Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * RDMA Transport Layer
   4 *
   5 * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
   6 * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
   7 * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
   8 */
   9
  10#undef pr_fmt
  11#define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
  12
  13#include <linux/module.h>
  14#include <linux/rculist.h>
  15#include <linux/random.h>
  16
  17#include "rtrs-clt.h"
  18#include "rtrs-log.h"
  19#include "rtrs-clt-trace.h"
  20
  21#define RTRS_CONNECT_TIMEOUT_MS 30000
  22/*
  23 * Wait a bit before trying to reconnect after a failure
  24 * in order to give server time to finish clean up which
  25 * leads to "false positives" failed reconnect attempts
  26 */
  27#define RTRS_RECONNECT_BACKOFF 1000
  28/*
  29 * Wait for additional random time between 0 and 8 seconds
  30 * before starting to reconnect to avoid clients reconnecting
  31 * all at once in case of a major network outage
  32 */
  33#define RTRS_RECONNECT_SEED 8
  34
  35#define FIRST_CONN 0x01
  36/* limit to 128 * 4k = 512k max IO */
  37#define RTRS_MAX_SEGMENTS          128
  38
  39MODULE_DESCRIPTION("RDMA Transport Client");
  40MODULE_LICENSE("GPL");
  41
  42static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
  43static struct rtrs_rdma_dev_pd dev_pd = {
  44	.ops = &dev_pd_ops
  45};
  46
  47static struct workqueue_struct *rtrs_wq;
  48static const struct class rtrs_clt_dev_class = {
  49	.name = "rtrs-client",
  50};
  51
  52static inline bool rtrs_clt_is_connected(const struct rtrs_clt_sess *clt)
  53{
  54	struct rtrs_clt_path *clt_path;
  55	bool connected = false;
  56
  57	rcu_read_lock();
  58	list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry)
  59		if (READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTED) {
  60			connected = true;
  61			break;
  62		}
  63	rcu_read_unlock();
  64
  65	return connected;
  66}
  67
  68static struct rtrs_permit *
  69__rtrs_get_permit(struct rtrs_clt_sess *clt, enum rtrs_clt_con_type con_type)
  70{
  71	size_t max_depth = clt->queue_depth;
  72	struct rtrs_permit *permit;
  73	int bit;
  74
  75	/*
  76	 * Adapted from null_blk get_tag(). Callers from different cpus may
  77	 * grab the same bit, since find_first_zero_bit is not atomic.
  78	 * But then the test_and_set_bit_lock will fail for all the
  79	 * callers but one, so that they will loop again.
  80	 * This way an explicit spinlock is not required.
  81	 */
  82	do {
  83		bit = find_first_zero_bit(clt->permits_map, max_depth);
  84		if (bit >= max_depth)
  85			return NULL;
  86	} while (test_and_set_bit_lock(bit, clt->permits_map));
  87
  88	permit = get_permit(clt, bit);
  89	WARN_ON(permit->mem_id != bit);
  90	permit->cpu_id = raw_smp_processor_id();
  91	permit->con_type = con_type;
  92
  93	return permit;
  94}
  95
  96static inline void __rtrs_put_permit(struct rtrs_clt_sess *clt,
  97				      struct rtrs_permit *permit)
  98{
  99	clear_bit_unlock(permit->mem_id, clt->permits_map);
 100}
 101
 102/**
 103 * rtrs_clt_get_permit() - allocates permit for future RDMA operation
 104 * @clt:	Current session
 105 * @con_type:	Type of connection to use with the permit
 106 * @can_wait:	Wait type
 107 *
 108 * Description:
 109 *    Allocates permit for the following RDMA operation.  Permit is used
 110 *    to preallocate all resources and to propagate memory pressure
 111 *    up earlier.
 112 *
 113 * Context:
 114 *    Can sleep if @wait == RTRS_PERMIT_WAIT
 115 */
 116struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt_sess *clt,
 117					  enum rtrs_clt_con_type con_type,
 118					  enum wait_type can_wait)
 119{
 120	struct rtrs_permit *permit;
 121	DEFINE_WAIT(wait);
 122
 123	permit = __rtrs_get_permit(clt, con_type);
 124	if (permit || !can_wait)
 125		return permit;
 126
 127	do {
 128		prepare_to_wait(&clt->permits_wait, &wait,
 129				TASK_UNINTERRUPTIBLE);
 130		permit = __rtrs_get_permit(clt, con_type);
 131		if (permit)
 132			break;
 133
 134		io_schedule();
 135	} while (1);
 136
 137	finish_wait(&clt->permits_wait, &wait);
 138
 139	return permit;
 140}
 141EXPORT_SYMBOL(rtrs_clt_get_permit);
 142
 143/**
 144 * rtrs_clt_put_permit() - puts allocated permit
 145 * @clt:	Current session
 146 * @permit:	Permit to be freed
 147 *
 148 * Context:
 149 *    Does not matter
 150 */
 151void rtrs_clt_put_permit(struct rtrs_clt_sess *clt,
 152			 struct rtrs_permit *permit)
 153{
 154	if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map)))
 155		return;
 156
 157	__rtrs_put_permit(clt, permit);
 158
 159	/*
 160	 * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list
 161	 * before calling schedule(). So if rtrs_clt_get_permit() is sleeping
 162	 * it must have added itself to &clt->permits_wait before
 163	 * __rtrs_put_permit() finished.
 164	 * Hence it is safe to guard wake_up() with a waitqueue_active() test.
 165	 */
 166	if (waitqueue_active(&clt->permits_wait))
 167		wake_up(&clt->permits_wait);
 168}
 169EXPORT_SYMBOL(rtrs_clt_put_permit);
 170
 171/**
 172 * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit
 173 * @clt_path: client path pointer
 174 * @permit: permit for the allocation of the RDMA buffer
 175 * Note:
 176 *     IO connection starts from 1.
 177 *     0 connection is for user messages.
 178 */
 179static
 180struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_path *clt_path,
 181					    struct rtrs_permit *permit)
 182{
 183	int id = 0;
 184
 185	if (permit->con_type == RTRS_IO_CON)
 186		id = (permit->cpu_id % (clt_path->s.irq_con_num - 1)) + 1;
 187
 188	return to_clt_con(clt_path->s.con[id]);
 189}
 190
 191/**
 192 * rtrs_clt_change_state() - change the session state through session state
 193 * machine.
 194 *
 195 * @clt_path: client path to change the state of.
 196 * @new_state: state to change to.
 197 *
 198 * returns true if sess's state is changed to new state, otherwise return false.
 199 *
 200 * Locks:
 201 * state_wq lock must be hold.
 202 */
 203static bool rtrs_clt_change_state(struct rtrs_clt_path *clt_path,
 204				     enum rtrs_clt_state new_state)
 205{
 206	enum rtrs_clt_state old_state;
 207	bool changed = false;
 208
 209	lockdep_assert_held(&clt_path->state_wq.lock);
 210
 211	old_state = clt_path->state;
 212	switch (new_state) {
 213	case RTRS_CLT_CONNECTING:
 214		switch (old_state) {
 215		case RTRS_CLT_RECONNECTING:
 216			changed = true;
 217			fallthrough;
 218		default:
 219			break;
 220		}
 221		break;
 222	case RTRS_CLT_RECONNECTING:
 223		switch (old_state) {
 224		case RTRS_CLT_CONNECTED:
 225		case RTRS_CLT_CONNECTING_ERR:
 226		case RTRS_CLT_CLOSED:
 227			changed = true;
 228			fallthrough;
 229		default:
 230			break;
 231		}
 232		break;
 233	case RTRS_CLT_CONNECTED:
 234		switch (old_state) {
 235		case RTRS_CLT_CONNECTING:
 236			changed = true;
 237			fallthrough;
 238		default:
 239			break;
 240		}
 241		break;
 242	case RTRS_CLT_CONNECTING_ERR:
 243		switch (old_state) {
 244		case RTRS_CLT_CONNECTING:
 245			changed = true;
 246			fallthrough;
 247		default:
 248			break;
 249		}
 250		break;
 251	case RTRS_CLT_CLOSING:
 252		switch (old_state) {
 253		case RTRS_CLT_CONNECTING:
 254		case RTRS_CLT_CONNECTING_ERR:
 255		case RTRS_CLT_RECONNECTING:
 256		case RTRS_CLT_CONNECTED:
 257			changed = true;
 258			fallthrough;
 259		default:
 260			break;
 261		}
 262		break;
 263	case RTRS_CLT_CLOSED:
 264		switch (old_state) {
 265		case RTRS_CLT_CLOSING:
 266			changed = true;
 267			fallthrough;
 268		default:
 269			break;
 270		}
 271		break;
 272	case RTRS_CLT_DEAD:
 273		switch (old_state) {
 274		case RTRS_CLT_CLOSED:
 275			changed = true;
 276			fallthrough;
 277		default:
 278			break;
 279		}
 280		break;
 281	default:
 282		break;
 283	}
 284	if (changed) {
 285		clt_path->state = new_state;
 286		wake_up_locked(&clt_path->state_wq);
 287	}
 288
 289	return changed;
 290}
 291
 292static bool rtrs_clt_change_state_from_to(struct rtrs_clt_path *clt_path,
 293					   enum rtrs_clt_state old_state,
 294					   enum rtrs_clt_state new_state)
 295{
 296	bool changed = false;
 297
 298	spin_lock_irq(&clt_path->state_wq.lock);
 299	if (clt_path->state == old_state)
 300		changed = rtrs_clt_change_state(clt_path, new_state);
 301	spin_unlock_irq(&clt_path->state_wq.lock);
 302
 303	return changed;
 304}
 305
 306static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_path *clt_path);
 307static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con)
 308{
 309	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 310
 311	trace_rtrs_rdma_error_recovery(clt_path);
 312
 313	if (rtrs_clt_change_state_from_to(clt_path,
 314					   RTRS_CLT_CONNECTED,
 315					   RTRS_CLT_RECONNECTING)) {
 316		queue_work(rtrs_wq, &clt_path->err_recovery_work);
 317	} else {
 318		/*
 319		 * Error can happen just on establishing new connection,
 320		 * so notify waiter with error state, waiter is responsible
 321		 * for cleaning the rest and reconnect if needed.
 322		 */
 323		rtrs_clt_change_state_from_to(clt_path,
 324					       RTRS_CLT_CONNECTING,
 325					       RTRS_CLT_CONNECTING_ERR);
 326	}
 327}
 328
 329static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc)
 330{
 331	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
 332
 333	if (wc->status != IB_WC_SUCCESS) {
 334		rtrs_err(con->c.path, "Failed IB_WR_REG_MR: %s\n",
 335			  ib_wc_status_msg(wc->status));
 336		rtrs_rdma_error_recovery(con);
 337	}
 338}
 339
 340static struct ib_cqe fast_reg_cqe = {
 341	.done = rtrs_clt_fast_reg_done
 342};
 343
 344static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
 345			      bool notify, bool can_wait);
 346
 347static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
 348{
 349	struct rtrs_clt_io_req *req =
 350		container_of(wc->wr_cqe, typeof(*req), inv_cqe);
 351	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
 352
 353	if (wc->status != IB_WC_SUCCESS) {
 354		rtrs_err(con->c.path, "Failed IB_WR_LOCAL_INV: %s\n",
 355			  ib_wc_status_msg(wc->status));
 356		rtrs_rdma_error_recovery(con);
 357	}
 358	req->need_inv = false;
 359	if (req->need_inv_comp)
 360		complete(&req->inv_comp);
 361	else
 362		/* Complete request from INV callback */
 363		complete_rdma_req(req, req->inv_errno, true, false);
 364}
 365
 366static int rtrs_inv_rkey(struct rtrs_clt_io_req *req)
 367{
 368	struct rtrs_clt_con *con = req->con;
 369	struct ib_send_wr wr = {
 370		.opcode		    = IB_WR_LOCAL_INV,
 371		.wr_cqe		    = &req->inv_cqe,
 372		.send_flags	    = IB_SEND_SIGNALED,
 373		.ex.invalidate_rkey = req->mr->rkey,
 374	};
 375	req->inv_cqe.done = rtrs_clt_inv_rkey_done;
 376
 377	return ib_post_send(con->c.qp, &wr, NULL);
 378}
 379
 380static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
 381			      bool notify, bool can_wait)
 382{
 383	struct rtrs_clt_con *con = req->con;
 384	struct rtrs_clt_path *clt_path;
 385	int err;
 386
 387	if (!req->in_use)
 388		return;
 389	if (WARN_ON(!req->con))
 390		return;
 391	clt_path = to_clt_path(con->c.path);
 392
 393	if (req->sg_cnt) {
 394		if (req->dir == DMA_FROM_DEVICE && req->need_inv) {
 395			/*
 396			 * We are here to invalidate read requests
 397			 * ourselves.  In normal scenario server should
 398			 * send INV for all read requests, but
 399			 * we are here, thus two things could happen:
 
 400			 *
 401			 *    1.  this is failover, when errno != 0
 402			 *        and can_wait == 1,
 403			 *
 404			 *    2.  something totally bad happened and
 405			 *        server forgot to send INV, so we
 406			 *        should do that ourselves.
 
 
 
 407			 */
 408
 409			if (can_wait) {
 410				req->need_inv_comp = true;
 411			} else {
 412				/* This should be IO path, so always notify */
 413				WARN_ON(!notify);
 414				/* Save errno for INV callback */
 415				req->inv_errno = errno;
 416			}
 417
 418			refcount_inc(&req->ref);
 419			err = rtrs_inv_rkey(req);
 420			if (err) {
 421				rtrs_err(con->c.path, "Send INV WR key=%#x: %d\n",
 422					  req->mr->rkey, err);
 423			} else if (can_wait) {
 424				wait_for_completion(&req->inv_comp);
 425			} else {
 426				/*
 427				 * Something went wrong, so request will be
 428				 * completed from INV callback.
 429				 */
 430				WARN_ON_ONCE(1);
 431
 432				return;
 433			}
 434			if (!refcount_dec_and_test(&req->ref))
 435				return;
 436		}
 437		ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
 438				req->sg_cnt, req->dir);
 439	}
 440	if (!refcount_dec_and_test(&req->ref))
 441		return;
 442	if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
 443		atomic_dec(&clt_path->stats->inflight);
 444
 445	req->in_use = false;
 446	req->con = NULL;
 447
 448	if (errno) {
 449		rtrs_err_rl(con->c.path, "IO request failed: error=%d path=%s [%s:%u] notify=%d\n",
 450			    errno, kobject_name(&clt_path->kobj), clt_path->hca_name,
 
 
 451			    clt_path->hca_port, notify);
 452	}
 453
 454	if (notify)
 455		req->conf(req->priv, errno);
 456}
 457
 458static int rtrs_post_send_rdma(struct rtrs_clt_con *con,
 459				struct rtrs_clt_io_req *req,
 460				struct rtrs_rbuf *rbuf, u32 off,
 461				u32 imm, struct ib_send_wr *wr)
 462{
 463	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 464	enum ib_send_flags flags;
 465	struct ib_sge sge;
 466
 467	if (!req->sg_size) {
 468		rtrs_wrn(con->c.path,
 469			 "Doing RDMA Write failed, no data supplied\n");
 470		return -EINVAL;
 471	}
 472
 473	/* user data and user message in the first list element */
 474	sge.addr   = req->iu->dma_addr;
 475	sge.length = req->sg_size;
 476	sge.lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
 477
 478	/*
 479	 * From time to time we have to post signalled sends,
 480	 * or send queue will fill up and only QP reset can help.
 481	 */
 482	flags = atomic_inc_return(&con->c.wr_cnt) % clt_path->s.signal_interval ?
 483			0 : IB_SEND_SIGNALED;
 484
 485	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
 486				      req->iu->dma_addr,
 487				      req->sg_size, DMA_TO_DEVICE);
 488
 489	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1,
 490					    rbuf->rkey, rbuf->addr + off,
 491					    imm, flags, wr, NULL);
 492}
 493
 494static void process_io_rsp(struct rtrs_clt_path *clt_path, u32 msg_id,
 495			   s16 errno, bool w_inval)
 496{
 497	struct rtrs_clt_io_req *req;
 498
 499	if (WARN_ON(msg_id >= clt_path->queue_depth))
 500		return;
 501
 502	req = &clt_path->reqs[msg_id];
 503	/* Drop need_inv if server responded with send with invalidation */
 504	req->need_inv &= !w_inval;
 505	complete_rdma_req(req, errno, true, false);
 506}
 507
 508static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc)
 509{
 510	struct rtrs_iu *iu;
 511	int err;
 512	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 513
 514	WARN_ON((clt_path->flags & RTRS_MSG_NEW_RKEY_F) == 0);
 515	iu = container_of(wc->wr_cqe, struct rtrs_iu,
 516			  cqe);
 517	err = rtrs_iu_post_recv(&con->c, iu);
 518	if (err) {
 519		rtrs_err(con->c.path, "post iu failed %d\n", err);
 520		rtrs_rdma_error_recovery(con);
 521	}
 522}
 523
 524static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc)
 525{
 526	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 527	struct rtrs_msg_rkey_rsp *msg;
 528	u32 imm_type, imm_payload;
 529	bool w_inval = false;
 530	struct rtrs_iu *iu;
 531	u32 buf_id;
 532	int err;
 533
 534	WARN_ON((clt_path->flags & RTRS_MSG_NEW_RKEY_F) == 0);
 535
 536	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
 537
 538	if (wc->byte_len < sizeof(*msg)) {
 539		rtrs_err(con->c.path, "rkey response is malformed: size %d\n",
 540			  wc->byte_len);
 541		goto out;
 542	}
 543	ib_dma_sync_single_for_cpu(clt_path->s.dev->ib_dev, iu->dma_addr,
 544				   iu->size, DMA_FROM_DEVICE);
 545	msg = iu->buf;
 546	if (le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP) {
 547		rtrs_err(clt_path->clt,
 548			  "rkey response is malformed: type %d\n",
 549			  le16_to_cpu(msg->type));
 550		goto out;
 551	}
 552	buf_id = le16_to_cpu(msg->buf_id);
 553	if (WARN_ON(buf_id >= clt_path->queue_depth))
 554		goto out;
 555
 556	rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload);
 557	if (imm_type == RTRS_IO_RSP_IMM ||
 558	    imm_type == RTRS_IO_RSP_W_INV_IMM) {
 559		u32 msg_id;
 560
 561		w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
 562		rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
 563
 564		if (WARN_ON(buf_id != msg_id))
 565			goto out;
 566		clt_path->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey);
 567		process_io_rsp(clt_path, msg_id, err, w_inval);
 568	}
 569	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev, iu->dma_addr,
 570				      iu->size, DMA_FROM_DEVICE);
 571	return rtrs_clt_recv_done(con, wc);
 572out:
 573	rtrs_rdma_error_recovery(con);
 574}
 575
 576static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
 577
 578static struct ib_cqe io_comp_cqe = {
 579	.done = rtrs_clt_rdma_done
 580};
 581
 582/*
 583 * Post x2 empty WRs: first is for this RDMA with IMM,
 584 * second is for RECV with INV, which happened earlier.
 585 */
 586static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe)
 587{
 588	struct ib_recv_wr wr_arr[2], *wr;
 589	int i;
 590
 591	memset(wr_arr, 0, sizeof(wr_arr));
 592	for (i = 0; i < ARRAY_SIZE(wr_arr); i++) {
 593		wr = &wr_arr[i];
 594		wr->wr_cqe  = cqe;
 595		if (i)
 596			/* Chain backwards */
 597			wr->next = &wr_arr[i - 1];
 598	}
 599
 600	return ib_post_recv(con->qp, wr, NULL);
 601}
 602
 603static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
 604{
 605	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
 606	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 607	u32 imm_type, imm_payload;
 608	bool w_inval = false;
 609	int err;
 610
 611	if (wc->status != IB_WC_SUCCESS) {
 612		if (wc->status != IB_WC_WR_FLUSH_ERR) {
 613			rtrs_err(clt_path->clt, "RDMA failed: %s\n",
 614				  ib_wc_status_msg(wc->status));
 615			rtrs_rdma_error_recovery(con);
 616		}
 617		return;
 618	}
 619	rtrs_clt_update_wc_stats(con);
 620
 621	switch (wc->opcode) {
 622	case IB_WC_RECV_RDMA_WITH_IMM:
 623		/*
 624		 * post_recv() RDMA write completions of IO reqs (read/write)
 625		 * and hb
 626		 */
 627		if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done))
 628			return;
 
 629		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
 630			       &imm_type, &imm_payload);
 631		if (imm_type == RTRS_IO_RSP_IMM ||
 632		    imm_type == RTRS_IO_RSP_W_INV_IMM) {
 633			u32 msg_id;
 634
 635			w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
 636			rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
 637
 638			process_io_rsp(clt_path, msg_id, err, w_inval);
 639		} else if (imm_type == RTRS_HB_MSG_IMM) {
 640			WARN_ON(con->c.cid);
 641			rtrs_send_hb_ack(&clt_path->s);
 642			if (clt_path->flags & RTRS_MSG_NEW_RKEY_F)
 643				return  rtrs_clt_recv_done(con, wc);
 644		} else if (imm_type == RTRS_HB_ACK_IMM) {
 645			WARN_ON(con->c.cid);
 646			clt_path->s.hb_missed_cnt = 0;
 647			clt_path->s.hb_cur_latency =
 648				ktime_sub(ktime_get(), clt_path->s.hb_last_sent);
 649			if (clt_path->flags & RTRS_MSG_NEW_RKEY_F)
 650				return  rtrs_clt_recv_done(con, wc);
 651		} else {
 652			rtrs_wrn(con->c.path, "Unknown IMM type %u\n",
 653				  imm_type);
 654		}
 655		if (w_inval)
 656			/*
 657			 * Post x2 empty WRs: first is for this RDMA with IMM,
 658			 * second is for RECV with INV, which happened earlier.
 659			 */
 660			err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe);
 661		else
 662			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
 663		if (err) {
 664			rtrs_err(con->c.path, "rtrs_post_recv_empty(): %d\n",
 665				  err);
 666			rtrs_rdma_error_recovery(con);
 667		}
 668		break;
 669	case IB_WC_RECV:
 670		/*
 671		 * Key invalidations from server side
 672		 */
 
