Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
   4 * Copyright © 2004 Micron Technology Inc.
   5 * Copyright © 2004 David Brownell
   6 */
   7
   8#include <linux/platform_device.h>
   9#include <linux/dmaengine.h>
  10#include <linux/dma-mapping.h>
  11#include <linux/delay.h>
  12#include <linux/gpio/consumer.h>
  13#include <linux/module.h>
  14#include <linux/interrupt.h>
  15#include <linux/jiffies.h>
  16#include <linux/sched.h>
  17#include <linux/mtd/mtd.h>
  18#include <linux/mtd/nand-ecc-sw-bch.h>
  19#include <linux/mtd/rawnand.h>
  20#include <linux/mtd/partitions.h>
  21#include <linux/omap-dma.h>
  22#include <linux/iopoll.h>
  23#include <linux/slab.h>
  24#include <linux/of.h>
  25#include <linux/of_platform.h>
  26
  27#include <linux/platform_data/elm.h>
  28
  29#include <linux/omap-gpmc.h>
  30#include <linux/platform_data/mtd-nand-omap2.h>
  31
  32#define	DRIVER_NAME	"omap2-nand"
  33#define	OMAP_NAND_TIMEOUT_MS	5000
  34
  35#define NAND_Ecc_P1e		(1 << 0)
  36#define NAND_Ecc_P2e		(1 << 1)
  37#define NAND_Ecc_P4e		(1 << 2)
  38#define NAND_Ecc_P8e		(1 << 3)
  39#define NAND_Ecc_P16e		(1 << 4)
  40#define NAND_Ecc_P32e		(1 << 5)
  41#define NAND_Ecc_P64e		(1 << 6)
  42#define NAND_Ecc_P128e		(1 << 7)
  43#define NAND_Ecc_P256e		(1 << 8)
  44#define NAND_Ecc_P512e		(1 << 9)
  45#define NAND_Ecc_P1024e		(1 << 10)
  46#define NAND_Ecc_P2048e		(1 << 11)
  47
  48#define NAND_Ecc_P1o		(1 << 16)
  49#define NAND_Ecc_P2o		(1 << 17)
  50#define NAND_Ecc_P4o		(1 << 18)
  51#define NAND_Ecc_P8o		(1 << 19)
  52#define NAND_Ecc_P16o		(1 << 20)
  53#define NAND_Ecc_P32o		(1 << 21)
  54#define NAND_Ecc_P64o		(1 << 22)
  55#define NAND_Ecc_P128o		(1 << 23)
  56#define NAND_Ecc_P256o		(1 << 24)
  57#define NAND_Ecc_P512o		(1 << 25)
  58#define NAND_Ecc_P1024o		(1 << 26)
  59#define NAND_Ecc_P2048o		(1 << 27)
  60
  61#define TF(value)	(value ? 1 : 0)
  62
  63#define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
  64#define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
  65#define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
  66#define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
  67#define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
  68#define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
  69#define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
  70#define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)
  71
  72#define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
  73#define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
  74#define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
  75#define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
  76#define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
  77#define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
  78#define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
  79#define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)
  80
  81#define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
  82#define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
  83#define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
  84#define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
  85#define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
  86#define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
  87#define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
  88#define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)
  89
  90#define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
  91#define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
  92#define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
  93#define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
  94#define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
  95#define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
  96#define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
  97#define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)
  98
  99#define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
 100#define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)
 101
 102#define	PREFETCH_CONFIG1_CS_SHIFT	24
 103#define	ECC_CONFIG_CS_SHIFT		1
 104#define	CS_MASK				0x7
 105#define	ENABLE_PREFETCH			(0x1 << 7)
 106#define	DMA_MPU_MODE_SHIFT		2
 107#define	ECCSIZE0_SHIFT			12
 108#define	ECCSIZE1_SHIFT			22
 109#define	ECC1RESULTSIZE			0x1
 110#define	ECCCLEAR			0x100
 111#define	ECC1				0x1
 112#define	PREFETCH_FIFOTHRESHOLD_MAX	0x40
 113#define	PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
 114#define	PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
 115#define	PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
 116#define	STATUS_BUFF_EMPTY		0x00000001
 117
 118#define SECTOR_BYTES		512
 119/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
 120#define BCH4_BIT_PAD		4
 121
 122/* GPMC ecc engine settings for read */
 123#define BCH_WRAPMODE_1		1	/* BCH wrap mode 1 */
 124#define BCH8R_ECC_SIZE0		0x1a	/* ecc_size0 = 26 */
 125#define BCH8R_ECC_SIZE1		0x2	/* ecc_size1 = 2 */
 126#define BCH4R_ECC_SIZE0		0xd	/* ecc_size0 = 13 */
 127#define BCH4R_ECC_SIZE1		0x3	/* ecc_size1 = 3 */
 128
 129/* GPMC ecc engine settings for write */
 130#define BCH_WRAPMODE_6		6	/* BCH wrap mode 6 */
 131#define BCH_ECC_SIZE0		0x0	/* ecc_size0 = 0, no oob protection */
 132#define BCH_ECC_SIZE1		0x20	/* ecc_size1 = 32 */
 133
 134#define BBM_LEN			2
 135
 136static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
 137				0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
 138				0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
 139				0x07, 0x0e};
 140static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
 141	0xac, 0x6b, 0xff, 0x99, 0x7b};
 142static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
 143
 144struct omap_nand_info {
 145	struct nand_chip		nand;
 146	struct platform_device		*pdev;
 147
 148	int				gpmc_cs;
 149	bool				dev_ready;
 150	enum nand_io			xfer_type;
 151	enum omap_ecc			ecc_opt;
 152	struct device_node		*elm_of_node;
 153
 154	unsigned long			phys_base;
 155	struct completion		comp;
 156	struct dma_chan			*dma;
 157	int				gpmc_irq_fifo;
 158	int				gpmc_irq_count;
 159	enum {
 160		OMAP_NAND_IO_READ = 0,	/* read */
 161		OMAP_NAND_IO_WRITE,	/* write */
 162	} iomode;
 163	u_char				*buf;
 164	int					buf_len;
 165	/* Interface to GPMC */
 166	void __iomem			*fifo;
 167	struct gpmc_nand_regs		reg;
 168	struct gpmc_nand_ops		*ops;
 169	bool				flash_bbt;
 170	/* fields specific for BCHx_HW ECC scheme */
 171	struct device			*elm_dev;
 172	/* NAND ready gpio */
 173	struct gpio_desc		*ready_gpiod;
 174	unsigned int			neccpg;
 175	unsigned int			nsteps_per_eccpg;
 176	unsigned int			eccpg_size;
 177	unsigned int			eccpg_bytes;
 178	void (*data_in)(struct nand_chip *chip, void *buf,
 179			unsigned int len, bool force_8bit);
 180	void (*data_out)(struct nand_chip *chip,
 181			 const void *buf, unsigned int len,
 182			 bool force_8bit);
 183};
 184
 185static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
 186{
 187	return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
 188}
 189
 190static void omap_nand_data_in(struct nand_chip *chip, void *buf,
 191			      unsigned int len, bool force_8bit);
 192
 193static void omap_nand_data_out(struct nand_chip *chip,
 194			       const void *buf, unsigned int len,
 195			       bool force_8bit);
 196
 197/**
 198 * omap_prefetch_enable - configures and starts prefetch transfer
 199 * @cs: cs (chip select) number
 200 * @fifo_th: fifo threshold to be used for read/ write
 201 * @dma_mode: dma mode enable (1) or disable (0)
 202 * @u32_count: number of bytes to be transferred
 203 * @is_write: prefetch read(0) or write post(1) mode
 204 * @info: NAND device structure containing platform data
 205 */
 206static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
 207	unsigned int u32_count, int is_write, struct omap_nand_info *info)
 208{
 209	u32 val;
 210
 211	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
 212		return -1;
 213
 214	if (readl(info->reg.gpmc_prefetch_control))
 215		return -EBUSY;
 216
 217	/* Set the amount of bytes to be prefetched */
 218	writel(u32_count, info->reg.gpmc_prefetch_config2);
 219
 220	/* Set dma/mpu mode, the prefetch read / post write and
 221	 * enable the engine. Set which cs is has requested for.
 222	 */
 223	val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
 224		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
 225		(dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
 226	writel(val, info->reg.gpmc_prefetch_config1);
 227
 228	/*  Start the prefetch engine */
 229	writel(0x1, info->reg.gpmc_prefetch_control);
 230
 231	return 0;
 232}
 233
 234/*
 235 * omap_prefetch_reset - disables and stops the prefetch engine
 236 */
 237static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
 238{
 239	u32 config1;
 240
 241	/* check if the same module/cs is trying to reset */
 242	config1 = readl(info->reg.gpmc_prefetch_config1);
 243	if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
 244		return -EINVAL;
 245
 246	/* Stop the PFPW engine */
 247	writel(0x0, info->reg.gpmc_prefetch_control);
 248
 249	/* Reset/disable the PFPW engine */
 250	writel(0x0, info->reg.gpmc_prefetch_config1);
 251
 252	return 0;
 253}
 254
 255/**
 256 * omap_nand_data_in_pref - NAND data in using prefetch engine
 
 
 
 
 257 */
 258static void omap_nand_data_in_pref(struct nand_chip *chip, void *buf,
 259				   unsigned int len, bool force_8bit)
 260{
 261	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 262	uint32_t r_count = 0;
 263	int ret = 0;
 264	u32 *p = (u32 *)buf;
 265	unsigned int pref_len;
 266
 267	if (force_8bit) {
 268		omap_nand_data_in(chip, buf, len, force_8bit);
 269		return;
 270	}
 271
 272	/* read 32-bit words using prefetch and remaining bytes normally */
 273
 274	/* configure and start prefetch transfer */
 275	pref_len = len - (len & 3);
 276	ret = omap_prefetch_enable(info->gpmc_cs,
 277			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, pref_len, 0x0, info);
 278	if (ret) {
 279		/* prefetch engine is busy, use CPU copy method */
 280		omap_nand_data_in(chip, buf, len, false);
 281	} else {
 282		do {
 283			r_count = readl(info->reg.gpmc_prefetch_status);
 284			r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
 285			r_count = r_count >> 2;
 286			ioread32_rep(info->fifo, p, r_count);
 287			p += r_count;
 288			pref_len -= r_count << 2;
 289		} while (pref_len);
 290		/* disable and stop the Prefetch engine */
 291		omap_prefetch_reset(info->gpmc_cs, info);
 292		/* fetch any remaining bytes */
 293		if (len & 3)
 294			omap_nand_data_in(chip, p, len & 3, false);
 295	}
 296}
 297
 298/**
 299 * omap_nand_data_out_pref - NAND data out using Write Posting engine
 
 
 
 
 300 */
 301static void omap_nand_data_out_pref(struct nand_chip *chip,
 302				    const void *buf, unsigned int len,
 303				    bool force_8bit)
 304{
 305	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 306	uint32_t w_count = 0;
 307	int i = 0, ret = 0;
 308	u16 *p = (u16 *)buf;
 309	unsigned long tim, limit;
 310	u32 val;
 311
 312	if (force_8bit) {
 313		omap_nand_data_out(chip, buf, len, force_8bit);
 314		return;
 315	}
 316
 317	/* take care of subpage writes */
 318	if (len % 2 != 0) {
 319		writeb(*(u8 *)buf, info->fifo);
 320		p = (u16 *)(buf + 1);
 321		len--;
 322	}
 323
 324	/*  configure and start prefetch transfer */
 325	ret = omap_prefetch_enable(info->gpmc_cs,
 326			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
 327	if (ret) {
 328		/* write posting engine is busy, use CPU copy method */
 329		omap_nand_data_out(chip, buf, len, false);
 330	} else {
 331		while (len) {
 332			w_count = readl(info->reg.gpmc_prefetch_status);
 333			w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
 334			w_count = w_count >> 1;
 335			for (i = 0; (i < w_count) && len; i++, len -= 2)
 336				iowrite16(*p++, info->fifo);
 337		}
 338		/* wait for data to flushed-out before reset the prefetch */
 339		tim = 0;
 340		limit = (loops_per_jiffy *
 341					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 342		do {
 343			cpu_relax();
 344			val = readl(info->reg.gpmc_prefetch_status);
 345			val = PREFETCH_STATUS_COUNT(val);
 346		} while (val && (tim++ < limit));
 347
 348		/* disable and stop the PFPW engine */
 349		omap_prefetch_reset(info->gpmc_cs, info);
 350	}
 351}
 352
 353/*
 354 * omap_nand_dma_callback: callback on the completion of dma transfer
 355 * @data: pointer to completion data structure
 356 */
 357static void omap_nand_dma_callback(void *data)
 358{
 359	complete((struct completion *) data);
 360}
 361
 362/*
 363 * omap_nand_dma_transfer: configure and start dma transfer
 364 * @chip: nand chip structure
 365 * @addr: virtual address in RAM of source/destination
 366 * @len: number of data bytes to be transferred
 367 * @is_write: flag for read/write operation
 368 */
 369static inline int omap_nand_dma_transfer(struct nand_chip *chip,
 370					 const void *addr, unsigned int len,
 371					 int is_write)
 372{
 373	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 374	struct dma_async_tx_descriptor *tx;
 375	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
 376							DMA_FROM_DEVICE;
 377	struct scatterlist sg;
 378	unsigned long tim, limit;
 379	unsigned n;
 380	int ret;
 381	u32 val;
 382
 383	if (!virt_addr_valid(addr))
 384		goto out_copy;
 385
 386	sg_init_one(&sg, addr, len);
 387	n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
 388	if (n == 0) {
 389		dev_err(&info->pdev->dev,
 390			"Couldn't DMA map a %d byte buffer\n", len);
 391		goto out_copy;
 392	}
 393
 394	tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
 395		is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
 396		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 397	if (!tx)
 398		goto out_copy_unmap;
 399
 400	tx->callback = omap_nand_dma_callback;
 401	tx->callback_param = &info->comp;
 402	dmaengine_submit(tx);
 403
 404	init_completion(&info->comp);
 405
 406	/* setup and start DMA using dma_addr */
 407	dma_async_issue_pending(info->dma);
 408
 409	/*  configure and start prefetch transfer */
 410	ret = omap_prefetch_enable(info->gpmc_cs,
 411		PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
 412	if (ret)
 413		/* PFPW engine is busy, use cpu copy method */
 414		goto out_copy_unmap;
 415
 416	wait_for_completion(&info->comp);
 417	tim = 0;
 418	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 419
 420	do {
 421		cpu_relax();
 422		val = readl(info->reg.gpmc_prefetch_status);
 423		val = PREFETCH_STATUS_COUNT(val);
 424	} while (val && (tim++ < limit));
 425
 426	/* disable and stop the PFPW engine */
 427	omap_prefetch_reset(info->gpmc_cs, info);
 428
 429	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 430	return 0;
 431
 432out_copy_unmap:
 433	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 434out_copy:
 435	is_write == 0 ? omap_nand_data_in(chip, (void *)addr, len, false)
 436		      : omap_nand_data_out(chip, addr, len, false);
 437
 438	return 0;
 439}
 440
 441/**
 442 * omap_nand_data_in_dma_pref - NAND data in using DMA and Prefetch
 
 
 
 
 443 */
 444static void omap_nand_data_in_dma_pref(struct nand_chip *chip, void *buf,
 445				       unsigned int len, bool force_8bit)
 446{
 447	struct mtd_info *mtd = nand_to_mtd(chip);
 448
 449	if (force_8bit) {
 450		omap_nand_data_in(chip, buf, len, force_8bit);
 451		return;
 452	}
 453
 454	if (len <= mtd->oobsize)
 455		omap_nand_data_in_pref(chip, buf, len, false);
 456	else
 457		/* start transfer in DMA mode */
 458		omap_nand_dma_transfer(chip, buf, len, 0x0);
 459}
 460
 461/**
 462 * omap_nand_data_out_dma_pref - NAND data out using DMA and write posting
 
 
 
 
 463 */
 464static void omap_nand_data_out_dma_pref(struct nand_chip *chip,
 465					const void *buf, unsigned int len,
 466					bool force_8bit)
 467{
 468	struct mtd_info *mtd = nand_to_mtd(chip);
 469
 470	if (force_8bit) {
 471		omap_nand_data_out(chip, buf, len, force_8bit);
 472		return;
 473	}
 474
 475	if (len <= mtd->oobsize)
 476		omap_nand_data_out_pref(chip, buf, len, false);
 477	else
 478		/* start transfer in DMA mode */
 479		omap_nand_dma_transfer(chip, buf, len, 0x1);
 480}
 481
 482/*
 483 * omap_nand_irq - GPMC irq handler
 484 * @this_irq: gpmc irq number
 485 * @dev: omap_nand_info structure pointer is passed here
 486 */
 487static irqreturn_t omap_nand_irq(int this_irq, void *dev)
 488{
 489	struct omap_nand_info *info = (struct omap_nand_info *) dev;
 490	u32 bytes;
 491
 492	bytes = readl(info->reg.gpmc_prefetch_status);
 493	bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
 494	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
 495	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
 496		if (this_irq == info->gpmc_irq_count)
 497			goto done;
 498
 499		if (info->buf_len && (info->buf_len < bytes))
 500			bytes = info->buf_len;
 501		else if (!info->buf_len)
 502			bytes = 0;
 503		iowrite32_rep(info->fifo, (u32 *)info->buf,
 504			      bytes >> 2);
 505		info->buf = info->buf + bytes;
 506		info->buf_len -= bytes;
 507
 508	} else {
 509		ioread32_rep(info->fifo, (u32 *)info->buf,
 510			     bytes >> 2);
 511		info->buf = info->buf + bytes;
 512
 513		if (this_irq == info->gpmc_irq_count)
 514			goto done;
 515	}
 516
 517	return IRQ_HANDLED;
 518
 519done:
 520	complete(&info->comp);
 521
 522	disable_irq_nosync(info->gpmc_irq_fifo);
 523	disable_irq_nosync(info->gpmc_irq_count);
 524
 525	return IRQ_HANDLED;
 526}
 527
 528/*
 529 * omap_nand_data_in_irq_pref - NAND data in using Prefetch and IRQ
 530 */
 531static void omap_nand_data_in_irq_pref(struct nand_chip *chip, void *buf,
 532				       unsigned int len, bool force_8bit)
 533{
 534	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 535	struct mtd_info *mtd = nand_to_mtd(&info->nand);
 536	int ret = 0;
 537
 538	if (len <= mtd->oobsize || force_8bit) {
 539		omap_nand_data_in(chip, buf, len, force_8bit);
 540		return;
 541	}
 542
 543	info->iomode = OMAP_NAND_IO_READ;
 544	info->buf = buf;
 545	init_completion(&info->comp);
 546
 547	/*  configure and start prefetch transfer */
 548	ret = omap_prefetch_enable(info->gpmc_cs,
 549			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
 550	if (ret) {
 551		/* PFPW engine is busy, use cpu copy method */
 552		omap_nand_data_in(chip, buf, len, false);
 553		return;
 554	}
 555
 556	info->buf_len = len;
 557
 558	enable_irq(info->gpmc_irq_count);
 559	enable_irq(info->gpmc_irq_fifo);
 560
 561	/* waiting for read to complete */
 562	wait_for_completion(&info->comp);
 563
 564	/* disable and stop the PFPW engine */
 565	omap_prefetch_reset(info->gpmc_cs, info);
 566	return;
 567}
 568
 569/*
 570 * omap_nand_data_out_irq_pref - NAND out using write posting and IRQ
 571 */
 572static void omap_nand_data_out_irq_pref(struct nand_chip *chip,
 573					const void *buf, unsigned int len,
 574					bool force_8bit)
 575{
 576	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 577	struct mtd_info *mtd = nand_to_mtd(&info->nand);
 578	int ret = 0;
 579	unsigned long tim, limit;
 580	u32 val;
 581
 582	if (len <= mtd->oobsize || force_8bit) {
 583		omap_nand_data_out(chip, buf, len, force_8bit);
 584		return;
 585	}
 586
 587	info->iomode = OMAP_NAND_IO_WRITE;
 588	info->buf = (u_char *) buf;
 589	init_completion(&info->comp);
 590
 591	/* configure and start prefetch transfer : size=24 */
 592	ret = omap_prefetch_enable(info->gpmc_cs,
 593		(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
 594	if (ret) {
 595		/* PFPW engine is busy, use cpu copy method */
 596		omap_nand_data_out(chip, buf, len, false);
 597		return;
 598	}
 599
 600	info->buf_len = len;
 601
 602	enable_irq(info->gpmc_irq_count);
 603	enable_irq(info->gpmc_irq_fifo);
 604
 605	/* waiting for write to complete */
 606	wait_for_completion(&info->comp);
 607
 608	/* wait for data to flushed-out before reset the prefetch */
 609	tim = 0;
 610	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 611	do {
 612		val = readl(info->reg.gpmc_prefetch_status);
 613		val = PREFETCH_STATUS_COUNT(val);
 614		cpu_relax();
 615	} while (val && (tim++ < limit));
 616
 617	/* disable and stop the PFPW engine */
 618	omap_prefetch_reset(info->gpmc_cs, info);
 619	return;
 620}
 621
 622/**
 623 * gen_true_ecc - This function will generate true ECC value
 624 * @ecc_buf: buffer to store ecc code
 625 *
 626 * This generated true ECC value can be used when correcting
 627 * data read from NAND flash memory core
 628 */
 629static void gen_true_ecc(u8 *ecc_buf)
 630{
 631	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
 632		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
 633
 634	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
 635			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
 636	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
 637			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
 638	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
 639			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
 640}
 641
 642/**
 643 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 644 * @ecc_data1:  ecc code from nand spare area
 645 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 646 * @page_data:  page data
 647 *
 648 * This function compares two ECC's and indicates if there is an error.
