Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
   3 *
   4 * MCP2510 support and bug fixes by Christian Pellegrin
   5 * <chripell@evolware.org>
   6 *
   7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
   8 *
   9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10 * Written under contract by:
  11 *   Chris Elston, Katalix Systems, Ltd.
  12 *
  13 * Based on Microchip MCP251x CAN controller driver written by
  14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15 *
  16 * Based on CAN bus driver for the CCAN controller written by
  17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18 * - Simon Kallweit, intefo AG
  19 * Copyright 2007
  20 */
  21
  22#include <linux/bitfield.h>
  23#include <linux/can/core.h>
  24#include <linux/can/dev.h>
  25#include <linux/clk.h>
  26#include <linux/completion.h>
  27#include <linux/delay.h>
  28#include <linux/device.h>
  29#include <linux/ethtool.h>
  30#include <linux/freezer.h>
  31#include <linux/gpio.h>
  32#include <linux/gpio/driver.h>
  33#include <linux/interrupt.h>
  34#include <linux/io.h>
  35#include <linux/iopoll.h>
  36#include <linux/kernel.h>
  37#include <linux/module.h>
  38#include <linux/netdevice.h>
  39#include <linux/platform_device.h>
  40#include <linux/property.h>
  41#include <linux/regulator/consumer.h>
  42#include <linux/slab.h>
  43#include <linux/spi/spi.h>
  44#include <linux/uaccess.h>
  45
  46/* SPI interface instruction set */
  47#define INSTRUCTION_WRITE	0x02
  48#define INSTRUCTION_READ	0x03
  49#define INSTRUCTION_BIT_MODIFY	0x05
  50#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
  51#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
  52#define INSTRUCTION_RESET	0xC0
  53#define RTS_TXB0		0x01
  54#define RTS_TXB1		0x02
  55#define RTS_TXB2		0x04
  56#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
  57
  58/* MPC251x registers */
  59#define BFPCTRL			0x0c
  60#  define BFPCTRL_B0BFM		BIT(0)
  61#  define BFPCTRL_B1BFM		BIT(1)
  62#  define BFPCTRL_BFM(n)	(BFPCTRL_B0BFM << (n))
  63#  define BFPCTRL_BFM_MASK	GENMASK(1, 0)
  64#  define BFPCTRL_B0BFE		BIT(2)
  65#  define BFPCTRL_B1BFE		BIT(3)
  66#  define BFPCTRL_BFE(n)	(BFPCTRL_B0BFE << (n))
  67#  define BFPCTRL_BFE_MASK	GENMASK(3, 2)
  68#  define BFPCTRL_B0BFS		BIT(4)
  69#  define BFPCTRL_B1BFS		BIT(5)
  70#  define BFPCTRL_BFS(n)	(BFPCTRL_B0BFS << (n))
  71#  define BFPCTRL_BFS_MASK	GENMASK(5, 4)
  72#define TXRTSCTRL		0x0d
  73#  define TXRTSCTRL_B0RTSM	BIT(0)
  74#  define TXRTSCTRL_B1RTSM	BIT(1)
  75#  define TXRTSCTRL_B2RTSM	BIT(2)
  76#  define TXRTSCTRL_RTSM(n)	(TXRTSCTRL_B0RTSM << (n))
  77#  define TXRTSCTRL_RTSM_MASK	GENMASK(2, 0)
  78#  define TXRTSCTRL_B0RTS	BIT(3)
  79#  define TXRTSCTRL_B1RTS	BIT(4)
  80#  define TXRTSCTRL_B2RTS	BIT(5)
  81#  define TXRTSCTRL_RTS(n)	(TXRTSCTRL_B0RTS << (n))
  82#  define TXRTSCTRL_RTS_MASK	GENMASK(5, 3)
  83#define CANSTAT	      0x0e
  84#define CANCTRL	      0x0f
  85#  define CANCTRL_REQOP_MASK	    0xe0
  86#  define CANCTRL_REQOP_CONF	    0x80
  87#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
  88#  define CANCTRL_REQOP_LOOPBACK    0x40
  89#  define CANCTRL_REQOP_SLEEP	    0x20
  90#  define CANCTRL_REQOP_NORMAL	    0x00
  91#  define CANCTRL_OSM		    0x08
  92#  define CANCTRL_ABAT		    0x10
  93#define TEC	      0x1c
  94#define REC	      0x1d
  95#define CNF1	      0x2a
  96#  define CNF1_SJW_SHIFT   6
  97#define CNF2	      0x29
  98#  define CNF2_BTLMODE	   0x80
  99#  define CNF2_SAM         0x40
 100#  define CNF2_PS1_SHIFT   3
 101#define CNF3	      0x28
 102#  define CNF3_SOF	   0x08
 103#  define CNF3_WAKFIL	   0x04
 104#  define CNF3_PHSEG2_MASK 0x07
 105#define CANINTE	      0x2b
 106#  define CANINTE_MERRE 0x80
 107#  define CANINTE_WAKIE 0x40
 108#  define CANINTE_ERRIE 0x20
 109#  define CANINTE_TX2IE 0x10
 110#  define CANINTE_TX1IE 0x08
 111#  define CANINTE_TX0IE 0x04
 112#  define CANINTE_RX1IE 0x02
 113#  define CANINTE_RX0IE 0x01
 114#define CANINTF	      0x2c
 115#  define CANINTF_MERRF 0x80
 116#  define CANINTF_WAKIF 0x40
 117#  define CANINTF_ERRIF 0x20
 118#  define CANINTF_TX2IF 0x10
 119#  define CANINTF_TX1IF 0x08
 120#  define CANINTF_TX0IF 0x04
 121#  define CANINTF_RX1IF 0x02
 122#  define CANINTF_RX0IF 0x01
 123#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
 124#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
 125#  define CANINTF_ERR (CANINTF_ERRIF)
 126#define EFLG	      0x2d
 127#  define EFLG_EWARN	0x01
 128#  define EFLG_RXWAR	0x02
 129#  define EFLG_TXWAR	0x04
 130#  define EFLG_RXEP	0x08
 131#  define EFLG_TXEP	0x10
 132#  define EFLG_TXBO	0x20
 133#  define EFLG_RX0OVR	0x40
 134#  define EFLG_RX1OVR	0x80
 135#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
 136#  define TXBCTRL_ABTF	0x40
 137#  define TXBCTRL_MLOA	0x20
 138#  define TXBCTRL_TXERR 0x10
 139#  define TXBCTRL_TXREQ 0x08
 140#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
 141#  define SIDH_SHIFT    3
 142#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
 143#  define SIDL_SID_MASK    7
 144#  define SIDL_SID_SHIFT   5
 145#  define SIDL_EXIDE_SHIFT 3
 146#  define SIDL_EID_SHIFT   16
 147#  define SIDL_EID_MASK    3
 148#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
 149#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
 150#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
 151#  define DLC_RTR_SHIFT    6
 152#define TXBCTRL_OFF 0
 153#define TXBSIDH_OFF 1
 154#define TXBSIDL_OFF 2
 155#define TXBEID8_OFF 3
 156#define TXBEID0_OFF 4
 157#define TXBDLC_OFF  5
 158#define TXBDAT_OFF  6
 159#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
 160#  define RXBCTRL_BUKT	0x04
 161#  define RXBCTRL_RXM0	0x20
 162#  define RXBCTRL_RXM1	0x40
 163#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
 164#  define RXBSIDH_SHIFT 3
 165#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
 166#  define RXBSIDL_IDE   0x08
 167#  define RXBSIDL_SRR   0x10
 168#  define RXBSIDL_EID   3
 169#  define RXBSIDL_SHIFT 5
 170#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
 171#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
 172#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
 173#  define RXBDLC_LEN_MASK  0x0f
 174#  define RXBDLC_RTR       0x40
 175#define RXBCTRL_OFF 0
 176#define RXBSIDH_OFF 1
 177#define RXBSIDL_OFF 2
 178#define RXBEID8_OFF 3
 179#define RXBEID0_OFF 4
 180#define RXBDLC_OFF  5
 181#define RXBDAT_OFF  6
 182#define RXFSID(n) ((n < 3) ? 0 : 4)
 183#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
 184#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
 185#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
 186#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
 187#define RXMSIDH(n) ((n) * 4 + 0x20)
 188#define RXMSIDL(n) ((n) * 4 + 0x21)
 189#define RXMEID8(n) ((n) * 4 + 0x22)
 190#define RXMEID0(n) ((n) * 4 + 0x23)
 191
 192#define GET_BYTE(val, byte)			\
 193	(((val) >> ((byte) * 8)) & 0xff)
 194#define SET_BYTE(val, byte)			\
 195	(((val) & 0xff) << ((byte) * 8))
 196
 197/* Buffer size required for the largest SPI transfer (i.e., reading a
 198 * frame)
 199 */
 200#define CAN_FRAME_MAX_DATA_LEN	8
 201#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
 202#define CAN_FRAME_MAX_BITS	128
 203
 204#define TX_ECHO_SKB_MAX	1
 205
 206#define MCP251X_OST_DELAY_MS	(5)
 207
 208#define DEVICE_NAME "mcp251x"
 209
 210static const struct can_bittiming_const mcp251x_bittiming_const = {
 211	.name = DEVICE_NAME,
 212	.tseg1_min = 3,
 213	.tseg1_max = 16,
 214	.tseg2_min = 2,
 215	.tseg2_max = 8,
 216	.sjw_max = 4,
 217	.brp_min = 1,
 218	.brp_max = 64,
 219	.brp_inc = 1,
 220};
 221
 222enum mcp251x_model {
 223	CAN_MCP251X_MCP2510	= 0x2510,
 224	CAN_MCP251X_MCP2515	= 0x2515,
 225	CAN_MCP251X_MCP25625	= 0x25625,
 226};
 227
 228struct mcp251x_priv {
 229	struct can_priv	   can;
 230	struct net_device *net;
 231	struct spi_device *spi;
 232	enum mcp251x_model model;
 233
 234	struct mutex mcp_lock; /* SPI device lock */
 235
 236	u8 *spi_tx_buf;
 237	u8 *spi_rx_buf;
 238
 239	struct sk_buff *tx_skb;
 240
 241	struct workqueue_struct *wq;
 242	struct work_struct tx_work;
 243	struct work_struct restart_work;
 244
 245	int force_quit;
 246	int after_suspend;
 247#define AFTER_SUSPEND_UP 1
 248#define AFTER_SUSPEND_DOWN 2
 249#define AFTER_SUSPEND_POWER 4
 250#define AFTER_SUSPEND_RESTART 8
 251	int restart_tx;
 252	bool tx_busy;
 253
 254	struct regulator *power;
 255	struct regulator *transceiver;
 256	struct clk *clk;
 257#ifdef CONFIG_GPIOLIB
 258	struct gpio_chip gpio;
 259	u8 reg_bfpctrl;
 260#endif
 261};
 262
 263#define MCP251X_IS(_model) \
 264static inline int mcp251x_is_##_model(struct spi_device *spi) \
 265{ \
 266	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
 267	return priv->model == CAN_MCP251X_MCP##_model; \
 268}
 269
 270MCP251X_IS(2510);
 271
 272static void mcp251x_clean(struct net_device *net)
 273{
 274	struct mcp251x_priv *priv = netdev_priv(net);
 275
 276	if (priv->tx_skb || priv->tx_busy)
 277		net->stats.tx_errors++;
 278	dev_kfree_skb(priv->tx_skb);
 279	if (priv->tx_busy)
 280		can_free_echo_skb(priv->net, 0, NULL);
 281	priv->tx_skb = NULL;
 282	priv->tx_busy = false;
 283}
 284
 285/* Note about handling of error return of mcp251x_spi_trans: accessing
 286 * registers via SPI is not really different conceptually than using
 287 * normal I/O assembler instructions, although it's much more
 288 * complicated from a practical POV. So it's not advisable to always
 289 * check the return value of this function. Imagine that every
 290 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 291 * error();", it would be a great mess (well there are some situation
 292 * when exception handling C++ like could be useful after all). So we
 293 * just check that transfers are OK at the beginning of our
 294 * conversation with the chip and to avoid doing really nasty things
 295 * (like injecting bogus packets in the network stack).