 673		WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE ||
 674			  wc->wc_flags & IB_WC_WITH_IMM));
 675		WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done);
 676		if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) {
 677			if (wc->wc_flags & IB_WC_WITH_INVALIDATE)
 678				return  rtrs_clt_recv_done(con, wc);
 679
 680			return  rtrs_clt_rkey_rsp_done(con, wc);
 681		}
 682		break;
 683	case IB_WC_RDMA_WRITE:
 684		/*
 685		 * post_send() RDMA write completions of IO reqs (read/write)
 686		 * and hb.
 687		 */
 688		break;
 689
 690	default:
 691		rtrs_wrn(clt_path->clt, "Unexpected WC type: %d\n", wc->opcode);
 692		return;
 693	}
 694}
 695
 696static int post_recv_io(struct rtrs_clt_con *con, size_t q_size)
 697{
 698	int err, i;
 699	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 700
 701	for (i = 0; i < q_size; i++) {
 702		if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) {
 703			struct rtrs_iu *iu = &con->rsp_ius[i];
 704
 705			err = rtrs_iu_post_recv(&con->c, iu);
 706		} else {
 707			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
 708		}
 709		if (err)
 710			return err;
 711	}
 712
 713	return 0;
 714}
 715
 716static int post_recv_path(struct rtrs_clt_path *clt_path)
 717{
 718	size_t q_size = 0;
 719	int err, cid;
 720
 721	for (cid = 0; cid < clt_path->s.con_num; cid++) {
 722		if (cid == 0)
 723			q_size = SERVICE_CON_QUEUE_DEPTH;
 724		else
 725			q_size = clt_path->queue_depth;
 726
 727		/*
 728		 * x2 for RDMA read responses + FR key invalidations,
 729		 * RDMA writes do not require any FR registrations.
 730		 */
 731		q_size *= 2;
 732
 733		err = post_recv_io(to_clt_con(clt_path->s.con[cid]), q_size);
 734		if (err) {
 735			rtrs_err(clt_path->clt, "post_recv_io(), err: %d\n",
 736				 err);
 737			return err;
 738		}
 739	}
 740
 741	return 0;
 742}
 743
 744struct path_it {
 745	int i;
 746	struct list_head skip_list;
 747	struct rtrs_clt_sess *clt;
 748	struct rtrs_clt_path *(*next_path)(struct path_it *it);
 749};
 750
 751/*
 752 * rtrs_clt_get_next_path_or_null - get clt path from the list or return NULL
 753 * @head:	the head for the list.
 754 * @clt_path:	The element to take the next clt_path from.
 755 *
 756 * Next clt path returned in round-robin fashion, i.e. head will be skipped,
 757 * but if list is observed as empty, NULL will be returned.
 758 *
 759 * This function may safely run concurrently with the _rcu list-mutation
 760 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 761 */
 762static inline struct rtrs_clt_path *
 763rtrs_clt_get_next_path_or_null(struct list_head *head, struct rtrs_clt_path *clt_path)
 764{
 765	return list_next_or_null_rcu(head, &clt_path->s.entry, typeof(*clt_path), s.entry) ?:
 766				     list_next_or_null_rcu(head,
 767							   READ_ONCE((&clt_path->s.entry)->next),
 768							   typeof(*clt_path), s.entry);
 769}
 770
 771/**
 772 * get_next_path_rr() - Returns path in round-robin fashion.
 773 * @it:	the path pointer
 774 *
 775 * Related to @MP_POLICY_RR
 776 *
 777 * Locks:
 778 *    rcu_read_lock() must be held.
 779 */
 780static struct rtrs_clt_path *get_next_path_rr(struct path_it *it)
 781{
 782	struct rtrs_clt_path __rcu **ppcpu_path;
 783	struct rtrs_clt_path *path;
 784	struct rtrs_clt_sess *clt;
 785
 786	/*
 787	 * Assert that rcu lock must be held
 788	 */
 789	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu read lock held");
 790
 791	clt = it->clt;
 792
 793	/*
 794	 * Here we use two RCU objects: @paths_list and @pcpu_path
 795	 * pointer.  See rtrs_clt_remove_path_from_arr() for details
 796	 * how that is handled.
 797	 */
 798
 799	ppcpu_path = this_cpu_ptr(clt->pcpu_path);
 800	path = rcu_dereference(*ppcpu_path);
 801	if (!path)
 802		path = list_first_or_null_rcu(&clt->paths_list,
 803					      typeof(*path), s.entry);
 804	else
 805		path = rtrs_clt_get_next_path_or_null(&clt->paths_list, path);
 806
 807	rcu_assign_pointer(*ppcpu_path, path);
 808
 809	return path;
 810}
 811
 812/**
 813 * get_next_path_min_inflight() - Returns path with minimal inflight count.
 814 * @it:	the path pointer
 815 *
 816 * Related to @MP_POLICY_MIN_INFLIGHT
 817 *
 818 * Locks:
 819 *    rcu_read_lock() must be hold.
 820 */
 821static struct rtrs_clt_path *get_next_path_min_inflight(struct path_it *it)
 822{
 823	struct rtrs_clt_path *min_path = NULL;
 824	struct rtrs_clt_sess *clt = it->clt;
 825	struct rtrs_clt_path *clt_path;
 826	int min_inflight = INT_MAX;
 827	int inflight;
 828
 829	list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry) {
 830		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
 831			continue;
 832
 833		if (!list_empty(raw_cpu_ptr(clt_path->mp_skip_entry)))
 834			continue;
 835
 836		inflight = atomic_read(&clt_path->stats->inflight);
 837
 838		if (inflight < min_inflight) {
 839			min_inflight = inflight;
 840			min_path = clt_path;
 841		}
 842	}
 843
 844	/*
 845	 * add the path to the skip list, so that next time we can get
 846	 * a different one
 847	 */
 848	if (min_path)
 849		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
 850
 851	return min_path;
 852}
 853
 854/**
 855 * get_next_path_min_latency() - Returns path with minimal latency.
 856 * @it:	the path pointer
 857 *
 858 * Return: a path with the lowest latency or NULL if all paths are tried
 859 *
 860 * Locks:
 861 *    rcu_read_lock() must be hold.
 862 *
 863 * Related to @MP_POLICY_MIN_LATENCY
 864 *
 865 * This DOES skip an already-tried path.
 866 * There is a skip-list to skip a path if the path has tried but failed.
 867 * It will try the minimum latency path and then the second minimum latency
 868 * path and so on. Finally it will return NULL if all paths are tried.
 869 * Therefore the caller MUST check the returned
 870 * path is NULL and trigger the IO error.
 871 */
 872static struct rtrs_clt_path *get_next_path_min_latency(struct path_it *it)
 873{
 874	struct rtrs_clt_path *min_path = NULL;
 875	struct rtrs_clt_sess *clt = it->clt;
 876	struct rtrs_clt_path *clt_path;
 877	ktime_t min_latency = KTIME_MAX;
 878	ktime_t latency;
 879
 880	list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry) {
 881		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
 882			continue;
 883
 884		if (!list_empty(raw_cpu_ptr(clt_path->mp_skip_entry)))
 885			continue;
 886
 887		latency = clt_path->s.hb_cur_latency;
 888
 889		if (latency < min_latency) {
 890			min_latency = latency;
 891			min_path = clt_path;
 892		}
 893	}
 894
 895	/*
 896	 * add the path to the skip list, so that next time we can get
 897	 * a different one
 898	 */
 899	if (min_path)
 900		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
 901
 902	return min_path;
 903}
 904
 905static inline void path_it_init(struct path_it *it, struct rtrs_clt_sess *clt)
 906{
 907	INIT_LIST_HEAD(&it->skip_list);
 908	it->clt = clt;
 909	it->i = 0;
 910
 911	if (clt->mp_policy == MP_POLICY_RR)
 912		it->next_path = get_next_path_rr;
 913	else if (clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
 914		it->next_path = get_next_path_min_inflight;
 915	else
 916		it->next_path = get_next_path_min_latency;
 917}
 918
 919static inline void path_it_deinit(struct path_it *it)
 920{
 921	struct list_head *skip, *tmp;
 922	/*
 923	 * The skip_list is used only for the MIN_INFLIGHT and MIN_LATENCY policies.
 924	 * We need to remove paths from it, so that next IO can insert
 925	 * paths (->mp_skip_entry) into a skip_list again.
 926	 */
 927	list_for_each_safe(skip, tmp, &it->skip_list)
 928		list_del_init(skip);
 929}
 930
 931/**
 932 * rtrs_clt_init_req() - Initialize an rtrs_clt_io_req holding information
 933 * about an inflight IO.
 934 * The user buffer holding user control message (not data) is copied into
 935 * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will
 936 * also hold the control message of rtrs.
 937 * @req: an io request holding information about IO.
 938 * @clt_path: client path
 939 * @conf: conformation callback function to notify upper layer.
 940 * @permit: permit for allocation of RDMA remote buffer
 941 * @priv: private pointer
 942 * @vec: kernel vector containing control message
 943 * @usr_len: length of the user message
 944 * @sg: scater list for IO data
 945 * @sg_cnt: number of scater list entries
 946 * @data_len: length of the IO data
 947 * @dir: direction of the IO.
 948 */
 949static void rtrs_clt_init_req(struct rtrs_clt_io_req *req,
 950			      struct rtrs_clt_path *clt_path,
 951			      void (*conf)(void *priv, int errno),
 952			      struct rtrs_permit *permit, void *priv,
 953			      const struct kvec *vec, size_t usr_len,
 954			      struct scatterlist *sg, size_t sg_cnt,
 955			      size_t data_len, int dir)
 956{
 957	struct iov_iter iter;
 958	size_t len;
 959
 960	req->permit = permit;
 961	req->in_use = true;
 962	req->usr_len = usr_len;
 963	req->data_len = data_len;
 964	req->sglist = sg;
 965	req->sg_cnt = sg_cnt;
 966	req->priv = priv;
 967	req->dir = dir;
 968	req->con = rtrs_permit_to_clt_con(clt_path, permit);
 969	req->conf = conf;
 970	req->need_inv = false;
 971	req->need_inv_comp = false;
 972	req->inv_errno = 0;
 973	refcount_set(&req->ref, 1);
 974	req->mp_policy = clt_path->clt->mp_policy;
 975
 976	iov_iter_kvec(&iter, ITER_SOURCE, vec, 1, usr_len);
 977	len = _copy_from_iter(req->iu->buf, usr_len, &iter);
 978	WARN_ON(len != usr_len);
 979
 980	reinit_completion(&req->inv_comp);
 981}
 982
 983static struct rtrs_clt_io_req *
 984rtrs_clt_get_req(struct rtrs_clt_path *clt_path,
 985		 void (*conf)(void *priv, int errno),
 986		 struct rtrs_permit *permit, void *priv,
 987		 const struct kvec *vec, size_t usr_len,
 988		 struct scatterlist *sg, size_t sg_cnt,
 989		 size_t data_len, int dir)
 990{
 991	struct rtrs_clt_io_req *req;
 992
 993	req = &clt_path->reqs[permit->mem_id];
 994	rtrs_clt_init_req(req, clt_path, conf, permit, priv, vec, usr_len,
 995			   sg, sg_cnt, data_len, dir);
 996	return req;
 997}
 998
 999static struct rtrs_clt_io_req *
1000rtrs_clt_get_copy_req(struct rtrs_clt_path *alive_path,
1001		       struct rtrs_clt_io_req *fail_req)
1002{
1003	struct rtrs_clt_io_req *req;
1004	struct kvec vec = {
1005		.iov_base = fail_req->iu->buf,
1006		.iov_len  = fail_req->usr_len
1007	};
1008
1009	req = &alive_path->reqs[fail_req->permit->mem_id];
1010	rtrs_clt_init_req(req, alive_path, fail_req->conf, fail_req->permit,
1011			   fail_req->priv, &vec, fail_req->usr_len,
1012			   fail_req->sglist, fail_req->sg_cnt,
1013			   fail_req->data_len, fail_req->dir);
1014	return req;
1015}
1016
1017static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con,
1018				   struct rtrs_clt_io_req *req,
1019				   struct rtrs_rbuf *rbuf, bool fr_en,
1020				   u32 count, u32 size, u32 imm,
1021				   struct ib_send_wr *wr,
1022				   struct ib_send_wr *tail)
1023{
1024	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1025	struct ib_sge *sge = req->sge;
1026	enum ib_send_flags flags;
1027	struct scatterlist *sg;
1028	size_t num_sge;
1029	int i;
1030	struct ib_send_wr *ptail = NULL;
1031
1032	if (fr_en) {
1033		i = 0;
1034		sge[i].addr   = req->mr->iova;
1035		sge[i].length = req->mr->length;
1036		sge[i].lkey   = req->mr->lkey;
1037		i++;
1038		num_sge = 2;
1039		ptail = tail;
1040	} else {
1041		for_each_sg(req->sglist, sg, count, i) {
1042			sge[i].addr   = sg_dma_address(sg);
1043			sge[i].length = sg_dma_len(sg);
1044			sge[i].lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
1045		}
1046		num_sge = 1 + count;
1047	}
1048	sge[i].addr   = req->iu->dma_addr;
1049	sge[i].length = size;
1050	sge[i].lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
1051
1052	/*
1053	 * From time to time we have to post signalled sends,
1054	 * or send queue will fill up and only QP reset can help.
1055	 */
1056	flags = atomic_inc_return(&con->c.wr_cnt) % clt_path->s.signal_interval ?
1057			0 : IB_SEND_SIGNALED;
1058
1059	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
1060				      req->iu->dma_addr,
1061				      size, DMA_TO_DEVICE);
1062
1063	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge,
1064					    rbuf->rkey, rbuf->addr, imm,
1065					    flags, wr, ptail);
1066}
1067
1068static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count)
1069{
1070	int nr;
1071
1072	/* Align the MR to a 4K page size to match the block virt boundary */
1073	nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K);
1074	if (nr != count)
1075		return nr < 0 ? nr : -EINVAL;
1076	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1077
1078	return nr;
1079}
1080
1081static int rtrs_clt_write_req(struct rtrs_clt_io_req *req)
1082{
1083	struct rtrs_clt_con *con = req->con;
1084	struct rtrs_path *s = con->c.path;
1085	struct rtrs_clt_path *clt_path = to_clt_path(s);
1086	struct rtrs_msg_rdma_write *msg;
1087
1088	struct rtrs_rbuf *rbuf;
1089	int ret, count = 0;
1090	u32 imm, buf_id;
1091	struct ib_reg_wr rwr;
1092	struct ib_send_wr inv_wr;
1093	struct ib_send_wr *wr = NULL;
1094	bool fr_en = false;
1095
1096	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1097
1098	if (tsize > clt_path->chunk_size) {
1099		rtrs_wrn(s, "Write request failed, size too big %zu > %d\n",
1100			  tsize, clt_path->chunk_size);
1101		return -EMSGSIZE;
1102	}
1103	if (req->sg_cnt) {
1104		count = ib_dma_map_sg(clt_path->s.dev->ib_dev, req->sglist,
1105				      req->sg_cnt, req->dir);
1106		if (!count) {
1107			rtrs_wrn(s, "Write request failed, map failed\n");
1108			return -EINVAL;
1109		}
1110	}
1111	/* put rtrs msg after sg and user message */
1112	msg = req->iu->buf + req->usr_len;
1113	msg->type = cpu_to_le16(RTRS_MSG_WRITE);
1114	msg->usr_len = cpu_to_le16(req->usr_len);
1115
1116	/* rtrs message on server side will be after user data and message */
1117	imm = req->permit->mem_off + req->data_len + req->usr_len;
1118	imm = rtrs_to_io_req_imm(imm);
1119	buf_id = req->permit->mem_id;
1120	req->sg_size = tsize;
1121	rbuf = &clt_path->rbufs[buf_id];
1122
1123	if (count) {
1124		ret = rtrs_map_sg_fr(req, count);
1125		if (ret < 0) {
1126			rtrs_err_rl(s,
1127				    "Write request failed, failed to map fast reg. data, err: %d\n",
1128				    ret);
1129			ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
1130					req->sg_cnt, req->dir);
1131			return ret;
1132		}
1133		inv_wr = (struct ib_send_wr) {
1134			.opcode		    = IB_WR_LOCAL_INV,
1135			.wr_cqe		    = &req->inv_cqe,
1136			.send_flags	    = IB_SEND_SIGNALED,
1137			.ex.invalidate_rkey = req->mr->rkey,
1138		};
1139		req->inv_cqe.done = rtrs_clt_inv_rkey_done;
1140		rwr = (struct ib_reg_wr) {
1141			.wr.opcode = IB_WR_REG_MR,
1142			.wr.wr_cqe = &fast_reg_cqe,
1143			.mr = req->mr,
1144			.key = req->mr->rkey,
1145			.access = (IB_ACCESS_LOCAL_WRITE),
1146		};
1147		wr = &rwr.wr;
1148		fr_en = true;
1149		refcount_inc(&req->ref);
1150	}
1151	/*
1152	 * Update stats now, after request is successfully sent it is not
1153	 * safe anymore to touch it.
1154	 */
1155	rtrs_clt_update_all_stats(req, WRITE);
1156
1157	ret = rtrs_post_rdma_write_sg(req->con, req, rbuf, fr_en, count,
1158				      req->usr_len + sizeof(*msg),
1159				      imm, wr, &inv_wr);
1160	if (ret) {
1161		rtrs_err_rl(s,
1162			    "Write request failed: error=%d path=%s [%s:%u]\n",
1163			    ret, kobject_name(&clt_path->kobj), clt_path->hca_name,
1164			    clt_path->hca_port);
1165		if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
1166			atomic_dec(&clt_path->stats->inflight);
 
 
 
