Loading...
1/*
2 Written 1997-1998 by Donald Becker.
3
4 This software may be used and distributed according to the terms
5 of the GNU General Public License, incorporated herein by reference.
6
7 This driver is for the 3Com ISA EtherLink XL "Corkscrew" 3c515 ethercard.
8
9 The author may be reached as becker@scyld.com, or C/O
10 Scyld Computing Corporation
11 410 Severn Ave., Suite 210
12 Annapolis MD 21403
13
14
15 2000/2/2- Added support for kernel-level ISAPnP
16 by Stephen Frost <sfrost@snowman.net> and Alessandro Zummo
17 Cleaned up for 2.3.x/softnet by Jeff Garzik and Alan Cox.
18
19 2001/11/17 - Added ethtool support (jgarzik)
20
21 2002/10/28 - Locking updates for 2.5 (alan@lxorguk.ukuu.org.uk)
22
23*/
24
25#define DRV_NAME "3c515"
26
27#define CORKSCREW 1
28
29/* "Knobs" that adjust features and parameters. */
30/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
31 Setting to > 1512 effectively disables this feature. */
32static int rx_copybreak = 200;
33
34/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
35static const int mtu = 1500;
36
37/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
38static int max_interrupt_work = 20;
39
40/* Enable the automatic media selection code -- usually set. */
41#define AUTOMEDIA 1
42
43/* Allow the use of fragment bus master transfers instead of only
44 programmed-I/O for Vortex cards. Full-bus-master transfers are always
45 enabled by default on Boomerang cards. If VORTEX_BUS_MASTER is defined,
46 the feature may be turned on using 'options'. */
47#define VORTEX_BUS_MASTER
48
49/* A few values that may be tweaked. */
50/* Keep the ring sizes a power of two for efficiency. */
51#define TX_RING_SIZE 16
52#define RX_RING_SIZE 16
53#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer. */
54
55#include <linux/module.h>
56#include <linux/isapnp.h>
57#include <linux/kernel.h>
58#include <linux/netdevice.h>
59#include <linux/string.h>
60#include <linux/errno.h>
61#include <linux/in.h>
62#include <linux/ioport.h>
63#include <linux/skbuff.h>
64#include <linux/etherdevice.h>
65#include <linux/interrupt.h>
66#include <linux/timer.h>
67#include <linux/ethtool.h>
68#include <linux/bitops.h>
69#include <linux/uaccess.h>
70
71#include <net/Space.h>
72
73#include <asm/io.h>
74#include <asm/dma.h>
75
76#define NEW_MULTICAST
77#include <linux/delay.h>
78
79#define MAX_UNITS 8
80
81MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
82MODULE_DESCRIPTION("3Com 3c515 Corkscrew driver");
83MODULE_LICENSE("GPL");
84
85/* "Knobs" for adjusting internal parameters. */
86/* Put out somewhat more debugging messages. (0 - no msg, 1 minimal msgs). */
87#define DRIVER_DEBUG 1
88/* Some values here only for performance evaluation and path-coverage
89 debugging. */
90static int rx_nocopy, rx_copy, queued_packet;
91
92/* Number of times to check to see if the Tx FIFO has space, used in some
93 limited cases. */
94#define WAIT_TX_AVAIL 200
95
96/* Operational parameter that usually are not changed. */
97#define TX_TIMEOUT ((4*HZ)/10) /* Time in jiffies before concluding Tx hung */
98
99/* The size here is somewhat misleading: the Corkscrew also uses the ISA
100 aliased registers at <base>+0x400.
101 */
102#define CORKSCREW_TOTAL_SIZE 0x20
103
104#ifdef DRIVER_DEBUG
105static int corkscrew_debug = DRIVER_DEBUG;
106#else
107static int corkscrew_debug = 1;
108#endif
109
110#define CORKSCREW_ID 10
111
112/*
113 Theory of Operation
114
115I. Board Compatibility
116
117This device driver is designed for the 3Com 3c515 ISA Fast EtherLink XL,
1183Com's ISA bus adapter for Fast Ethernet. Due to the unique I/O port layout,
119it's not practical to integrate this driver with the other EtherLink drivers.
120
121II. Board-specific settings
122
123The Corkscrew has an EEPROM for configuration, but no special settings are
124needed for Linux.
125
126III. Driver operation
127
128The 3c515 series use an interface that's very similar to the 3c900 "Boomerang"
129PCI cards, with the bus master interface extensively modified to work with
130the ISA bus.
131
132The card is capable of full-bus-master transfers with separate
133lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
134DEC Tulip and Intel Speedo3.
135
136This driver uses a "RX_COPYBREAK" scheme rather than a fixed intermediate
137receive buffer. This scheme allocates full-sized skbuffs as receive
138buffers. The value RX_COPYBREAK is used as the copying breakpoint: it is
139chosen to trade-off the memory wasted by passing the full-sized skbuff to
140the queue layer for all frames vs. the copying cost of copying a frame to a
141correctly-sized skbuff.
142
143
144IIIC. Synchronization
145The driver runs as two independent, single-threaded flows of control. One
146is the send-packet routine, which enforces single-threaded use by the netif
147layer. The other thread is the interrupt handler, which is single
148threaded by the hardware and other software.
149
150IV. Notes
151
152Thanks to Terry Murphy of 3Com for providing documentation and a development
153board.
154
155The names "Vortex", "Boomerang" and "Corkscrew" are the internal 3Com
156project names. I use these names to eliminate confusion -- 3Com product
157numbers and names are very similar and often confused.
158
159The new chips support both ethernet (1.5K) and FDDI (4.5K) frame sizes!
160This driver only supports ethernet frames because of the recent MTU limit
161of 1.5K, but the changes to support 4.5K are minimal.
162*/
163
164/* Operational definitions.
165 These are not used by other compilation units and thus are not
166 exported in a ".h" file.
167
168 First the windows. There are eight register windows, with the command
169 and status registers available in each.
170 */
171#define EL3WINDOW(win_num) outw(SelectWindow + (win_num), ioaddr + EL3_CMD)
172#define EL3_CMD 0x0e
173#define EL3_STATUS 0x0e
174
175/* The top five bits written to EL3_CMD are a command, the lower
176 11 bits are the parameter, if applicable.
177 Note that 11 parameters bits was fine for ethernet, but the new chips
178 can handle FDDI length frames (~4500 octets) and now parameters count
179 32-bit 'Dwords' rather than octets. */
180
181enum corkscrew_cmd {
182 TotalReset = 0 << 11, SelectWindow = 1 << 11, StartCoax = 2 << 11,
183 RxDisable = 3 << 11, RxEnable = 4 << 11, RxReset = 5 << 11,
184 UpStall = 6 << 11, UpUnstall = (6 << 11) + 1, DownStall = (6 << 11) + 2,
185 DownUnstall = (6 << 11) + 3, RxDiscard = 8 << 11, TxEnable = 9 << 11,
186 TxDisable = 10 << 11, TxReset = 11 << 11, FakeIntr = 12 << 11,
187 AckIntr = 13 << 11, SetIntrEnb = 14 << 11, SetStatusEnb = 15 << 11,
188 SetRxFilter = 16 << 11, SetRxThreshold = 17 << 11,
189 SetTxThreshold = 18 << 11, SetTxStart = 19 << 11, StartDMAUp = 20 << 11,
190 StartDMADown = (20 << 11) + 1, StatsEnable = 21 << 11,
191 StatsDisable = 22 << 11, StopCoax = 23 << 11,
192};
193
194/* The SetRxFilter command accepts the following classes: */
195enum RxFilter {
196 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8
197};
198
199/* Bits in the general status register. */
200enum corkscrew_status {
201 IntLatch = 0x0001, AdapterFailure = 0x0002, TxComplete = 0x0004,
202 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
203 IntReq = 0x0040, StatsFull = 0x0080,
204 DMADone = 1 << 8, DownComplete = 1 << 9, UpComplete = 1 << 10,
205 DMAInProgress = 1 << 11, /* DMA controller is still busy. */
206 CmdInProgress = 1 << 12, /* EL3_CMD is still busy. */
207};
208
209/* Register window 1 offsets, the window used in normal operation.
210 On the Corkscrew this window is always mapped at offsets 0x10-0x1f. */
211enum Window1 {
212 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
213 RxStatus = 0x18, Timer = 0x1A, TxStatus = 0x1B,
214 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
215};
216enum Window0 {
217 Wn0IRQ = 0x08,
218#if defined(CORKSCREW)
219 Wn0EepromCmd = 0x200A, /* Corkscrew EEPROM command register. */
220 Wn0EepromData = 0x200C, /* Corkscrew EEPROM results register. */
221#else
222 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
223 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
224#endif
225};
226enum Win0_EEPROM_bits {
227 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
228 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
229 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
230};
231
232/* EEPROM locations. */
233enum eeprom_offset {
234 PhysAddr01 = 0, PhysAddr23 = 1, PhysAddr45 = 2, ModelID = 3,
235 EtherLink3ID = 7,
236};
237
238enum Window3 { /* Window 3: MAC/config bits. */
239 Wn3_Config = 0, Wn3_MAC_Ctrl = 6, Wn3_Options = 8,
240};
241enum wn3_config {
242 Ram_size = 7,
243 Ram_width = 8,
244 Ram_speed = 0x30,
245 Rom_size = 0xc0,
246 Ram_split_shift = 16,
247 Ram_split = 3 << Ram_split_shift,
248 Xcvr_shift = 20,
249 Xcvr = 7 << Xcvr_shift,
250 Autoselect = 0x1000000,
251};
252
253enum Window4 {
254 Wn4_NetDiag = 6, Wn4_Media = 10, /* Window 4: Xcvr/media bits. */
255};
256enum Win4_Media_bits {
257 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
258 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
259 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
260 Media_LnkBeat = 0x0800,
261};
262enum Window7 { /* Window 7: Bus Master control. */
263 Wn7_MasterAddr = 0, Wn7_MasterLen = 6, Wn7_MasterStatus = 12,
264};
265
266/* Boomerang-style bus master control registers. Note ISA aliases! */
267enum MasterCtrl {
268 PktStatus = 0x400, DownListPtr = 0x404, FragAddr = 0x408, FragLen =
269 0x40c,
270 TxFreeThreshold = 0x40f, UpPktStatus = 0x410, UpListPtr = 0x418,
271};
272
273/* The Rx and Tx descriptor lists.
274 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
275 alignment contraint on tx_ring[] and rx_ring[]. */
276struct boom_rx_desc {
277 u32 next;
278 s32 status;
279 u32 addr;
280 s32 length;
281};
282
283/* Values for the Rx status entry. */
284enum rx_desc_status {
285 RxDComplete = 0x00008000, RxDError = 0x4000,
286 /* See boomerang_rx() for actual error bits */
287};
288
289struct boom_tx_desc {
290 u32 next;
291 s32 status;
292 u32 addr;
293 s32 length;
294};
295
296struct corkscrew_private {
297 const char *product_name;
298 struct list_head list;
299 struct net_device *our_dev;
300 /* The Rx and Tx rings are here to keep them quad-word-aligned. */
301 struct boom_rx_desc rx_ring[RX_RING_SIZE];
302 struct boom_tx_desc tx_ring[TX_RING_SIZE];
303 /* The addresses of transmit- and receive-in-place skbuffs. */
304 struct sk_buff *rx_skbuff[RX_RING_SIZE];
305 struct sk_buff *tx_skbuff[TX_RING_SIZE];
306 unsigned int cur_rx, cur_tx; /* The next free ring entry */
307 unsigned int dirty_rx, dirty_tx;/* The ring entries to be free()ed. */
308 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
309 struct timer_list timer; /* Media selection timer. */
310 int capabilities ; /* Adapter capabilities word. */
311 int options; /* User-settable misc. driver options. */
312 int last_rx_packets; /* For media autoselection. */
313 unsigned int available_media:8, /* From Wn3_Options */
314 media_override:3, /* Passed-in media type. */
315 default_media:3, /* Read from the EEPROM. */
316 full_duplex:1, autoselect:1, bus_master:1, /* Vortex can only do a fragment bus-m. */
317 full_bus_master_tx:1, full_bus_master_rx:1, /* Boomerang */
318 tx_full:1;
319 spinlock_t lock;
320 struct device *dev;
321};
322
323/* The action to take with a media selection timer tick.
324 Note that we deviate from the 3Com order by checking 10base2 before AUI.
325 */
326enum xcvr_types {
327 XCVR_10baseT = 0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
328 XCVR_100baseFx, XCVR_MII = 6, XCVR_Default = 8,
329};
330
331static struct media_table {
332 char *name;
333 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
334 mask:8, /* The transceiver-present bit in Wn3_Config. */
335 next:8; /* The media type to try next. */
336 short wait; /* Time before we check media status. */
337} media_tbl[] = {
338 { "10baseT", Media_10TP, 0x08, XCVR_10base2, (14 * HZ) / 10 },
339 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1 * HZ) / 10},
340 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
341 { "10base2", 0, 0x10, XCVR_AUI, (1 * HZ) / 10},
342 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14 * HZ) / 10},
343 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14 * HZ) / 10},
344 { "MII", 0, 0x40, XCVR_10baseT, 3 * HZ},
345 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
346 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
347};
348
349#ifdef __ISAPNP__
350static struct isapnp_device_id corkscrew_isapnp_adapters[] = {
351 { ISAPNP_ANY_ID, ISAPNP_ANY_ID,
352 ISAPNP_VENDOR('T', 'C', 'M'), ISAPNP_FUNCTION(0x5051),
353 (long) "3Com Fast EtherLink ISA" },
354 { } /* terminate list */
355};
356
357MODULE_DEVICE_TABLE(isapnp, corkscrew_isapnp_adapters);
358
359static int nopnp;
360#endif /* __ISAPNP__ */
361
362static struct net_device *corkscrew_scan(int unit);
363static int corkscrew_setup(struct net_device *dev, int ioaddr,
364 struct pnp_dev *idev, int card_number);
365static int corkscrew_open(struct net_device *dev);
366static void corkscrew_timer(struct timer_list *t);
367static netdev_tx_t corkscrew_start_xmit(struct sk_buff *skb,
368 struct net_device *dev);
369static int corkscrew_rx(struct net_device *dev);
370static void corkscrew_timeout(struct net_device *dev, unsigned int txqueue);
371static int boomerang_rx(struct net_device *dev);
372static irqreturn_t corkscrew_interrupt(int irq, void *dev_id);
373static int corkscrew_close(struct net_device *dev);
374static void update_stats(int addr, struct net_device *dev);
375static struct net_device_stats *corkscrew_get_stats(struct net_device *dev);
376static void set_rx_mode(struct net_device *dev);
377static const struct ethtool_ops netdev_ethtool_ops;
378
379
380/*
381 Unfortunately maximizing the shared code between the integrated and
382 module version of the driver results in a complicated set of initialization
383 procedures.
384 init_module() -- modules / tc59x_init() -- built-in
385 The wrappers for corkscrew_scan()
386 corkscrew_scan() The common routine that scans for PCI and EISA cards
387 corkscrew_found_device() Allocate a device structure when we find a card.
388 Different versions exist for modules and built-in.
389 corkscrew_probe1() Fill in the device structure -- this is separated
390 so that the modules code can put it in dev->init.