 296 */
 297static int mcp251x_spi_trans(struct spi_device *spi, int len)
 298{
 299	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 300	struct spi_transfer t = {
 301		.tx_buf = priv->spi_tx_buf,
 302		.rx_buf = priv->spi_rx_buf,
 303		.len = len,
 304		.cs_change = 0,
 305	};
 306	struct spi_message m;
 307	int ret;
 308
 309	spi_message_init(&m);
 310	spi_message_add_tail(&t, &m);
 311
 312	ret = spi_sync(spi, &m);
 313	if (ret)
 314		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
 315	return ret;
 316}
 317
 318static int mcp251x_spi_write(struct spi_device *spi, int len)
 319{
 320	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 321	int ret;
 322
 323	ret = spi_write(spi, priv->spi_tx_buf, len);
 324	if (ret)
 325		dev_err(&spi->dev, "spi write failed: ret = %d\n", ret);
 326
 327	return ret;
 328}
 329
 330static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
 331{
 332	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 333	u8 val = 0;
 334
 335	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 336	priv->spi_tx_buf[1] = reg;
 337
 338	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
 339		spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
 340	} else {
 341		mcp251x_spi_trans(spi, 3);
 342		val = priv->spi_rx_buf[2];
 343	}
 344
 345	return val;
 346}
 347
 348static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
 349{
 350	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 351
 352	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 353	priv->spi_tx_buf[1] = reg;
 354
 355	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
 356		u8 val[2] = { 0 };
 357
 358		spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
 359		*v1 = val[0];
 360		*v2 = val[1];
 361	} else {
 362		mcp251x_spi_trans(spi, 4);
 363
 364		*v1 = priv->spi_rx_buf[2];
 365		*v2 = priv->spi_rx_buf[3];
 366	}
 367}
 368
 369static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
 370{
 371	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 372
 373	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 374	priv->spi_tx_buf[1] = reg;
 375	priv->spi_tx_buf[2] = val;
 376
 377	mcp251x_spi_write(spi, 3);
 378}
 379
 380static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
 381{
 382	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 383
 384	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 385	priv->spi_tx_buf[1] = reg;
 386	priv->spi_tx_buf[2] = v1;
 387	priv->spi_tx_buf[3] = v2;
 388
 389	mcp251x_spi_write(spi, 4);
 390}
 391
 392static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
 393			       u8 mask, u8 val)
 394{
 395	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 396
 397	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
 398	priv->spi_tx_buf[1] = reg;
 399	priv->spi_tx_buf[2] = mask;
 400	priv->spi_tx_buf[3] = val;
 401
 402	mcp251x_spi_write(spi, 4);
 403}
 404
 405static u8 mcp251x_read_stat(struct spi_device *spi)
 406{
 407	return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
 408}
 409
 410#define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
 411	readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
 412			   delay_us, timeout_us)
 413
 414#ifdef CONFIG_GPIOLIB
 415enum {
 416	MCP251X_GPIO_TX0RTS = 0,		/* inputs */
 417	MCP251X_GPIO_TX1RTS,
 418	MCP251X_GPIO_TX2RTS,
 419	MCP251X_GPIO_RX0BF,			/* outputs */
 420	MCP251X_GPIO_RX1BF,
 421};
 422
 423#define MCP251X_GPIO_INPUT_MASK \
 424	GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
 425#define MCP251X_GPIO_OUTPUT_MASK \
 426	GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)
 427
 428static const char * const mcp251x_gpio_names[] = {
 429	[MCP251X_GPIO_TX0RTS] = "TX0RTS",	/* inputs */
 430	[MCP251X_GPIO_TX1RTS] = "TX1RTS",
 431	[MCP251X_GPIO_TX2RTS] = "TX2RTS",
 432	[MCP251X_GPIO_RX0BF] = "RX0BF",		/* outputs */
 433	[MCP251X_GPIO_RX1BF] = "RX1BF",
 434};
 435
 436static inline bool mcp251x_gpio_is_input(unsigned int offset)
 437{
 438	return offset <= MCP251X_GPIO_TX2RTS;
 439}
 440
 441static int mcp251x_gpio_request(struct gpio_chip *chip,
 442				unsigned int offset)
 443{
 444	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 445	u8 val;
 446
 447	/* nothing to be done for inputs */
 448	if (mcp251x_gpio_is_input(offset))
 449		return 0;
 450
 451	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
 452
 453	mutex_lock(&priv->mcp_lock);
 454	mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
 455	mutex_unlock(&priv->mcp_lock);
 456
 457	priv->reg_bfpctrl |= val;
 458
 459	return 0;
 460}
 461
 462static void mcp251x_gpio_free(struct gpio_chip *chip,
 463			      unsigned int offset)
 464{
 465	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 466	u8 val;
 467
 468	/* nothing to be done for inputs */
 469	if (mcp251x_gpio_is_input(offset))
 470		return;
 471
 472	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
 473
 474	mutex_lock(&priv->mcp_lock);
 475	mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
 476	mutex_unlock(&priv->mcp_lock);
 477
 478	priv->reg_bfpctrl &= ~val;
 479}
 480
 481static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
 482				      unsigned int offset)
 483{
 484	if (mcp251x_gpio_is_input(offset))
 485		return GPIOF_DIR_IN;
 486
 487	return GPIOF_DIR_OUT;
 488}
 489
 490static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
 491{
 492	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 493	u8 reg, mask, val;
 494
 495	if (mcp251x_gpio_is_input(offset)) {
 496		reg = TXRTSCTRL;
 497		mask = TXRTSCTRL_RTS(offset);
 498	} else {
 499		reg = BFPCTRL;
 500		mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
 501	}
 502
 503	mutex_lock(&priv->mcp_lock);
 504	val = mcp251x_read_reg(priv->spi, reg);
 505	mutex_unlock(&priv->mcp_lock);
 506
 507	return !!(val & mask);
 508}
 509
 510static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
 511				     unsigned long *maskp, unsigned long *bitsp)
 512{
 513	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 514	unsigned long bits = 0;
 515	u8 val;
 516
 517	mutex_lock(&priv->mcp_lock);
 518	if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
 519		val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
 520		val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
 521		bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
 522	}
 523	if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
 524		val = mcp251x_read_reg(priv->spi, BFPCTRL);
 525		val = FIELD_GET(BFPCTRL_BFS_MASK, val);
 526		bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
 527	}
 528	mutex_unlock(&priv->mcp_lock);
 529
 530	bitsp[0] = bits;
 531	return 0;
 532}
 533
 534static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
 535			     int value)
 536{
 537	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 538	u8 mask, val;
 539
 540	mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
 541	val = value ? mask : 0;
 542
 543	mutex_lock(&priv->mcp_lock);
 544	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
 545	mutex_unlock(&priv->mcp_lock);
 546
 547	priv->reg_bfpctrl &= ~mask;
 548	priv->reg_bfpctrl |= val;
 549}
 550
 551static void
 552mcp251x_gpio_set_multiple(struct gpio_chip *chip,
 553			  unsigned long *maskp, unsigned long *bitsp)
 554{
 555	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 556	u8 mask, val;
 557
 558	mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
 559	mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);
 560
 561	val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
 562	val = FIELD_PREP(BFPCTRL_BFS_MASK, val);
 563
 564	if (!mask)
 565		return;
 566
 567	mutex_lock(&priv->mcp_lock);
 568	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
 569	mutex_unlock(&priv->mcp_lock);
 570
 571	priv->reg_bfpctrl &= ~mask;
 572	priv->reg_bfpctrl |= val;
 573}
 574
 575static void mcp251x_gpio_restore(struct spi_device *spi)
 576{
 577	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 578
 579	mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
 580}
 581
 582static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
 583{
 584	struct gpio_chip *gpio = &priv->gpio;
 585
 586	if (!device_property_present(&priv->spi->dev, "gpio-controller"))
 587		return 0;
 588
 589	/* gpiochip handles TX[0..2]RTS and RX[0..1]BF */
 590	gpio->label = priv->spi->modalias;
 591	gpio->parent = &priv->spi->dev;
 592	gpio->owner = THIS_MODULE;
 593	gpio->request = mcp251x_gpio_request;
 594	gpio->free = mcp251x_gpio_free;
 595	gpio->get_direction = mcp251x_gpio_get_direction;
 596	gpio->get = mcp251x_gpio_get;
 597	gpio->get_multiple = mcp251x_gpio_get_multiple;
 598	gpio->set = mcp251x_gpio_set;
 599	gpio->set_multiple = mcp251x_gpio_set_multiple;
 600	gpio->base = -1;
 601	gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
 602	gpio->names = mcp251x_gpio_names;
 603	gpio->can_sleep = true;
 604
 605	return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
 606}
 607#else
 608static inline void mcp251x_gpio_restore(struct spi_device *spi)
 609{
 610}
 611
 612static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
 613{
 614	return 0;
 615}
 616#endif
 617
 618static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
 619				int len, int tx_buf_idx)
 620{
 621	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 622
 623	if (mcp251x_is_2510(spi)) {
 624		int i;
 625
 626		for (i = 1; i < TXBDAT_OFF + len; i++)
 627			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
 628					  buf[i]);
 629	} else {
 630		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
 631		mcp251x_spi_write(spi, TXBDAT_OFF + len);
 632	}
 633}
 634
 635static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
 636			  int tx_buf_idx)
 637{
 638	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 639	u32 sid, eid, exide, rtr;
 640	u8 buf[SPI_TRANSFER_BUF_LEN];
 641
 642	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
 643	if (exide)
 644		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
 645	else
 646		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
 647	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
 648	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
 649
 650	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
 651	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
 652	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
 653		(exide << SIDL_EXIDE_SHIFT) |
 654		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
 655	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
 656	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
 657	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->len;
 658	memcpy(buf + TXBDAT_OFF, frame->data, frame->len);
 659	mcp251x_hw_tx_frame(spi, buf, frame->len, tx_buf_idx);
 660
 661	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
 662	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
 663	mcp251x_spi_write(priv->spi, 1);
 664}
 665
 666static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
 667				int buf_idx)
 668{
 669	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 670
 671	if (mcp251x_is_2510(spi)) {
 672		int i, len;
 673
 674		for (i = 1; i < RXBDAT_OFF; i++)
 675			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 676
 677		len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 678		for (; i < (RXBDAT_OFF + len); i++)
 679			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 680	} else {
 681		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
 682		if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
 683			spi_write_then_read(spi, priv->spi_tx_buf, 1,