 649 * If the error can be corrected it will be corrected to the buffer.
 650 * If there is no error, %0 is returned. If there is an error but it
 651 * was corrected, %1 is returned. Otherwise, %-1 is returned.
 652 */
 653static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
 654			    u8 *ecc_data2,	/* read from register */
 655			    u8 *page_data)
 656{
 657	uint	i;
 658	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
 659	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
 660	u8	ecc_bit[24];
 661	u8	ecc_sum = 0;
 662	u8	find_bit = 0;
 663	uint	find_byte = 0;
 664	int	isEccFF;
 665
 666	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
 667
 668	gen_true_ecc(ecc_data1);
 669	gen_true_ecc(ecc_data2);
 670
 671	for (i = 0; i <= 2; i++) {
 672		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
 673		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
 674	}
 675
 676	for (i = 0; i < 8; i++) {
 677		tmp0_bit[i]     = *ecc_data1 % 2;
 678		*ecc_data1	= *ecc_data1 / 2;
 679	}
 680
 681	for (i = 0; i < 8; i++) {
 682		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
 683		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
 684	}
 685
 686	for (i = 0; i < 8; i++) {
 687		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
 688		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
 689	}
 690
 691	for (i = 0; i < 8; i++) {
 692		comp0_bit[i]     = *ecc_data2 % 2;
 693		*ecc_data2       = *ecc_data2 / 2;
 694	}
 695
 696	for (i = 0; i < 8; i++) {
 697		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
 698		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
 699	}
 700
 701	for (i = 0; i < 8; i++) {
 702		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
 703		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
 704	}
 705
 706	for (i = 0; i < 6; i++)
 707		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
 708
 709	for (i = 0; i < 8; i++)
 710		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
 711
 712	for (i = 0; i < 8; i++)
 713		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
 714
 715	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
 716	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
 717
 718	for (i = 0; i < 24; i++)
 719		ecc_sum += ecc_bit[i];
 720
 721	switch (ecc_sum) {
 722	case 0:
 723		/* Not reached because this function is not called if
 724		 *  ECC values are equal
 725		 */
 726		return 0;
 727
 728	case 1:
 729		/* Uncorrectable error */
 730		pr_debug("ECC UNCORRECTED_ERROR 1\n");
 731		return -EBADMSG;
 732
 733	case 11:
 734		/* UN-Correctable error */
 735		pr_debug("ECC UNCORRECTED_ERROR B\n");
 736		return -EBADMSG;
 737
 738	case 12:
 739		/* Correctable error */
 740		find_byte = (ecc_bit[23] << 8) +
 741			    (ecc_bit[21] << 7) +
 742			    (ecc_bit[19] << 6) +
 743			    (ecc_bit[17] << 5) +
 744			    (ecc_bit[15] << 4) +
 745			    (ecc_bit[13] << 3) +
 746			    (ecc_bit[11] << 2) +
 747			    (ecc_bit[9]  << 1) +
 748			    ecc_bit[7];
 749
 750		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
 751
 752		pr_debug("Correcting single bit ECC error at offset: "
 753				"%d, bit: %d\n", find_byte, find_bit);
 754
 755		page_data[find_byte] ^= (1 << find_bit);
 756
 757		return 1;
 758	default:
 759		if (isEccFF) {
 760			if (ecc_data2[0] == 0 &&
 761			    ecc_data2[1] == 0 &&
 762			    ecc_data2[2] == 0)
 763				return 0;
 764		}
 765		pr_debug("UNCORRECTED_ERROR default\n");
 766		return -EBADMSG;
 767	}
 768}
 769
 770/**
 771 * omap_correct_data - Compares the ECC read with HW generated ECC
 772 * @chip: NAND chip object
 773 * @dat: page data
 774 * @read_ecc: ecc read from nand flash
 775 * @calc_ecc: ecc read from HW ECC registers
 776 *
 777 * Compares the ecc read from nand spare area with ECC registers values
 778 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 779 * detection and correction. If there are no errors, %0 is returned. If
 780 * there were errors and all of the errors were corrected, the number of
 781 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 782 * returned.
 783 */
 784static int omap_correct_data(struct nand_chip *chip, u_char *dat,
 785			     u_char *read_ecc, u_char *calc_ecc)
 786{
 787	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 788	int blockCnt = 0, i = 0, ret = 0;
 789	int stat = 0;
 790
 791	/* Ex NAND_ECC_HW12_2048 */
 792	if (info->nand.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
 793	    info->nand.ecc.size == 2048)
 794		blockCnt = 4;
 795	else
 796		blockCnt = 1;
 797
 798	for (i = 0; i < blockCnt; i++) {
 799		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
 800			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
 801			if (ret < 0)
 802				return ret;
 803			/* keep track of the number of corrected errors */
 804			stat += ret;
 805		}
 806		read_ecc += 3;
 807		calc_ecc += 3;
 808		dat      += 512;
 809	}
 810	return stat;
 811}
 812
 813/**
 814 * omap_calculate_ecc - Generate non-inverted ECC bytes.
 815 * @chip: NAND chip object
 816 * @dat: The pointer to data on which ecc is computed
 817 * @ecc_code: The ecc_code buffer
 818 *
 819 * Using noninverted ECC can be considered ugly since writing a blank
 820 * page ie. padding will clear the ECC bytes. This is no problem as long
 821 * nobody is trying to write data on the seemingly unused page. Reading
 822 * an erased page will produce an ECC mismatch between generated and read
 823 * ECC bytes that has to be dealt with separately.
 824 */
 825static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
 826			      u_char *ecc_code)
 827{
 828	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 829	u32 val;
 830
 831	val = readl(info->reg.gpmc_ecc_config);
 832	if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
 833		return -EINVAL;
 834
 835	/* read ecc result */
 836	val = readl(info->reg.gpmc_ecc1_result);
 837	*ecc_code++ = val;          /* P128e, ..., P1e */
 838	*ecc_code++ = val >> 16;    /* P128o, ..., P1o */
 839	/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
 840	*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
 841
 842	return 0;
 843}
 844
 845/**
 846 * omap_enable_hwecc - This function enables the hardware ecc functionality
 847 * @chip: NAND chip object
 848 * @mode: Read/Write mode
 849 */
 850static void omap_enable_hwecc(struct nand_chip *chip, int mode)
 851{
 852	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 853	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 854	u32 val;
 855
 856	/* clear ecc and enable bits */
 857	val = ECCCLEAR | ECC1;
 858	writel(val, info->reg.gpmc_ecc_control);
 859
 860	/* program ecc and result sizes */
 861	val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
 862			 ECC1RESULTSIZE);
 863	writel(val, info->reg.gpmc_ecc_size_config);
 864
 865	switch (mode) {
 866	case NAND_ECC_READ:
 867	case NAND_ECC_WRITE:
 868		writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
 869		break;
 870	case NAND_ECC_READSYN:
 871		writel(ECCCLEAR, info->reg.gpmc_ecc_control);
 872		break;
 873	default:
 874		dev_info(&info->pdev->dev,
 875			"error: unrecognized Mode[%d]!\n", mode);
 876		break;
 877	}
 878
 879	/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
 880	val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
 881	writel(val, info->reg.gpmc_ecc_config);
 882}
 883
 884/**
 885 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
 886 * @chip: NAND chip object
 887 * @mode: Read/Write mode
 888 *
 889 * When using BCH with SW correction (i.e. no ELM), sector size is set
 890 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
 891 * for both reading and writing with:
 892 * eccsize0 = 0  (no additional protected byte in spare area)
 893 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
 894 */
 895static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip,
 896						 int mode)
 897{
 898	unsigned int bch_type;
 899	unsigned int dev_width, nsectors;
 900	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 901	enum omap_ecc ecc_opt = info->ecc_opt;
 902	u32 val, wr_mode;
 903	unsigned int ecc_size1, ecc_size0;
 904
 905	/* GPMC configurations for calculating ECC */
 906	switch (ecc_opt) {
 907	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
 908		bch_type = 0;
 909		nsectors = 1;
 910		wr_mode	  = BCH_WRAPMODE_6;
 911		ecc_size0 = BCH_ECC_SIZE0;
 912		ecc_size1 = BCH_ECC_SIZE1;
 913		break;
 914	case OMAP_ECC_BCH4_CODE_HW:
 915		bch_type = 0;
 916		nsectors = chip->ecc.steps;
 917		if (mode == NAND_ECC_READ) {
 918			wr_mode	  = BCH_WRAPMODE_1;
 919			ecc_size0 = BCH4R_ECC_SIZE0;
 920			ecc_size1 = BCH4R_ECC_SIZE1;
 921		} else {
 922			wr_mode   = BCH_WRAPMODE_6;
 923			ecc_size0 = BCH_ECC_SIZE0;
 924			ecc_size1 = BCH_ECC_SIZE1;
 925		}
 926		break;
 927	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
 928		bch_type = 1;
 929		nsectors = 1;
 930		wr_mode	  = BCH_WRAPMODE_6;
 931		ecc_size0 = BCH_ECC_SIZE0;
 932		ecc_size1 = BCH_ECC_SIZE1;
 933		break;
 934	case OMAP_ECC_BCH8_CODE_HW:
 935		bch_type = 1;
 936		nsectors = chip->ecc.steps;
 937		if (mode == NAND_ECC_READ) {
 938			wr_mode	  = BCH_WRAPMODE_1;
 939			ecc_size0 = BCH8R_ECC_SIZE0;
 940			ecc_size1 = BCH8R_ECC_SIZE1;
 941		} else {
 942			wr_mode   = BCH_WRAPMODE_6;
 943			ecc_size0 = BCH_ECC_SIZE0;
 944			ecc_size1 = BCH_ECC_SIZE1;
 945		}
 946		break;
 947	case OMAP_ECC_BCH16_CODE_HW:
 948		bch_type = 0x2;
 949		nsectors = chip->ecc.steps;
 950		if (mode == NAND_ECC_READ) {
 951			wr_mode	  = 0x01;
 952			ecc_size0 = 52; /* ECC bits in nibbles per sector */
 953			ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
 954		} else {
 955			wr_mode	  = 0x01;
 956			ecc_size0 = 0;  /* extra bits in nibbles per sector */
 957			ecc_size1 = 52; /* OOB bits in nibbles per sector */
 958		}
 959		break;
 960	default:
 961		return;
 962	}
 963
 964	writel(ECC1, info->reg.gpmc_ecc_control);
 965
 966	/* Configure ecc size for BCH */
 967	val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
 968	writel(val, info->reg.gpmc_ecc_size_config);
 969
 970	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 971
 972	/* BCH configuration */
 973	val = ((1                        << 16) | /* enable BCH */
 974	       (bch_type		 << 12) | /* BCH4/BCH8/BCH16 */
 975	       (wr_mode                  <<  8) | /* wrap mode */
 976	       (dev_width                <<  7) | /* bus width */
 977	       (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
 978	       (info->gpmc_cs            <<  1) | /* ECC CS */
 979	       (0x1));                            /* enable ECC */
 980
 981	writel(val, info->reg.gpmc_ecc_config);
 982
 983	/* Clear ecc and enable bits */
 984	writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
 985}
 986
 987static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
 988static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
 989				0x97, 0x79, 0xe5, 0x24, 0xb5};
 990
 991/**
 992 * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
 993 * @mtd:	MTD device structure
 994 * @dat:	The pointer to data on which ecc is computed
 995 * @ecc_calc:	The ecc_code buffer
 996 * @i:		The sector number (for a multi sector page)
 997 *
 998 * Support calculating of BCH4/8/16 ECC vectors for one sector
 999 * within a page. Sector number is in @i.
1000 */
1001static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
1002				   const u_char *dat, u_char *ecc_calc, int i)
1003{
1004	struct omap_nand_info *info = mtd_to_omap(mtd);
1005	int eccbytes	= info->nand.ecc.bytes;
1006	struct gpmc_nand_regs	*gpmc_regs = &info->reg;
1007	u8 *ecc_code;
1008	unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
1009	u32 val;
1010	int j;
1011
1012	ecc_code = ecc_calc;
1013	switch (info->ecc_opt) {
1014	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1015	case OMAP_ECC_BCH8_CODE_HW:
1016		bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1017		bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1018		bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1019		bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1020		*ecc_code++ = (bch_val4 & 0xFF);
1021		*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1022		*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1023		*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1024		*ecc_code++ = (bch_val3 & 0xFF);
1025		*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1026		*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1027		*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1028		*ecc_code++ = (bch_val2 & 0xFF);
1029		*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1030		*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1031		*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1032		*ecc_code++ = (bch_val1 & 0xFF);
1033		break;
1034	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1035	case OMAP_ECC_BCH4_CODE_HW:
1036		bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1037		bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1038		*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1039		*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1040		*ecc_code++ = ((bch_val2 & 0xF) << 4) |
1041			((bch_val1 >> 28) & 0xF);
1042		*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1043		*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1044		*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1045		*ecc_code++ = ((bch_val1 & 0xF) << 4);
1046		break;
1047	case OMAP_ECC_BCH16_CODE_HW:
1048		val = readl(gpmc_regs->gpmc_bch_result6[i]);
1049		ecc_code[0]  = ((val >>  8) & 0xFF);
1050		ecc_code[1]  = ((val >>  0) & 0xFF);
1051		val = readl(gpmc_regs->gpmc_bch_result5[i]);
1052		ecc_code[2]  = ((val >> 24) & 0xFF);
1053		ecc_code[3]  = ((val >> 16) & 0xFF);
1054		ecc_code[4]  = ((val >>  8) & 0xFF);
1055		ecc_code[5]  = ((val >>  0) & 0xFF);
1056		val = readl(gpmc_regs->gpmc_bch_result4[i]);
1057		ecc_code[6]  = ((val >> 24) & 0xFF);
1058		ecc_code[7]  = ((val >> 16) & 0xFF);
1059		ecc_code[8]  = ((val >>  8) & 0xFF);
1060		ecc_code[9]  = ((val >>  0) & 0xFF);
1061		val = readl(gpmc_regs->gpmc_bch_result3[i]);
1062		ecc_code[10] = ((val >> 24) & 0xFF);
1063		ecc_code[11] = ((val >> 16) & 0xFF);
1064		ecc_code[12] = ((val >>  8) & 0xFF);
1065		ecc_code[13] = ((val >>  0) & 0xFF);
1066		val = readl(gpmc_regs->gpmc_bch_result2[i]);
1067		ecc_code[14] = ((val >> 24) & 0xFF);
1068		ecc_code[15] = ((val >> 16) & 0xFF);
1069		ecc_code[16] = ((val >>  8) & 0xFF);
1070		ecc_code[17] = ((val >>  0) & 0xFF);
1071		val = readl(gpmc_regs->gpmc_bch_result1[i]);
1072		ecc_code[18] = ((val >> 24) & 0xFF);
1073		ecc_code[19] = ((val >> 16) & 0xFF);
1074		ecc_code[20] = ((val >>  8) & 0xFF);
1075		ecc_code[21] = ((val >>  0) & 0xFF);
1076		val = readl(gpmc_regs->gpmc_bch_result0[i]);
1077		ecc_code[22] = ((val >> 24) & 0xFF);
1078		ecc_code[23] = ((val >> 16) & 0xFF);
1079		ecc_code[24] = ((val >>  8) & 0xFF);
1080		ecc_code[25] = ((val >>  0) & 0xFF);
1081		break;
1082	default:
1083		return -EINVAL;
1084	}
1085
1086	/* ECC scheme specific syndrome customizations */
1087	switch (info->ecc_opt) {
1088	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1089		/* Add constant polynomial to remainder, so that
1090		 * ECC of blank pages results in 0x0 on reading back
1091		 */
1092		for (j = 0; j < eccbytes; j++)
1093			ecc_calc[j] ^= bch4_polynomial[j];
1094		break;
1095	case OMAP_ECC_BCH4_CODE_HW:
1096		/* Set  8th ECC byte as 0x0 for ROM compatibility */
1097		ecc_calc[eccbytes - 1] = 0x0;
1098		break;
1099	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1100		/* Add constant polynomial to remainder, so that
1101		 * ECC of blank pages results in 0x0 on reading back
1102		 */
1103		for (j = 0; j < eccbytes; j++)
1104			ecc_calc[j] ^= bch8_polynomial[j];
1105		break;
1106	case OMAP_ECC_BCH8_CODE_HW:
1107		/* Set 14th ECC byte as 0x0 for ROM compatibility */
1108		ecc_calc[eccbytes - 1] = 0x0;
1109		break;
1110	case OMAP_ECC_BCH16_CODE_HW:
1111		break;
1112	default:
1113		return -EINVAL;
1114	}
1115
1116	return 0;
1117}
1118
1119/**
1120 * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
1121 * @chip:	NAND chip object
1122 * @dat:	The pointer to data on which ecc is computed
1123 * @ecc_calc:	Buffer storing the calculated ECC bytes
1124 *
1125 * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
1126 * when SW based correction is required as ECC is required for one sector
1127 * at a time.
1128 */
1129static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
1130				     const u_char *dat, u_char *ecc_calc)
1131{
1132	return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0);
1133}
1134
1135/**
1136 * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
1137 * @mtd:	MTD device structure
1138 * @dat:	The pointer to data on which ecc is computed
1139 * @ecc_calc:	Buffer storing the calculated ECC bytes
1140 *
1141 * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
1142 */
1143static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
1144					const u_char *dat, u_char *ecc_calc)
1145{
1146	struct omap_nand_info *info = mtd_to_omap(mtd);
1147	int eccbytes = info->nand.ecc.bytes;
1148	unsigned long nsectors;
1149	int i, ret;
1150
1151	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1152	for (i = 0; i < nsectors; i++) {
1153		ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
1154		if (ret)
1155			return ret;
1156
1157		ecc_calc += eccbytes;
1158	}
1159
1160	return 0;
1161}
1162
1163/**
1164 * erased_sector_bitflips - count bit flips
1165 * @data:	data sector buffer
1166 * @oob:	oob buffer
1167 * @info:	omap_nand_info
1168 *
1169 * Check the bit flips in erased page falls below correctable level.