391*/
392/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
393/* Note: this is the only limit on the number of cards supported!! */
394static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1, };
395
396#ifdef MODULE
397static int debug = -1;
398
399module_param(debug, int, 0);
400module_param_array(options, int, NULL, 0);
401module_param(rx_copybreak, int, 0);
402module_param(max_interrupt_work, int, 0);
403MODULE_PARM_DESC(debug, "3c515 debug level (0-6)");
404MODULE_PARM_DESC(options, "3c515: Bits 0-2: media type, bit 3: full duplex, bit 4: bus mastering");
405MODULE_PARM_DESC(rx_copybreak, "3c515 copy breakpoint for copy-only-tiny-frames");
406MODULE_PARM_DESC(max_interrupt_work, "3c515 maximum events handled per interrupt");
407
408/* A list of all installed Vortex devices, for removing the driver module. */
409/* we will need locking (and refcounting) if we ever use it for more */
410static LIST_HEAD(root_corkscrew_dev);
411
412static int corkscrew_init_module(void)
413{
414 int found = 0;
415 if (debug >= 0)
416 corkscrew_debug = debug;
417 while (corkscrew_scan(-1))
418 found++;
419 return found ? 0 : -ENODEV;
420}
421module_init(corkscrew_init_module);
422
423#else
424struct net_device *tc515_probe(int unit)
425{
426 struct net_device *dev = corkscrew_scan(unit);
427
428 if (!dev)
429 return ERR_PTR(-ENODEV);
430
431 return dev;
432}
433#endif /* not MODULE */
434
435static int check_device(unsigned ioaddr)
436{
437 int timer;
438
439 if (!request_region(ioaddr, CORKSCREW_TOTAL_SIZE, "3c515"))
440 return 0;
441 /* Check the resource configuration for a matching ioaddr. */
442 if ((inw(ioaddr + 0x2002) & 0x1f0) != (ioaddr & 0x1f0)) {
443 release_region(ioaddr, CORKSCREW_TOTAL_SIZE);
444 return 0;
445 }
446 /* Verify by reading the device ID from the EEPROM. */
447 outw(EEPROM_Read + 7, ioaddr + Wn0EepromCmd);
448 /* Pause for at least 162 us. for the read to take place. */
449 for (timer = 4; timer >= 0; timer--) {
450 udelay(162);
451 if ((inw(ioaddr + Wn0EepromCmd) & 0x0200) == 0)
452 break;
453 }
454 if (inw(ioaddr + Wn0EepromData) != 0x6d50) {
455 release_region(ioaddr, CORKSCREW_TOTAL_SIZE);
456 return 0;
457 }
458 return 1;
459}
460
461static void cleanup_card(struct net_device *dev)
462{
463 struct corkscrew_private *vp = netdev_priv(dev);
464 list_del_init(&vp->list);
465 if (dev->dma)
466 free_dma(dev->dma);
467 outw(TotalReset, dev->base_addr + EL3_CMD);
468 release_region(dev->base_addr, CORKSCREW_TOTAL_SIZE);
469 if (vp->dev)
470 pnp_device_detach(to_pnp_dev(vp->dev));
471}
472
473static struct net_device *corkscrew_scan(int unit)
474{
475 struct net_device *dev;
476 static int cards_found = 0;
477 static int ioaddr;
478 int err;
479#ifdef __ISAPNP__
480 short i;
481 static int pnp_cards;
482#endif
483
484 dev = alloc_etherdev(sizeof(struct corkscrew_private));
485 if (!dev)
486 return ERR_PTR(-ENOMEM);
487
488 if (unit >= 0) {
489 sprintf(dev->name, "eth%d", unit);
490 netdev_boot_setup_check(dev);
491 }
492
493#ifdef __ISAPNP__
494 if(nopnp == 1)
495 goto no_pnp;
496 for(i=0; corkscrew_isapnp_adapters[i].vendor != 0; i++) {
497 struct pnp_dev *idev = NULL;
498 int irq;
499 while((idev = pnp_find_dev(NULL,
500 corkscrew_isapnp_adapters[i].vendor,
501 corkscrew_isapnp_adapters[i].function,
502 idev))) {
503
504 if (pnp_device_attach(idev) < 0)
505 continue;
506 if (pnp_activate_dev(idev) < 0) {
507 pr_warn("pnp activate failed (out of resources?)\n");
508 pnp_device_detach(idev);
509 continue;
510 }
511 if (!pnp_port_valid(idev, 0) || !pnp_irq_valid(idev, 0)) {
512 pnp_device_detach(idev);
513 continue;
514 }
515 ioaddr = pnp_port_start(idev, 0);
516 irq = pnp_irq(idev, 0);
517 if (!check_device(ioaddr)) {
518 pnp_device_detach(idev);
519 continue;
520 }
521 if(corkscrew_debug)
522 pr_debug("ISAPNP reports %s at i/o 0x%x, irq %d\n",
523 (char*) corkscrew_isapnp_adapters[i].driver_data, ioaddr, irq);
524 pr_info("3c515 Resource configuration register %#4.4x, DCR %4.4x.\n",
525 inl(ioaddr + 0x2002), inw(ioaddr + 0x2000));
526 /* irq = inw(ioaddr + 0x2002) & 15; */ /* Use the irq from isapnp */
527 SET_NETDEV_DEV(dev, &idev->dev);
528 pnp_cards++;
529 err = corkscrew_setup(dev, ioaddr, idev, cards_found++);
530 if (!err)
531 return dev;
532 cleanup_card(dev);
533 }
534 }
535no_pnp:
536#endif /* __ISAPNP__ */
537
538 /* Check all locations on the ISA bus -- evil! */
539 for (ioaddr = 0x100; ioaddr < 0x400; ioaddr += 0x20) {
540 if (!check_device(ioaddr))
541 continue;
542
543 pr_info("3c515 Resource configuration register %#4.4x, DCR %4.4x.\n",
544 inl(ioaddr + 0x2002), inw(ioaddr + 0x2000));
545 err = corkscrew_setup(dev, ioaddr, NULL, cards_found++);
546 if (!err)
547 return dev;
548 cleanup_card(dev);
549 }
550 free_netdev(dev);
551 return NULL;
552}
553
554
555static const struct net_device_ops netdev_ops = {
556 .ndo_open = corkscrew_open,
557 .ndo_stop = corkscrew_close,
558 .ndo_start_xmit = corkscrew_start_xmit,
559 .ndo_tx_timeout = corkscrew_timeout,
560 .ndo_get_stats = corkscrew_get_stats,
561 .ndo_set_rx_mode = set_rx_mode,
562 .ndo_set_mac_address = eth_mac_addr,
563 .ndo_validate_addr = eth_validate_addr,
564};
565
566
567static int corkscrew_setup(struct net_device *dev, int ioaddr,
568 struct pnp_dev *idev, int card_number)
569{
570 struct corkscrew_private *vp = netdev_priv(dev);
571 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
572 __be16 addr[ETH_ALEN / 2];
573 int i;
574 int irq;
575
576#ifdef __ISAPNP__
577 if (idev) {
578 irq = pnp_irq(idev, 0);
579 vp->dev = &idev->dev;
580 } else {
581 irq = inw(ioaddr + 0x2002) & 15;
582 }
583#else
584 irq = inw(ioaddr + 0x2002) & 15;
585#endif
586
587 dev->base_addr = ioaddr;
588 dev->irq = irq;
589 dev->dma = inw(ioaddr + 0x2000) & 7;
590 vp->product_name = "3c515";
591 vp->options = dev->mem_start;
592 vp->our_dev = dev;
593
594 if (!vp->options) {
595 if (card_number >= MAX_UNITS)
596 vp->options = -1;
597 else
598 vp->options = options[card_number];
599 }
600
601 if (vp->options >= 0) {
602 vp->media_override = vp->options & 7;
603 if (vp->media_override == 2)
604 vp->media_override = 0;
605 vp->full_duplex = (vp->options & 8) ? 1 : 0;
606 vp->bus_master = (vp->options & 16) ? 1 : 0;
607 } else {
608 vp->media_override = 7;
609 vp->full_duplex = 0;
610 vp->bus_master = 0;
611 }
612#ifdef MODULE
613 list_add(&vp->list, &root_corkscrew_dev);
614#endif
615
616 pr_info("%s: 3Com %s at %#3x,", dev->name, vp->product_name, ioaddr);
617
618 spin_lock_init(&vp->lock);
619
620 timer_setup(&vp->timer, corkscrew_timer, 0);
621
622 /* Read the station address from the EEPROM. */
623 EL3WINDOW(0);
624 for (i = 0; i < 0x18; i++) {
625 int timer;
626 outw(EEPROM_Read + i, ioaddr + Wn0EepromCmd);
627 /* Pause for at least 162 us. for the read to take place. */
628 for (timer = 4; timer >= 0; timer--) {
629 udelay(162);
630 if ((inw(ioaddr + Wn0EepromCmd) & 0x0200) == 0)
631 break;
632 }
633 eeprom[i] = inw(ioaddr + Wn0EepromData);
634 checksum ^= eeprom[i];
635 if (i < 3)
636 addr[i] = htons(eeprom[i]);
637 }
638 eth_hw_addr_set(dev, (u8 *)addr);
639 checksum = (checksum ^ (checksum >> 8)) & 0xff;
640 if (checksum != 0x00)
641 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
642 pr_cont(" %pM", dev->dev_addr);
643 if (eeprom[16] == 0x11c7) { /* Corkscrew */
644 if (request_dma(dev->dma, "3c515")) {
645 pr_cont(", DMA %d allocation failed", dev->dma);
646 dev->dma = 0;
647 } else
648 pr_cont(", DMA %d", dev->dma);
649 }
650 pr_cont(", IRQ %d\n", dev->irq);
651 /* Tell them about an invalid IRQ. */
652 if (corkscrew_debug && (dev->irq <= 0 || dev->irq > 15))
653 pr_warn(" *** Warning: this IRQ is unlikely to work! ***\n");
654
655 {
656 static const char * const ram_split[] = {
657 "5:3", "3:1", "1:1", "3:5"
658 };
659 __u32 config;
660 EL3WINDOW(3);
661 vp->available_media = inw(ioaddr + Wn3_Options);
662 config = inl(ioaddr + Wn3_Config);
663 if (corkscrew_debug > 1)
664 pr_info(" Internal config register is %4.4x, transceivers %#x.\n",
665 config, inw(ioaddr + Wn3_Options));
666 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
667 8 << config & Ram_size,
668 config & Ram_width ? "word" : "byte",
669 ram_split[(config & Ram_split) >> Ram_split_shift],
670 config & Autoselect ? "autoselect/" : "",
671 media_tbl[(config & Xcvr) >> Xcvr_shift].name);
672 vp->default_media = (config & Xcvr) >> Xcvr_shift;
673 vp->autoselect = config & Autoselect ? 1 : 0;
674 dev->if_port = vp->default_media;
675 }
676 if (vp->media_override != 7) {
677 pr_info(" Media override to transceiver type %d (%s).\n",
678 vp->media_override,
679 media_tbl[vp->media_override].name);
680 dev->if_port = vp->media_override;
681 }
682
683 vp->capabilities = eeprom[16];
684 vp->full_bus_master_tx = (vp->capabilities & 0x20) ? 1 : 0;
685 /* Rx is broken at 10mbps, so we always disable it. */
686 /* vp->full_bus_master_rx = 0; */
687 vp->full_bus_master_rx = (vp->capabilities & 0x20) ? 1 : 0;
688
689 /* The 3c51x-specific entries in the device structure. */
690 dev->netdev_ops = &netdev_ops;
691 dev->watchdog_timeo = (400 * HZ) / 1000;
692 dev->ethtool_ops = &netdev_ethtool_ops;
693
694 return register_netdev(dev);
695}
696
697
698static int corkscrew_open(struct net_device *dev)
699{
700 int ioaddr = dev->base_addr;
701 struct corkscrew_private *vp = netdev_priv(dev);
702 bool armtimer = false;
703 __u32 config;
704 int i;
705
706 /* Before initializing select the active media port. */
707 EL3WINDOW(3);
708 if (vp->full_duplex)
709 outb(0x20, ioaddr + Wn3_MAC_Ctrl); /* Set the full-duplex bit. */
710 config = inl(ioaddr + Wn3_Config);
711
712 if (vp->media_override != 7) {
713 if (corkscrew_debug > 1)
714 pr_info("%s: Media override to transceiver %d (%s).\n",
715 dev->name, vp->media_override,
716 media_tbl[vp->media_override].name);
717 dev->if_port = vp->media_override;
718 } else if (vp->autoselect) {
719 /* Find first available media type, starting with 100baseTx. */
720 dev->if_port = 4;
721 while (!(vp->available_media & media_tbl[dev->if_port].mask))
722 dev->if_port = media_tbl[dev->if_port].next;
723
724 if (corkscrew_debug > 1)
725 pr_debug("%s: Initial media type %s.\n",
726 dev->name, media_tbl[dev->if_port].name);
727 armtimer = true;
728 } else
729 dev->if_port = vp->default_media;
730
731 config = (config & ~Xcvr) | (dev->if_port << Xcvr_shift);
732 outl(config, ioaddr + Wn3_Config);
733
734 if (corkscrew_debug > 1) {
735 pr_debug("%s: corkscrew_open() InternalConfig %8.8x.\n",
736 dev->name, config);
737 }
738
739 outw(TxReset, ioaddr + EL3_CMD);
740 for (i = 20; i >= 0; i--)
741 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
742 break;
743
744 outw(RxReset, ioaddr + EL3_CMD);
745 /* Wait a few ticks for the RxReset command to complete. */
746 for (i = 20; i >= 0; i--)
747 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
748 break;
749
750 outw(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
751
752 /* Use the now-standard shared IRQ implementation. */
753 if (vp->capabilities == 0x11c7) {
754 /* Corkscrew: Cannot share ISA resources. */
755 if (dev->irq == 0 ||
756 dev->dma == 0 ||
757 request_irq(dev->irq, corkscrew_interrupt, 0,
758 vp->product_name, dev))
759 return -EAGAIN;
760 enable_dma(dev->dma);
761 set_dma_mode(dev->dma, DMA_MODE_CASCADE);
762 } else if (request_irq(dev->irq, corkscrew_interrupt, IRQF_SHARED,
763 vp->product_name, dev)) {
764 return -EAGAIN;
765 }
766
767 if (armtimer)
768 mod_timer(&vp->timer, jiffies + media_tbl[dev->if_port].wait);
769
770 if (corkscrew_debug > 1) {
771 EL3WINDOW(4);
772 pr_debug("%s: corkscrew_open() irq %d media status %4.4x.\n",
773 dev->name, dev->irq, inw(ioaddr + Wn4_Media));
774 }
775
776 /* Set the station address and mask in window 2 each time opened. */
777 EL3WINDOW(2);
778 for (i = 0; i < 6; i++)