 684					    priv->spi_rx_buf,
 685					    SPI_TRANSFER_BUF_LEN);
 686			memcpy(buf + 1, priv->spi_rx_buf,
 687			       SPI_TRANSFER_BUF_LEN - 1);
 688		} else {
 689			mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
 690			memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
 691		}
 692	}
 693}
 694
 695static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
 696{
 697	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 698	struct sk_buff *skb;
 699	struct can_frame *frame;
 700	u8 buf[SPI_TRANSFER_BUF_LEN];
 701
 702	skb = alloc_can_skb(priv->net, &frame);
 703	if (!skb) {
 704		dev_err(&spi->dev, "cannot allocate RX skb\n");
 705		priv->net->stats.rx_dropped++;
 706		return;
 707	}
 708
 709	mcp251x_hw_rx_frame(spi, buf, buf_idx);
 710	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
 711		/* Extended ID format */
 712		frame->can_id = CAN_EFF_FLAG;
 713		frame->can_id |=
 714			/* Extended ID part */
 715			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
 716			SET_BYTE(buf[RXBEID8_OFF], 1) |
 717			SET_BYTE(buf[RXBEID0_OFF], 0) |
 718			/* Standard ID part */
 719			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 720			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
 721		/* Remote transmission request */
 722		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
 723			frame->can_id |= CAN_RTR_FLAG;
 724	} else {
 725		/* Standard ID format */
 726		frame->can_id =
 727			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 728			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
 729		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
 730			frame->can_id |= CAN_RTR_FLAG;
 731	}
 732	/* Data length */
 733	frame->len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 734	if (!(frame->can_id & CAN_RTR_FLAG)) {
 735		memcpy(frame->data, buf + RXBDAT_OFF, frame->len);
 736
 737		priv->net->stats.rx_bytes += frame->len;
 738	}
 739	priv->net->stats.rx_packets++;
 740
 741	netif_rx(skb);
 742}
 743
 744static void mcp251x_hw_sleep(struct spi_device *spi)
 745{
 746	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
 747}
 748
 749/* May only be called when device is sleeping! */
 750static int mcp251x_hw_wake(struct spi_device *spi)
 751{
 752	u8 value;
 753	int ret;
 754
 755	/* Force wakeup interrupt to wake device, but don't execute IST */
 756	disable_irq(spi->irq);
 757	mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);
 758
 759	/* Wait for oscillator startup timer after wake up */
 760	mdelay(MCP251X_OST_DELAY_MS);
 761
 762	/* Put device into config mode */
 763	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);
 764
 765	/* Wait for the device to enter config mode */
 766	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
 767					     MCP251X_OST_DELAY_MS * 1000,
 768					     USEC_PER_SEC);
 769	if (ret) {
 770		dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
 771		return ret;
 772	}
 773
 774	/* Disable and clear pending interrupts */
 775	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
 776	enable_irq(spi->irq);
 777
 778	return 0;
 779}
 780
 781static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
 782					   struct net_device *net)
 783{
 784	struct mcp251x_priv *priv = netdev_priv(net);
 785	struct spi_device *spi = priv->spi;
 786
 787	if (priv->tx_skb || priv->tx_busy) {
 788		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
 789		return NETDEV_TX_BUSY;
 790	}
 791
 792	if (can_dev_dropped_skb(net, skb))
 793		return NETDEV_TX_OK;
 794
 795	netif_stop_queue(net);
 796	priv->tx_skb = skb;
 797	queue_work(priv->wq, &priv->tx_work);
 798
 799	return NETDEV_TX_OK;
 800}
 801
 802static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
 803{
 804	struct mcp251x_priv *priv = netdev_priv(net);
 805
 806	switch (mode) {
 807	case CAN_MODE_START:
 808		mcp251x_clean(net);
 809		/* We have to delay work since SPI I/O may sleep */
 810		priv->can.state = CAN_STATE_ERROR_ACTIVE;
 811		priv->restart_tx = 1;
 812		if (priv->can.restart_ms == 0)
 813			priv->after_suspend = AFTER_SUSPEND_RESTART;
 814		queue_work(priv->wq, &priv->restart_work);
 815		break;
 816	default:
 817		return -EOPNOTSUPP;
 818	}
 819
 820	return 0;
 821}
 822
 823static int mcp251x_set_normal_mode(struct spi_device *spi)
 824{
 825	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 826	u8 value;
 827	int ret;
 828
 829	/* Enable interrupts */
 830	mcp251x_write_reg(spi, CANINTE,
 831			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
 832			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
 833
 834	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 835		/* Put device into loopback mode */
 836		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
 837	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 838		/* Put device into listen-only mode */
 839		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
 840	} else {
 841		/* Put device into normal mode */
 842		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
 843
 844		/* Wait for the device to enter normal mode */
 845		ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
 846						     MCP251X_OST_DELAY_MS * 1000,
 847						     USEC_PER_SEC);
 848		if (ret) {
 849			dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
 850			return ret;
 851		}
 852	}
 853	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 854	return 0;
 855}
 856
 857static int mcp251x_do_set_bittiming(struct net_device *net)
 858{
 859	struct mcp251x_priv *priv = netdev_priv(net);
 860	struct can_bittiming *bt = &priv->can.bittiming;
 861	struct spi_device *spi = priv->spi;
 862
 863	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
 864			  (bt->brp - 1));
 865	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
 866			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
 867			   CNF2_SAM : 0) |
 868			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
 869			  (bt->prop_seg - 1));
 870	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
 871			   (bt->phase_seg2 - 1));
 872	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
 873		mcp251x_read_reg(spi, CNF1),
 874		mcp251x_read_reg(spi, CNF2),
 875		mcp251x_read_reg(spi, CNF3));
 876
 877	return 0;
 878}
 879
 880static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
 881{
 882	mcp251x_do_set_bittiming(net);
 883
 884	mcp251x_write_reg(spi, RXBCTRL(0),
 885			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
 886	mcp251x_write_reg(spi, RXBCTRL(1),
 887			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
 888	return 0;
 889}
 890
 891static int mcp251x_hw_reset(struct spi_device *spi)
 892{
 893	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 894	u8 value;
 895	int ret;
 896
 897	/* Wait for oscillator startup timer after power up */
 898	mdelay(MCP251X_OST_DELAY_MS);
 899
 900	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
 901	ret = mcp251x_spi_write(spi, 1);
 902	if (ret)
 903		return ret;
 904
 905	/* Wait for oscillator startup timer after reset */
 906	mdelay(MCP251X_OST_DELAY_MS);
 907
 908	/* Wait for reset to finish */
 909	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
 910					     MCP251X_OST_DELAY_MS * 1000,
 911					     USEC_PER_SEC);
 912	if (ret)
 913		dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
 914	return ret;
 915}
 916
 917static int mcp251x_hw_probe(struct spi_device *spi)
 918{
 919	u8 ctrl;
 920	int ret;
 921
 922	ret = mcp251x_hw_reset(spi);
 923	if (ret)
 924		return ret;
 925
 926	ctrl = mcp251x_read_reg(spi, CANCTRL);
 927
 928	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
 929
 930	/* Check for power up default value */
 931	if ((ctrl & 0x17) != 0x07)
 932		return -ENODEV;
 933
 934	return 0;
 935}
 936
 937static int mcp251x_power_enable(struct regulator *reg, int enable)
 938{
 939	if (IS_ERR_OR_NULL(reg))
 940		return 0;
 941
 942	if (enable)
 943		return regulator_enable(reg);
 944	else
 945		return regulator_disable(reg);
 946}
 947
 948static int mcp251x_stop(struct net_device *net)
 949{
 950	struct mcp251x_priv *priv = netdev_priv(net);
 951	struct spi_device *spi = priv->spi;
 952
 953	close_candev(net);
 954
 955	priv->force_quit = 1;
 956	free_irq(spi->irq, priv);
 957
 958	mutex_lock(&priv->mcp_lock);
 959
 960	/* Disable and clear pending interrupts */
 961	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
 962
 963	mcp251x_write_reg(spi, TXBCTRL(0), 0);
 964	mcp251x_clean(net);
 965
 966	mcp251x_hw_sleep(spi);
 967
 968	mcp251x_power_enable(priv->transceiver, 0);
 969
 970	priv->can.state = CAN_STATE_STOPPED;
 971
 972	mutex_unlock(&priv->mcp_lock);
 973
 974	return 0;
 975}
 976
 977static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
 978{
 979	struct sk_buff *skb;
 980	struct can_frame *frame;
 981
 982	skb = alloc_can_err_skb(net, &frame);
 983	if (skb) {
 984		frame->can_id |= can_id;
 985		frame->data[1] = data1;
 986		netif_rx(skb);
 987	} else {
 988		netdev_err(net, "cannot allocate error skb\n");
 989	}
 990}
 991
 992static void mcp251x_tx_work_handler(struct work_struct *ws)
 993{
 994	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 995						 tx_work);
 996	struct spi_device *spi = priv->spi;
 997	struct net_device *net = priv->net;
 998	struct can_frame *frame;
 999
1000	mutex_lock(&priv->mcp_lock);
1001	if (priv->tx_skb) {
1002		if (priv->can.state == CAN_STATE_BUS_OFF) {
1003			mcp251x_clean(net);
1004		} else {
1005			frame = (struct can_frame *)priv->tx_skb->data;
1006
1007			if (frame->len > CAN_FRAME_MAX_DATA_LEN)
1008				frame->len = CAN_FRAME_MAX_DATA_LEN;
1009			mcp251x_hw_tx(spi, frame, 0);
1010			priv->tx_busy = true;
1011			can_put_echo_skb(priv->tx_skb, net, 0, 0);
1012			priv->tx_skb = NULL;
1013		}
1014	}
1015	mutex_unlock(&priv->mcp_lock);
1016}
1017
1018static void mcp251x_restart_work_handler(struct work_struct *ws)
1019{
1020	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1021						 restart_work);
1022	struct spi_device *spi = priv->spi;
1023	struct net_device *net = priv->net;
1024
1025	mutex_lock(&priv->mcp_lock);
1026	if (priv->after_suspend) {
1027		if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1028			mcp251x_hw_reset(spi);
1029			mcp251x_setup(net, spi);
1030			mcp251x_gpio_restore(spi);
1031		} else {
1032			mcp251x_hw_wake(spi);
1033		}
1034		priv->force_quit = 0;
1035		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
1036			mcp251x_set_normal_mode(spi);
1037		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
1038			netif_device_attach(net);
1039			mcp251x_clean(net);
1040			mcp251x_set_normal_mode(spi);
1041			netif_wake_queue(net);
1042		} else {
1043			mcp251x_hw_sleep(spi);
1044		}
1045		priv->after_suspend = 0;
1046	}
1047
1048	if (priv->restart_tx) {
1049		priv->restart_tx = 0;
1050		mcp251x_write_reg(spi, TXBCTRL(0), 0);
1051		mcp251x_clean(net);
1052		netif_wake_queue(net);
1053		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
1054	}
1055	mutex_unlock(&priv->mcp_lock);
1056}
1057
1058static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
1059{
1060	struct mcp251x_priv *priv = dev_id;
1061	struct spi_device *spi = priv->spi;
1062	struct net_device *net = priv->net;
1063
1064	mutex_lock(&priv->mcp_lock);
1065	while (!priv->force_quit) {
1066		enum can_state new_state;
1067		u8 intf, eflag;
1068		u8 clear_intf = 0;
1069		int can_id = 0, data1 = 0;
1070
1071		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
1072
1073		/* receive buffer 0 */
1074		if (intf & CANINTF_RX0IF) {
1075			mcp251x_hw_rx(spi, 0);
1076			/* Free one buffer ASAP
1077			 * (The MCP2515/25625 does this automatically.)
