdev);
1993
1994	alx_reset_pcie(hw);
1995	if (!alx_reset_mac(hw))
1996		rc = PCI_ERS_RESULT_RECOVERED;
1997out:
1998	mutex_unlock(&alx->mtx);
1999
2000	return rc;
2001}
2002
2003static void alx_pci_error_resume(struct pci_dev *pdev)
2004{
2005	struct alx_priv *alx = pci_get_drvdata(pdev);
2006	struct net_device *netdev = alx->dev;
2007
2008	dev_info(&pdev->dev, "pci error resume\n");
2009
2010	mutex_lock(&alx->mtx);
2011
2012	if (netif_running(netdev)) {
2013		alx_activate(alx);
2014		netif_device_attach(netdev);
2015	}
2016
2017	mutex_unlock(&alx->mtx);
2018}
2019
2020static const struct pci_error_handlers alx_err_handlers = {
2021	.error_detected = alx_pci_error_detected,
2022	.slot_reset     = alx_pci_error_slot_reset,
2023	.resume         = alx_pci_error_resume,
2024};
2025
2026static const struct pci_device_id alx_pci_tbl[] = {
2027	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
2028	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2029	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
2030	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2031	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400),
2032	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2033	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2500),
2034	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2035	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
2036	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2037	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
2038	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
2039	{}
2040};
2041
2042static struct pci_driver alx_driver = {
2043	.name        = alx_drv_name,
2044	.id_table    = alx_pci_tbl,
2045	.probe       = alx_probe,
2046	.remove      = alx_remove,
2047	.err_handler = &alx_err_handlers,
2048	.driver.pm   = pm_sleep_ptr(&alx_pm_ops),
2049};
2050
2051module_pci_driver(alx_driver);
2052MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
2053MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
2054MODULE_AUTHOR("Qualcomm Corporation");
2055MODULE_DESCRIPTION(
2056	"Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
2057MODULE_LICENSE("GPL");
v6.13.7
   1/*
   2 * Copyright (c) 2013, 2021 Johannes Berg <johannes@sipsolutions.net>
   3 *
   4 *  This file is free software: you may copy, redistribute and/or modify it
   5 *  under the terms of the GNU General Public License as published by the
   6 *  Free Software Foundation, either version 2 of the License, or (at your
   7 *  option) any later version.
   8 *
   9 *  This file is distributed in the hope that it will be useful, but
  10 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 *  General Public License for more details.
  13 *
  14 *  You should have received a copy of the GNU General Public License
  15 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
  16 *
  17 * This file incorporates work covered by the following copyright and
  18 * permission notice:
  19 *
  20 * Copyright (c) 2012 Qualcomm Atheros, Inc.
  21 *
  22 * Permission to use, copy, modify, and/or distribute this software for any
  23 * purpose with or without fee is hereby granted, provided that the above
  24 * copyright notice and this permission notice appear in all copies.
  25 *
  26 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  27 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  28 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  29 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  30 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  31 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  32 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/pci.h>
  37#include <linux/interrupt.h>
  38#include <linux/ip.h>
  39#include <linux/ipv6.h>
  40#include <linux/if_vlan.h>
  41#include <linux/mdio.h>
  42#include <linux/bitops.h>
  43#include <linux/netdevice.h>
  44#include <linux/etherdevice.h>
  45#include <net/ip6_checksum.h>
  46#include <linux/crc32.h>
  47#include "alx.h"
  48#include "hw.h"
  49#include "reg.h"
  50
  51static const char alx_drv_name[] = "alx";
  52
  53static void alx_free_txbuf(struct alx_tx_queue *txq, int entry)
  54{
  55	struct alx_buffer *txb = &txq->bufs[entry];
  56
  57	if (dma_unmap_len(txb, size)) {
  58		dma_unmap_single(txq->dev,
  59				 dma_unmap_addr(txb, dma),
  60				 dma_unmap_len(txb, size),
  61				 DMA_TO_DEVICE);
  62		dma_unmap_len_set(txb, size, 0);
  63	}
  64
  65	if (txb->skb) {
  66		dev_kfree_skb_any(txb->skb);
  67		txb->skb = NULL;
  68	}
  69}
  70
  71static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
  72{
  73	struct alx_rx_queue *rxq = alx->qnapi[0]->rxq;
  74	struct sk_buff *skb;
  75	struct alx_buffer *cur_buf;
  76	dma_addr_t dma;
  77	u16 cur, next, count = 0;
  78
  79	next = cur = rxq->write_idx;
  80	if (++next == alx->rx_ringsz)
  81		next = 0;
  82	cur_buf = &rxq->bufs[cur];
  83
  84	while (!cur_buf->skb && next != rxq->read_idx) {
  85		struct alx_rfd *rfd = &rxq->rfd[cur];
  86
  87		/*
  88		 * When DMA RX address is set to something like
  89		 * 0x....fc0, it will be very likely to cause DMA
  90		 * RFD overflow issue.
  91		 *
  92		 * To work around it, we apply rx skb with 64 bytes
  93		 * longer space, and offset the address whenever
  94		 * 0x....fc0 is detected.
  95		 */
  96		skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp);
  97		if (!skb)
  98			break;
  99
 100		if (((unsigned long)skb->data & 0xfff) == 0xfc0)
 101			skb_reserve(skb, 64);
 102
 103		dma = dma_map_single(&alx->hw.pdev->dev,
 104				     skb->data, alx->rxbuf_size,
 105				     DMA_FROM_DEVICE);
 106		if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
 107			dev_kfree_skb(skb);
 108			break;
 109		}
 110
 111		/* Unfortunately, RX descriptor buffers must be 4-byte
 112		 * aligned, so we can't use IP alignment.
 113		 */
 114		if (WARN_ON(dma & 3)) {
 115			dev_kfree_skb(skb);
 116			break;
 117		}
 118
 119		cur_buf->skb = skb;
 120		dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
 121		dma_unmap_addr_set(cur_buf, dma, dma);
 122		rfd->addr = cpu_to_le64(dma);
 123
 124		cur = next;
 125		if (++next == alx->rx_ringsz)
 126			next = 0;
 127		cur_buf = &rxq->bufs[cur];
 128		count++;
 129	}
 130
 131	if (count) {
 132		/* flush all updates before updating hardware */
 133		wmb();
 134		rxq->write_idx = cur;
 135		alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
 136	}
 137
 138	return count;
 139}
 140
 141static struct alx_tx_queue *alx_tx_queue_mapping(struct alx_priv *alx,
 142						 struct sk_buff *skb)
 143{
 144	unsigned int r_idx = skb->queue_mapping;
 145
 146	if (r_idx >= alx->num_txq)
 147		r_idx = r_idx % alx->num_txq;
 148
 149	return alx->qnapi[r_idx]->txq;
 150}
 151
 152static struct netdev_queue *alx_get_tx_queue(const struct alx_tx_queue *txq)
 153{
 154	return netdev_get_tx_queue(txq->netdev, txq->queue_idx);
 155}
 156
 157static inline int alx_tpd_avail(struct alx_tx_queue *txq)
 158{
 159	if (txq->write_idx >= txq->read_idx)
 160		return txq->count + txq->read_idx - txq->write_idx - 1;
 161	return txq->read_idx - txq->write_idx - 1;
 162}
 163
