Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *	Driver for the Macintosh 68K onboard MACE controller with PSC
  4 *	driven DMA. The MACE driver code is derived from mace.c. The
  5 *	Mac68k theory of operation is courtesy of the MacBSD wizards.
  6 *
  7 *	Copyright (C) 1996 Paul Mackerras.
  8 *	Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
  9 *
 10 *	Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
 11 *
 12 *	Copyright (C) 2007 Finn Thain
 13 *
 14 *	Converted to DMA API, converted to unified driver model,
 15 *	sync'd some routines with mace.c and fixed various bugs.
 16 */
 17
 18
 19#include <linux/kernel.h>
 20#include <linux/module.h>
 21#include <linux/netdevice.h>
 22#include <linux/etherdevice.h>
 23#include <linux/delay.h>
 24#include <linux/string.h>
 25#include <linux/crc32.h>
 26#include <linux/bitrev.h>
 27#include <linux/dma-mapping.h>
 28#include <linux/platform_device.h>
 29#include <linux/gfp.h>
 30#include <linux/interrupt.h>
 31#include <asm/io.h>
 32#include <asm/macints.h>
 33#include <asm/mac_psc.h>
 34#include <asm/page.h>
 35#include "mace.h"
 36
 37static char mac_mace_string[] = "macmace";
 38
 39#define N_TX_BUFF_ORDER	0
 40#define N_TX_RING	(1 << N_TX_BUFF_ORDER)
 41#define N_RX_BUFF_ORDER	3
 42#define N_RX_RING	(1 << N_RX_BUFF_ORDER)
 43
 44#define TX_TIMEOUT	HZ
 45
 46#define MACE_BUFF_SIZE	0x800
 47
 48/* Chip rev needs workaround on HW & multicast addr change */
 49#define BROKEN_ADDRCHG_REV	0x0941
 50
 51/* The MACE is simply wired down on a Mac68K box */
 52
 53#define MACE_BASE	(void *)(0x50F1C000)
 54#define MACE_PROM	(void *)(0x50F08001)
 55
 56struct mace_data {
 57	volatile struct mace *mace;
 58	unsigned char *tx_ring;
 59	dma_addr_t tx_ring_phys;
 60	unsigned char *rx_ring;
 61	dma_addr_t rx_ring_phys;
 62	int dma_intr;
 63	int rx_slot, rx_tail;
 64	int tx_slot, tx_sloti, tx_count;
 65	int chipid;
 66	struct device *device;
 67};
 68
 69struct mace_frame {
 70	u8	rcvcnt;
 71	u8	pad1;
 72	u8	rcvsts;
 73	u8	pad2;
 74	u8	rntpc;
 75	u8	pad3;
 76	u8	rcvcc;
 77	u8	pad4;
 78	u32	pad5;
 79	u32	pad6;
 80	DECLARE_FLEX_ARRAY(u8, data);
 81	/* And frame continues.. */
 82};
 83
 84#define PRIV_BYTES	sizeof(struct mace_data)
 85
 86static int mace_open(struct net_device *dev);
 87static int mace_close(struct net_device *dev);
 88static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
 89static void mace_set_multicast(struct net_device *dev);
 90static int mace_set_address(struct net_device *dev, void *addr);
 91static void mace_reset(struct net_device *dev);
 92static irqreturn_t mace_interrupt(int irq, void *dev_id);
 93static irqreturn_t mace_dma_intr(int irq, void *dev_id);
 94static void mace_tx_timeout(struct net_device *dev, unsigned int txqueue);
 95static void __mace_set_address(struct net_device *dev, const void *addr);
 96
 97/*
 98 * Load a receive DMA channel with a base address and ring length
 99 */
100
101static void mace_load_rxdma_base(struct net_device *dev, int set)
102{
103	struct mace_data *mp = netdev_priv(dev);
104
105	psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
106	psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
107	psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
108	psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
109	mp->rx_tail = 0;
110}
111
112/*
113 * Reset the receive DMA subsystem
114 */
115
116static void mace_rxdma_reset(struct net_device *dev)
117{
118	struct mace_data *mp = netdev_priv(dev);
119	volatile struct mace *mace = mp->mace;
120	u8 maccc = mace->maccc;
121
122	mace->maccc = maccc & ~ENRCV;
123
124	psc_write_word(PSC_ENETRD_CTL, 0x8800);
125	mace_load_rxdma_base(dev, 0x00);
126	psc_write_word(PSC_ENETRD_CTL, 0x0400);
127
128	psc_write_word(PSC_ENETRD_CTL, 0x8800);
129	mace_load_rxdma_base(dev, 0x10);
130	psc_write_word(PSC_ENETRD_CTL, 0x0400);
131
132	mace->maccc = maccc;
133	mp->rx_slot = 0;
134
135	psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
136	psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
137}
138
139/*
140 * Reset the transmit DMA subsystem
141 */
142
143static void mace_txdma_reset(struct net_device *dev)
144{
145	struct mace_data *mp = netdev_priv(dev);
146	volatile struct mace *mace = mp->mace;
147	u8 maccc;
148
149	psc_write_word(PSC_ENETWR_CTL, 0x8800);
150
151	maccc = mace->maccc;
152	mace->maccc = maccc & ~ENXMT;
153
154	mp->tx_slot = mp->tx_sloti = 0;
155	mp->tx_count = N_TX_RING;
156
157	psc_write_word(PSC_ENETWR_CTL, 0x0400);
158	mace->maccc = maccc;
159}
160
161/*
162 * Disable DMA
163 */
164
165static void mace_dma_off(struct net_device *dev)
166{
167	psc_write_word(PSC_ENETRD_CTL, 0x8800);
168	psc_write_word(PSC_ENETRD_CTL, 0x1000);
169	psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
170	psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
171
172	psc_write_word(PSC_ENETWR_CTL, 0x8800);
173	psc_write_word(PSC_ENETWR_CTL, 0x1000);
174	psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
175	psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
176}
177
178static const struct net_device_ops mace_netdev_ops = {
179	.ndo_open		= mace_open,
180	.ndo_stop		= mace_close,
181	.ndo_start_xmit		= mace_xmit_start,
182	.ndo_tx_timeout		= mace_tx_timeout,
183	.ndo_set_rx_mode	= mace_set_multicast,
184	.ndo_set_mac_address	= mace_set_address,
185	.ndo_validate_addr	= eth_validate_addr,
186};
187
188/*
189 * Not really much of a probe. The hardware table tells us if this
190 * model of Macintrash has a MACE (AV macintoshes)
191 */
192
193static int mace_probe(struct platform_device *pdev)
194{
195	int j;
196	struct mace_data *mp;
197	unsigned char *addr;
198	struct net_device *dev;
199	unsigned char checksum = 0;
200	u8 macaddr[ETH_ALEN];
201	int err;
202
203	dev = alloc_etherdev(PRIV_BYTES);
204	if (!dev)
205		return -ENOMEM;
206
207	mp = netdev_priv(dev);
208
209	mp->device = &pdev->dev;
210	platform_set_drvdata(pdev, dev);
211	SET_NETDEV_DEV(dev, &pdev->dev);
212
213	dev->base_addr = (u32)MACE_BASE;
214	mp->mace = MACE_BASE;
215
216	dev->irq = IRQ_MAC_MACE;
217	mp->dma_intr = IRQ_MAC_MACE_DMA;
218
219	mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo;
220
221	/*
222	 * The PROM contains 8 bytes which total 0xFF when XOR'd
223	 * together. Due to the usual peculiar apple brain damage
224	 * the bytes are spaced out in a strange boundary and the
225	 * bits are reversed.