1078			 */
1079			if (mcp251x_is_2510(spi))
1080				mcp251x_write_bits(spi, CANINTF,
1081						   CANINTF_RX0IF, 0x00);
1082
1083			/* check if buffer 1 is already known to be full, no need to re-read */
1084			if (!(intf & CANINTF_RX1IF)) {
1085				u8 intf1, eflag1;
1086
1087				/* intf needs to be read again to avoid a race condition */
1088				mcp251x_read_2regs(spi, CANINTF, &intf1, &eflag1);
1089
1090				/* combine flags from both operations for error handling */
1091				intf |= intf1;
1092				eflag |= eflag1;
1093			}
1094		}
1095
1096		/* receive buffer 1 */
1097		if (intf & CANINTF_RX1IF) {
1098			mcp251x_hw_rx(spi, 1);
1099			/* The MCP2515/25625 does this automatically. */
1100			if (mcp251x_is_2510(spi))
1101				clear_intf |= CANINTF_RX1IF;
1102		}
1103
1104		/* mask out flags we don't care about */
1105		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
1106
1107		/* any error or tx interrupt we need to clear? */
1108		if (intf & (CANINTF_ERR | CANINTF_TX))
1109			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
1110		if (clear_intf)
1111			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
1112
1113		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
1114			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
1115
1116		/* Update can state */
1117		if (eflag & EFLG_TXBO) {
1118			new_state = CAN_STATE_BUS_OFF;
1119			can_id |= CAN_ERR_BUSOFF;
1120		} else if (eflag & EFLG_TXEP) {
1121			new_state = CAN_STATE_ERROR_PASSIVE;
1122			can_id |= CAN_ERR_CRTL;
1123			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
1124		} else if (eflag & EFLG_RXEP) {
1125			new_state = CAN_STATE_ERROR_PASSIVE;
1126			can_id |= CAN_ERR_CRTL;
1127			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
1128		} else if (eflag & EFLG_TXWAR) {
1129			new_state = CAN_STATE_ERROR_WARNING;
1130			can_id |= CAN_ERR_CRTL;
1131			data1 |= CAN_ERR_CRTL_TX_WARNING;
1132		} else if (eflag & EFLG_RXWAR) {
1133			new_state = CAN_STATE_ERROR_WARNING;
1134			can_id |= CAN_ERR_CRTL;
1135			data1 |= CAN_ERR_CRTL_RX_WARNING;
1136		} else {
1137			new_state = CAN_STATE_ERROR_ACTIVE;
1138		}
1139
1140		/* Update can state statistics */
1141		switch (priv->can.state) {
1142		case CAN_STATE_ERROR_ACTIVE:
1143			if (new_state >= CAN_STATE_ERROR_WARNING &&
1144			    new_state <= CAN_STATE_BUS_OFF)
1145				priv->can.can_stats.error_warning++;
1146			fallthrough;
1147		case CAN_STATE_ERROR_WARNING:
1148			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
1149			    new_state <= CAN_STATE_BUS_OFF)
1150				priv->can.can_stats.error_passive++;
1151			break;
1152		default:
1153			break;
1154		}
1155		priv->can.state = new_state;
1156
1157		if (intf & CANINTF_ERRIF) {
1158			/* Handle overflow counters */
1159			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
1160				if (eflag & EFLG_RX0OVR) {
1161					net->stats.rx_over_errors++;
1162					net->stats.rx_errors++;
1163				}
1164				if (eflag & EFLG_RX1OVR) {
1165					net->stats.rx_over_errors++;
1166					net->stats.rx_errors++;
1167				}
1168				can_id |= CAN_ERR_CRTL;
1169				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
1170			}
1171			mcp251x_error_skb(net, can_id, data1);
1172		}
1173
1174		if (priv->can.state == CAN_STATE_BUS_OFF) {
1175			if (priv->can.restart_ms == 0) {
1176				priv->force_quit = 1;
1177				priv->can.can_stats.bus_off++;
1178				can_bus_off(net);
1179				mcp251x_hw_sleep(spi);
1180				break;
1181			}
1182		}
1183
1184		if (intf == 0)
1185			break;
1186
1187		if (intf & CANINTF_TX) {
1188			if (priv->tx_busy) {
1189				net->stats.tx_packets++;
1190				net->stats.tx_bytes += can_get_echo_skb(net, 0,
1191									NULL);
1192				priv->tx_busy = false;
1193			}
1194			netif_wake_queue(net);
1195		}
1196	}
1197	mutex_unlock(&priv->mcp_lock);
1198	return IRQ_HANDLED;
1199}
1200
1201static int mcp251x_open(struct net_device *net)
1202{
1203	struct mcp251x_priv *priv = netdev_priv(net);
1204	struct spi_device *spi = priv->spi;
1205	unsigned long flags = 0;
1206	int ret;
1207
1208	ret = open_candev(net);
1209	if (ret) {
1210		dev_err(&spi->dev, "unable to set initial baudrate!\n");
1211		return ret;
1212	}
1213
1214	mutex_lock(&priv->mcp_lock);
1215	mcp251x_power_enable(priv->transceiver, 1);
1216
1217	priv->force_quit = 0;
1218	priv->tx_skb = NULL;
1219	priv->tx_busy = false;
1220
1221	if (!dev_fwnode(&spi->dev))
1222		flags = IRQF_TRIGGER_FALLING;
1223
1224	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
1225				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
1226				   priv);
1227	if (ret) {
1228		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1229		goto out_close;
1230	}
1231
1232	ret = mcp251x_hw_wake(spi);
1233	if (ret)
1234		goto out_free_irq;
1235	ret = mcp251x_setup(net, spi);
1236	if (ret)
1237		goto out_free_irq;
1238	ret = mcp251x_set_normal_mode(spi);
1239	if (ret)
1240		goto out_free_irq;
1241
1242	netif_wake_queue(net);
1243	mutex_unlock(&priv->mcp_lock);
1244
1245	return 0;
1246
1247out_free_irq:
1248	free_irq(spi->irq, priv);
1249	mcp251x_hw_sleep(spi);
1250out_close:
1251	mcp251x_power_enable(priv->transceiver, 0);
1252	close_candev(net);
1253	mutex_unlock(&priv->mcp_lock);
1254	return ret;
1255}
1256
1257static const struct net_device_ops mcp251x_netdev_ops = {
1258	.ndo_open = mcp251x_open,
1259	.ndo_stop = mcp251x_stop,
1260	.ndo_start_xmit = mcp251x_hard_start_xmit,
1261	.ndo_change_mtu = can_change_mtu,
1262};
1263
1264static const struct ethtool_ops mcp251x_ethtool_ops = {
1265	.get_ts_info = ethtool_op_get_ts_info,
1266};
1267
1268static const struct of_device_id mcp251x_of_match[] = {
1269	{
1270		.compatible	= "microchip,mcp2510",
1271		.data		= (void *)CAN_MCP251X_MCP2510,
1272	},
1273	{
1274		.compatible	= "microchip,mcp2515",
1275		.data		= (void *)CAN_MCP251X_MCP2515,
1276	},
1277	{
1278		.compatible	= "microchip,mcp25625",
1279		.data		= (void *)CAN_MCP251X_MCP25625,
1280	},
1281	{ }
1282};
1283MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1284
1285static const struct spi_device_id mcp251x_id_table[] = {
1286	{
1287		.name		= "mcp2510",
1288		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
1289	},
1290	{
1291		.name		= "mcp2515",
1292		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
1293	},
1294	{
1295		.name		= "mcp25625",
1296		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
1297	},
1298	{ }
1299};
1300MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1301
1302static int mcp251x_can_probe(struct spi_device *spi)
1303{
1304	const void *match = device_get_match_data(&spi->dev);
1305	struct net_device *net;
1306	struct mcp251x_priv *priv;
1307	struct clk *clk;
1308	u32 freq;
1309	int ret;
1310
1311	clk = devm_clk_get_optional(&spi->dev, NULL);
1312	if (IS_ERR(clk))
1313		return PTR_ERR(clk);
1314
1315	freq = clk_get_rate(clk);
1316	if (freq == 0)
1317		device_property_read_u32(&spi->dev, "clock-frequency", &freq);
1318
1319	/* Sanity check */
1320	if (freq < 1000000 || freq > 25000000)
1321		return -ERANGE;
1322
1323	/* Allocate can/net device */
1324	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1325	if (!net)
1326		return -ENOMEM;
1327
1328	ret = clk_prepare_enable(clk);
1329	if (ret)
1330		goto out_free;
1331
1332	net->netdev_ops = &mcp251x_netdev_ops;
1333	net->ethtool_ops = &mcp251x_ethtool_ops;
1334	net->flags |= IFF_ECHO;
1335
1336	priv = netdev_priv(net);
1337	priv->can.bittiming_const = &mcp251x_bittiming_const;
1338	priv->can.do_set_mode = mcp251x_do_set_mode;
1339	priv->can.clock.freq = freq / 2;
1340	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1341		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1342	if (match)
1343		priv->model = (enum mcp251x_model)(uintptr_t)match;
1344	else
1345		priv->model = spi_get_device_id(spi)->driver_data;
1346	priv->net = net;
1347	priv->clk = clk;
1348
1349	spi_set_drvdata(spi, priv);
1350
1351	/* Configure the SPI bus */
1352	spi->bits_per_word = 8;
1353	if (mcp251x_is_2510(spi))
1354		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1355	else
1356		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1357	ret = spi_setup(spi);
1358	if (ret)
1359		goto out_clk;
1360
1361	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1362	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1363	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1364	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1365		ret = -EPROBE_DEFER;
1366		goto out_clk;
1367	}
1368
1369	ret = mcp251x_power_enable(priv->power, 1);
1370	if (ret)
1371		goto out_clk;
1372
1373	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
1374				   0);
1375	if (!priv->wq) {
1376		ret = -ENOMEM;
1377		goto out_clk;
1378	}
1379	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1380	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
1381
1382	priv->spi = spi;
1383	mutex_init(&priv->mcp_lock);
1384
1385	priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1386					GFP_KERNEL);
1387	if (!priv->spi_tx_buf) {
1388		ret = -ENOMEM;
1389		goto error_probe;
1390	}
1391
1392	priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1393					GFP_KERNEL);
1394	if (!priv->spi_rx_buf) {
1395		ret = -ENOMEM;
1396		goto error_probe;
1397	}
1398
1399	SET_NETDEV_DEV(net, &spi->dev);
1400
1401	/* Here is OK to not lock the MCP, no one knows about it yet */
1402	ret = mcp251x_hw_probe(spi);
1403	if (ret) {
1404		if (ret == -ENODEV)
1405			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1406				priv->model);
1407		goto error_probe;
1408	}
1409
1410	mcp251x_hw_sleep(spi);
1411
1412	ret = register_candev(net);
1413	if (ret)
1414		goto error_probe;
1415
1416	ret = mcp251x_gpio_setup(priv);
1417	if (ret)
1418		goto out_unregister_candev;
1419
1420	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1421	return 0;
1422
1423out_unregister_candev:
1424	unregister_candev(net);
1425
1426error_probe:
1427	destroy_workqueue(priv->wq);
1428	priv->wq = NULL;
1429	mcp251x_power_enable(priv->power, 0);
1430
1431out_clk:
1432	clk_disable_unprepare(clk);
1433
1434out_free:
1435	free_candev(net);
1436
1437	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1438	return ret;
1439}
1440
1441static void mcp251x_can_remove(struct spi_device *spi)
1442{
1443	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1444	struct net_device *net = priv->net;
1445
1446	unregister_candev(net);
1447
1448	mcp251x_power_enable(priv->power, 0);
1449
1450	destroy_workqueue(priv->wq);
1451	priv->wq = NULL;
1452
1453	clk_disable_unprepare(priv->clk);
1454
1455	free_candev(net);
1456}
1457
1458static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1459{
1460	struct spi_device *spi = to_spi_device(dev);
1461	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1462	struct net_device *net = priv->net;
1463
1464	priv->force_quit = 1;
1465	disable_irq(spi->irq);
1466	/* Note: at this point neither IST nor workqueues are running.
1467	 * open/stop cannot be called anyway so locking is not needed
1468	 */
1469	if (netif_running(net)) {
1470		netif_device_detach(net);
1471
1472		mcp251x_hw_sleep(spi);
1473		mcp251x_power_enable(priv->transceiver, 0);
1474		priv->after_suspend = AFTER_SUSPEND_UP;
1475	} else {
1476		priv->after_suspend = AFTER_SUSPEND_DOWN;
1477	}
1478
1479	mcp251x_power_enable(priv->power, 0);
1480	priv->after_suspend |= AFTER_SUSPEND_POWER;
1481
1482	return 0;
1483}
1484
1485static int __maybe_unused mcp251x_can_resume(struct device *dev)
1486{
1487	struct spi_device *spi = to_spi_device(dev);
1488	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1489
1490	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1491		mcp251x_power_enable(priv->power, 1);
1492	if (priv->after_suspend & AFTER_SUSPEND_UP)
1493		mcp251x_power_enable(priv->transceiver, 1);
1494
1495	if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1496		queue_work(priv->wq, &priv->restart_work);
1497	else
1498		priv->after_suspend = 0;
1499
1500	priv->force_quit = 0;
1501	enable_irq(spi->irq);
1502	return 0;
1503}
1504
1505static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1506	mcp251x_can_resume);
1507
1508static struct spi_driver mcp251x_can_driver = {
1509	.driver = {
1510		.name = DEVICE_NAME,
1511		.of_match_table = mcp251x_of_match,
1512		.pm = &mcp251x_can_pm_ops,
1513	},
1514	.id_table = mcp251x_id_table,
1515	.probe = mcp251x_can_probe,
1516	.remove = mcp251x_can_remove,
1517};
1518module_spi_driver(mcp251x_can_driver);
1519
1520MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1521	      "Christian Pellegrin <chripell@evolware.org>");
1522MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1523MODULE_LICENSE("GPL v2");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
   3 *
   4 * MCP2510 support and bug fixes by Christian Pellegrin
   5 * <chripell@evolware.org>
   6 *
   7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
   8 *
   9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10 * Written under contract by:
  11 *   Chris Elston, Katalix Systems, Ltd.