 164static bool alx_clean_tx_irq(struct alx_tx_queue *txq)
 165{
 166	struct alx_priv *alx;
 167	struct netdev_queue *tx_queue;
 168	u16 hw_read_idx, sw_read_idx;
 169	unsigned int total_bytes = 0, total_packets = 0;
 170	int budget = ALX_DEFAULT_TX_WORK;
 171
 172	alx = netdev_priv(txq->netdev);
 173	tx_queue = alx_get_tx_queue(txq);
 174
 175	sw_read_idx = txq->read_idx;
 176	hw_read_idx = alx_read_mem16(&alx->hw, txq->c_reg);
 177
 178	if (sw_read_idx != hw_read_idx) {
 179		while (sw_read_idx != hw_read_idx && budget > 0) {
 180			struct sk_buff *skb;
 181
 182			skb = txq->bufs[sw_read_idx].skb;
 183			if (skb) {
 184				total_bytes += skb->len;
 185				total_packets++;
 186				budget--;
 187			}
 188
 189			alx_free_txbuf(txq, sw_read_idx);
 190
 191			if (++sw_read_idx == txq->count)
 192				sw_read_idx = 0;
 193		}
 194		txq->read_idx = sw_read_idx;
 195
 196		netdev_tx_completed_queue(tx_queue, total_packets, total_bytes);
 197	}
 198
 199	if (netif_tx_queue_stopped(tx_queue) && netif_carrier_ok(alx->dev) &&
 200	    alx_tpd_avail(txq) > txq->count / 4)
 201		netif_tx_wake_queue(tx_queue);
 202
 203	return sw_read_idx == hw_read_idx;
 204}
 205
 206static void alx_schedule_link_check(struct alx_priv *alx)
 207{
 208	schedule_work(&alx->link_check_wk);
 209}
 210
 211static void alx_schedule_reset(struct alx_priv *alx)
 212{
 213	schedule_work(&alx->reset_wk);
 214}
 215
 216static int alx_clean_rx_irq(struct alx_rx_queue *rxq, int budget)
 217{
 218	struct alx_priv *alx;
 219	struct alx_rrd *rrd;
 220	struct alx_buffer *rxb;
 221	struct sk_buff *skb;
 222	u16 length, rfd_cleaned = 0;
 223	int work = 0;
 224
 225	alx = netdev_priv(rxq->netdev);
 226
 227	while (work < budget) {
 228		rrd = &rxq->rrd[rxq->rrd_read_idx];
 229		if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
 230			break;
 231		rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
 232
 233		if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
 234				  RRD_SI) != rxq->read_idx ||
 235		    ALX_GET_FIELD(le32_to_cpu(rrd->word0),
 236				  RRD_NOR) != 1) {
 237			alx_schedule_reset(alx);
 238			return work;
 239		}
 240
 241		rxb = &rxq->bufs[rxq->read_idx];
 242		dma_unmap_single(rxq->dev,
 243				 dma_unmap_addr(rxb, dma),
 244				 dma_unmap_len(rxb, size),
 245				 DMA_FROM_DEVICE);
 246		dma_unmap_len_set(rxb, size, 0);
 247		skb = rxb->skb;
 248		rxb->skb = NULL;
 249
 250		if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
 251		    rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
 252			rrd->word3 = 0;
 253			dev_kfree_skb_any(skb);
 254			goto next_pkt;
 255		}
 256
 257		length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
 258				       RRD_PKTLEN) - ETH_FCS_LEN;
 259		skb_put(skb, length);
 260		skb->protocol = eth_type_trans(skb, rxq->netdev);
 261
 262		skb_checksum_none_assert(skb);
 263		if (alx->dev->features & NETIF_F_RXCSUM &&
 264		    !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
 265				    cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
 266			switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
 267					      RRD_PID)) {
 268			case RRD_PID_IPV6UDP:
 269			case RRD_PID_IPV4UDP:
 270			case RRD_PID_IPV4TCP:
 271			case RRD_PID_IPV6TCP:
 272				skb->ip_summed = CHECKSUM_UNNECESSARY;
 273				break;
 274			}
 275		}
 276
 277		napi_gro_receive(&rxq->np->napi, skb);
 278		work++;
 279
 280next_pkt:
 281		if (++rxq->read_idx == rxq->count)
 282			rxq->read_idx = 0;
 283		if (++rxq->rrd_read_idx == rxq->count)
 284			rxq->rrd_read_idx = 0;
 285
 286		if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
 287			rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
 288	}
 289
 290	if (rfd_cleaned)
 291		alx_refill_rx_ring(alx, GFP_ATOMIC);
 292
 293	return work;
 294}
 295
 296static int alx_poll(struct napi_struct *napi, int budget)
 297{
 298	struct alx_napi *np = container_of(napi, struct alx_napi, napi);
 299	struct alx_priv *alx = np->alx;
 300	struct alx_hw *hw = &alx->hw;
 301	unsigned long flags;
 302	bool tx_complete = true;
 303	int work = 0;
 304
 305	if (np->txq)
 306		tx_complete = alx_clean_tx_irq(np->txq);
 307	if (np->rxq)
 308		work = alx_clean_rx_irq(np->rxq, budget);
 309
 310	if (!tx_complete || work == budget)
 311		return budget;
 312
 313	napi_complete_done(&np->napi, work);
 314
 315	/* enable interrupt */
 316	if (alx->hw.pdev->msix_enabled) {
 317		alx_mask_msix(hw, np->vec_idx, false);
 318	} else {
 319		spin_lock_irqsave(&alx->irq_lock, flags);
 320		alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
 321		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 322		spin_unlock_irqrestore(&alx->irq_lock, flags);
 323	}
 324
 325	alx_post_write(hw);
 326
 327	return work;
 328}
 329
 330static bool alx_intr_handle_misc(struct alx_priv *alx, u32 intr)
 331{
 332	struct alx_hw *hw = &alx->hw;
 333
 334	if (intr & ALX_ISR_FATAL) {
 335		netif_warn(alx, hw, alx->dev,
 336			   "fatal interrupt 0x%x, resetting\n", intr);
 337		alx_schedule_reset(alx);
 338		return true;
 339	}
 340
 341	if (intr & ALX_ISR_ALERT)
 342		netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
 343
 344	if (intr & ALX_ISR_PHY) {
 345		/* suppress PHY interrupt, because the source
 346		 * is from PHY internal. only the internal status
 347		 * is cleared, the interrupt status could be cleared.
 348		 */
 349		alx->int_mask &= ~ALX_ISR_PHY;
 350		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 351		alx_schedule_link_check(alx);
 352	}
 353
 354	return false;
 355}
 356
 357static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
 358{
 359	struct alx_hw *hw = &alx->hw;
 360
 361	spin_lock(&alx->irq_lock);
 362
 363	/* ACK interrupt */
 364	alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
 365	intr &= alx->int_mask;
 366
 367	if (alx_intr_handle_misc(alx, intr))
 368		goto out;
 369
 370	if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
 371		napi_schedule(&alx->qnapi[0]->napi);
 372		/* mask rx/tx interrupt, enable them when napi complete */
 373		alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
 374		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 375	}
 376
 377	alx_write_mem32(hw, ALX_ISR, 0);
 378
 379 out:
 380	spin_unlock(&alx->irq_lock);
 381	return IRQ_HANDLED;
 382}
 383
 384static irqreturn_t alx_intr_msix_ring(int irq, void *data)
 385{
 386	struct alx_napi *np = data;
 387	struct alx_hw *hw = &np->alx->hw;
 388
 389	/* mask interrupt to ACK chip */
 390	alx_mask_msix(hw, np->vec_idx, true);
 391	/* clear interrupt status */
 392	alx_write_mem32(hw, ALX_ISR, np->vec_mask);
 393
 394	napi_schedule(&np->napi);
 395
 396	return IRQ_HANDLED;
 397}
 398
 399static irqreturn_t alx_intr_msix_misc(int irq, void *data)
 400{
 401	struct alx_priv *alx = data;
 402	struct alx_hw *hw = &alx->hw;
 403	u32 intr;
 404
 405	/* mask interrupt to ACK chip */
 406	alx_mask_msix(hw, 0, true);
 407
 408	/* read interrupt status */
 409	intr = alx_read_mem32(hw, ALX_ISR);
 410	intr &= (alx->int_mask & ~ALX_ISR_ALL_QUEUES);
 411
 412	if (alx_intr_handle_misc(alx, intr))
 413		return IRQ_HANDLED;
 414
 415	/* clear interrupt status */
 416	alx_write_mem32(hw, ALX_ISR, intr);