 
1167		if (req->sg_cnt)
1168			ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
1169					req->sg_cnt, req->dir);
1170	}
1171
1172	return ret;
1173}
1174
1175static int rtrs_clt_read_req(struct rtrs_clt_io_req *req)
1176{
1177	struct rtrs_clt_con *con = req->con;
1178	struct rtrs_path *s = con->c.path;
1179	struct rtrs_clt_path *clt_path = to_clt_path(s);
1180	struct rtrs_msg_rdma_read *msg;
1181	struct rtrs_ib_dev *dev = clt_path->s.dev;
1182
1183	struct ib_reg_wr rwr;
1184	struct ib_send_wr *wr = NULL;
1185
1186	int ret, count = 0;
1187	u32 imm, buf_id;
1188
1189	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1190
1191	if (tsize > clt_path->chunk_size) {
1192		rtrs_wrn(s,
1193			  "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n",
1194			  tsize, clt_path->chunk_size);
1195		return -EMSGSIZE;
1196	}
1197
1198	if (req->sg_cnt) {
1199		count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1200				      req->dir);
1201		if (!count) {
1202			rtrs_wrn(s,
1203				  "Read request failed, dma map failed\n");
1204			return -EINVAL;
1205		}
1206	}
1207	/* put our message into req->buf after user message*/
1208	msg = req->iu->buf + req->usr_len;
1209	msg->type = cpu_to_le16(RTRS_MSG_READ);
1210	msg->usr_len = cpu_to_le16(req->usr_len);
1211
1212	if (count) {
1213		ret = rtrs_map_sg_fr(req, count);
1214		if (ret < 0) {
1215			rtrs_err_rl(s,
1216				     "Read request failed, failed to map  fast reg. data, err: %d\n",
1217				     ret);
1218			ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1219					req->dir);
1220			return ret;
1221		}
1222		rwr = (struct ib_reg_wr) {
1223			.wr.opcode = IB_WR_REG_MR,
1224			.wr.wr_cqe = &fast_reg_cqe,
1225			.mr = req->mr,
1226			.key = req->mr->rkey,
1227			.access = (IB_ACCESS_LOCAL_WRITE |
1228				   IB_ACCESS_REMOTE_WRITE),
1229		};
1230		wr = &rwr.wr;
1231
1232		msg->sg_cnt = cpu_to_le16(1);
1233		msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F);
1234
1235		msg->desc[0].addr = cpu_to_le64(req->mr->iova);
1236		msg->desc[0].key = cpu_to_le32(req->mr->rkey);
1237		msg->desc[0].len = cpu_to_le32(req->mr->length);
1238
1239		/* Further invalidation is required */
1240		req->need_inv = !!RTRS_MSG_NEED_INVAL_F;
1241
1242	} else {
1243		msg->sg_cnt = 0;
1244		msg->flags = 0;
1245	}
1246	/*
1247	 * rtrs message will be after the space reserved for disk data and
1248	 * user message
1249	 */
1250	imm = req->permit->mem_off + req->data_len + req->usr_len;
1251	imm = rtrs_to_io_req_imm(imm);
1252	buf_id = req->permit->mem_id;
1253
1254	req->sg_size  = sizeof(*msg);
1255	req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc);
1256	req->sg_size += req->usr_len;
1257
1258	/*
1259	 * Update stats now, after request is successfully sent it is not
1260	 * safe anymore to touch it.
1261	 */
1262	rtrs_clt_update_all_stats(req, READ);
1263
1264	ret = rtrs_post_send_rdma(req->con, req, &clt_path->rbufs[buf_id],
1265				   req->data_len, imm, wr);
1266	if (ret) {
1267		rtrs_err_rl(s,
1268			    "Read request failed: error=%d path=%s [%s:%u]\n",
1269			    ret, kobject_name(&clt_path->kobj), clt_path->hca_name,
1270			    clt_path->hca_port);
1271		if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
1272			atomic_dec(&clt_path->stats->inflight);
1273		req->need_inv = false;
1274		if (req->sg_cnt)
1275			ib_dma_unmap_sg(dev->ib_dev, req->sglist,
1276					req->sg_cnt, req->dir);
1277	}
1278
1279	return ret;
1280}
1281
1282/**
1283 * rtrs_clt_failover_req() - Try to find an active path for a failed request
1284 * @clt: clt context
1285 * @fail_req: a failed io request.
1286 */
1287static int rtrs_clt_failover_req(struct rtrs_clt_sess *clt,
1288				 struct rtrs_clt_io_req *fail_req)
1289{
1290	struct rtrs_clt_path *alive_path;
1291	struct rtrs_clt_io_req *req;
1292	int err = -ECONNABORTED;
1293	struct path_it it;
1294
1295	rcu_read_lock();
1296	for (path_it_init(&it, clt);
1297	     (alive_path = it.next_path(&it)) && it.i < it.clt->paths_num;
1298	     it.i++) {
1299		if (READ_ONCE(alive_path->state) != RTRS_CLT_CONNECTED)
1300			continue;
1301		req = rtrs_clt_get_copy_req(alive_path, fail_req);
1302		if (req->dir == DMA_TO_DEVICE)
1303			err = rtrs_clt_write_req(req);
1304		else
1305			err = rtrs_clt_read_req(req);
1306		if (err) {
1307			req->in_use = false;
1308			continue;
1309		}
1310		/* Success path */
1311		rtrs_clt_inc_failover_cnt(alive_path->stats);
1312		break;
1313	}
1314	path_it_deinit(&it);
1315	rcu_read_unlock();
1316
1317	return err;
1318}
1319
1320static void fail_all_outstanding_reqs(struct rtrs_clt_path *clt_path)
1321{
1322	struct rtrs_clt_sess *clt = clt_path->clt;
1323	struct rtrs_clt_io_req *req;
1324	int i, err;
1325
1326	if (!clt_path->reqs)
1327		return;
1328	for (i = 0; i < clt_path->queue_depth; ++i) {
1329		req = &clt_path->reqs[i];
1330		if (!req->in_use)
1331			continue;
1332
1333		/*
1334		 * Safely (without notification) complete failed request.
1335		 * After completion this request is still useble and can
1336		 * be failovered to another path.
1337		 */
1338		complete_rdma_req(req, -ECONNABORTED, false, true);
1339
1340		err = rtrs_clt_failover_req(clt, req);
1341		if (err)
1342			/* Failover failed, notify anyway */
1343			req->conf(req->priv, err);
1344	}
1345}
1346
1347static void free_path_reqs(struct rtrs_clt_path *clt_path)
1348{
1349	struct rtrs_clt_io_req *req;
1350	int i;
1351
1352	if (!clt_path->reqs)
1353		return;
1354	for (i = 0; i < clt_path->queue_depth; ++i) {
1355		req = &clt_path->reqs[i];
1356		if (req->mr)
1357			ib_dereg_mr(req->mr);
1358		kfree(req->sge);
1359		rtrs_iu_free(req->iu, clt_path->s.dev->ib_dev, 1);
1360	}
1361	kfree(clt_path->reqs);
1362	clt_path->reqs = NULL;
1363}
1364
1365static int alloc_path_reqs(struct rtrs_clt_path *clt_path)
1366{
1367	struct rtrs_clt_io_req *req;
1368	int i, err = -ENOMEM;
1369
1370	clt_path->reqs = kcalloc(clt_path->queue_depth,
1371				 sizeof(*clt_path->reqs),
1372				 GFP_KERNEL);
1373	if (!clt_path->reqs)
1374		return -ENOMEM;
1375
1376	for (i = 0; i < clt_path->queue_depth; ++i) {
1377		req = &clt_path->reqs[i];
1378		req->iu = rtrs_iu_alloc(1, clt_path->max_hdr_size, GFP_KERNEL,
1379					 clt_path->s.dev->ib_dev,
1380					 DMA_TO_DEVICE,
1381					 rtrs_clt_rdma_done);
1382		if (!req->iu)
1383			goto out;
1384
1385		req->sge = kcalloc(2, sizeof(*req->sge), GFP_KERNEL);
1386		if (!req->sge)
1387			goto out;
1388
1389		req->mr = ib_alloc_mr(clt_path->s.dev->ib_pd,
1390				      IB_MR_TYPE_MEM_REG,
1391				      clt_path->max_pages_per_mr);
1392		if (IS_ERR(req->mr)) {
1393			err = PTR_ERR(req->mr);
1394			pr_err("Failed to alloc clt_path->max_pages_per_mr %d: %pe\n",
1395			       clt_path->max_pages_per_mr, req->mr);
1396			req->mr = NULL;
1397			goto out;
1398		}
1399
1400		init_completion(&req->inv_comp);
1401	}
1402
1403	return 0;
1404
1405out:
1406	free_path_reqs(clt_path);
1407
1408	return err;
1409}
1410
1411static int alloc_permits(struct rtrs_clt_sess *clt)
1412{
1413	unsigned int chunk_bits;
1414	int err, i;
1415
1416	clt->permits_map = bitmap_zalloc(clt->queue_depth, GFP_KERNEL);
1417	if (!clt->permits_map) {
1418		err = -ENOMEM;
1419		goto out_err;
1420	}
1421	clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL);
1422	if (!clt->permits) {
1423		err = -ENOMEM;
1424		goto err_map;
1425	}
1426	chunk_bits = ilog2(clt->queue_depth - 1) + 1;
1427	for (i = 0; i < clt->queue_depth; i++) {
1428		struct rtrs_permit *permit;
1429
1430		permit = get_permit(clt, i);
1431		permit->mem_id = i;
1432		permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits);
1433	}
1434
1435	return 0;
1436
1437err_map:
1438	bitmap_free(clt->permits_map);
1439	clt->permits_map = NULL;
1440out_err:
1441	return err;
1442}
1443
1444static void free_permits(struct rtrs_clt_sess *clt)
1445{
1446	if (clt->permits_map)
1447		wait_event(clt->permits_wait,
1448			   bitmap_empty(clt->permits_map, clt->queue_depth));
1449
1450	bitmap_free(clt->permits_map);
1451	clt->permits_map = NULL;
1452	kfree(clt->permits);
1453	clt->permits = NULL;
1454}
1455
1456static void query_fast_reg_mode(struct rtrs_clt_path *clt_path)
1457{
1458	struct ib_device *ib_dev;
1459	u64 max_pages_per_mr;
1460	int mr_page_shift;
1461
1462	ib_dev = clt_path->s.dev->ib_dev;
1463
1464	/*
1465	 * Use the smallest page size supported by the HCA, down to a
1466	 * minimum of 4096 bytes. We're unlikely to build large sglists
1467	 * out of smaller entries.
1468	 */
1469	mr_page_shift      = max(12, ffs(ib_dev->attrs.page_size_cap) - 1);
1470	max_pages_per_mr   = ib_dev->attrs.max_mr_size;
1471	do_div(max_pages_per_mr, (1ull << mr_page_shift));
1472	clt_path->max_pages_per_mr =
1473		min3(clt_path->max_pages_per_mr, (u32)max_pages_per_mr,
1474		     ib_dev->attrs.max_fast_reg_page_list_len);
1475	clt_path->clt->max_segments =
1476		min(clt_path->max_pages_per_mr, clt_path->clt->max_segments);
1477}
1478
1479static bool rtrs_clt_change_state_get_old(struct rtrs_clt_path *clt_path,
1480					   enum rtrs_clt_state new_state,
1481					   enum rtrs_clt_state *old_state)
1482{
1483	bool changed;
1484
1485	spin_lock_irq(&clt_path->state_wq.lock);
1486	if (old_state)
1487		*old_state = clt_path->state;
1488	changed = rtrs_clt_change_state(clt_path, new_state);
1489	spin_unlock_irq(&clt_path->state_wq.lock);
1490
1491	return changed;
1492}
1493
1494static void rtrs_clt_hb_err_handler(struct rtrs_con *c)
1495{
1496	struct rtrs_clt_con *con = container_of(c, typeof(*con), c);
 