779 outb(dev->dev_addr[i], ioaddr + i);
780 for (; i < 12; i += 2)
781 outw(0, ioaddr + i);
782
783 if (dev->if_port == 3)
784 /* Start the thinnet transceiver. We should really wait 50ms... */
785 outw(StartCoax, ioaddr + EL3_CMD);
786 EL3WINDOW(4);
787 outw((inw(ioaddr + Wn4_Media) & ~(Media_10TP | Media_SQE)) |
788 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
789
790 /* Switch to the stats window, and clear all stats by reading. */
791 outw(StatsDisable, ioaddr + EL3_CMD);
792 EL3WINDOW(6);
793 for (i = 0; i < 10; i++)
794 inb(ioaddr + i);
795 inw(ioaddr + 10);
796 inw(ioaddr + 12);
797 /* New: On the Vortex we must also clear the BadSSD counter. */
798 EL3WINDOW(4);
799 inb(ioaddr + 12);
800 /* ..and on the Boomerang we enable the extra statistics bits. */
801 outw(0x0040, ioaddr + Wn4_NetDiag);
802
803 /* Switch to register set 7 for normal use. */
804 EL3WINDOW(7);
805
806 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
807 vp->cur_rx = vp->dirty_rx = 0;
808 if (corkscrew_debug > 2)
809 pr_debug("%s: Filling in the Rx ring.\n", dev->name);
810 for (i = 0; i < RX_RING_SIZE; i++) {
811 struct sk_buff *skb;
812 if (i < (RX_RING_SIZE - 1))
813 vp->rx_ring[i].next =
814 isa_virt_to_bus(&vp->rx_ring[i + 1]);
815 else
816 vp->rx_ring[i].next = 0;
817 vp->rx_ring[i].status = 0; /* Clear complete bit. */
818 vp->rx_ring[i].length = PKT_BUF_SZ | 0x80000000;
819 skb = netdev_alloc_skb(dev, PKT_BUF_SZ);
820 vp->rx_skbuff[i] = skb;
821 if (skb == NULL)
822 break; /* Bad news! */
823 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
824 vp->rx_ring[i].addr = isa_virt_to_bus(skb->data);
825 }
826 if (i != 0)
827 vp->rx_ring[i - 1].next =
828 isa_virt_to_bus(&vp->rx_ring[0]); /* Wrap the ring. */
829 outl(isa_virt_to_bus(&vp->rx_ring[0]), ioaddr + UpListPtr);
830 }
831 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
832 vp->cur_tx = vp->dirty_tx = 0;
833 outb(PKT_BUF_SZ >> 8, ioaddr + TxFreeThreshold); /* Room for a packet. */
834 /* Clear the Tx ring. */
835 for (i = 0; i < TX_RING_SIZE; i++)
836 vp->tx_skbuff[i] = NULL;
837 outl(0, ioaddr + DownListPtr);
838 }
839 /* Set receiver mode: presumably accept b-case and phys addr only. */
840 set_rx_mode(dev);
841 outw(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
842
843 netif_start_queue(dev);
844
845 outw(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
846 outw(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
847 /* Allow status bits to be seen. */
848 outw(SetStatusEnb | AdapterFailure | IntReq | StatsFull |
849 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
850 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
851 (vp->bus_master ? DMADone : 0), ioaddr + EL3_CMD);
852 /* Ack all pending events, and set active indicator mask. */
853 outw(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
854 ioaddr + EL3_CMD);
855 outw(SetIntrEnb | IntLatch | TxAvailable | RxComplete | StatsFull
856 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete,
857 ioaddr + EL3_CMD);
858
859 return 0;
860}
861
862static void corkscrew_timer(struct timer_list *t)
863{
864#ifdef AUTOMEDIA
865 struct corkscrew_private *vp = from_timer(vp, t, timer);
866 struct net_device *dev = vp->our_dev;
867 int ioaddr = dev->base_addr;
868 unsigned long flags;
869 int ok = 0;
870
871 if (corkscrew_debug > 1)
872 pr_debug("%s: Media selection timer tick happened, %s.\n",
873 dev->name, media_tbl[dev->if_port].name);
874
875 spin_lock_irqsave(&vp->lock, flags);
876
877 {
878 int old_window = inw(ioaddr + EL3_CMD) >> 13;
879 int media_status;
880 EL3WINDOW(4);
881 media_status = inw(ioaddr + Wn4_Media);
882 switch (dev->if_port) {
883 case 0:
884 case 4:
885 case 5: /* 10baseT, 100baseTX, 100baseFX */
886 if (media_status & Media_LnkBeat) {
887 ok = 1;
888 if (corkscrew_debug > 1)
889 pr_debug("%s: Media %s has link beat, %x.\n",
890 dev->name,
891 media_tbl[dev->if_port].name,
892 media_status);
893 } else if (corkscrew_debug > 1)
894 pr_debug("%s: Media %s is has no link beat, %x.\n",
895 dev->name,
896 media_tbl[dev->if_port].name,
897 media_status);
898
899 break;
900 default: /* Other media types handled by Tx timeouts. */
901 if (corkscrew_debug > 1)
902 pr_debug("%s: Media %s is has no indication, %x.\n",
903 dev->name,
904 media_tbl[dev->if_port].name,
905 media_status);
906 ok = 1;
907 }
908 if (!ok) {
909 __u32 config;
910
911 do {
912 dev->if_port =
913 media_tbl[dev->if_port].next;
914 }
915 while (!(vp->available_media & media_tbl[dev->if_port].mask));
916
917 if (dev->if_port == 8) { /* Go back to default. */
918 dev->if_port = vp->default_media;
919 if (corkscrew_debug > 1)
920 pr_debug("%s: Media selection failing, using default %s port.\n",
921 dev->name,
922 media_tbl[dev->if_port].name);
923 } else {
924 if (corkscrew_debug > 1)
925 pr_debug("%s: Media selection failed, now trying %s port.\n",
926 dev->name,
927 media_tbl[dev->if_port].name);
928 vp->timer.expires = jiffies + media_tbl[dev->if_port].wait;
929 add_timer(&vp->timer);
930 }
931 outw((media_status & ~(Media_10TP | Media_SQE)) |
932 media_tbl[dev->if_port].media_bits,
933 ioaddr + Wn4_Media);
934
935 EL3WINDOW(3);
936 config = inl(ioaddr + Wn3_Config);
937 config = (config & ~Xcvr) | (dev->if_port << Xcvr_shift);
938 outl(config, ioaddr + Wn3_Config);
939
940 outw(dev->if_port == 3 ? StartCoax : StopCoax,
941 ioaddr + EL3_CMD);
942 }
943 EL3WINDOW(old_window);
944 }
945
946 spin_unlock_irqrestore(&vp->lock, flags);
947 if (corkscrew_debug > 1)
948 pr_debug("%s: Media selection timer finished, %s.\n",
949 dev->name, media_tbl[dev->if_port].name);
950
951#endif /* AUTOMEDIA */
952}
953
954static void corkscrew_timeout(struct net_device *dev, unsigned int txqueue)
955{
956 int i;
957 struct corkscrew_private *vp = netdev_priv(dev);
958 int ioaddr = dev->base_addr;
959
960 pr_warn("%s: transmit timed out, tx_status %2.2x status %4.4x\n",
961 dev->name, inb(ioaddr + TxStatus),
962 inw(ioaddr + EL3_STATUS));
963 /* Slight code bloat to be user friendly. */
964 if ((inb(ioaddr + TxStatus) & 0x88) == 0x88)
965 pr_warn("%s: Transmitter encountered 16 collisions -- network cable problem?\n",
966 dev->name);
967#ifndef final_version
968 pr_debug(" Flags; bus-master %d, full %d; dirty %d current %d.\n",
969 vp->full_bus_master_tx, vp->tx_full, vp->dirty_tx,
970 vp->cur_tx);
971 pr_debug(" Down list %8.8x vs. %p.\n", inl(ioaddr + DownListPtr),
972 &vp->tx_ring[0]);
973 for (i = 0; i < TX_RING_SIZE; i++) {
974 pr_debug(" %d: %p length %8.8x status %8.8x\n", i,
975 &vp->tx_ring[i],
976 vp->tx_ring[i].length, vp->tx_ring[i].status);
977 }
978#endif
979 /* Issue TX_RESET and TX_START commands. */
980 outw(TxReset, ioaddr + EL3_CMD);
981 for (i = 20; i >= 0; i--)
982 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
983 break;
984 outw(TxEnable, ioaddr + EL3_CMD);
985 netif_trans_update(dev); /* prevent tx timeout */
986 dev->stats.tx_errors++;
987 dev->stats.tx_dropped++;
988 netif_wake_queue(dev);
989}
990
991static netdev_tx_t corkscrew_start_xmit(struct sk_buff *skb,
992 struct net_device *dev)
993{
994 struct corkscrew_private *vp = netdev_priv(dev);
995 int ioaddr = dev->base_addr;
996
997 /* Block a timer-based transmit from overlapping. */
998
999 netif_stop_queue(dev);
1000
1001 if (vp->full_bus_master_tx) { /* BOOMERANG bus-master */
1002 /* Calculate the next Tx descriptor entry. */
1003 int entry = vp->cur_tx % TX_RING_SIZE;
1004 struct boom_tx_desc *prev_entry;
1005 unsigned long flags;
1006 int i;
1007
1008 if (vp->tx_full) /* No room to transmit with */
1009 return NETDEV_TX_BUSY;
1010 if (vp->cur_tx != 0)
1011 prev_entry = &vp->tx_ring[(vp->cur_tx - 1) % TX_RING_SIZE];
1012 else
1013 prev_entry = NULL;
1014 if (corkscrew_debug > 3)
1015 pr_debug("%s: Trying to send a packet, Tx index %d.\n",
1016 dev->name, vp->cur_tx);
1017 /* vp->tx_full = 1; */
1018 vp->tx_skbuff[entry] = skb;
1019 vp->tx_ring[entry].next = 0;
1020 vp->tx_ring[entry].addr = isa_virt_to_bus(skb->data);
1021 vp->tx_ring[entry].length = skb->len | 0x80000000;
1022 vp->tx_ring[entry].status = skb->len | 0x80000000;
1023
1024 spin_lock_irqsave(&vp->lock, flags);
1025 outw(DownStall, ioaddr + EL3_CMD);
1026 /* Wait for the stall to complete. */
1027 for (i = 20; i >= 0; i--)
1028 if ((inw(ioaddr + EL3_STATUS) & CmdInProgress) == 0)
1029 break;
1030 if (prev_entry)
1031 prev_entry->next = isa_virt_to_bus(&vp->tx_ring[entry]);
1032 if (inl(ioaddr + DownListPtr) == 0) {
1033 outl(isa_virt_to_bus(&vp->tx_ring[entry]),
1034 ioaddr + DownListPtr);
1035 queued_packet++;
1036 }
1037 outw(DownUnstall, ioaddr + EL3_CMD);
1038 spin_unlock_irqrestore(&vp->lock, flags);
1039
1040 vp->cur_tx++;
1041 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1)
1042 vp->tx_full = 1;
1043 else { /* Clear previous interrupt enable. */
1044 if (prev_entry)
1045 prev_entry->status &= ~0x80000000;
1046 netif_wake_queue(dev);
1047 }
1048 return NETDEV_TX_OK;
1049 }
1050 /* Put out the doubleword header... */
1051 outl(skb->len, ioaddr + TX_FIFO);
1052 dev->stats.tx_bytes += skb->len;
1053#ifdef VORTEX_BUS_MASTER
1054 if (vp->bus_master) {
1055 /* Set the bus-master controller to transfer the packet. */
1056 outl(isa_virt_to_bus(skb->data), ioaddr + Wn7_MasterAddr);
1057 outw((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
1058 vp->tx_skb = skb;
1059 outw(StartDMADown, ioaddr + EL3_CMD);
1060 /* queue will be woken at the DMADone interrupt. */
1061 } else {
1062 /* ... and the packet rounded to a doubleword. */
1063 outsl(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
1064 dev_kfree_skb(skb);
1065 if (inw(ioaddr + TxFree) > 1536) {
1066 netif_wake_queue(dev);
1067 } else
1068 /* Interrupt us when the FIFO has room for max-sized packet. */
1069 outw(SetTxThreshold + (1536 >> 2),
1070 ioaddr + EL3_CMD);
1071 }
1072#else
1073 /* ... and the packet rounded to a doubleword. */
1074 outsl(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
1075 dev_kfree_skb(skb);
1076 if (inw(ioaddr + TxFree) > 1536) {
1077 netif_wake_queue(dev);
1078 } else
1079 /* Interrupt us when the FIFO has room for max-sized packet. */
1080 outw(SetTxThreshold + (1536 >> 2), ioaddr + EL3_CMD);
1081#endif /* bus master */
1082
1083
1084 /* Clear the Tx status stack. */
1085 {
1086 short tx_status;
1087 int i = 4;
1088
1089 while (--i > 0 && (tx_status = inb(ioaddr + TxStatus)) > 0) {
1090 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
1091 if (corkscrew_debug > 2)
1092 pr_debug("%s: Tx error, status %2.2x.\n",
1093 dev->name, tx_status);
1094 if (tx_status & 0x04)
1095 dev->stats.tx_fifo_errors++;
1096 if (tx_status & 0x38)
1097 dev->stats.tx_aborted_errors++;
1098 if (tx_status & 0x30) {
1099 int j;
1100 outw(TxReset, ioaddr + EL3_CMD);
1101 for (j = 20; j >= 0; j--)
1102 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
1103 break;
1104 }
1105 outw(TxEnable, ioaddr + EL3_CMD);
1106 }
1107 outb(0x00, ioaddr + TxStatus); /* Pop the status stack. */
1108 }
1109 }
1110 return NETDEV_TX_OK;
1111}
1112
1113/* The interrupt handler does all of the Rx thread work and cleans up
1114 after the Tx thread. */
1115
1116static irqreturn_t corkscrew_interrupt(int irq, void *dev_id)
1117{
1118 /* Use the now-standard shared IRQ implementation. */
1119 struct net_device *dev = dev_id;
1120 struct corkscrew_private *lp = netdev_priv(dev);
1121 int ioaddr, status;
1122 int latency;
1123 int i = max_interrupt_work;
1124
1125 ioaddr = dev->base_addr;
1126 latency = inb(ioaddr + Timer);
1127
1128 spin_lock(&lp->lock);
1129
1130 status = inw(ioaddr + EL3_STATUS);
1131
1132 if (corkscrew_debug > 4)
1133 pr_debug("%s: interrupt, status %4.4x, timer %d.\n",
1134 dev->name, status, latency);
1135 if ((status & 0xE000) != 0xE000) {
1136 static int donedidthis;
1137 /* Some interrupt controllers store a bogus interrupt from boot-time.