 417
 418	/* enable interrupt again */
 419	alx_mask_msix(hw, 0, false);
 420
 421	return IRQ_HANDLED;
 422}
 423
 424static irqreturn_t alx_intr_msi(int irq, void *data)
 425{
 426	struct alx_priv *alx = data;
 427
 428	return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
 429}
 430
 431static irqreturn_t alx_intr_legacy(int irq, void *data)
 432{
 433	struct alx_priv *alx = data;
 434	struct alx_hw *hw = &alx->hw;
 435	u32 intr;
 436
 437	intr = alx_read_mem32(hw, ALX_ISR);
 438
 439	if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
 440		return IRQ_NONE;
 441
 442	return alx_intr_handle(alx, intr);
 443}
 444
 445static const u16 txring_header_reg[] = {ALX_TPD_PRI0_ADDR_LO,
 446					ALX_TPD_PRI1_ADDR_LO,
 447					ALX_TPD_PRI2_ADDR_LO,
 448					ALX_TPD_PRI3_ADDR_LO};
 449
 450static void alx_init_ring_ptrs(struct alx_priv *alx)
 451{
 452	struct alx_hw *hw = &alx->hw;
 453	u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
 454	struct alx_napi *np;
 455	int i;
 456
 457	for (i = 0; i < alx->num_napi; i++) {
 458		np = alx->qnapi[i];
 459		if (np->txq) {
 460			np->txq->read_idx = 0;
 461			np->txq->write_idx = 0;
 462			alx_write_mem32(hw,
 463					txring_header_reg[np->txq->queue_idx],
 464					np->txq->tpd_dma);
 465		}
 466
 467		if (np->rxq) {
 468			np->rxq->read_idx = 0;
 469			np->rxq->write_idx = 0;
 470			np->rxq->rrd_read_idx = 0;
 471			alx_write_mem32(hw, ALX_RRD_ADDR_LO, np->rxq->rrd_dma);
 472			alx_write_mem32(hw, ALX_RFD_ADDR_LO, np->rxq->rfd_dma);
 473		}
 474	}
 475
 476	alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
 477	alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
 478
 479	alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
 480	alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
 481	alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
 482	alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
 483
 484	/* load these pointers into the chip */
 485	alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
 486}
 487
 488static void alx_free_txring_buf(struct alx_tx_queue *txq)
 489{
 490	int i;
 491
 492	if (!txq->bufs)
 493		return;
 494
 495	for (i = 0; i < txq->count; i++)
 496		alx_free_txbuf(txq, i);
 497
 498	memset(txq->bufs, 0, txq->count * sizeof(struct alx_buffer));
 499	memset(txq->tpd, 0, txq->count * sizeof(struct alx_txd));
 500	txq->write_idx = 0;
 501	txq->read_idx = 0;
 502
 503	netdev_tx_reset_queue(alx_get_tx_queue(txq));
 504}
 505
 506static void alx_free_rxring_buf(struct alx_rx_queue *rxq)
 507{
 508	struct alx_buffer *cur_buf;
 509	u16 i;
 510
 511	if (!rxq->bufs)
 512		return;
 513
 514	for (i = 0; i < rxq->count; i++) {
 515		cur_buf = rxq->bufs + i;
 516		if (cur_buf->skb) {
 517			dma_unmap_single(rxq->dev,
 518					 dma_unmap_addr(cur_buf, dma),
 519					 dma_unmap_len(cur_buf, size),
 520					 DMA_FROM_DEVICE);
 521			dev_kfree_skb(cur_buf->skb);
 522			cur_buf->skb = NULL;
 523			dma_unmap_len_set(cur_buf, size, 0);
 524			dma_unmap_addr_set(cur_buf, dma, 0);
 525		}
 526	}
 527
 528	rxq->write_idx = 0;
 529	rxq->read_idx = 0;
 530	rxq->rrd_read_idx = 0;
 531}
 532
 533static void alx_free_buffers(struct alx_priv *alx)
 534{
 535	int i;
 536
 537	for (i = 0; i < alx->num_txq; i++)
 538		if (alx->qnapi[i] && alx->qnapi[i]->txq)
 539			alx_free_txring_buf(alx->qnapi[i]->txq);
 540
 541	if (alx->qnapi[0] && alx->qnapi[0]->rxq)
 542		alx_free_rxring_buf(alx->qnapi[0]->rxq);
 543}
 544
 545static int alx_reinit_rings(struct alx_priv *alx)
 546{
 547	alx_free_buffers(alx);
 548
 549	alx_init_ring_ptrs(alx);
 550
 551	if (!alx_refill_rx_ring(alx, GFP_KERNEL))
 552		return -ENOMEM;
 553
 554	return 0;
 555}
 556
 557static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
 558{
 559	u32 crc32, bit, reg;
 560
 561	crc32 = ether_crc(ETH_ALEN, addr);
 562	reg = (crc32 >> 31) & 0x1;
 563	bit = (crc32 >> 26) & 0x1F;
 564
 565	mc_hash[reg] |= BIT(bit);
 566}
 567
 568static void __alx_set_rx_mode(struct net_device *netdev)
 569{
 570	struct alx_priv *alx = netdev_priv(netdev);
 571	struct alx_hw *hw = &alx->hw;
 572	struct netdev_hw_addr *ha;
 573	u32 mc_hash[2] = {};
 574
 575	if (!(netdev->flags & IFF_ALLMULTI)) {
 576		netdev_for_each_mc_addr(ha, netdev)
 577			alx_add_mc_addr(hw, ha->addr, mc_hash);
 578
 579		alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
 580		alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
 581	}
 582
 583	hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
 584	if (netdev->flags & IFF_PROMISC)
 585		hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
 586	if (netdev->flags & IFF_ALLMULTI)
 587		hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
 588
 589	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
 590}
 591
 592static void alx_set_rx_mode(struct net_device *netdev)
 593{
 594	__alx_set_rx_mode(netdev);
 595}
 596
 597static int alx_set_mac_address(struct net_device *netdev, void *data)
 598{
 599	struct alx_priv *alx = netdev_priv(netdev);
 600	struct alx_hw *hw = &alx->hw;
 601	struct sockaddr *addr = data;
 602
 603	if (!is_valid_ether_addr(addr->sa_data))
 604		return -EADDRNOTAVAIL;
 605
 606	if (netdev->addr_assign_type & NET_ADDR_RANDOM)
 607		netdev->addr_assign_type ^= NET_ADDR_RANDOM;
 608
 609	eth_hw_addr_set(netdev, addr->sa_data);
 610	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
 611	alx_set_macaddr(hw, hw->mac_addr);
 612
 613	return 0;
 614}
 615
 616static int alx_alloc_tx_ring(struct alx_priv *alx, struct alx_tx_queue *txq,
 617			     int offset)
 618{
 619	txq->bufs = kcalloc(txq->count, sizeof(struct alx_buffer), GFP_KERNEL);
 620	if (!txq->bufs)
 621		return -ENOMEM;
 622
 623	txq->tpd = alx->descmem.virt + offset;
 624	txq->tpd_dma = alx->descmem.dma + offset;
 625	offset += sizeof(struct alx_txd) * txq->count;
 626
 627	return offset;
 628}
 629
 630static int alx_alloc_rx_ring(struct alx_priv *alx, struct alx_rx_queue *rxq,
 631			     int offset)
 632{
 633	rxq->bufs = kcalloc(rxq->count, sizeof(struct alx_buffer), GFP_KERNEL);
 634	if (!rxq->bufs)
 635		return -ENOMEM;
 636
 637	rxq->rrd = alx->descmem.virt + offset;
 638	rxq->rrd_dma = alx->descmem.dma + offset;
 639	offset += sizeof(struct alx_rrd) * rxq->count;
 640
 641	rxq->rfd = alx->descmem.virt + offset;
 642	rxq->rfd_dma = alx->descmem.dma + offset;
 643	offset += sizeof(struct alx_rfd) * rxq->count;
 644
 645	return offset;
 646}
 647
 648static int alx_alloc_rings(struct alx_priv *alx)
 649{
 650	int i, offset = 0;
 651
 652	/* physical tx/rx ring descriptors
 653	 *
 654	 * Allocate them as a single chunk because they must not cross a
 655	 * 4G boundary (hardware has a single register for high 32 bits
 656	 * of addresses only)
 657	 */
 658	alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz *
 659			    alx->num_txq +
 660			    sizeof(struct alx_rrd) * alx->rx_ringsz +
 661			    sizeof(struct alx_rfd) * alx->rx_ringsz;
 662	alx->descmem.virt = dma_alloc_coherent(&alx->hw.pdev->dev,
 663					       alx->descmem.size,
 664					       &alx->descmem.dma, GFP_KERNEL);
 665	if (!alx->descmem.virt)
 666		return -ENOMEM;
 667
 668	/* alignment requirements */