1497
 
1498	rtrs_rdma_error_recovery(con);
1499}
1500
1501static void rtrs_clt_init_hb(struct rtrs_clt_path *clt_path)
1502{
1503	rtrs_init_hb(&clt_path->s, &io_comp_cqe,
1504		      RTRS_HB_INTERVAL_MS,
1505		      RTRS_HB_MISSED_MAX,
1506		      rtrs_clt_hb_err_handler,
1507		      rtrs_wq);
1508}
1509
1510static void rtrs_clt_reconnect_work(struct work_struct *work);
1511static void rtrs_clt_close_work(struct work_struct *work);
1512
1513static void rtrs_clt_err_recovery_work(struct work_struct *work)
1514{
1515	struct rtrs_clt_path *clt_path;
1516	struct rtrs_clt_sess *clt;
1517	int delay_ms;
1518
1519	clt_path = container_of(work, struct rtrs_clt_path, err_recovery_work);
1520	clt = clt_path->clt;
1521	delay_ms = clt->reconnect_delay_sec * 1000;
1522	rtrs_clt_stop_and_destroy_conns(clt_path);
1523	queue_delayed_work(rtrs_wq, &clt_path->reconnect_dwork,
1524			   msecs_to_jiffies(delay_ms +
1525					    get_random_u32_below(RTRS_RECONNECT_SEED)));
1526}
1527
1528static struct rtrs_clt_path *alloc_path(struct rtrs_clt_sess *clt,
1529					const struct rtrs_addr *path,
1530					size_t con_num, u32 nr_poll_queues)
1531{
1532	struct rtrs_clt_path *clt_path;
1533	int err = -ENOMEM;
1534	int cpu;
1535	size_t total_con;
1536
1537	clt_path = kzalloc(sizeof(*clt_path), GFP_KERNEL);
1538	if (!clt_path)
1539		goto err;
1540
1541	/*
1542	 * irqmode and poll
1543	 * +1: Extra connection for user messages
1544	 */
1545	total_con = con_num + nr_poll_queues + 1;
1546	clt_path->s.con = kcalloc(total_con, sizeof(*clt_path->s.con),
1547				  GFP_KERNEL);
1548	if (!clt_path->s.con)
1549		goto err_free_path;
1550
1551	clt_path->s.con_num = total_con;
1552	clt_path->s.irq_con_num = con_num + 1;
1553
1554	clt_path->stats = kzalloc(sizeof(*clt_path->stats), GFP_KERNEL);
1555	if (!clt_path->stats)
1556		goto err_free_con;
1557
1558	mutex_init(&clt_path->init_mutex);
1559	uuid_gen(&clt_path->s.uuid);
1560	memcpy(&clt_path->s.dst_addr, path->dst,
1561	       rdma_addr_size((struct sockaddr *)path->dst));
1562
1563	/*
1564	 * rdma_resolve_addr() passes src_addr to cma_bind_addr, which
1565	 * checks the sa_family to be non-zero. If user passed src_addr=NULL
1566	 * the sess->src_addr will contain only zeros, which is then fine.
1567	 */
1568	if (path->src)
1569		memcpy(&clt_path->s.src_addr, path->src,
1570		       rdma_addr_size((struct sockaddr *)path->src));
1571	strscpy(clt_path->s.sessname, clt->sessname,
1572		sizeof(clt_path->s.sessname));
1573	clt_path->clt = clt;
1574	clt_path->max_pages_per_mr = RTRS_MAX_SEGMENTS;
1575	init_waitqueue_head(&clt_path->state_wq);
1576	clt_path->state = RTRS_CLT_CONNECTING;
1577	atomic_set(&clt_path->connected_cnt, 0);
1578	INIT_WORK(&clt_path->close_work, rtrs_clt_close_work);
1579	INIT_WORK(&clt_path->err_recovery_work, rtrs_clt_err_recovery_work);
1580	INIT_DELAYED_WORK(&clt_path->reconnect_dwork, rtrs_clt_reconnect_work);
1581	rtrs_clt_init_hb(clt_path);
1582
1583	clt_path->mp_skip_entry = alloc_percpu(typeof(*clt_path->mp_skip_entry));
1584	if (!clt_path->mp_skip_entry)
1585		goto err_free_stats;
1586
1587	for_each_possible_cpu(cpu)
1588		INIT_LIST_HEAD(per_cpu_ptr(clt_path->mp_skip_entry, cpu));
1589
1590	err = rtrs_clt_init_stats(clt_path->stats);
1591	if (err)
1592		goto err_free_percpu;
1593
1594	return clt_path;
1595
1596err_free_percpu:
1597	free_percpu(clt_path->mp_skip_entry);
1598err_free_stats:
1599	kfree(clt_path->stats);
1600err_free_con:
1601	kfree(clt_path->s.con);
1602err_free_path:
1603	kfree(clt_path);
1604err:
1605	return ERR_PTR(err);
1606}
1607
1608void free_path(struct rtrs_clt_path *clt_path)
1609{
1610	free_percpu(clt_path->mp_skip_entry);
1611	mutex_destroy(&clt_path->init_mutex);
1612	kfree(clt_path->s.con);
1613	kfree(clt_path->rbufs);
1614	kfree(clt_path);
1615}
1616
1617static int create_con(struct rtrs_clt_path *clt_path, unsigned int cid)
1618{
1619	struct rtrs_clt_con *con;
1620
1621	con = kzalloc(sizeof(*con), GFP_KERNEL);
1622	if (!con)
1623		return -ENOMEM;
1624
1625	/* Map first two connections to the first CPU */
1626	con->cpu  = (cid ? cid - 1 : 0) % nr_cpu_ids;
1627	con->c.cid = cid;
1628	con->c.path = &clt_path->s;
1629	/* Align with srv, init as 1 */
1630	atomic_set(&con->c.wr_cnt, 1);
1631	mutex_init(&con->con_mutex);
1632
1633	clt_path->s.con[cid] = &con->c;
1634
1635	return 0;
1636}
1637
1638static void destroy_con(struct rtrs_clt_con *con)
1639{
1640	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1641
1642	clt_path->s.con[con->c.cid] = NULL;
1643	mutex_destroy(&con->con_mutex);
1644	kfree(con);
1645}
1646
1647static int create_con_cq_qp(struct rtrs_clt_con *con)
1648{
1649	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1650	u32 max_send_wr, max_recv_wr, cq_num, max_send_sge, wr_limit;
1651	int err, cq_vector;
1652	struct rtrs_msg_rkey_rsp *rsp;
1653
1654	lockdep_assert_held(&con->con_mutex);
1655	if (con->c.cid == 0) {
1656		max_send_sge = 1;
1657		/* We must be the first here */
1658		if (WARN_ON(clt_path->s.dev))
1659			return -EINVAL;
1660
1661		/*
1662		 * The whole session uses device from user connection.
1663		 * Be careful not to close user connection before ib dev
1664		 * is gracefully put.
1665		 */
1666		clt_path->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device,
1667						       &dev_pd);
1668		if (!clt_path->s.dev) {
1669			rtrs_wrn(clt_path->clt,
1670				  "rtrs_ib_dev_find_get_or_add(): no memory\n");
1671			return -ENOMEM;
1672		}
1673		clt_path->s.dev_ref = 1;
1674		query_fast_reg_mode(clt_path);
1675		wr_limit = clt_path->s.dev->ib_dev->attrs.max_qp_wr;
1676		/*
1677		 * Two (request + registration) completion for send
1678		 * Two for recv if always_invalidate is set on server
1679		 * or one for recv.
1680		 * + 2 for drain and heartbeat
1681		 * in case qp gets into error state.
1682		 */
1683		max_send_wr =
1684			min_t(int, wr_limit, SERVICE_CON_QUEUE_DEPTH * 2 + 2);
1685		max_recv_wr = max_send_wr;
1686	} else {
1687		/*
1688		 * Here we assume that session members are correctly set.
1689		 * This is always true if user connection (cid == 0) is
1690		 * established first.
1691		 */
1692		if (WARN_ON(!clt_path->s.dev))
1693			return -EINVAL;
1694		if (WARN_ON(!clt_path->queue_depth))
1695			return -EINVAL;
1696
1697		wr_limit = clt_path->s.dev->ib_dev->attrs.max_qp_wr;
1698		/* Shared between connections */
1699		clt_path->s.dev_ref++;
1700		max_send_wr = min_t(int, wr_limit,
1701			      /* QD * (REQ + RSP + FR REGS or INVS) + drain */
1702			      clt_path->queue_depth * 4 + 1);
1703		max_recv_wr = min_t(int, wr_limit,
1704			      clt_path->queue_depth * 3 + 1);
1705		max_send_sge = 2;
1706	}
1707	atomic_set(&con->c.sq_wr_avail, max_send_wr);
1708	cq_num = max_send_wr + max_recv_wr;
1709	/* alloc iu to recv new rkey reply when server reports flags set */
1710	if (clt_path->flags & RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) {
1711		con->rsp_ius = rtrs_iu_alloc(cq_num, sizeof(*rsp),
1712					      GFP_KERNEL,
1713					      clt_path->s.dev->ib_dev,
1714					      DMA_FROM_DEVICE,
1715					      rtrs_clt_rdma_done);
1716		if (!con->rsp_ius)
1717			return -ENOMEM;
1718		con->queue_num = cq_num;
1719	}
1720	cq_vector = con->cpu % clt_path->s.dev->ib_dev->num_comp_vectors;
1721	if (con->c.cid >= clt_path->s.irq_con_num)
1722		err = rtrs_cq_qp_create(&clt_path->s, &con->c, max_send_sge,
1723					cq_vector, cq_num, max_send_wr,
1724					max_recv_wr, IB_POLL_DIRECT);
1725	else
1726		err = rtrs_cq_qp_create(&clt_path->s, &con->c, max_send_sge,
1727					cq_vector, cq_num, max_send_wr,
1728					max_recv_wr, IB_POLL_SOFTIRQ);
1729	/*
1730	 * In case of error we do not bother to clean previous allocations,
1731	 * since destroy_con_cq_qp() must be called.
1732	 */
1733	return err;
1734}
1735
1736static void destroy_con_cq_qp(struct rtrs_clt_con *con)
1737{
1738	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1739
1740	/*
1741	 * Be careful here: destroy_con_cq_qp() can be called even
1742	 * create_con_cq_qp() failed, see comments there.
1743	 */
1744	lockdep_assert_held(&con->con_mutex);
1745	rtrs_cq_qp_destroy(&con->c);
1746	if (con->rsp_ius) {
1747		rtrs_iu_free(con->rsp_ius, clt_path->s.dev->ib_dev,
1748			     con->queue_num);
1749		con->rsp_ius = NULL;
1750		con->queue_num = 0;
1751	}
1752	if (clt_path->s.dev_ref && !--clt_path->s.dev_ref) {
1753		rtrs_ib_dev_put(clt_path->s.dev);
1754		clt_path->s.dev = NULL;
1755	}
1756}
1757
1758static void stop_cm(struct rtrs_clt_con *con)
1759{
1760	rdma_disconnect(con->c.cm_id);
1761	if (con->c.qp)
1762		ib_drain_qp(con->c.qp);
1763}
1764
1765static void destroy_cm(struct rtrs_clt_con *con)
1766{
1767	rdma_destroy_id(con->c.cm_id);
1768	con->c.cm_id = NULL;
1769}
1770
1771static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con)
1772{
1773	struct rtrs_path *s = con->c.path;
1774	int err;
1775
1776	mutex_lock(&con->con_mutex);
1777	err = create_con_cq_qp(con);
1778	mutex_unlock(&con->con_mutex);
1779	if (err) {
1780		rtrs_err(s, "create_con_cq_qp(), err: %d\n", err);
1781		return err;
1782	}
1783	err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS);
1784	if (err)
1785		rtrs_err(s, "Resolving route failed, err: %d\n", err);
1786
1787	return err;
1788}
1789
1790static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con)
1791{
1792	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1793	struct rtrs_clt_sess *clt = clt_path->clt;
1794	struct rtrs_msg_conn_req msg;
1795	struct rdma_conn_param param;
1796
1797	int err;
1798
1799	param = (struct rdma_conn_param) {
1800		.retry_count = 7,
1801		.rnr_retry_count = 7,
1802		.private_data = &msg,
1803		.private_data_len = sizeof(msg),
1804	};
1805
1806	msg = (struct rtrs_msg_conn_req) {
1807		.magic = cpu_to_le16(RTRS_MAGIC),
1808		.version = cpu_to_le16(RTRS_PROTO_VER),
1809		.cid = cpu_to_le16(con->c.cid),
1810		.cid_num = cpu_to_le16(clt_path->s.con_num),
1811		.recon_cnt = cpu_to_le16(clt_path->s.recon_cnt),
1812	};
1813	msg.first_conn = clt_path->for_new_clt ? FIRST_CONN : 0;
1814	uuid_copy(&msg.sess_uuid, &clt_path->s.uuid);
1815	uuid_copy(&msg.paths_uuid, &clt->paths_uuid);
1816
1817	err = rdma_connect_locked(con->c.cm_id, &param);
1818	if (err)
1819		rtrs_err(clt, "rdma_connect_locked(): %d\n", err);
1820
1821	return err;
1822}
1823
1824static int rtrs_rdma_conn_established(struct rtrs_clt_con *con,
1825				       struct rdma_cm_event *ev)
1826{
1827	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1828	struct rtrs_clt_sess *clt = clt_path->clt;
1829	const struct rtrs_msg_conn_rsp *msg;
1830	u16 version, queue_depth;
1831	int errno;
1832	u8 len;
1833
1834	msg = ev->param.conn.private_data;
1835	len = ev->param.conn.private_data_len;
1836	if (len < sizeof(*msg)) {
1837		rtrs_err(clt, "Invalid RTRS connection response\n");
1838		return -ECONNRESET;
1839	}
1840	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1841		rtrs_err(clt, "Invalid RTRS magic\n");
1842		return -ECONNRESET;
1843	}
1844	version = le16_to_cpu(msg->version);
1845	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1846		rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n",
1847			  version >> 8, RTRS_PROTO_VER_MAJOR);
1848		return -ECONNRESET;
1849	}
1850	errno = le16_to_cpu(msg->errno);
1851	if (errno) {
1852		rtrs_err(clt, "Invalid RTRS message: errno %d\n",
1853			  errno);
1854		return -ECONNRESET;
1855	}
1856	if (con->c.cid == 0) {
1857		queue_depth = le16_to_cpu(msg->queue_depth);
1858
1859		if (clt_path->queue_depth > 0 && queue_depth != clt_path->queue_depth) {
1860			rtrs_err(clt, "Error: queue depth changed\n");
1861
1862			/*
1863			 * Stop any more reconnection attempts
1864			 */
1865			clt_path->reconnect_attempts = -1;
1866			rtrs_err(clt,
1867				"Disabling auto-reconnect. Trigger a manual reconnect after issue is resolved\n");
1868			return -ECONNRESET;
1869		}
1870
1871		if (!clt_path->rbufs) {
1872			clt_path->rbufs = kcalloc(queue_depth,
1873						  sizeof(*clt_path->rbufs),
1874						  GFP_KERNEL);
1875			if (!clt_path->rbufs)
1876				return -ENOMEM;
1877		}
1878		clt_path->queue_depth = queue_depth;
1879		clt_path->s.signal_interval = min_not_zero(queue_depth,
1880						(unsigned short) SERVICE_CON_QUEUE_DEPTH);
1881		clt_path->max_hdr_size = le32_to_cpu(msg->max_hdr_size);
1882		clt_path->max_io_size = le32_to_cpu(msg->max_io_size);
1883		clt_path->flags = le32_to_cpu(msg->flags);
1884		clt_path->chunk_size = clt_path->max_io_size + clt_path->max_hdr_size;
1885
1886		/*
1887		 * Global IO size is always a minimum.
1888		 * If while a reconnection server sends us a value a bit
1889		 * higher - client does not care and uses cached minimum.
1890		 *
1891		 * Since we can have several sessions (paths) restablishing
1892		 * connections in parallel, use lock.
1893		 */
1894		mutex_lock(&clt->paths_mutex);
1895		clt->queue_depth = clt_path->queue_depth;
1896		clt->max_io_size = min_not_zero(clt_path->max_io_size,
1897						clt->max_io_size);
1898		mutex_unlock(&clt->paths_mutex);
1899
1900		/*
1901		 * Cache the hca_port and hca_name for sysfs
1902		 */
1903		clt_path->hca_port = con->c.cm_id->port_num;
1904		scnprintf(clt_path->hca_name, sizeof(clt_path->hca_name),
1905			  clt_path->s.dev->ib_dev->name);
1906		clt_path->s.src_addr = con->c.cm_id->route.addr.src_addr;
1907		/* set for_new_clt, to allow future reconnect on any path */
1908		clt_path->for_new_clt = 1;
1909	}
1910
1911	return 0;
1912}
1913
1914static inline void flag_success_on_conn(struct rtrs_clt_con *con)
1915{
1916	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1917
1918	atomic_inc(&clt_path->connected_cnt);
1919	con->cm_err = 1;
1920}
1921
1922static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con,
1923				    struct rdma_cm_event *ev)
1924{
1925	struct rtrs_path *s = con->c.path;
1926	const struct rtrs_msg_conn_rsp *msg;
1927	const char *rej_msg;
1928	int status, errno;
1929	u8 data_len;
1930
1931	status = ev->status;
1932	rej_msg = rdma_reject_msg(con->c.cm_id, status);
1933	msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len);
1934
1935	if (msg && data_len >= sizeof(*msg)) {
1936		errno = (int16_t)le16_to_cpu(msg->errno);
1937		if (errno == -EBUSY)
1938			rtrs_err(s,
1939				  "Previous session is still exists on the server, please reconnect later\n");
1940		else
1941			rtrs_err(s,
1942				  "Connect rejected: status %d (%s), rtrs errno %d\n",
1943				  status, rej_msg, errno);
1944	} else {
1945		rtrs_err(s,
1946			  "Connect rejected but with malformed message: status %d (%s)\n",
1947			  status, rej_msg);
1948	}
1949
1950	return -ECONNRESET;
1951}
1952
1953void rtrs_clt_close_conns(struct rtrs_clt_path *clt_path, bool wait)
1954{
1955	trace_rtrs_clt_close_conns(clt_path);
1956
1957	if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CLOSING, NULL))
1958		queue_work(rtrs_wq, &clt_path->close_work);
1959	if (wait)
1960		flush_work(&clt_path->close_work);
1961}
1962
1963static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err)
1964{
1965	if (con->cm_err == 1) {
1966		struct rtrs_clt_path *clt_path;
1967
1968		clt_path = to_clt_path(con->c.path);
1969		if (atomic_dec_and_test(&clt_path->connected_cnt))
1970
1971			wake_up(&clt_path->state_wq);
1972	}
1973	con->cm_err = cm_err;
1974}
1975
1976static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id,
1977				     struct rdma_cm_event *ev)
1978{
1979	struct rtrs_clt_con *con = cm_id->context;
1980	struct rtrs_path *s = con->c.path;
1981	struct rtrs_clt_path *clt_path = to_clt_path(s);
1982	int cm_err = 0;
1983
1984	switch (ev->event) {
1985	case RDMA_CM_EVENT_ADDR_RESOLVED:
1986		cm_err = rtrs_rdma_addr_resolved(con);
1987		break;
1988	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1989		cm_err = rtrs_rdma_route_resolved(con);
1990		break;
1991	case RDMA_CM_EVENT_ESTABLISHED:
1992		cm_err = rtrs_rdma_conn_established(con, ev);
1993		if (!cm_err) {
1994			/*
1995			 * Report success and wake up. Here we abuse state_wq,
1996			 * i.e. wake up without state change, but we set cm_err.
1997			 */
1998			flag_success_on_conn(con);
1999			wake_up(&clt_path->state_wq);
2000			return 0;
2001		}
2002		break;
2003	case RDMA_CM_EVENT_REJECTED:
2004		cm_err = rtrs_rdma_conn_rejected(con, ev);
2005		break;
2006	case RDMA_CM_EVENT_DISCONNECTED:
2007		/* No message for disconnecting */
2008		cm_err = -ECONNRESET;
2009		break;
2010	case RDMA_CM_EVENT_CONNECT_ERROR:
2011	case RDMA_CM_EVENT_UNREACHABLE:
2012	case RDMA_CM_EVENT_ADDR_CHANGE:
2013	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2014		rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
2015			 rdma_event_msg(ev->event), ev->status);
2016		cm_err = -ECONNRESET;
2017		break;
2018	case RDMA_CM_EVENT_ADDR_ERROR:
2019	case RDMA_CM_EVENT_ROUTE_ERROR:
2020		rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
2021			 rdma_event_msg(ev->event), ev->status);
2022		cm_err = -EHOSTUNREACH;
2023		break;
2024	case RDMA_CM_EVENT_DEVICE_REMOVAL:
2025		/*
2026		 * Device removal is a special case.  Queue close and return 0.
2027		 */
2028		rtrs_wrn_rl(s, "CM event: %s, status: %d\n", rdma_event_msg(ev->event),
2029			    ev->status);
2030		rtrs_clt_close_conns(clt_path, false);
2031		return 0;
2032	default:
2033		rtrs_err(s, "Unexpected RDMA CM error (CM event: %s, err: %d)\n",
2034			 rdma_event_msg(ev->event), ev->status);
2035		cm_err = -ECONNRESET;
2036		break;
2037	}
2038
2039	if (cm_err) {
2040		/*
2041		 * cm error makes sense only on connection establishing,
2042		 * in other cases we rely on normal procedure of reconnecting.
2043		 */
2044		flag_error_on_conn(con, cm_err);
2045		rtrs_rdma_error_recovery(con);
2046	}
2047
2048	return 0;
2049}
2050
2051/* The caller should do the cleanup in case of error */
2052static int create_cm(struct rtrs_clt_con *con)
2053{
2054	struct rtrs_path *s = con->c.path;
2055	struct rtrs_clt_path *clt_path = to_clt_path(s);
2056	struct rdma_cm_id *cm_id;
2057	int err;
2058
2059	cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con,
2060			       clt_path->s.dst_addr.ss_family == AF_IB ?
2061			       RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC);
2062	if (IS_ERR(cm_id)) {
2063		rtrs_err(s, "Failed to create CM ID, err: %pe\n", cm_id);
2064		return PTR_ERR(cm_id);
2065	}
2066	con->c.cm_id = cm_id;
2067	con->cm_err = 0;
2068	/* allow the port to be reused */
2069	err = rdma_set_reuseaddr(cm_id, 1);
2070	if (err != 0) {
2071		rtrs_err(s, "Set address reuse failed, err: %d\n", err);
2072		return err;
2073	}
2074	err = rdma_resolve_addr(cm_id, (struct sockaddr *)&clt_path->s.src_addr,
2075				(struct sockaddr *)&clt_path->s.dst_addr,
2076				RTRS_CONNECT_TIMEOUT_MS);
2077	if (err) {
2078		rtrs_err(s, "Failed to resolve address, err: %d\n", err);
2079		return err;
2080	}
2081	/*
2082	 * Combine connection status and session events. This is needed
2083	 * for waiting two possible cases: cm_err has something meaningful
2084	 * or session state was really changed to error by device removal.
2085	 */
2086	err = wait_event_interruptible_timeout(
2087			clt_path->state_wq,
2088			con->cm_err || clt_path->state != RTRS_CLT_CONNECTING,
2089			msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2090	if (err == 0 || err == -ERESTARTSYS) {
2091		if (err == 0)
2092			err = -ETIMEDOUT;
2093		/* Timedout or interrupted */
2094		return err;
2095	}
2096	if (con->cm_err < 0)
2097		return con->cm_err;
2098	if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTING)
2099		/* Device removal */
2100		return -ECONNABORTED;
2101
2102	return 0;
2103}
2104
2105static void rtrs_clt_path_up(struct rtrs_clt_path *clt_path)
2106{
2107	struct rtrs_clt_sess *clt = clt_path->clt;
2108	int up;
2109
2110	/*
2111	 * We can fire RECONNECTED event only when all paths were
2112	 * connected on rtrs_clt_open(), then each was disconnected
2113	 * and the first one connected again.  That's why this nasty
2114	 * game with counter value.
2115	 */
2116
2117	mutex_lock(&clt->paths_ev_mutex);
2118	up = ++clt->paths_up;
2119	/*
2120	 * Here it is safe to access paths num directly since up counter
2121	 * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is
2122	 * in progress, thus paths removals are impossible.
2123	 */
2124	if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num)
2125		clt->paths_up = clt->paths_num;
2126	else if (up == 1)
2127		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED);
2128	mutex_unlock(&clt->paths_ev_mutex);
2129
2130	/* Mark session as established */
2131	clt_path->established = true;
2132	clt_path->reconnect_attempts = 0;
2133	clt_path->stats->reconnects.successful_cnt++;
2134}
2135
2136static void rtrs_clt_path_down(struct rtrs_clt_path *clt_path)
2137{
2138	struct rtrs_clt_sess *clt = clt_path->clt;
2139
2140	if (!clt_path->established)
2141		return;
2142
2143	clt_path->established = false;
2144	mutex_lock(&clt->paths_ev_mutex);
2145	WARN_ON(!clt->paths_up);
2146	if (--clt->paths_up == 0)
2147		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED);
2148	mutex_unlock(&clt->paths_ev_mutex);
2149}
2150
2151static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_path *clt_path)
2152{
2153	struct rtrs_clt_con *con;
2154	unsigned int cid;
2155
2156	WARN_ON(READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTED);
2157
2158	/*
2159	 * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes
2160	 * exactly in between.  Start destroying after it finishes.
2161	 */
2162	mutex_lock(&clt_path->init_mutex);
2163	mutex_unlock(&clt_path->init_mutex);
2164
2165	/*
2166	 * All IO paths must observe !CONNECTED state before we
2167	 * free everything.
2168	 */
2169	synchronize_rcu();
2170
2171	rtrs_stop_hb(&clt_path->s);
2172
2173	/*
2174	 * The order it utterly crucial: firstly disconnect and complete all
2175	 * rdma requests with error (thus set in_use=false for requests),
2176	 * then fail outstanding requests checking in_use for each, and
2177	 * eventually notify upper layer about session disconnection.
2178	 */
2179
2180	for (cid = 0; cid < clt_path->s.con_num; cid++) {
2181		if (!clt_path->s.con[cid])
2182			break;
2183		con = to_clt_con(clt_path->s.con[cid]);
2184		stop_cm(con);
2185	}
2186	fail_all_outstanding_reqs(clt_path);
2187	free_path_reqs(clt_path);
2188	rtrs_clt_path_down(clt_path);
2189
2190	/*
2191	 * Wait for graceful shutdown, namely when peer side invokes
2192	 * rdma_disconnect(). 'connected_cnt' is decremented only on
2193	 * CM events, thus if other side had crashed and hb has detected
2194	 * something is wrong, here we will stuck for exactly timeout ms,
2195	 * since CM does not fire anything.  That is fine, we are not in
2196	 * hurry.
2197	 */
2198	wait_event_timeout(clt_path->state_wq,
2199			   !atomic_read(&clt_path->connected_cnt),
2200			   msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2201
2202	for (cid = 0; cid < clt_path->s.con_num; cid++) {
2203		if (!clt_path->s.con[cid])
2204			break;
2205		con = to_clt_con(clt_path->s.con[cid]);
2206		mutex_lock(&con->con_mutex);
2207		destroy_con_cq_qp(con);
2208		mutex_unlock(&con->con_mutex);
2209		destroy_cm(con);
2210		destroy_con(con);
2211	}
2212}
2213
2214static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_path *clt_path)
2215{
2216	struct rtrs_clt_sess *clt = clt_path->clt;
2217	struct rtrs_clt_path *next;
2218	bool wait_for_grace = false;
2219	int cpu;
2220
2221	mutex_lock(&clt->paths_mutex);
2222	list_del_rcu(&clt_path->s.entry);
2223
2224	/* Make sure everybody observes path removal. */
2225	synchronize_rcu();
2226
2227	/*
2228	 * At this point nobody sees @sess in the list, but still we have
2229	 * dangling pointer @pcpu_path which _can_ point to @sess.  Since
2230	 * nobody can observe @sess in the list, we guarantee that IO path
2231	 * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal
2232	 * to @sess, but can never again become @sess.
2233	 */
2234
2235	/*
2236	 * Decrement paths number only after grace period, because
2237	 * caller of do_each_path() must firstly observe list without
2238	 * path and only then decremented paths number.
2239	 *
2240	 * Otherwise there can be the following situation:
2241	 *    o Two paths exist and IO is coming.
2242	 *    o One path is removed:
2243	 *      CPU#0                          CPU#1
2244	 *      do_each_path():                rtrs_clt_remove_path_from_arr():
2245	 *          path = get_next_path()
2246	 *          ^^^                            list_del_rcu(path)
2247	 *          [!CONNECTED path]              clt->paths_num--
2248	 *                                              ^^^^^^^^^
2249	 *          load clt->paths_num                 from 2 to 1
2250	 *                    ^^^^^^^^^
2251	 *                    sees 1
2252	 *
2253	 *      path is observed as !CONNECTED, but do_each_path() loop
2254	 *      ends, because expression i < clt->paths_num is false.
2255	 */
2256	clt->paths_num--;
2257
2258	/*
2259	 * Get @next connection from current @sess which is going to be
2260	 * removed.  If @sess is the last element, then @next is NULL.
2261	 */
2262	rcu_read_lock();
2263	next = rtrs_clt_get_next_path_or_null(&clt->paths_list, clt_path);
2264	rcu_read_unlock();
2265
2266	/*
2267	 * @pcpu paths can still point to the path which is going to be
2268	 * removed, so change the pointer manually.
2269	 */
2270	for_each_possible_cpu(cpu) {
2271		struct rtrs_clt_path __rcu **ppcpu_path;
2272
2273		ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu);
2274		if (rcu_dereference_protected(*ppcpu_path,
2275			lockdep_is_held(&clt->paths_mutex)) != clt_path)
2276			/*
2277			 * synchronize_rcu() was called just after deleting
2278			 * entry from the list, thus IO code path cannot
2279			 * change pointer back to the pointer which is going
2280			 * to be removed, we are safe here.
2281			 */
2282			continue;
2283
2284		/*
2285		 * We race with IO code path, which also changes pointer,
2286		 * thus we have to be careful not to overwrite it.
2287		 */
2288		if (try_cmpxchg((struct rtrs_clt_path **)ppcpu_path, &clt_path,
2289				next))
2290			/*
2291			 * @ppcpu_path was successfully replaced with @next,
2292			 * that means that someone could also pick up the
2293			 * @sess and dereferencing it right now, so wait for
2294			 * a grace period is required.
2295			 */
2296			wait_for_grace = true;
2297	}
2298	if (wait_for_grace)
2299		synchronize_rcu();
2300
2301	mutex_unlock(&clt->paths_mutex);
2302}
2303
2304static void rtrs_clt_add_path_to_arr(struct rtrs_clt_path *clt_path)
2305{
2306	struct rtrs_clt_sess *clt = clt_path->clt;
2307
2308	mutex_lock(&clt->paths_mutex);
2309	clt->paths_num++;
2310
2311	list_add_tail_rcu(&clt_path->s.entry, &clt->paths_list);
2312	mutex_unlock(&clt->paths_mutex);
2313}
2314
2315static void rtrs_clt_close_work(struct work_struct *work)
2316{
2317	struct rtrs_clt_path *clt_path;
2318
2319	clt_path = container_of(work, struct rtrs_clt_path, close_work);
2320
2321	cancel_work_sync(&clt_path->err_recovery_work);
2322	cancel_delayed_work_sync(&clt_path->reconnect_dwork);
2323	rtrs_clt_stop_and_destroy_conns(clt_path);
2324	rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CLOSED, NULL);
2325}
2326
2327static int init_conns(struct rtrs_clt_path *clt_path)
2328{
2329	unsigned int cid;
2330	int err, i;
2331
2332	/*
2333	 * On every new session connections increase reconnect counter
2334	 * to avoid clashes with previous sessions not yet closed
2335	 * sessions on a server side.
2336	 */
2337	clt_path->s.recon_cnt++;
2338
2339	/* Establish all RDMA connections  */
2340	for (cid = 0; cid < clt_path->s.con_num; cid++) {
2341		err = create_con(clt_path, cid);
2342		if (err)
2343			goto destroy;
2344
2345		err = create_cm(to_clt_con(clt_path->s.con[cid]));
2346		if (err)
2347			goto destroy;
2348	}
 
 
 
 
 