  12 *
  13 * Based on Microchip MCP251x CAN controller driver written by
  14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15 *
  16 * Based on CAN bus driver for the CCAN controller written by
  17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18 * - Simon Kallweit, intefo AG
  19 * Copyright 2007
  20 */
  21
  22#include <linux/bitfield.h>
  23#include <linux/can/core.h>
  24#include <linux/can/dev.h>
  25#include <linux/clk.h>
  26#include <linux/completion.h>
  27#include <linux/delay.h>
  28#include <linux/device.h>
  29#include <linux/ethtool.h>
  30#include <linux/freezer.h>
 
  31#include <linux/gpio/driver.h>
  32#include <linux/interrupt.h>
  33#include <linux/io.h>
  34#include <linux/iopoll.h>
  35#include <linux/kernel.h>
  36#include <linux/module.h>
  37#include <linux/netdevice.h>
  38#include <linux/platform_device.h>
  39#include <linux/property.h>
  40#include <linux/regulator/consumer.h>
  41#include <linux/slab.h>
  42#include <linux/spi/spi.h>
  43#include <linux/uaccess.h>
  44
  45/* SPI interface instruction set */
  46#define INSTRUCTION_WRITE	0x02
  47#define INSTRUCTION_READ	0x03
  48#define INSTRUCTION_BIT_MODIFY	0x05
  49#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
  50#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
  51#define INSTRUCTION_RESET	0xC0
  52#define RTS_TXB0		0x01
  53#define RTS_TXB1		0x02
  54#define RTS_TXB2		0x04
  55#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
  56
  57/* MPC251x registers */
  58#define BFPCTRL			0x0c
  59#  define BFPCTRL_B0BFM		BIT(0)
  60#  define BFPCTRL_B1BFM		BIT(1)
  61#  define BFPCTRL_BFM(n)	(BFPCTRL_B0BFM << (n))
  62#  define BFPCTRL_BFM_MASK	GENMASK(1, 0)
  63#  define BFPCTRL_B0BFE		BIT(2)
  64#  define BFPCTRL_B1BFE		BIT(3)
  65#  define BFPCTRL_BFE(n)	(BFPCTRL_B0BFE << (n))
  66#  define BFPCTRL_BFE_MASK	GENMASK(3, 2)
  67#  define BFPCTRL_B0BFS		BIT(4)
  68#  define BFPCTRL_B1BFS		BIT(5)
  69#  define BFPCTRL_BFS(n)	(BFPCTRL_B0BFS << (n))
  70#  define BFPCTRL_BFS_MASK	GENMASK(5, 4)
  71#define TXRTSCTRL		0x0d
  72#  define TXRTSCTRL_B0RTSM	BIT(0)
  73#  define TXRTSCTRL_B1RTSM	BIT(1)
  74#  define TXRTSCTRL_B2RTSM	BIT(2)
  75#  define TXRTSCTRL_RTSM(n)	(TXRTSCTRL_B0RTSM << (n))
  76#  define TXRTSCTRL_RTSM_MASK	GENMASK(2, 0)
  77#  define TXRTSCTRL_B0RTS	BIT(3)
  78#  define TXRTSCTRL_B1RTS	BIT(4)
  79#  define TXRTSCTRL_B2RTS	BIT(5)
  80#  define TXRTSCTRL_RTS(n)	(TXRTSCTRL_B0RTS << (n))
  81#  define TXRTSCTRL_RTS_MASK	GENMASK(5, 3)
  82#define CANSTAT	      0x0e
  83#define CANCTRL	      0x0f
  84#  define CANCTRL_REQOP_MASK	    0xe0
  85#  define CANCTRL_REQOP_CONF	    0x80
  86#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
  87#  define CANCTRL_REQOP_LOOPBACK    0x40
  88#  define CANCTRL_REQOP_SLEEP	    0x20
  89#  define CANCTRL_REQOP_NORMAL	    0x00
  90#  define CANCTRL_OSM		    0x08
  91#  define CANCTRL_ABAT		    0x10
  92#define TEC	      0x1c
  93#define REC	      0x1d
  94#define CNF1	      0x2a
  95#  define CNF1_SJW_SHIFT   6
  96#define CNF2	      0x29
  97#  define CNF2_BTLMODE	   0x80
  98#  define CNF2_SAM         0x40
  99#  define CNF2_PS1_SHIFT   3
 100#define CNF3	      0x28
 101#  define CNF3_SOF	   0x08
 102#  define CNF3_WAKFIL	   0x04
 103#  define CNF3_PHSEG2_MASK 0x07
 104#define CANINTE	      0x2b
 105#  define CANINTE_MERRE 0x80
 106#  define CANINTE_WAKIE 0x40
 107#  define CANINTE_ERRIE 0x20
 108#  define CANINTE_TX2IE 0x10
 109#  define CANINTE_TX1IE 0x08
 110#  define CANINTE_TX0IE 0x04
 111#  define CANINTE_RX1IE 0x02
 112#  define CANINTE_RX0IE 0x01
 113#define CANINTF	      0x2c
 114#  define CANINTF_MERRF 0x80
 115#  define CANINTF_WAKIF 0x40
 116#  define CANINTF_ERRIF 0x20
 117#  define CANINTF_TX2IF 0x10
 118#  define CANINTF_TX1IF 0x08
 119#  define CANINTF_TX0IF 0x04
 120#  define CANINTF_RX1IF 0x02
 121#  define CANINTF_RX0IF 0x01
 122#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
 123#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
 124#  define CANINTF_ERR (CANINTF_ERRIF)
 125#define EFLG	      0x2d
 126#  define EFLG_EWARN	0x01
 127#  define EFLG_RXWAR	0x02
 128#  define EFLG_TXWAR	0x04
 129#  define EFLG_RXEP	0x08
 130#  define EFLG_TXEP	0x10
 131#  define EFLG_TXBO	0x20
 132#  define EFLG_RX0OVR	0x40
 133#  define EFLG_RX1OVR	0x80
 134#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
 135#  define TXBCTRL_ABTF	0x40
 136#  define TXBCTRL_MLOA	0x20
 137#  define TXBCTRL_TXERR 0x10
 138#  define TXBCTRL_TXREQ 0x08
 139#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
 140#  define SIDH_SHIFT    3
 141#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
 142#  define SIDL_SID_MASK    7
 143#  define SIDL_SID_SHIFT   5
 144#  define SIDL_EXIDE_SHIFT 3
 145#  define SIDL_EID_SHIFT   16
 146#  define SIDL_EID_MASK    3
 147#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
 148#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
 149#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
 150#  define DLC_RTR_SHIFT    6
 151#define TXBCTRL_OFF 0
 152#define TXBSIDH_OFF 1
 153#define TXBSIDL_OFF 2
 154#define TXBEID8_OFF 3
 155#define TXBEID0_OFF 4
 156#define TXBDLC_OFF  5
 157#define TXBDAT_OFF  6
 158#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
 159#  define RXBCTRL_BUKT	0x04
 160#  define RXBCTRL_RXM0	0x20
 161#  define RXBCTRL_RXM1	0x40
 162#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
 163#  define RXBSIDH_SHIFT 3
 164#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
 165#  define RXBSIDL_IDE   0x08
 166#  define RXBSIDL_SRR   0x10
 167#  define RXBSIDL_EID   3
 168#  define RXBSIDL_SHIFT 5
 169#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
 170#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
 171#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
 172#  define RXBDLC_LEN_MASK  0x0f
 173#  define RXBDLC_RTR       0x40
 174#define RXBCTRL_OFF 0
 175#define RXBSIDH_OFF 1
 176#define RXBSIDL_OFF 2
 177#define RXBEID8_OFF 3
 178#define RXBEID0_OFF 4
 179#define RXBDLC_OFF  5
 180#define RXBDAT_OFF  6
 181#define RXFSID(n) ((n < 3) ? 0 : 4)
 182#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
 183#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
 184#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
 185#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
 186#define RXMSIDH(n) ((n) * 4 + 0x20)
 187#define RXMSIDL(n) ((n) * 4 + 0x21)
 188#define RXMEID8(n) ((n) * 4 + 0x22)
 189#define RXMEID0(n) ((n) * 4 + 0x23)
 190
 191#define GET_BYTE(val, byte)			\
 192	(((val) >> ((byte) * 8)) & 0xff)
 193#define SET_BYTE(val, byte)			\
 194	(((val) & 0xff) << ((byte) * 8))
 195
 196/* Buffer size required for the largest SPI transfer (i.e., reading a
 197 * frame)
 198 */
 199#define CAN_FRAME_MAX_DATA_LEN	8
 200#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
 201#define CAN_FRAME_MAX_BITS	128
 202
 203#define TX_ECHO_SKB_MAX	1
 204
 205#define MCP251X_OST_DELAY_MS	(5)
 206
 207#define DEVICE_NAME "mcp251x"
 208
 209static const struct can_bittiming_const mcp251x_bittiming_const = {
 210	.name = DEVICE_NAME,
 211	.tseg1_min = 3,
 212	.tseg1_max = 16,
 213	.tseg2_min = 2,
 214	.tseg2_max = 8,
 215	.sjw_max = 4,
 216	.brp_min = 1,
 217	.brp_max = 64,
 218	.brp_inc = 1,
 219};
 220
 221enum mcp251x_model {
 222	CAN_MCP251X_MCP2510	= 0x2510,
 223	CAN_MCP251X_MCP2515	= 0x2515,
 224	CAN_MCP251X_MCP25625	= 0x25625,
 225};
 226
 227struct mcp251x_priv {
 228	struct can_priv	   can;
 229	struct net_device *net;
 230	struct spi_device *spi;
 231	enum mcp251x_model model;
 232
 233	struct mutex mcp_lock; /* SPI device lock */
 234
 235	u8 *spi_tx_buf;
 236	u8 *spi_rx_buf;
 237
 238	struct sk_buff *tx_skb;
 239
 240	struct workqueue_struct *wq;
 241	struct work_struct tx_work;
 242	struct work_struct restart_work;
 243
 244	int force_quit;
 245	int after_suspend;
 246#define AFTER_SUSPEND_UP 1
 247#define AFTER_SUSPEND_DOWN 2
 248#define AFTER_SUSPEND_POWER 4
 249#define AFTER_SUSPEND_RESTART 8
 250	int restart_tx;
 251	bool tx_busy;
 252
 253	struct regulator *power;
 254	struct regulator *transceiver;
 255	struct clk *clk;
 256#ifdef CONFIG_GPIOLIB
 257	struct gpio_chip gpio;
 258	u8 reg_bfpctrl;
 259#endif
 260};
 261
 262#define MCP251X_IS(_model) \
 263static inline int mcp251x_is_##_model(struct spi_device *spi) \
 264{ \
 265	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
 266	return priv->model == CAN_MCP251X_MCP##_model; \
 267}
 268
 269MCP251X_IS(2510);
 270
 271static void mcp251x_clean(struct net_device *net)
 272{
 273	struct mcp251x_priv *priv = netdev_priv(net);
 274
 275	if (priv->tx_skb || priv->tx_busy)
 276		net->stats.tx_errors++;
 277	dev_kfree_skb(priv->tx_skb);
 278	if (priv->tx_busy)
 279		can_free_echo_skb(priv->net, 0, NULL);
 280	priv->tx_skb = NULL;
 281	priv->tx_busy = false;
 282}
 283
 284/* Note about handling of error return of mcp251x_spi_trans: accessing
 285 * registers via SPI is not really different conceptually than using
 286 * normal I/O assembler instructions, although it's much more
 287 * complicated from a practical POV. So it's not advisable to always
 288 * check the return value of this function. Imagine that every
 289 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 290 * error();", it would be a great mess (well there are some situation
 291 * when exception handling C++ like could be useful after all). So we
 292 * just check that transfers are OK at the beginning of our
 293 * conversation with the chip and to avoid doing really nasty things
 294 * (like injecting bogus packets in the network stack).