 669	BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
 670	BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
 671
 672	for (i = 0; i < alx->num_txq; i++) {
 673		offset = alx_alloc_tx_ring(alx, alx->qnapi[i]->txq, offset);
 674		if (offset < 0) {
 675			netdev_err(alx->dev, "Allocation of tx buffer failed!\n");
 676			return -ENOMEM;
 677		}
 678	}
 679
 680	offset = alx_alloc_rx_ring(alx, alx->qnapi[0]->rxq, offset);
 681	if (offset < 0) {
 682		netdev_err(alx->dev, "Allocation of rx buffer failed!\n");
 683		return -ENOMEM;
 684	}
 685
 686	return 0;
 687}
 688
 689static void alx_free_rings(struct alx_priv *alx)
 690{
 691	int i;
 692
 693	alx_free_buffers(alx);
 694
 695	for (i = 0; i < alx->num_txq; i++)
 696		if (alx->qnapi[i] && alx->qnapi[i]->txq)
 697			kfree(alx->qnapi[i]->txq->bufs);
 698
 699	if (alx->qnapi[0] && alx->qnapi[0]->rxq)
 700		kfree(alx->qnapi[0]->rxq->bufs);
 701
 702	if (alx->descmem.virt)
 703		dma_free_coherent(&alx->hw.pdev->dev,
 704				  alx->descmem.size,
 705				  alx->descmem.virt,
 706				  alx->descmem.dma);
 707}
 708
 709static void alx_free_napis(struct alx_priv *alx)
 710{
 711	struct alx_napi *np;
 712	int i;
 713
 714	for (i = 0; i < alx->num_napi; i++) {
 715		np = alx->qnapi[i];
 716		if (!np)
 717			continue;
 718
 719		netif_napi_del(&np->napi);
 720		kfree(np->txq);
 721		kfree(np->rxq);
 722		kfree(np);
 723		alx->qnapi[i] = NULL;
 724	}
 725}
 726
 727static const u16 tx_pidx_reg[] = {ALX_TPD_PRI0_PIDX, ALX_TPD_PRI1_PIDX,
 728				  ALX_TPD_PRI2_PIDX, ALX_TPD_PRI3_PIDX};
 729static const u16 tx_cidx_reg[] = {ALX_TPD_PRI0_CIDX, ALX_TPD_PRI1_CIDX,
 730				  ALX_TPD_PRI2_CIDX, ALX_TPD_PRI3_CIDX};
 731static const u32 tx_vect_mask[] = {ALX_ISR_TX_Q0, ALX_ISR_TX_Q1,
 732				   ALX_ISR_TX_Q2, ALX_ISR_TX_Q3};
 733static const u32 rx_vect_mask[] = {ALX_ISR_RX_Q0, ALX_ISR_RX_Q1,
 734				   ALX_ISR_RX_Q2, ALX_ISR_RX_Q3,
 735				   ALX_ISR_RX_Q4, ALX_ISR_RX_Q5,
 736				   ALX_ISR_RX_Q6, ALX_ISR_RX_Q7};
 737
 738static int alx_alloc_napis(struct alx_priv *alx)
 739{
 740	struct alx_napi *np;
 741	struct alx_rx_queue *rxq;
 742	struct alx_tx_queue *txq;
 743	int i;
 744
 745	alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
 746
 747	/* allocate alx_napi structures */
 748	for (i = 0; i < alx->num_napi; i++) {
 749		np = kzalloc(sizeof(struct alx_napi), GFP_KERNEL);
 750		if (!np)
 751			goto err_out;
 752
 753		np->alx = alx;
 754		netif_napi_add(alx->dev, &np->napi, alx_poll);
 755		alx->qnapi[i] = np;
 756	}
 757
 758	/* allocate tx queues */
 759	for (i = 0; i < alx->num_txq; i++) {
 760		np = alx->qnapi[i];
 761		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
 762		if (!txq)
 763			goto err_out;
 764
 765		np->txq = txq;
 766		txq->p_reg = tx_pidx_reg[i];
 767		txq->c_reg = tx_cidx_reg[i];
 768		txq->queue_idx = i;
 769		txq->count = alx->tx_ringsz;
 770		txq->netdev = alx->dev;
 771		txq->dev = &alx->hw.pdev->dev;
 772		np->vec_mask |= tx_vect_mask[i];
 773		alx->int_mask |= tx_vect_mask[i];
 774	}
 775
 776	/* allocate rx queues */
 777	np = alx->qnapi[0];
 778	rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
 779	if (!rxq)
 780		goto err_out;
 781
 782	np->rxq = rxq;
 783	rxq->np = alx->qnapi[0];
 784	rxq->queue_idx = 0;
 785	rxq->count = alx->rx_ringsz;
 786	rxq->netdev = alx->dev;
 787	rxq->dev = &alx->hw.pdev->dev;
 788	np->vec_mask |= rx_vect_mask[0];
 789	alx->int_mask |= rx_vect_mask[0];
 790
 791	return 0;
 792
 793err_out:
 794	netdev_err(alx->dev, "error allocating internal structures\n");
 795	alx_free_napis(alx);
 796	return -ENOMEM;
 797}
 798
 799static const int txq_vec_mapping_shift[] = {
 800	0, ALX_MSI_MAP_TBL1_TXQ0_SHIFT,
 801	0, ALX_MSI_MAP_TBL1_TXQ1_SHIFT,
 802	1, ALX_MSI_MAP_TBL2_TXQ2_SHIFT,
 803	1, ALX_MSI_MAP_TBL2_TXQ3_SHIFT,
 804};
 805
 806static void alx_config_vector_mapping(struct alx_priv *alx)
 807{
 808	struct alx_hw *hw = &alx->hw;
 809	u32 tbl[2] = {0, 0};
 810	int i, vector, idx, shift;
 811
 812	if (alx->hw.pdev->msix_enabled) {
 813		/* tx mappings */
 814		for (i = 0, vector = 1; i < alx->num_txq; i++, vector++) {
 815			idx = txq_vec_mapping_shift[i * 2];
 816			shift = txq_vec_mapping_shift[i * 2 + 1];
 817			tbl[idx] |= vector << shift;
 818		}
 819
 820		/* rx mapping */
 821		tbl[0] |= 1 << ALX_MSI_MAP_TBL1_RXQ0_SHIFT;
 822	}
 823
 824	alx_write_mem32(hw, ALX_MSI_MAP_TBL1, tbl[0]);
 825	alx_write_mem32(hw, ALX_MSI_MAP_TBL2, tbl[1]);
 826	alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
 827}
 828
 829static int alx_enable_msix(struct alx_priv *alx)
 830{
 831	int err, num_vec, num_txq, num_rxq;
 832
 833	num_txq = min_t(int, num_online_cpus(), ALX_MAX_TX_QUEUES);
 834	num_rxq = 1;
 835	num_vec = max_t(int, num_txq, num_rxq) + 1;
 836
 837	err = pci_alloc_irq_vectors(alx->hw.pdev, num_vec, num_vec,
 838			PCI_IRQ_MSIX);
 839	if (err < 0) {
 840		netdev_warn(alx->dev, "Enabling MSI-X interrupts failed!\n");
 841		return err;
 842	}
 843
 844	alx->num_vec = num_vec;
 845	alx->num_napi = num_vec - 1;
 846	alx->num_txq = num_txq;
 847	alx->num_rxq = num_rxq;
 848
 849	return err;
 850}
 851
 852static int alx_request_msix(struct alx_priv *alx)
 853{
 854	struct net_device *netdev = alx->dev;
 855	int i, err, vector = 0, free_vector = 0;
 856
 857	err = request_irq(pci_irq_vector(alx->hw.pdev, 0), alx_intr_msix_misc,
 858			  0, netdev->name, alx);
 859	if (err)
 860		goto out_err;
 861
 862	for (i = 0; i < alx->num_napi; i++) {
 863		struct alx_napi *np = alx->qnapi[i];
 864
 865		vector++;
 866
 867		if (np->txq && np->rxq)
 868			sprintf(np->irq_lbl, "%s-TxRx-%u", netdev->name,
 869				np->txq->queue_idx);
 870		else if (np->txq)
 871			sprintf(np->irq_lbl, "%s-tx-%u", netdev->name,
 872				np->txq->queue_idx);
 873		else if (np->rxq)
 874			sprintf(np->irq_lbl, "%s-rx-%u", netdev->name,
 875				np->rxq->queue_idx);
 876		else
 877			sprintf(np->irq_lbl, "%s-unused", netdev->name);
 878
 879		np->vec_idx = vector;
 880		err = request_irq(pci_irq_vector(alx->hw.pdev, vector),
 881				  alx_intr_msix_ring, 0, np->irq_lbl, np);
 882		if (err)
 883			goto out_free;
 884	}
 885	return 0;
 886
 887out_free:
 888	free_irq(pci_irq_vector(alx->hw.pdev, free_vector++), alx);
 889
 890	vector--;
 891	for (i = 0; i < vector; i++)
 892		free_irq(pci_irq_vector(alx->hw.pdev,free_vector++),
 893			 alx->qnapi[i]);
 894
 895out_err:
 896	return err;
 897}
 898
 899static int alx_init_intr(struct alx_priv *alx)
 900{
 901	int ret;
 902
 903	ret = pci_alloc_irq_vectors(alx->hw.pdev, 1, 1,
 904			PCI_IRQ_MSI | PCI_IRQ_INTX);
 905	if (ret < 0)
 906		return ret;
 907
 908	alx->num_vec = 1;
 909	alx->num_napi = 1;
 910	alx->num_txq = 1;
 911	alx->num_rxq = 1;
 912	return 0;
 913}
 914
 915static void alx_irq_enable(struct alx_priv *alx)
 916{
 917	struct alx_hw *hw = &alx->hw;
 918	int i;
 919
 920	/* level-1 interrupt switch */
 921	alx_write_mem32(hw, ALX_ISR, 0);
 922	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
 923	alx_post_write(hw);
 924
 925	if (alx->hw.pdev->msix_enabled) {
 926		/* enable all msix irqs */
 927		for (i = 0; i < alx->num_vec; i++)
 928			alx_mask_msix(hw, i, false);
 929	}