1138 Ignore a single early interrupt, but don't hang the machine for
1139 other interrupt problems. */
1140 if (donedidthis++ > 100) {
1141 pr_err("%s: Bogus interrupt, bailing. Status %4.4x, start=%d.\n",
1142 dev->name, status, netif_running(dev));
1143 free_irq(dev->irq, dev);
1144 dev->irq = -1;
1145 }
1146 }
1147
1148 do {
1149 if (corkscrew_debug > 5)
1150 pr_debug("%s: In interrupt loop, status %4.4x.\n",
1151 dev->name, status);
1152 if (status & RxComplete)
1153 corkscrew_rx(dev);
1154
1155 if (status & TxAvailable) {
1156 if (corkscrew_debug > 5)
1157 pr_debug(" TX room bit was handled.\n");
1158 /* There's room in the FIFO for a full-sized packet. */
1159 outw(AckIntr | TxAvailable, ioaddr + EL3_CMD);
1160 netif_wake_queue(dev);
1161 }
1162 if (status & DownComplete) {
1163 unsigned int dirty_tx = lp->dirty_tx;
1164
1165 while (lp->cur_tx - dirty_tx > 0) {
1166 int entry = dirty_tx % TX_RING_SIZE;
1167 if (inl(ioaddr + DownListPtr) == isa_virt_to_bus(&lp->tx_ring[entry]))
1168 break; /* It still hasn't been processed. */
1169 if (lp->tx_skbuff[entry]) {
1170 dev_consume_skb_irq(lp->tx_skbuff[entry]);
1171 lp->tx_skbuff[entry] = NULL;
1172 }
1173 dirty_tx++;
1174 }
1175 lp->dirty_tx = dirty_tx;
1176 outw(AckIntr | DownComplete, ioaddr + EL3_CMD);
1177 if (lp->tx_full && (lp->cur_tx - dirty_tx <= TX_RING_SIZE - 1)) {
1178 lp->tx_full = 0;
1179 netif_wake_queue(dev);
1180 }
1181 }
1182#ifdef VORTEX_BUS_MASTER
1183 if (status & DMADone) {
1184 outw(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
1185 dev_consume_skb_irq(lp->tx_skb); /* Release the transferred buffer */
1186 netif_wake_queue(dev);
1187 }
1188#endif
1189 if (status & UpComplete) {
1190 boomerang_rx(dev);
1191 outw(AckIntr | UpComplete, ioaddr + EL3_CMD);
1192 }
1193 if (status & (AdapterFailure | RxEarly | StatsFull)) {
1194 /* Handle all uncommon interrupts at once. */
1195 if (status & RxEarly) { /* Rx early is unused. */
1196 corkscrew_rx(dev);
1197 outw(AckIntr | RxEarly, ioaddr + EL3_CMD);
1198 }
1199 if (status & StatsFull) { /* Empty statistics. */
1200 static int DoneDidThat;
1201 if (corkscrew_debug > 4)
1202 pr_debug("%s: Updating stats.\n", dev->name);
1203 update_stats(ioaddr, dev);
1204 /* DEBUG HACK: Disable statistics as an interrupt source. */
1205 /* This occurs when we have the wrong media type! */
1206 if (DoneDidThat == 0 && inw(ioaddr + EL3_STATUS) & StatsFull) {
1207 int win, reg;
1208 pr_notice("%s: Updating stats failed, disabling stats as an interrupt source.\n",
1209 dev->name);
1210 for (win = 0; win < 8; win++) {
1211 EL3WINDOW(win);
1212 pr_notice("Vortex window %d:", win);
1213 for (reg = 0; reg < 16; reg++)
1214 pr_cont(" %2.2x", inb(ioaddr + reg));
1215 pr_cont("\n");
1216 }
1217 EL3WINDOW(7);
1218 outw(SetIntrEnb | TxAvailable |
1219 RxComplete | AdapterFailure |
1220 UpComplete | DownComplete |
1221 TxComplete, ioaddr + EL3_CMD);
1222 DoneDidThat++;
1223 }
1224 }
1225 if (status & AdapterFailure) {
1226 /* Adapter failure requires Rx reset and reinit. */
1227 outw(RxReset, ioaddr + EL3_CMD);
1228 /* Set the Rx filter to the current state. */
1229 set_rx_mode(dev);
1230 outw(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
1231 outw(AckIntr | AdapterFailure,
1232 ioaddr + EL3_CMD);
1233 }
1234 }
1235
1236 if (--i < 0) {
1237 pr_err("%s: Too much work in interrupt, status %4.4x. Disabling functions (%4.4x).\n",
1238 dev->name, status, SetStatusEnb | ((~status) & 0x7FE));
1239 /* Disable all pending interrupts. */
1240 outw(SetStatusEnb | ((~status) & 0x7FE), ioaddr + EL3_CMD);
1241 outw(AckIntr | 0x7FF, ioaddr + EL3_CMD);
1242 break;
1243 }
1244 /* Acknowledge the IRQ. */
1245 outw(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
1246
1247 } while ((status = inw(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
1248
1249 spin_unlock(&lp->lock);
1250
1251 if (corkscrew_debug > 4)
1252 pr_debug("%s: exiting interrupt, status %4.4x.\n", dev->name, status);
1253 return IRQ_HANDLED;
1254}
1255
1256static int corkscrew_rx(struct net_device *dev)
1257{
1258 int ioaddr = dev->base_addr;
1259 int i;
1260 short rx_status;
1261
1262 if (corkscrew_debug > 5)
1263 pr_debug(" In rx_packet(), status %4.4x, rx_status %4.4x.\n",
1264 inw(ioaddr + EL3_STATUS), inw(ioaddr + RxStatus));
1265 while ((rx_status = inw(ioaddr + RxStatus)) > 0) {
1266 if (rx_status & 0x4000) { /* Error, update stats. */
1267 unsigned char rx_error = inb(ioaddr + RxErrors);
1268 if (corkscrew_debug > 2)
1269 pr_debug(" Rx error: status %2.2x.\n",
1270 rx_error);
1271 dev->stats.rx_errors++;
1272 if (rx_error & 0x01)
1273 dev->stats.rx_over_errors++;
1274 if (rx_error & 0x02)
1275 dev->stats.rx_length_errors++;
1276 if (rx_error & 0x04)
1277 dev->stats.rx_frame_errors++;
1278 if (rx_error & 0x08)
1279 dev->stats.rx_crc_errors++;
1280 if (rx_error & 0x10)
1281 dev->stats.rx_length_errors++;
1282 } else {
1283 /* The packet length: up to 4.5K!. */
1284 short pkt_len = rx_status & 0x1fff;
1285 struct sk_buff *skb;
1286
1287 skb = netdev_alloc_skb(dev, pkt_len + 5 + 2);
1288 if (corkscrew_debug > 4)
1289 pr_debug("Receiving packet size %d status %4.4x.\n",
1290 pkt_len, rx_status);
1291 if (skb != NULL) {
1292 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1293 /* 'skb_put()' points to the start of sk_buff data area. */
1294 insl(ioaddr + RX_FIFO,
1295 skb_put(skb, pkt_len),
1296 (pkt_len + 3) >> 2);
1297 outw(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
1298 skb->protocol = eth_type_trans(skb, dev);
1299 netif_rx(skb);
1300 dev->stats.rx_packets++;
1301 dev->stats.rx_bytes += pkt_len;
1302 /* Wait a limited time to go to next packet. */
1303 for (i = 200; i >= 0; i--)
1304 if (! (inw(ioaddr + EL3_STATUS) & CmdInProgress))
1305 break;
1306 continue;
1307 } else if (corkscrew_debug)
1308 pr_debug("%s: Couldn't allocate a sk_buff of size %d.\n", dev->name, pkt_len);
1309 }
1310 outw(RxDiscard, ioaddr + EL3_CMD);
1311 dev->stats.rx_dropped++;
1312 /* Wait a limited time to skip this packet. */
1313 for (i = 200; i >= 0; i--)
1314 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
1315 break;
1316 }
1317 return 0;
1318}
1319
1320static int boomerang_rx(struct net_device *dev)
1321{
1322 struct corkscrew_private *vp = netdev_priv(dev);
1323 int entry = vp->cur_rx % RX_RING_SIZE;
1324 int ioaddr = dev->base_addr;
1325 int rx_status;
1326
1327 if (corkscrew_debug > 5)
1328 pr_debug(" In boomerang_rx(), status %4.4x, rx_status %4.4x.\n",
1329 inw(ioaddr + EL3_STATUS), inw(ioaddr + RxStatus));
1330 while ((rx_status = vp->rx_ring[entry].status) & RxDComplete) {
1331 if (rx_status & RxDError) { /* Error, update stats. */
1332 unsigned char rx_error = rx_status >> 16;
1333 if (corkscrew_debug > 2)
1334 pr_debug(" Rx error: status %2.2x.\n",
1335 rx_error);
1336 dev->stats.rx_errors++;
1337 if (rx_error & 0x01)
1338 dev->stats.rx_over_errors++;
1339 if (rx_error & 0x02)
1340 dev->stats.rx_length_errors++;
1341 if (rx_error & 0x04)
1342 dev->stats.rx_frame_errors++;
1343 if (rx_error & 0x08)
1344 dev->stats.rx_crc_errors++;
1345 if (rx_error & 0x10)
1346 dev->stats.rx_length_errors++;
1347 } else {
1348 /* The packet length: up to 4.5K!. */
1349 short pkt_len = rx_status & 0x1fff;
1350 struct sk_buff *skb;
1351
1352 dev->stats.rx_bytes += pkt_len;
1353 if (corkscrew_debug > 4)
1354 pr_debug("Receiving packet size %d status %4.4x.\n",
1355 pkt_len, rx_status);
1356
1357 /* Check if the packet is long enough to just accept without
1358 copying to a properly sized skbuff. */
1359 if (pkt_len < rx_copybreak &&
1360 (skb = netdev_alloc_skb(dev, pkt_len + 4)) != NULL) {
1361 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1362 /* 'skb_put()' points to the start of sk_buff data area. */
1363 skb_put_data(skb,
1364 isa_bus_to_virt(vp->rx_ring[entry].addr),
1365 pkt_len);
1366 rx_copy++;
1367 } else {
1368 void *temp;
1369 /* Pass up the skbuff already on the Rx ring. */
1370 skb = vp->rx_skbuff[entry];
1371 vp->rx_skbuff[entry] = NULL;
1372 temp = skb_put(skb, pkt_len);
1373 /* Remove this checking code for final release. */
1374 if (isa_bus_to_virt(vp->rx_ring[entry].addr) != temp)
1375 pr_warn("%s: Warning -- the skbuff addresses do not match in boomerang_rx: %p vs. %p / %p\n",
1376 dev->name,
1377 isa_bus_to_virt(vp->rx_ring[entry].addr),
1378 skb->head, temp);
1379 rx_nocopy++;
1380 }
1381 skb->protocol = eth_type_trans(skb, dev);
1382 netif_rx(skb);
1383 dev->stats.rx_packets++;
1384 }
1385 entry = (++vp->cur_rx) % RX_RING_SIZE;
1386 }
1387 /* Refill the Rx ring buffers. */
1388 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
1389 struct sk_buff *skb;
1390 entry = vp->dirty_rx % RX_RING_SIZE;
1391 if (vp->rx_skbuff[entry] == NULL) {
1392 skb = netdev_alloc_skb(dev, PKT_BUF_SZ);
1393 if (skb == NULL)
1394 break; /* Bad news! */
1395 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1396 vp->rx_ring[entry].addr = isa_virt_to_bus(skb->data);
1397 vp->rx_skbuff[entry] = skb;
1398 }
1399 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
1400 }
1401 return 0;
1402}
1403
1404static int corkscrew_close(struct net_device *dev)
1405{
1406 struct corkscrew_private *vp = netdev_priv(dev);
1407 int ioaddr = dev->base_addr;
1408 int i;
1409
1410 netif_stop_queue(dev);
1411
1412 if (corkscrew_debug > 1) {
1413 pr_debug("%s: corkscrew_close() status %4.4x, Tx status %2.2x.\n",
1414 dev->name, inw(ioaddr + EL3_STATUS),
1415 inb(ioaddr + TxStatus));
1416 pr_debug("%s: corkscrew close stats: rx_nocopy %d rx_copy %d tx_queued %d.\n",
1417 dev->name, rx_nocopy, rx_copy, queued_packet);
1418 }
1419
1420 del_timer_sync(&vp->timer);
1421
1422 /* Turn off statistics ASAP. We update lp->stats below. */
1423 outw(StatsDisable, ioaddr + EL3_CMD);
1424
1425 /* Disable the receiver and transmitter. */
1426 outw(RxDisable, ioaddr + EL3_CMD);
1427 outw(TxDisable, ioaddr + EL3_CMD);
1428
1429 if (dev->if_port == XCVR_10base2)
1430 /* Turn off thinnet power. Green! */
1431 outw(StopCoax, ioaddr + EL3_CMD);
1432
1433 free_irq(dev->irq, dev);
1434
1435 outw(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
1436
1437 update_stats(ioaddr, dev);
1438 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
1439 outl(0, ioaddr + UpListPtr);
1440 for (i = 0; i < RX_RING_SIZE; i++)
1441 if (vp->rx_skbuff[i]) {
1442 dev_kfree_skb(vp->rx_skbuff[i]);
1443 vp->rx_skbuff[i] = NULL;
1444 }
1445 }
1446 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
1447 outl(0, ioaddr + DownListPtr);
1448 for (i = 0; i < TX_RING_SIZE; i++)
1449 if (vp->tx_skbuff[i]) {
1450 dev_kfree_skb(vp->tx_skbuff[i]);
1451 vp->tx_skbuff[i] = NULL;
1452 }
1453 }
1454
1455 return 0;
1456}
1457
1458static struct net_device_stats *corkscrew_get_stats(struct net_device *dev)
1459{
1460 struct corkscrew_private *vp = netdev_priv(dev);
1461 unsigned long flags;
1462
1463 if (netif_running(dev)) {
1464 spin_lock_irqsave(&vp->lock, flags);
1465 update_stats(dev->base_addr, dev);
1466 spin_unlock_irqrestore(&vp->lock, flags);
1467 }
1468 return &dev->stats;
1469}
1470
1471/* Update statistics.
1472 Unlike with the EL3 we need not worry about interrupts changing
1473 the window setting from underneath us, but we must still guard
1474 against a race condition with a StatsUpdate interrupt updating the
1475 table. This is done by checking that the ASM (!) code generated uses
1476 atomic updates with '+='.
1477 */
1478static void update_stats(int ioaddr, struct net_device *dev)
1479{
1480 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
1481 /* Switch to the stats window, and read everything. */
1482 EL3WINDOW(6);
1483 dev->stats.tx_carrier_errors += inb(ioaddr + 0);
1484 dev->stats.tx_heartbeat_errors += inb(ioaddr + 1);
1485 /* Multiple collisions. */ inb(ioaddr + 2);
1486 dev->stats.collisions += inb(ioaddr + 3);
1487 dev->stats.tx_window_errors += inb(ioaddr + 4);
1488 dev->stats.rx_fifo_errors += inb(ioaddr + 5);
1489 dev->stats.tx_packets += inb(ioaddr + 6);
1490 dev->stats.tx_packets += (inb(ioaddr + 9) & 0x30) << 4;
1491 /* Rx packets */ inb(ioaddr + 7);
1492 /* Must read to clear */
1493 /* Tx deferrals */ inb(ioaddr + 8);
1494 /* Don't bother with register 9, an extension of registers 6&7.
1495 If we do use the 6&7 values the atomic update assumption above
1496 is invalid. */
1497 inw(ioaddr + 10); /* Total Rx and Tx octets. */
1498 inw(ioaddr + 12);
1499 /* New: On the Vortex we must also clear the BadSSD counter. */
1500 EL3WINDOW(4);
1501 inb(ioaddr + 12);
1502
1503 /* We change back to window 7 (not 1) with the Vortex. */
1504 EL3WINDOW(7);
1505}
1506
1507/* This new version of set_rx_mode() supports v1.4 kernels.
1508 The Vortex chip has no documented multicast filter, so the only
1509 multicast setting is to receive all multicast frames. At least
1510 the chip has a very clean way to set the mode, unlike many others. */
1511static void set_rx_mode(struct net_device *dev)
1512{
1513 int ioaddr = dev->base_addr;
1514 unsigned short new_mode;
1515
1516 if (dev->flags & IFF_PROMISC) {
1517 if (corkscrew_debug > 3)
1518 pr_debug("%s: Setting promiscuous mode.\n",
1519 dev->name);
1520 new_mode = SetRxFilter | RxStation | RxMulticast | RxBroadcast | RxProm;
1521 } else if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
1522 new_mode = SetRxFilter | RxStation | RxMulticast | RxBroadcast;
1523 } else
1524 new_mode = SetRxFilter | RxStation | RxBroadcast;
1525
1526 outw(new_mode, ioaddr + EL3_CMD);
1527}
1528
1529static void netdev_get_drvinfo(struct net_device *dev,
1530 struct ethtool_drvinfo *info)
1531{
1532 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1533 snprintf(info->bus_info, sizeof(info->bus_info), "ISA 0x%lx",
1534 dev->base_addr);
1535}
1536
1537static u32 netdev_get_msglevel(struct net_device *dev)
1538{
1539 return corkscrew_debug;
1540}
1541
1542static void netdev_set_msglevel(struct net_device *dev, u32 level)
1543{
1544 corkscrew_debug = level;
1545}
1546
1547static const struct ethtool_ops netdev_ethtool_ops = {
1548 .get_drvinfo = netdev_get_drvinfo,
1549 .get_msglevel = netdev_get_msglevel,
1550 .set_msglevel = netdev_set_msglevel,
1551};
1552
1553
1554#ifdef MODULE
1555void cleanup_module(void)
1556{
1557 while (!list_empty(&root_corkscrew_dev)) {
1558 struct net_device *dev;
1559 struct corkscrew_private *vp;
1560
1561 vp = list_entry(root_corkscrew_dev.next,
1562 struct corkscrew_private, list);
1563 dev = vp->our_dev;
1564 unregister_netdev(dev);
1565 cleanup_card(dev);
1566 free_netdev(dev);
1567 }
1568}
1569#endif /* MODULE */
1/*
2 Written 1997-1998 by Donald Becker.
3
4 This software may be used and distributed according to the terms
5 of the GNU General Public License, incorporated herein by reference.