1170 * If falls below, report the page as erased with correctable bit
1171 * flip, else report as uncorrectable page.
1172 */
1173static int erased_sector_bitflips(u_char *data, u_char *oob,
1174		struct omap_nand_info *info)
1175{
1176	int flip_bits = 0, i;
1177
1178	for (i = 0; i < info->nand.ecc.size; i++) {
1179		flip_bits += hweight8(~data[i]);
1180		if (flip_bits > info->nand.ecc.strength)
1181			return 0;
1182	}
1183
1184	for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1185		flip_bits += hweight8(~oob[i]);
1186		if (flip_bits > info->nand.ecc.strength)
1187			return 0;
1188	}
1189
1190	/*
1191	 * Bit flips falls in correctable level.
1192	 * Fill data area with 0xFF
1193	 */
1194	if (flip_bits) {
1195		memset(data, 0xFF, info->nand.ecc.size);
1196		memset(oob, 0xFF, info->nand.ecc.bytes);
1197	}
1198
1199	return flip_bits;
1200}
1201
1202/**
1203 * omap_elm_correct_data - corrects page data area in case error reported
1204 * @chip:	NAND chip object
1205 * @data:	page data
1206 * @read_ecc:	ecc read from nand flash
1207 * @calc_ecc:	ecc read from HW ECC registers
1208 *
1209 * Calculated ecc vector reported as zero in case of non-error pages.
1210 * In case of non-zero ecc vector, first filter out erased-pages, and
1211 * then process data via ELM to detect bit-flips.
1212 */
1213static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
1214				 u_char *read_ecc, u_char *calc_ecc)
1215{
1216	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1217	struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1218	int eccsteps = info->nsteps_per_eccpg;
1219	int i , j, stat = 0;
1220	int eccflag, actual_eccbytes;
1221	struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1222	u_char *ecc_vec = calc_ecc;
1223	u_char *spare_ecc = read_ecc;
1224	u_char *erased_ecc_vec;
1225	u_char *buf;
1226	int bitflip_count;
1227	bool is_error_reported = false;
1228	u32 bit_pos, byte_pos, error_max, pos;
1229	int err;
1230
1231	switch (info->ecc_opt) {
1232	case OMAP_ECC_BCH4_CODE_HW:
1233		/* omit  7th ECC byte reserved for ROM code compatibility */
1234		actual_eccbytes = ecc->bytes - 1;
1235		erased_ecc_vec = bch4_vector;
1236		break;
1237	case OMAP_ECC_BCH8_CODE_HW:
1238		/* omit 14th ECC byte reserved for ROM code compatibility */
1239		actual_eccbytes = ecc->bytes - 1;
1240		erased_ecc_vec = bch8_vector;
1241		break;
1242	case OMAP_ECC_BCH16_CODE_HW:
1243		actual_eccbytes = ecc->bytes;
1244		erased_ecc_vec = bch16_vector;
1245		break;
1246	default:
1247		dev_err(&info->pdev->dev, "invalid driver configuration\n");
1248		return -EINVAL;
1249	}
1250
1251	/* Initialize elm error vector to zero */
1252	memset(err_vec, 0, sizeof(err_vec));
1253
1254	for (i = 0; i < eccsteps ; i++) {
1255		eccflag = 0;	/* initialize eccflag */
1256
1257		/*
1258		 * Check any error reported,
1259		 * In case of error, non zero ecc reported.
1260		 */
1261		for (j = 0; j < actual_eccbytes; j++) {
1262			if (calc_ecc[j] != 0) {
1263				eccflag = 1; /* non zero ecc, error present */
1264				break;
1265			}
1266		}
1267
1268		if (eccflag == 1) {
1269			if (memcmp(calc_ecc, erased_ecc_vec,
1270						actual_eccbytes) == 0) {
1271				/*
1272				 * calc_ecc[] matches pattern for ECC(all 0xff)
1273				 * so this is definitely an erased-page
1274				 */
1275			} else {
1276				buf = &data[info->nand.ecc.size * i];
1277				/*
1278				 * count number of 0-bits in read_buf.
1279				 * This check can be removed once a similar
1280				 * check is introduced in generic NAND driver
1281				 */
1282				bitflip_count = erased_sector_bitflips(
1283						buf, read_ecc, info);
1284				if (bitflip_count) {
1285					/*
1286					 * number of 0-bits within ECC limits
1287					 * So this may be an erased-page
1288					 */
1289					stat += bitflip_count;
1290				} else {
1291					/*
1292					 * Too many 0-bits. It may be a
1293					 * - programmed-page, OR
1294					 * - erased-page with many bit-flips
1295					 * So this page requires check by ELM
1296					 */
1297					err_vec[i].error_reported = true;
1298					is_error_reported = true;
1299				}
1300			}
1301		}
1302
1303		/* Update the ecc vector */
1304		calc_ecc += ecc->bytes;
1305		read_ecc += ecc->bytes;
1306	}
1307
1308	/* Check if any error reported */
1309	if (!is_error_reported)
1310		return stat;
1311
1312	/* Decode BCH error using ELM module */
1313	elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1314
1315	err = 0;
1316	for (i = 0; i < eccsteps; i++) {
1317		if (err_vec[i].error_uncorrectable) {
1318			dev_err(&info->pdev->dev,
1319				"uncorrectable bit-flips found\n");
1320			err = -EBADMSG;
1321		} else if (err_vec[i].error_reported) {
1322			for (j = 0; j < err_vec[i].error_count; j++) {
1323				switch (info->ecc_opt) {
1324				case OMAP_ECC_BCH4_CODE_HW:
1325					/* Add 4 bits to take care of padding */
1326					pos = err_vec[i].error_loc[j] +
1327						BCH4_BIT_PAD;
1328					break;
1329				case OMAP_ECC_BCH8_CODE_HW:
1330				case OMAP_ECC_BCH16_CODE_HW:
1331					pos = err_vec[i].error_loc[j];
1332					break;
1333				default:
1334					return -EINVAL;
1335				}
1336				error_max = (ecc->size + actual_eccbytes) * 8;
1337				/* Calculate bit position of error */
1338				bit_pos = pos % 8;
1339
1340				/* Calculate byte position of error */
1341				byte_pos = (error_max - pos - 1) / 8;
1342
1343				if (pos < error_max) {
1344					if (byte_pos < 512) {
1345						pr_debug("bitflip@dat[%d]=%x\n",
1346						     byte_pos, data[byte_pos]);
1347						data[byte_pos] ^= 1 << bit_pos;
1348					} else {
1349						pr_debug("bitflip@oob[%d]=%x\n",
1350							(byte_pos - 512),
1351						     spare_ecc[byte_pos - 512]);
1352						spare_ecc[byte_pos - 512] ^=
1353							1 << bit_pos;
1354					}
1355				} else {
1356					dev_err(&info->pdev->dev,
1357						"invalid bit-flip @ %d:%d\n",
1358						byte_pos, bit_pos);
1359					err = -EBADMSG;
1360				}
1361			}
1362		}
1363
1364		/* Update number of correctable errors */
1365		stat = max_t(unsigned int, stat, err_vec[i].error_count);
1366
1367		/* Update page data with sector size */
1368		data += ecc->size;
1369		spare_ecc += ecc->bytes;
1370	}
1371
1372	return (err) ? err : stat;
1373}
1374
1375/**
1376 * omap_write_page_bch - BCH ecc based write page function for entire page
1377 * @chip:		nand chip info structure
1378 * @buf:		data buffer
1379 * @oob_required:	must write chip->oob_poi to OOB
1380 * @page:		page
1381 *
1382 * Custom write page method evolved to support multi sector writing in one shot
1383 */
1384static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
1385			       int oob_required, int page)
1386{
1387	struct mtd_info *mtd = nand_to_mtd(chip);
1388	struct omap_nand_info *info = mtd_to_omap(mtd);
1389	uint8_t *ecc_calc = chip->ecc.calc_buf;
1390	unsigned int eccpg;
1391	int ret;
1392
1393	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1394	if (ret)
1395		return ret;
1396
1397	for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1398		/* Enable GPMC ecc engine */
1399		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1400
1401		/* Write data */
1402		info->data_out(chip, buf + (eccpg * info->eccpg_size),
1403			       info->eccpg_size, false);
1404
1405		/* Update ecc vector from GPMC result registers */
1406		ret = omap_calculate_ecc_bch_multi(mtd,
1407						   buf + (eccpg * info->eccpg_size),
1408						   ecc_calc);
1409		if (ret)
1410			return ret;
1411
1412		ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc,
1413						 chip->oob_poi,
1414						 eccpg * info->eccpg_bytes,
1415						 info->eccpg_bytes);
1416		if (ret)
1417			return ret;
1418	}
1419
1420	/* Write ecc vector to OOB area */
1421	info->data_out(chip, chip->oob_poi, mtd->oobsize, false);
1422
1423	return nand_prog_page_end_op(chip);
1424}
1425
1426/**
1427 * omap_write_subpage_bch - BCH hardware ECC based subpage write
1428 * @chip:	nand chip info structure
1429 * @offset:	column address of subpage within the page
1430 * @data_len:	data length
1431 * @buf:	data buffer
1432 * @oob_required: must write chip->oob_poi to OOB
1433 * @page: page number to write
1434 *
1435 * OMAP optimized subpage write method.
1436 */
1437static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
1438				  u32 data_len, const u8 *buf,
1439				  int oob_required, int page)
1440{
1441	struct mtd_info *mtd = nand_to_mtd(chip);
1442	struct omap_nand_info *info = mtd_to_omap(mtd);
1443	u8 *ecc_calc = chip->ecc.calc_buf;
1444	int ecc_size      = chip->ecc.size;
1445	int ecc_bytes     = chip->ecc.bytes;
1446	u32 start_step = offset / ecc_size;
1447	u32 end_step   = (offset + data_len - 1) / ecc_size;
1448	unsigned int eccpg;
1449	int step, ret = 0;
1450
1451	/*
1452	 * Write entire page at one go as it would be optimal
1453	 * as ECC is calculated by hardware.
1454	 * ECC is calculated for all subpages but we choose
1455	 * only what we want.
1456	 */
1457	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1458	if (ret)
1459		return ret;
1460
1461	for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1462		/* Enable GPMC ECC engine */
1463		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1464
1465		/* Write data */
1466		info->data_out(chip, buf + (eccpg * info->eccpg_size),
1467			       info->eccpg_size, false);
1468
1469		for (step = 0; step < info->nsteps_per_eccpg; step++) {
1470			unsigned int base_step = eccpg * info->nsteps_per_eccpg;
1471			const u8 *bufoffs = buf + (eccpg * info->eccpg_size);
1472
1473			/* Mask ECC of un-touched subpages with 0xFFs */
1474			if ((step + base_step) < start_step ||
1475			    (step + base_step) > end_step)
1476				memset(ecc_calc + (step * ecc_bytes), 0xff,
1477				       ecc_bytes);
1478			else
1479				ret = _omap_calculate_ecc_bch(mtd,
1480							      bufoffs + (step * ecc_size),
1481							      ecc_calc + (step * ecc_bytes),
1482							      step);
1483
1484			if (ret)
1485				return ret;
1486		}
1487
1488		/*
1489		 * Copy the calculated ECC for the whole page including the
1490		 * masked values (0xFF) corresponding to unwritten subpages.
1491		 */
1492		ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
1493						 eccpg * info->eccpg_bytes,
1494						 info->eccpg_bytes);
1495		if (ret)
1496			return ret;
1497	}
1498
1499	/* write OOB buffer to NAND device */
1500	info->data_out(chip, chip->oob_poi, mtd->oobsize, false);
1501
1502	return nand_prog_page_end_op(chip);
1503}
1504
1505/**
1506 * omap_read_page_bch - BCH ecc based page read function for entire page
1507 * @chip:		nand chip info structure
1508 * @buf:		buffer to store read data
1509 * @oob_required:	caller requires OOB data read to chip->oob_poi
1510 * @page:		page number to read
1511 *
1512 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1513 * used for error correction.
1514 * Custom method evolved to support ELM error correction & multi sector
1515 * reading. On reading page data area is read along with OOB data with
1516 * ecc engine enabled. ecc vector updated after read of OOB data.
1517 * For non error pages ecc vector reported as zero.
1518 */
1519static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
1520			      int oob_required, int page)
1521{
1522	struct mtd_info *mtd = nand_to_mtd(chip);
1523	struct omap_nand_info *info = mtd_to_omap(mtd);
1524	uint8_t *ecc_calc = chip->ecc.calc_buf;
1525	uint8_t *ecc_code = chip->ecc.code_buf;
1526	unsigned int max_bitflips = 0, eccpg;
1527	int stat, ret;
1528
1529	ret = nand_read_page_op(chip, page, 0, NULL, 0);
1530	if (ret)
1531		return ret;
1532
1533	for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1534		/* Enable GPMC ecc engine */
1535		chip->ecc.hwctl(chip, NAND_ECC_READ);
1536
1537		/* Read data */
1538		ret = nand_change_read_column_op(chip, eccpg * info->eccpg_size,
1539						 buf + (eccpg * info->eccpg_size),
1540						 info->eccpg_size, false);
1541		if (ret)
1542			return ret;
1543
1544		/* Read oob bytes */
1545		ret = nand_change_read_column_op(chip,
1546						 mtd->writesize + BBM_LEN +
1547						 (eccpg * info->eccpg_bytes),
1548						 chip->oob_poi + BBM_LEN +
1549						 (eccpg * info->eccpg_bytes),
1550						 info->eccpg_bytes, false);
1551		if (ret)
1552			return ret;
1553
1554		/* Calculate ecc bytes */
1555		ret = omap_calculate_ecc_bch_multi(mtd,
1556						   buf + (eccpg * info->eccpg_size),
1557						   ecc_calc);
1558		if (ret)
1559			return ret;
1560
1561		ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code,
1562						 chip->oob_poi,
1563						 eccpg * info->eccpg_bytes,
1564						 info->eccpg_bytes);
1565		if (ret)
1566			return ret;
1567
1568		stat = chip->ecc.correct(chip,
1569					 buf + (eccpg * info->eccpg_size),
1570					 ecc_code, ecc_calc);
1571		if (stat < 0) {
1572			mtd->ecc_stats.failed++;
1573		} else {
1574			mtd->ecc_stats.corrected += stat;
1575			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1576		}
1577	}
1578
1579	return max_bitflips;
1580}
1581
1582/**
1583 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1584 * @info: NAND device structure containing platform data
1585 * @elm_node: ELM's DT node
1586 */
1587static bool is_elm_present(struct omap_nand_info *info,
1588			   struct device_node *elm_node)
1589{
1590	struct platform_device *pdev;
1591
1592	/* check whether elm-id is passed via DT */
1593	if (!elm_node) {
1594		dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1595		return false;
1596	}
1597	pdev = of_find_device_by_node(elm_node);
1598	/* check whether ELM device is registered */
1599	if (!pdev) {
1600		dev_err(&info->pdev->dev, "ELM device not found\n");
1601		return false;
1602	}
1603	/* ELM module available, now configure it */
1604	info->elm_dev = &pdev->dev;
1605	return true;
1606}
1607
1608static bool omap2_nand_ecc_check(struct omap_nand_info *info)
1609{
1610	bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1611
1612	switch (info->ecc_opt) {
1613	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1614	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1615		ecc_needs_omap_bch = false;
1616		ecc_needs_bch = true;
1617		ecc_needs_elm = false;
1618		break;
1619	case OMAP_ECC_BCH4_CODE_HW:
1620	case OMAP_ECC_BCH8_CODE_HW:
1621	case OMAP_ECC_BCH16_CODE_HW:
1622		ecc_needs_omap_bch = true;
1623		ecc_needs_bch = false;
1624		ecc_needs_elm = true;
1625		break;
1626	default:
1627		ecc_needs_omap_bch = false;
1628		ecc_needs_bch = false;
1629		ecc_needs_elm = false;
1630		break;
1631	}
1632
1633	if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
1634		dev_err(&info->pdev->dev,
1635			"CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
1636		return false;
1637	}
1638	if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1639		dev_err(&info->pdev->dev,
1640			"CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1641		return false;
1642	}
1643	if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1644		dev_err(&info->pdev->dev, "ELM not available\n");
1645		return false;
1646	}
1647
1648	return true;
1649}
1650
1651static const char * const nand_xfer_types[] = {
1652	[NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1653	[NAND_OMAP_POLLED] = "polled",
1654	[NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1655	[NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1656};
1657
1658static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1659{
1660	struct device_node *child = dev->of_node;
1661	int i;
1662	const char *s;
1663	u32 cs;
1664
1665	if (of_property_read_u32(child, "reg", &cs) < 0) {
1666		dev_err(dev, "reg not found in DT\n");
1667		return -EINVAL;
1668	}
1669
1670	info->gpmc_cs = cs;
1671
1672	/* detect availability of ELM module. Won't be present pre-OMAP4 */
1673	info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1674	if (!info->elm_of_node) {
1675		info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1676		if (!info->elm_of_node)
1677			dev_dbg(dev, "ti,elm-id not in DT\n");
1678	}
1679
1680	/* select ecc-scheme for NAND */
1681	if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1682		dev_err(dev, "ti,nand-ecc-opt not found\n");
1683		return -EINVAL;
1684	}
1685
1686	if (!strcmp(s, "sw")) {
1687		info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1688	} else if (!strcmp(s, "ham1") ||
1689		   !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1690		info->ecc_opt =	OMAP_ECC_HAM1_CODE_HW;
1691	} else if (!strcmp(s, "bch4")) {
1692		if (info->elm_of_node)
1693			info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1694		else
1695			info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1696	} else if (!strcmp(s, "bch8")) {
1697		if (info->elm_of_node)
1698			info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1699		else
1700			info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1701	} else if (!strcmp(s, "bch16")) {
1702		info->ecc_opt =	OMAP_ECC_BCH16_CODE_HW;
1703	} else {
1704		dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1705		return -EINVAL;
1706	}
1707
1708	/* select data transfer mode */
1709	if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1710		for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1711			if (!strcasecmp(s, nand_xfer_types[i])) {
1712				info->xfer_type = i;
1713				return 0;
1714			}
1715		}
1716
1717		dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1718		return -EINVAL;
1719	}
1720
1721	return 0;
1722}
1723
1724static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1725			      struct mtd_oob_region *oobregion)
1726{
1727	struct omap_nand_info *info = mtd_to_omap(mtd);
1728	struct nand_chip *chip = &info->nand;
1729	int off = BBM_LEN;
1730
1731	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1732	    !(chip->options & NAND_BUSWIDTH_16))
1733		off = 1;
1734
1735	if (section)
1736		return -ERANGE;
1737
1738	oobregion->offset = off;
1739	oobregion->length = chip->ecc.total;
1740
1741	return 0;
1742}
1743
1744static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1745			       struct mtd_oob_region *oobregion)
1746{
1747	struct omap_nand_info *info = mtd_to_omap(mtd);
1748	struct nand_chip *chip = &info->nand;
1749	int off = BBM_LEN;
1750
1751	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1752	    !(chip->options & NAND_BUSWIDTH_16))
1753		off = 1;
1754
1755	if (section)
1756		return -ERANGE;
1757
1758	off += chip->ecc.total;
1759	if (off >= mtd->oobsize)
1760		return -ERANGE;
1761
1762	oobregion->offset = off;
1763	oobregion->length = mtd->oobsize - off;
1764
1765	return 0;
1766}
1767
1768static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1769	.ecc = omap_ooblayout_ecc,
1770	.free = omap_ooblayout_free,
1771};
1772
1773static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1774				 struct mtd_oob_region *oobregion)
1775{
1776	struct nand_device *nand = mtd_to_nanddev(mtd);
1777	unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
1778	unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
1779	int off = BBM_LEN;
1780
1781	if (section >= nsteps)
1782		return -ERANGE;
1783
1784	/*
1785	 * When SW correction is employed, one OMAP specific marker byte is
1786	 * reserved after each ECC step.