 930}
 931
 932static void alx_irq_disable(struct alx_priv *alx)
 933{
 934	struct alx_hw *hw = &alx->hw;
 935	int i;
 936
 937	alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
 938	alx_write_mem32(hw, ALX_IMR, 0);
 939	alx_post_write(hw);
 940
 941	if (alx->hw.pdev->msix_enabled) {
 942		for (i = 0; i < alx->num_vec; i++) {
 943			alx_mask_msix(hw, i, true);
 944			synchronize_irq(pci_irq_vector(alx->hw.pdev, i));
 945		}
 946	} else {
 947		synchronize_irq(pci_irq_vector(alx->hw.pdev, 0));
 948	}
 949}
 950
 951static int alx_realloc_resources(struct alx_priv *alx)
 952{
 953	int err;
 954
 955	alx_free_rings(alx);
 956	alx_free_napis(alx);
 957	pci_free_irq_vectors(alx->hw.pdev);
 958
 959	err = alx_init_intr(alx);
 960	if (err)
 961		return err;
 962
 963	err = alx_alloc_napis(alx);
 964	if (err)
 965		return err;
 966
 967	err = alx_alloc_rings(alx);
 968	if (err)
 969		return err;
 970
 971	return 0;
 972}
 973
 974static int alx_request_irq(struct alx_priv *alx)
 975{
 976	struct pci_dev *pdev = alx->hw.pdev;
 977	struct alx_hw *hw = &alx->hw;
 978	int err;
 979	u32 msi_ctrl;
 980
 981	msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
 982
 983	if (alx->hw.pdev->msix_enabled) {
 984		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, msi_ctrl);
 985		err = alx_request_msix(alx);
 986		if (!err)
 987			goto out;
 988
 989		/* msix request failed, realloc resources */
 990		err = alx_realloc_resources(alx);
 991		if (err)
 992			goto out;
 993	}
 994
 995	if (alx->hw.pdev->msi_enabled) {
 996		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
 997				msi_ctrl | ALX_MSI_MASK_SEL_LINE);
 998		err = request_irq(pci_irq_vector(pdev, 0), alx_intr_msi, 0,
 999				  alx->dev->name, alx);
1000		if (!err)
1001			goto out;
1002
1003		/* fall back to legacy interrupt */
1004		pci_free_irq_vectors(alx->hw.pdev);
1005	}
1006
1007	alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
1008	err = request_irq(pci_irq_vector(pdev, 0), alx_intr_legacy, IRQF_SHARED,
1009			  alx->dev->name, alx);
1010out:
1011	if (!err)
1012		alx_config_vector_mapping(alx);
1013	else
1014		netdev_err(alx->dev, "IRQ registration failed!\n");
1015	return err;
1016}
1017
1018static void alx_free_irq(struct alx_priv *alx)
1019{
1020	struct pci_dev *pdev = alx->hw.pdev;
1021	int i;
1022
1023	free_irq(pci_irq_vector(pdev, 0), alx);
1024	if (alx->hw.pdev->msix_enabled) {
1025		for (i = 0; i < alx->num_napi; i++)
1026			free_irq(pci_irq_vector(pdev, i + 1), alx->qnapi[i]);
1027	}
1028
1029	pci_free_irq_vectors(pdev);
1030}
1031
1032static int alx_identify_hw(struct alx_priv *alx)
1033{
1034	struct alx_hw *hw = &alx->hw;
1035	int rev = alx_hw_revision(hw);
1036
1037	if (rev > ALX_REV_C0)
1038		return -EINVAL;
1039
1040	hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
1041
1042	return 0;
1043}
1044
1045static int alx_init_sw(struct alx_priv *alx)
1046{
1047	struct pci_dev *pdev = alx->hw.pdev;
1048	struct alx_hw *hw = &alx->hw;
1049	int err;
1050
1051	err = alx_identify_hw(alx);
1052	if (err) {
1053		dev_err(&pdev->dev, "unrecognized chip, aborting\n");
1054		return err;
1055	}
1056
1057	alx->hw.lnk_patch =
1058		pdev->device == ALX_DEV_ID_AR8161 &&
1059		pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
1060		pdev->subsystem_device == 0x0091 &&
1061		pdev->revision == 0;
1062
1063	hw->smb_timer = 400;
1064	hw->mtu = alx->dev->mtu;
1065	alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu);
1066	/* MTU range: 34 - 9256 */
1067	alx->dev->min_mtu = 34;
1068	alx->dev->max_mtu = ALX_MAX_FRAME_LEN(ALX_MAX_FRAME_SIZE);
1069	alx->tx_ringsz = 256;
1070	alx->rx_ringsz = 512;
1071	hw->imt = 200;
1072	alx->int_mask = ALX_ISR_MISC;
1073	hw->dma_chnl = hw->max_dma_chnl;
1074	hw->ith_tpd = alx->tx_ringsz / 3;
1075	hw->link_speed = SPEED_UNKNOWN;
1076	hw->duplex = DUPLEX_UNKNOWN;
1077	hw->adv_cfg = ADVERTISED_Autoneg |
1078		      ADVERTISED_10baseT_Half |
1079		      ADVERTISED_10baseT_Full |
1080		      ADVERTISED_100baseT_Full |
1081		      ADVERTISED_100baseT_Half |
1082		      ADVERTISED_1000baseT_Full;
1083	hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
1084
1085	hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
1086		      ALX_MAC_CTRL_MHASH_ALG_HI5B |
1087		      ALX_MAC_CTRL_BRD_EN |
1088		      ALX_MAC_CTRL_PCRCE |
1089		      ALX_MAC_CTRL_CRCE |
1090		      ALX_MAC_CTRL_RXFC_EN |
1091		      ALX_MAC_CTRL_TXFC_EN |
1092		      7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
1093	mutex_init(&alx->mtx);
1094
1095	return 0;
1096}
1097
1098
1099static netdev_features_t alx_fix_features(struct net_device *netdev,
1100					  netdev_features_t features)
1101{
1102	if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
1103		features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1104
1105	return features;
1106}
1107
1108static void alx_netif_stop(struct alx_priv *alx)
1109{
1110	int i;
1111
1112	netif_trans_update(alx->dev);
1113	if (netif_carrier_ok(alx->dev)) {
1114		netif_carrier_off(alx->dev);
1115		netif_tx_disable(alx->dev);
1116		for (i = 0; i < alx->num_napi; i++)
1117			napi_disable(&alx->qnapi[i]->napi);
1118	}
1119}
1120
1121static void alx_halt(struct alx_priv *alx)
1122{
1123	struct alx_hw *hw = &alx->hw;
1124
1125	lockdep_assert_held(&alx->mtx);
1126
1127	alx_netif_stop(alx);
1128	hw->link_speed = SPEED_UNKNOWN;
1129	hw->duplex = DUPLEX_UNKNOWN;
1130
1131	alx_reset_mac(hw);
1132
1133	/* disable l0s/l1 */
1134	alx_enable_aspm(hw, false, false);
1135	alx_irq_disable(alx);
1136	alx_free_buffers(alx);
1137}
1138
1139static void alx_configure(struct alx_priv *alx)
1140{
1141	struct alx_hw *hw = &alx->hw;
1142
1143	alx_configure_basic(hw);
1144	alx_disable_rss(hw);
1145	__alx_set_rx_mode(alx->dev);
1146
1147	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
1148}
1149
1150static void alx_activate(struct alx_priv *alx)
1151{
1152	lockdep_assert_held(&alx->mtx);
1153
1154	/* hardware setting lost, restore it */
1155	alx_reinit_rings(alx);
1156	alx_configure(alx);
1157
1158	/* clear old interrupts */
1159	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1160
1161	alx_irq_enable(alx);
1162
1163	alx_schedule_link_check(alx);
1164}
1165
1166static void alx_reinit(struct alx_priv *alx)
1167{
1168	lockdep_assert_held(&alx->mtx);
1169
1170	alx_halt(alx);
1171	alx_activate(alx);
1172}
1173
1174static int alx_change_mtu(struct net_device *netdev, int mtu)
1175{
1176	struct alx_priv *alx = netdev_priv(netdev);
1177	int max_frame = ALX_MAX_FRAME_LEN(mtu);
1178
1179	WRITE_ONCE(netdev->mtu, mtu);
1180	alx->hw.mtu = mtu;
1181	alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE);
1182	netdev_update_features(netdev);
1183	if (netif_running(netdev)) {
1184		mutex_lock(&alx->mtx);
1185		alx_reinit(alx);
1186		mutex_unlock(&alx->mtx);
1187	}
1188	return 0;
1189}
1190
1191static void alx_netif_start(struct alx_priv *alx)
1192{
1193	int i;
1194
1195	netif_tx_wake_all_queues(alx->dev);
1196	for (i = 0; i < alx->num_napi; i++)
1197		napi_enable(&alx->qnapi[i]->napi);
1198	netif_carrier_on(alx->dev);
1199}
1200
1201static int __alx_open(struct alx_priv *alx, bool resume)
1202{
1203	int err;
1204