 295 */
 296static int mcp251x_spi_trans(struct spi_device *spi, int len)
 297{
 298	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 299	struct spi_transfer t = {
 300		.tx_buf = priv->spi_tx_buf,
 301		.rx_buf = priv->spi_rx_buf,
 302		.len = len,
 303		.cs_change = 0,
 304	};
 305	struct spi_message m;
 306	int ret;
 307
 308	spi_message_init(&m);
 309	spi_message_add_tail(&t, &m);
 310
 311	ret = spi_sync(spi, &m);
 312	if (ret)
 313		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
 314	return ret;
 315}
 316
 317static int mcp251x_spi_write(struct spi_device *spi, int len)
 318{
 319	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 320	int ret;
 321
 322	ret = spi_write(spi, priv->spi_tx_buf, len);
 323	if (ret)
 324		dev_err(&spi->dev, "spi write failed: ret = %d\n", ret);
 325
 326	return ret;
 327}
 328
 329static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
 330{
 331	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 332	u8 val = 0;
 333
 334	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 335	priv->spi_tx_buf[1] = reg;
 336
 337	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
 338		spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
 339	} else {
 340		mcp251x_spi_trans(spi, 3);
 341		val = priv->spi_rx_buf[2];
 342	}
 343
 344	return val;
 345}
 346
 347static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
 348{
 349	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 350
 351	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 352	priv->spi_tx_buf[1] = reg;
 353
 354	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
 355		u8 val[2] = { 0 };
 356
 357		spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
 358		*v1 = val[0];
 359		*v2 = val[1];
 360	} else {
 361		mcp251x_spi_trans(spi, 4);
 362
 363		*v1 = priv->spi_rx_buf[2];
 364		*v2 = priv->spi_rx_buf[3];
 365	}
 366}
 367
 368static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
 369{
 370	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 371
 372	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 373	priv->spi_tx_buf[1] = reg;
 374	priv->spi_tx_buf[2] = val;
 375
 376	mcp251x_spi_write(spi, 3);
 377}
 378
 379static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
 380{
 381	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 382
 383	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 384	priv->spi_tx_buf[1] = reg;
 385	priv->spi_tx_buf[2] = v1;
 386	priv->spi_tx_buf[3] = v2;
 387
 388	mcp251x_spi_write(spi, 4);
 389}
 390
 391static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
 392			       u8 mask, u8 val)
 393{
 394	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 395
 396	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
 397	priv->spi_tx_buf[1] = reg;
 398	priv->spi_tx_buf[2] = mask;
 399	priv->spi_tx_buf[3] = val;
 400
 401	mcp251x_spi_write(spi, 4);
 402}
 403
 404static u8 mcp251x_read_stat(struct spi_device *spi)
 405{
 406	return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
 407}
 408
 409#define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
 410	readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
 411			   delay_us, timeout_us)
 412
 413#ifdef CONFIG_GPIOLIB
 414enum {
 415	MCP251X_GPIO_TX0RTS = 0,		/* inputs */
 416	MCP251X_GPIO_TX1RTS,
 417	MCP251X_GPIO_TX2RTS,
 418	MCP251X_GPIO_RX0BF,			/* outputs */
 419	MCP251X_GPIO_RX1BF,
 420};
 421
 422#define MCP251X_GPIO_INPUT_MASK \
 423	GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
 424#define MCP251X_GPIO_OUTPUT_MASK \
 425	GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)
 426
 427static const char * const mcp251x_gpio_names[] = {
 428	[MCP251X_GPIO_TX0RTS] = "TX0RTS",	/* inputs */
 429	[MCP251X_GPIO_TX1RTS] = "TX1RTS",
 430	[MCP251X_GPIO_TX2RTS] = "TX2RTS",
 431	[MCP251X_GPIO_RX0BF] = "RX0BF",		/* outputs */
 432	[MCP251X_GPIO_RX1BF] = "RX1BF",
 433};
 434
 435static inline bool mcp251x_gpio_is_input(unsigned int offset)
 436{
 437	return offset <= MCP251X_GPIO_TX2RTS;
 438}
 439
 440static int mcp251x_gpio_request(struct gpio_chip *chip,
 441				unsigned int offset)
 442{
 443	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 444	u8 val;
 445
 446	/* nothing to be done for inputs */
 447	if (mcp251x_gpio_is_input(offset))
 448		return 0;
 449
 450	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
 451
 452	mutex_lock(&priv->mcp_lock);
 453	mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
 454	mutex_unlock(&priv->mcp_lock);
 455
 456	priv->reg_bfpctrl |= val;
 457
 458	return 0;
 459}
 460
 461static void mcp251x_gpio_free(struct gpio_chip *chip,
 462			      unsigned int offset)
 463{
 464	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 465	u8 val;
 466
 467	/* nothing to be done for inputs */
 468	if (mcp251x_gpio_is_input(offset))
 469		return;
 470
 471	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
 472
 473	mutex_lock(&priv->mcp_lock);
 474	mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
 475	mutex_unlock(&priv->mcp_lock);
 476
 477	priv->reg_bfpctrl &= ~val;
 478}
 479
 480static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
 481				      unsigned int offset)
 482{
 483	if (mcp251x_gpio_is_input(offset))
 484		return GPIO_LINE_DIRECTION_IN;
 485
 486	return GPIO_LINE_DIRECTION_OUT;
 487}
 488
 489static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
 490{
 491	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 492	u8 reg, mask, val;
 493
 494	if (mcp251x_gpio_is_input(offset)) {
 495		reg = TXRTSCTRL;
 496		mask = TXRTSCTRL_RTS(offset);
 497	} else {
 498		reg = BFPCTRL;
 499		mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
 500	}
 501
 502	mutex_lock(&priv->mcp_lock);
 503	val = mcp251x_read_reg(priv->spi, reg);
 504	mutex_unlock(&priv->mcp_lock);
 505
 506	return !!(val & mask);
 507}
 508
 509static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
 510				     unsigned long *maskp, unsigned long *bitsp)
 511{
 512	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 513	unsigned long bits = 0;
 514	u8 val;
 515
 516	mutex_lock(&priv->mcp_lock);
 517	if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
 518		val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
 519		val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
 520		bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
 521	}
 522	if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
 523		val = mcp251x_read_reg(priv->spi, BFPCTRL);
 524		val = FIELD_GET(BFPCTRL_BFS_MASK, val);
 525		bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
 526	}
 527	mutex_unlock(&priv->mcp_lock);
 528
 529	bitsp[0] = bits;
 530	return 0;
 531}
 532
 533static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
 534			     int value)
 535{
 536	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 537	u8 mask, val;
 538
 539	mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
 540	val = value ? mask : 0;
 541
 542	mutex_lock(&priv->mcp_lock);
 543	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
 544	mutex_unlock(&priv->mcp_lock);
 545
 546	priv->reg_bfpctrl &= ~mask;
 547	priv->reg_bfpctrl |= val;
 548}
 549
 550static void
 551mcp251x_gpio_set_multiple(struct gpio_chip *chip,
 552			  unsigned long *maskp, unsigned long *bitsp)
 553{
 554	struct mcp251x_priv *priv = gpiochip_get_data(chip);
 555	u8 mask, val;
 556
 557	mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
 558	mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);
 559
 560	val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
 561	val = FIELD_PREP(BFPCTRL_BFS_MASK, val);
 562
 563	if (!mask)
 564		return;
 565
 566	mutex_lock(&priv->mcp_lock);
 567	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
 568	mutex_unlock(&priv->mcp_lock);
 569
 570	priv->reg_bfpctrl &= ~mask;
 571	priv->reg_bfpctrl |= val;
 572}
 573
 574static void mcp251x_gpio_restore(struct spi_device *spi)
 575{
 576	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 577
 578	mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
 579}
 580
 581static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
 582{
 583	struct gpio_chip *gpio = &priv->gpio;
 584
 585	if (!device_property_present(&priv->spi->dev, "gpio-controller"))
 586		return 0;
 587
 588	/* gpiochip handles TX[0..2]RTS and RX[0..1]BF */
 589	gpio->label = priv->spi->modalias;
 590	gpio->parent = &priv->spi->dev;
 591	gpio->owner = THIS_MODULE;
 592	gpio->request = mcp251x_gpio_request;
 593	gpio->free = mcp251x_gpio_free;
 594	gpio->get_direction = mcp251x_gpio_get_direction;
 595	gpio->get = mcp251x_gpio_get;
 596	gpio->get_multiple = mcp251x_gpio_get_multiple;
 597	gpio->set = mcp251x_gpio_set;
 598	gpio->set_multiple = mcp251x_gpio_set_multiple;
 599	gpio->base = -1;
 600	gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
 601	gpio->names = mcp251x_gpio_names;
 602	gpio->can_sleep = true;
 603
 604	return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
 605}
 606#else
 607static inline void mcp251x_gpio_restore(struct spi_device *spi)
 608{
 609}
 610
 611static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
 612{
 613	return 0;
 614}
 615#endif
 616
 617static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
 618				int len, int tx_buf_idx)
 619{
 620	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 621
 622	if (mcp251x_is_2510(spi)) {
 623		int i;
 624
 625		for (i = 1; i < TXBDAT_OFF + len; i++)
 626			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
 627					  buf[i]);
 628	} else {
 629		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
 630		mcp251x_spi_write(spi, TXBDAT_OFF + len);
 631	}
 632}
 633
 634static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
 635			  int tx_buf_idx)
 636{
 637	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 638	u32 sid, eid, exide, rtr;
 639	u8 buf[SPI_TRANSFER_BUF_LEN];
 640
 641	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
 642	if (exide)
 643		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
 644	else
 645		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
 646	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
 647	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
 648
 649	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
 650	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
 651	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
 652		(exide << SIDL_EXIDE_SHIFT) |
 653		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
 654	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
 655	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
 656	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->len;
 657	memcpy(buf + TXBDAT_OFF, frame->data, frame->len);
 658	mcp251x_hw_tx_frame(spi, buf, frame->len, tx_buf_idx);
 659
 660	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
 661	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
 662	mcp251x_spi_write(priv->spi, 1);
 663}
 664
 665static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
 666				int buf_idx)
 667{
 668	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 669
 670	if (mcp251x_is_2510(spi)) {
 671		int i, len;
 672
 673		for (i = 1; i < RXBDAT_OFF; i++)
 674			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 675
 676		len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 677		for (; i < (RXBDAT_OFF + len); i++)
 678			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 679	} else {
 680		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
 681		if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
 682			spi_write_then_read(spi, priv->spi_tx_buf, 1,