6
7 This driver is for the 3Com ISA EtherLink XL "Corkscrew" 3c515 ethercard.
8
9 The author may be reached as becker@scyld.com, or C/O
10 Scyld Computing Corporation
11 410 Severn Ave., Suite 210
12 Annapolis MD 21403
13
14
15 2000/2/2- Added support for kernel-level ISAPnP
16 by Stephen Frost <sfrost@snowman.net> and Alessandro Zummo
17 Cleaned up for 2.3.x/softnet by Jeff Garzik and Alan Cox.
18
19 2001/11/17 - Added ethtool support (jgarzik)
20
21 2002/10/28 - Locking updates for 2.5 (alan@lxorguk.ukuu.org.uk)
22
23*/
24
25#define DRV_NAME "3c515"
26
27#define CORKSCREW 1
28
29/* "Knobs" that adjust features and parameters. */
30/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
31 Setting to > 1512 effectively disables this feature. */
32static int rx_copybreak = 200;
33
34/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
35static int max_interrupt_work = 20;
36
37/* Enable the automatic media selection code -- usually set. */
38#define AUTOMEDIA 1
39
40/* Allow the use of fragment bus master transfers instead of only
41 programmed-I/O for Vortex cards. Full-bus-master transfers are always
42 enabled by default on Boomerang cards. If VORTEX_BUS_MASTER is defined,
43 the feature may be turned on using 'options'. */
44#define VORTEX_BUS_MASTER
45
46/* A few values that may be tweaked. */
47/* Keep the ring sizes a power of two for efficiency. */
48#define TX_RING_SIZE 16
49#define RX_RING_SIZE 16
50#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer. */
51
52#include <linux/module.h>
53#include <linux/isapnp.h>
54#include <linux/kernel.h>
55#include <linux/netdevice.h>
56#include <linux/string.h>
57#include <linux/errno.h>
58#include <linux/in.h>
59#include <linux/ioport.h>
60#include <linux/skbuff.h>
61#include <linux/etherdevice.h>
62#include <linux/interrupt.h>
63#include <linux/timer.h>
64#include <linux/ethtool.h>
65#include <linux/bitops.h>
66#include <linux/uaccess.h>
67
68#include <net/Space.h>
69
70#include <asm/io.h>
71#include <asm/dma.h>
72
73#define NEW_MULTICAST
74#include <linux/delay.h>
75
76#define MAX_UNITS 8
77
78MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
79MODULE_DESCRIPTION("3Com 3c515 Corkscrew driver");
80MODULE_LICENSE("GPL");
81
82/* "Knobs" for adjusting internal parameters. */
83/* Put out somewhat more debugging messages. (0 - no msg, 1 minimal msgs). */
84#define DRIVER_DEBUG 1
85/* Some values here only for performance evaluation and path-coverage
86 debugging. */
87static int rx_nocopy, rx_copy, queued_packet;
88
89/* Number of times to check to see if the Tx FIFO has space, used in some
90 limited cases. */
91#define WAIT_TX_AVAIL 200
92
93/* Operational parameter that usually are not changed. */
94#define TX_TIMEOUT ((4*HZ)/10) /* Time in jiffies before concluding Tx hung */
95
96/* The size here is somewhat misleading: the Corkscrew also uses the ISA
97 aliased registers at <base>+0x400.
98 */
99#define CORKSCREW_TOTAL_SIZE 0x20
100
101#ifdef DRIVER_DEBUG
102static int corkscrew_debug = DRIVER_DEBUG;
103#else
104static int corkscrew_debug = 1;
105#endif
106
107#define CORKSCREW_ID 10
108
109/*
110 Theory of Operation
111
112I. Board Compatibility
113
114This device driver is designed for the 3Com 3c515 ISA Fast EtherLink XL,
1153Com's ISA bus adapter for Fast Ethernet. Due to the unique I/O port layout,
116it's not practical to integrate this driver with the other EtherLink drivers.
117
118II. Board-specific settings
119
120The Corkscrew has an EEPROM for configuration, but no special settings are
121needed for Linux.
122
123III. Driver operation
124
125The 3c515 series use an interface that's very similar to the 3c900 "Boomerang"
126PCI cards, with the bus master interface extensively modified to work with
127the ISA bus.
128
129The card is capable of full-bus-master transfers with separate
130lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
131DEC Tulip and Intel Speedo3.
132
133This driver uses a "RX_COPYBREAK" scheme rather than a fixed intermediate
134receive buffer. This scheme allocates full-sized skbuffs as receive
135buffers. The value RX_COPYBREAK is used as the copying breakpoint: it is
136chosen to trade-off the memory wasted by passing the full-sized skbuff to
137the queue layer for all frames vs. the copying cost of copying a frame to a
138correctly-sized skbuff.
139
140
141IIIC. Synchronization
142The driver runs as two independent, single-threaded flows of control. One
143is the send-packet routine, which enforces single-threaded use by the netif
144layer. The other thread is the interrupt handler, which is single
145threaded by the hardware and other software.
146
147IV. Notes
148
149Thanks to Terry Murphy of 3Com for providing documentation and a development
150board.
151
152The names "Vortex", "Boomerang" and "Corkscrew" are the internal 3Com
153project names. I use these names to eliminate confusion -- 3Com product
154numbers and names are very similar and often confused.
155
156The new chips support both ethernet (1.5K) and FDDI (4.5K) frame sizes!
157This driver only supports ethernet frames because of the recent MTU limit
158of 1.5K, but the changes to support 4.5K are minimal.
159*/
160
161/* Operational definitions.
162 These are not used by other compilation units and thus are not
163 exported in a ".h" file.
164
165 First the windows. There are eight register windows, with the command
166 and status registers available in each.
167 */
168#define EL3WINDOW(win_num) outw(SelectWindow + (win_num), ioaddr + EL3_CMD)
169#define EL3_CMD 0x0e
170#define EL3_STATUS 0x0e
171
172/* The top five bits written to EL3_CMD are a command, the lower
173 11 bits are the parameter, if applicable.
174 Note that 11 parameters bits was fine for ethernet, but the new chips
175 can handle FDDI length frames (~4500 octets) and now parameters count
176 32-bit 'Dwords' rather than octets. */
177
178enum corkscrew_cmd {
179 TotalReset = 0 << 11, SelectWindow = 1 << 11, StartCoax = 2 << 11,
180 RxDisable = 3 << 11, RxEnable = 4 << 11, RxReset = 5 << 11,
181 UpStall = 6 << 11, UpUnstall = (6 << 11) + 1, DownStall = (6 << 11) + 2,
182 DownUnstall = (6 << 11) + 3, RxDiscard = 8 << 11, TxEnable = 9 << 11,
183 TxDisable = 10 << 11, TxReset = 11 << 11, FakeIntr = 12 << 11,
184 AckIntr = 13 << 11, SetIntrEnb = 14 << 11, SetStatusEnb = 15 << 11,
185 SetRxFilter = 16 << 11, SetRxThreshold = 17 << 11,
186 SetTxThreshold = 18 << 11, SetTxStart = 19 << 11, StartDMAUp = 20 << 11,
187 StartDMADown = (20 << 11) + 1, StatsEnable = 21 << 11,
188 StatsDisable = 22 << 11, StopCoax = 23 << 11,
189};
190
191/* The SetRxFilter command accepts the following classes: */
192enum RxFilter {
193 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8
194};
195
196/* Bits in the general status register. */
197enum corkscrew_status {
198 IntLatch = 0x0001, AdapterFailure = 0x0002, TxComplete = 0x0004,
199 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
200 IntReq = 0x0040, StatsFull = 0x0080,
201 DMADone = 1 << 8, DownComplete = 1 << 9, UpComplete = 1 << 10,
202 DMAInProgress = 1 << 11, /* DMA controller is still busy. */
203 CmdInProgress = 1 << 12, /* EL3_CMD is still busy. */
204};
205
206/* Register window 1 offsets, the window used in normal operation.
207 On the Corkscrew this window is always mapped at offsets 0x10-0x1f. */
208enum Window1 {
209 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
210 RxStatus = 0x18, Timer = 0x1A, TxStatus = 0x1B,
211 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
212};
213enum Window0 {
214 Wn0IRQ = 0x08,
215#if defined(CORKSCREW)
216 Wn0EepromCmd = 0x200A, /* Corkscrew EEPROM command register. */
217 Wn0EepromData = 0x200C, /* Corkscrew EEPROM results register. */
218#else
219 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
220 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
221#endif
222};
223enum Win0_EEPROM_bits {
224 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
225 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
226 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
227};
228
229/* EEPROM locations. */
230enum eeprom_offset {
231 PhysAddr01 = 0, PhysAddr23 = 1, PhysAddr45 = 2, ModelID = 3,
232 EtherLink3ID = 7,
233};
234
235enum Window3 { /* Window 3: MAC/config bits. */
236 Wn3_Config = 0, Wn3_MAC_Ctrl = 6, Wn3_Options = 8,
237};
238enum wn3_config {
239 Ram_size = 7,
240 Ram_width = 8,
241 Ram_speed = 0x30,
242 Rom_size = 0xc0,
243 Ram_split_shift = 16,
244 Ram_split = 3 << Ram_split_shift,
245 Xcvr_shift = 20,
246 Xcvr = 7 << Xcvr_shift,
247 Autoselect = 0x1000000,
248};
249
250enum Window4 {
251 Wn4_NetDiag = 6, Wn4_Media = 10, /* Window 4: Xcvr/media bits. */
252};
253enum Win4_Media_bits {
254 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
255 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
256 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
257 Media_LnkBeat = 0x0800,
258};
259enum Window7 { /* Window 7: Bus Master control. */
260 Wn7_MasterAddr = 0, Wn7_MasterLen = 6, Wn7_MasterStatus = 12,
261};
262
263/* Boomerang-style bus master control registers. Note ISA aliases! */
264enum MasterCtrl {
265 PktStatus = 0x400, DownListPtr = 0x404, FragAddr = 0x408, FragLen =
266 0x40c,
267 TxFreeThreshold = 0x40f, UpPktStatus = 0x410, UpListPtr = 0x418,
268};
269
270/* The Rx and Tx descriptor lists.
271 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
272 alignment contraint on tx_ring[] and rx_ring[]. */
273struct boom_rx_desc {
274 u32 next;
275 s32 status;
276 u32 addr;
277 s32 length;
278};
279
280/* Values for the Rx status entry. */
281enum rx_desc_status {
282 RxDComplete = 0x00008000, RxDError = 0x4000,
283 /* See boomerang_rx() for actual error bits */
284};
285
286struct boom_tx_desc {
287 u32 next;
288 s32 status;
289 u32 addr;
290 s32 length;
291};
292
293struct corkscrew_private {
294 const char *product_name;
295 struct list_head list;
296 struct net_device *our_dev;
297 /* The Rx and Tx rings are here to keep them quad-word-aligned. */
298 struct boom_rx_desc rx_ring[RX_RING_SIZE];
299 struct boom_tx_desc tx_ring[TX_RING_SIZE];
300 /* The addresses of transmit- and receive-in-place skbuffs. */
301 struct sk_buff *rx_skbuff[RX_RING_SIZE];
302 struct sk_buff *tx_skbuff[TX_RING_SIZE];
303 unsigned int cur_rx, cur_tx; /* The next free ring entry */
304 unsigned int dirty_rx, dirty_tx;/* The ring entries to be free()ed. */
305 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
306 struct timer_list timer; /* Media selection timer. */
307 int capabilities ; /* Adapter capabilities word. */
308 int options; /* User-settable misc. driver options. */
309 int last_rx_packets; /* For media autoselection. */
310 unsigned int available_media:8, /* From Wn3_Options */
311 media_override:3, /* Passed-in media type. */
312 default_media:3, /* Read from the EEPROM. */
313 full_duplex:1, autoselect:1, bus_master:1, /* Vortex can only do a fragment bus-m. */
314 full_bus_master_tx:1, full_bus_master_rx:1, /* Boomerang */
315 tx_full:1;
316 spinlock_t lock;
317 struct device *dev;
318};
319
320/* The action to take with a media selection timer tick.
321 Note that we deviate from the 3Com order by checking 10base2 before AUI.
322 */
323enum xcvr_types {
324 XCVR_10baseT = 0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
325 XCVR_100baseFx, XCVR_MII = 6, XCVR_Default = 8,
326};
327
328static struct media_table {
329 char *name;
330 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
331 mask:8, /* The transceiver-present bit in Wn3_Config. */
332 next:8; /* The media type to try next. */
333 short wait; /* Time before we check media status. */
334} media_tbl[] = {
335 { "10baseT", Media_10TP, 0x08, XCVR_10base2, (14 * HZ) / 10 },
336 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1 * HZ) / 10},
337 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
338 { "10base2", 0, 0x10, XCVR_AUI, (1 * HZ) / 10},
339 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14 * HZ) / 10},
340 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14 * HZ) / 10},
341 { "MII", 0, 0x40, XCVR_10baseT, 3 * HZ},
342 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
343 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
344};
345
346#ifdef __ISAPNP__
347static struct isapnp_device_id corkscrew_isapnp_adapters[] = {
348 { ISAPNP_ANY_ID, ISAPNP_ANY_ID,
349 ISAPNP_VENDOR('T', 'C', 'M'), ISAPNP_FUNCTION(0x5051),
350 (long) "3Com Fast EtherLink ISA" },
351 { } /* terminate list */
352};
353
354MODULE_DEVICE_TABLE(isapnp, corkscrew_isapnp_adapters);
355
356static int nopnp;
357#endif /* __ISAPNP__ */
358
359static struct net_device *corkscrew_scan(int unit);
360static int corkscrew_setup(struct net_device *dev, int ioaddr,
361 struct pnp_dev *idev, int card_number);
362static int corkscrew_open(struct net_device *dev);
363static void corkscrew_timer(struct timer_list *t);
364static netdev_tx_t corkscrew_start_xmit(struct sk_buff *skb,
365 struct net_device *dev);
366static int corkscrew_rx(struct net_device *dev);
367static void corkscrew_timeout(struct net_device *dev, unsigned int txqueue);
368static int boomerang_rx(struct net_device *dev);
369static irqreturn_t corkscrew_interrupt(int irq, void *dev_id);
370static int corkscrew_close(struct net_device *dev);
371static void update_stats(int addr, struct net_device *dev);
372static struct net_device_stats *corkscrew_get_stats(struct net_device *dev);
373static void set_rx_mode(struct net_device *dev);
374static const struct ethtool_ops netdev_ethtool_ops;
375
376
377/*
378 Unfortunately maximizing the shared code between the integrated and
379 module version of the driver results in a complicated set of initialization
380 procedures.
381 init_module() -- modules / tc59x_init() -- built-in
382 The wrappers for corkscrew_scan()
383 corkscrew_scan() The common routine that scans for PCI and EISA cards
384 corkscrew_found_device() Allocate a device structure when we find a card.
385 Different versions exist for modules and built-in.
386 corkscrew_probe1() Fill in the device structure -- this is separated
387 so that the modules code can put it in dev->init.