 
2349	err = alloc_path_reqs(clt_path);
2350	if (err)
2351		goto destroy;
2352
2353	return 0;
2354
2355destroy:
2356	/* Make sure we do the cleanup in the order they are created */
2357	for (i = 0; i <= cid; i++) {
2358		struct rtrs_clt_con *con;
2359
2360		if (!clt_path->s.con[i])
2361			break;
2362
2363		con = to_clt_con(clt_path->s.con[i]);
2364		if (con->c.cm_id) {
2365			stop_cm(con);
2366			mutex_lock(&con->con_mutex);
2367			destroy_con_cq_qp(con);
2368			mutex_unlock(&con->con_mutex);
2369			destroy_cm(con);
2370		}
2371		destroy_con(con);
2372	}
2373	/*
2374	 * If we've never taken async path and got an error, say,
2375	 * doing rdma_resolve_addr(), switch to CONNECTION_ERR state
2376	 * manually to keep reconnecting.
2377	 */
2378	rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING_ERR, NULL);
2379
2380	return err;
2381}
2382
2383static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
2384{
2385	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2386	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
2387	struct rtrs_iu *iu;
2388
2389	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2390	rtrs_iu_free(iu, clt_path->s.dev->ib_dev, 1);
2391
2392	if (wc->status != IB_WC_SUCCESS) {
2393		rtrs_err(clt_path->clt, "Path info request send failed: %s\n",
2394			  ib_wc_status_msg(wc->status));
2395		rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING_ERR, NULL);
2396		return;
2397	}
2398
2399	rtrs_clt_update_wc_stats(con);
2400}
2401
2402static int process_info_rsp(struct rtrs_clt_path *clt_path,
2403			    const struct rtrs_msg_info_rsp *msg)
2404{
2405	unsigned int sg_cnt, total_len;
2406	int i, sgi;
2407
2408	sg_cnt = le16_to_cpu(msg->sg_cnt);
2409	if (!sg_cnt || (clt_path->queue_depth % sg_cnt)) {
2410		rtrs_err(clt_path->clt,
2411			  "Incorrect sg_cnt %d, is not multiple\n",
2412			  sg_cnt);
2413		return -EINVAL;
2414	}
2415
2416	/*
2417	 * Check if IB immediate data size is enough to hold the mem_id and
2418	 * the offset inside the memory chunk.
2419	 */
2420	if ((ilog2(sg_cnt - 1) + 1) + (ilog2(clt_path->chunk_size - 1) + 1) >
2421	    MAX_IMM_PAYL_BITS) {
2422		rtrs_err(clt_path->clt,
2423			  "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n",
2424			  MAX_IMM_PAYL_BITS, sg_cnt, clt_path->chunk_size);
2425		return -EINVAL;
2426	}
2427	total_len = 0;
2428	for (sgi = 0, i = 0; sgi < sg_cnt && i < clt_path->queue_depth; sgi++) {
2429		const struct rtrs_sg_desc *desc = &msg->desc[sgi];
2430		u32 len, rkey;
2431		u64 addr;
2432
2433		addr = le64_to_cpu(desc->addr);
2434		rkey = le32_to_cpu(desc->key);
2435		len  = le32_to_cpu(desc->len);
2436
2437		total_len += len;
2438
2439		if (!len || (len % clt_path->chunk_size)) {
2440			rtrs_err(clt_path->clt, "Incorrect [%d].len %d\n",
2441				  sgi,
2442				  len);
2443			return -EINVAL;
2444		}
2445		for ( ; len && i < clt_path->queue_depth; i++) {
2446			clt_path->rbufs[i].addr = addr;
2447			clt_path->rbufs[i].rkey = rkey;
2448
2449			len  -= clt_path->chunk_size;
2450			addr += clt_path->chunk_size;
2451		}
2452	}
2453	/* Sanity check */
2454	if (sgi != sg_cnt || i != clt_path->queue_depth) {
2455		rtrs_err(clt_path->clt,
2456			 "Incorrect sg vector, not fully mapped\n");
2457		return -EINVAL;
2458	}
2459	if (total_len != clt_path->chunk_size * clt_path->queue_depth) {
2460		rtrs_err(clt_path->clt, "Incorrect total_len %d\n", total_len);
2461		return -EINVAL;
2462	}
2463
2464	return 0;
2465}
2466
2467static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
2468{
2469	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2470	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
2471	struct rtrs_msg_info_rsp *msg;
2472	enum rtrs_clt_state state;
2473	struct rtrs_iu *iu;
2474	size_t rx_sz;
2475	int err;
2476
2477	state = RTRS_CLT_CONNECTING_ERR;
2478
2479	WARN_ON(con->c.cid);
2480	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2481	if (wc->status != IB_WC_SUCCESS) {
2482		rtrs_err(clt_path->clt, "Path info response recv failed: %s\n",
2483			  ib_wc_status_msg(wc->status));
2484		goto out;
2485	}
2486	WARN_ON(wc->opcode != IB_WC_RECV);
2487
2488	if (wc->byte_len < sizeof(*msg)) {
2489		rtrs_err(clt_path->clt, "Path info response is malformed: size %d\n",
2490			  wc->byte_len);
2491		goto out;
2492	}
2493	ib_dma_sync_single_for_cpu(clt_path->s.dev->ib_dev, iu->dma_addr,
2494				   iu->size, DMA_FROM_DEVICE);
2495	msg = iu->buf;
2496	if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP) {
2497		rtrs_err(clt_path->clt, "Path info response is malformed: type %d\n",
2498			  le16_to_cpu(msg->type));
2499		goto out;
2500	}
2501	rx_sz  = sizeof(*msg);
2502	rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt);
2503	if (wc->byte_len < rx_sz) {
2504		rtrs_err(clt_path->clt, "Path info response is malformed: size %d\n",
2505			  wc->byte_len);
2506		goto out;
2507	}
2508	err = process_info_rsp(clt_path, msg);
2509	if (err)
2510		goto out;
2511
2512	err = post_recv_path(clt_path);
2513	if (err)
2514		goto out;
2515
2516	state = RTRS_CLT_CONNECTED;
2517
2518out:
2519	rtrs_clt_update_wc_stats(con);
2520	rtrs_iu_free(iu, clt_path->s.dev->ib_dev, 1);
2521	rtrs_clt_change_state_get_old(clt_path, state, NULL);
2522}
2523
2524static int rtrs_send_path_info(struct rtrs_clt_path *clt_path)
2525{
2526	struct rtrs_clt_con *usr_con = to_clt_con(clt_path->s.con[0]);
2527	struct rtrs_msg_info_req *msg;
2528	struct rtrs_iu *tx_iu, *rx_iu;
2529	size_t rx_sz;
2530	int err;
2531
2532	rx_sz  = sizeof(struct rtrs_msg_info_rsp);
2533	rx_sz += sizeof(struct rtrs_sg_desc) * clt_path->queue_depth;
2534
2535	tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL,
2536			       clt_path->s.dev->ib_dev, DMA_TO_DEVICE,
2537			       rtrs_clt_info_req_done);
2538	rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, clt_path->s.dev->ib_dev,
2539			       DMA_FROM_DEVICE, rtrs_clt_info_rsp_done);
2540	if (!tx_iu || !rx_iu) {
2541		err = -ENOMEM;
2542		goto out;
2543	}
2544	/* Prepare for getting info response */
2545	err = rtrs_iu_post_recv(&usr_con->c, rx_iu);
2546	if (err) {
2547		rtrs_err(clt_path->clt, "rtrs_iu_post_recv(), err: %d\n", err);
2548		goto out;
2549	}
2550	rx_iu = NULL;
2551
2552	msg = tx_iu->buf;
2553	msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ);
2554	memcpy(msg->pathname, clt_path->s.sessname, sizeof(msg->pathname));
2555
2556	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
2557				      tx_iu->dma_addr,
2558				      tx_iu->size, DMA_TO_DEVICE);
2559
2560	/* Send info request */
2561	err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL);
2562	if (err) {
2563		rtrs_err(clt_path->clt, "rtrs_iu_post_send(), err: %d\n", err);
2564		goto out;
2565	}
2566	tx_iu = NULL;
2567
2568	/* Wait for state change */
2569	wait_event_interruptible_timeout(clt_path->state_wq,
2570					 clt_path->state != RTRS_CLT_CONNECTING,
2571					 msecs_to_jiffies(
2572						 RTRS_CONNECT_TIMEOUT_MS));
2573	if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED) {
2574		if (READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTING_ERR)
2575			err = -ECONNRESET;
2576		else
2577			err = -ETIMEDOUT;
2578	}
2579
2580out:
2581	if (tx_iu)
2582		rtrs_iu_free(tx_iu, clt_path->s.dev->ib_dev, 1);
2583	if (rx_iu)
2584		rtrs_iu_free(rx_iu, clt_path->s.dev->ib_dev, 1);
2585	if (err)
2586		/* If we've never taken async path because of malloc problems */
2587		rtrs_clt_change_state_get_old(clt_path,
2588					      RTRS_CLT_CONNECTING_ERR, NULL);
2589
2590	return err;
2591}
2592
2593/**
2594 * init_path() - establishes all path connections and does handshake
2595 * @clt_path: client path.
2596 * In case of error full close or reconnect procedure should be taken,
2597 * because reconnect or close async works can be started.
2598 */
2599static int init_path(struct rtrs_clt_path *clt_path)
2600{
2601	int err;
2602	char str[NAME_MAX];
2603	struct rtrs_addr path = {
2604		.src = &clt_path->s.src_addr,
2605		.dst = &clt_path->s.dst_addr,
2606	};
2607
2608	rtrs_addr_to_str(&path, str, sizeof(str));
2609
2610	mutex_lock(&clt_path->init_mutex);
2611	err = init_conns(clt_path);
2612	if (err) {
2613		rtrs_err(clt_path->clt,
2614			 "init_conns() failed: err=%d path=%s [%s:%u]\n", err,
2615			 str, clt_path->hca_name, clt_path->hca_port);
2616		goto out;
2617	}
2618	err = rtrs_send_path_info(clt_path);
2619	if (err) {
2620		rtrs_err(clt_path->clt,
2621			 "rtrs_send_path_info() failed: err=%d path=%s [%s:%u]\n",
2622			 err, str, clt_path->hca_name, clt_path->hca_port);
2623		goto out;
2624	}
2625	rtrs_clt_path_up(clt_path);
2626	rtrs_start_hb(&clt_path->s);
2627out:
2628	mutex_unlock(&clt_path->init_mutex);
2629
2630	return err;
2631}
2632
2633static void rtrs_clt_reconnect_work(struct work_struct *work)
2634{
2635	struct rtrs_clt_path *clt_path;
2636	struct rtrs_clt_sess *clt;
2637	int err;
2638
2639	clt_path = container_of(to_delayed_work(work), struct rtrs_clt_path,
2640				reconnect_dwork);
2641	clt = clt_path->clt;
2642
2643	trace_rtrs_clt_reconnect_work(clt_path);
2644
2645	if (READ_ONCE(clt_path->state) != RTRS_CLT_RECONNECTING)
2646		return;
2647
2648	if (clt_path->reconnect_attempts >= clt->max_reconnect_attempts) {
2649		/* Close a path completely if max attempts is reached */
2650		rtrs_clt_close_conns(clt_path, false);
2651		return;
2652	}
2653	clt_path->reconnect_attempts++;
2654
2655	msleep(RTRS_RECONNECT_BACKOFF);
2656	if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING, NULL)) {
2657		err = init_path(clt_path);
2658		if (err)
2659			goto reconnect_again;
2660	}
2661
2662	return;
2663
2664reconnect_again:
2665	if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_RECONNECTING, NULL)) {
2666		clt_path->stats->reconnects.fail_cnt++;
2667		queue_work(rtrs_wq, &clt_path->err_recovery_work);
2668	}
2669}
2670
2671static void rtrs_clt_dev_release(struct device *dev)
2672{
2673	struct rtrs_clt_sess *clt = container_of(dev, struct rtrs_clt_sess,
2674						 dev);
2675
2676	mutex_destroy(&clt->paths_ev_mutex);
2677	mutex_destroy(&clt->paths_mutex);
2678	kfree(clt);
2679}
2680
2681static struct rtrs_clt_sess *alloc_clt(const char *sessname, size_t paths_num,
2682				  u16 port, size_t pdu_sz, void *priv,
2683				  void	(*link_ev)(void *priv,
2684						   enum rtrs_clt_link_ev ev),
2685				  unsigned int reconnect_delay_sec,
2686				  unsigned int max_reconnect_attempts)
2687{
2688	struct rtrs_clt_sess *clt;
2689	int err;
2690
2691	if (!paths_num || paths_num > MAX_PATHS_NUM)
2692		return ERR_PTR(-EINVAL);
2693
2694	if (strlen(sessname) >= sizeof(clt->sessname))
2695		return ERR_PTR(-EINVAL);
2696
2697	clt = kzalloc(sizeof(*clt), GFP_KERNEL);
2698	if (!clt)
2699		return ERR_PTR(-ENOMEM);
2700
2701	clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path));
2702	if (!clt->pcpu_path) {
2703		kfree(clt);
2704		return ERR_PTR(-ENOMEM);
2705	}
2706
2707	clt->dev.class = &rtrs_clt_dev_class;
2708	clt->dev.release = rtrs_clt_dev_release;
2709	uuid_gen(&clt->paths_uuid);
2710	INIT_LIST_HEAD_RCU(&clt->paths_list);
2711	clt->paths_num = paths_num;
2712	clt->paths_up = MAX_PATHS_NUM;
2713	clt->port = port;
2714	clt->pdu_sz = pdu_sz;
2715	clt->max_segments = RTRS_MAX_SEGMENTS;
2716	clt->reconnect_delay_sec = reconnect_delay_sec;
2717	clt->max_reconnect_attempts = max_reconnect_attempts;
2718	clt->priv = priv;
2719	clt->link_ev = link_ev;
2720	clt->mp_policy = MP_POLICY_MIN_INFLIGHT;
2721	strscpy(clt->sessname, sessname, sizeof(clt->sessname));
2722	init_waitqueue_head(&clt->permits_wait);
2723	mutex_init(&clt->paths_ev_mutex);
2724	mutex_init(&clt->paths_mutex);
2725	device_initialize(&clt->dev);
2726
2727	err = dev_set_name(&clt->dev, "%s", sessname);
2728	if (err)
2729		goto err_put;
2730
2731	/*
2732	 * Suppress user space notification until
2733	 * sysfs files are created
2734	 */
2735	dev_set_uevent_suppress(&clt->dev, true);
2736	err = device_add(&clt->dev);
2737	if (err)
2738		goto err_put;
2739
2740	clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj);
2741	if (!clt->kobj_paths) {
2742		err = -ENOMEM;
2743		goto err_del;
2744	}
2745	err = rtrs_clt_create_sysfs_root_files(clt);
2746	if (err) {
2747		kobject_del(clt->kobj_paths);
2748		kobject_put(clt->kobj_paths);
2749		goto err_del;
2750	}
2751	dev_set_uevent_suppress(&clt->dev, false);
2752	kobject_uevent(&clt->dev.kobj, KOBJ_ADD);
2753
2754	return clt;
2755err_del:
2756	device_del(&clt->dev);
2757err_put:
2758	free_percpu(clt->pcpu_path);
2759	put_device(&clt->dev);
2760	return ERR_PTR(err);
2761}
2762
2763static void free_clt(struct rtrs_clt_sess *clt)
2764{
2765	free_percpu(clt->pcpu_path);
2766
2767	/*
2768	 * release callback will free clt and destroy mutexes in last put
2769	 */
2770	device_unregister(&clt->dev);
2771}
2772
2773/**
2774 * rtrs_clt_open() - Open a path to an RTRS server
2775 * @ops: holds the link event callback and the private pointer.
2776 * @pathname: name of the path to an RTRS server
2777 * @paths: Paths to be established defined by their src and dst addresses
2778 * @paths_num: Number of elements in the @paths array
2779 * @port: port to be used by the RTRS session
2780 * @pdu_sz: Size of extra payload which can be accessed after permit allocation.
2781 * @reconnect_delay_sec: time between reconnect tries
2782 * @max_reconnect_attempts: Number of times to reconnect on error before giving
2783 *			    up, 0 for * disabled, -1 for forever
2784 * @nr_poll_queues: number of polling mode connection using IB_POLL_DIRECT flag
2785 *
2786 * Starts session establishment with the rtrs_server. The function can block
2787 * up to ~2000ms before it returns.
2788 *
2789 * Return a valid pointer on success otherwise PTR_ERR.
2790 */
2791struct rtrs_clt_sess *rtrs_clt_open(struct rtrs_clt_ops *ops,
2792				 const char *pathname,
2793				 const struct rtrs_addr *paths,
2794				 size_t paths_num, u16 port,
2795				 size_t pdu_sz, u8 reconnect_delay_sec,
2796				 s16 max_reconnect_attempts, u32 nr_poll_queues)
2797{
2798	struct rtrs_clt_path *clt_path, *tmp;
2799	struct rtrs_clt_sess *clt;
2800	int err, i;
2801
2802	if (strchr(pathname, '/') || strchr(pathname, '.')) {
2803		pr_err("pathname cannot contain / and .\n");
2804		err = -EINVAL;
2805		goto out;
2806	}
2807
2808	clt = alloc_clt(pathname, paths_num, port, pdu_sz, ops->priv,
2809			ops->link_ev,
2810			reconnect_delay_sec,
2811			max_reconnect_attempts);
2812	if (IS_ERR(clt)) {
2813		err = PTR_ERR(clt);
2814		goto out;
2815	}
2816	for (i = 0; i < paths_num; i++) {
2817		struct rtrs_clt_path *clt_path;
2818
2819		clt_path = alloc_path(clt, &paths[i], nr_cpu_ids,
2820				  nr_poll_queues);
2821		if (IS_ERR(clt_path)) {
2822			err = PTR_ERR(clt_path);
2823			goto close_all_path;
2824		}
2825		if (!i)
2826			clt_path->for_new_clt = 1;
2827		list_add_tail_rcu(&clt_path->s.entry, &clt->paths_list);
2828
2829		err = init_path(clt_path);
2830		if (err) {
2831			list_del_rcu(&clt_path->s.entry);
2832			rtrs_clt_close_conns(clt_path, true);
2833			free_percpu(clt_path->stats->pcpu_stats);
2834			kfree(clt_path->stats);
2835			free_path(clt_path);
2836			goto close_all_path;
2837		}
2838
2839		err = rtrs_clt_create_path_files(clt_path);
2840		if (err) {
2841			list_del_rcu(&clt_path->s.entry);
2842			rtrs_clt_close_conns(clt_path, true);
2843			free_percpu(clt_path->stats->pcpu_stats);
2844			kfree(clt_path->stats);
2845			free_path(clt_path);
2846			goto close_all_path;
2847		}
2848	}
2849	err = alloc_permits(clt);
2850	if (err)
2851		goto close_all_path;
2852
2853	return clt;
2854
2855close_all_path:
2856	list_for_each_entry_safe(clt_path, tmp, &clt->paths_list, s.entry) {
2857		rtrs_clt_destroy_path_files(clt_path, NULL);
2858		rtrs_clt_close_conns(clt_path, true);
2859		kobject_put(&clt_path->kobj);
2860	}
2861	rtrs_clt_destroy_sysfs_root(clt);
2862	free_clt(clt);
2863
2864out:
2865	return ERR_PTR(err);
2866}
2867EXPORT_SYMBOL(rtrs_clt_open);
2868
2869/**
2870 * rtrs_clt_close() - Close a path
2871 * @clt: Session handle. Session is freed upon return.
2872 */
2873void rtrs_clt_close(struct rtrs_clt_sess *clt)
2874{
2875	struct rtrs_clt_path *clt_path, *tmp;
2876
2877	/* Firstly forbid sysfs access */
2878	rtrs_clt_destroy_sysfs_root(clt);
2879
2880	/* Now it is safe to iterate over all paths without locks */
2881	list_for_each_entry_safe(clt_path, tmp, &clt->paths_list, s.entry) {
2882		rtrs_clt_close_conns(clt_path, true);
2883		rtrs_clt_destroy_path_files(clt_path, NULL);
2884		kobject_put(&clt_path->kobj);
2885	}
2886	free_permits(clt);
2887	free_clt(clt);
2888}
2889EXPORT_SYMBOL(rtrs_clt_close);
2890
2891int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_path *clt_path)
2892{
2893	enum rtrs_clt_state old_state;
2894	int err = -EBUSY;
2895	bool changed;
2896
2897	changed = rtrs_clt_change_state_get_old(clt_path,
2898						 RTRS_CLT_RECONNECTING,
2899						 &old_state);
2900	if (changed) {
2901		clt_path->reconnect_attempts = 0;
2902		rtrs_clt_stop_and_destroy_conns(clt_path);
2903		queue_delayed_work(rtrs_wq, &clt_path->reconnect_dwork, 0);
2904	}
2905	if (changed || old_state == RTRS_CLT_RECONNECTING) {
2906		/*
2907		 * flush_delayed_work() queues pending work for immediate
2908		 * execution, so do the flush if we have queued something
2909		 * right now or work is pending.
2910		 */
2911		flush_delayed_work(&clt_path->reconnect_dwork);
2912		err = (READ_ONCE(clt_path->state) ==
2913		       RTRS_CLT_CONNECTED ? 0 : -ENOTCONN);
2914	}
2915
2916	return err;
2917}
2918
2919int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_path *clt_path,
2920				     const struct attribute *sysfs_self)
2921{
2922	enum rtrs_clt_state old_state;
2923	bool changed;
2924
2925	/*
2926	 * Continue stopping path till state was changed to DEAD or
2927	 * state was observed as DEAD:
2928	 * 1. State was changed to DEAD - we were fast and nobody
2929	 *    invoked rtrs_clt_reconnect(), which can again start
2930	 *    reconnecting.
2931	 * 2. State was observed as DEAD - we have someone in parallel
2932	 *    removing the path.
2933	 */
2934	do {
2935		rtrs_clt_close_conns(clt_path, true);
2936		changed = rtrs_clt_change_state_get_old(clt_path,
2937							RTRS_CLT_DEAD,
2938							&old_state);
2939	} while (!changed && old_state != RTRS_CLT_DEAD);
2940
2941	if (changed) {
2942		rtrs_clt_remove_path_from_arr(clt_path);
2943		rtrs_clt_destroy_path_files(clt_path, sysfs_self);
2944		kobject_put(&clt_path->kobj);
2945	}
2946
2947	return 0;
2948}
2949
2950void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt_sess *clt, int value)
2951{
2952	clt->max_reconnect_attempts = (unsigned int)value;
2953}
2954
2955int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt_sess *clt)
2956{
2957	return (int)clt->max_reconnect_attempts;
2958}
2959
2960/**
2961 * rtrs_clt_request() - Request data transfer to/from server via RDMA.
2962 *
2963 * @dir:	READ/WRITE
2964 * @ops:	callback function to be called as confirmation, and the pointer.
2965 * @clt:	Session
2966 * @permit:	Preallocated permit
2967 * @vec:	Message that is sent to server together with the request.
2968 *		Sum of len of all @vec elements limited to <= IO_MSG_SIZE.
2969 *		Since the msg is copied internally it can be allocated on stack.
2970 * @nr:		Number of elements in @vec.
2971 * @data_len:	length of data sent to/from server
2972 * @sg:		Pages to be sent/received to/from server.
2973 * @sg_cnt:	Number of elements in the @sg
2974 *
2975 * Return:
2976 * 0:		Success
2977 * <0:		Error
2978 *
2979 * On dir=READ rtrs client will request a data transfer from Server to client.
2980 * The data that the server will respond with will be stored in @sg when
2981 * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event.
2982 * On dir=WRITE rtrs client will rdma write data in sg to server side.
2983 */
2984int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops,
2985		     struct rtrs_clt_sess *clt, struct rtrs_permit *permit,
2986		     const struct kvec *vec, size_t nr, size_t data_len,
2987		     struct scatterlist *sg, unsigned int sg_cnt)
2988{
2989	struct rtrs_clt_io_req *req;
2990	struct rtrs_clt_path *clt_path;
2991
2992	enum dma_data_direction dma_dir;
2993	int err = -ECONNABORTED, i;
2994	size_t usr_len, hdr_len;
2995	struct path_it it;
2996
2997	/* Get kvec length */
2998	for (i = 0, usr_len = 0; i < nr; i++)
2999		usr_len += vec[i].iov_len;
3000
3001	if (dir == READ) {
3002		hdr_len = sizeof(struct rtrs_msg_rdma_read) +
3003			  sg_cnt * sizeof(struct rtrs_sg_desc);
3004		dma_dir = DMA_FROM_DEVICE;
3005	} else {
3006		hdr_len = sizeof(struct rtrs_msg_rdma_write);
3007		dma_dir = DMA_TO_DEVICE;
3008	}
3009
3010	rcu_read_lock();
3011	for (path_it_init(&it, clt);
3012	     (clt_path = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
3013		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
3014			continue;
3015
3016		if (usr_len + hdr_len > clt_path->max_hdr_size) {
3017			rtrs_wrn_rl(clt_path->clt,
3018				     "%s request failed, user message size is %zu and header length %zu, but max size is %u\n",
3019				     dir == READ ? "Read" : "Write",
3020				     usr_len, hdr_len, clt_path->max_hdr_size);
3021			err = -EMSGSIZE;
3022			break;
3023		}
3024		req = rtrs_clt_get_req(clt_path, ops->conf_fn, permit, ops->priv,
3025				       vec, usr_len, sg, sg_cnt, data_len,
3026				       dma_dir);
3027		if (dir == READ)
3028			err = rtrs_clt_read_req(req);
3029		else
3030			err = rtrs_clt_write_req(req);
3031		if (err) {
3032			req->in_use = false;
3033			continue;
3034		}
3035		/* Success path */
3036		break;
3037	}
3038	path_it_deinit(&it);
3039	rcu_read_unlock();
3040
3041	return err;
3042}
3043EXPORT_SYMBOL(rtrs_clt_request);
3044
3045int rtrs_clt_rdma_cq_direct(struct rtrs_clt_sess *clt, unsigned int index)
3046{
3047	/* If no path, return -1 for block layer not to try again */
3048	int cnt = -1;
3049	struct rtrs_con *con;
3050	struct rtrs_clt_path *clt_path;
3051	struct path_it it;
3052
3053	rcu_read_lock();
3054	for (path_it_init(&it, clt);
3055	     (clt_path = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
3056		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
3057			continue;
3058
3059		con = clt_path->s.con[index + 1];
3060		cnt = ib_process_cq_direct(con->cq, -1);
3061		if (cnt)
3062			break;
3063	}
3064	path_it_deinit(&it);
3065	rcu_read_unlock();
3066
3067	return cnt;
3068}
3069EXPORT_SYMBOL(rtrs_clt_rdma_cq_direct);
3070
3071/**
3072 * rtrs_clt_query() - queries RTRS session attributes
3073 *@clt: session pointer
3074 *@attr: query results for session attributes.
3075 * Returns:
3076 *    0 on success
3077 *    -ECOMM		no connection to the server
3078 */
3079int rtrs_clt_query(struct rtrs_clt_sess *clt, struct rtrs_attrs *attr)
3080{
3081	if (!rtrs_clt_is_connected(clt))
3082		return -ECOMM;
3083
3084	attr->queue_depth      = clt->queue_depth;
3085	attr->max_segments     = clt->max_segments;
3086	/* Cap max_io_size to min of remote buffer size and the fr pages */
3087	attr->max_io_size = min_t(int, clt->max_io_size,
3088				  clt->max_segments * SZ_4K);
3089
3090	return 0;
3091}
3092EXPORT_SYMBOL(rtrs_clt_query);
3093
3094int rtrs_clt_create_path_from_sysfs(struct rtrs_clt_sess *clt,
3095				     struct rtrs_addr *addr)
3096{
3097	struct rtrs_clt_path *clt_path;
3098	int err;
3099
3100	clt_path = alloc_path(clt, addr, nr_cpu_ids, 0);
3101	if (IS_ERR(clt_path))
3102		return PTR_ERR(clt_path);
3103
3104	mutex_lock(&clt->paths_mutex);
3105	if (clt->paths_num == 0) {
3106		/*
3107		 * When all the paths are removed for a session,
3108		 * the addition of the first path is like a new session for
3109		 * the storage server
3110		 */
3111		clt_path->for_new_clt = 1;
3112	}
3113
3114	mutex_unlock(&clt->paths_mutex);
3115
3116	/*
3117	 * It is totally safe to add path in CONNECTING state: coming
3118	 * IO will never grab it.  Also it is very important to add
3119	 * path before init, since init fires LINK_CONNECTED event.
3120	 */
3121	rtrs_clt_add_path_to_arr(clt_path);
3122
3123	err = init_path(clt_path);
3124	if (err)
3125		goto close_path;
3126
3127	err = rtrs_clt_create_path_files(clt_path);
3128	if (err)
3129		goto close_path;
3130
3131	return 0;
3132
3133close_path:
3134	rtrs_clt_remove_path_from_arr(clt_path);
3135	rtrs_clt_close_conns(clt_path, true);
3136	free_percpu(clt_path->stats->pcpu_stats);
3137	kfree(clt_path->stats);
3138	free_path(clt_path);
3139
3140	return err;
3141}
3142
 