 683					    priv->spi_rx_buf,
 684					    SPI_TRANSFER_BUF_LEN);
 685			memcpy(buf + 1, priv->spi_rx_buf,
 686			       SPI_TRANSFER_BUF_LEN - 1);
 687		} else {
 688			mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
 689			memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
 690		}
 691	}
 692}
 693
 694static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
 695{
 696	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 697	struct sk_buff *skb;
 698	struct can_frame *frame;
 699	u8 buf[SPI_TRANSFER_BUF_LEN];
 700
 701	skb = alloc_can_skb(priv->net, &frame);
 702	if (!skb) {
 703		dev_err(&spi->dev, "cannot allocate RX skb\n");
 704		priv->net->stats.rx_dropped++;
 705		return;
 706	}
 707
 708	mcp251x_hw_rx_frame(spi, buf, buf_idx);
 709	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
 710		/* Extended ID format */
 711		frame->can_id = CAN_EFF_FLAG;
 712		frame->can_id |=
 713			/* Extended ID part */
 714			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
 715			SET_BYTE(buf[RXBEID8_OFF], 1) |
 716			SET_BYTE(buf[RXBEID0_OFF], 0) |
 717			/* Standard ID part */
 718			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 719			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
 720		/* Remote transmission request */
 721		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
 722			frame->can_id |= CAN_RTR_FLAG;
 723	} else {
 724		/* Standard ID format */
 725		frame->can_id =
 726			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 727			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
 728		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
 729			frame->can_id |= CAN_RTR_FLAG;
 730	}
 731	/* Data length */
 732	frame->len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 733	if (!(frame->can_id & CAN_RTR_FLAG)) {
 734		memcpy(frame->data, buf + RXBDAT_OFF, frame->len);
 735
 736		priv->net->stats.rx_bytes += frame->len;
 737	}
 738	priv->net->stats.rx_packets++;
 739
 740	netif_rx(skb);
 741}
 742
 743static void mcp251x_hw_sleep(struct spi_device *spi)
 744{
 745	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
 746}
 747
 748/* May only be called when device is sleeping! */
 749static int mcp251x_hw_wake(struct spi_device *spi)
 750{
 751	u8 value;
 752	int ret;
 753
 754	/* Force wakeup interrupt to wake device, but don't execute IST */
 755	disable_irq_nosync(spi->irq);
 756	mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);
 757
 758	/* Wait for oscillator startup timer after wake up */
 759	mdelay(MCP251X_OST_DELAY_MS);
 760
 761	/* Put device into config mode */
 762	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);
 763
 764	/* Wait for the device to enter config mode */
 765	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
 766					     MCP251X_OST_DELAY_MS * 1000,
 767					     USEC_PER_SEC);
 768	if (ret) {
 769		dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
 770		return ret;
 771	}
 772
 773	/* Disable and clear pending interrupts */
 774	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
 775	enable_irq(spi->irq);
 776
 777	return 0;
 778}
 779
 780static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
 781					   struct net_device *net)
 782{
 783	struct mcp251x_priv *priv = netdev_priv(net);
 784	struct spi_device *spi = priv->spi;
 785
 786	if (priv->tx_skb || priv->tx_busy) {
 787		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
 788		return NETDEV_TX_BUSY;
 789	}
 790
 791	if (can_dev_dropped_skb(net, skb))
 792		return NETDEV_TX_OK;
 793
 794	netif_stop_queue(net);
 795	priv->tx_skb = skb;
 796	queue_work(priv->wq, &priv->tx_work);
 797
 798	return NETDEV_TX_OK;
 799}
 800
 801static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
 802{
 803	struct mcp251x_priv *priv = netdev_priv(net);
 804
 805	switch (mode) {
 806	case CAN_MODE_START:
 807		mcp251x_clean(net);
 808		/* We have to delay work since SPI I/O may sleep */
 809		priv->can.state = CAN_STATE_ERROR_ACTIVE;
 810		priv->restart_tx = 1;
 811		if (priv->can.restart_ms == 0)
 812			priv->after_suspend = AFTER_SUSPEND_RESTART;
 813		queue_work(priv->wq, &priv->restart_work);
 814		break;
 815	default:
 816		return -EOPNOTSUPP;
 817	}
 818
 819	return 0;
 820}
 821
 822static int mcp251x_set_normal_mode(struct spi_device *spi)
 823{
 824	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 825	u8 value;
 826	int ret;
 827
 828	/* Enable interrupts */
 829	mcp251x_write_reg(spi, CANINTE,
 830			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
 831			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
 832
 833	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 834		/* Put device into loopback mode */
 835		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
 836	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 837		/* Put device into listen-only mode */
 838		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
 839	} else {
 840		/* Put device into normal mode */
 841		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
 842
 843		/* Wait for the device to enter normal mode */
 844		ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
 845						     MCP251X_OST_DELAY_MS * 1000,
 846						     USEC_PER_SEC);
 847		if (ret) {
 848			dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
 849			return ret;
 850		}
 851	}
 852	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 853	return 0;
 854}
 855
 856static int mcp251x_do_set_bittiming(struct net_device *net)
 857{
 858	struct mcp251x_priv *priv = netdev_priv(net);
 859	struct can_bittiming *bt = &priv->can.bittiming;
 860	struct spi_device *spi = priv->spi;
 861
 862	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
 863			  (bt->brp - 1));
 864	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
 865			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
 866			   CNF2_SAM : 0) |
 867			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
 868			  (bt->prop_seg - 1));
 869	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
 870			   (bt->phase_seg2 - 1));
 871	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
 872		mcp251x_read_reg(spi, CNF1),
 873		mcp251x_read_reg(spi, CNF2),
 874		mcp251x_read_reg(spi, CNF3));
 875
 876	return 0;
 877}
 878
 879static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
 880{
 881	mcp251x_do_set_bittiming(net);
 882
 883	mcp251x_write_reg(spi, RXBCTRL(0),
 884			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
 885	mcp251x_write_reg(spi, RXBCTRL(1),
 886			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
 887	return 0;
 888}
 889
 890static int mcp251x_hw_reset(struct spi_device *spi)
 891{
 892	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 893	u8 value;
 894	int ret;
 895
 896	/* Wait for oscillator startup timer after power up */
 897	mdelay(MCP251X_OST_DELAY_MS);
 898
 899	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
 900	ret = mcp251x_spi_write(spi, 1);
 901	if (ret)
 902		return ret;
 903
 904	/* Wait for oscillator startup timer after reset */
 905	mdelay(MCP251X_OST_DELAY_MS);
 906
 907	/* Wait for reset to finish */
 908	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
 909					     MCP251X_OST_DELAY_MS * 1000,
 910					     USEC_PER_SEC);
 911	if (ret)
 912		dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
 913	return ret;
 914}
 915
 916static int mcp251x_hw_probe(struct spi_device *spi)
 917{
 918	u8 ctrl;
 919	int ret;
 920
 921	ret = mcp251x_hw_reset(spi);
 922	if (ret)
 923		return ret;
 924
 925	ctrl = mcp251x_read_reg(spi, CANCTRL);
 926
 927	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
 928
 929	/* Check for power up default value */
 930	if ((ctrl & 0x17) != 0x07)
 931		return -ENODEV;
 932
 933	return 0;
 934}
 935
 936static int mcp251x_power_enable(struct regulator *reg, int enable)
 937{
 938	if (IS_ERR_OR_NULL(reg))
 939		return 0;
 940
 941	if (enable)
 942		return regulator_enable(reg);
 943	else
 944		return regulator_disable(reg);
 945}
 946
 947static int mcp251x_stop(struct net_device *net)
 948{
 949	struct mcp251x_priv *priv = netdev_priv(net);
 950	struct spi_device *spi = priv->spi;
 951
 952	close_candev(net);
 953
 954	priv->force_quit = 1;
 955	free_irq(spi->irq, priv);
 956
 957	mutex_lock(&priv->mcp_lock);
 958
 959	/* Disable and clear pending interrupts */
 960	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
 961
 962	mcp251x_write_reg(spi, TXBCTRL(0), 0);
 963	mcp251x_clean(net);
 964
 965	mcp251x_hw_sleep(spi);
 966
 967	mcp251x_power_enable(priv->transceiver, 0);
 968
 969	priv->can.state = CAN_STATE_STOPPED;
 970
 971	mutex_unlock(&priv->mcp_lock);
 972
 973	return 0;
 974}
 975
 976static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
 977{
 978	struct sk_buff *skb;
 979	struct can_frame *frame;
 980
 981	skb = alloc_can_err_skb(net, &frame);
 982	if (skb) {
 983		frame->can_id |= can_id;
 984		frame->data[1] = data1;
 985		netif_rx(skb);
 986	} else {
 987		netdev_err(net, "cannot allocate error skb\n");
 988	}
 989}
 990
 991static void mcp251x_tx_work_handler(struct work_struct *ws)
 992{
 993	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 994						 tx_work);
 995	struct spi_device *spi = priv->spi;
 996	struct net_device *net = priv->net;
 997	struct can_frame *frame;
 998
 999	mutex_lock(&priv->mcp_lock);
1000	if (priv->tx_skb) {
1001		if (priv->can.state == CAN_STATE_BUS_OFF) {
1002			mcp251x_clean(net);
1003		} else {
1004			frame = (struct can_frame *)priv->tx_skb->data;
1005
1006			if (frame->len > CAN_FRAME_MAX_DATA_LEN)
1007				frame->len = CAN_FRAME_MAX_DATA_LEN;
1008			mcp251x_hw_tx(spi, frame, 0);
1009			priv->tx_busy = true;
1010			can_put_echo_skb(priv->tx_skb, net, 0, 0);
1011			priv->tx_skb = NULL;
1012		}
1013	}
1014	mutex_unlock(&priv->mcp_lock);
1015}
1016
1017static void mcp251x_restart_work_handler(struct work_struct *ws)
1018{
1019	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1020						 restart_work);
1021	struct spi_device *spi = priv->spi;
1022	struct net_device *net = priv->net;
1023
1024	mutex_lock(&priv->mcp_lock);
1025	if (priv->after_suspend) {
1026		if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1027			mcp251x_hw_reset(spi);
1028			mcp251x_setup(net, spi);
1029			mcp251x_gpio_restore(spi);
1030		} else {
1031			mcp251x_hw_wake(spi);
1032		}
1033		priv->force_quit = 0;
1034		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
1035			mcp251x_set_normal_mode(spi);
1036		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
1037			netif_device_attach(net);
1038			mcp251x_clean(net);
1039			mcp251x_set_normal_mode(spi);
1040			netif_wake_queue(net);
1041		} else {
1042			mcp251x_hw_sleep(spi);
1043		}
1044		priv->after_suspend = 0;
1045	}
1046
1047	if (priv->restart_tx) {
1048		priv->restart_tx = 0;
1049		mcp251x_write_reg(spi, TXBCTRL(0), 0);
1050		mcp251x_clean(net);
1051		netif_wake_queue(net);
1052		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
1053	}
1054	mutex_unlock(&priv->mcp_lock);
1055}
1056
1057static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
1058{
1059	struct mcp251x_priv *priv = dev_id;
1060	struct spi_device *spi = priv->spi;
1061	struct net_device *net = priv->net;
1062
1063	mutex_lock(&priv->mcp_lock);
1064	while (!priv->force_quit) {
1065		enum can_state new_state;
1066		u8 intf, eflag;
1067		u8 clear_intf = 0;
1068		int can_id = 0, data1 = 0;
1069
1070		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
1071
1072		/* receive buffer 0 */
1073		if (intf & CANINTF_RX0IF) {
1074			mcp251x_hw_rx(spi, 0);
1075			/* Free one buffer ASAP
1076			 * (The MCP2515/25625 does this automatically.)