226	 */
227
228	addr = MACE_PROM;
229
230	for (j = 0; j < 6; ++j) {
231		u8 v = bitrev8(addr[j<<4]);
232		checksum ^= v;
233		macaddr[j] = v;
234	}
235	eth_hw_addr_set(dev, macaddr);
236	for (; j < 8; ++j) {
237		checksum ^= bitrev8(addr[j<<4]);
238	}
239
240	if (checksum != 0xFF) {
241		free_netdev(dev);
242		return -ENODEV;
243	}
244
245	dev->netdev_ops		= &mace_netdev_ops;
246	dev->watchdog_timeo	= TX_TIMEOUT;
247
248	pr_info("Onboard MACE, hardware address %pM, chip revision 0x%04X\n",
249		dev->dev_addr, mp->chipid);
250
251	err = register_netdev(dev);
252	if (!err)
253		return 0;
254
255	free_netdev(dev);
256	return err;
257}
258
259/*
260 * Reset the chip.
261 */
262
263static void mace_reset(struct net_device *dev)
264{
265	struct mace_data *mp = netdev_priv(dev);
266	volatile struct mace *mb = mp->mace;
267	int i;
268
269	/* soft-reset the chip */
270	i = 200;
271	while (--i) {
272		mb->biucc = SWRST;
273		if (mb->biucc & SWRST) {
274			udelay(10);
275			continue;
276		}
277		break;
278	}
279	if (!i) {
280		printk(KERN_ERR "macmace: cannot reset chip!\n");
281		return;
282	}
283
284	mb->maccc = 0;	/* turn off tx, rx */
285	mb->imr = 0xFF;	/* disable all intrs for now */
286	i = mb->ir;
287
288	mb->biucc = XMTSP_64;
289	mb->utr = RTRD;
290	mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU;
291
292	mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */
293	mb->rcvfc = 0;
294
295	/* load up the hardware address */
296	__mace_set_address(dev, dev->dev_addr);
297
298	/* clear the multicast filter */
299	if (mp->chipid == BROKEN_ADDRCHG_REV)
300		mb->iac = LOGADDR;
301	else {
302		mb->iac = ADDRCHG | LOGADDR;
303		while ((mb->iac & ADDRCHG) != 0)
304			;
305	}
306	for (i = 0; i < 8; ++i)
307		mb->ladrf = 0;
308
309	/* done changing address */
310	if (mp->chipid != BROKEN_ADDRCHG_REV)
311		mb->iac = 0;
312
313	mb->plscc = PORTSEL_AUI;
314}
315
316/*
317 * Load the address on a mace controller.
318 */
319
320static void __mace_set_address(struct net_device *dev, const void *addr)
321{
322	struct mace_data *mp = netdev_priv(dev);
323	volatile struct mace *mb = mp->mace;
324	const unsigned char *p = addr;
325	u8 macaddr[ETH_ALEN];
326	int i;
327
328	/* load up the hardware address */
329	if (mp->chipid == BROKEN_ADDRCHG_REV)
330		mb->iac = PHYADDR;
331	else {
332		mb->iac = ADDRCHG | PHYADDR;
333		while ((mb->iac & ADDRCHG) != 0)
334			;
335	}
336	for (i = 0; i < 6; ++i)
337		mb->padr = macaddr[i] = p[i];
338	eth_hw_addr_set(dev, macaddr);
339	if (mp->chipid != BROKEN_ADDRCHG_REV)
340		mb->iac = 0;
341}
342
343static int mace_set_address(struct net_device *dev, void *addr)
344{
345	struct mace_data *mp = netdev_priv(dev);
346	volatile struct mace *mb = mp->mace;
347	unsigned long flags;
348	u8 maccc;
349
350	local_irq_save(flags);
351
352	maccc = mb->maccc;
353
354	__mace_set_address(dev, addr);
355
356	mb->maccc = maccc;
357
358	local_irq_restore(flags);
359
360	return 0;
361}
362
363/*
364 * Open the Macintosh MACE. Most of this is playing with the DMA
365 * engine. The ethernet chip is quite friendly.