388*/
389/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
390/* Note: this is the only limit on the number of cards supported!! */
391static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1, };
392
393#ifdef MODULE
394static int debug = -1;
395
396module_param(debug, int, 0);
397module_param_array(options, int, NULL, 0);
398module_param(rx_copybreak, int, 0);
399module_param(max_interrupt_work, int, 0);
400MODULE_PARM_DESC(debug, "3c515 debug level (0-6)");
401MODULE_PARM_DESC(options, "3c515: Bits 0-2: media type, bit 3: full duplex, bit 4: bus mastering");
402MODULE_PARM_DESC(rx_copybreak, "3c515 copy breakpoint for copy-only-tiny-frames");
403MODULE_PARM_DESC(max_interrupt_work, "3c515 maximum events handled per interrupt");
404
405/* A list of all installed Vortex devices, for removing the driver module. */
406/* we will need locking (and refcounting) if we ever use it for more */
407static LIST_HEAD(root_corkscrew_dev);
408
409static int corkscrew_init_module(void)
410{
411 int found = 0;
412 if (debug >= 0)
413 corkscrew_debug = debug;
414 while (corkscrew_scan(-1))
415 found++;
416 return found ? 0 : -ENODEV;
417}
418module_init(corkscrew_init_module);
419
420#else
421struct net_device *tc515_probe(int unit)
422{
423 struct net_device *dev = corkscrew_scan(unit);
424
425 if (!dev)
426 return ERR_PTR(-ENODEV);
427
428 return dev;
429}
430#endif /* not MODULE */
431
432static int check_device(unsigned ioaddr)
433{
434 int timer;
435
436 if (!request_region(ioaddr, CORKSCREW_TOTAL_SIZE, "3c515"))
437 return 0;
438 /* Check the resource configuration for a matching ioaddr. */
439 if ((inw(ioaddr + 0x2002) & 0x1f0) != (ioaddr & 0x1f0)) {
440 release_region(ioaddr, CORKSCREW_TOTAL_SIZE);
441 return 0;
442 }
443 /* Verify by reading the device ID from the EEPROM. */
444 outw(EEPROM_Read + 7, ioaddr + Wn0EepromCmd);
445 /* Pause for at least 162 us. for the read to take place. */
446 for (timer = 4; timer >= 0; timer--) {
447 udelay(162);
448 if ((inw(ioaddr + Wn0EepromCmd) & 0x0200) == 0)
449 break;
450 }
451 if (inw(ioaddr + Wn0EepromData) != 0x6d50) {
452 release_region(ioaddr, CORKSCREW_TOTAL_SIZE);
453 return 0;
454 }
455 return 1;
456}
457
458static void cleanup_card(struct net_device *dev)
459{
460 struct corkscrew_private *vp = netdev_priv(dev);
461 list_del_init(&vp->list);
462 if (dev->dma)
463 free_dma(dev->dma);
464 outw(TotalReset, dev->base_addr + EL3_CMD);
465 release_region(dev->base_addr, CORKSCREW_TOTAL_SIZE);
466 if (vp->dev)
467 pnp_device_detach(to_pnp_dev(vp->dev));
468}
469
470static struct net_device *corkscrew_scan(int unit)
471{
472 struct net_device *dev;
473 static int cards_found = 0;
474 static int ioaddr;
475 int err;
476#ifdef __ISAPNP__
477 short i;
478 static int pnp_cards;
479#endif
480
481 dev = alloc_etherdev(sizeof(struct corkscrew_private));
482 if (!dev)
483 return ERR_PTR(-ENOMEM);
484
485 if (unit >= 0) {
486 sprintf(dev->name, "eth%d", unit);
487 netdev_boot_setup_check(dev);
488 }
489
490#ifdef __ISAPNP__
491 if(nopnp == 1)
492 goto no_pnp;
493 for(i=0; corkscrew_isapnp_adapters[i].vendor != 0; i++) {
494 struct pnp_dev *idev = NULL;
495 int irq;
496 while((idev = pnp_find_dev(NULL,
497 corkscrew_isapnp_adapters[i].vendor,
498 corkscrew_isapnp_adapters[i].function,
499 idev))) {
500
501 if (pnp_device_attach(idev) < 0)
502 continue;
503 if (pnp_activate_dev(idev) < 0) {
504 pr_warn("pnp activate failed (out of resources?)\n");
505 pnp_device_detach(idev);
506 continue;
507 }
508 if (!pnp_port_valid(idev, 0) || !pnp_irq_valid(idev, 0)) {
509 pnp_device_detach(idev);
510 continue;
511 }
512 ioaddr = pnp_port_start(idev, 0);
513 irq = pnp_irq(idev, 0);
514 if (!check_device(ioaddr)) {
515 pnp_device_detach(idev);
516 continue;
517 }
518 if(corkscrew_debug)
519 pr_debug("ISAPNP reports %s at i/o 0x%x, irq %d\n",
520 (char*) corkscrew_isapnp_adapters[i].driver_data, ioaddr, irq);
521 pr_info("3c515 Resource configuration register %#4.4x, DCR %4.4x.\n",
522 inl(ioaddr + 0x2002), inw(ioaddr + 0x2000));
523 /* irq = inw(ioaddr + 0x2002) & 15; */ /* Use the irq from isapnp */
524 SET_NETDEV_DEV(dev, &idev->dev);
525 pnp_cards++;
526 err = corkscrew_setup(dev, ioaddr, idev, cards_found++);
527 if (!err)
528 return dev;
529 cleanup_card(dev);
530 }
531 }
532no_pnp:
533#endif /* __ISAPNP__ */
534
535 /* Check all locations on the ISA bus -- evil! */
536 for (ioaddr = 0x100; ioaddr < 0x400; ioaddr += 0x20) {
537 if (!check_device(ioaddr))
538 continue;
539
540 pr_info("3c515 Resource configuration register %#4.4x, DCR %4.4x.\n",
541 inl(ioaddr + 0x2002), inw(ioaddr + 0x2000));
542 err = corkscrew_setup(dev, ioaddr, NULL, cards_found++);
543 if (!err)
544 return dev;
545 cleanup_card(dev);
546 }
547 free_netdev(dev);
548 return NULL;
549}
550
551
552static const struct net_device_ops netdev_ops = {
553 .ndo_open = corkscrew_open,
554 .ndo_stop = corkscrew_close,
555 .ndo_start_xmit = corkscrew_start_xmit,
556 .ndo_tx_timeout = corkscrew_timeout,
557 .ndo_get_stats = corkscrew_get_stats,
558 .ndo_set_rx_mode = set_rx_mode,
559 .ndo_set_mac_address = eth_mac_addr,
560 .ndo_validate_addr = eth_validate_addr,
561};
562
563
564static int corkscrew_setup(struct net_device *dev, int ioaddr,
565 struct pnp_dev *idev, int card_number)
566{
567 struct corkscrew_private *vp = netdev_priv(dev);
568 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
569 __be16 addr[ETH_ALEN / 2];
570 int i;
571 int irq;
572
573#ifdef __ISAPNP__
574 if (idev) {
575 irq = pnp_irq(idev, 0);
576 vp->dev = &idev->dev;
577 } else {
578 irq = inw(ioaddr + 0x2002) & 15;
579 }
580#else
581 irq = inw(ioaddr + 0x2002) & 15;
582#endif
583
584 dev->base_addr = ioaddr;
585 dev->irq = irq;
586 dev->dma = inw(ioaddr + 0x2000) & 7;
587 vp->product_name = "3c515";
588 vp->options = dev->mem_start;
589 vp->our_dev = dev;
590
591 if (!vp->options) {
592 if (card_number >= MAX_UNITS)
593 vp->options = -1;
594 else
595 vp->options = options[card_number];
596 }
597
598 if (vp->options >= 0) {
599 vp->media_override = vp->options & 7;
600 if (vp->media_override == 2)
601 vp->media_override = 0;
602 vp->full_duplex = (vp->options & 8) ? 1 : 0;
603 vp->bus_master = (vp->options & 16) ? 1 : 0;
604 } else {
605 vp->media_override = 7;
606 vp->full_duplex = 0;
607 vp->bus_master = 0;
608 }
609#ifdef MODULE
610 list_add(&vp->list, &root_corkscrew_dev);
611#endif
612
613 pr_info("%s: 3Com %s at %#3x,", dev->name, vp->product_name, ioaddr);
614
615 spin_lock_init(&vp->lock);
616
617 timer_setup(&vp->timer, corkscrew_timer, 0);
618
619 /* Read the station address from the EEPROM. */
620 EL3WINDOW(0);
621 for (i = 0; i < 0x18; i++) {
622 int timer;
623 outw(EEPROM_Read + i, ioaddr + Wn0EepromCmd);
624 /* Pause for at least 162 us. for the read to take place. */
625 for (timer = 4; timer >= 0; timer--) {
626 udelay(162);
627 if ((inw(ioaddr + Wn0EepromCmd) & 0x0200) == 0)
628 break;
629 }
630 eeprom[i] = inw(ioaddr + Wn0EepromData);
631 checksum ^= eeprom[i];
632 if (i < 3)
633 addr[i] = htons(eeprom[i]);
634 }
635 eth_hw_addr_set(dev, (u8 *)addr);
636 checksum = (checksum ^ (checksum >> 8)) & 0xff;
637 if (checksum != 0x00)
638 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
639 pr_cont(" %pM", dev->dev_addr);
640 if (eeprom[16] == 0x11c7) { /* Corkscrew */
641 if (request_dma(dev->dma, "3c515")) {
642 pr_cont(", DMA %d allocation failed", dev->dma);
643 dev->dma = 0;
644 } else
645 pr_cont(", DMA %d", dev->dma);
646 }
647 pr_cont(", IRQ %d\n", dev->irq);
648 /* Tell them about an invalid IRQ. */
649 if (corkscrew_debug && (dev->irq <= 0 || dev->irq > 15))
650 pr_warn(" *** Warning: this IRQ is unlikely to work! ***\n");
651
652 {
653 static const char * const ram_split[] = {
654 "5:3", "3:1", "1:1", "3:5"
655 };
656 __u32 config;
657 EL3WINDOW(3);
658 vp->available_media = inw(ioaddr + Wn3_Options);
659 config = inl(ioaddr + Wn3_Config);
660 if (corkscrew_debug > 1)
661 pr_info(" Internal config register is %4.4x, transceivers %#x.\n",
662 config, inw(ioaddr + Wn3_Options));
663 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
664 8 << config & Ram_size,
665 config & Ram_width ? "word" : "byte",
666 ram_split[(config & Ram_split) >> Ram_split_shift],
667 config & Autoselect ? "autoselect/" : "",
668 media_tbl[(config & Xcvr) >> Xcvr_shift].name);
669 vp->default_media = (config & Xcvr) >> Xcvr_shift;
670 vp->autoselect = config & Autoselect ? 1 : 0;
671 dev->if_port = vp->default_media;
672 }
673 if (vp->media_override != 7) {
674 pr_info(" Media override to transceiver type %d (%s).\n",
675 vp->media_override,
676 media_tbl[vp->media_override].name);
677 dev->if_port = vp->media_override;
678 }
679
680 vp->capabilities = eeprom[16];
681 vp->full_bus_master_tx = (vp->capabilities & 0x20) ? 1 : 0;
682 /* Rx is broken at 10mbps, so we always disable it. */
683 /* vp->full_bus_master_rx = 0; */
684 vp->full_bus_master_rx = (vp->capabilities & 0x20) ? 1 : 0;
685
686 /* The 3c51x-specific entries in the device structure. */
687 dev->netdev_ops = &netdev_ops;
688 dev->watchdog_timeo = (400 * HZ) / 1000;
689 dev->ethtool_ops = &netdev_ethtool_ops;
690
691 return register_netdev(dev);
692}
693
694
695static int corkscrew_open(struct net_device *dev)
696{
697 int ioaddr = dev->base_addr;
698 struct corkscrew_private *vp = netdev_priv(dev);
699 bool armtimer = false;
700 __u32 config;
701 int i;
702
703 /* Before initializing select the active media port. */
704 EL3WINDOW(3);
705 if (vp->full_duplex)
706 outb(0x20, ioaddr + Wn3_MAC_Ctrl); /* Set the full-duplex bit. */
707 config = inl(ioaddr + Wn3_Config);
708
709 if (vp->media_override != 7) {
710 if (corkscrew_debug > 1)
711 pr_info("%s: Media override to transceiver %d (%s).\n",
712 dev->name, vp->media_override,
713 media_tbl[vp->media_override].name);
714 dev->if_port = vp->media_override;
715 } else if (vp->autoselect) {
716 /* Find first available media type, starting with 100baseTx. */
717 dev->if_port = 4;
718 while (!(vp->available_media & media_tbl[dev->if_port].mask))
719 dev->if_port = media_tbl[dev->if_port].next;
720
721 if (corkscrew_debug > 1)
722 pr_debug("%s: Initial media type %s.\n",
723 dev->name, media_tbl[dev->if_port].name);
724 armtimer = true;
725 } else
726 dev->if_port = vp->default_media;
727
728 config = (config & ~Xcvr) | (dev->if_port << Xcvr_shift);
729 outl(config, ioaddr + Wn3_Config);
730
731 if (corkscrew_debug > 1) {
732 pr_debug("%s: corkscrew_open() InternalConfig %8.8x.\n",
733 dev->name, config);
734 }
735
736 outw(TxReset, ioaddr + EL3_CMD);
737 for (i = 20; i >= 0; i--)
738 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
739 break;
740
741 outw(RxReset, ioaddr + EL3_CMD);
742 /* Wait a few ticks for the RxReset command to complete. */
743 for (i = 20; i >= 0; i--)
744 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
745 break;
746
747 outw(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
748
749 /* Use the now-standard shared IRQ implementation. */
750 if (vp->capabilities == 0x11c7) {
751 /* Corkscrew: Cannot share ISA resources. */
752 if (dev->irq == 0 ||
753 dev->dma == 0 ||
754 request_irq(dev->irq, corkscrew_interrupt, 0,
755 vp->product_name, dev))
756 return -EAGAIN;
757 enable_dma(dev->dma);
758 set_dma_mode(dev->dma, DMA_MODE_CASCADE);
759 } else if (request_irq(dev->irq, corkscrew_interrupt, IRQF_SHARED,
760 vp->product_name, dev)) {
761 return -EAGAIN;
762 }
763
764 if (armtimer)
765 mod_timer(&vp->timer, jiffies + media_tbl[dev->if_port].wait);
766
767 if (corkscrew_debug > 1) {
768 EL3WINDOW(4);
769 pr_debug("%s: corkscrew_open() irq %d media status %4.4x.\n",
770 dev->name, dev->irq, inw(ioaddr + Wn4_Media));
771 }
772
773 /* Set the station address and mask in window 2 each time opened. */
774 EL3WINDOW(2);
775 for (i = 0; i < 6; i++)