1205	err = alx_enable_msix(alx);
1206	if (err < 0) {
1207		err = alx_init_intr(alx);
1208		if (err)
1209			return err;
1210	}
1211
1212	if (!resume)
1213		netif_carrier_off(alx->dev);
1214
1215	err = alx_alloc_napis(alx);
1216	if (err)
1217		goto out_disable_adv_intr;
1218
1219	err = alx_alloc_rings(alx);
1220	if (err)
1221		goto out_free_rings;
1222
1223	alx_configure(alx);
1224
1225	err = alx_request_irq(alx);
1226	if (err)
1227		goto out_free_rings;
1228
1229	/* must be called after alx_request_irq because the chip stops working
1230	 * if we copy the dma addresses in alx_init_ring_ptrs twice when
1231	 * requesting msi-x interrupts failed
1232	 */
1233	alx_reinit_rings(alx);
1234
1235	netif_set_real_num_tx_queues(alx->dev, alx->num_txq);
1236	netif_set_real_num_rx_queues(alx->dev, alx->num_rxq);
1237
1238	/* clear old interrupts */
1239	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
1240
1241	alx_irq_enable(alx);
1242
1243	if (!resume)
1244		netif_tx_start_all_queues(alx->dev);
1245
1246	alx_schedule_link_check(alx);
1247	return 0;
1248
1249out_free_rings:
1250	alx_free_rings(alx);
1251	alx_free_napis(alx);
1252out_disable_adv_intr:
1253	pci_free_irq_vectors(alx->hw.pdev);
1254	return err;
1255}
1256
1257static void __alx_stop(struct alx_priv *alx)
1258{
1259	lockdep_assert_held(&alx->mtx);
1260
1261	alx_free_irq(alx);
1262
1263	cancel_work_sync(&alx->link_check_wk);
1264	cancel_work_sync(&alx->reset_wk);
1265
1266	alx_halt(alx);
1267	alx_free_rings(alx);
1268	alx_free_napis(alx);
1269}
1270
1271static const char *alx_speed_desc(struct alx_hw *hw)
1272{
1273	switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
1274	case ADVERTISED_1000baseT_Full:
1275		return "1 Gbps Full";
1276	case ADVERTISED_100baseT_Full:
1277		return "100 Mbps Full";
1278	case ADVERTISED_100baseT_Half:
1279		return "100 Mbps Half";
1280	case ADVERTISED_10baseT_Full:
1281		return "10 Mbps Full";
1282	case ADVERTISED_10baseT_Half:
1283		return "10 Mbps Half";
1284	default:
1285		return "Unknown speed";
1286	}
1287}
1288
1289static void alx_check_link(struct alx_priv *alx)
1290{
1291	struct alx_hw *hw = &alx->hw;
1292	unsigned long flags;
1293	int old_speed;
1294	int err;
1295
1296	lockdep_assert_held(&alx->mtx);
1297
1298	/* clear PHY internal interrupt status, otherwise the main
1299	 * interrupt status will be asserted forever
1300	 */
1301	alx_clear_phy_intr(hw);
1302
1303	old_speed = hw->link_speed;
1304	err = alx_read_phy_link(hw);
1305	if (err < 0)
1306		goto reset;
1307
1308	spin_lock_irqsave(&alx->irq_lock, flags);
1309	alx->int_mask |= ALX_ISR_PHY;
1310	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
1311	spin_unlock_irqrestore(&alx->irq_lock, flags);
1312
1313	if (old_speed == hw->link_speed)
1314		return;
1315
1316	if (hw->link_speed != SPEED_UNKNOWN) {
1317		netif_info(alx, link, alx->dev,
1318			   "NIC Up: %s\n", alx_speed_desc(hw));
1319		alx_post_phy_link(hw);
1320		alx_enable_aspm(hw, true, true);
1321		alx_start_mac(hw);
1322
1323		if (old_speed == SPEED_UNKNOWN)
1324			alx_netif_start(alx);
1325	} else {
1326		/* link is now down */
1327		alx_netif_stop(alx);
1328		netif_info(alx, link, alx->dev, "Link Down\n");
1329		err = alx_reset_mac(hw);
1330		if (err)
1331			goto reset;
1332		alx_irq_disable(alx);
1333
1334		/* MAC reset causes all HW settings to be lost, restore all */
1335		err = alx_reinit_rings(alx);
1336		if (err)
1337			goto reset;
1338		alx_configure(alx);
1339		alx_enable_aspm(hw, false, true);
1340		alx_post_phy_link(hw);
1341		alx_irq_enable(alx);
1342	}
1343
1344	return;
1345
1346reset:
1347	alx_schedule_reset(alx);
1348}
1349
1350static int alx_open(struct net_device *netdev)
1351{
1352	struct alx_priv *alx = netdev_priv(netdev);
1353	int ret;
1354
1355	mutex_lock(&alx->mtx);
1356	ret = __alx_open(alx, false);
1357	mutex_unlock(&alx->mtx);
1358
1359	return ret;
1360}
1361
1362static int alx_stop(struct net_device *netdev)
1363{
1364	struct alx_priv *alx = netdev_priv(netdev);
1365
1366	mutex_lock(&alx->mtx);
1367	__alx_stop(alx);
1368	mutex_unlock(&alx->mtx);
1369
1370	return 0;
1371}
1372
1373static void alx_link_check(struct work_struct *work)
1374{
1375	struct alx_priv *alx;
1376
1377	alx = container_of(work, struct alx_priv, link_check_wk);
1378
1379	mutex_lock(&alx->mtx);
1380	alx_check_link(alx);
1381	mutex_unlock(&alx->mtx);
1382}
1383
1384static void alx_reset(struct work_struct *work)
1385{
1386	struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
1387
1388	mutex_lock(&alx->mtx);
1389	alx_reinit(alx);
1390	mutex_unlock(&alx->mtx);
1391}
1392
1393static int alx_tpd_req(struct sk_buff *skb)
1394{
1395	int num;
1396
1397	num = skb_shinfo(skb)->nr_frags + 1;
1398	/* we need one extra descriptor for LSOv2 */
1399	if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
1400		num++;
1401
1402	return num;
1403}
1404
1405static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
1406{
1407	u8 cso, css;
1408
1409	if (skb->ip_summed != CHECKSUM_PARTIAL)
1410		return 0;
1411
1412	cso = skb_checksum_start_offset(skb);
1413	if (cso & 1)
1414		return -EINVAL;
1415
1416	css = cso + skb->csum_offset;
1417	first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
1418	first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
1419	first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
1420
1421	return 0;
1422}
1423
1424static int alx_tso(struct sk_buff *skb, struct alx_txd *first)
1425{
1426	int err;
1427
1428	if (skb->ip_summed != CHECKSUM_PARTIAL)
1429		return 0;
1430
1431	if (!skb_is_gso(skb))
1432		return 0;
1433
1434	err = skb_cow_head(skb, 0);
1435	if (err < 0)
1436		return err;
1437
1438	if (skb->protocol == htons(ETH_P_IP)) {
1439		struct iphdr *iph = ip_hdr(skb);
1440
1441		iph->check = 0;
1442		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1443							 0, IPPROTO_TCP, 0);
1444		first->word1 |= 1 << TPD_IPV4_SHIFT;
1445	} else if (skb_is_gso_v6(skb)) {
1446		tcp_v6_gso_csum_prep(skb);
1447		/* LSOv2: the first TPD only provides the packet length */
1448		first->adrl.l.pkt_len = skb->len;
1449		first->word1 |= 1 << TPD_LSO_V2_SHIFT;
1450	}
1451
1452	first->word1 |= 1 << TPD_LSO_EN_SHIFT;
1453	first->word1 |= (skb_transport_offset(skb) &
1454			 TPD_L4HDROFFSET_MASK) << TPD_L4HDROFFSET_SHIFT;
1455	first->word1 |= (skb_shinfo(skb)->gso_size &
1456			 TPD_MSS_MASK) << TPD_MSS_SHIFT;
1457	return 1;
1458}
1459
1460static int alx_map_tx_skb(struct alx_tx_queue *txq, struct sk_buff *skb)
1461{
1462	struct alx_txd *tpd, *first_tpd;
1463	dma_addr_t dma;
1464	int maplen, f, first_idx = txq->write_idx;
1465
1466	first_tpd = &txq->tpd[txq->write_idx];
1467	tpd = first_tpd;
1468
1469	if (tpd->word1 & (1 << TPD_LSO_V2_SHIFT)) {
1470		if (++txq->write_idx == txq->count)
1471			txq->write_idx = 0;
1472
1473		tpd = &txq->tpd[txq->write_idx];
1474		tpd->len = first_tpd->len;
1475		tpd->vlan_tag = first_tpd->vlan_tag;
1476		tpd->word1 = first_tpd->word1;
1477	}
1478
1479	maplen = skb_headlen(skb);
1480	dma = dma_map_single(txq->dev, skb->data, maplen,
1481			     DMA_TO_DEVICE);
1482	if (dma_mapping_error(txq->dev, dma))
1483		goto err_dma;
1484