366 */
367
368static int mace_open(struct net_device *dev)
369{
370	struct mace_data *mp = netdev_priv(dev);
371	volatile struct mace *mb = mp->mace;
372
373	/* reset the chip */
374	mace_reset(dev);
375
376	if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
377		printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
378		return -EAGAIN;
379	}
380	if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
381		printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
382		free_irq(dev->irq, dev);
383		return -EAGAIN;
384	}
385
386	/* Allocate the DMA ring buffers */
387
388	mp->tx_ring = dma_alloc_coherent(mp->device,
389					 N_TX_RING * MACE_BUFF_SIZE,
390					 &mp->tx_ring_phys, GFP_KERNEL);
391	if (mp->tx_ring == NULL)
392		goto out1;
393
394	mp->rx_ring = dma_alloc_coherent(mp->device,
395					 N_RX_RING * MACE_BUFF_SIZE,
396					 &mp->rx_ring_phys, GFP_KERNEL);
397	if (mp->rx_ring == NULL)
398		goto out2;
399
400	mace_dma_off(dev);
401
402	/* Not sure what these do */
403
404	psc_write_word(PSC_ENETWR_CTL, 0x9000);
405	psc_write_word(PSC_ENETRD_CTL, 0x9000);
406	psc_write_word(PSC_ENETWR_CTL, 0x0400);
407	psc_write_word(PSC_ENETRD_CTL, 0x0400);
408
409	mace_rxdma_reset(dev);
410	mace_txdma_reset(dev);
411
412	/* turn it on! */
413	mb->maccc = ENXMT | ENRCV;
414	/* enable all interrupts except receive interrupts */
415	mb->imr = RCVINT;
416	return 0;
417
418out2:
419	dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
420	                  mp->tx_ring, mp->tx_ring_phys);
421out1:
422	free_irq(dev->irq, dev);
423	free_irq(mp->dma_intr, dev);
424	return -ENOMEM;
425}
426
427/*
428 * Shut down the mace and its interrupt channel
429 */
430
431static int mace_close(struct net_device *dev)
432{
433	struct mace_data *mp = netdev_priv(dev);
434	volatile struct mace *mb = mp->mace;
435
436	mb->maccc = 0;		/* disable rx and tx	 */
437	mb->imr = 0xFF;		/* disable all irqs	 */
438	mace_dma_off(dev);	/* disable rx and tx dma */
439
440	return 0;
441}
442
443/*
444 * Transmit a frame
445 */
446
447static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
448{
449	struct mace_data *mp = netdev_priv(dev);
450	unsigned long flags;
451
452	/* Stop the queue since there's only the one buffer */
453
454	local_irq_save(flags);
455	netif_stop_queue(dev);
456	if (!mp->tx_count) {
457		printk(KERN_ERR "macmace: tx queue running but no free buffers.\n");
458		local_irq_restore(flags);
459		return NETDEV_TX_BUSY;
460	}
461	mp->tx_count--;
462	local_irq_restore(flags);
463
464	dev->stats.tx_packets++;
465	dev->stats.tx_bytes += skb->len;
466
467	/* We need to copy into our xmit buffer to take care of alignment and caching issues */
468	skb_copy_from_linear_data(skb, mp->tx_ring, skb->len);
469
470	/* load the Tx DMA and fire it off */
471
472	psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32)  mp->tx_ring_phys);
473	psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
474	psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
475
476	mp->tx_slot ^= 0x10;
477
478	dev_kfree_skb(skb);
479
480	return NETDEV_TX_OK;
481}
482
483static void mace_set_multicast(struct net_device *dev)
484{
485	struct mace_data *mp = netdev_priv(dev);
486	volatile struct mace *mb = mp->mace;
487	int i;
488	u32 crc;
489	u8 maccc;
490	unsigned long flags;
491
492	local_irq_save(flags);
493	maccc = mb->maccc;
494	mb->maccc &= ~PROM;
495
496	if (dev->flags & IFF_PROMISC) {
497		mb->maccc |= PROM;
498	} else {
499		unsigned char multicast_filter[8];
500		struct netdev_hw_addr *ha;
501
502		if (dev->flags & IFF_ALLMULTI) {
503			for (i = 0; i < 8; i++) {
504				multicast_filter[i] = 0xFF;
505			}
506		} else {
507			for (i = 0; i < 8; i++)
508				multicast_filter[i] = 0;
509			netdev_for_each_mc_addr(ha, dev) {
510				crc = ether_crc_le(6, ha->addr);
511				/* bit number in multicast_filter */
512				i = crc >> 26;
513				multicast_filter[i >> 3] |= 1 << (i & 7);
514			}
515		}
516
517		if (mp->chipid == BROKEN_ADDRCHG_REV)
518			mb->iac = LOGADDR;
519		else {
520			mb->iac = ADDRCHG | LOGADDR;
521			while ((mb->iac & ADDRCHG) != 0)
522				;
523		}
524		for (i = 0; i < 8; ++i)
525			mb->ladrf = multicast_filter[i];
526		if (mp->chipid != BROKEN_ADDRCHG_REV)
527			mb->iac = 0;
528	}
529
530	mb->maccc = maccc;
531	local_irq_restore(flags);
532}
533
534static void mace_handle_misc_intrs(struct net_device *dev, int intr)
535{
536	struct mace_data *mp = netdev_priv(dev);
537	volatile struct mace *mb = mp->mace;
538	static int mace_babbles, mace_jabbers;
539
540	if (intr & MPCO)
541		dev->stats.rx_missed_errors += 256;
542	dev->stats.rx_missed_errors += mb->mpc;   /* reading clears it */
543	if (intr & RNTPCO)
544		dev->stats.rx_length_errors += 256;
545	dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */
546	if (intr & CERR)
547		++dev->stats.tx_heartbeat_errors;
548	if (intr & BABBLE)
549		if (mace_babbles++ < 4)
550			printk(KERN_DEBUG "macmace: babbling transmitter\n");
551	if (intr & JABBER)
552		if (mace_jabbers++ < 4)
553			printk(KERN_DEBUG "macmace: jabbering transceiver\n");
554}
555
556static irqreturn_t mace_interrupt(int irq, void *dev_id)
557{
558	struct net_device *dev = (struct net_device *) dev_id;
559	struct mace_data *mp = netdev_priv(dev);
560	volatile struct mace *mb = mp->mace;
561	int intr, fs;
562	unsigned long flags;
563
564	/* don't want the dma interrupt handler to fire */
565	local_irq_save(flags);
566
567	intr = mb->ir; /* read interrupt register */
568	mace_handle_misc_intrs(dev, intr);
569
570	if (intr & XMTINT) {
571		fs = mb->xmtfs;
572		if ((fs & XMTSV) == 0) {
573			printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs);
574			mace_reset(dev);
575			/*
576			 * XXX mace likes to hang the machine after a xmtfs error.