1787	 */
1788	oobregion->offset = off + (section * (ecc_bytes + 1));
1789	oobregion->length = ecc_bytes;
1790
1791	return 0;
1792}
1793
1794static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1795				  struct mtd_oob_region *oobregion)
1796{
1797	struct nand_device *nand = mtd_to_nanddev(mtd);
1798	unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
1799	unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
1800	int off = BBM_LEN;
1801
1802	if (section)
1803		return -ERANGE;
1804
1805	/*
1806	 * When SW correction is employed, one OMAP specific marker byte is
1807	 * reserved after each ECC step.
1808	 */
1809	off += ((ecc_bytes + 1) * nsteps);
1810	if (off >= mtd->oobsize)
1811		return -ERANGE;
1812
1813	oobregion->offset = off;
1814	oobregion->length = mtd->oobsize - off;
1815
1816	return 0;
1817}
1818
1819static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1820	.ecc = omap_sw_ooblayout_ecc,
1821	.free = omap_sw_ooblayout_free,
1822};
1823
1824static int omap_nand_attach_chip(struct nand_chip *chip)
1825{
1826	struct mtd_info *mtd = nand_to_mtd(chip);
1827	struct omap_nand_info *info = mtd_to_omap(mtd);
1828	struct device *dev = &info->pdev->dev;
1829	int min_oobbytes = BBM_LEN;
1830	int elm_bch_strength = -1;
1831	int oobbytes_per_step;
1832	dma_cap_mask_t mask;
1833	int err;
1834
1835	if (chip->bbt_options & NAND_BBT_USE_FLASH)
1836		chip->bbt_options |= NAND_BBT_NO_OOB;
1837	else
1838		chip->options |= NAND_SKIP_BBTSCAN;
1839
1840	/* Re-populate low-level callbacks based on xfer modes */
1841	switch (info->xfer_type) {
1842	case NAND_OMAP_PREFETCH_POLLED:
1843		info->data_in = omap_nand_data_in_pref;
1844		info->data_out = omap_nand_data_out_pref;
1845		break;
1846
1847	case NAND_OMAP_POLLED:
1848		/* Use nand_base defaults for {read,write}_buf */
1849		break;
1850
1851	case NAND_OMAP_PREFETCH_DMA:
1852		dma_cap_zero(mask);
1853		dma_cap_set(DMA_SLAVE, mask);
1854		info->dma = dma_request_chan(dev->parent, "rxtx");
1855
1856		if (IS_ERR(info->dma)) {
1857			dev_err(dev, "DMA engine request failed\n");
1858			return PTR_ERR(info->dma);
1859		} else {
1860			struct dma_slave_config cfg;
1861
1862			memset(&cfg, 0, sizeof(cfg));
1863			cfg.src_addr = info->phys_base;
1864			cfg.dst_addr = info->phys_base;
1865			cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1866			cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1867			cfg.src_maxburst = 16;
1868			cfg.dst_maxburst = 16;
1869			err = dmaengine_slave_config(info->dma, &cfg);
1870			if (err) {
1871				dev_err(dev,
1872					"DMA engine slave config failed: %d\n",
1873					err);
1874				return err;
1875			}
1876
1877			info->data_in = omap_nand_data_in_dma_pref;
1878			info->data_out = omap_nand_data_out_dma_pref;
1879		}
1880		break;
1881
1882	case NAND_OMAP_PREFETCH_IRQ:
1883		info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
1884		if (info->gpmc_irq_fifo < 0)
1885			return info->gpmc_irq_fifo;
1886		err = devm_request_irq(dev, info->gpmc_irq_fifo,
1887				       omap_nand_irq, IRQF_SHARED,
1888				       "gpmc-nand-fifo", info);
1889		if (err) {
1890			dev_err(dev, "Requesting IRQ %d, error %d\n",
1891				info->gpmc_irq_fifo, err);
1892			info->gpmc_irq_fifo = 0;
1893			return err;
1894		}
1895
1896		info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
1897		if (info->gpmc_irq_count < 0)
1898			return info->gpmc_irq_count;
1899		err = devm_request_irq(dev, info->gpmc_irq_count,
1900				       omap_nand_irq, IRQF_SHARED,
1901				       "gpmc-nand-count", info);
1902		if (err) {
1903			dev_err(dev, "Requesting IRQ %d, error %d\n",
1904				info->gpmc_irq_count, err);
1905			info->gpmc_irq_count = 0;
1906			return err;
1907		}
1908
1909		info->data_in = omap_nand_data_in_irq_pref;
1910		info->data_out = omap_nand_data_out_irq_pref;
1911		break;
1912
1913	default:
1914		dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
1915		return -EINVAL;
1916	}
1917
1918	if (!omap2_nand_ecc_check(info))
1919		return -EINVAL;
1920
1921	/*
1922	 * Bail out earlier to let NAND_ECC_ENGINE_TYPE_SOFT code create its own
1923	 * ooblayout instead of using ours.
1924	 */
1925	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
1926		chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
1927		chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
1928		return 0;
1929	}
1930
1931	/* Populate MTD interface based on ECC scheme */
1932	switch (info->ecc_opt) {
1933	case OMAP_ECC_HAM1_CODE_HW:
1934		dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
1935		chip->ecc.engine_type	= NAND_ECC_ENGINE_TYPE_ON_HOST;
1936		chip->ecc.bytes		= 3;
1937		chip->ecc.size		= 512;
1938		chip->ecc.strength	= 1;
1939		chip->ecc.calculate	= omap_calculate_ecc;
1940		chip->ecc.hwctl		= omap_enable_hwecc;
1941		chip->ecc.correct	= omap_correct_data;
1942		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
1943		oobbytes_per_step	= chip->ecc.bytes;
1944
1945		if (!(chip->options & NAND_BUSWIDTH_16))
1946			min_oobbytes	= 1;
1947
1948		break;
1949
1950	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1951		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1952		chip->ecc.engine_type	= NAND_ECC_ENGINE_TYPE_ON_HOST;
1953		chip->ecc.size		= 512;
1954		chip->ecc.bytes		= 7;
1955		chip->ecc.strength	= 4;
1956		chip->ecc.hwctl		= omap_enable_hwecc_bch;
1957		chip->ecc.correct	= rawnand_sw_bch_correct;
1958		chip->ecc.calculate	= omap_calculate_ecc_bch_sw;
1959		mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
1960		/* Reserve one byte for the OMAP marker */
1961		oobbytes_per_step	= chip->ecc.bytes + 1;
1962		/* Software BCH library is used for locating errors */
1963		err = rawnand_sw_bch_init(chip);
1964		if (err) {
1965			dev_err(dev, "Unable to use BCH library\n");
1966			return err;
1967		}
1968		break;
1969
1970	case OMAP_ECC_BCH4_CODE_HW:
1971		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1972		chip->ecc.engine_type	= NAND_ECC_ENGINE_TYPE_ON_HOST;
1973		chip->ecc.size		= 512;
1974		/* 14th bit is kept reserved for ROM-code compatibility */
1975		chip->ecc.bytes		= 7 + 1;
1976		chip->ecc.strength	= 4;
1977		chip->ecc.hwctl		= omap_enable_hwecc_bch;
1978		chip->ecc.correct	= omap_elm_correct_data;
1979		chip->ecc.read_page	= omap_read_page_bch;
1980		chip->ecc.write_page	= omap_write_page_bch;
1981		chip->ecc.write_subpage	= omap_write_subpage_bch;
1982		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
1983		oobbytes_per_step	= chip->ecc.bytes;
1984		elm_bch_strength = BCH4_ECC;
1985		break;
1986
1987	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1988		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
1989		chip->ecc.engine_type	= NAND_ECC_ENGINE_TYPE_ON_HOST;
1990		chip->ecc.size		= 512;
1991		chip->ecc.bytes		= 13;
1992		chip->ecc.strength	= 8;
1993		chip->ecc.hwctl		= omap_enable_hwecc_bch;
1994		chip->ecc.correct	= rawnand_sw_bch_correct;
1995		chip->ecc.calculate	= omap_calculate_ecc_bch_sw;
1996		mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
1997		/* Reserve one byte for the OMAP marker */
1998		oobbytes_per_step	= chip->ecc.bytes + 1;
1999		/* Software BCH library is used for locating errors */
2000		err = rawnand_sw_bch_init(chip);
2001		if (err) {
2002			dev_err(dev, "unable to use BCH library\n");
2003			return err;
2004		}
2005		break;
2006
2007	case OMAP_ECC_BCH8_CODE_HW:
2008		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2009		chip->ecc.engine_type	= NAND_ECC_ENGINE_TYPE_ON_HOST;
2010		chip->ecc.size		= 512;
2011		/* 14th bit is kept reserved for ROM-code compatibility */
2012		chip->ecc.bytes		= 13 + 1;
2013		chip->ecc.strength	= 8;
2014		chip->ecc.hwctl		= omap_enable_hwecc_bch;
2015		chip->ecc.correct	= omap_elm_correct_data;
2016		chip->ecc.read_page	= omap_read_page_bch;
2017		chip->ecc.write_page	= omap_write_page_bch;
2018		chip->ecc.write_subpage	= omap_write_subpage_bch;
2019		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2020		oobbytes_per_step	= chip->ecc.bytes;
2021		elm_bch_strength = BCH8_ECC;
2022		break;
2023
2024	case OMAP_ECC_BCH16_CODE_HW:
2025		pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2026		chip->ecc.engine_type	= NAND_ECC_ENGINE_TYPE_ON_HOST;
2027		chip->ecc.size		= 512;
2028		chip->ecc.bytes		= 26;
2029		chip->ecc.strength	= 16;
2030		chip->ecc.hwctl		= omap_enable_hwecc_bch;
2031		chip->ecc.correct	= omap_elm_correct_data;
2032		chip->ecc.read_page	= omap_read_page_bch;
2033		chip->ecc.write_page	= omap_write_page_bch;
2034		chip->ecc.write_subpage	= omap_write_subpage_bch;
2035		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2036		oobbytes_per_step	= chip->ecc.bytes;
2037		elm_bch_strength = BCH16_ECC;
2038		break;
2039	default:
2040		dev_err(dev, "Invalid or unsupported ECC scheme\n");
2041		return -EINVAL;
2042	}
2043
2044	if (elm_bch_strength >= 0) {
2045		chip->ecc.steps = mtd->writesize / chip->ecc.size;
2046		info->neccpg = chip->ecc.steps / ERROR_VECTOR_MAX;
2047		if (info->neccpg) {
2048			info->nsteps_per_eccpg = ERROR_VECTOR_MAX;
2049		} else {
2050			info->neccpg = 1;
2051			info->nsteps_per_eccpg = chip->ecc.steps;
2052		}
2053		info->eccpg_size = info->nsteps_per_eccpg * chip->ecc.size;
2054		info->eccpg_bytes = info->nsteps_per_eccpg * chip->ecc.bytes;
2055
2056		err = elm_config(info->elm_dev, elm_bch_strength,
2057				 info->nsteps_per_eccpg, chip->ecc.size,
2058				 chip->ecc.bytes);
2059		if (err < 0)
2060			return err;
2061	}
2062
2063	/* Check if NAND device's OOB is enough to store ECC signatures */
2064	min_oobbytes += (oobbytes_per_step *
2065			 (mtd->writesize / chip->ecc.size));
2066	if (mtd->oobsize < min_oobbytes) {
2067		dev_err(dev,
2068			"Not enough OOB bytes: required = %d, available=%d\n",
2069			min_oobbytes, mtd->oobsize);
2070		return -EINVAL;
2071	}
2072
2073	return 0;
2074}
2075
2076static void omap_nand_data_in(struct nand_chip *chip, void *buf,
2077			      unsigned int len, bool force_8bit)
2078{
2079	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
2080	u32 alignment = ((uintptr_t)buf | len) & 3;
2081
2082	if (force_8bit || (alignment & 1))
2083		ioread8_rep(info->fifo, buf, len);
2084	else if (alignment & 3)
2085		ioread16_rep(info->fifo, buf, len >> 1);
2086	else
2087		ioread32_rep(info->fifo, buf, len >> 2);
2088}
2089
2090static void omap_nand_data_out(struct nand_chip *chip,
2091			       const void *buf, unsigned int len,
2092			       bool force_8bit)
2093{
2094	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
2095	u32 alignment = ((uintptr_t)buf | len) & 3;
2096
2097	if (force_8bit || (alignment & 1))
2098		iowrite8_rep(info->fifo, buf, len);
2099	else if (alignment & 3)
2100		iowrite16_rep(info->fifo, buf, len >> 1);
2101	else
2102		iowrite32_rep(info->fifo, buf, len >> 2);
2103}
2104
2105static int omap_nand_exec_instr(struct nand_chip *chip,
2106				const struct nand_op_instr *instr)
2107{
2108	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
2109	unsigned int i;
2110	int ret;
2111
2112	switch (instr->type) {
2113	case NAND_OP_CMD_INSTR:
2114		iowrite8(instr->ctx.cmd.opcode,
2115			 info->reg.gpmc_nand_command);
2116		break;
2117
2118	case NAND_OP_ADDR_INSTR:
2119		for (i = 0; i < instr->ctx.addr.naddrs; i++) {
2120			iowrite8(instr->ctx.addr.addrs[i],
2121				 info->reg.gpmc_nand_address);
2122		}
2123		break;
2124
2125	case NAND_OP_DATA_IN_INSTR:
2126		info->data_in(chip, instr->ctx.data.buf.in,
2127			      instr->ctx.data.len,
2128			      instr->ctx.data.force_8bit);
2129		break;
2130
2131	case NAND_OP_DATA_OUT_INSTR:
2132		info->data_out(chip, instr->ctx.data.buf.out,
2133			       instr->ctx.data.len,
2134			       instr->ctx.data.force_8bit);
2135		break;
2136
2137	case NAND_OP_WAITRDY_INSTR:
2138		ret = info->ready_gpiod ?
2139			nand_gpio_waitrdy(chip, info->ready_gpiod, instr->ctx.waitrdy.timeout_ms) :
2140			nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms);
2141		if (ret)
2142			return ret;
2143		break;
2144	}
2145
2146	if (instr->delay_ns)
2147		ndelay(instr->delay_ns);
2148
2149	return 0;
2150}
2151
2152static int omap_nand_exec_op(struct nand_chip *chip,
2153			     const struct nand_operation *op,
2154			     bool check_only)
2155{
2156	unsigned int i;
2157
2158	if (check_only)
2159		return 0;
2160
2161	for (i = 0; i < op->ninstrs; i++) {
2162		int ret;
2163
2164		ret = omap_nand_exec_instr(chip, &op->instrs[i]);
2165		if (ret)
2166			return ret;
2167	}
2168
2169	return 0;
2170}
2171
2172static const struct nand_controller_ops omap_nand_controller_ops = {
2173	.attach_chip = omap_nand_attach_chip,
2174	.exec_op = omap_nand_exec_op,
2175};
2176
2177/* Shared among all NAND instances to synchronize access to the ECC Engine */
2178static struct nand_controller omap_gpmc_controller;
2179static bool omap_gpmc_controller_initialized;
2180
2181static int omap_nand_probe(struct platform_device *pdev)
2182{
2183	struct omap_nand_info		*info;
2184	struct mtd_info			*mtd;
2185	struct nand_chip		*nand_chip;
2186	int				err;
2187	struct resource			*res;
2188	struct device			*dev = &pdev->dev;
2189	void __iomem *vaddr;
2190
2191	info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
2192				GFP_KERNEL);
2193	if (!info)
2194		return -ENOMEM;
2195
2196	info->pdev = pdev;
2197
2198	err = omap_get_dt_info(dev, info);
2199	if (err)
2200		return err;
2201
2202	info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
2203	if (!info->ops) {
2204		dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
2205		return -ENODEV;
2206	}
2207
2208	nand_chip		= &info->nand;
2209	mtd			= nand_to_mtd(nand_chip);
2210	mtd->dev.parent		= &pdev->dev;
2211	nand_set_flash_node(nand_chip, dev->of_node);
2212
2213	if (!mtd->name) {
2214		mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
2215					   "omap2-nand.%d", info->gpmc_cs);
2216		if (!mtd->name) {
2217			dev_err(&pdev->dev, "Failed to set MTD name\n");
2218			return -ENOMEM;
2219		}
2220	}
2221
2222	vaddr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2223	if (IS_ERR(vaddr))
2224		return PTR_ERR(vaddr);
2225
2226	info->fifo = vaddr;
2227	info->phys_base = res->start;
2228
2229	if (!omap_gpmc_controller_initialized) {
2230		omap_gpmc_controller.ops = &omap_nand_controller_ops;
2231		nand_controller_init(&omap_gpmc_controller);
2232		omap_gpmc_controller_initialized = true;
2233	}
2234
2235	nand_chip->controller = &omap_gpmc_controller;
2236
2237	info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
2238						    GPIOD_IN);
2239	if (IS_ERR(info->ready_gpiod)) {
2240		dev_err(dev, "failed to get ready gpio\n");
2241		return PTR_ERR(info->ready_gpiod);
2242	}
2243
2244	if (info->flash_bbt)
2245		nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2246
2247	/* default operations */
2248	info->data_in = omap_nand_data_in;
2249	info->data_out = omap_nand_data_out;
2250
2251	err = nand_scan(nand_chip, 1);
2252	if (err)
2253		goto return_error;
2254
2255	err = mtd_device_register(mtd, NULL, 0);
2256	if (err)
2257		goto cleanup_nand;
2258
2259	platform_set_drvdata(pdev, mtd);
2260
2261	return 0;
2262
2263cleanup_nand:
2264	nand_cleanup(nand_chip);
2265
2266return_error:
2267	if (!IS_ERR_OR_NULL(info->dma))
2268		dma_release_channel(info->dma);
2269
2270	rawnand_sw_bch_cleanup(nand_chip);
2271
2272	return err;
2273}
2274
2275static void omap_nand_remove(struct platform_device *pdev)
2276{
2277	struct mtd_info *mtd = platform_get_drvdata(pdev);
2278	struct nand_chip *nand_chip = mtd_to_nand(mtd);
2279	struct omap_nand_info *info = mtd_to_omap(mtd);
2280
2281	rawnand_sw_bch_cleanup(nand_chip);
2282
2283	if (info->dma)
2284		dma_release_channel(info->dma);
2285	WARN_ON(mtd_device_unregister(mtd));
2286	nand_cleanup(nand_chip);
2287}
2288
2289/* omap_nand_ids defined in linux/platform_data/mtd-nand-omap2.h */
2290MODULE_DEVICE_TABLE(of, omap_nand_ids);
2291
2292static struct platform_driver omap_nand_driver = {
2293	.probe		= omap_nand_probe,
2294	.remove_new	= omap_nand_remove,
2295	.driver		= {
2296		.name	= DRIVER_NAME,
2297		.of_match_table = omap_nand_ids,
2298	},
2299};
2300
2301module_platform_driver(omap_nand_driver);
2302
2303MODULE_ALIAS("platform:" DRIVER_NAME);
2304MODULE_LICENSE("GPL");
2305MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
   4 * Copyright © 2004 Micron Technology Inc.