776 outb(dev->dev_addr[i], ioaddr + i);
777 for (; i < 12; i += 2)
778 outw(0, ioaddr + i);
779
780 if (dev->if_port == 3)
781 /* Start the thinnet transceiver. We should really wait 50ms... */
782 outw(StartCoax, ioaddr + EL3_CMD);
783 EL3WINDOW(4);
784 outw((inw(ioaddr + Wn4_Media) & ~(Media_10TP | Media_SQE)) |
785 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
786
787 /* Switch to the stats window, and clear all stats by reading. */
788 outw(StatsDisable, ioaddr + EL3_CMD);
789 EL3WINDOW(6);
790 for (i = 0; i < 10; i++)
791 inb(ioaddr + i);
792 inw(ioaddr + 10);
793 inw(ioaddr + 12);
794 /* New: On the Vortex we must also clear the BadSSD counter. */
795 EL3WINDOW(4);
796 inb(ioaddr + 12);
797 /* ..and on the Boomerang we enable the extra statistics bits. */
798 outw(0x0040, ioaddr + Wn4_NetDiag);
799
800 /* Switch to register set 7 for normal use. */
801 EL3WINDOW(7);
802
803 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
804 vp->cur_rx = vp->dirty_rx = 0;
805 if (corkscrew_debug > 2)
806 pr_debug("%s: Filling in the Rx ring.\n", dev->name);
807 for (i = 0; i < RX_RING_SIZE; i++) {
808 struct sk_buff *skb;
809 if (i < (RX_RING_SIZE - 1))
810 vp->rx_ring[i].next =
811 isa_virt_to_bus(&vp->rx_ring[i + 1]);
812 else
813 vp->rx_ring[i].next = 0;
814 vp->rx_ring[i].status = 0; /* Clear complete bit. */
815 vp->rx_ring[i].length = PKT_BUF_SZ | 0x80000000;
816 skb = netdev_alloc_skb(dev, PKT_BUF_SZ);
817 vp->rx_skbuff[i] = skb;
818 if (skb == NULL)
819 break; /* Bad news! */
820 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
821 vp->rx_ring[i].addr = isa_virt_to_bus(skb->data);
822 }
823 if (i != 0)
824 vp->rx_ring[i - 1].next =
825 isa_virt_to_bus(&vp->rx_ring[0]); /* Wrap the ring. */
826 outl(isa_virt_to_bus(&vp->rx_ring[0]), ioaddr + UpListPtr);
827 }
828 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
829 vp->cur_tx = vp->dirty_tx = 0;
830 outb(PKT_BUF_SZ >> 8, ioaddr + TxFreeThreshold); /* Room for a packet. */
831 /* Clear the Tx ring. */
832 for (i = 0; i < TX_RING_SIZE; i++)
833 vp->tx_skbuff[i] = NULL;
834 outl(0, ioaddr + DownListPtr);
835 }
836 /* Set receiver mode: presumably accept b-case and phys addr only. */
837 set_rx_mode(dev);
838 outw(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
839
840 netif_start_queue(dev);
841
842 outw(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
843 outw(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
844 /* Allow status bits to be seen. */
845 outw(SetStatusEnb | AdapterFailure | IntReq | StatsFull |
846 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
847 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
848 (vp->bus_master ? DMADone : 0), ioaddr + EL3_CMD);
849 /* Ack all pending events, and set active indicator mask. */
850 outw(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
851 ioaddr + EL3_CMD);
852 outw(SetIntrEnb | IntLatch | TxAvailable | RxComplete | StatsFull
853 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete,
854 ioaddr + EL3_CMD);
855
856 return 0;
857}
858
859static void corkscrew_timer(struct timer_list *t)
860{
861#ifdef AUTOMEDIA
862 struct corkscrew_private *vp = from_timer(vp, t, timer);
863 struct net_device *dev = vp->our_dev;
864 int ioaddr = dev->base_addr;
865 unsigned long flags;
866 int ok = 0;
867
868 if (corkscrew_debug > 1)
869 pr_debug("%s: Media selection timer tick happened, %s.\n",
870 dev->name, media_tbl[dev->if_port].name);
871
872 spin_lock_irqsave(&vp->lock, flags);
873
874 {
875 int old_window = inw(ioaddr + EL3_CMD) >> 13;
876 int media_status;
877 EL3WINDOW(4);
878 media_status = inw(ioaddr + Wn4_Media);
879 switch (dev->if_port) {
880 case 0:
881 case 4:
882 case 5: /* 10baseT, 100baseTX, 100baseFX */
883 if (media_status & Media_LnkBeat) {
884 ok = 1;
885 if (corkscrew_debug > 1)
886 pr_debug("%s: Media %s has link beat, %x.\n",
887 dev->name,
888 media_tbl[dev->if_port].name,
889 media_status);
890 } else if (corkscrew_debug > 1)
891 pr_debug("%s: Media %s is has no link beat, %x.\n",
892 dev->name,
893 media_tbl[dev->if_port].name,
894 media_status);
895
896 break;
897 default: /* Other media types handled by Tx timeouts. */
898 if (corkscrew_debug > 1)
899 pr_debug("%s: Media %s is has no indication, %x.\n",
900 dev->name,
901 media_tbl[dev->if_port].name,
902 media_status);
903 ok = 1;
904 }
905 if (!ok) {
906 __u32 config;
907
908 do {
909 dev->if_port =
910 media_tbl[dev->if_port].next;
911 }
912 while (!(vp->available_media & media_tbl[dev->if_port].mask));
913
914 if (dev->if_port == 8) { /* Go back to default. */
915 dev->if_port = vp->default_media;
916 if (corkscrew_debug > 1)
917 pr_debug("%s: Media selection failing, using default %s port.\n",
918 dev->name,
919 media_tbl[dev->if_port].name);
920 } else {
921 if (corkscrew_debug > 1)
922 pr_debug("%s: Media selection failed, now trying %s port.\n",
923 dev->name,
924 media_tbl[dev->if_port].name);
925 vp->timer.expires = jiffies + media_tbl[dev->if_port].wait;
926 add_timer(&vp->timer);
927 }
928 outw((media_status & ~(Media_10TP | Media_SQE)) |
929 media_tbl[dev->if_port].media_bits,
930 ioaddr + Wn4_Media);
931
932 EL3WINDOW(3);
933 config = inl(ioaddr + Wn3_Config);
934 config = (config & ~Xcvr) | (dev->if_port << Xcvr_shift);
935 outl(config, ioaddr + Wn3_Config);
936
937 outw(dev->if_port == 3 ? StartCoax : StopCoax,
938 ioaddr + EL3_CMD);
939 }
940 EL3WINDOW(old_window);
941 }
942
943 spin_unlock_irqrestore(&vp->lock, flags);
944 if (corkscrew_debug > 1)
945 pr_debug("%s: Media selection timer finished, %s.\n",
946 dev->name, media_tbl[dev->if_port].name);
947
948#endif /* AUTOMEDIA */
949}
950
951static void corkscrew_timeout(struct net_device *dev, unsigned int txqueue)
952{
953 int i;
954 struct corkscrew_private *vp = netdev_priv(dev);
955 int ioaddr = dev->base_addr;
956
957 pr_warn("%s: transmit timed out, tx_status %2.2x status %4.4x\n",
958 dev->name, inb(ioaddr + TxStatus),
959 inw(ioaddr + EL3_STATUS));
960 /* Slight code bloat to be user friendly. */
961 if ((inb(ioaddr + TxStatus) & 0x88) == 0x88)
962 pr_warn("%s: Transmitter encountered 16 collisions -- network cable problem?\n",
963 dev->name);
964#ifndef final_version
965 pr_debug(" Flags; bus-master %d, full %d; dirty %d current %d.\n",
966 vp->full_bus_master_tx, vp->tx_full, vp->dirty_tx,
967 vp->cur_tx);
968 pr_debug(" Down list %8.8x vs. %p.\n", inl(ioaddr + DownListPtr),
969 &vp->tx_ring[0]);
970 for (i = 0; i < TX_RING_SIZE; i++) {
971 pr_debug(" %d: %p length %8.8x status %8.8x\n", i,
972 &vp->tx_ring[i],
973 vp->tx_ring[i].length, vp->tx_ring[i].status);
974 }
975#endif
976 /* Issue TX_RESET and TX_START commands. */
977 outw(TxReset, ioaddr + EL3_CMD);
978 for (i = 20; i >= 0; i--)
979 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
980 break;
981 outw(TxEnable, ioaddr + EL3_CMD);
982 netif_trans_update(dev); /* prevent tx timeout */
983 dev->stats.tx_errors++;
984 dev->stats.tx_dropped++;
985 netif_wake_queue(dev);
986}
987
988static netdev_tx_t corkscrew_start_xmit(struct sk_buff *skb,
989 struct net_device *dev)
990{
991 struct corkscrew_private *vp = netdev_priv(dev);
992 int ioaddr = dev->base_addr;
993
994 /* Block a timer-based transmit from overlapping. */
995
996 netif_stop_queue(dev);
997
998 if (vp->full_bus_master_tx) { /* BOOMERANG bus-master */
999 /* Calculate the next Tx descriptor entry. */
1000 int entry = vp->cur_tx % TX_RING_SIZE;
1001 struct boom_tx_desc *prev_entry;
1002 unsigned long flags;
1003 int i;
1004
1005 if (vp->tx_full) /* No room to transmit with */
1006 return NETDEV_TX_BUSY;
1007 if (vp->cur_tx != 0)
1008 prev_entry = &vp->tx_ring[(vp->cur_tx - 1) % TX_RING_SIZE];
1009 else
1010 prev_entry = NULL;
1011 if (corkscrew_debug > 3)
1012 pr_debug("%s: Trying to send a packet, Tx index %d.\n",
1013 dev->name, vp->cur_tx);
1014 /* vp->tx_full = 1; */
1015 vp->tx_skbuff[entry] = skb;
1016 vp->tx_ring[entry].next = 0;
1017 vp->tx_ring[entry].addr = isa_virt_to_bus(skb->data);
1018 vp->tx_ring[entry].length = skb->len | 0x80000000;
1019 vp->tx_ring[entry].status = skb->len | 0x80000000;
1020
1021 spin_lock_irqsave(&vp->lock, flags);
1022 outw(DownStall, ioaddr + EL3_CMD);
1023 /* Wait for the stall to complete. */
1024 for (i = 20; i >= 0; i--)
1025 if ((inw(ioaddr + EL3_STATUS) & CmdInProgress) == 0)
1026 break;
1027 if (prev_entry)
1028 prev_entry->next = isa_virt_to_bus(&vp->tx_ring[entry]);
1029 if (inl(ioaddr + DownListPtr) == 0) {
1030 outl(isa_virt_to_bus(&vp->tx_ring[entry]),
1031 ioaddr + DownListPtr);
1032 queued_packet++;
1033 }
1034 outw(DownUnstall, ioaddr + EL3_CMD);
1035 spin_unlock_irqrestore(&vp->lock, flags);
1036
1037 vp->cur_tx++;
1038 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1)
1039 vp->tx_full = 1;
1040 else { /* Clear previous interrupt enable. */
1041 if (prev_entry)
1042 prev_entry->status &= ~0x80000000;
1043 netif_wake_queue(dev);
1044 }
1045 return NETDEV_TX_OK;
1046 }
1047 /* Put out the doubleword header... */
1048 outl(skb->len, ioaddr + TX_FIFO);
1049 dev->stats.tx_bytes += skb->len;
1050#ifdef VORTEX_BUS_MASTER
1051 if (vp->bus_master) {
1052 /* Set the bus-master controller to transfer the packet. */
1053 outl(isa_virt_to_bus(skb->data), ioaddr + Wn7_MasterAddr);
1054 outw((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
1055 vp->tx_skb = skb;
1056 outw(StartDMADown, ioaddr + EL3_CMD);
1057 /* queue will be woken at the DMADone interrupt. */
1058 } else {
1059 /* ... and the packet rounded to a doubleword. */
1060 outsl(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
1061 dev_kfree_skb(skb);
1062 if (inw(ioaddr + TxFree) > 1536) {
1063 netif_wake_queue(dev);
1064 } else
1065 /* Interrupt us when the FIFO has room for max-sized packet. */
1066 outw(SetTxThreshold + (1536 >> 2),
1067 ioaddr + EL3_CMD);
1068 }
1069#else
1070 /* ... and the packet rounded to a doubleword. */
1071 outsl(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
1072 dev_kfree_skb(skb);
1073 if (inw(ioaddr + TxFree) > 1536) {
1074 netif_wake_queue(dev);
1075 } else
1076 /* Interrupt us when the FIFO has room for max-sized packet. */
1077 outw(SetTxThreshold + (1536 >> 2), ioaddr + EL3_CMD);
1078#endif /* bus master */
1079
1080
1081 /* Clear the Tx status stack. */
1082 {
1083 short tx_status;
1084 int i = 4;
1085
1086 while (--i > 0 && (tx_status = inb(ioaddr + TxStatus)) > 0) {
1087 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
1088 if (corkscrew_debug > 2)
1089 pr_debug("%s: Tx error, status %2.2x.\n",
1090 dev->name, tx_status);
1091 if (tx_status & 0x04)
1092 dev->stats.tx_fifo_errors++;
1093 if (tx_status & 0x38)
1094 dev->stats.tx_aborted_errors++;
1095 if (tx_status & 0x30) {
1096 int j;
1097 outw(TxReset, ioaddr + EL3_CMD);
1098 for (j = 20; j >= 0; j--)
1099 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
1100 break;
1101 }
1102 outw(TxEnable, ioaddr + EL3_CMD);
1103 }
1104 outb(0x00, ioaddr + TxStatus); /* Pop the status stack. */
1105 }
1106 }
1107 return NETDEV_TX_OK;
1108}
1109
1110/* The interrupt handler does all of the Rx thread work and cleans up
1111 after the Tx thread. */
1112
1113static irqreturn_t corkscrew_interrupt(int irq, void *dev_id)
1114{
1115 /* Use the now-standard shared IRQ implementation. */
1116 struct net_device *dev = dev_id;
1117 struct corkscrew_private *lp = netdev_priv(dev);
1118 int ioaddr, status;
1119 int latency;
1120 int i = max_interrupt_work;
1121
1122 ioaddr = dev->base_addr;
1123 latency = inb(ioaddr + Timer);
1124
1125 spin_lock(&lp->lock);
1126
1127 status = inw(ioaddr + EL3_STATUS);
1128
1129 if (corkscrew_debug > 4)
1130 pr_debug("%s: interrupt, status %4.4x, timer %d.\n",
1131 dev->name, status, latency);
1132 if ((status & 0xE000) != 0xE000) {
1133 static int donedidthis;
1134 /* Some interrupt controllers store a bogus interrupt from boot-time.