 
 
 
 
 
 
 
3143static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev)
3144{
 
 
 
 
3145	if (!(dev->ib_dev->attrs.device_cap_flags &
3146	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
3147		pr_err("Memory registrations not supported.\n");
3148		return -ENOTSUPP;
3149	}
3150
3151	return 0;
3152}
3153
 
 
 
 
 
 
3154static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = {
3155	.init = rtrs_clt_ib_dev_init
 
3156};
3157
3158static int __init rtrs_client_init(void)
3159{
3160	int ret = 0;
3161
3162	rtrs_rdma_dev_pd_init(0, &dev_pd);
3163	ret = class_register(&rtrs_clt_dev_class);
3164	if (ret) {
3165		pr_err("Failed to create rtrs-client dev class\n");
3166		return ret;
3167	}
3168	rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0);
3169	if (!rtrs_wq) {
3170		class_unregister(&rtrs_clt_dev_class);
3171		return -ENOMEM;
3172	}
3173
3174	return 0;
3175}
3176
3177static void __exit rtrs_client_exit(void)
3178{
3179	destroy_workqueue(rtrs_wq);
3180	class_unregister(&rtrs_clt_dev_class);
3181	rtrs_rdma_dev_pd_deinit(&dev_pd);
3182}
3183
3184module_init(rtrs_client_init);
3185module_exit(rtrs_client_exit);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * RDMA Transport Layer
   4 *
   5 * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
   6 * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
   7 * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
   8 */
   9
  10#undef pr_fmt
  11#define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
  12
  13#include <linux/module.h>
  14#include <linux/rculist.h>
  15#include <linux/random.h>
  16
  17#include "rtrs-clt.h"
  18#include "rtrs-log.h"
  19#include "rtrs-clt-trace.h"
  20
  21#define RTRS_CONNECT_TIMEOUT_MS 30000
  22/*
  23 * Wait a bit before trying to reconnect after a failure
  24 * in order to give server time to finish clean up which
  25 * leads to "false positives" failed reconnect attempts
  26 */
  27#define RTRS_RECONNECT_BACKOFF 1000
  28/*
  29 * Wait for additional random time between 0 and 8 seconds
  30 * before starting to reconnect to avoid clients reconnecting
  31 * all at once in case of a major network outage
  32 */
  33#define RTRS_RECONNECT_SEED 8
  34
  35#define FIRST_CONN 0x01
  36/* limit to 128 * 4k = 512k max IO */
  37#define RTRS_MAX_SEGMENTS          128
  38
  39MODULE_DESCRIPTION("RDMA Transport Client");
  40MODULE_LICENSE("GPL");
  41
  42static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
  43static struct rtrs_rdma_dev_pd dev_pd = {
  44	.ops = &dev_pd_ops
  45};
  46
  47static struct workqueue_struct *rtrs_wq;
  48static const struct class rtrs_clt_dev_class = {
  49	.name = "rtrs-client",
  50};
  51
  52static inline bool rtrs_clt_is_connected(const struct rtrs_clt_sess *clt)
  53{
  54	struct rtrs_clt_path *clt_path;
  55	bool connected = false;
  56
  57	rcu_read_lock();
  58	list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry)
  59		if (READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTED) {
  60			connected = true;
  61			break;
  62		}
  63	rcu_read_unlock();
  64
  65	return connected;
  66}
  67
  68static struct rtrs_permit *
  69__rtrs_get_permit(struct rtrs_clt_sess *clt, enum rtrs_clt_con_type con_type)
  70{
  71	size_t max_depth = clt->queue_depth;
  72	struct rtrs_permit *permit;
  73	int bit;
  74
  75	/*
  76	 * Adapted from null_blk get_tag(). Callers from different cpus may
  77	 * grab the same bit, since find_first_zero_bit is not atomic.
  78	 * But then the test_and_set_bit_lock will fail for all the
  79	 * callers but one, so that they will loop again.
  80	 * This way an explicit spinlock is not required.
  81	 */
  82	do {
  83		bit = find_first_zero_bit(clt->permits_map, max_depth);
  84		if (bit >= max_depth)
  85			return NULL;
  86	} while (test_and_set_bit_lock(bit, clt->permits_map));
  87
  88	permit = get_permit(clt, bit);
  89	WARN_ON(permit->mem_id != bit);
  90	permit->cpu_id = raw_smp_processor_id();
  91	permit->con_type = con_type;
  92
  93	return permit;
  94}
  95
  96static inline void __rtrs_put_permit(struct rtrs_clt_sess *clt,
  97				      struct rtrs_permit *permit)
  98{
  99	clear_bit_unlock(permit->mem_id, clt->permits_map);
 100}
 101
 102/**
 103 * rtrs_clt_get_permit() - allocates permit for future RDMA operation
 104 * @clt:	Current session
 105 * @con_type:	Type of connection to use with the permit
 106 * @can_wait:	Wait type
 107 *
 108 * Description:
 109 *    Allocates permit for the following RDMA operation.  Permit is used
 110 *    to preallocate all resources and to propagate memory pressure
 111 *    up earlier.
 112 *
 113 * Context:
 114 *    Can sleep if @wait == RTRS_PERMIT_WAIT
 115 */
 116struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt_sess *clt,
 117					  enum rtrs_clt_con_type con_type,
 118					  enum wait_type can_wait)
 119{
 120	struct rtrs_permit *permit;
 121	DEFINE_WAIT(wait);
 122
 123	permit = __rtrs_get_permit(clt, con_type);
 124	if (permit || !can_wait)
 125		return permit;
 126
 127	do {
 128		prepare_to_wait(&clt->permits_wait, &wait,
 129				TASK_UNINTERRUPTIBLE);
 130		permit = __rtrs_get_permit(clt, con_type);
 131		if (permit)
 132			break;
 133
 134		io_schedule();
 135	} while (1);
 136
 137	finish_wait(&clt->permits_wait, &wait);
 138
 139	return permit;
 140}
 141EXPORT_SYMBOL(rtrs_clt_get_permit);
 142
 143/**
 144 * rtrs_clt_put_permit() - puts allocated permit
 145 * @clt:	Current session
 146 * @permit:	Permit to be freed
 147 *
 148 * Context:
 149 *    Does not matter
 150 */
 151void rtrs_clt_put_permit(struct rtrs_clt_sess *clt,
 152			 struct rtrs_permit *permit)
 153{
 154	if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map)))
 155		return;
 156
 157	__rtrs_put_permit(clt, permit);
 158
 159	/*
 160	 * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list
 161	 * before calling schedule(). So if rtrs_clt_get_permit() is sleeping
 162	 * it must have added itself to &clt->permits_wait before
 163	 * __rtrs_put_permit() finished.
 164	 * Hence it is safe to guard wake_up() with a waitqueue_active() test.
 165	 */
 166	if (waitqueue_active(&clt->permits_wait))
 167		wake_up(&clt->permits_wait);
 168}
 169EXPORT_SYMBOL(rtrs_clt_put_permit);
 170
 171/**
 172 * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit
 173 * @clt_path: client path pointer
 174 * @permit: permit for the allocation of the RDMA buffer
 175 * Note:
 176 *     IO connection starts from 1.
 177 *     0 connection is for user messages.
 178 */
 179static
 180struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_path *clt_path,
 181					    struct rtrs_permit *permit)
 182{
 183	int id = 0;
 184
 185	if (permit->con_type == RTRS_IO_CON)
 186		id = (permit->cpu_id % (clt_path->s.irq_con_num - 1)) + 1;
 187
 188	return to_clt_con(clt_path->s.con[id]);
 189}
 190
 191/**
 192 * rtrs_clt_change_state() - change the session state through session state
 193 * machine.
 194 *
 195 * @clt_path: client path to change the state of.
 196 * @new_state: state to change to.
 197 *
 198 * returns true if sess's state is changed to new state, otherwise return false.
 199 *
 200 * Locks:
 201 * state_wq lock must be hold.
 202 */
 203static bool rtrs_clt_change_state(struct rtrs_clt_path *clt_path,
 204				     enum rtrs_clt_state new_state)
 205{
 206	enum rtrs_clt_state old_state;
 207	bool changed = false;
 208
 209	lockdep_assert_held(&clt_path->state_wq.lock);
 210
 211	old_state = clt_path->state;
 212	switch (new_state) {
 213	case RTRS_CLT_CONNECTING:
 214		switch (old_state) {
 215		case RTRS_CLT_RECONNECTING:
 216			changed = true;
 217			fallthrough;
 218		default:
 219			break;
 220		}
 221		break;
 222	case RTRS_CLT_RECONNECTING:
 223		switch (old_state) {
 224		case RTRS_CLT_CONNECTED:
 225		case RTRS_CLT_CONNECTING_ERR:
 226		case RTRS_CLT_CLOSED:
 227			changed = true;
 228			fallthrough;
 229		default:
 230			break;
 231		}
 232		break;
 233	case RTRS_CLT_CONNECTED:
 234		switch (old_state) {
 235		case RTRS_CLT_CONNECTING:
 236			changed = true;
 237			fallthrough;
 238		default:
 239			break;
 240		}
 241		break;
 242	case RTRS_CLT_CONNECTING_ERR:
 243		switch (old_state) {
 244		case RTRS_CLT_CONNECTING:
 245			changed = true;
 246			fallthrough;
 247		default:
 248			break;
 249		}
 250		break;
 251	case RTRS_CLT_CLOSING:
 252		switch (old_state) {
 253		case RTRS_CLT_CONNECTING:
 254		case RTRS_CLT_CONNECTING_ERR:
 255		case RTRS_CLT_RECONNECTING:
 256		case RTRS_CLT_CONNECTED:
 257			changed = true;
 258			fallthrough;
 259		default:
 260			break;
 261		}
 262		break;
 263	case RTRS_CLT_CLOSED:
 264		switch (old_state) {
 265		case RTRS_CLT_CLOSING:
 266			changed = true;
 267			fallthrough;
 268		default:
 269			break;
 270		}
 271		break;
 272	case RTRS_CLT_DEAD:
 273		switch (old_state) {
 274		case RTRS_CLT_CLOSED:
 275			changed = true;
 276			fallthrough;
 277		default:
 278			break;
 279		}
 280		break;
 281	default:
 282		break;
 283	}
 284	if (changed) {
 285		clt_path->state = new_state;
 286		wake_up_locked(&clt_path->state_wq);
 287	}
 288
 289	return changed;
 290}
 291
 292static bool rtrs_clt_change_state_from_to(struct rtrs_clt_path *clt_path,
 293					   enum rtrs_clt_state old_state,
 294					   enum rtrs_clt_state new_state)
 295{
 296	bool changed = false;
 297
 298	spin_lock_irq(&clt_path->state_wq.lock);
 299	if (clt_path->state == old_state)
 300		changed = rtrs_clt_change_state(clt_path, new_state);
 301	spin_unlock_irq(&clt_path->state_wq.lock);
 302
 303	return changed;
 304}
 305
 306static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_path *clt_path);
 307static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con)
 308{
 309	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 310
 311	trace_rtrs_rdma_error_recovery(clt_path);
 312
 313	if (rtrs_clt_change_state_from_to(clt_path,
 314					   RTRS_CLT_CONNECTED,
 315					   RTRS_CLT_RECONNECTING)) {
 316		queue_work(rtrs_wq, &clt_path->err_recovery_work);
 317	} else {
 318		/*
 319		 * Error can happen just on establishing new connection,
 320		 * so notify waiter with error state, waiter is responsible
 321		 * for cleaning the rest and reconnect if needed.
 322		 */
 323		rtrs_clt_change_state_from_to(clt_path,
 324					       RTRS_CLT_CONNECTING,
 325					       RTRS_CLT_CONNECTING_ERR);
 326	}
 327}
 328
 329static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc)
 330{
 331	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
 332
 333	if (wc->status != IB_WC_SUCCESS) {
 334		rtrs_err_rl(con->c.path, "Failed IB_WR_REG_MR: %s\n",
 335			  ib_wc_status_msg(wc->status));
 336		rtrs_rdma_error_recovery(con);
 337	}
 338}
 339
 340static struct ib_cqe fast_reg_cqe = {
 341	.done = rtrs_clt_fast_reg_done
 342};
 343
 344static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
 345			      bool notify, bool can_wait);
 346
 347static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
 348{
 349	struct rtrs_clt_io_req *req =
 350		container_of(wc->wr_cqe, typeof(*req), inv_cqe);
 351	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
 352
 353	if (wc->status != IB_WC_SUCCESS) {
 354		rtrs_err_rl(con->c.path, "Failed IB_WR_LOCAL_INV: %s\n",
 355			  ib_wc_status_msg(wc->status));
 356		rtrs_rdma_error_recovery(con);
 357	}
 358	req->mr->need_inval = false;
 359	if (req->need_inv_comp)
 360		complete(&req->inv_comp);
 361	else
 362		/* Complete request from INV callback */
 363		complete_rdma_req(req, req->inv_errno, true, false);
 364}
 365
 366static int rtrs_inv_rkey(struct rtrs_clt_io_req *req)
 367{
 368	struct rtrs_clt_con *con = req->con;
 369	struct ib_send_wr wr = {
 370		.opcode		    = IB_WR_LOCAL_INV,
 371		.wr_cqe		    = &req->inv_cqe,
 372		.send_flags	    = IB_SEND_SIGNALED,
 373		.ex.invalidate_rkey = req->mr->rkey,
 374	};
 375	req->inv_cqe.done = rtrs_clt_inv_rkey_done;
 376
 377	return ib_post_send(con->c.qp, &wr, NULL);
 378}
 379
 380static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
 381			      bool notify, bool can_wait)
 382{
 383	struct rtrs_clt_con *con = req->con;
 384	struct rtrs_clt_path *clt_path;
 385	int err;
 386
 387	if (!req->in_use)
 388		return;
 389	if (WARN_ON(!req->con))
 390		return;
 391	clt_path = to_clt_path(con->c.path);
 392
 393	if (req->sg_cnt) {
 394		if (req->mr->need_inval) {
 395			/*
 396			 * We are here to invalidate read/write requests
 397			 * ourselves.  In normal scenario server should
 398			 * send INV for all read requests, we do local
 399			 * invalidate for write requests ourselves, but
 400			 * we are here, thus three things could happen:
 401			 *
 402			 *    1.  this is failover, when errno != 0
 403			 *        and can_wait == 1,
 404			 *
 405			 *    2.  something totally bad happened and
 406			 *        server forgot to send INV, so we
 407			 *        should do that ourselves.
 408			 *
 409			 *    3.  write request finishes, we need to do local
 410			 *        invalidate
 411			 */
 412
 413			if (can_wait) {
 414				req->need_inv_comp = true;
 415			} else {
 416				/* This should be IO path, so always notify */
 417				WARN_ON(!notify);
 418				/* Save errno for INV callback */
 419				req->inv_errno = errno;
 420			}
 421
 422			refcount_inc(&req->ref);
 423			err = rtrs_inv_rkey(req);
 424			if (err) {
 425				rtrs_err_rl(con->c.path, "Send INV WR key=%#x: %d\n",
 426					  req->mr->rkey, err);
 427			} else if (can_wait) {
 428				wait_for_completion(&req->inv_comp);
 
 
 
 
 
 
 
 
 429			}
 430			if (!refcount_dec_and_test(&req->ref))
 431				return;
 432		}
 433		ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
 434				req->sg_cnt, req->dir);
 435	}
 436	if (!refcount_dec_and_test(&req->ref))
 437		return;
 438	if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
 439		atomic_dec(&clt_path->stats->inflight);
 440
 441	req->in_use = false;
 442	req->con = NULL;
 443
 444	if (errno) {
 445		rtrs_err_rl(con->c.path,
 446			    "IO %s request failed: error=%d path=%s [%s:%u] notify=%d\n",
 447			    req->dir == DMA_TO_DEVICE ? "write" : "read", errno,
 448			    kobject_name(&clt_path->kobj), clt_path->hca_name,
 449			    clt_path->hca_port, notify);
 450	}
 451
 452	if (notify)
 453		req->conf(req->priv, errno);
 454}
 455
 456static int rtrs_post_send_rdma(struct rtrs_clt_con *con,
 457				struct rtrs_clt_io_req *req,
 458				struct rtrs_rbuf *rbuf, u32 off,
 459				u32 imm, struct ib_send_wr *wr)
 460{
 461	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 462	enum ib_send_flags flags;
 463	struct ib_sge sge;
 464
 465	if (!req->sg_size) {
 466		rtrs_wrn(con->c.path,
 467			 "Doing RDMA Write failed, no data supplied\n");
 468		return -EINVAL;
 469	}
 470
 471	/* user data and user message in the first list element */
 472	sge.addr   = req->iu->dma_addr;
 473	sge.length = req->sg_size;
 474	sge.lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
 475
 476	/*
 477	 * From time to time we have to post signalled sends,
 478	 * or send queue will fill up and only QP reset can help.
 479	 */
 480	flags = atomic_inc_return(&con->c.wr_cnt) % clt_path->s.signal_interval ?
 481			0 : IB_SEND_SIGNALED;
 482
 483	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
 484				      req->iu->dma_addr,
 485				      req->sg_size, DMA_TO_DEVICE);
 486
 487	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1,
 488					    rbuf->rkey, rbuf->addr + off,
 489					    imm, flags, wr, NULL);
 490}
 491
 492static void process_io_rsp(struct rtrs_clt_path *clt_path, u32 msg_id,
 493			   s16 errno, bool w_inval)
 494{
 495	struct rtrs_clt_io_req *req;
 496
 497	if (WARN_ON(msg_id >= clt_path->queue_depth))
 498		return;
 499
 500	req = &clt_path->reqs[msg_id];
 501	/* Drop need_inv if server responded with send with invalidation */
 502	req->mr->need_inval &= !w_inval;
 503	complete_rdma_req(req, errno, true, false);
 504}
 505
 506static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc)
 507{
 508	struct rtrs_iu *iu;
 509	int err;
 510	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 511
 512	WARN_ON((clt_path->flags & RTRS_MSG_NEW_RKEY_F) == 0);
 513	iu = container_of(wc->wr_cqe, struct rtrs_iu,
 514			  cqe);
 515	err = rtrs_iu_post_recv(&con->c, iu);
 516	if (err) {
 517		rtrs_err(con->c.path, "post iu failed %d\n", err);
 518		rtrs_rdma_error_recovery(con);
 519	}
 520}
 521
 522static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc)
 523{
 524	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 525	struct rtrs_msg_rkey_rsp *msg;
 526	u32 imm_type, imm_payload;
 527	bool w_inval = false;
 528	struct rtrs_iu *iu;
 529	u32 buf_id;
 530	int err;
 531
 532	WARN_ON((clt_path->flags & RTRS_MSG_NEW_RKEY_F) == 0);
 533
 534	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
 535
 536	if (wc->byte_len < sizeof(*msg)) {
 537		rtrs_err(con->c.path, "rkey response is malformed: size %d\n",
 538			  wc->byte_len);
 539		goto out;
 540	}
 541	ib_dma_sync_single_for_cpu(clt_path->s.dev->ib_dev, iu->dma_addr,
 542				   iu->size, DMA_FROM_DEVICE);
 543	msg = iu->buf;
 544	if (le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP) {
 545		rtrs_err(clt_path->clt,
 546			  "rkey response is malformed: type %d\n",
 547			  le16_to_cpu(msg->type));
 548		goto out;
 549	}
 550	buf_id = le16_to_cpu(msg->buf_id);
 551	if (WARN_ON(buf_id >= clt_path->queue_depth))
 552		goto out;
 553
 554	rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload);
 555	if (imm_type == RTRS_IO_RSP_IMM ||
 556	    imm_type == RTRS_IO_RSP_W_INV_IMM) {
 557		u32 msg_id;
 558
 559		w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
 560		rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
 561
 562		if (WARN_ON(buf_id != msg_id))
 563			goto out;
 564		clt_path->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey);
 565		process_io_rsp(clt_path, msg_id, err, w_inval);
 566	}
 567	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev, iu->dma_addr,
 568				      iu->size, DMA_FROM_DEVICE);
 569	return rtrs_clt_recv_done(con, wc);
 570out:
 571	rtrs_rdma_error_recovery(con);
 572}
 573
 574static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
 575
 576static struct ib_cqe io_comp_cqe = {
 577	.done = rtrs_clt_rdma_done
 578};
 579
 580/*
 581 * Post x2 empty WRs: first is for this RDMA with IMM,
 582 * second is for RECV with INV, which happened earlier.
 583 */
 584static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe)
 585{
 586	struct ib_recv_wr wr_arr[2], *wr;
 587	int i;
 588
 589	memset(wr_arr, 0, sizeof(wr_arr));
 590	for (i = 0; i < ARRAY_SIZE(wr_arr); i++) {
 591		wr = &wr_arr[i];
 592		wr->wr_cqe  = cqe;
 593		if (i)
 594			/* Chain backwards */
 595			wr->next = &wr_arr[i - 1];
 596	}
 597
 598	return ib_post_recv(con->qp, wr, NULL);
 599}
 600
 601static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
 602{
 603	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
 604	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 605	u32 imm_type, imm_payload;
 606	bool w_inval = false;
 607	int err;
 608
 609	if (wc->status != IB_WC_SUCCESS) {
 610		if (wc->status != IB_WC_WR_FLUSH_ERR) {
 611			rtrs_err(clt_path->clt, "RDMA failed: %s\n",
 612				  ib_wc_status_msg(wc->status));
 613			rtrs_rdma_error_recovery(con);
 614		}
 615		return;
 616	}
 617	rtrs_clt_update_wc_stats(con);
 618
 619	switch (wc->opcode) {
 620	case IB_WC_RECV_RDMA_WITH_IMM:
 621		/*
 622		 * post_recv() RDMA write completions of IO reqs (read/write)
 623		 * and hb
 624		 */
 625		if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done))
 626			return;
 627		clt_path->s.hb_missed_cnt = 0;
 628		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
 629			       &imm_type, &imm_payload);
 630		if (imm_type == RTRS_IO_RSP_IMM ||
 631		    imm_type == RTRS_IO_RSP_W_INV_IMM) {
 632			u32 msg_id;
 633
 634			w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
 635			rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
 636
 637			process_io_rsp(clt_path, msg_id, err, w_inval);
 638		} else if (imm_type == RTRS_HB_MSG_IMM) {
 639			WARN_ON(con->c.cid);
 640			rtrs_send_hb_ack(&clt_path->s);
 641			if (clt_path->flags & RTRS_MSG_NEW_RKEY_F)
 642				return  rtrs_clt_recv_done(con, wc);
 643		} else if (imm_type == RTRS_HB_ACK_IMM) {
 644			WARN_ON(con->c.cid);
 