577			 * This is hard to reproduce, resetting *may* help
578			 */
579		}
580		/* dma should have finished */
581		if (!mp->tx_count) {
582			printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs);
583		}
584		/* Update stats */
585		if (fs & (UFLO|LCOL|LCAR|RTRY)) {
586			++dev->stats.tx_errors;
587			if (fs & LCAR)
588				++dev->stats.tx_carrier_errors;
589			else if (fs & (UFLO|LCOL|RTRY)) {
590				++dev->stats.tx_aborted_errors;
591				if (mb->xmtfs & UFLO) {
592					dev->stats.tx_fifo_errors++;
593					mace_txdma_reset(dev);
594				}
595			}
596		}
597	}
598
599	if (mp->tx_count)
600		netif_wake_queue(dev);
601
602	local_irq_restore(flags);
603
604	return IRQ_HANDLED;
605}
606
607static void mace_tx_timeout(struct net_device *dev, unsigned int txqueue)
608{
609	struct mace_data *mp = netdev_priv(dev);
610	volatile struct mace *mb = mp->mace;
611	unsigned long flags;
612
613	local_irq_save(flags);
614
615	/* turn off both tx and rx and reset the chip */
616	mb->maccc = 0;
617	printk(KERN_ERR "macmace: transmit timeout - resetting\n");
618	mace_txdma_reset(dev);
619	mace_reset(dev);
620
621	/* restart rx dma */
622	mace_rxdma_reset(dev);
623
624	mp->tx_count = N_TX_RING;
625	netif_wake_queue(dev);
626
627	/* turn it on! */
628	mb->maccc = ENXMT | ENRCV;
629	/* enable all interrupts except receive interrupts */
630	mb->imr = RCVINT;
631
632	local_irq_restore(flags);
633}
634
635/*
636 * Handle a newly arrived frame
637 */
638
639static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
640{
641	struct sk_buff *skb;
642	unsigned int frame_status = mf->rcvsts;
643
644	if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) {
645		dev->stats.rx_errors++;
646		if (frame_status & RS_OFLO)
647			dev->stats.rx_fifo_errors++;
648		if (frame_status & RS_CLSN)
649			dev->stats.collisions++;
650		if (frame_status & RS_FRAMERR)
651			dev->stats.rx_frame_errors++;
652		if (frame_status & RS_FCSERR)
653			dev->stats.rx_crc_errors++;
654	} else {
655		unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 );
656
657		skb = netdev_alloc_skb(dev, frame_length + 2);
658		if (!skb) {
659			dev->stats.rx_dropped++;
660			return;
661		}
662		skb_reserve(skb, 2);
663		skb_put_data(skb, mf->data, frame_length);
664
665		skb->protocol = eth_type_trans(skb, dev);
666		netif_rx(skb);
667		dev->stats.rx_packets++;
668		dev->stats.rx_bytes += frame_length;
669	}
670}
671
672/*
673 * The PSC has passed us a DMA interrupt event.
674 */
675
676static irqreturn_t mace_dma_intr(int irq, void *dev_id)
677{
678	struct net_device *dev = (struct net_device *) dev_id;
679	struct mace_data *mp = netdev_priv(dev);
680	int left, head;
681	u16 status;
682	u32 baka;
683
684	/* Not sure what this does */
685
686	while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
687	if (!(baka & 0x60000000)) return IRQ_NONE;
688
689	/*
690	 * Process the read queue
691	 */
692
693	status = psc_read_word(PSC_ENETRD_CTL);
694
695	if (status & 0x2000) {
696		mace_rxdma_reset(dev);
697	} else if (status & 0x0100) {
698		psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
699
700		left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
701		head = N_RX_RING - left;
702
703		/* Loop through the ring buffer and process new packages */
704
705		while (mp->rx_tail < head) {
706			mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring
707				+ (mp->rx_tail * MACE_BUFF_SIZE)));
708			mp->rx_tail++;
709		}
710
711		/* If we're out of buffers in this ring then switch to */
712		/* the other set, otherwise just reactivate this one.  */
713
714		if (!left) {
715			mace_load_rxdma_base(dev, mp->rx_slot);
716			mp->rx_slot ^= 0x10;
717		} else {
718			psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
719		}
720	}
721
722	/*
723	 * Process the write queue
724	 */
725
726	status = psc_read_word(PSC_ENETWR_CTL);
727
728	if (status & 0x2000) {
729		mace_txdma_reset(dev);
730	} else if (status & 0x0100) {
731		psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
732		mp->tx_sloti ^= 0x10;
733		mp->tx_count++;
734	}
735	return IRQ_HANDLED;
736}
737
738MODULE_LICENSE("GPL");
739MODULE_DESCRIPTION("Macintosh MACE ethernet driver");
740MODULE_ALIAS("platform:macmace");
741
742static void mac_mace_device_remove(struct platform_device *pdev)
743{
744	struct net_device *dev = platform_get_drvdata(pdev);
745	struct mace_data *mp = netdev_priv(dev);
746
747	unregister_netdev(dev);
748
749	free_irq(dev->irq, dev);
750	free_irq(IRQ_MAC_MACE_DMA, dev);
751
752	dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE,
753	                  mp->rx_ring, mp->rx_ring_phys);
754	dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
755	                  mp->tx_ring, mp->tx_ring_phys);
756
757	free_netdev(dev);
758}
759
760static struct platform_driver mac_mace_driver = {
761	.probe  = mace_probe,
762	.remove_new = mac_mace_device_remove,
763	.driver	= {
764		.name	= mac_mace_string,
765	},
766};
767
768module_platform_driver(mac_mace_driver);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *	Driver for the Macintosh 68K onboard MACE controller with PSC
  4 *	driven DMA. The MACE driver code is derived from mace.c. The
  5 *	Mac68k theory of operation is courtesy of the MacBSD wizards.