1135 Ignore a single early interrupt, but don't hang the machine for
1136 other interrupt problems. */
1137 if (donedidthis++ > 100) {
1138 pr_err("%s: Bogus interrupt, bailing. Status %4.4x, start=%d.\n",
1139 dev->name, status, netif_running(dev));
1140 free_irq(dev->irq, dev);
1141 dev->irq = -1;
1142 }
1143 }
1144
1145 do {
1146 if (corkscrew_debug > 5)
1147 pr_debug("%s: In interrupt loop, status %4.4x.\n",
1148 dev->name, status);
1149 if (status & RxComplete)
1150 corkscrew_rx(dev);
1151
1152 if (status & TxAvailable) {
1153 if (corkscrew_debug > 5)
1154 pr_debug(" TX room bit was handled.\n");
1155 /* There's room in the FIFO for a full-sized packet. */
1156 outw(AckIntr | TxAvailable, ioaddr + EL3_CMD);
1157 netif_wake_queue(dev);
1158 }
1159 if (status & DownComplete) {
1160 unsigned int dirty_tx = lp->dirty_tx;
1161
1162 while (lp->cur_tx - dirty_tx > 0) {
1163 int entry = dirty_tx % TX_RING_SIZE;
1164 if (inl(ioaddr + DownListPtr) == isa_virt_to_bus(&lp->tx_ring[entry]))
1165 break; /* It still hasn't been processed. */
1166 if (lp->tx_skbuff[entry]) {
1167 dev_consume_skb_irq(lp->tx_skbuff[entry]);
1168 lp->tx_skbuff[entry] = NULL;
1169 }
1170 dirty_tx++;
1171 }
1172 lp->dirty_tx = dirty_tx;
1173 outw(AckIntr | DownComplete, ioaddr + EL3_CMD);
1174 if (lp->tx_full && (lp->cur_tx - dirty_tx <= TX_RING_SIZE - 1)) {
1175 lp->tx_full = 0;
1176 netif_wake_queue(dev);
1177 }
1178 }
1179#ifdef VORTEX_BUS_MASTER
1180 if (status & DMADone) {
1181 outw(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
1182 dev_consume_skb_irq(lp->tx_skb); /* Release the transferred buffer */
1183 netif_wake_queue(dev);
1184 }
1185#endif
1186 if (status & UpComplete) {
1187 boomerang_rx(dev);
1188 outw(AckIntr | UpComplete, ioaddr + EL3_CMD);
1189 }
1190 if (status & (AdapterFailure | RxEarly | StatsFull)) {
1191 /* Handle all uncommon interrupts at once. */
1192 if (status & RxEarly) { /* Rx early is unused. */
1193 corkscrew_rx(dev);
1194 outw(AckIntr | RxEarly, ioaddr + EL3_CMD);
1195 }
1196 if (status & StatsFull) { /* Empty statistics. */
1197 static int DoneDidThat;
1198 if (corkscrew_debug > 4)
1199 pr_debug("%s: Updating stats.\n", dev->name);
1200 update_stats(ioaddr, dev);
1201 /* DEBUG HACK: Disable statistics as an interrupt source. */
1202 /* This occurs when we have the wrong media type! */
1203 if (DoneDidThat == 0 && inw(ioaddr + EL3_STATUS) & StatsFull) {
1204 int win, reg;
1205 pr_notice("%s: Updating stats failed, disabling stats as an interrupt source.\n",
1206 dev->name);
1207 for (win = 0; win < 8; win++) {
1208 EL3WINDOW(win);
1209 pr_notice("Vortex window %d:", win);
1210 for (reg = 0; reg < 16; reg++)
1211 pr_cont(" %2.2x", inb(ioaddr + reg));
1212 pr_cont("\n");
1213 }
1214 EL3WINDOW(7);
1215 outw(SetIntrEnb | TxAvailable |
1216 RxComplete | AdapterFailure |
1217 UpComplete | DownComplete |
1218 TxComplete, ioaddr + EL3_CMD);
1219 DoneDidThat++;
1220 }
1221 }
1222 if (status & AdapterFailure) {
1223 /* Adapter failure requires Rx reset and reinit. */
1224 outw(RxReset, ioaddr + EL3_CMD);
1225 /* Set the Rx filter to the current state. */
1226 set_rx_mode(dev);
1227 outw(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
1228 outw(AckIntr | AdapterFailure,
1229 ioaddr + EL3_CMD);
1230 }
1231 }
1232
1233 if (--i < 0) {
1234 pr_err("%s: Too much work in interrupt, status %4.4x. Disabling functions (%4.4x).\n",
1235 dev->name, status, SetStatusEnb | ((~status) & 0x7FE));
1236 /* Disable all pending interrupts. */
1237 outw(SetStatusEnb | ((~status) & 0x7FE), ioaddr + EL3_CMD);
1238 outw(AckIntr | 0x7FF, ioaddr + EL3_CMD);
1239 break;
1240 }
1241 /* Acknowledge the IRQ. */
1242 outw(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
1243
1244 } while ((status = inw(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
1245
1246 spin_unlock(&lp->lock);
1247
1248 if (corkscrew_debug > 4)
1249 pr_debug("%s: exiting interrupt, status %4.4x.\n", dev->name, status);
1250 return IRQ_HANDLED;
1251}
1252
1253static int corkscrew_rx(struct net_device *dev)
1254{
1255 int ioaddr = dev->base_addr;
1256 int i;
1257 short rx_status;
1258
1259 if (corkscrew_debug > 5)
1260 pr_debug(" In rx_packet(), status %4.4x, rx_status %4.4x.\n",
1261 inw(ioaddr + EL3_STATUS), inw(ioaddr + RxStatus));
1262 while ((rx_status = inw(ioaddr + RxStatus)) > 0) {
1263 if (rx_status & 0x4000) { /* Error, update stats. */
1264 unsigned char rx_error = inb(ioaddr + RxErrors);
1265 if (corkscrew_debug > 2)
1266 pr_debug(" Rx error: status %2.2x.\n",
1267 rx_error);
1268 dev->stats.rx_errors++;
1269 if (rx_error & 0x01)
1270 dev->stats.rx_over_errors++;
1271 if (rx_error & 0x02)
1272 dev->stats.rx_length_errors++;
1273 if (rx_error & 0x04)
1274 dev->stats.rx_frame_errors++;
1275 if (rx_error & 0x08)
1276 dev->stats.rx_crc_errors++;
1277 if (rx_error & 0x10)
1278 dev->stats.rx_length_errors++;
1279 } else {
1280 /* The packet length: up to 4.5K!. */
1281 short pkt_len = rx_status & 0x1fff;
1282 struct sk_buff *skb;
1283
1284 skb = netdev_alloc_skb(dev, pkt_len + 5 + 2);
1285 if (corkscrew_debug > 4)
1286 pr_debug("Receiving packet size %d status %4.4x.\n",
1287 pkt_len, rx_status);
1288 if (skb != NULL) {
1289 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1290 /* 'skb_put()' points to the start of sk_buff data area. */
1291 insl(ioaddr + RX_FIFO,
1292 skb_put(skb, pkt_len),
1293 (pkt_len + 3) >> 2);
1294 outw(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
1295 skb->protocol = eth_type_trans(skb, dev);
1296 netif_rx(skb);
1297 dev->stats.rx_packets++;
1298 dev->stats.rx_bytes += pkt_len;
1299 /* Wait a limited time to go to next packet. */
1300 for (i = 200; i >= 0; i--)
1301 if (! (inw(ioaddr + EL3_STATUS) & CmdInProgress))
1302 break;
1303 continue;
1304 } else if (corkscrew_debug)
1305 pr_debug("%s: Couldn't allocate a sk_buff of size %d.\n", dev->name, pkt_len);
1306 }
1307 outw(RxDiscard, ioaddr + EL3_CMD);
1308 dev->stats.rx_dropped++;
1309 /* Wait a limited time to skip this packet. */
1310 for (i = 200; i >= 0; i--)
1311 if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
1312 break;
1313 }
1314 return 0;
1315}
1316
1317static int boomerang_rx(struct net_device *dev)
1318{
1319 struct corkscrew_private *vp = netdev_priv(dev);
1320 int entry = vp->cur_rx % RX_RING_SIZE;
1321 int ioaddr = dev->base_addr;
1322 int rx_status;
1323
1324 if (corkscrew_debug > 5)
1325 pr_debug(" In boomerang_rx(), status %4.4x, rx_status %4.4x.\n",
1326 inw(ioaddr + EL3_STATUS), inw(ioaddr + RxStatus));
1327 while ((rx_status = vp->rx_ring[entry].status) & RxDComplete) {
1328 if (rx_status & RxDError) { /* Error, update stats. */
1329 unsigned char rx_error = rx_status >> 16;
1330 if (corkscrew_debug > 2)
1331 pr_debug(" Rx error: status %2.2x.\n",
1332 rx_error);
1333 dev->stats.rx_errors++;
1334 if (rx_error & 0x01)
1335 dev->stats.rx_over_errors++;
1336 if (rx_error & 0x02)
1337 dev->stats.rx_length_errors++;
1338 if (rx_error & 0x04)
1339 dev->stats.rx_frame_errors++;
1340 if (rx_error & 0x08)
1341 dev->stats.rx_crc_errors++;
1342 if (rx_error & 0x10)
1343 dev->stats.rx_length_errors++;
1344 } else {
1345 /* The packet length: up to 4.5K!. */
1346 short pkt_len = rx_status & 0x1fff;
1347 struct sk_buff *skb;
1348
1349 dev->stats.rx_bytes += pkt_len;
1350 if (corkscrew_debug > 4)
1351 pr_debug("Receiving packet size %d status %4.4x.\n",
1352 pkt_len, rx_status);
1353
1354 /* Check if the packet is long enough to just accept without
1355 copying to a properly sized skbuff. */
1356 if (pkt_len < rx_copybreak &&
1357 (skb = netdev_alloc_skb(dev, pkt_len + 4)) != NULL) {
1358 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1359 /* 'skb_put()' points to the start of sk_buff data area. */
1360 skb_put_data(skb,
1361 isa_bus_to_virt(vp->rx_ring[entry].addr),
1362 pkt_len);
1363 rx_copy++;
1364 } else {
1365 void *temp;
1366 /* Pass up the skbuff already on the Rx ring. */
1367 skb = vp->rx_skbuff[entry];
1368 vp->rx_skbuff[entry] = NULL;
1369 temp = skb_put(skb, pkt_len);
1370 /* Remove this checking code for final release. */
1371 if (isa_bus_to_virt(vp->rx_ring[entry].addr) != temp)
1372 pr_warn("%s: Warning -- the skbuff addresses do not match in boomerang_rx: %p vs. %p / %p\n",
1373 dev->name,
1374 isa_bus_to_virt(vp->rx_ring[entry].addr),
1375 skb->head, temp);
1376 rx_nocopy++;
1377 }
1378 skb->protocol = eth_type_trans(skb, dev);
1379 netif_rx(skb);
1380 dev->stats.rx_packets++;
1381 }
1382 entry = (++vp->cur_rx) % RX_RING_SIZE;
1383 }
1384 /* Refill the Rx ring buffers. */
1385 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
1386 struct sk_buff *skb;
1387 entry = vp->dirty_rx % RX_RING_SIZE;
1388 if (vp->rx_skbuff[entry] == NULL) {
1389 skb = netdev_alloc_skb(dev, PKT_BUF_SZ);
1390 if (skb == NULL)
1391 break; /* Bad news! */
1392 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1393 vp->rx_ring[entry].addr = isa_virt_to_bus(skb->data);
1394 vp->rx_skbuff[entry] = skb;
1395 }
1396 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
1397 }
1398 return 0;
1399}
1400
1401static int corkscrew_close(struct net_device *dev)
1402{
1403 struct corkscrew_private *vp = netdev_priv(dev);
1404 int ioaddr = dev->base_addr;
1405 int i;
1406
1407 netif_stop_queue(dev);
1408
1409 if (corkscrew_debug > 1) {
1410 pr_debug("%s: corkscrew_close() status %4.4x, Tx status %2.2x.\n",
1411 dev->name, inw(ioaddr + EL3_STATUS),
1412 inb(ioaddr + TxStatus));
1413 pr_debug("%s: corkscrew close stats: rx_nocopy %d rx_copy %d tx_queued %d.\n",
1414 dev->name, rx_nocopy, rx_copy, queued_packet);
1415 }
1416
1417 del_timer_sync(&vp->timer);
1418
1419 /* Turn off statistics ASAP. We update lp->stats below. */
1420 outw(StatsDisable, ioaddr + EL3_CMD);
1421
1422 /* Disable the receiver and transmitter. */
1423 outw(RxDisable, ioaddr + EL3_CMD);
1424 outw(TxDisable, ioaddr + EL3_CMD);
1425
1426 if (dev->if_port == XCVR_10base2)
1427 /* Turn off thinnet power. Green! */
1428 outw(StopCoax, ioaddr + EL3_CMD);
1429
1430 free_irq(dev->irq, dev);
1431
1432 outw(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
1433
1434 update_stats(ioaddr, dev);
1435 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
1436 outl(0, ioaddr + UpListPtr);
1437 for (i = 0; i < RX_RING_SIZE; i++)
1438 if (vp->rx_skbuff[i]) {
1439 dev_kfree_skb(vp->rx_skbuff[i]);
1440 vp->rx_skbuff[i] = NULL;
1441 }
1442 }
1443 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
1444 outl(0, ioaddr + DownListPtr);
1445 for (i = 0; i < TX_RING_SIZE; i++)
1446 if (vp->tx_skbuff[i]) {
1447 dev_kfree_skb(vp->tx_skbuff[i]);
1448 vp->tx_skbuff[i] = NULL;
1449 }
1450 }
1451
1452 return 0;
1453}
1454
1455static struct net_device_stats *corkscrew_get_stats(struct net_device *dev)
1456{
1457 struct corkscrew_private *vp = netdev_priv(dev);
1458 unsigned long flags;
1459
1460 if (netif_running(dev)) {
1461 spin_lock_irqsave(&vp->lock, flags);
1462 update_stats(dev->base_addr, dev);
1463 spin_unlock_irqrestore(&vp->lock, flags);
1464 }
1465 return &dev->stats;
1466}
1467
1468/* Update statistics.
1469 Unlike with the EL3 we need not worry about interrupts changing
1470 the window setting from underneath us, but we must still guard
1471 against a race condition with a StatsUpdate interrupt updating the
1472 table. This is done by checking that the ASM (!) code generated uses
1473 atomic updates with '+='.
1474 */
1475static void update_stats(int ioaddr, struct net_device *dev)
1476{
1477 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
1478 /* Switch to the stats window, and read everything. */
1479 EL3WINDOW(6);
1480 dev->stats.tx_carrier_errors += inb(ioaddr + 0);
1481 dev->stats.tx_heartbeat_errors += inb(ioaddr + 1);
1482 /* Multiple collisions. */ inb(ioaddr + 2);
1483 dev->stats.collisions += inb(ioaddr + 3);
1484 dev->stats.tx_window_errors += inb(ioaddr + 4);
1485 dev->stats.rx_fifo_errors += inb(ioaddr + 5);
1486 dev->stats.tx_packets += inb(ioaddr + 6);
1487 dev->stats.tx_packets += (inb(ioaddr + 9) & 0x30) << 4;
1488 /* Rx packets */ inb(ioaddr + 7);
1489 /* Must read to clear */
1490 /* Tx deferrals */ inb(ioaddr + 8);
1491 /* Don't bother with register 9, an extension of registers 6&7.
1492 If we do use the 6&7 values the atomic update assumption above
1493 is invalid. */
1494 inw(ioaddr + 10); /* Total Rx and Tx octets. */
1495 inw(ioaddr + 12);
1496 /* New: On the Vortex we must also clear the BadSSD counter. */
1497 EL3WINDOW(4);
1498 inb(ioaddr + 12);
1499
1500 /* We change back to window 7 (not 1) with the Vortex. */
1501 EL3WINDOW(7);
1502}
1503
1504/* This new version of set_rx_mode() supports v1.4 kernels.
1505 The Vortex chip has no documented multicast filter, so the only
1506 multicast setting is to receive all multicast frames. At least
1507 the chip has a very clean way to set the mode, unlike many others. */
1508static void set_rx_mode(struct net_device *dev)
1509{
1510 int ioaddr = dev->base_addr;
1511 unsigned short new_mode;
1512
1513 if (dev->flags & IFF_PROMISC) {
1514 if (corkscrew_debug > 3)
1515 pr_debug("%s: Setting promiscuous mode.\n",
1516 dev->name);
1517 new_mode = SetRxFilter | RxStation | RxMulticast | RxBroadcast | RxProm;
1518 } else if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
1519 new_mode = SetRxFilter | RxStation | RxMulticast | RxBroadcast;
1520 } else
1521 new_mode = SetRxFilter | RxStation | RxBroadcast;
1522
1523 outw(new_mode, ioaddr + EL3_CMD);
1524}
1525
1526static void netdev_get_drvinfo(struct net_device *dev,
1527 struct ethtool_drvinfo *info)
1528{
1529 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1530 snprintf(info->bus_info, sizeof(info->bus_info), "ISA 0x%lx",
1531 dev->base_addr);
1532}
1533
1534static u32 netdev_get_msglevel(struct net_device *dev)
1535{
1536 return corkscrew_debug;
1537}
1538
1539static void netdev_set_msglevel(struct net_device *dev, u32 level)
1540{
1541 corkscrew_debug = level;
1542}
1543
1544static const struct ethtool_ops netdev_ethtool_ops = {
1545 .get_drvinfo = netdev_get_drvinfo,
1546 .get_msglevel = netdev_get_msglevel,
1547 .set_msglevel = netdev_set_msglevel,
1548};
1549
1550
1551#ifdef MODULE
1552void cleanup_module(void)
1553{
1554 while (!list_empty(&root_corkscrew_dev)) {
1555 struct net_device *dev;
1556 struct corkscrew_private *vp;
1557
1558 vp = list_entry(root_corkscrew_dev.next,
1559 struct corkscrew_private, list);
1560 dev = vp->our_dev;
1561 unregister_netdev(dev);
1562 cleanup_card(dev);
1563 free_netdev(dev);
1564 }
1565}
1566#endif /* MODULE */