 645			clt_path->s.hb_cur_latency =
 646				ktime_sub(ktime_get(), clt_path->s.hb_last_sent);
 647			if (clt_path->flags & RTRS_MSG_NEW_RKEY_F)
 648				return  rtrs_clt_recv_done(con, wc);
 649		} else {
 650			rtrs_wrn(con->c.path, "Unknown IMM type %u\n",
 651				  imm_type);
 652		}
 653		if (w_inval)
 654			/*
 655			 * Post x2 empty WRs: first is for this RDMA with IMM,
 656			 * second is for RECV with INV, which happened earlier.
 657			 */
 658			err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe);
 659		else
 660			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
 661		if (err) {
 662			rtrs_err(con->c.path, "rtrs_post_recv_empty(): %d\n",
 663				  err);
 664			rtrs_rdma_error_recovery(con);
 665		}
 666		break;
 667	case IB_WC_RECV:
 668		/*
 669		 * Key invalidations from server side
 670		 */
 671		clt_path->s.hb_missed_cnt = 0;
 672		WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE ||
 673			  wc->wc_flags & IB_WC_WITH_IMM));
 674		WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done);
 675		if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) {
 676			if (wc->wc_flags & IB_WC_WITH_INVALIDATE)
 677				return  rtrs_clt_recv_done(con, wc);
 678
 679			return  rtrs_clt_rkey_rsp_done(con, wc);
 680		}
 681		break;
 682	case IB_WC_RDMA_WRITE:
 683		/*
 684		 * post_send() RDMA write completions of IO reqs (read/write)
 685		 * and hb.
 686		 */
 687		break;
 688
 689	default:
 690		rtrs_wrn(clt_path->clt, "Unexpected WC type: %d\n", wc->opcode);
 691		return;
 692	}
 693}
 694
 695static int post_recv_io(struct rtrs_clt_con *con, size_t q_size)
 696{
 697	int err, i;
 698	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
 699
 700	for (i = 0; i < q_size; i++) {
 701		if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) {
 702			struct rtrs_iu *iu = &con->rsp_ius[i];
 703
 704			err = rtrs_iu_post_recv(&con->c, iu);
 705		} else {
 706			err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
 707		}
 708		if (err)
 709			return err;
 710	}
 711
 712	return 0;
 713}
 714
 715static int post_recv_path(struct rtrs_clt_path *clt_path)
 716{
 717	size_t q_size = 0;
 718	int err, cid;
 719
 720	for (cid = 0; cid < clt_path->s.con_num; cid++) {
 721		if (cid == 0)
 722			q_size = SERVICE_CON_QUEUE_DEPTH;
 723		else
 724			q_size = clt_path->queue_depth;
 725
 726		/*
 727		 * x2 for RDMA read responses + FR key invalidations,
 728		 * RDMA writes do not require any FR registrations.
 729		 */
 730		q_size *= 2;
 731
 732		err = post_recv_io(to_clt_con(clt_path->s.con[cid]), q_size);
 733		if (err) {
 734			rtrs_err(clt_path->clt, "post_recv_io(), err: %d\n",
 735				 err);
 736			return err;
 737		}
 738	}
 739
 740	return 0;
 741}
 742
 743struct path_it {
 744	int i;
 745	struct list_head skip_list;
 746	struct rtrs_clt_sess *clt;
 747	struct rtrs_clt_path *(*next_path)(struct path_it *it);
 748};
 749
 750/*
 751 * rtrs_clt_get_next_path_or_null - get clt path from the list or return NULL
 752 * @head:	the head for the list.
 753 * @clt_path:	The element to take the next clt_path from.
 754 *
 755 * Next clt path returned in round-robin fashion, i.e. head will be skipped,
 756 * but if list is observed as empty, NULL will be returned.
 757 *
 758 * This function may safely run concurrently with the _rcu list-mutation
 759 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 760 */
 761static inline struct rtrs_clt_path *
 762rtrs_clt_get_next_path_or_null(struct list_head *head, struct rtrs_clt_path *clt_path)
 763{
 764	return list_next_or_null_rcu(head, &clt_path->s.entry, typeof(*clt_path), s.entry) ?:
 765				     list_next_or_null_rcu(head,
 766							   READ_ONCE((&clt_path->s.entry)->next),
 767							   typeof(*clt_path), s.entry);
 768}
 769
 770/**
 771 * get_next_path_rr() - Returns path in round-robin fashion.
 772 * @it:	the path pointer
 773 *
 774 * Related to @MP_POLICY_RR
 775 *
 776 * Locks:
 777 *    rcu_read_lock() must be held.
 778 */
 779static struct rtrs_clt_path *get_next_path_rr(struct path_it *it)
 780{
 781	struct rtrs_clt_path __rcu **ppcpu_path;
 782	struct rtrs_clt_path *path;
 783	struct rtrs_clt_sess *clt;
 784
 785	/*
 786	 * Assert that rcu lock must be held
 787	 */
 788	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu read lock held");
 789
 790	clt = it->clt;
 791
 792	/*
 793	 * Here we use two RCU objects: @paths_list and @pcpu_path
 794	 * pointer.  See rtrs_clt_remove_path_from_arr() for details
 795	 * how that is handled.
 796	 */
 797
 798	ppcpu_path = this_cpu_ptr(clt->pcpu_path);
 799	path = rcu_dereference(*ppcpu_path);
 800	if (!path)
 801		path = list_first_or_null_rcu(&clt->paths_list,
 802					      typeof(*path), s.entry);
 803	else
 804		path = rtrs_clt_get_next_path_or_null(&clt->paths_list, path);
 805
 806	rcu_assign_pointer(*ppcpu_path, path);
 807
 808	return path;
 809}
 810
 811/**
 812 * get_next_path_min_inflight() - Returns path with minimal inflight count.
 813 * @it:	the path pointer
 814 *
 815 * Related to @MP_POLICY_MIN_INFLIGHT
 816 *
 817 * Locks:
 818 *    rcu_read_lock() must be hold.
 819 */
 820static struct rtrs_clt_path *get_next_path_min_inflight(struct path_it *it)
 821{
 822	struct rtrs_clt_path *min_path = NULL;
 823	struct rtrs_clt_sess *clt = it->clt;
 824	struct rtrs_clt_path *clt_path;
 825	int min_inflight = INT_MAX;
 826	int inflight;
 827
 828	list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry) {
 829		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
 830			continue;
 831
 832		if (!list_empty(raw_cpu_ptr(clt_path->mp_skip_entry)))
 833			continue;
 834
 835		inflight = atomic_read(&clt_path->stats->inflight);
 836
 837		if (inflight < min_inflight) {
 838			min_inflight = inflight;
 839			min_path = clt_path;
 840		}
 841	}
 842
 843	/*
 844	 * add the path to the skip list, so that next time we can get
 845	 * a different one
 846	 */
 847	if (min_path)
 848		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
 849
 850	return min_path;
 851}
 852
 853/**
 854 * get_next_path_min_latency() - Returns path with minimal latency.
 855 * @it:	the path pointer
 856 *
 857 * Return: a path with the lowest latency or NULL if all paths are tried
 858 *
 859 * Locks:
 860 *    rcu_read_lock() must be hold.
 861 *
 862 * Related to @MP_POLICY_MIN_LATENCY
 863 *
 864 * This DOES skip an already-tried path.
 865 * There is a skip-list to skip a path if the path has tried but failed.
 866 * It will try the minimum latency path and then the second minimum latency
 867 * path and so on. Finally it will return NULL if all paths are tried.
 868 * Therefore the caller MUST check the returned
 869 * path is NULL and trigger the IO error.
 870 */
 871static struct rtrs_clt_path *get_next_path_min_latency(struct path_it *it)
 872{
 873	struct rtrs_clt_path *min_path = NULL;
 874	struct rtrs_clt_sess *clt = it->clt;
 875	struct rtrs_clt_path *clt_path;
 876	ktime_t min_latency = KTIME_MAX;
 877	ktime_t latency;
 878
 879	list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry) {
 880		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
 881			continue;
 882
 883		if (!list_empty(raw_cpu_ptr(clt_path->mp_skip_entry)))
 884			continue;
 885
 886		latency = clt_path->s.hb_cur_latency;
 887
 888		if (latency < min_latency) {
 889			min_latency = latency;
 890			min_path = clt_path;
 891		}
 892	}
 893
 894	/*
 895	 * add the path to the skip list, so that next time we can get
 896	 * a different one
 897	 */
 898	if (min_path)
 899		list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
 900
 901	return min_path;
 902}
 903
 904static inline void path_it_init(struct path_it *it, struct rtrs_clt_sess *clt)
 905{
 906	INIT_LIST_HEAD(&it->skip_list);
 907	it->clt = clt;
 908	it->i = 0;
 909
 910	if (clt->mp_policy == MP_POLICY_RR)
 911		it->next_path = get_next_path_rr;
 912	else if (clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
 913		it->next_path = get_next_path_min_inflight;
 914	else
 915		it->next_path = get_next_path_min_latency;
 916}
 917
 918static inline void path_it_deinit(struct path_it *it)
 919{
 920	struct list_head *skip, *tmp;
 921	/*
 922	 * The skip_list is used only for the MIN_INFLIGHT and MIN_LATENCY policies.
 923	 * We need to remove paths from it, so that next IO can insert
 924	 * paths (->mp_skip_entry) into a skip_list again.
 925	 */
 926	list_for_each_safe(skip, tmp, &it->skip_list)
 927		list_del_init(skip);
 928}
 929
 930/**
 931 * rtrs_clt_init_req() - Initialize an rtrs_clt_io_req holding information
 932 * about an inflight IO.
 933 * The user buffer holding user control message (not data) is copied into
 934 * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will
 935 * also hold the control message of rtrs.
 936 * @req: an io request holding information about IO.
 937 * @clt_path: client path
 938 * @conf: conformation callback function to notify upper layer.
 939 * @permit: permit for allocation of RDMA remote buffer
 940 * @priv: private pointer
 941 * @vec: kernel vector containing control message
 942 * @usr_len: length of the user message
 943 * @sg: scater list for IO data
 944 * @sg_cnt: number of scater list entries
 945 * @data_len: length of the IO data
 946 * @dir: direction of the IO.
 947 */
 948static void rtrs_clt_init_req(struct rtrs_clt_io_req *req,
 949			      struct rtrs_clt_path *clt_path,
 950			      void (*conf)(void *priv, int errno),
 951			      struct rtrs_permit *permit, void *priv,
 952			      const struct kvec *vec, size_t usr_len,
 953			      struct scatterlist *sg, size_t sg_cnt,
 954			      size_t data_len, int dir)
 955{
 956	struct iov_iter iter;
 957	size_t len;
 958
 959	req->permit = permit;
 960	req->in_use = true;
 961	req->usr_len = usr_len;
 962	req->data_len = data_len;
 963	req->sglist = sg;
 964	req->sg_cnt = sg_cnt;
 965	req->priv = priv;
 966	req->dir = dir;
 967	req->con = rtrs_permit_to_clt_con(clt_path, permit);
 968	req->conf = conf;
 969	req->mr->need_inval = false;
 970	req->need_inv_comp = false;
 971	req->inv_errno = 0;
 972	refcount_set(&req->ref, 1);
 973	req->mp_policy = clt_path->clt->mp_policy;
 974
 975	iov_iter_kvec(&iter, ITER_SOURCE, vec, 1, usr_len);
 976	len = _copy_from_iter(req->iu->buf, usr_len, &iter);
 977	WARN_ON(len != usr_len);
 978
 979	reinit_completion(&req->inv_comp);
 980}
 981
 982static struct rtrs_clt_io_req *
 983rtrs_clt_get_req(struct rtrs_clt_path *clt_path,
 984		 void (*conf)(void *priv, int errno),
 985		 struct rtrs_permit *permit, void *priv,
 986		 const struct kvec *vec, size_t usr_len,
 987		 struct scatterlist *sg, size_t sg_cnt,
 988		 size_t data_len, int dir)
 989{
 990	struct rtrs_clt_io_req *req;
 991
 992	req = &clt_path->reqs[permit->mem_id];
 993	rtrs_clt_init_req(req, clt_path, conf, permit, priv, vec, usr_len,
 994			   sg, sg_cnt, data_len, dir);
 995	return req;
 996}
 997
 998static struct rtrs_clt_io_req *
 999rtrs_clt_get_copy_req(struct rtrs_clt_path *alive_path,
1000		       struct rtrs_clt_io_req *fail_req)
1001{
1002	struct rtrs_clt_io_req *req;
1003	struct kvec vec = {
1004		.iov_base = fail_req->iu->buf,
1005		.iov_len  = fail_req->usr_len
1006	};
1007
1008	req = &alive_path->reqs[fail_req->permit->mem_id];
1009	rtrs_clt_init_req(req, alive_path, fail_req->conf, fail_req->permit,
1010			   fail_req->priv, &vec, fail_req->usr_len,
1011			   fail_req->sglist, fail_req->sg_cnt,
1012			   fail_req->data_len, fail_req->dir);
1013	return req;
1014}
1015
1016static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con,
1017				   struct rtrs_clt_io_req *req,
1018				   struct rtrs_rbuf *rbuf, bool fr_en,
1019				   u32 count, u32 size, u32 imm,
1020				   struct ib_send_wr *wr,
1021				   struct ib_send_wr *tail)
1022{
1023	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1024	struct ib_sge *sge = req->sge;
1025	enum ib_send_flags flags;
1026	struct scatterlist *sg;
1027	size_t num_sge;
1028	int i;
1029	struct ib_send_wr *ptail = NULL;
1030
1031	if (fr_en) {
1032		i = 0;
1033		sge[i].addr   = req->mr->iova;
1034		sge[i].length = req->mr->length;
1035		sge[i].lkey   = req->mr->lkey;
1036		i++;
1037		num_sge = 2;
1038		ptail = tail;
1039	} else {
1040		for_each_sg(req->sglist, sg, count, i) {
1041			sge[i].addr   = sg_dma_address(sg);
1042			sge[i].length = sg_dma_len(sg);
1043			sge[i].lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
1044		}
1045		num_sge = 1 + count;
1046	}
1047	sge[i].addr   = req->iu->dma_addr;
1048	sge[i].length = size;
1049	sge[i].lkey   = clt_path->s.dev->ib_pd->local_dma_lkey;
1050
1051	/*
1052	 * From time to time we have to post signalled sends,
1053	 * or send queue will fill up and only QP reset can help.
1054	 */
1055	flags = atomic_inc_return(&con->c.wr_cnt) % clt_path->s.signal_interval ?
1056			0 : IB_SEND_SIGNALED;
1057
1058	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
1059				      req->iu->dma_addr,
1060				      size, DMA_TO_DEVICE);
1061
1062	return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge,
1063					    rbuf->rkey, rbuf->addr, imm,
1064					    flags, wr, ptail);
1065}
1066
1067static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count)
1068{
1069	int nr;
1070
1071	/* Align the MR to a 4K page size to match the block virt boundary */
1072	nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K);
1073	if (nr != count)
1074		return nr < 0 ? nr : -EINVAL;
1075	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1076
1077	return nr;
1078}
1079
1080static int rtrs_clt_write_req(struct rtrs_clt_io_req *req)
1081{
1082	struct rtrs_clt_con *con = req->con;
1083	struct rtrs_path *s = con->c.path;
1084	struct rtrs_clt_path *clt_path = to_clt_path(s);
1085	struct rtrs_msg_rdma_write *msg;
1086
1087	struct rtrs_rbuf *rbuf;
1088	int ret, count = 0;
1089	u32 imm, buf_id;
1090	struct ib_reg_wr rwr;
 
1091	struct ib_send_wr *wr = NULL;
1092	bool fr_en = false;
1093
1094	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1095
1096	if (tsize > clt_path->chunk_size) {
1097		rtrs_wrn(s, "Write request failed, size too big %zu > %d\n",
1098			  tsize, clt_path->chunk_size);
1099		return -EMSGSIZE;
1100	}
1101	if (req->sg_cnt) {
1102		count = ib_dma_map_sg(clt_path->s.dev->ib_dev, req->sglist,
1103				      req->sg_cnt, req->dir);
1104		if (!count) {
1105			rtrs_wrn(s, "Write request failed, map failed\n");
1106			return -EINVAL;
1107		}
1108	}
1109	/* put rtrs msg after sg and user message */
1110	msg = req->iu->buf + req->usr_len;
1111	msg->type = cpu_to_le16(RTRS_MSG_WRITE);
1112	msg->usr_len = cpu_to_le16(req->usr_len);
1113
1114	/* rtrs message on server side will be after user data and message */
1115	imm = req->permit->mem_off + req->data_len + req->usr_len;
1116	imm = rtrs_to_io_req_imm(imm);
1117	buf_id = req->permit->mem_id;
1118	req->sg_size = tsize;
1119	rbuf = &clt_path->rbufs[buf_id];
1120
1121	if (count) {
1122		ret = rtrs_map_sg_fr(req, count);
1123		if (ret < 0) {
1124			rtrs_err_rl(s,
1125				    "Write request failed, failed to map fast reg. data, err: %d\n",
1126				    ret);
1127			ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
1128					req->sg_cnt, req->dir);
1129			return ret;
1130		}
 
 
 
 
 
 
 