   5 * Copyright © 2004 David Brownell
   6 */
   7
   8#include <linux/platform_device.h>
   9#include <linux/dmaengine.h>
  10#include <linux/dma-mapping.h>
  11#include <linux/delay.h>
  12#include <linux/gpio/consumer.h>
  13#include <linux/module.h>
  14#include <linux/interrupt.h>
  15#include <linux/jiffies.h>
  16#include <linux/sched.h>
  17#include <linux/mtd/mtd.h>
  18#include <linux/mtd/nand-ecc-sw-bch.h>
  19#include <linux/mtd/rawnand.h>
  20#include <linux/mtd/partitions.h>
  21#include <linux/omap-dma.h>
  22#include <linux/iopoll.h>
  23#include <linux/slab.h>
  24#include <linux/of.h>
  25#include <linux/of_platform.h>
  26
  27#include <linux/platform_data/elm.h>
  28
  29#include <linux/omap-gpmc.h>
  30#include <linux/platform_data/mtd-nand-omap2.h>
  31
  32#define	DRIVER_NAME	"omap2-nand"
  33#define	OMAP_NAND_TIMEOUT_MS	5000
  34
  35#define NAND_Ecc_P1e		(1 << 0)
  36#define NAND_Ecc_P2e		(1 << 1)
  37#define NAND_Ecc_P4e		(1 << 2)
  38#define NAND_Ecc_P8e		(1 << 3)
  39#define NAND_Ecc_P16e		(1 << 4)
  40#define NAND_Ecc_P32e		(1 << 5)
  41#define NAND_Ecc_P64e		(1 << 6)
  42#define NAND_Ecc_P128e		(1 << 7)
  43#define NAND_Ecc_P256e		(1 << 8)
  44#define NAND_Ecc_P512e		(1 << 9)
  45#define NAND_Ecc_P1024e		(1 << 10)
  46#define NAND_Ecc_P2048e		(1 << 11)
  47
  48#define NAND_Ecc_P1o		(1 << 16)
  49#define NAND_Ecc_P2o		(1 << 17)
  50#define NAND_Ecc_P4o		(1 << 18)
  51#define NAND_Ecc_P8o		(1 << 19)
  52#define NAND_Ecc_P16o		(1 << 20)
  53#define NAND_Ecc_P32o		(1 << 21)
  54#define NAND_Ecc_P64o		(1 << 22)
  55#define NAND_Ecc_P128o		(1 << 23)
  56#define NAND_Ecc_P256o		(1 << 24)
  57#define NAND_Ecc_P512o		(1 << 25)
  58#define NAND_Ecc_P1024o		(1 << 26)
  59#define NAND_Ecc_P2048o		(1 << 27)
  60
  61#define TF(value)	(value ? 1 : 0)
  62
  63#define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
  64#define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
  65#define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
  66#define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
  67#define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
  68#define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
  69#define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
  70#define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)
  71
  72#define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
  73#define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
  74#define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
  75#define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
  76#define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
  77#define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
  78#define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
  79#define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)
  80
  81#define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
  82#define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
  83#define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
  84#define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
  85#define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
  86#define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
  87#define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
  88#define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)
  89
  90#define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
  91#define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
  92#define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
  93#define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
  94#define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
  95#define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
  96#define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
  97#define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)
  98
  99#define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
 100#define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)
 101
 102#define	PREFETCH_CONFIG1_CS_SHIFT	24
 103#define	ECC_CONFIG_CS_SHIFT		1
 104#define	CS_MASK				0x7
 105#define	ENABLE_PREFETCH			(0x1 << 7)
 106#define	DMA_MPU_MODE_SHIFT		2
 107#define	ECCSIZE0_SHIFT			12
 108#define	ECCSIZE1_SHIFT			22
 109#define	ECC1RESULTSIZE			0x1
 110#define	ECCCLEAR			0x100
 111#define	ECC1				0x1
 112#define	PREFETCH_FIFOTHRESHOLD_MAX	0x40
 113#define	PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
 114#define	PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
 115#define	PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
 116#define	STATUS_BUFF_EMPTY		0x00000001
 117
 118#define SECTOR_BYTES		512
 119/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
 120#define BCH4_BIT_PAD		4
 121
 122/* GPMC ecc engine settings for read */
 123#define BCH_WRAPMODE_1		1	/* BCH wrap mode 1 */
 124#define BCH8R_ECC_SIZE0		0x1a	/* ecc_size0 = 26 */
 125#define BCH8R_ECC_SIZE1		0x2	/* ecc_size1 = 2 */
 126#define BCH4R_ECC_SIZE0		0xd	/* ecc_size0 = 13 */
 127#define BCH4R_ECC_SIZE1		0x3	/* ecc_size1 = 3 */
 128
 129/* GPMC ecc engine settings for write */
 130#define BCH_WRAPMODE_6		6	/* BCH wrap mode 6 */
 131#define BCH_ECC_SIZE0		0x0	/* ecc_size0 = 0, no oob protection */
 132#define BCH_ECC_SIZE1		0x20	/* ecc_size1 = 32 */
 133
 134#define BBM_LEN			2
 135
 136static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
 137				0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
 138				0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
 139				0x07, 0x0e};
 140static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
 141	0xac, 0x6b, 0xff, 0x99, 0x7b};
 142static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
 143
 144struct omap_nand_info {
 145	struct nand_chip		nand;
 146	struct platform_device		*pdev;
 147
 148	int				gpmc_cs;
 149	bool				dev_ready;
 150	enum nand_io			xfer_type;
 151	enum omap_ecc			ecc_opt;
 152	struct device_node		*elm_of_node;
 153
 154	unsigned long			phys_base;
 155	struct completion		comp;
 156	struct dma_chan			*dma;
 157	int				gpmc_irq_fifo;
 158	int				gpmc_irq_count;
 159	enum {
 160		OMAP_NAND_IO_READ = 0,	/* read */
 161		OMAP_NAND_IO_WRITE,	/* write */
 162	} iomode;
 163	u_char				*buf;
 164	int					buf_len;
 165	/* Interface to GPMC */
 166	void __iomem			*fifo;
 167	struct gpmc_nand_regs		reg;
 168	struct gpmc_nand_ops		*ops;
 169	bool				flash_bbt;
 170	/* fields specific for BCHx_HW ECC scheme */
 171	struct device			*elm_dev;
 172	/* NAND ready gpio */
 173	struct gpio_desc		*ready_gpiod;
 174	unsigned int			neccpg;
 175	unsigned int			nsteps_per_eccpg;
 176	unsigned int			eccpg_size;
 177	unsigned int			eccpg_bytes;
 178	void (*data_in)(struct nand_chip *chip, void *buf,
 179			unsigned int len, bool force_8bit);
 180	void (*data_out)(struct nand_chip *chip,
 181			 const void *buf, unsigned int len,
 182			 bool force_8bit);
 183};
 184
 185static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
 186{
 187	return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
 188}
 189
 190static void omap_nand_data_in(struct nand_chip *chip, void *buf,
 191			      unsigned int len, bool force_8bit);
 192
 193static void omap_nand_data_out(struct nand_chip *chip,
 194			       const void *buf, unsigned int len,
 195			       bool force_8bit);
 196
 197/**
 198 * omap_prefetch_enable - configures and starts prefetch transfer
 199 * @cs: cs (chip select) number
 200 * @fifo_th: fifo threshold to be used for read/ write
 201 * @dma_mode: dma mode enable (1) or disable (0)
 202 * @u32_count: number of bytes to be transferred
 203 * @is_write: prefetch read(0) or write post(1) mode
 204 * @info: NAND device structure containing platform data
 205 */
 206static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
 207	unsigned int u32_count, int is_write, struct omap_nand_info *info)
 208{
 209	u32 val;
 210
 211	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
 212		return -1;
 213
 214	if (readl(info->reg.gpmc_prefetch_control))
 215		return -EBUSY;
 216
 217	/* Set the amount of bytes to be prefetched */
 218	writel(u32_count, info->reg.gpmc_prefetch_config2);
 219
 220	/* Set dma/mpu mode, the prefetch read / post write and
 221	 * enable the engine. Set which cs is has requested for.
 222	 */
 223	val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
 224		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
 225		(dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
 226	writel(val, info->reg.gpmc_prefetch_config1);
 227
 228	/*  Start the prefetch engine */
 229	writel(0x1, info->reg.gpmc_prefetch_control);
 230
 231	return 0;
 232}
 233
 234/*
 235 * omap_prefetch_reset - disables and stops the prefetch engine
 236 */
 237static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
 238{
 239	u32 config1;
 240
 241	/* check if the same module/cs is trying to reset */
 242	config1 = readl(info->reg.gpmc_prefetch_config1);
 243	if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
 244		return -EINVAL;
 245
 246	/* Stop the PFPW engine */
 247	writel(0x0, info->reg.gpmc_prefetch_control);
 248
 249	/* Reset/disable the PFPW engine */
 250	writel(0x0, info->reg.gpmc_prefetch_config1);
 251
 252	return 0;
 253}
 254
 255/**
 256 * omap_nand_data_in_pref - NAND data in using prefetch engine
 257 * @chip: NAND chip
 258 * @buf: output buffer where NAND data is placed into
 259 * @len: length of transfer
 260 * @force_8bit: force 8-bit transfers
 261 */
 262static void omap_nand_data_in_pref(struct nand_chip *chip, void *buf,
 263				   unsigned int len, bool force_8bit)
 264{
 265	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 266	uint32_t r_count = 0;
 267	int ret = 0;
 268	u32 *p = (u32 *)buf;
 269	unsigned int pref_len;
 270
 271	if (force_8bit) {
 272		omap_nand_data_in(chip, buf, len, force_8bit);
 273		return;
 274	}
 275
 276	/* read 32-bit words using prefetch and remaining bytes normally */
 277
 278	/* configure and start prefetch transfer */
 279	pref_len = len - (len & 3);
 280	ret = omap_prefetch_enable(info->gpmc_cs,
 281			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, pref_len, 0x0, info);
 282	if (ret) {
 283		/* prefetch engine is busy, use CPU copy method */
 284		omap_nand_data_in(chip, buf, len, false);
 285	} else {
 286		do {
 287			r_count = readl(info->reg.gpmc_prefetch_status);
 288			r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
 289			r_count = r_count >> 2;
 290			ioread32_rep(info->fifo, p, r_count);
 291			p += r_count;
 292			pref_len -= r_count << 2;
 293		} while (pref_len);
 294		/* disable and stop the Prefetch engine */
 295		omap_prefetch_reset(info->gpmc_cs, info);
 296		/* fetch any remaining bytes */
 297		if (len & 3)
 298			omap_nand_data_in(chip, p, len & 3, false);
 299	}
 300}
 301
 302/**
 303 * omap_nand_data_out_pref - NAND data out using Write Posting engine
 304 * @chip: NAND chip
 305 * @buf: input buffer that is sent to NAND
 306 * @len: length of transfer
 307 * @force_8bit: force 8-bit transfers
 308 */
 309static void omap_nand_data_out_pref(struct nand_chip *chip,
 310				    const void *buf, unsigned int len,
 311				    bool force_8bit)
 312{
 313	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 314	uint32_t w_count = 0;
 315	int i = 0, ret = 0;
 316	u16 *p = (u16 *)buf;
 317	unsigned long tim, limit;
 318	u32 val;
 319
 320	if (force_8bit) {
 321		omap_nand_data_out(chip, buf, len, force_8bit);
 322		return;
 323	}
 324
 325	/* take care of subpage writes */
 326	if (len % 2 != 0) {
 327		writeb(*(u8 *)buf, info->fifo);
 328		p = (u16 *)(buf + 1);
 329		len--;
 330	}
 331
 332	/*  configure and start prefetch transfer */
 333	ret = omap_prefetch_enable(info->gpmc_cs,
 334			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
 335	if (ret) {
 336		/* write posting engine is busy, use CPU copy method */
 337		omap_nand_data_out(chip, buf, len, false);
 338	} else {
 339		while (len) {
 340			w_count = readl(info->reg.gpmc_prefetch_status);
 341			w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
 342			w_count = w_count >> 1;
 343			for (i = 0; (i < w_count) && len; i++, len -= 2)
 344				iowrite16(*p++, info->fifo);
 345		}
 346		/* wait for data to flushed-out before reset the prefetch */
 347		tim = 0;
 348		limit = (loops_per_jiffy *
 349					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 350		do {
 351			cpu_relax();
 352			val = readl(info->reg.gpmc_prefetch_status);
 353			val = PREFETCH_STATUS_COUNT(val);
 354		} while (val && (tim++ < limit));
 355
 356		/* disable and stop the PFPW engine */
 357		omap_prefetch_reset(info->gpmc_cs, info);
 358	}
 359}
 360
 361/*
 362 * omap_nand_dma_callback: callback on the completion of dma transfer
 363 * @data: pointer to completion data structure
 364 */
 365static void omap_nand_dma_callback(void *data)
 366{
 367	complete((struct completion *) data);
 368}
 369
 370/*
 371 * omap_nand_dma_transfer: configure and start dma transfer
 372 * @chip: nand chip structure
 373 * @addr: virtual address in RAM of source/destination
 374 * @len: number of data bytes to be transferred
 375 * @is_write: flag for read/write operation
 376 */
 377static inline int omap_nand_dma_transfer(struct nand_chip *chip,
 378					 const void *addr, unsigned int len,
 379					 int is_write)
 380{
 381	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 382	struct dma_async_tx_descriptor *tx;
 383	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
 384							DMA_FROM_DEVICE;
 385	struct scatterlist sg;
 386	unsigned long tim, limit;
 387	unsigned n;
 388	int ret;
 389	u32 val;
 390
 391	if (!virt_addr_valid(addr))
 392		goto out_copy;
 393
 394	sg_init_one(&sg, addr, len);
 395	n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
 396	if (n == 0) {
 397		dev_err(&info->pdev->dev,
 398			"Couldn't DMA map a %d byte buffer\n", len);
 399		goto out_copy;
 400	}
 401
 402	tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
 403		is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
 404		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 405	if (!tx)
 406		goto out_copy_unmap;
 407
 408	tx->callback = omap_nand_dma_callback;
 409	tx->callback_param = &info->comp;
 410	dmaengine_submit(tx);
 411
 412	init_completion(&info->comp);
 413
 414	/* setup and start DMA using dma_addr */
 415	dma_async_issue_pending(info->dma);
 416
 417	/*  configure and start prefetch transfer */
 418	ret = omap_prefetch_enable(info->gpmc_cs,
 419		PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
 420	if (ret)
 421		/* PFPW engine is busy, use cpu copy method */
 422		goto out_copy_unmap;
 423
 424	wait_for_completion(&info->comp);
 425	tim = 0;
 426	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 427
 428	do {
 429		cpu_relax();
 430		val = readl(info->reg.gpmc_prefetch_status);
 431		val = PREFETCH_STATUS_COUNT(val);
 432	} while (val && (tim++ < limit));
 433
 434	/* disable and stop the PFPW engine */
 435	omap_prefetch_reset(info->gpmc_cs, info);
 436
 437	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 438	return 0;
 439
 440out_copy_unmap:
 441	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
 442out_copy:
 443	is_write == 0 ? omap_nand_data_in(chip, (void *)addr, len, false)
 444		      : omap_nand_data_out(chip, addr, len, false);
 445
 446	return 0;
 447}
 448
 449/**
 450 * omap_nand_data_in_dma_pref - NAND data in using DMA and Prefetch
 451 * @chip: NAND chip
 452 * @buf: output buffer where NAND data is placed into
 453 * @len: length of transfer
 454 * @force_8bit: force 8-bit transfers
 455 */
 456static void omap_nand_data_in_dma_pref(struct nand_chip *chip, void *buf,
 457				       unsigned int len, bool force_8bit)
 458{
 459	struct mtd_info *mtd = nand_to_mtd(chip);
 460
 461	if (force_8bit) {
 462		omap_nand_data_in(chip, buf, len, force_8bit);
 463		return;
 464	}
 465
 466	if (len <= mtd->oobsize)
 467		omap_nand_data_in_pref(chip, buf, len, false);
 468	else
 469		/* start transfer in DMA mode */
 470		omap_nand_dma_transfer(chip, buf, len, 0x0);
 471}
 472
 473/**
 474 * omap_nand_data_out_dma_pref - NAND data out using DMA and write posting
 475 * @chip: NAND chip
 476 * @buf: input buffer that is sent to NAND
 477 * @len: length of transfer
 478 * @force_8bit: force 8-bit transfers
 479 */
 480static void omap_nand_data_out_dma_pref(struct nand_chip *chip,
 481					const void *buf, unsigned int len,
 482					bool force_8bit)
 483{
 484	struct mtd_info *mtd = nand_to_mtd(chip);
 485
 486	if (force_8bit) {
 487		omap_nand_data_out(chip, buf, len, force_8bit);
 488		return;
 489	}
 490
 491	if (len <= mtd->oobsize)
 492		omap_nand_data_out_pref(chip, buf, len, false);
 493	else
 494		/* start transfer in DMA mode */
 495		omap_nand_dma_transfer(chip, buf, len, 0x1);
 496}
 497
 498/*
 499 * omap_nand_irq - GPMC irq handler
 500 * @this_irq: gpmc irq number
 501 * @dev: omap_nand_info structure pointer is passed here
 502 */
 503static irqreturn_t omap_nand_irq(int this_irq, void *dev)
 504{
 505	struct omap_nand_info *info = (struct omap_nand_info *) dev;
 506	u32 bytes;
 507
 508	bytes = readl(info->reg.gpmc_prefetch_status);
 509	bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
 510	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
 511	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
 512		if (this_irq == info->gpmc_irq_count)
 513			goto done;
 514
 515		if (info->buf_len && (info->buf_len < bytes))
 516			bytes = info->buf_len;
 517		else if (!info->buf_len)
 518			bytes = 0;
 519		iowrite32_rep(info->fifo, (u32 *)info->buf,
 520			      bytes >> 2);
 521		info->buf = info->buf + bytes;
 522		info->buf_len -= bytes;
 523
 524	} else {
 525		ioread32_rep(info->fifo, (u32 *)info->buf,
 526			     bytes >> 2);
 527		info->buf = info->buf + bytes;
 528
 529		if (this_irq == info->gpmc_irq_count)
 530			goto done;
 531	}
 532
 533	return IRQ_HANDLED;
 534
 535done:
 536	complete(&info->comp);
 537
 538	disable_irq_nosync(info->gpmc_irq_fifo);
 539	disable_irq_nosync(info->gpmc_irq_count);
 540
 541	return IRQ_HANDLED;
 542}
 543
 544/*
 545 * omap_nand_data_in_irq_pref - NAND data in using Prefetch and IRQ
 546 */
 547static void omap_nand_data_in_irq_pref(struct nand_chip *chip, void *buf,
 548				       unsigned int len, bool force_8bit)
 549{
 550	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 551	struct mtd_info *mtd = nand_to_mtd(&info->nand);
 552	int ret = 0;
 553
 554	if (len <= mtd->oobsize || force_8bit) {
 555		omap_nand_data_in(chip, buf, len, force_8bit);
 556		return;
 557	}
 558
 559	info->iomode = OMAP_NAND_IO_READ;
 560	info->buf = buf;
 561	init_completion(&info->comp);
 562
 563	/*  configure and start prefetch transfer */
 564	ret = omap_prefetch_enable(info->gpmc_cs,
 565			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
 566	if (ret) {
 567		/* PFPW engine is busy, use cpu copy method */
 568		omap_nand_data_in(chip, buf, len, false);
 569		return;
 570	}
 571
 572	info->buf_len = len;
 573
 574	enable_irq(info->gpmc_irq_count);
 575	enable_irq(info->gpmc_irq_fifo);
 576
 577	/* waiting for read to complete */
 578	wait_for_completion(&info->comp);
 579
 580	/* disable and stop the PFPW engine */
 581	omap_prefetch_reset(info->gpmc_cs, info);
 582	return;
 583}
 584
 585/*
 586 * omap_nand_data_out_irq_pref - NAND out using write posting and IRQ
 587 */
 588static void omap_nand_data_out_irq_pref(struct nand_chip *chip,
 589					const void *buf, unsigned int len,
 590					bool force_8bit)
 591{
 592	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 593	struct mtd_info *mtd = nand_to_mtd(&info->nand);
 594	int ret = 0;
 595	unsigned long tim, limit;
 596	u32 val;
 597
 598	if (len <= mtd->oobsize || force_8bit) {
 599		omap_nand_data_out(chip, buf, len, force_8bit);
 600		return;
 601	}
 602
 603	info->iomode = OMAP_NAND_IO_WRITE;
 604	info->buf = (u_char *) buf;
 605	init_completion(&info->comp);
 606
 607	/* configure and start prefetch transfer : size=24 */
 608	ret = omap_prefetch_enable(info->gpmc_cs,
 609		(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
 610	if (ret) {
 611		/* PFPW engine is busy, use cpu copy method */
 612		omap_nand_data_out(chip, buf, len, false);
 613		return;
 614	}
 615
 616	info->buf_len = len;
 617
 618	enable_irq(info->gpmc_irq_count);
 619	enable_irq(info->gpmc_irq_fifo);
 620
 621	/* waiting for write to complete */
 622	wait_for_completion(&info->comp);
 623
 624	/* wait for data to flushed-out before reset the prefetch */
 625	tim = 0;
 626	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 627	do {
 628		val = readl(info->reg.gpmc_prefetch_status);
 629		val = PREFETCH_STATUS_COUNT(val);
 630		cpu_relax();
 631	} while (val && (tim++ < limit));
 632
 633	/* disable and stop the PFPW engine */
 634	omap_prefetch_reset(info->gpmc_cs, info);
 635	return;
 636}
 637
 638/**
 639 * gen_true_ecc - This function will generate true ECC value
 640 * @ecc_buf: buffer to store ecc code
 641 *
 642 * This generated true ECC value can be used when correcting
 643 * data read from NAND flash memory core
 644 */
 645static void gen_true_ecc(u8 *ecc_buf)
 646{
 647	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
 648		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
 649
 650	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
 651			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
 652	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
 653			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
 654	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
 655			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
 656}
 657
 658/**
 659 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 660 * @ecc_data1:  ecc code from nand spare area
 661 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 662 * @page_data:  page data
 663 *
 664 * This function compares two ECC's and indicates if there is an error.