  6 *
  7 *	Copyright (C) 1996 Paul Mackerras.
  8 *	Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
  9 *
 10 *	Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
 11 *
 12 *	Copyright (C) 2007 Finn Thain
 13 *
 14 *	Converted to DMA API, converted to unified driver model,
 15 *	sync'd some routines with mace.c and fixed various bugs.
 16 */
 17
 18
 19#include <linux/kernel.h>
 20#include <linux/module.h>
 21#include <linux/netdevice.h>
 22#include <linux/etherdevice.h>
 23#include <linux/delay.h>
 24#include <linux/string.h>
 25#include <linux/crc32.h>
 26#include <linux/bitrev.h>
 27#include <linux/dma-mapping.h>
 28#include <linux/platform_device.h>
 29#include <linux/gfp.h>
 30#include <linux/interrupt.h>
 31#include <asm/io.h>
 32#include <asm/macints.h>
 33#include <asm/mac_psc.h>
 34#include <asm/page.h>
 35#include "mace.h"
 36
 37static char mac_mace_string[] = "macmace";
 38
 39#define N_TX_BUFF_ORDER	0
 40#define N_TX_RING	(1 << N_TX_BUFF_ORDER)
 41#define N_RX_BUFF_ORDER	3
 42#define N_RX_RING	(1 << N_RX_BUFF_ORDER)
 43
 44#define TX_TIMEOUT	HZ
 45
 46#define MACE_BUFF_SIZE	0x800
 47
 48/* Chip rev needs workaround on HW & multicast addr change */
 49#define BROKEN_ADDRCHG_REV	0x0941
 50
 51/* The MACE is simply wired down on a Mac68K box */
 52
 53#define MACE_BASE	(void *)(0x50F1C000)
 54#define MACE_PROM	(void *)(0x50F08001)
 55
 56struct mace_data {
 57	volatile struct mace *mace;
 58	unsigned char *tx_ring;
 59	dma_addr_t tx_ring_phys;
 60	unsigned char *rx_ring;
 61	dma_addr_t rx_ring_phys;
 62	int dma_intr;
 63	int rx_slot, rx_tail;
 64	int tx_slot, tx_sloti, tx_count;
 65	int chipid;
 66	struct device *device;
 67};
 68
 69struct mace_frame {
 70	u8	rcvcnt;
 71	u8	pad1;
 72	u8	rcvsts;
 73	u8	pad2;
 74	u8	rntpc;
 75	u8	pad3;
 76	u8	rcvcc;
 77	u8	pad4;
 78	u32	pad5;
 79	u32	pad6;
 80	DECLARE_FLEX_ARRAY(u8, data);
 81	/* And frame continues.. */
 82};
 83
 84#define PRIV_BYTES	sizeof(struct mace_data)
 85
 86static int mace_open(struct net_device *dev);
 87static int mace_close(struct net_device *dev);
 88static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
 89static void mace_set_multicast(struct net_device *dev);
 90static int mace_set_address(struct net_device *dev, void *addr);
 91static void mace_reset(struct net_device *dev);
 92static irqreturn_t mace_interrupt(int irq, void *dev_id);
 93static irqreturn_t mace_dma_intr(int irq, void *dev_id);
 94static void mace_tx_timeout(struct net_device *dev, unsigned int txqueue);
 95static void __mace_set_address(struct net_device *dev, const void *addr);
 96
 97/*
 98 * Load a receive DMA channel with a base address and ring length
 99 */
100
101static void mace_load_rxdma_base(struct net_device *dev, int set)
102{
103	struct mace_data *mp = netdev_priv(dev);
104
105	psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
106	psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
107	psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
108	psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
109	mp->rx_tail = 0;
110}
111
112/*
113 * Reset the receive DMA subsystem
114 */
115
116static void mace_rxdma_reset(struct net_device *dev)
117{
118	struct mace_data *mp = netdev_priv(dev);
119	volatile struct mace *mace = mp->mace;
120	u8 maccc = mace->maccc;
121
122	mace->maccc = maccc & ~ENRCV;
123
124	psc_write_word(PSC_ENETRD_CTL, 0x8800);
125	mace_load_rxdma_base(dev, 0x00);
126	psc_write_word(PSC_ENETRD_CTL, 0x0400);
127
128	psc_write_word(PSC_ENETRD_CTL, 0x8800);
129	mace_load_rxdma_base(dev, 0x10);
130	psc_write_word(PSC_ENETRD_CTL, 0x0400);
131
132	mace->maccc = maccc;
133	mp->rx_slot = 0;
134
135	psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
136	psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
137}
138
139/*
140 * Reset the transmit DMA subsystem
141 */
142
143static void mace_txdma_reset(struct net_device *dev)
144{
145	struct mace_data *mp = netdev_priv(dev);
146	volatile struct mace *mace = mp->mace;
147	u8 maccc;
148
149	psc_write_word(PSC_ENETWR_CTL, 0x8800);
150
151	maccc = mace->maccc;
152	mace->maccc = maccc & ~ENXMT;
153
154	mp->tx_slot = mp->tx_sloti = 0;
155	mp->tx_count = N_TX_RING;
156
157	psc_write_word(PSC_ENETWR_CTL, 0x0400);
158	mace->maccc = maccc;
159}
160
161/*
162 * Disable DMA
163 */
164
165static void mace_dma_off(struct net_device *dev)
166{
167	psc_write_word(PSC_ENETRD_CTL, 0x8800);
168	psc_write_word(PSC_ENETRD_CTL, 0x1000);
169	psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
170	psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
171
172	psc_write_word(PSC_ENETWR_CTL, 0x8800);
173	psc_write_word(PSC_ENETWR_CTL, 0x1000);
174	psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
175	psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
176}
177
178static const struct net_device_ops mace_netdev_ops = {
179	.ndo_open		= mace_open,
180	.ndo_stop		= mace_close,
181	.ndo_start_xmit		= mace_xmit_start,
182	.ndo_tx_timeout		= mace_tx_timeout,
183	.ndo_set_rx_mode	= mace_set_multicast,
184	.ndo_set_mac_address	= mace_set_address,
185	.ndo_validate_addr	= eth_validate_addr,
186};
187
188/*
189 * Not really much of a probe. The hardware table tells us if this
190 * model of Macintrash has a MACE (AV macintoshes)
191 */
192
193static int mace_probe(struct platform_device *pdev)
194{
195	int j;
196	struct mace_data *mp;
197	unsigned char *addr;
198	struct net_device *dev;
199	unsigned char checksum = 0;
200	u8 macaddr[ETH_ALEN];
201	int err;
202
203	dev = alloc_etherdev(PRIV_BYTES);
204	if (!dev)
205		return -ENOMEM;
206
207	mp = netdev_priv(dev);
208
209	mp->device = &pdev->dev;
210	platform_set_drvdata(pdev, dev);
211	SET_NETDEV_DEV(dev, &pdev->dev);
212
213	dev->base_addr = (u32)MACE_BASE;
214	mp->mace = MACE_BASE;
215
216	dev->irq = IRQ_MAC_MACE;
217	mp->dma_intr = IRQ_MAC_MACE_DMA;
218
219	mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo;
220
221	/*
222	 * The PROM contains 8 bytes which total 0xFF when XOR'd
223	 * together. Due to the usual peculiar apple brain damage
224	 * the bytes are spaced out in a strange boundary and the
225	 * bits are reversed.