1485	dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1486	dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1487
1488	tpd->adrl.addr = cpu_to_le64(dma);
1489	tpd->len = cpu_to_le16(maplen);
1490
1491	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1492		skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1493
1494		if (++txq->write_idx == txq->count)
1495			txq->write_idx = 0;
1496		tpd = &txq->tpd[txq->write_idx];
1497
1498		tpd->word1 = first_tpd->word1;
1499
1500		maplen = skb_frag_size(frag);
1501		dma = skb_frag_dma_map(txq->dev, frag, 0,
1502				       maplen, DMA_TO_DEVICE);
1503		if (dma_mapping_error(txq->dev, dma))
1504			goto err_dma;
1505		dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1506		dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1507
1508		tpd->adrl.addr = cpu_to_le64(dma);
1509		tpd->len = cpu_to_le16(maplen);
1510	}
1511
1512	/* last TPD, set EOP flag and store skb */
1513	tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1514	txq->bufs[txq->write_idx].skb = skb;
1515
1516	if (++txq->write_idx == txq->count)
1517		txq->write_idx = 0;
1518
1519	return 0;
1520
1521err_dma:
1522	f = first_idx;
1523	while (f != txq->write_idx) {
1524		alx_free_txbuf(txq, f);
1525		if (++f == txq->count)
1526			f = 0;
1527	}
1528	return -ENOMEM;
1529}
1530
1531static netdev_tx_t alx_start_xmit_ring(struct sk_buff *skb,
1532				       struct alx_tx_queue *txq)
1533{
1534	struct alx_priv *alx;
1535	struct alx_txd *first;
1536	int tso;
1537
1538	alx = netdev_priv(txq->netdev);
1539
1540	if (alx_tpd_avail(txq) < alx_tpd_req(skb)) {
1541		netif_tx_stop_queue(alx_get_tx_queue(txq));
1542		goto drop;
1543	}
1544
1545	first = &txq->tpd[txq->write_idx];
1546	memset(first, 0, sizeof(*first));
1547
1548	tso = alx_tso(skb, first);
1549	if (tso < 0)
1550		goto drop;
1551	else if (!tso && alx_tx_csum(skb, first))
1552		goto drop;
1553
1554	if (alx_map_tx_skb(txq, skb) < 0)
1555		goto drop;
1556
1557	netdev_tx_sent_queue(alx_get_tx_queue(txq), skb->len);
1558
1559	/* flush updates before updating hardware */
1560	wmb();
1561	alx_write_mem16(&alx->hw, txq->p_reg, txq->write_idx);
1562
1563	if (alx_tpd_avail(txq) < txq->count / 8)
1564		netif_tx_stop_queue(alx_get_tx_queue(txq));
1565
1566	return NETDEV_TX_OK;
1567
1568drop:
1569	dev_kfree_skb_any(skb);
1570	return NETDEV_TX_OK;
1571}
1572
1573static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1574				  struct net_device *netdev)
1575{
1576	struct alx_priv *alx = netdev_priv(netdev);
1577	return alx_start_xmit_ring(skb, alx_tx_queue_mapping(alx, skb));
1578}
1579
1580static void alx_tx_timeout(struct net_device *dev, unsigned int txqueue)
1581{
1582	struct alx_priv *alx = netdev_priv(dev);
1583
1584	alx_schedule_reset(alx);
1585}
1586
1587static int alx_mdio_read(struct net_device *netdev,
1588			 int prtad, int devad, u16 addr)
1589{
1590	struct alx_priv *alx = netdev_priv(netdev);
1591	struct alx_hw *hw = &alx->hw;
1592	u16 val;
1593	int err;
1594
1595	if (prtad != hw->mdio.prtad)
1596		return -EINVAL;
1597
1598	if (devad == MDIO_DEVAD_NONE)
1599		err = alx_read_phy_reg(hw, addr, &val);
1600	else
1601		err = alx_read_phy_ext(hw, devad, addr, &val);
1602
1603	if (err)
1604		return err;
1605	return val;
1606}
1607
1608static int alx_mdio_write(struct net_device *netdev,
1609			  int prtad, int devad, u16 addr, u16 val)
1610{
1611	struct alx_priv *alx = netdev_priv(netdev);
1612	struct alx_hw *hw = &alx->hw;
1613
1614	if (prtad != hw->mdio.prtad)
1615		return -EINVAL;
1616
1617	if (devad == MDIO_DEVAD_NONE)
1618		return alx_write_phy_reg(hw, addr, val);
1619
1620	return alx_write_phy_ext(hw, devad, addr, val);
1621}
1622
1623static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1624{
1625	struct alx_priv *alx = netdev_priv(netdev);
1626
1627	if (!netif_running(netdev))
1628		return -EAGAIN;
1629
1630	return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1631}
1632
1633#ifdef CONFIG_NET_POLL_CONTROLLER
1634static void alx_poll_controller(struct net_device *netdev)
1635{
1636	struct alx_priv *alx = netdev_priv(netdev);
1637	int i;
1638
1639	if (alx->hw.pdev->msix_enabled) {
1640		alx_intr_msix_misc(0, alx);
1641		for (i = 0; i < alx->num_txq; i++)
1642			alx_intr_msix_ring(0, alx->qnapi[i]);
1643	} else if (alx->hw.pdev->msi_enabled)
1644		alx_intr_msi(0, alx);
1645	else
1646		alx_intr_legacy(0, alx);
1647}
1648#endif
1649
1650static void alx_get_stats64(struct net_device *dev,
1651			    struct rtnl_link_stats64 *net_stats)
1652{
1653	struct alx_priv *alx = netdev_priv(dev);
1654	struct alx_hw_stats *hw_stats = &alx->hw.stats;
1655
1656	spin_lock(&alx->stats_lock);
1657
1658	alx_update_hw_stats(&alx->hw);
1659
1660	net_stats->tx_bytes   = hw_stats->tx_byte_cnt;
1661	net_stats->rx_bytes   = hw_stats->rx_byte_cnt;
1662	net_stats->multicast  = hw_stats->rx_mcast;
1663	net_stats->collisions = hw_stats->tx_single_col +
1664				hw_stats->tx_multi_col +
1665				hw_stats->tx_late_col +
1666				hw_stats->tx_abort_col;
1667
1668	net_stats->rx_errors  = hw_stats->rx_frag +
1669				hw_stats->rx_fcs_err +
1670				hw_stats->rx_len_err +
1671				hw_stats->rx_ov_sz +
1672				hw_stats->rx_ov_rrd +
1673				hw_stats->rx_align_err +
1674				hw_stats->rx_ov_rxf;
1675
1676	net_stats->rx_fifo_errors   = hw_stats->rx_ov_rxf;
1677	net_stats->rx_length_errors = hw_stats->rx_len_err;
1678	net_stats->rx_crc_errors    = hw_stats->rx_fcs_err;
1679	net_stats->rx_frame_errors  = hw_stats->rx_align_err;
1680	net_stats->rx_dropped       = hw_stats->rx_ov_rrd;
1681
1682	net_stats->tx_errors = hw_stats->tx_late_col +
1683			       hw_stats->tx_abort_col +
1684			       hw_stats->tx_underrun +
1685			       hw_stats->tx_trunc;
1686
1687	net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1688	net_stats->tx_fifo_errors    = hw_stats->tx_underrun;
1689	net_stats->tx_window_errors  = hw_stats->tx_late_col;
1690
1691	net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1692	net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1693
1694	spin_unlock(&alx->stats_lock);
1695}
1696
1697static const struct net_device_ops alx_netdev_ops = {
1698	.ndo_open               = alx_open,
1699	.ndo_stop               = alx_stop,
1700	.ndo_start_xmit         = alx_start_xmit,
1701	.ndo_get_stats64        = alx_get_stats64,
1702	.ndo_set_rx_mode        = alx_set_rx_mode,
1703	.ndo_validate_addr      = eth_validate_addr,
1704	.ndo_set_mac_address    = alx_set_mac_address,
1705	.ndo_change_mtu         = alx_change_mtu,
1706	.ndo_eth_ioctl           = alx_ioctl,
1707	.ndo_tx_timeout         = alx_tx_timeout,
1708	.ndo_fix_features	= alx_fix_features,
1709#ifdef CONFIG_NET_POLL_CONTROLLER
1710	.ndo_poll_controller    = alx_poll_controller,
1711#endif
1712};
1713
1714static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1715{
1716	struct net_device *netdev;
1717	struct alx_priv *alx;
1718	struct alx_hw *hw;
1719	bool phy_configured;
1720	int err;
1721
1722	err = pci_enable_device_mem(pdev);
1723	if (err)
1724		return err;
1725
1726	/* The alx chip can DMA to 64-bit addresses, but it uses a single
1727	 * shared register for the high 32 bits, so only a single, aligned,
1728	 * 4 GB physical address range can be used for descriptors.