 665 * If the error can be corrected it will be corrected to the buffer.
 666 * If there is no error, %0 is returned. If there is an error but it
 667 * was corrected, %1 is returned. Otherwise, %-1 is returned.
 668 */
 669static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
 670			    u8 *ecc_data2,	/* read from register */
 671			    u8 *page_data)
 672{
 673	uint	i;
 674	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
 675	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
 676	u8	ecc_bit[24];
 677	u8	ecc_sum = 0;
 678	u8	find_bit = 0;
 679	uint	find_byte = 0;
 680	int	isEccFF;
 681
 682	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
 683
 684	gen_true_ecc(ecc_data1);
 685	gen_true_ecc(ecc_data2);
 686
 687	for (i = 0; i <= 2; i++) {
 688		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
 689		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
 690	}
 691
 692	for (i = 0; i < 8; i++) {
 693		tmp0_bit[i]     = *ecc_data1 % 2;
 694		*ecc_data1	= *ecc_data1 / 2;
 695	}
 696
 697	for (i = 0; i < 8; i++) {
 698		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
 699		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
 700	}
 701
 702	for (i = 0; i < 8; i++) {
 703		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
 704		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
 705	}
 706
 707	for (i = 0; i < 8; i++) {
 708		comp0_bit[i]     = *ecc_data2 % 2;
 709		*ecc_data2       = *ecc_data2 / 2;
 710	}
 711
 712	for (i = 0; i < 8; i++) {
 713		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
 714		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
 715	}
 716
 717	for (i = 0; i < 8; i++) {
 718		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
 719		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
 720	}
 721
 722	for (i = 0; i < 6; i++)
 723		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
 724
 725	for (i = 0; i < 8; i++)
 726		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
 727
 728	for (i = 0; i < 8; i++)
 729		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
 730
 731	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
 732	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
 733
 734	for (i = 0; i < 24; i++)
 735		ecc_sum += ecc_bit[i];
 736
 737	switch (ecc_sum) {
 738	case 0:
 739		/* Not reached because this function is not called if
 740		 *  ECC values are equal
 741		 */
 742		return 0;
 743
 744	case 1:
 745		/* Uncorrectable error */
 746		pr_debug("ECC UNCORRECTED_ERROR 1\n");
 747		return -EBADMSG;
 748
 749	case 11:
 750		/* UN-Correctable error */
 751		pr_debug("ECC UNCORRECTED_ERROR B\n");
 752		return -EBADMSG;
 753
 754	case 12:
 755		/* Correctable error */
 756		find_byte = (ecc_bit[23] << 8) +
 757			    (ecc_bit[21] << 7) +
 758			    (ecc_bit[19] << 6) +
 759			    (ecc_bit[17] << 5) +
 760			    (ecc_bit[15] << 4) +
 761			    (ecc_bit[13] << 3) +
 762			    (ecc_bit[11] << 2) +
 763			    (ecc_bit[9]  << 1) +
 764			    ecc_bit[7];
 765
 766		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
 767
 768		pr_debug("Correcting single bit ECC error at offset: "
 769				"%d, bit: %d\n", find_byte, find_bit);
 770
 771		page_data[find_byte] ^= (1 << find_bit);
 772
 773		return 1;
 774	default:
 775		if (isEccFF) {
 776			if (ecc_data2[0] == 0 &&
 777			    ecc_data2[1] == 0 &&
 778			    ecc_data2[2] == 0)
 779				return 0;
 780		}
 781		pr_debug("UNCORRECTED_ERROR default\n");
 782		return -EBADMSG;
 783	}
 784}
 785
 786/**
 787 * omap_correct_data - Compares the ECC read with HW generated ECC
 788 * @chip: NAND chip object
 789 * @dat: page data
 790 * @read_ecc: ecc read from nand flash
 791 * @calc_ecc: ecc read from HW ECC registers
 792 *
 793 * Compares the ecc read from nand spare area with ECC registers values
 794 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 795 * detection and correction. If there are no errors, %0 is returned. If
 796 * there were errors and all of the errors were corrected, the number of
 797 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 798 * returned.
 799 */
 800static int omap_correct_data(struct nand_chip *chip, u_char *dat,
 801			     u_char *read_ecc, u_char *calc_ecc)
 802{
 803	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 804	int blockCnt = 0, i = 0, ret = 0;
 805	int stat = 0;
 806
 807	/* Ex NAND_ECC_HW12_2048 */
 808	if (info->nand.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
 809	    info->nand.ecc.size == 2048)
 810		blockCnt = 4;
 811	else
 812		blockCnt = 1;
 813
 814	for (i = 0; i < blockCnt; i++) {
 815		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
 816			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
 817			if (ret < 0)
 818				return ret;
 819			/* keep track of the number of corrected errors */
 820			stat += ret;
 821		}
 822		read_ecc += 3;
 823		calc_ecc += 3;
 824		dat      += 512;
 825	}
 826	return stat;
 827}
 828
 829/**
 830 * omap_calculate_ecc - Generate non-inverted ECC bytes.
 831 * @chip: NAND chip object
 832 * @dat: The pointer to data on which ecc is computed
 833 * @ecc_code: The ecc_code buffer
 834 *
 835 * Using noninverted ECC can be considered ugly since writing a blank
 836 * page ie. padding will clear the ECC bytes. This is no problem as long
 837 * nobody is trying to write data on the seemingly unused page. Reading
 838 * an erased page will produce an ECC mismatch between generated and read
 839 * ECC bytes that has to be dealt with separately.
 840 */
 841static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
 842			      u_char *ecc_code)
 843{
 844	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 845	u32 val;
 846
 847	val = readl(info->reg.gpmc_ecc_config);
 848	if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
 849		return -EINVAL;
 850
 851	/* read ecc result */
 852	val = readl(info->reg.gpmc_ecc1_result);
 853	*ecc_code++ = val;          /* P128e, ..., P1e */
 854	*ecc_code++ = val >> 16;    /* P128o, ..., P1o */
 855	/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
 856	*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
 857
 858	return 0;
 859}
 860
 861/**
 862 * omap_enable_hwecc - This function enables the hardware ecc functionality
 863 * @chip: NAND chip object
 864 * @mode: Read/Write mode
 865 */
 866static void omap_enable_hwecc(struct nand_chip *chip, int mode)
 867{
 868	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 869	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 870	u32 val;
 871
 872	/* clear ecc and enable bits */
 873	val = ECCCLEAR | ECC1;
 874	writel(val, info->reg.gpmc_ecc_control);
 875
 876	/* program ecc and result sizes */
 877	val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
 878			 ECC1RESULTSIZE);
 879	writel(val, info->reg.gpmc_ecc_size_config);
 880
 881	switch (mode) {
 882	case NAND_ECC_READ:
 883	case NAND_ECC_WRITE:
 884		writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
 885		break;
 886	case NAND_ECC_READSYN:
 887		writel(ECCCLEAR, info->reg.gpmc_ecc_control);
 888		break;
 889	default:
 890		dev_info(&info->pdev->dev,
 891			"error: unrecognized Mode[%d]!\n", mode);
 892		break;
 893	}
 894
 895	/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
 896	val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
 897	writel(val, info->reg.gpmc_ecc_config);
 898}
 899
 900/**
 901 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
 902 * @chip: NAND chip object
 903 * @mode: Read/Write mode
 904 *
 905 * When using BCH with SW correction (i.e. no ELM), sector size is set
 906 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
 907 * for both reading and writing with:
 908 * eccsize0 = 0  (no additional protected byte in spare area)
 909 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
 910 */
 911static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip,
 912						 int mode)
 913{
 914	unsigned int bch_type;
 915	unsigned int dev_width, nsectors;
 916	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 917	enum omap_ecc ecc_opt = info->ecc_opt;
 918	u32 val, wr_mode;
 919	unsigned int ecc_size1, ecc_size0;
 920
 921	/* GPMC configurations for calculating ECC */
 922	switch (ecc_opt) {
 923	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
 924		bch_type = 0;
 925		nsectors = 1;
 926		wr_mode	  = BCH_WRAPMODE_6;
 927		ecc_size0 = BCH_ECC_SIZE0;
 928		ecc_size1 = BCH_ECC_SIZE1;
 929		break;
 930	case OMAP_ECC_BCH4_CODE_HW:
 931		bch_type = 0;
 932		nsectors = chip->ecc.steps;
 933		if (mode == NAND_ECC_READ) {
 934			wr_mode	  = BCH_WRAPMODE_1;
 935			ecc_size0 = BCH4R_ECC_SIZE0;
 936			ecc_size1 = BCH4R_ECC_SIZE1;
 937		} else {
 938			wr_mode   = BCH_WRAPMODE_6;
 939			ecc_size0 = BCH_ECC_SIZE0;
 940			ecc_size1 = BCH_ECC_SIZE1;
 941		}
 942		break;
 943	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
 944		bch_type = 1;
 945		nsectors = 1;
 946		wr_mode	  = BCH_WRAPMODE_6;
 947		ecc_size0 = BCH_ECC_SIZE0;
 948		ecc_size1 = BCH_ECC_SIZE1;
 949		break;
 950	case OMAP_ECC_BCH8_CODE_HW:
 951		bch_type = 1;
 952		nsectors = chip->ecc.steps;
 953		if (mode == NAND_ECC_READ) {
 954			wr_mode	  = BCH_WRAPMODE_1;
 955			ecc_size0 = BCH8R_ECC_SIZE0;
 956			ecc_size1 = BCH8R_ECC_SIZE1;
 957		} else {
 958			wr_mode   = BCH_WRAPMODE_6;
 959			ecc_size0 = BCH_ECC_SIZE0;
 960			ecc_size1 = BCH_ECC_SIZE1;
 961		}
 962		break;
 963	case OMAP_ECC_BCH16_CODE_HW:
 964		bch_type = 0x2;
 965		nsectors = chip->ecc.steps;
 966		if (mode == NAND_ECC_READ) {
 967			wr_mode	  = 0x01;
 968			ecc_size0 = 52; /* ECC bits in nibbles per sector */
 969			ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
 970		} else {
 971			wr_mode	  = 0x01;
 972			ecc_size0 = 0;  /* extra bits in nibbles per sector */
 973			ecc_size1 = 52; /* OOB bits in nibbles per sector */
 974		}
 975		break;
 976	default:
 977		return;
 978	}
 979
 980	writel(ECC1, info->reg.gpmc_ecc_control);
 981
 982	/* Configure ecc size for BCH */
 983	val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
 984	writel(val, info->reg.gpmc_ecc_size_config);
 985
 986	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 987
 988	/* BCH configuration */
 989	val = ((1                        << 16) | /* enable BCH */
 990	       (bch_type		 << 12) | /* BCH4/BCH8/BCH16 */
 991	       (wr_mode                  <<  8) | /* wrap mode */
 992	       (dev_width                <<  7) | /* bus width */
 993	       (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
 994	       (info->gpmc_cs            <<  1) | /* ECC CS */
 995	       (0x1));                            /* enable ECC */
 996
 997	writel(val, info->reg.gpmc_ecc_config);
 998
 999	/* Clear ecc and enable bits */
1000	writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1001}
1002
1003static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1004static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1005				0x97, 0x79, 0xe5, 0x24, 0xb5};
1006
1007/**
1008 * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
1009 * @mtd:	MTD device structure
1010 * @dat:	The pointer to data on which ecc is computed
1011 * @ecc_calc:	The ecc_code buffer
1012 * @i:		The sector number (for a multi sector page)
1013 *
1014 * Support calculating of BCH4/8/16 ECC vectors for one sector
1015 * within a page. Sector number is in @i.
1016 */
1017static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
1018				   const u_char *dat, u_char *ecc_calc, int i)
1019{
1020	struct omap_nand_info *info = mtd_to_omap(mtd);
1021	int eccbytes	= info->nand.ecc.bytes;
1022	struct gpmc_nand_regs	*gpmc_regs = &info->reg;
1023	u8 *ecc_code;
1024	unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
1025	u32 val;
1026	int j;
1027
1028	ecc_code = ecc_calc;
1029	switch (info->ecc_opt) {
1030	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1031	case OMAP_ECC_BCH8_CODE_HW:
1032		bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1033		bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1034		bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1035		bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1036		*ecc_code++ = (bch_val4 & 0xFF);
1037		*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1038		*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1039		*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1040		*ecc_code++ = (bch_val3 & 0xFF);
1041		*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1042		*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1043		*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1044		*ecc_code++ = (bch_val2 & 0xFF);
1045		*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1046		*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1047		*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1048		*ecc_code++ = (bch_val1 & 0xFF);
1049		break;
1050	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1051	case OMAP_ECC_BCH4_CODE_HW:
1052		bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1053		bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1054		*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1055		*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1056		*ecc_code++ = ((bch_val2 & 0xF) << 4) |
1057			((bch_val1 >> 28) & 0xF);
1058		*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1059		*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1060		*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1061		*ecc_code++ = ((bch_val1 & 0xF) << 4);
1062		break;
1063	case OMAP_ECC_BCH16_CODE_HW:
1064		val = readl(gpmc_regs->gpmc_bch_result6[i]);
1065		ecc_code[0]  = ((val >>  8) & 0xFF);
1066		ecc_code[1]  = ((val >>  0) & 0xFF);
1067		val = readl(gpmc_regs->gpmc_bch_result5[i]);
1068		ecc_code[2]  = ((val >> 24) & 0xFF);
1069		ecc_code[3]  = ((val >> 16) & 0xFF);
1070		ecc_code[4]  = ((val >>  8) & 0xFF);
1071		ecc_code[5]  = ((val >>  0) & 0xFF);
1072		val = readl(gpmc_regs->gpmc_bch_result4[i]);
1073		ecc_code[6]  = ((val >> 24) & 0xFF);
1074		ecc_code[7]  = ((val >> 16) & 0xFF);
1075		ecc_code[8]  = ((val >>  8) & 0xFF);
1076		ecc_code[9]  = ((val >>  0) & 0xFF);
1077		val = readl(gpmc_regs->gpmc_bch_result3[i]);
1078		ecc_code[10] = ((val >> 24) & 0xFF);
1079		ecc_code[11] = ((val >> 16) & 0xFF);
1080		ecc_code[12] = ((val >>  8) & 0xFF);
1081		ecc_code[13] = ((val >>  0) & 0xFF);
1082		val = readl(gpmc_regs->gpmc_bch_result2[i]);
1083		ecc_code[14] = ((val >> 24) & 0xFF);
1084		ecc_code[15] = ((val >> 16) & 0xFF);
1085		ecc_code[16] = ((val >>  8) & 0xFF);
1086		ecc_code[17] = ((val >>  0) & 0xFF);
1087		val = readl(gpmc_regs->gpmc_bch_result1[i]);
1088		ecc_code[18] = ((val >> 24) & 0xFF);
1089		ecc_code[19] = ((val >> 16) & 0xFF);
1090		ecc_code[20] = ((val >>  8) & 0xFF);
1091		ecc_code[21] = ((val >>  0) & 0xFF);
1092		val = readl(gpmc_regs->gpmc_bch_result0[i]);
1093		ecc_code[22] = ((val >> 24) & 0xFF);
1094		ecc_code[23] = ((val >> 16) & 0xFF);
1095		ecc_code[24] = ((val >>  8) & 0xFF);
1096		ecc_code[25] = ((val >>  0) & 0xFF);
1097		break;
1098	default:
1099		return -EINVAL;
1100	}
1101
1102	/* ECC scheme specific syndrome customizations */
1103	switch (info->ecc_opt) {
1104	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1105		/* Add constant polynomial to remainder, so that
1106		 * ECC of blank pages results in 0x0 on reading back
1107		 */
1108		for (j = 0; j < eccbytes; j++)
1109			ecc_calc[j] ^= bch4_polynomial[j];
1110		break;
1111	case OMAP_ECC_BCH4_CODE_HW:
1112		/* Set  8th ECC byte as 0x0 for ROM compatibility */
1113		ecc_calc[eccbytes - 1] = 0x0;
1114		break;
1115	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1116		/* Add constant polynomial to remainder, so that
1117		 * ECC of blank pages results in 0x0 on reading back
1118		 */
1119		for (j = 0; j < eccbytes; j++)
1120			ecc_calc[j] ^= bch8_polynomial[j];
1121		break;
1122	case OMAP_ECC_BCH8_CODE_HW:
1123		/* Set 14th ECC byte as 0x0 for ROM compatibility */
1124		ecc_calc[eccbytes - 1] = 0x0;
1125		break;
1126	case OMAP_ECC_BCH16_CODE_HW:
1127		break;
1128	default:
1129		return -EINVAL;
1130	}
1131
1132	return 0;
1133}
1134
1135/**
1136 * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
1137 * @chip:	NAND chip object
1138 * @dat:	The pointer to data on which ecc is computed
1139 * @ecc_calc:	Buffer storing the calculated ECC bytes
1140 *
1141 * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
1142 * when SW based correction is required as ECC is required for one sector
1143 * at a time.
1144 */
1145static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
1146				     const u_char *dat, u_char *ecc_calc)
1147{
1148	return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0);
1149}
1150
1151/**
1152 * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
1153 * @mtd:	MTD device structure
1154 * @dat:	The pointer to data on which ecc is computed
1155 * @ecc_calc:	Buffer storing the calculated ECC bytes
1156 *
1157 * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
1158 */
1159static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
1160					const u_char *dat, u_char *ecc_calc)
1161{
1162	struct omap_nand_info *info = mtd_to_omap(mtd);
1163	int eccbytes = info->nand.ecc.bytes;
1164	unsigned long nsectors;
1165	int i, ret;
1166
1167	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1168	for (i = 0; i < nsectors; i++) {
1169		ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
1170		if (ret)
1171			return ret;
1172
1173		ecc_calc += eccbytes;
1174	}
1175
1176	return 0;
1177}
1178
1179/**
1180 * erased_sector_bitflips - count bit flips
1181 * @data:	data sector buffer
1182 * @oob:	oob buffer
1183 * @info:	omap_nand_info
1184 *
1185 * Check the bit flips in erased page falls below correctable level.