226	 */
227
228	addr = MACE_PROM;
229
230	for (j = 0; j < 6; ++j) {
231		u8 v = bitrev8(addr[j<<4]);
232		checksum ^= v;
233		macaddr[j] = v;
234	}
235	eth_hw_addr_set(dev, macaddr);
236	for (; j < 8; ++j) {
237		checksum ^= bitrev8(addr[j<<4]);
238	}
239
240	if (checksum != 0xFF) {
241		free_netdev(dev);
242		return -ENODEV;
243	}
244
245	dev->netdev_ops		= &mace_netdev_ops;
246	dev->watchdog_timeo	= TX_TIMEOUT;
247
248	pr_info("Onboard MACE, hardware address %pM, chip revision 0x%04X\n",
249		dev->dev_addr, mp->chipid);
250
251	err = register_netdev(dev);
252	if (!err)
253		return 0;
254
255	free_netdev(dev);
256	return err;
257}
258
259/*
260 * Reset the chip.
261 */
262
263static void mace_reset(struct net_device *dev)
264{
265	struct mace_data *mp = netdev_priv(dev);
266	volatile struct mace *mb = mp->mace;
267	int i;
268
269	/* soft-reset the chip */
270	i = 200;
271	while (--i) {
272		mb->biucc = SWRST;
273		if (mb->biucc & SWRST) {
274			udelay(10);
275			continue;
276		}
277		break;
278	}
279	if (!i) {
280		printk(KERN_ERR "macmace: cannot reset chip!\n");
281		return;
282	}
283
284	mb->maccc = 0;	/* turn off tx, rx */
285	mb->imr = 0xFF;	/* disable all intrs for now */
286	i = mb->ir;
287
288	mb->biucc = XMTSP_64;
289	mb->utr = RTRD;
290	mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU;
291
292	mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */
293	mb->rcvfc = 0;
294
295	/* load up the hardware address */
296	__mace_set_address(dev, dev->dev_addr);
297
298	/* clear the multicast filter */
299	if (mp->chipid == BROKEN_ADDRCHG_REV)
300		mb->iac = LOGADDR;
301	else {
302		mb->iac = ADDRCHG | LOGADDR;
303		while ((mb->iac & ADDRCHG) != 0)
304			;
305	}
306	for (i = 0; i < 8; ++i)
307		mb->ladrf = 0;
308
309	/* done changing address */
310	if (mp->chipid != BROKEN_ADDRCHG_REV)
311		mb->iac = 0;
312
313	mb->plscc = PORTSEL_AUI;
314}
315
316/*
317 * Load the address on a mace controller.
318 */
319
320static void __mace_set_address(struct net_device *dev, const void *addr)
321{
322	struct mace_data *mp = netdev_priv(dev);
323	volatile struct mace *mb = mp->mace;
324	const unsigned char *p = addr;
325	u8 macaddr[ETH_ALEN];
326	int i;
327
328	/* load up the hardware address */
329	if (mp->chipid == BROKEN_ADDRCHG_REV)
330		mb->iac = PHYADDR;
331	else {
332		mb->iac = ADDRCHG | PHYADDR;
333		while ((mb->iac & ADDRCHG) != 0)
334			;
335	}
336	for (i = 0; i < 6; ++i)
337		mb->padr = macaddr[i] = p[i];
338	eth_hw_addr_set(dev, macaddr);
339	if (mp->chipid != BROKEN_ADDRCHG_REV)
340		mb->iac = 0;
341}
342
343static int mace_set_address(struct net_device *dev, void *addr)
344{
345	struct mace_data *mp = netdev_priv(dev);
346	volatile struct mace *mb = mp->mace;
347	unsigned long flags;
348	u8 maccc;
349
350	local_irq_save(flags);
351
352	maccc = mb->maccc;
353
354	__mace_set_address(dev, addr);
355
356	mb->maccc = maccc;
357
358	local_irq_restore(flags);
359
360	return 0;
361}
362
363/*
364 * Open the Macintosh MACE. Most of this is playing with the DMA
365 * engine. The ethernet chip is quite friendly.