1077			 */
1078			if (mcp251x_is_2510(spi))
1079				mcp251x_write_bits(spi, CANINTF,
1080						   CANINTF_RX0IF, 0x00);
1081
1082			/* check if buffer 1 is already known to be full, no need to re-read */
1083			if (!(intf & CANINTF_RX1IF)) {
1084				u8 intf1, eflag1;
1085
1086				/* intf needs to be read again to avoid a race condition */
1087				mcp251x_read_2regs(spi, CANINTF, &intf1, &eflag1);
1088
1089				/* combine flags from both operations for error handling */
1090				intf |= intf1;
1091				eflag |= eflag1;
1092			}
1093		}
1094
1095		/* receive buffer 1 */
1096		if (intf & CANINTF_RX1IF) {
1097			mcp251x_hw_rx(spi, 1);
1098			/* The MCP2515/25625 does this automatically. */
1099			if (mcp251x_is_2510(spi))
1100				clear_intf |= CANINTF_RX1IF;
1101		}
1102
1103		/* mask out flags we don't care about */
1104		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
1105
1106		/* any error or tx interrupt we need to clear? */
1107		if (intf & (CANINTF_ERR | CANINTF_TX))
1108			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
1109		if (clear_intf)
1110			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
1111
1112		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
1113			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
1114
1115		/* Update can state */
1116		if (eflag & EFLG_TXBO) {
1117			new_state = CAN_STATE_BUS_OFF;
1118			can_id |= CAN_ERR_BUSOFF;
1119		} else if (eflag & EFLG_TXEP) {
1120			new_state = CAN_STATE_ERROR_PASSIVE;
1121			can_id |= CAN_ERR_CRTL;
1122			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
1123		} else if (eflag & EFLG_RXEP) {
1124			new_state = CAN_STATE_ERROR_PASSIVE;
1125			can_id |= CAN_ERR_CRTL;
1126			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
1127		} else if (eflag & EFLG_TXWAR) {
1128			new_state = CAN_STATE_ERROR_WARNING;
1129			can_id |= CAN_ERR_CRTL;
1130			data1 |= CAN_ERR_CRTL_TX_WARNING;
1131		} else if (eflag & EFLG_RXWAR) {
1132			new_state = CAN_STATE_ERROR_WARNING;
1133			can_id |= CAN_ERR_CRTL;
1134			data1 |= CAN_ERR_CRTL_RX_WARNING;
1135		} else {
1136			new_state = CAN_STATE_ERROR_ACTIVE;
1137		}
1138
1139		/* Update can state statistics */
1140		switch (priv->can.state) {
1141		case CAN_STATE_ERROR_ACTIVE:
1142			if (new_state >= CAN_STATE_ERROR_WARNING &&
1143			    new_state <= CAN_STATE_BUS_OFF)
1144				priv->can.can_stats.error_warning++;
1145			fallthrough;
1146		case CAN_STATE_ERROR_WARNING:
1147			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
1148			    new_state <= CAN_STATE_BUS_OFF)
1149				priv->can.can_stats.error_passive++;
1150			break;
1151		default:
1152			break;
1153		}
1154		priv->can.state = new_state;
1155
1156		if (intf & CANINTF_ERRIF) {
1157			/* Handle overflow counters */
1158			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
1159				if (eflag & EFLG_RX0OVR) {
1160					net->stats.rx_over_errors++;
1161					net->stats.rx_errors++;
1162				}
1163				if (eflag & EFLG_RX1OVR) {
1164					net->stats.rx_over_errors++;
1165					net->stats.rx_errors++;
1166				}
1167				can_id |= CAN_ERR_CRTL;
1168				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
1169			}
1170			mcp251x_error_skb(net, can_id, data1);
1171		}
1172
1173		if (priv->can.state == CAN_STATE_BUS_OFF) {
1174			if (priv->can.restart_ms == 0) {
1175				priv->force_quit = 1;
1176				priv->can.can_stats.bus_off++;
1177				can_bus_off(net);
1178				mcp251x_hw_sleep(spi);
1179				break;
1180			}
1181		}
1182
1183		if (intf == 0)
1184			break;
1185
1186		if (intf & CANINTF_TX) {
1187			if (priv->tx_busy) {
1188				net->stats.tx_packets++;
1189				net->stats.tx_bytes += can_get_echo_skb(net, 0,
1190									NULL);
1191				priv->tx_busy = false;
1192			}
1193			netif_wake_queue(net);
1194		}
1195	}
1196	mutex_unlock(&priv->mcp_lock);
1197	return IRQ_HANDLED;
1198}
1199
1200static int mcp251x_open(struct net_device *net)
1201{
1202	struct mcp251x_priv *priv = netdev_priv(net);
1203	struct spi_device *spi = priv->spi;
1204	unsigned long flags = 0;
1205	int ret;
1206
1207	ret = open_candev(net);
1208	if (ret) {
1209		dev_err(&spi->dev, "unable to set initial baudrate!\n");
1210		return ret;
1211	}
1212
1213	mutex_lock(&priv->mcp_lock);
1214	mcp251x_power_enable(priv->transceiver, 1);
1215
1216	priv->force_quit = 0;
1217	priv->tx_skb = NULL;
1218	priv->tx_busy = false;
1219
1220	if (!dev_fwnode(&spi->dev))
1221		flags = IRQF_TRIGGER_FALLING;
1222
1223	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
1224				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
1225				   priv);
1226	if (ret) {
1227		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1228		goto out_close;
1229	}
1230
1231	ret = mcp251x_hw_wake(spi);
1232	if (ret)
1233		goto out_free_irq;
1234	ret = mcp251x_setup(net, spi);
1235	if (ret)
1236		goto out_free_irq;
1237	ret = mcp251x_set_normal_mode(spi);
1238	if (ret)
1239		goto out_free_irq;
1240
1241	netif_wake_queue(net);
1242	mutex_unlock(&priv->mcp_lock);
1243
1244	return 0;
1245
1246out_free_irq:
1247	free_irq(spi->irq, priv);
1248	mcp251x_hw_sleep(spi);
1249out_close:
1250	mcp251x_power_enable(priv->transceiver, 0);
1251	close_candev(net);
1252	mutex_unlock(&priv->mcp_lock);
1253	return ret;
1254}
1255
1256static const struct net_device_ops mcp251x_netdev_ops = {
1257	.ndo_open = mcp251x_open,
1258	.ndo_stop = mcp251x_stop,
1259	.ndo_start_xmit = mcp251x_hard_start_xmit,
1260	.ndo_change_mtu = can_change_mtu,
1261};
1262
1263static const struct ethtool_ops mcp251x_ethtool_ops = {
1264	.get_ts_info = ethtool_op_get_ts_info,
1265};
1266
1267static const struct of_device_id mcp251x_of_match[] = {
1268	{
1269		.compatible	= "microchip,mcp2510",
1270		.data		= (void *)CAN_MCP251X_MCP2510,
1271	},
1272	{
1273		.compatible	= "microchip,mcp2515",
1274		.data		= (void *)CAN_MCP251X_MCP2515,
1275	},
1276	{
1277		.compatible	= "microchip,mcp25625",
1278		.data		= (void *)CAN_MCP251X_MCP25625,
1279	},
1280	{ }
1281};
1282MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1283
1284static const struct spi_device_id mcp251x_id_table[] = {
1285	{
1286		.name		= "mcp2510",
1287		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
1288	},
1289	{
1290		.name		= "mcp2515",
1291		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
1292	},
1293	{
1294		.name		= "mcp25625",
1295		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
1296	},
1297	{ }
1298};
1299MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1300
1301static int mcp251x_can_probe(struct spi_device *spi)
1302{
 
1303	struct net_device *net;
1304	struct mcp251x_priv *priv;
1305	struct clk *clk;
1306	u32 freq;
1307	int ret;
1308
1309	clk = devm_clk_get_optional(&spi->dev, NULL);
1310	if (IS_ERR(clk))
1311		return PTR_ERR(clk);
1312
1313	freq = clk_get_rate(clk);
1314	if (freq == 0)
1315		device_property_read_u32(&spi->dev, "clock-frequency", &freq);
1316
1317	/* Sanity check */
1318	if (freq < 1000000 || freq > 25000000)
1319		return -ERANGE;
1320
1321	/* Allocate can/net device */
1322	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1323	if (!net)
1324		return -ENOMEM;
1325
1326	ret = clk_prepare_enable(clk);
1327	if (ret)
1328		goto out_free;
1329
1330	net->netdev_ops = &mcp251x_netdev_ops;
1331	net->ethtool_ops = &mcp251x_ethtool_ops;
1332	net->flags |= IFF_ECHO;
1333
1334	priv = netdev_priv(net);
1335	priv->can.bittiming_const = &mcp251x_bittiming_const;
1336	priv->can.do_set_mode = mcp251x_do_set_mode;
1337	priv->can.clock.freq = freq / 2;
1338	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1339		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1340	priv->model = (enum mcp251x_model)(uintptr_t)spi_get_device_match_data(spi);
 
 
 
1341	priv->net = net;
1342	priv->clk = clk;
1343
1344	spi_set_drvdata(spi, priv);
1345
1346	/* Configure the SPI bus */
1347	spi->bits_per_word = 8;
1348	if (mcp251x_is_2510(spi))
1349		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1350	else
1351		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1352	ret = spi_setup(spi);
1353	if (ret)
1354		goto out_clk;
1355
1356	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1357	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1358	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1359	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1360		ret = -EPROBE_DEFER;
1361		goto out_clk;
1362	}
1363
1364	ret = mcp251x_power_enable(priv->power, 1);
1365	if (ret)
1366		goto out_clk;
1367
1368	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
1369				   0);
1370	if (!priv->wq) {
1371		ret = -ENOMEM;
1372		goto out_clk;
1373	}
1374	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1375	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
1376
1377	priv->spi = spi;
1378	mutex_init(&priv->mcp_lock);
1379
1380	priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1381					GFP_KERNEL);
1382	if (!priv->spi_tx_buf) {
1383		ret = -ENOMEM;
1384		goto error_probe;
1385	}
1386
1387	priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1388					GFP_KERNEL);
1389	if (!priv->spi_rx_buf) {
1390		ret = -ENOMEM;
1391		goto error_probe;
1392	}
1393
1394	SET_NETDEV_DEV(net, &spi->dev);
1395
1396	/* Here is OK to not lock the MCP, no one knows about it yet */
1397	ret = mcp251x_hw_probe(spi);
1398	if (ret) {
1399		if (ret == -ENODEV)
1400			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1401				priv->model);
1402		goto error_probe;
1403	}
1404
1405	mcp251x_hw_sleep(spi);
1406
1407	ret = register_candev(net);
1408	if (ret)
1409		goto error_probe;
1410
1411	ret = mcp251x_gpio_setup(priv);
1412	if (ret)
1413		goto out_unregister_candev;
1414
1415	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1416	return 0;
1417
1418out_unregister_candev:
1419	unregister_candev(net);
1420
1421error_probe:
1422	destroy_workqueue(priv->wq);
1423	priv->wq = NULL;
1424	mcp251x_power_enable(priv->power, 0);
1425
1426out_clk:
1427	clk_disable_unprepare(clk);
1428
1429out_free:
1430	free_candev(net);
1431
1432	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1433	return ret;
1434}
1435
1436static void mcp251x_can_remove(struct spi_device *spi)
1437{
1438	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1439	struct net_device *net = priv->net;
1440
1441	unregister_candev(net);
1442
1443	mcp251x_power_enable(priv->power, 0);
1444
1445	destroy_workqueue(priv->wq);
1446	priv->wq = NULL;
1447
1448	clk_disable_unprepare(priv->clk);
1449
1450	free_candev(net);
1451}
1452
1453static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1454{
1455	struct spi_device *spi = to_spi_device(dev);
1456	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1457	struct net_device *net = priv->net;
1458
1459	priv->force_quit = 1;
1460	disable_irq(spi->irq);
1461	/* Note: at this point neither IST nor workqueues are running.
1462	 * open/stop cannot be called anyway so locking is not needed
1463	 */
1464	if (netif_running(net)) {
1465		netif_device_detach(net);
1466
1467		mcp251x_hw_sleep(spi);
1468		mcp251x_power_enable(priv->transceiver, 0);
1469		priv->after_suspend = AFTER_SUSPEND_UP;
1470	} else {
1471		priv->after_suspend = AFTER_SUSPEND_DOWN;
1472	}
1473
1474	mcp251x_power_enable(priv->power, 0);
1475	priv->after_suspend |= AFTER_SUSPEND_POWER;
1476
1477	return 0;
1478}
1479
1480static int __maybe_unused mcp251x_can_resume(struct device *dev)
1481{
1482	struct spi_device *spi = to_spi_device(dev);
1483	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1484
1485	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1486		mcp251x_power_enable(priv->power, 1);
1487	if (priv->after_suspend & AFTER_SUSPEND_UP)
1488		mcp251x_power_enable(priv->transceiver, 1);
1489
1490	if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1491		queue_work(priv->wq, &priv->restart_work);
1492	else
1493		priv->after_suspend = 0;
1494
1495	priv->force_quit = 0;
1496	enable_irq(spi->irq);
1497	return 0;
1498}
1499
1500static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1501	mcp251x_can_resume);
1502
1503static struct spi_driver mcp251x_can_driver = {
1504	.driver = {
1505		.name = DEVICE_NAME,
1506		.of_match_table = mcp251x_of_match,
1507		.pm = &mcp251x_can_pm_ops,
1508	},
1509	.id_table = mcp251x_id_table,
1510	.probe = mcp251x_can_probe,
1511	.remove = mcp251x_can_remove,
1512};
1513module_spi_driver(mcp251x_can_driver);
1514
1515MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1516	      "Christian Pellegrin <chripell@evolware.org>");
1517MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1518MODULE_LICENSE("GPL v2");