1186 * If falls below, report the page as erased with correctable bit
1187 * flip, else report as uncorrectable page.
1188 */
1189static int erased_sector_bitflips(u_char *data, u_char *oob,
1190		struct omap_nand_info *info)
1191{
1192	int flip_bits = 0, i;
1193
1194	for (i = 0; i < info->nand.ecc.size; i++) {
1195		flip_bits += hweight8(~data[i]);
1196		if (flip_bits > info->nand.ecc.strength)
1197			return 0;
1198	}
1199
1200	for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1201		flip_bits += hweight8(~oob[i]);
1202		if (flip_bits > info->nand.ecc.strength)
1203			return 0;
1204	}
1205
1206	/*
1207	 * Bit flips falls in correctable level.
1208	 * Fill data area with 0xFF
1209	 */
1210	if (flip_bits) {
1211		memset(data, 0xFF, info->nand.ecc.size);
1212		memset(oob, 0xFF, info->nand.ecc.bytes);
1213	}
1214
1215	return flip_bits;
1216}
1217
1218/**
1219 * omap_elm_correct_data - corrects page data area in case error reported
1220 * @chip:	NAND chip object
1221 * @data:	page data
1222 * @read_ecc:	ecc read from nand flash
1223 * @calc_ecc:	ecc read from HW ECC registers
1224 *
1225 * Calculated ecc vector reported as zero in case of non-error pages.
1226 * In case of non-zero ecc vector, first filter out erased-pages, and
1227 * then process data via ELM to detect bit-flips.
1228 */
1229static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
1230				 u_char *read_ecc, u_char *calc_ecc)
1231{
1232	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
1233	struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1234	int eccsteps = info->nsteps_per_eccpg;
1235	int i , j, stat = 0;
1236	int eccflag, actual_eccbytes;
1237	struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1238	u_char *ecc_vec = calc_ecc;
1239	u_char *spare_ecc = read_ecc;
1240	u_char *erased_ecc_vec;
1241	u_char *buf;
1242	int bitflip_count;
1243	bool is_error_reported = false;
1244	u32 bit_pos, byte_pos, error_max, pos;
1245	int err;
1246
1247	switch (info->ecc_opt) {
1248	case OMAP_ECC_BCH4_CODE_HW:
1249		/* omit  7th ECC byte reserved for ROM code compatibility */
1250		actual_eccbytes = ecc->bytes - 1;
1251		erased_ecc_vec = bch4_vector;
1252		break;
1253	case OMAP_ECC_BCH8_CODE_HW:
1254		/* omit 14th ECC byte reserved for ROM code compatibility */
1255		actual_eccbytes = ecc->bytes - 1;
1256		erased_ecc_vec = bch8_vector;
1257		break;
1258	case OMAP_ECC_BCH16_CODE_HW:
1259		actual_eccbytes = ecc->bytes;
1260		erased_ecc_vec = bch16_vector;
1261		break;
1262	default:
1263		dev_err(&info->pdev->dev, "invalid driver configuration\n");
1264		return -EINVAL;
1265	}
1266
1267	/* Initialize elm error vector to zero */
1268	memset(err_vec, 0, sizeof(err_vec));
1269
1270	for (i = 0; i < eccsteps ; i++) {
1271		eccflag = 0;	/* initialize eccflag */
1272
1273		/*
1274		 * Check any error reported,
1275		 * In case of error, non zero ecc reported.
1276		 */
1277		for (j = 0; j < actual_eccbytes; j++) {
1278			if (calc_ecc[j] != 0) {
1279				eccflag = 1; /* non zero ecc, error present */
1280				break;
1281			}
1282		}
1283
1284		if (eccflag == 1) {
1285			if (memcmp(calc_ecc, erased_ecc_vec,
1286						actual_eccbytes) == 0) {
1287				/*
1288				 * calc_ecc[] matches pattern for ECC(all 0xff)
1289				 * so this is definitely an erased-page
1290				 */
1291			} else {
1292				buf = &data[info->nand.ecc.size * i];
1293				/*
1294				 * count number of 0-bits in read_buf.
1295				 * This check can be removed once a similar
1296				 * check is introduced in generic NAND driver
1297				 */
1298				bitflip_count = erased_sector_bitflips(
1299						buf, read_ecc, info);
1300				if (bitflip_count) {
1301					/*
1302					 * number of 0-bits within ECC limits
1303					 * So this may be an erased-page
1304					 */
1305					stat += bitflip_count;
1306				} else {
1307					/*
1308					 * Too many 0-bits. It may be a
1309					 * - programmed-page, OR
1310					 * - erased-page with many bit-flips
1311					 * So this page requires check by ELM
1312					 */
1313					err_vec[i].error_reported = true;
1314					is_error_reported = true;
1315				}
1316			}
1317		}
1318
1319		/* Update the ecc vector */
1320		calc_ecc += ecc->bytes;
1321		read_ecc += ecc->bytes;
1322	}
1323
1324	/* Check if any error reported */
1325	if (!is_error_reported)
1326		return stat;
1327
1328	/* Decode BCH error using ELM module */
1329	elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1330
1331	err = 0;
1332	for (i = 0; i < eccsteps; i++) {
1333		if (err_vec[i].error_uncorrectable) {
1334			dev_err(&info->pdev->dev,
1335				"uncorrectable bit-flips found\n");
1336			err = -EBADMSG;
1337		} else if (err_vec[i].error_reported) {
1338			for (j = 0; j < err_vec[i].error_count; j++) {
1339				switch (info->ecc_opt) {
1340				case OMAP_ECC_BCH4_CODE_HW:
1341					/* Add 4 bits to take care of padding */
1342					pos = err_vec[i].error_loc[j] +
1343						BCH4_BIT_PAD;
1344					break;
1345				case OMAP_ECC_BCH8_CODE_HW:
1346				case OMAP_ECC_BCH16_CODE_HW:
1347					pos = err_vec[i].error_loc[j];
1348					break;
1349				default:
1350					return -EINVAL;
1351				}
1352				error_max = (ecc->size + actual_eccbytes) * 8;
1353				/* Calculate bit position of error */
1354				bit_pos = pos % 8;
1355
1356				/* Calculate byte position of error */
1357				byte_pos = (error_max - pos - 1) / 8;
1358
1359				if (pos < error_max) {
1360					if (byte_pos < 512) {
1361						pr_debug("bitflip@dat[%d]=%x\n",
1362						     byte_pos, data[byte_pos]);
1363						data[byte_pos] ^= 1 << bit_pos;
1364					} else {
1365						pr_debug("bitflip@oob[%d]=%x\n",
1366							(byte_pos - 512),
1367						     spare_ecc[byte_pos - 512]);
1368						spare_ecc[byte_pos - 512] ^=
1369							1 << bit_pos;
1370					}
1371				} else {
1372					dev_err(&info->pdev->dev,
1373						"invalid bit-flip @ %d:%d\n",
1374						byte_pos, bit_pos);
1375					err = -EBADMSG;
1376				}
1377			}
1378		}
1379
1380		/* Update number of correctable errors */
1381		stat = max_t(unsigned int, stat, err_vec[i].error_count);
1382
1383		/* Update page data with sector size */
1384		data += ecc->size;
1385		spare_ecc += ecc->bytes;
1386	}
1387
1388	return (err) ? err : stat;
1389}
1390
1391/**
1392 * omap_write_page_bch - BCH ecc based write page function for entire page
1393 * @chip:		nand chip info structure
1394 * @buf:		data buffer
1395 * @oob_required:	must write chip->oob_poi to OOB
1396 * @page:		page
1397 *
1398 * Custom write page method evolved to support multi sector writing in one shot
1399 */
1400static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
1401			       int oob_required, int page)
1402{
1403	struct mtd_info *mtd = nand_to_mtd(chip);
1404	struct omap_nand_info *info = mtd_to_omap(mtd);
1405	uint8_t *ecc_calc = chip->ecc.calc_buf;
1406	unsigned int eccpg;
1407	int ret;
1408
1409	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1410	if (ret)
1411		return ret;
1412
1413	for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1414		/* Enable GPMC ecc engine */
1415		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1416
1417		/* Write data */
1418		info->data_out(chip, buf + (eccpg * info->eccpg_size),
1419			       info->eccpg_size, false);
1420
1421		/* Update ecc vector from GPMC result registers */
1422		ret = omap_calculate_ecc_bch_multi(mtd,
1423						   buf + (eccpg * info->eccpg_size),
1424						   ecc_calc);
1425		if (ret)
1426			return ret;
1427
1428		ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc,
1429						 chip->oob_poi,
1430						 eccpg * info->eccpg_bytes,
1431						 info->eccpg_bytes);
1432		if (ret)
1433			return ret;
1434	}
1435
1436	/* Write ecc vector to OOB area */
1437	info->data_out(chip, chip->oob_poi, mtd->oobsize, false);
1438
1439	return nand_prog_page_end_op(chip);
1440}
1441
1442/**
1443 * omap_write_subpage_bch - BCH hardware ECC based subpage write
1444 * @chip:	nand chip info structure
1445 * @offset:	column address of subpage within the page
1446 * @data_len:	data length
1447 * @buf:	data buffer
1448 * @oob_required: must write chip->oob_poi to OOB
1449 * @page: page number to write
1450 *
1451 * OMAP optimized subpage write method.
1452 */
1453static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
1454				  u32 data_len, const u8 *buf,
1455				  int oob_required, int page)
1456{
1457	struct mtd_info *mtd = nand_to_mtd(chip);
1458	struct omap_nand_info *info = mtd_to_omap(mtd);
1459	u8 *ecc_calc = chip->ecc.calc_buf;
1460	int ecc_size      = chip->ecc.size;
1461	int ecc_bytes     = chip->ecc.bytes;
1462	u32 start_step = offset / ecc_size;
1463	u32 end_step   = (offset + data_len - 1) / ecc_size;
1464	unsigned int eccpg;
1465	int step, ret = 0;
1466
1467	/*
1468	 * Write entire page at one go as it would be optimal
1469	 * as ECC is calculated by hardware.
1470	 * ECC is calculated for all subpages but we choose
1471	 * only what we want.
1472	 */
1473	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1474	if (ret)
1475		return ret;
1476
1477	for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1478		/* Enable GPMC ECC engine */
1479		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
1480
1481		/* Write data */
1482		info->data_out(chip, buf + (eccpg * info->eccpg_size),
1483			       info->eccpg_size, false);
1484
1485		for (step = 0; step < info->nsteps_per_eccpg; step++) {
1486			unsigned int base_step = eccpg * info->nsteps_per_eccpg;
1487			const u8 *bufoffs = buf + (eccpg * info->eccpg_size);
1488
1489			/* Mask ECC of un-touched subpages with 0xFFs */
1490			if ((step + base_step) < start_step ||
1491			    (step + base_step) > end_step)
1492				memset(ecc_calc + (step * ecc_bytes), 0xff,
1493				       ecc_bytes);
1494			else
1495				ret = _omap_calculate_ecc_bch(mtd,
1496							      bufoffs + (step * ecc_size),
1497							      ecc_calc + (step * ecc_bytes),
1498							      step);
1499
1500			if (ret)
1501				return ret;
1502		}
1503
1504		/*
1505		 * Copy the calculated ECC for the whole page including the
1506		 * masked values (0xFF) corresponding to unwritten subpages.
1507		 */
1508		ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
1509						 eccpg * info->eccpg_bytes,
1510						 info->eccpg_bytes);
1511		if (ret)
1512			return ret;
1513	}
1514
1515	/* write OOB buffer to NAND device */
1516	info->data_out(chip, chip->oob_poi, mtd->oobsize, false);
1517
1518	return nand_prog_page_end_op(chip);
1519}
1520
1521/**
1522 * omap_read_page_bch - BCH ecc based page read function for entire page
1523 * @chip:		nand chip info structure
1524 * @buf:		buffer to store read data
1525 * @oob_required:	caller requires OOB data read to chip->oob_poi
1526 * @page:		page number to read
1527 *
1528 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1529 * used for error correction.
1530 * Custom method evolved to support ELM error correction & multi sector
1531 * reading. On reading page data area is read along with OOB data with
1532 * ecc engine enabled. ecc vector updated after read of OOB data.
1533 * For non error pages ecc vector reported as zero.
1534 */
1535static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
1536			      int oob_required, int page)
1537{
1538	struct mtd_info *mtd = nand_to_mtd(chip);
1539	struct omap_nand_info *info = mtd_to_omap(mtd);
1540	uint8_t *ecc_calc = chip->ecc.calc_buf;
1541	uint8_t *ecc_code = chip->ecc.code_buf;
1542	unsigned int max_bitflips = 0, eccpg;
1543	int stat, ret;
1544
1545	ret = nand_read_page_op(chip, page, 0, NULL, 0);
1546	if (ret)
1547		return ret;
1548
1549	for (eccpg = 0; eccpg < info->neccpg; eccpg++) {
1550		/* Enable GPMC ecc engine */
1551		chip->ecc.hwctl(chip, NAND_ECC_READ);
1552
1553		/* Read data */
1554		ret = nand_change_read_column_op(chip, eccpg * info->eccpg_size,
1555						 buf + (eccpg * info->eccpg_size),
1556						 info->eccpg_size, false);
1557		if (ret)
1558			return ret;
1559
1560		/* Read oob bytes */
1561		ret = nand_change_read_column_op(chip,
1562						 mtd->writesize + BBM_LEN +
1563						 (eccpg * info->eccpg_bytes),
1564						 chip->oob_poi + BBM_LEN +
1565						 (eccpg * info->eccpg_bytes),
1566						 info->eccpg_bytes, false);
1567		if (ret)
1568			return ret;
1569
1570		/* Calculate ecc bytes */
1571		ret = omap_calculate_ecc_bch_multi(mtd,
1572						   buf + (eccpg * info->eccpg_size),
1573						   ecc_calc);
1574		if (ret)
1575			return ret;
1576
1577		ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code,
1578						 chip->oob_poi,
1579						 eccpg * info->eccpg_bytes,
1580						 info->eccpg_bytes);
1581		if (ret)
1582			return ret;
1583
1584		stat = chip->ecc.correct(chip,
1585					 buf + (eccpg * info->eccpg_size),
1586					 ecc_code, ecc_calc);
1587		if (stat < 0) {
1588			mtd->ecc_stats.failed++;
1589		} else {
1590			mtd->ecc_stats.corrected += stat;
1591			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1592		}
1593	}
1594
1595	return max_bitflips;
1596}
1597
1598/**
1599 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1600 * @info: NAND device structure containing platform data
1601 * @elm_node: ELM's DT node
1602 */
1603static bool is_elm_present(struct omap_nand_info *info,
1604			   struct device_node *elm_node)
1605{
1606	struct platform_device *pdev;
1607
1608	/* check whether elm-id is passed via DT */
1609	if (!elm_node) {
1610		dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1611		return false;
1612	}
1613	pdev = of_find_device_by_node(elm_node);
1614	/* check whether ELM device is registered */
1615	if (!pdev) {
1616		dev_err(&info->pdev->dev, "ELM device not found\n");
1617		return false;
1618	}
1619	/* ELM module available, now configure it */
1620	info->elm_dev = &pdev->dev;
1621	return true;
1622}
1623
1624static bool omap2_nand_ecc_check(struct omap_nand_info *info)
1625{
1626	bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1627
1628	switch (info->ecc_opt) {
1629	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1630	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1631		ecc_needs_omap_bch = false;
1632		ecc_needs_bch = true;
1633		ecc_needs_elm = false;
1634		break;
1635	case OMAP_ECC_BCH4_CODE_HW:
1636	case OMAP_ECC_BCH8_CODE_HW:
1637	case OMAP_ECC_BCH16_CODE_HW:
1638		ecc_needs_omap_bch = true;
1639		ecc_needs_bch = false;
1640		ecc_needs_elm = true;
1641		break;
1642	default:
1643		ecc_needs_omap_bch = false;
1644		ecc_needs_bch = false;
1645		ecc_needs_elm = false;
1646		break;
1647	}
1648
1649	if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
1650		dev_err(&info->pdev->dev,
1651			"CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
1652		return false;
1653	}
1654	if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1655		dev_err(&info->pdev->dev,
1656			"CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1657		return false;
1658	}
1659	if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1660		dev_err(&info->pdev->dev, "ELM not available\n");
1661		return false;
1662	}
1663
1664	return true;
1665}
1666
1667static const char * const nand_xfer_types[] = {
1668	[NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1669	[NAND_OMAP_POLLED] = "polled",
1670	[NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1671	[NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1672};
1673
1674static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1675{
1676	struct device_node *child = dev->of_node;
1677	int i;
1678	const char *s;
1679	u32 cs;
1680
1681	if (of_property_read_u32(child, "reg", &cs) < 0) {
1682		dev_err(dev, "reg not found in DT\n");
1683		return -EINVAL;
1684	}
1685
1686	info->gpmc_cs = cs;
1687
1688	/* detect availability of ELM module. Won't be present pre-OMAP4 */
1689	info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1690	if (!info->elm_of_node) {
1691		info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1692		if (!info->elm_of_node)
1693			dev_dbg(dev, "ti,elm-id not in DT\n");
1694	}
1695
1696	/* select ecc-scheme for NAND */
1697	if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1698		dev_err(dev, "ti,nand-ecc-opt not found\n");
1699		return -EINVAL;
1700	}
1701
1702	if (!strcmp(s, "sw")) {
1703		info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1704	} else if (!strcmp(s, "ham1") ||
1705		   !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1706		info->ecc_opt =	OMAP_ECC_HAM1_CODE_HW;
1707	} else if (!strcmp(s, "bch4")) {
1708		if (info->elm_of_node)
1709			info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1710		else
1711			info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1712	} else if (!strcmp(s, "bch8")) {
1713		if (info->elm_of_node)
1714			info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1715		else
1716			info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1717	} else if (!strcmp(s, "bch16")) {
1718		info->ecc_opt =	OMAP_ECC_BCH16_CODE_HW;
1719	} else {
1720		dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1721		return -EINVAL;
1722	}
1723
1724	/* select data transfer mode */
1725	if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1726		for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1727			if (!strcasecmp(s, nand_xfer_types[i])) {
1728				info->xfer_type = i;
1729				return 0;
1730			}
1731		}
1732
1733		dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1734		return -EINVAL;
1735	}
1736
1737	return 0;
1738}
1739
1740static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1741			      struct mtd_oob_region *oobregion)
1742{
1743	struct omap_nand_info *info = mtd_to_omap(mtd);
1744	struct nand_chip *chip = &info->nand;
1745	int off = BBM_LEN;
1746
1747	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1748	    !(chip->options & NAND_BUSWIDTH_16))
1749		off = 1;
1750
1751	if (section)
1752		return -ERANGE;
1753
1754	oobregion->offset = off;
1755	oobregion->length = chip->ecc.total;
1756
1757	return 0;
1758}
1759
1760static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1761			       struct mtd_oob_region *oobregion)
1762{
1763	struct omap_nand_info *info = mtd_to_omap(mtd);
1764	struct nand_chip *chip = &info->nand;
1765	int off = BBM_LEN;
1766
1767	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1768	    !(chip->options & NAND_BUSWIDTH_16))
1769		off = 1;
1770
1771	if (section)
1772		return -ERANGE;
1773
1774	off += chip->ecc.total;
1775	if (off >= mtd->oobsize)
1776		return -ERANGE;
1777
1778	oobregion->offset = off;
1779	oobregion->length = mtd->oobsize - off;
1780
1781	return 0;
1782}
1783
1784static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1785	.ecc = omap_ooblayout_ecc,
1786	.free = omap_ooblayout_free,
1787};
1788
1789static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1790				 struct mtd_oob_region *oobregion)
1791{
1792	struct nand_device *nand = mtd_to_nanddev(mtd);
1793	unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
1794	unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
1795	int off = BBM_LEN;
1796
1797	if (section >= nsteps)
1798		return -ERANGE;
1799
1800	/*
1801	 * When SW correction is employed, one OMAP specific marker byte is
1802	 * reserved after each ECC step.