366 */
367
368static int mace_open(struct net_device *dev)
369{
370	struct mace_data *mp = netdev_priv(dev);
371	volatile struct mace *mb = mp->mace;
372
373	/* reset the chip */
374	mace_reset(dev);
375
376	if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
377		printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
378		return -EAGAIN;
379	}
380	if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
381		printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
382		free_irq(dev->irq, dev);
383		return -EAGAIN;
384	}
385
386	/* Allocate the DMA ring buffers */
387
388	mp->tx_ring = dma_alloc_coherent(mp->device,
389					 N_TX_RING * MACE_BUFF_SIZE,
390					 &mp->tx_ring_phys, GFP_KERNEL);
391	if (mp->tx_ring == NULL)
392		goto out1;
393
394	mp->rx_ring = dma_alloc_coherent(mp->device,
395					 N_RX_RING * MACE_BUFF_SIZE,
396					 &mp->rx_ring_phys, GFP_KERNEL);
397	if (mp->rx_ring == NULL)
398		goto out2;
399
400	mace_dma_off(dev);
401
402	/* Not sure what these do */
403
404	psc_write_word(PSC_ENETWR_CTL, 0x9000);
405	psc_write_word(PSC_ENETRD_CTL, 0x9000);
406	psc_write_word(PSC_ENETWR_CTL, 0x0400);
407	psc_write_word(PSC_ENETRD_CTL, 0x0400);
408
409	mace_rxdma_reset(dev);
410	mace_txdma_reset(dev);
411
412	/* turn it on! */
413	mb->maccc = ENXMT | ENRCV;
414	/* enable all interrupts except receive interrupts */
415	mb->imr = RCVINT;
416	return 0;
417
418out2:
419	dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
420	                  mp->tx_ring, mp->tx_ring_phys);
421out1:
422	free_irq(dev->irq, dev);
423	free_irq(mp->dma_intr, dev);
424	return -ENOMEM;
425}
426
427/*
428 * Shut down the mace and its interrupt channel
429 */
430
431static int mace_close(struct net_device *dev)
432{
433	struct mace_data *mp = netdev_priv(dev);
434	volatile struct mace *mb = mp->mace;
435
436	mb->maccc = 0;		/* disable rx and tx	 */
437	mb->imr = 0xFF;		/* disable all irqs	 */
438	mace_dma_off(dev);	/* disable rx and tx dma */
439
440	return 0;
441}
442
443/*
444 * Transmit a frame
445 */
446
447static netdev_tx_t mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
448{
449	struct mace_data *mp = netdev_priv(dev);
450	unsigned long flags;
451
452	/* Stop the queue since there's only the one buffer */
453
454	local_irq_save(flags);
455	netif_stop_queue(dev);
456	if (!mp->tx_count) {
457		printk(KERN_ERR "macmace: tx queue running but no free buffers.\n");
458		local_irq_restore(flags);
459		return NETDEV_TX_BUSY;
460	}
461	mp->tx_count--;
462	local_irq_restore(flags);
463
464	dev->stats.tx_packets++;
465	dev->stats.tx_bytes += skb->len;
466
467	/* We need to copy into our xmit buffer to take care of alignment and caching issues */
468	skb_copy_from_linear_data(skb, mp->tx_ring, skb->len);
469
470	/* load the Tx DMA and fire it off */
471
472	psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32)  mp->tx_ring_phys);
473	psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
474	psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
475
476	mp->tx_slot ^= 0x10;
477
478	dev_kfree_skb(skb);
479
480	return NETDEV_TX_OK;
481}
482
483static void mace_set_multicast(struct net_device *dev)
484{
485	struct mace_data *mp = netdev_priv(dev);
486	volatile struct mace *mb = mp->mace;
487	int i;
488	u32 crc;
489	u8 maccc;
490	unsigned long flags;
491
492	local_irq_save(flags);
493	maccc = mb->maccc;
494	mb->maccc &= ~PROM;
495
496	if (dev->flags & IFF_PROMISC) {
497		mb->maccc |= PROM;
498	} else {
499		unsigned char multicast_filter[8];
500		struct netdev_hw_addr *ha;
501
502		if (dev->flags & IFF_ALLMULTI) {
503			for (i = 0; i < 8; i++) {
504				multicast_filter[i] = 0xFF;
505			}
506		} else {
507			for (i = 0; i < 8; i++)
508				multicast_filter[i] = 0;
509			netdev_for_each_mc_addr(ha, dev) {
510				crc = ether_crc_le(6, ha->addr);
511				/* bit number in multicast_filter */
512				i = crc >> 26;
513				multicast_filter[i >> 3] |= 1 << (i & 7);
514			}
515		}
516
517		if (mp->chipid == BROKEN_ADDRCHG_REV)
518			mb->iac = LOGADDR;
519		else {
520			mb->iac = ADDRCHG | LOGADDR;
521			while ((mb->iac & ADDRCHG) != 0)
522				;
523		}
524		for (i = 0; i < 8; ++i)
525			mb->ladrf = multicast_filter[i];
526		if (mp->chipid != BROKEN_ADDRCHG_REV)
527			mb->iac = 0;
528	}
529
530	mb->maccc = maccc;
531	local_irq_restore(flags);
532}
533
534static void mace_handle_misc_intrs(struct net_device *dev, int intr)
535{
536	struct mace_data *mp = netdev_priv(dev);
537	volatile struct mace *mb = mp->mace;
538	static int mace_babbles, mace_jabbers;
539
540	if (intr & MPCO)
541		dev->stats.rx_missed_errors += 256;
542	dev->stats.rx_missed_errors += mb->mpc;   /* reading clears it */
543	if (intr & RNTPCO)
544		dev->stats.rx_length_errors += 256;
545	dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */
546	if (intr & CERR)
547		++dev->stats.tx_heartbeat_errors;
548	if (intr & BABBLE)
549		if (mace_babbles++ < 4)
550			printk(KERN_DEBUG "macmace: babbling transmitter\n");
551	if (intr & JABBER)
552		if (mace_jabbers++ < 4)
553			printk(KERN_DEBUG "macmace: jabbering transceiver\n");
554}
555
556static irqreturn_t mace_interrupt(int irq, void *dev_id)
557{
558	struct net_device *dev = (struct net_device *) dev_id;
559	struct mace_data *mp = netdev_priv(dev);
560	volatile struct mace *mb = mp->mace;
561	int intr, fs;
562	unsigned long flags;
563
564	/* don't want the dma interrupt handler to fire */
565	local_irq_save(flags);
566
567	intr = mb->ir; /* read interrupt register */
568	mace_handle_misc_intrs(dev, intr);
569
570	if (intr & XMTINT) {
571		fs = mb->xmtfs;
572		if ((fs & XMTSV) == 0) {
573			printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs);
574			mace_reset(dev);
575			/*
576			 * XXX mace likes to hang the machine after a xmtfs error.