1729	 */
1730	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1731		dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1732	} else {
1733		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1734		if (err) {
1735			dev_err(&pdev->dev, "No usable DMA config, aborting\n");
1736			goto out_pci_disable;
1737		}
1738	}
1739
1740	err = pci_request_mem_regions(pdev, alx_drv_name);
1741	if (err) {
1742		dev_err(&pdev->dev,
1743			"pci_request_mem_regions failed\n");
1744		goto out_pci_disable;
1745	}
1746
1747	pci_set_master(pdev);
1748
1749	if (!pdev->pm_cap) {
1750		dev_err(&pdev->dev,
1751			"Can't find power management capability, aborting\n");
1752		err = -EIO;
1753		goto out_pci_release;
1754	}
1755
1756	netdev = alloc_etherdev_mqs(sizeof(*alx),
1757				    ALX_MAX_TX_QUEUES, 1);
1758	if (!netdev) {
1759		err = -ENOMEM;
1760		goto out_pci_release;
1761	}
1762
1763	SET_NETDEV_DEV(netdev, &pdev->dev);
1764	alx = netdev_priv(netdev);
1765	spin_lock_init(&alx->hw.mdio_lock);
1766	spin_lock_init(&alx->irq_lock);
1767	spin_lock_init(&alx->stats_lock);
1768	alx->dev = netdev;
1769	alx->hw.pdev = pdev;
1770	alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1771			  NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1772	hw = &alx->hw;
1773	pci_set_drvdata(pdev, alx);
1774
1775	hw->hw_addr = pci_ioremap_bar(pdev, 0);
1776	if (!hw->hw_addr) {
1777		dev_err(&pdev->dev, "cannot map device registers\n");
1778		err = -EIO;
1779		goto out_free_netdev;
1780	}
1781
1782	netdev->netdev_ops = &alx_netdev_ops;
1783	netdev->ethtool_ops = &alx_ethtool_ops;
1784	netdev->irq = pci_irq_vector(pdev, 0);
1785	netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1786
1787	if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1788		pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1789
1790	err = alx_init_sw(alx);
1791	if (err) {
1792		dev_err(&pdev->dev, "net device private data init failed\n");
1793		goto out_unmap;
1794	}
1795
1796	mutex_lock(&alx->mtx);
1797
1798	alx_reset_pcie(hw);
1799
1800	phy_configured = alx_phy_configured(hw);
1801
1802	if (!phy_configured)
1803		alx_reset_phy(hw);
1804
1805	err = alx_reset_mac(hw);
1806	if (err) {
1807		dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1808		goto out_unlock;
1809	}
1810
1811	/* setup link to put it in a known good starting state */
1812	if (!phy_configured) {
1813		err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1814		if (err) {
1815			dev_err(&pdev->dev,
1816				"failed to configure PHY speed/duplex (err=%d)\n",
1817				err);
1818			goto out_unlock;
1819		}
1820	}
1821
1822	netdev->hw_features = NETIF_F_SG |
1823			      NETIF_F_HW_CSUM |
1824			      NETIF_F_RXCSUM |
1825			      NETIF_F_TSO |
1826			      NETIF_F_TSO6;
1827
1828	if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1829		dev_warn(&pdev->dev,
1830			 "Invalid permanent address programmed, using random one\n");
1831		eth_hw_addr_random(netdev);
1832		memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1833	}
1834
1835	memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1836	eth_hw_addr_set(netdev, hw->mac_addr);
1837	memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1838
1839	hw->mdio.prtad = 0;
1840	hw->mdio.mmds = 0;
1841	hw->mdio.dev = netdev;
1842	hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1843				MDIO_SUPPORTS_C22 |
1844				MDIO_EMULATE_C22;
1845	hw->mdio.mdio_read = alx_mdio_read;
1846	hw->mdio.mdio_write = alx_mdio_write;
1847
1848	if (!alx_get_phy_info(hw)) {
1849		dev_err(&pdev->dev, "failed to identify PHY\n");
1850		err = -EIO;
1851		goto out_unlock;
1852	}
1853
1854	mutex_unlock(&alx->mtx);
1855
1856	INIT_WORK(&alx->link_check_wk, alx_link_check);
1857	INIT_WORK(&alx->reset_wk, alx_reset);
1858	netif_carrier_off(netdev);
1859
1860	err = register_netdev(netdev);
1861	if (err) {
1862		dev_err(&pdev->dev, "register netdevice failed\n");
1863		goto out_unmap;
1864	}
1865
1866	netdev_info(netdev,
1867		    "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1868		    netdev->dev_addr);
1869
1870	return 0;
1871
1872out_unlock:
1873	mutex_unlock(&alx->mtx);
1874out_unmap:
1875	iounmap(hw->hw_addr);
1876out_free_netdev:
1877	free_netdev(netdev);
1878out_pci_release:
1879	pci_release_mem_regions(pdev);
1880out_pci_disable:
1881	pci_disable_device(pdev);
1882	return err;
1883}
1884
1885static void alx_remove(struct pci_dev *pdev)
1886{
1887	struct alx_priv *alx = pci_get_drvdata(pdev);
1888	struct alx_hw *hw = &alx->hw;
1889
1890	/* restore permanent mac address */
1891	alx_set_macaddr(hw, hw->perm_addr);
1892
1893	unregister_netdev(alx->dev);
1894	iounmap(hw->hw_addr);
1895	pci_release_mem_regions(pdev);
1896
1897	pci_disable_device(pdev);
1898
1899	mutex_destroy(&alx->mtx);
1900
1901	free_netdev(alx->dev);
1902}
1903
1904static int alx_suspend(struct device *dev)
1905{
1906	struct alx_priv *alx = dev_get_drvdata(dev);
1907
1908	if (!netif_running(alx->dev))
1909		return 0;
1910
1911	rtnl_lock();
1912	netif_device_detach(alx->dev);
1913
1914	mutex_lock(&alx->mtx);
1915	__alx_stop(alx);
1916	mutex_unlock(&alx->mtx);
1917	rtnl_unlock();
1918
1919	return 0;
1920}
1921
1922static int alx_resume(struct device *dev)
1923{
1924	struct alx_priv *alx = dev_get_drvdata(dev);
1925	struct alx_hw *hw = &alx->hw;
1926	int err;
1927
1928	rtnl_lock();
1929	mutex_lock(&alx->mtx);
1930	alx_reset_phy(hw);
1931
1932	if (!netif_running(alx->dev)) {
1933		err = 0;
1934		goto unlock;
1935	}
1936
1937	err = __alx_open(alx, true);
1938	if (err)
1939		goto unlock;
1940
1941	netif_device_attach(alx->dev);
1942
1943unlock:
1944	mutex_unlock(&alx->mtx);
1945	rtnl_unlock();
1946	return err;
1947}
1948
1949static DEFINE_SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1950
1951static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1952					       pci_channel_state_t state)
1953{
1954	struct alx_priv *alx = pci_get_drvdata(pdev);
1955	struct net_device *netdev = alx->dev;
1956	pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1957
1958	dev_info(&pdev->dev, "pci error detected\n");
1959
1960	mutex_lock(&alx->mtx);
1961
1962	if (netif_running(netdev)) {
1963		netif_device_detach(netdev);
1964		alx_halt(alx);
1965	}
1966
1967	if (state == pci_channel_io_perm_failure)
1968		rc = PCI_ERS_RESULT_DISCONNECT;
1969	else
1970		pci_disable_device(pdev);
1971
1972	mutex_unlock(&alx->mtx);
1973
1974	return rc;
1975}
1976
1977static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1978{
1979	struct alx_priv *alx = pci_get_drvdata(pdev);
1980	struct alx_hw *hw = &alx->hw;
1981	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1982
1983	dev_info(&pdev->dev, "pci error slot reset\n");
1984
1985	mutex_lock(&alx->mtx);
1986
1987	if (pci_enable_device(pdev)) {
1988		dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1989		goto out;
1990	}
1991
1992	pci_set_master(pdev);
1993
1994	alx_reset_pcie(hw);
1995	if (!alx_reset_mac(hw))
1996		rc = PCI_ERS_RESULT_RECOVERED;
1997out:
1998	mutex_unlock(&alx->mtx);
1999
2000	return rc;
2001}
2002
2003static void alx_pci_error_resume(struct pci_dev *pdev)
2004{
2005	struct alx_priv *alx = pci_get_drvdata(pdev);
2006	struct net_device *netdev = alx->dev;
2007
2008	dev_info(&pdev->dev, "pci error resume\n");
2009
2010	mutex_lock(&alx->mtx);
2011
2012	if (netif_running(netdev)) {
2013		alx_activate(alx);
2014		netif_device_attach(netdev);
2015	}
2016
2017	mutex_unlock(&alx->mtx);
2018}
2019
2020static const struct pci_error_handlers alx_err_handlers = {
2021	.error_detected = alx_pci_error_detected,
2022	.slot_reset     = alx_pci_error_slot_reset,
2023	.resume         = alx_pci_error_resume,
2024};
2025
2026static const struct pci_device_id alx_pci_tbl[] = {
2027	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
2028	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2029	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
2030	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2031	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400),
2032	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2033	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2500),
2034	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2035	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
2036	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
2037	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
2038	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
2039	{}
2040};
2041
2042static struct pci_driver alx_driver = {
2043	.name        = alx_drv_name,
2044	.id_table    = alx_pci_tbl,
2045	.probe       = alx_probe,
2046	.remove      = alx_remove,
2047	.err_handler = &alx_err_handlers,
2048	.driver.pm   = pm_sleep_ptr(&alx_pm_ops),
2049};
2050
2051module_pci_driver(alx_driver);
2052MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
2053MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
2054MODULE_AUTHOR("Qualcomm Corporation");
2055MODULE_DESCRIPTION(
2056	"Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
2057MODULE_LICENSE("GPL");