1803	 */
1804	oobregion->offset = off + (section * (ecc_bytes + 1));
1805	oobregion->length = ecc_bytes;
1806
1807	return 0;
1808}
1809
1810static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1811				  struct mtd_oob_region *oobregion)
1812{
1813	struct nand_device *nand = mtd_to_nanddev(mtd);
1814	unsigned int nsteps = nanddev_get_ecc_nsteps(nand);
1815	unsigned int ecc_bytes = nanddev_get_ecc_bytes_per_step(nand);
1816	int off = BBM_LEN;
1817
1818	if (section)
1819		return -ERANGE;
1820
1821	/*
1822	 * When SW correction is employed, one OMAP specific marker byte is
1823	 * reserved after each ECC step.
1824	 */
1825	off += ((ecc_bytes + 1) * nsteps);
1826	if (off >= mtd->oobsize)
1827		return -ERANGE;
1828
1829	oobregion->offset = off;
1830	oobregion->length = mtd->oobsize - off;
1831
1832	return 0;
1833}
1834
1835static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1836	.ecc = omap_sw_ooblayout_ecc,
1837	.free = omap_sw_ooblayout_free,
1838};
1839
1840static int omap_nand_attach_chip(struct nand_chip *chip)
1841{
1842	struct mtd_info *mtd = nand_to_mtd(chip);
1843	struct omap_nand_info *info = mtd_to_omap(mtd);
1844	struct device *dev = &info->pdev->dev;
1845	int min_oobbytes = BBM_LEN;
1846	int elm_bch_strength = -1;
1847	int oobbytes_per_step;
1848	dma_cap_mask_t mask;
1849	int err;
1850
1851	if (chip->bbt_options & NAND_BBT_USE_FLASH)
1852		chip->bbt_options |= NAND_BBT_NO_OOB;
1853	else
1854		chip->options |= NAND_SKIP_BBTSCAN;
1855
1856	/* Re-populate low-level callbacks based on xfer modes */
1857	switch (info->xfer_type) {
1858	case NAND_OMAP_PREFETCH_POLLED:
1859		info->data_in = omap_nand_data_in_pref;
1860		info->data_out = omap_nand_data_out_pref;
1861		break;
1862
1863	case NAND_OMAP_POLLED:
1864		/* Use nand_base defaults for {read,write}_buf */
1865		break;
1866
1867	case NAND_OMAP_PREFETCH_DMA:
1868		dma_cap_zero(mask);
1869		dma_cap_set(DMA_SLAVE, mask);
1870		info->dma = dma_request_chan(dev->parent, "rxtx");
1871
1872		if (IS_ERR(info->dma)) {
1873			dev_err(dev, "DMA engine request failed\n");
1874			return PTR_ERR(info->dma);
1875		} else {
1876			struct dma_slave_config cfg;
1877
1878			memset(&cfg, 0, sizeof(cfg));
1879			cfg.src_addr = info->phys_base;
1880			cfg.dst_addr = info->phys_base;
1881			cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1882			cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1883			cfg.src_maxburst = 16;
1884			cfg.dst_maxburst = 16;
1885			err = dmaengine_slave_config(info->dma, &cfg);
1886			if (err) {
1887				dev_err(dev,
1888					"DMA engine slave config failed: %d\n",
1889					err);
1890				return err;
1891			}
1892
1893			info->data_in = omap_nand_data_in_dma_pref;
1894			info->data_out = omap_nand_data_out_dma_pref;
1895		}
1896		break;
1897
1898	case NAND_OMAP_PREFETCH_IRQ:
1899		info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
1900		if (info->gpmc_irq_fifo < 0)
1901			return info->gpmc_irq_fifo;
1902		err = devm_request_irq(dev, info->gpmc_irq_fifo,
1903				       omap_nand_irq, IRQF_SHARED,
1904				       "gpmc-nand-fifo", info);
1905		if (err) {
1906			dev_err(dev, "Requesting IRQ %d, error %d\n",
1907				info->gpmc_irq_fifo, err);
1908			info->gpmc_irq_fifo = 0;
1909			return err;
1910		}
1911
1912		info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
1913		if (info->gpmc_irq_count < 0)
1914			return info->gpmc_irq_count;
1915		err = devm_request_irq(dev, info->gpmc_irq_count,
1916				       omap_nand_irq, IRQF_SHARED,
1917				       "gpmc-nand-count", info);
1918		if (err) {
1919			dev_err(dev, "Requesting IRQ %d, error %d\n",
1920				info->gpmc_irq_count, err);
1921			info->gpmc_irq_count = 0;
1922			return err;
1923		}
1924
1925		info->data_in = omap_nand_data_in_irq_pref;
1926		info->data_out = omap_nand_data_out_irq_pref;
1927		break;
1928
1929	default:
1930		dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
1931		return -EINVAL;
1932	}
1933
1934	if (!omap2_nand_ecc_check(info))
1935		return -EINVAL;
1936
1937	/*
1938	 * Bail out earlier to let NAND_ECC_ENGINE_TYPE_SOFT code create its own
1939	 * ooblayout instead of using ours.
1940	 */
1941	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
1942		chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
1943		chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
1944		return 0;
1945	}
1946
1947	/* Populate MTD interface based on ECC scheme */
1948	switch (info->ecc_opt) {
1949	case OMAP_ECC_HAM1_CODE_HW:
1950		dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
1951		chip->ecc.engine_type	= NAND_ECC_ENGINE_TYPE_ON_HOST;
1952		chip->ecc.bytes		= 3;
1953		chip->ecc.size		= 512;
1954		chip->ecc.strength	= 1;
1955		chip->ecc.calculate	= omap_calculate_ecc;
1956		chip->ecc.hwctl		= omap_enable_hwecc;
1957		chip->ecc.correct	= omap_correct_data;
1958		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
1959		oobbytes_per_step	= chip->ecc.bytes;
1960
1961		if (!(chip->options & NAND_BUSWIDTH_16))
1962			min_oobbytes	= 1;
1963
1964		break;
1965
1966	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1967		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1968		chip->ecc.engine_type	= NAND_ECC_ENGINE_TYPE_ON_HOST;
1969		chip->ecc.size		= 512;
1970		chip->ecc.bytes		= 7;
1971		chip->ecc.strength	= 4;
1972		chip->ecc.hwctl		= omap_enable_hwecc_bch;
1973		chip->ecc.correct	= rawnand_sw_bch_correct;
1974		chip->ecc.calculate	= omap_calculate_ecc_bch_sw;
1975		mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
1976		/* Reserve one byte for the OMAP marker */
1977		oobbytes_per_step	= chip->ecc.bytes + 1;
1978		/* Software BCH library is used for locating errors */
1979		err = rawnand_sw_bch_init(chip);
1980		if (err) {
1981			dev_err(dev, "Unable to use BCH library\n");
1982			return err;
1983		}
1984		break;
1985
1986	case OMAP_ECC_BCH4_CODE_HW:
1987		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1988		chip->ecc.engine_type	= NAND_ECC_ENGINE_TYPE_ON_HOST;
1989		chip->ecc.size		= 512;
1990		/* 14th bit is kept reserved for ROM-code compatibility */
1991		chip->ecc.bytes		= 7 + 1;
1992		chip->ecc.strength	= 4;
1993		chip->ecc.hwctl		= omap_enable_hwecc_bch;
1994		chip->ecc.correct	= omap_elm_correct_data;
1995		chip->ecc.read_page	= omap_read_page_bch;
1996		chip->ecc.write_page	= omap_write_page_bch;
1997		chip->ecc.write_subpage	= omap_write_subpage_bch;
1998		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
1999		oobbytes_per_step	= chip->ecc.bytes;
2000		elm_bch_strength = BCH4_ECC;
2001		break;
2002
2003	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
2004		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2005		chip->ecc.engine_type	= NAND_ECC_ENGINE_TYPE_ON_HOST;
2006		chip->ecc.size		= 512;
2007		chip->ecc.bytes		= 13;
2008		chip->ecc.strength	= 8;
2009		chip->ecc.hwctl		= omap_enable_hwecc_bch;
2010		chip->ecc.correct	= rawnand_sw_bch_correct;
2011		chip->ecc.calculate	= omap_calculate_ecc_bch_sw;
2012		mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2013		/* Reserve one byte for the OMAP marker */
2014		oobbytes_per_step	= chip->ecc.bytes + 1;
2015		/* Software BCH library is used for locating errors */
2016		err = rawnand_sw_bch_init(chip);
2017		if (err) {
2018			dev_err(dev, "unable to use BCH library\n");
2019			return err;
2020		}
2021		break;
2022
2023	case OMAP_ECC_BCH8_CODE_HW:
2024		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2025		chip->ecc.engine_type	= NAND_ECC_ENGINE_TYPE_ON_HOST;
2026		chip->ecc.size		= 512;
2027		/* 14th bit is kept reserved for ROM-code compatibility */
2028		chip->ecc.bytes		= 13 + 1;
2029		chip->ecc.strength	= 8;
2030		chip->ecc.hwctl		= omap_enable_hwecc_bch;
2031		chip->ecc.correct	= omap_elm_correct_data;
2032		chip->ecc.read_page	= omap_read_page_bch;
2033		chip->ecc.write_page	= omap_write_page_bch;
2034		chip->ecc.write_subpage	= omap_write_subpage_bch;
2035		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2036		oobbytes_per_step	= chip->ecc.bytes;
2037		elm_bch_strength = BCH8_ECC;
2038		break;
2039
2040	case OMAP_ECC_BCH16_CODE_HW:
2041		pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2042		chip->ecc.engine_type	= NAND_ECC_ENGINE_TYPE_ON_HOST;
2043		chip->ecc.size		= 512;
2044		chip->ecc.bytes		= 26;
2045		chip->ecc.strength	= 16;
2046		chip->ecc.hwctl		= omap_enable_hwecc_bch;
2047		chip->ecc.correct	= omap_elm_correct_data;
2048		chip->ecc.read_page	= omap_read_page_bch;
2049		chip->ecc.write_page	= omap_write_page_bch;
2050		chip->ecc.write_subpage	= omap_write_subpage_bch;
2051		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2052		oobbytes_per_step	= chip->ecc.bytes;
2053		elm_bch_strength = BCH16_ECC;
2054		break;
2055	default:
2056		dev_err(dev, "Invalid or unsupported ECC scheme\n");
2057		return -EINVAL;
2058	}
2059
2060	if (elm_bch_strength >= 0) {
2061		chip->ecc.steps = mtd->writesize / chip->ecc.size;
2062		info->neccpg = chip->ecc.steps / ERROR_VECTOR_MAX;
2063		if (info->neccpg) {
2064			info->nsteps_per_eccpg = ERROR_VECTOR_MAX;
2065		} else {
2066			info->neccpg = 1;
2067			info->nsteps_per_eccpg = chip->ecc.steps;
2068		}
2069		info->eccpg_size = info->nsteps_per_eccpg * chip->ecc.size;
2070		info->eccpg_bytes = info->nsteps_per_eccpg * chip->ecc.bytes;
2071
2072		err = elm_config(info->elm_dev, elm_bch_strength,
2073				 info->nsteps_per_eccpg, chip->ecc.size,
2074				 chip->ecc.bytes);
2075		if (err < 0)
2076			return err;
2077	}
2078
2079	/* Check if NAND device's OOB is enough to store ECC signatures */
2080	min_oobbytes += (oobbytes_per_step *
2081			 (mtd->writesize / chip->ecc.size));
2082	if (mtd->oobsize < min_oobbytes) {
2083		dev_err(dev,
2084			"Not enough OOB bytes: required = %d, available=%d\n",
2085			min_oobbytes, mtd->oobsize);
2086		return -EINVAL;
2087	}
2088
2089	return 0;
2090}
2091
2092static void omap_nand_data_in(struct nand_chip *chip, void *buf,
2093			      unsigned int len, bool force_8bit)
2094{
2095	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
2096	u32 alignment = ((uintptr_t)buf | len) & 3;
2097
2098	if (force_8bit || (alignment & 1))
2099		ioread8_rep(info->fifo, buf, len);
2100	else if (alignment & 3)
2101		ioread16_rep(info->fifo, buf, len >> 1);
2102	else
2103		ioread32_rep(info->fifo, buf, len >> 2);
2104}
2105
2106static void omap_nand_data_out(struct nand_chip *chip,
2107			       const void *buf, unsigned int len,
2108			       bool force_8bit)
2109{
2110	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
2111	u32 alignment = ((uintptr_t)buf | len) & 3;
2112
2113	if (force_8bit || (alignment & 1))
2114		iowrite8_rep(info->fifo, buf, len);
2115	else if (alignment & 3)
2116		iowrite16_rep(info->fifo, buf, len >> 1);
2117	else
2118		iowrite32_rep(info->fifo, buf, len >> 2);
2119}
2120
2121static int omap_nand_exec_instr(struct nand_chip *chip,
2122				const struct nand_op_instr *instr)
2123{
2124	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
2125	unsigned int i;
2126	int ret;
2127
2128	switch (instr->type) {
2129	case NAND_OP_CMD_INSTR:
2130		iowrite8(instr->ctx.cmd.opcode,
2131			 info->reg.gpmc_nand_command);
2132		break;
2133
2134	case NAND_OP_ADDR_INSTR:
2135		for (i = 0; i < instr->ctx.addr.naddrs; i++) {
2136			iowrite8(instr->ctx.addr.addrs[i],
2137				 info->reg.gpmc_nand_address);
2138		}
2139		break;
2140
2141	case NAND_OP_DATA_IN_INSTR:
2142		info->data_in(chip, instr->ctx.data.buf.in,
2143			      instr->ctx.data.len,
2144			      instr->ctx.data.force_8bit);
2145		break;
2146
2147	case NAND_OP_DATA_OUT_INSTR:
2148		info->data_out(chip, instr->ctx.data.buf.out,
2149			       instr->ctx.data.len,
2150			       instr->ctx.data.force_8bit);
2151		break;
2152
2153	case NAND_OP_WAITRDY_INSTR:
2154		ret = info->ready_gpiod ?
2155			nand_gpio_waitrdy(chip, info->ready_gpiod, instr->ctx.waitrdy.timeout_ms) :
2156			nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms);
2157		if (ret)
2158			return ret;
2159		break;
2160	}
2161
2162	if (instr->delay_ns)
2163		ndelay(instr->delay_ns);
2164
2165	return 0;
2166}
2167
2168static int omap_nand_exec_op(struct nand_chip *chip,
2169			     const struct nand_operation *op,
2170			     bool check_only)
2171{
2172	unsigned int i;
2173
2174	if (check_only)
2175		return 0;
2176
2177	for (i = 0; i < op->ninstrs; i++) {
2178		int ret;
2179
2180		ret = omap_nand_exec_instr(chip, &op->instrs[i]);
2181		if (ret)
2182			return ret;
2183	}
2184
2185	return 0;
2186}
2187
2188static const struct nand_controller_ops omap_nand_controller_ops = {
2189	.attach_chip = omap_nand_attach_chip,
2190	.exec_op = omap_nand_exec_op,
2191};
2192
2193/* Shared among all NAND instances to synchronize access to the ECC Engine */
2194static struct nand_controller omap_gpmc_controller;
2195static bool omap_gpmc_controller_initialized;
2196
2197static int omap_nand_probe(struct platform_device *pdev)
2198{
2199	struct omap_nand_info		*info;
2200	struct mtd_info			*mtd;
2201	struct nand_chip		*nand_chip;
2202	int				err;
2203	struct resource			*res;
2204	struct device			*dev = &pdev->dev;
2205	void __iomem *vaddr;
2206
2207	info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
2208				GFP_KERNEL);
2209	if (!info)
2210		return -ENOMEM;
2211
2212	info->pdev = pdev;
2213
2214	err = omap_get_dt_info(dev, info);
2215	if (err)
2216		return err;
2217
2218	info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
2219	if (!info->ops) {
2220		dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
2221		return -ENODEV;
2222	}
2223
2224	nand_chip		= &info->nand;
2225	mtd			= nand_to_mtd(nand_chip);
2226	mtd->dev.parent		= &pdev->dev;
2227	nand_set_flash_node(nand_chip, dev->of_node);
2228
2229	if (!mtd->name) {
2230		mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
2231					   "omap2-nand.%d", info->gpmc_cs);
2232		if (!mtd->name) {
2233			dev_err(&pdev->dev, "Failed to set MTD name\n");
2234			return -ENOMEM;
2235		}
2236	}
2237
2238	vaddr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2239	if (IS_ERR(vaddr))
2240		return PTR_ERR(vaddr);
2241
2242	info->fifo = vaddr;
2243	info->phys_base = res->start;
2244
2245	if (!omap_gpmc_controller_initialized) {
2246		omap_gpmc_controller.ops = &omap_nand_controller_ops;
2247		nand_controller_init(&omap_gpmc_controller);
2248		omap_gpmc_controller_initialized = true;
2249	}
2250
2251	nand_chip->controller = &omap_gpmc_controller;
2252
2253	info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
2254						    GPIOD_IN);
2255	if (IS_ERR(info->ready_gpiod)) {
2256		dev_err(dev, "failed to get ready gpio\n");
2257		return PTR_ERR(info->ready_gpiod);
2258	}
2259
2260	if (info->flash_bbt)
2261		nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2262
2263	/* default operations */
2264	info->data_in = omap_nand_data_in;
2265	info->data_out = omap_nand_data_out;
2266
2267	err = nand_scan(nand_chip, 1);
2268	if (err)
2269		goto return_error;
2270
2271	err = mtd_device_register(mtd, NULL, 0);
2272	if (err)
2273		goto cleanup_nand;
2274
2275	platform_set_drvdata(pdev, mtd);
2276
2277	return 0;
2278
2279cleanup_nand:
2280	nand_cleanup(nand_chip);
2281
2282return_error:
2283	if (!IS_ERR_OR_NULL(info->dma))
2284		dma_release_channel(info->dma);
2285
2286	rawnand_sw_bch_cleanup(nand_chip);
2287
2288	return err;
2289}
2290
2291static void omap_nand_remove(struct platform_device *pdev)
2292{
2293	struct mtd_info *mtd = platform_get_drvdata(pdev);
2294	struct nand_chip *nand_chip = mtd_to_nand(mtd);
2295	struct omap_nand_info *info = mtd_to_omap(mtd);
2296
2297	rawnand_sw_bch_cleanup(nand_chip);
2298
2299	if (info->dma)
2300		dma_release_channel(info->dma);
2301	WARN_ON(mtd_device_unregister(mtd));
2302	nand_cleanup(nand_chip);
2303}
2304
2305/* omap_nand_ids defined in linux/platform_data/mtd-nand-omap2.h */
2306MODULE_DEVICE_TABLE(of, omap_nand_ids);
2307
2308static struct platform_driver omap_nand_driver = {
2309	.probe		= omap_nand_probe,
2310	.remove		= omap_nand_remove,
2311	.driver		= {
2312		.name	= DRIVER_NAME,
2313		.of_match_table = omap_nand_ids,
2314	},
2315};
2316
2317module_platform_driver(omap_nand_driver);
2318
2319MODULE_ALIAS("platform:" DRIVER_NAME);
2320MODULE_LICENSE("GPL");
2321MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");