577			 * This is hard to reproduce, resetting *may* help
578			 */
579		}
580		/* dma should have finished */
581		if (!mp->tx_count) {
582			printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs);
583		}
584		/* Update stats */
585		if (fs & (UFLO|LCOL|LCAR|RTRY)) {
586			++dev->stats.tx_errors;
587			if (fs & LCAR)
588				++dev->stats.tx_carrier_errors;
589			else if (fs & (UFLO|LCOL|RTRY)) {
590				++dev->stats.tx_aborted_errors;
591				if (mb->xmtfs & UFLO) {
592					dev->stats.tx_fifo_errors++;
593					mace_txdma_reset(dev);
594				}
595			}
596		}
597	}
598
599	if (mp->tx_count)
600		netif_wake_queue(dev);
601
602	local_irq_restore(flags);
603
604	return IRQ_HANDLED;
605}
606
607static void mace_tx_timeout(struct net_device *dev, unsigned int txqueue)
608{
609	struct mace_data *mp = netdev_priv(dev);
610	volatile struct mace *mb = mp->mace;
611	unsigned long flags;
612
613	local_irq_save(flags);
614
615	/* turn off both tx and rx and reset the chip */
616	mb->maccc = 0;
617	printk(KERN_ERR "macmace: transmit timeout - resetting\n");
618	mace_txdma_reset(dev);
619	mace_reset(dev);
620
621	/* restart rx dma */
622	mace_rxdma_reset(dev);
623
624	mp->tx_count = N_TX_RING;
625	netif_wake_queue(dev);
626
627	/* turn it on! */
628	mb->maccc = ENXMT | ENRCV;
629	/* enable all interrupts except receive interrupts */
630	mb->imr = RCVINT;
631
632	local_irq_restore(flags);
633}
634
635/*
636 * Handle a newly arrived frame
637 */
638
639static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
640{
641	struct sk_buff *skb;
642	unsigned int frame_status = mf->rcvsts;
643
644	if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) {
645		dev->stats.rx_errors++;
646		if (frame_status & RS_OFLO)
647			dev->stats.rx_fifo_errors++;
648		if (frame_status & RS_CLSN)
649			dev->stats.collisions++;
650		if (frame_status & RS_FRAMERR)
651			dev->stats.rx_frame_errors++;
652		if (frame_status & RS_FCSERR)
653			dev->stats.rx_crc_errors++;
654	} else {
655		unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 );
656
657		skb = netdev_alloc_skb(dev, frame_length + 2);
658		if (!skb) {
659			dev->stats.rx_dropped++;
660			return;
661		}
662		skb_reserve(skb, 2);
663		skb_put_data(skb, mf->data, frame_length);
664
665		skb->protocol = eth_type_trans(skb, dev);
666		netif_rx(skb);
667		dev->stats.rx_packets++;
668		dev->stats.rx_bytes += frame_length;
669	}
670}
671
672/*
673 * The PSC has passed us a DMA interrupt event.
674 */
675
676static irqreturn_t mace_dma_intr(int irq, void *dev_id)
677{
678	struct net_device *dev = (struct net_device *) dev_id;
679	struct mace_data *mp = netdev_priv(dev);
680	int left, head;
681	u16 status;
682	u32 baka;
683
684	/* Not sure what this does */
685
686	while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
687	if (!(baka & 0x60000000)) return IRQ_NONE;
688
689	/*
690	 * Process the read queue
691	 */
692
693	status = psc_read_word(PSC_ENETRD_CTL);
694
695	if (status & 0x2000) {
696		mace_rxdma_reset(dev);
697	} else if (status & 0x0100) {
698		psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
699
700		left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
701		head = N_RX_RING - left;
702
703		/* Loop through the ring buffer and process new packages */
704
705		while (mp->rx_tail < head) {
706			mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring
707				+ (mp->rx_tail * MACE_BUFF_SIZE)));
708			mp->rx_tail++;
709		}
710
711		/* If we're out of buffers in this ring then switch to */
712		/* the other set, otherwise just reactivate this one.  */
713
714		if (!left) {
715			mace_load_rxdma_base(dev, mp->rx_slot);
716			mp->rx_slot ^= 0x10;
717		} else {
718			psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
719		}
720	}
721
722	/*
723	 * Process the write queue
724	 */
725
726	status = psc_read_word(PSC_ENETWR_CTL);
727
728	if (status & 0x2000) {
729		mace_txdma_reset(dev);
730	} else if (status & 0x0100) {
731		psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
732		mp->tx_sloti ^= 0x10;
733		mp->tx_count++;
734	}
735	return IRQ_HANDLED;
736}
737
738MODULE_LICENSE("GPL");
739MODULE_DESCRIPTION("Macintosh MACE ethernet driver");
740MODULE_ALIAS("platform:macmace");
741
742static void mac_mace_device_remove(struct platform_device *pdev)
743{
744	struct net_device *dev = platform_get_drvdata(pdev);
745	struct mace_data *mp = netdev_priv(dev);
746
747	unregister_netdev(dev);
748
749	free_irq(dev->irq, dev);
750	free_irq(IRQ_MAC_MACE_DMA, dev);
751
752	dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE,
753	                  mp->rx_ring, mp->rx_ring_phys);
754	dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
755	                  mp->tx_ring, mp->tx_ring_phys);
756
757	free_netdev(dev);
758}
759
760static struct platform_driver mac_mace_driver = {
761	.probe  = mace_probe,
762	.remove = mac_mace_device_remove,
763	.driver	= {
764		.name	= mac_mace_string,
765	},
766};
767
768module_platform_driver(mac_mace_driver);