1131		rwr = (struct ib_reg_wr) {
1132			.wr.opcode = IB_WR_REG_MR,
1133			.wr.wr_cqe = &fast_reg_cqe,
1134			.mr = req->mr,
1135			.key = req->mr->rkey,
1136			.access = (IB_ACCESS_LOCAL_WRITE),
1137		};
1138		wr = &rwr.wr;
1139		fr_en = true;
1140		req->mr->need_inval = true;
1141	}
1142	/*
1143	 * Update stats now, after request is successfully sent it is not
1144	 * safe anymore to touch it.
1145	 */
1146	rtrs_clt_update_all_stats(req, WRITE);
1147
1148	ret = rtrs_post_rdma_write_sg(req->con, req, rbuf, fr_en, count,
1149				      req->usr_len + sizeof(*msg),
1150				      imm, wr, NULL);
1151	if (ret) {
1152		rtrs_err_rl(s,
1153			    "Write request failed: error=%d path=%s [%s:%u]\n",
1154			    ret, kobject_name(&clt_path->kobj), clt_path->hca_name,
1155			    clt_path->hca_port);
1156		if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
1157			atomic_dec(&clt_path->stats->inflight);
1158		if (req->mr->need_inval) {
1159			req->mr->need_inval = false;
1160			refcount_dec(&req->ref);
1161		}
1162		if (req->sg_cnt)
1163			ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist,
1164					req->sg_cnt, req->dir);
1165	}
1166
1167	return ret;
1168}
1169
1170static int rtrs_clt_read_req(struct rtrs_clt_io_req *req)
1171{
1172	struct rtrs_clt_con *con = req->con;
1173	struct rtrs_path *s = con->c.path;
1174	struct rtrs_clt_path *clt_path = to_clt_path(s);
1175	struct rtrs_msg_rdma_read *msg;
1176	struct rtrs_ib_dev *dev = clt_path->s.dev;
1177
1178	struct ib_reg_wr rwr;
1179	struct ib_send_wr *wr = NULL;
1180
1181	int ret, count = 0;
1182	u32 imm, buf_id;
1183
1184	const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1185
1186	if (tsize > clt_path->chunk_size) {
1187		rtrs_wrn(s,
1188			  "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n",
1189			  tsize, clt_path->chunk_size);
1190		return -EMSGSIZE;
1191	}
1192
1193	if (req->sg_cnt) {
1194		count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1195				      req->dir);
1196		if (!count) {
1197			rtrs_wrn(s,
1198				  "Read request failed, dma map failed\n");
1199			return -EINVAL;
1200		}
1201	}
1202	/* put our message into req->buf after user message*/
1203	msg = req->iu->buf + req->usr_len;
1204	msg->type = cpu_to_le16(RTRS_MSG_READ);
1205	msg->usr_len = cpu_to_le16(req->usr_len);
1206
1207	if (count) {
1208		ret = rtrs_map_sg_fr(req, count);
1209		if (ret < 0) {
1210			rtrs_err_rl(s,
1211				     "Read request failed, failed to map fast reg. data, err: %d\n",
1212				     ret);
1213			ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1214					req->dir);
1215			return ret;
1216		}
1217		rwr = (struct ib_reg_wr) {
1218			.wr.opcode = IB_WR_REG_MR,
1219			.wr.wr_cqe = &fast_reg_cqe,
1220			.mr = req->mr,
1221			.key = req->mr->rkey,
1222			.access = (IB_ACCESS_LOCAL_WRITE |
1223				   IB_ACCESS_REMOTE_WRITE),
1224		};
1225		wr = &rwr.wr;
1226
1227		msg->sg_cnt = cpu_to_le16(1);
1228		msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F);
1229
1230		msg->desc[0].addr = cpu_to_le64(req->mr->iova);
1231		msg->desc[0].key = cpu_to_le32(req->mr->rkey);
1232		msg->desc[0].len = cpu_to_le32(req->mr->length);
1233
1234		/* Further invalidation is required */
1235		req->mr->need_inval = !!RTRS_MSG_NEED_INVAL_F;
1236
1237	} else {
1238		msg->sg_cnt = 0;
1239		msg->flags = 0;
1240	}
1241	/*
1242	 * rtrs message will be after the space reserved for disk data and
1243	 * user message
1244	 */
1245	imm = req->permit->mem_off + req->data_len + req->usr_len;
1246	imm = rtrs_to_io_req_imm(imm);
1247	buf_id = req->permit->mem_id;
1248
1249	req->sg_size  = sizeof(*msg);
1250	req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc);
1251	req->sg_size += req->usr_len;
1252
1253	/*
1254	 * Update stats now, after request is successfully sent it is not
1255	 * safe anymore to touch it.
1256	 */
1257	rtrs_clt_update_all_stats(req, READ);
1258
1259	ret = rtrs_post_send_rdma(req->con, req, &clt_path->rbufs[buf_id],
1260				   req->data_len, imm, wr);
1261	if (ret) {
1262		rtrs_err_rl(s,
1263			    "Read request failed: error=%d path=%s [%s:%u]\n",
1264			    ret, kobject_name(&clt_path->kobj), clt_path->hca_name,
1265			    clt_path->hca_port);
1266		if (req->mp_policy == MP_POLICY_MIN_INFLIGHT)
1267			atomic_dec(&clt_path->stats->inflight);
1268		req->mr->need_inval = false;
1269		if (req->sg_cnt)
1270			ib_dma_unmap_sg(dev->ib_dev, req->sglist,
1271					req->sg_cnt, req->dir);
1272	}
1273
1274	return ret;
1275}
1276
1277/**
1278 * rtrs_clt_failover_req() - Try to find an active path for a failed request
1279 * @clt: clt context
1280 * @fail_req: a failed io request.
1281 */
1282static int rtrs_clt_failover_req(struct rtrs_clt_sess *clt,
1283				 struct rtrs_clt_io_req *fail_req)
1284{
1285	struct rtrs_clt_path *alive_path;
1286	struct rtrs_clt_io_req *req;
1287	int err = -ECONNABORTED;
1288	struct path_it it;
1289
1290	rcu_read_lock();
1291	for (path_it_init(&it, clt);
1292	     (alive_path = it.next_path(&it)) && it.i < it.clt->paths_num;
1293	     it.i++) {
1294		if (READ_ONCE(alive_path->state) != RTRS_CLT_CONNECTED)
1295			continue;
1296		req = rtrs_clt_get_copy_req(alive_path, fail_req);
1297		if (req->dir == DMA_TO_DEVICE)
1298			err = rtrs_clt_write_req(req);
1299		else
1300			err = rtrs_clt_read_req(req);
1301		if (err) {
1302			req->in_use = false;
1303			continue;
1304		}
1305		/* Success path */
1306		rtrs_clt_inc_failover_cnt(alive_path->stats);
1307		break;
1308	}
1309	path_it_deinit(&it);
1310	rcu_read_unlock();
1311
1312	return err;
1313}
1314
1315static void fail_all_outstanding_reqs(struct rtrs_clt_path *clt_path)
1316{
1317	struct rtrs_clt_sess *clt = clt_path->clt;
1318	struct rtrs_clt_io_req *req;
1319	int i, err;
1320
1321	if (!clt_path->reqs)
1322		return;
1323	for (i = 0; i < clt_path->queue_depth; ++i) {
1324		req = &clt_path->reqs[i];
1325		if (!req->in_use)
1326			continue;
1327
1328		/*
1329		 * Safely (without notification) complete failed request.
1330		 * After completion this request is still useble and can
1331		 * be failovered to another path.
1332		 */
1333		complete_rdma_req(req, -ECONNABORTED, false, true);
1334
1335		err = rtrs_clt_failover_req(clt, req);
1336		if (err)
1337			/* Failover failed, notify anyway */
1338			req->conf(req->priv, err);
1339	}
1340}
1341
1342static void free_path_reqs(struct rtrs_clt_path *clt_path)
1343{
1344	struct rtrs_clt_io_req *req;
1345	int i;
1346
1347	if (!clt_path->reqs)
1348		return;
1349	for (i = 0; i < clt_path->queue_depth; ++i) {
1350		req = &clt_path->reqs[i];
1351		if (req->mr)
1352			ib_dereg_mr(req->mr);
1353		kfree(req->sge);
1354		rtrs_iu_free(req->iu, clt_path->s.dev->ib_dev, 1);
1355	}
1356	kfree(clt_path->reqs);
1357	clt_path->reqs = NULL;
1358}
1359
1360static int alloc_path_reqs(struct rtrs_clt_path *clt_path)
1361{
1362	struct rtrs_clt_io_req *req;
1363	int i, err = -ENOMEM;
1364
1365	clt_path->reqs = kcalloc(clt_path->queue_depth,
1366				 sizeof(*clt_path->reqs),
1367				 GFP_KERNEL);
1368	if (!clt_path->reqs)
1369		return -ENOMEM;
1370
1371	for (i = 0; i < clt_path->queue_depth; ++i) {
1372		req = &clt_path->reqs[i];
1373		req->iu = rtrs_iu_alloc(1, clt_path->max_hdr_size, GFP_KERNEL,
1374					 clt_path->s.dev->ib_dev,
1375					 DMA_TO_DEVICE,
1376					 rtrs_clt_rdma_done);
1377		if (!req->iu)
1378			goto out;
1379
1380		req->sge = kcalloc(2, sizeof(*req->sge), GFP_KERNEL);
1381		if (!req->sge)
1382			goto out;
1383
1384		req->mr = ib_alloc_mr(clt_path->s.dev->ib_pd,
1385				      IB_MR_TYPE_MEM_REG,
1386				      clt_path->max_pages_per_mr);
1387		if (IS_ERR(req->mr)) {
1388			err = PTR_ERR(req->mr);
1389			pr_err("Failed to alloc clt_path->max_pages_per_mr %d: %pe\n",
1390			       clt_path->max_pages_per_mr, req->mr);
1391			req->mr = NULL;
1392			goto out;
1393		}
1394
1395		init_completion(&req->inv_comp);
1396	}
1397
1398	return 0;
1399
1400out:
1401	free_path_reqs(clt_path);
1402
1403	return err;
1404}
1405
1406static int alloc_permits(struct rtrs_clt_sess *clt)
1407{
1408	unsigned int chunk_bits;
1409	int err, i;
1410
1411	clt->permits_map = bitmap_zalloc(clt->queue_depth, GFP_KERNEL);
1412	if (!clt->permits_map) {
1413		err = -ENOMEM;
1414		goto out_err;
1415	}
1416	clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL);
1417	if (!clt->permits) {
1418		err = -ENOMEM;
1419		goto err_map;
1420	}
1421	chunk_bits = ilog2(clt->queue_depth - 1) + 1;
1422	for (i = 0; i < clt->queue_depth; i++) {
1423		struct rtrs_permit *permit;
1424
1425		permit = get_permit(clt, i);
1426		permit->mem_id = i;
1427		permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits);
1428	}
1429
1430	return 0;
1431
1432err_map:
1433	bitmap_free(clt->permits_map);
1434	clt->permits_map = NULL;
1435out_err:
1436	return err;
1437}
1438
1439static void free_permits(struct rtrs_clt_sess *clt)
1440{
1441	if (clt->permits_map)
1442		wait_event(clt->permits_wait,
1443			   bitmap_empty(clt->permits_map, clt->queue_depth));
1444
1445	bitmap_free(clt->permits_map);
1446	clt->permits_map = NULL;
1447	kfree(clt->permits);
1448	clt->permits = NULL;
1449}
1450
1451static void query_fast_reg_mode(struct rtrs_clt_path *clt_path)
1452{
1453	struct ib_device *ib_dev;
1454	u64 max_pages_per_mr;
1455	int mr_page_shift;
1456
1457	ib_dev = clt_path->s.dev->ib_dev;
1458
1459	/*
1460	 * Use the smallest page size supported by the HCA, down to a
1461	 * minimum of 4096 bytes. We're unlikely to build large sglists
1462	 * out of smaller entries.
1463	 */
1464	mr_page_shift      = max(12, ffs(ib_dev->attrs.page_size_cap) - 1);
1465	max_pages_per_mr   = ib_dev->attrs.max_mr_size;
1466	do_div(max_pages_per_mr, (1ull << mr_page_shift));
1467	clt_path->max_pages_per_mr =
1468		min3(clt_path->max_pages_per_mr, (u32)max_pages_per_mr,
1469		     ib_dev->attrs.max_fast_reg_page_list_len);
1470	clt_path->clt->max_segments =
1471		min(clt_path->max_pages_per_mr, clt_path->clt->max_segments);
1472}
1473
1474static bool rtrs_clt_change_state_get_old(struct rtrs_clt_path *clt_path,
1475					   enum rtrs_clt_state new_state,
1476					   enum rtrs_clt_state *old_state)
1477{
1478	bool changed;
1479
1480	spin_lock_irq(&clt_path->state_wq.lock);
1481	if (old_state)
1482		*old_state = clt_path->state;
1483	changed = rtrs_clt_change_state(clt_path, new_state);
1484	spin_unlock_irq(&clt_path->state_wq.lock);
1485
1486	return changed;
1487}
1488
1489static void rtrs_clt_hb_err_handler(struct rtrs_con *c)
1490{
1491	struct rtrs_clt_con *con = container_of(c, typeof(*con), c);
1492	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1493
1494	rtrs_err(con->c.path, "HB err handler for path=%s\n", kobject_name(&clt_path->kobj));
1495	rtrs_rdma_error_recovery(con);
1496}
1497
1498static void rtrs_clt_init_hb(struct rtrs_clt_path *clt_path)
1499{
1500	rtrs_init_hb(&clt_path->s, &io_comp_cqe,
1501		      RTRS_HB_INTERVAL_MS,
1502		      RTRS_HB_MISSED_MAX,
1503		      rtrs_clt_hb_err_handler,
1504		      rtrs_wq);
1505}
1506
1507static void rtrs_clt_reconnect_work(struct work_struct *work);
1508static void rtrs_clt_close_work(struct work_struct *work);
1509
1510static void rtrs_clt_err_recovery_work(struct work_struct *work)
1511{
1512	struct rtrs_clt_path *clt_path;
1513	struct rtrs_clt_sess *clt;
1514	int delay_ms;
1515
1516	clt_path = container_of(work, struct rtrs_clt_path, err_recovery_work);
1517	clt = clt_path->clt;
1518	delay_ms = clt->reconnect_delay_sec * 1000;
1519	rtrs_clt_stop_and_destroy_conns(clt_path);
1520	queue_delayed_work(rtrs_wq, &clt_path->reconnect_dwork,
1521			   msecs_to_jiffies(delay_ms +
1522					    get_random_u32_below(RTRS_RECONNECT_SEED)));
1523}
1524
1525static struct rtrs_clt_path *alloc_path(struct rtrs_clt_sess *clt,
1526					const struct rtrs_addr *path,
1527					size_t con_num, u32 nr_poll_queues)
1528{
1529	struct rtrs_clt_path *clt_path;
1530	int err = -ENOMEM;
1531	int cpu;
1532	size_t total_con;
1533
1534	clt_path = kzalloc(sizeof(*clt_path), GFP_KERNEL);
1535	if (!clt_path)
1536		goto err;
1537
1538	/*
1539	 * irqmode and poll
1540	 * +1: Extra connection for user messages
1541	 */
1542	total_con = con_num + nr_poll_queues + 1;
1543	clt_path->s.con = kcalloc(total_con, sizeof(*clt_path->s.con),
1544				  GFP_KERNEL);
1545	if (!clt_path->s.con)
1546		goto err_free_path;
1547
1548	clt_path->s.con_num = total_con;
1549	clt_path->s.irq_con_num = con_num + 1;
1550
1551	clt_path->stats = kzalloc(sizeof(*clt_path->stats), GFP_KERNEL);
1552	if (!clt_path->stats)
1553		goto err_free_con;
1554
1555	mutex_init(&clt_path->init_mutex);
1556	uuid_gen(&clt_path->s.uuid);
1557	memcpy(&clt_path->s.dst_addr, path->dst,
1558	       rdma_addr_size((struct sockaddr *)path->dst));
1559
1560	/*
1561	 * rdma_resolve_addr() passes src_addr to cma_bind_addr, which
1562	 * checks the sa_family to be non-zero. If user passed src_addr=NULL
1563	 * the sess->src_addr will contain only zeros, which is then fine.
1564	 */
1565	if (path->src)
1566		memcpy(&clt_path->s.src_addr, path->src,
1567		       rdma_addr_size((struct sockaddr *)path->src));
1568	strscpy(clt_path->s.sessname, clt->sessname,
1569		sizeof(clt_path->s.sessname));
1570	clt_path->clt = clt;
1571	clt_path->max_pages_per_mr = RTRS_MAX_SEGMENTS;
1572	init_waitqueue_head(&clt_path->state_wq);
1573	clt_path->state = RTRS_CLT_CONNECTING;
1574	atomic_set(&clt_path->connected_cnt, 0);
1575	INIT_WORK(&clt_path->close_work, rtrs_clt_close_work);
1576	INIT_WORK(&clt_path->err_recovery_work, rtrs_clt_err_recovery_work);
1577	INIT_DELAYED_WORK(&clt_path->reconnect_dwork, rtrs_clt_reconnect_work);
1578	rtrs_clt_init_hb(clt_path);
1579
1580	clt_path->mp_skip_entry = alloc_percpu(typeof(*clt_path->mp_skip_entry));
1581	if (!clt_path->mp_skip_entry)
1582		goto err_free_stats;
1583
1584	for_each_possible_cpu(cpu)
1585		INIT_LIST_HEAD(per_cpu_ptr(clt_path->mp_skip_entry, cpu));
1586
1587	err = rtrs_clt_init_stats(clt_path->stats);
1588	if (err)
1589		goto err_free_percpu;
1590
1591	return clt_path;
1592
1593err_free_percpu:
1594	free_percpu(clt_path->mp_skip_entry);
1595err_free_stats:
1596	kfree(clt_path->stats);
1597err_free_con:
1598	kfree(clt_path->s.con);
1599err_free_path:
1600	kfree(clt_path);
1601err:
1602	return ERR_PTR(err);
1603}
1604
1605void free_path(struct rtrs_clt_path *clt_path)
1606{
1607	free_percpu(clt_path->mp_skip_entry);
1608	mutex_destroy(&clt_path->init_mutex);
1609	kfree(clt_path->s.con);
1610	kfree(clt_path->rbufs);
1611	kfree(clt_path);
1612}
1613
1614static int create_con(struct rtrs_clt_path *clt_path, unsigned int cid)
1615{
1616	struct rtrs_clt_con *con;
1617
1618	con = kzalloc(sizeof(*con), GFP_KERNEL);
1619	if (!con)
1620		return -ENOMEM;
1621
1622	/* Map first two connections to the first CPU */
1623	con->cpu  = (cid ? cid - 1 : 0) % nr_cpu_ids;
1624	con->c.cid = cid;
1625	con->c.path = &clt_path->s;
1626	/* Align with srv, init as 1 */
1627	atomic_set(&con->c.wr_cnt, 1);
1628	mutex_init(&con->con_mutex);
1629
1630	clt_path->s.con[cid] = &con->c;
1631
1632	return 0;
1633}
1634
1635static void destroy_con(struct rtrs_clt_con *con)
1636{
1637	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1638
1639	clt_path->s.con[con->c.cid] = NULL;
1640	mutex_destroy(&con->con_mutex);
1641	kfree(con);
1642}
1643
1644static int create_con_cq_qp(struct rtrs_clt_con *con)
1645{
1646	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1647	u32 max_send_wr, max_recv_wr, cq_num, max_send_sge, wr_limit;
1648	int err, cq_vector;
1649	struct rtrs_msg_rkey_rsp *rsp;
1650
1651	lockdep_assert_held(&con->con_mutex);
1652	if (con->c.cid == 0) {
1653		max_send_sge = 1;
1654		/* We must be the first here */
1655		if (WARN_ON(clt_path->s.dev))
1656			return -EINVAL;
1657
1658		/*
1659		 * The whole session uses device from user connection.
1660		 * Be careful not to close user connection before ib dev
1661		 * is gracefully put.
1662		 */
1663		clt_path->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device,
1664						       &dev_pd);
1665		if (!clt_path->s.dev) {
1666			rtrs_wrn(clt_path->clt,
1667				  "rtrs_ib_dev_find_get_or_add(): no memory\n");
1668			return -ENOMEM;
1669		}
1670		clt_path->s.dev_ref = 1;
1671		query_fast_reg_mode(clt_path);
1672		wr_limit = clt_path->s.dev->ib_dev->attrs.max_qp_wr;
1673		/*
1674		 * Two (request + registration) completion for send
1675		 * Two for recv if always_invalidate is set on server
1676		 * or one for recv.
1677		 * + 2 for drain and heartbeat
1678		 * in case qp gets into error state.
1679		 */
1680		max_send_wr =
1681			min_t(int, wr_limit, SERVICE_CON_QUEUE_DEPTH * 2 + 2);
1682		max_recv_wr = max_send_wr;
1683	} else {
1684		/*
1685		 * Here we assume that session members are correctly set.
1686		 * This is always true if user connection (cid == 0) is
1687		 * established first.
1688		 */
1689		if (WARN_ON(!clt_path->s.dev))
1690			return -EINVAL;
1691		if (WARN_ON(!clt_path->queue_depth))
1692			return -EINVAL;
1693
1694		wr_limit = clt_path->s.dev->ib_dev->attrs.max_qp_wr;
1695		/* Shared between connections */
1696		clt_path->s.dev_ref++;
1697		max_send_wr = min_t(int, wr_limit,
1698			      /* QD * (REQ + RSP + FR REGS or INVS) + drain */
1699			      clt_path->queue_depth * 4 + 1);
1700		max_recv_wr = min_t(int, wr_limit,
1701			      clt_path->queue_depth * 3 + 1);
1702		max_send_sge = 2;
1703	}
1704	atomic_set(&con->c.sq_wr_avail, max_send_wr);
1705	cq_num = max_send_wr + max_recv_wr;
1706	/* alloc iu to recv new rkey reply when server reports flags set */
1707	if (clt_path->flags & RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) {
1708		con->rsp_ius = rtrs_iu_alloc(cq_num, sizeof(*rsp),
1709					      GFP_KERNEL,
1710					      clt_path->s.dev->ib_dev,
1711					      DMA_FROM_DEVICE,
1712					      rtrs_clt_rdma_done);
1713		if (!con->rsp_ius)
1714			return -ENOMEM;
1715		con->queue_num = cq_num;
1716	}
1717	cq_vector = con->cpu % clt_path->s.dev->ib_dev->num_comp_vectors;
1718	if (con->c.cid >= clt_path->s.irq_con_num)
1719		err = rtrs_cq_qp_create(&clt_path->s, &con->c, max_send_sge,
1720					cq_vector, cq_num, max_send_wr,
1721					max_recv_wr, IB_POLL_DIRECT);
1722	else
1723		err = rtrs_cq_qp_create(&clt_path->s, &con->c, max_send_sge,
1724					cq_vector, cq_num, max_send_wr,
1725					max_recv_wr, IB_POLL_SOFTIRQ);
1726	/*
1727	 * In case of error we do not bother to clean previous allocations,
1728	 * since destroy_con_cq_qp() must be called.
1729	 */
1730	return err;
1731}
1732
1733static void destroy_con_cq_qp(struct rtrs_clt_con *con)
1734{
1735	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1736
1737	/*
1738	 * Be careful here: destroy_con_cq_qp() can be called even
1739	 * create_con_cq_qp() failed, see comments there.
1740	 */
1741	lockdep_assert_held(&con->con_mutex);
1742	rtrs_cq_qp_destroy(&con->c);
1743	if (con->rsp_ius) {
1744		rtrs_iu_free(con->rsp_ius, clt_path->s.dev->ib_dev,
1745			     con->queue_num);
1746		con->rsp_ius = NULL;
1747		con->queue_num = 0;
1748	}
1749	if (clt_path->s.dev_ref && !--clt_path->s.dev_ref) {
1750		rtrs_ib_dev_put(clt_path->s.dev);
1751		clt_path->s.dev = NULL;
1752	}
1753}
1754
1755static void stop_cm(struct rtrs_clt_con *con)
1756{
1757	rdma_disconnect(con->c.cm_id);
1758	if (con->c.qp)
1759		ib_drain_qp(con->c.qp);
1760}
1761
1762static void destroy_cm(struct rtrs_clt_con *con)
1763{
1764	rdma_destroy_id(con->c.cm_id);
1765	con->c.cm_id = NULL;
1766}
1767
1768static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con)
1769{
1770	struct rtrs_path *s = con->c.path;
1771	int err;
1772
1773	mutex_lock(&con->con_mutex);
1774	err = create_con_cq_qp(con);
1775	mutex_unlock(&con->con_mutex);
1776	if (err) {
1777		rtrs_err(s, "create_con_cq_qp(), err: %d\n", err);
1778		return err;
1779	}
1780	err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS);
1781	if (err)
1782		rtrs_err(s, "Resolving route failed, err: %d\n", err);
1783
1784	return err;
1785}
1786
1787static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con)
1788{
1789	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1790	struct rtrs_clt_sess *clt = clt_path->clt;
1791	struct rtrs_msg_conn_req msg;
1792	struct rdma_conn_param param;
1793
1794	int err;
1795
1796	param = (struct rdma_conn_param) {
1797		.retry_count = 7,
1798		.rnr_retry_count = 7,
1799		.private_data = &msg,
1800		.private_data_len = sizeof(msg),
1801	};
1802
1803	msg = (struct rtrs_msg_conn_req) {
1804		.magic = cpu_to_le16(RTRS_MAGIC),
1805		.version = cpu_to_le16(RTRS_PROTO_VER),
1806		.cid = cpu_to_le16(con->c.cid),
1807		.cid_num = cpu_to_le16(clt_path->s.con_num),
1808		.recon_cnt = cpu_to_le16(clt_path->s.recon_cnt),
1809	};
1810	msg.first_conn = clt_path->for_new_clt ? FIRST_CONN : 0;
1811	uuid_copy(&msg.sess_uuid, &clt_path->s.uuid);
1812	uuid_copy(&msg.paths_uuid, &clt->paths_uuid);
1813
1814	err = rdma_connect_locked(con->c.cm_id, &param);
1815	if (err)
1816		rtrs_err(clt, "rdma_connect_locked(): %d\n", err);
1817
1818	return err;
1819}
1820
1821static int rtrs_rdma_conn_established(struct rtrs_clt_con *con,
1822				       struct rdma_cm_event *ev)
1823{
1824	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1825	struct rtrs_clt_sess *clt = clt_path->clt;
1826	const struct rtrs_msg_conn_rsp *msg;
1827	u16 version, queue_depth;
1828	int errno;
1829	u8 len;
1830
1831	msg = ev->param.conn.private_data;
1832	len = ev->param.conn.private_data_len;
1833	if (len < sizeof(*msg)) {
1834		rtrs_err(clt, "Invalid RTRS connection response\n");
1835		return -ECONNRESET;
1836	}
1837	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1838		rtrs_err(clt, "Invalid RTRS magic\n");
1839		return -ECONNRESET;
1840	}
1841	version = le16_to_cpu(msg->version);
1842	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1843		rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n",
1844			  version >> 8, RTRS_PROTO_VER_MAJOR);
1845		return -ECONNRESET;
1846	}
1847	errno = le16_to_cpu(msg->errno);
1848	if (errno) {
1849		rtrs_err(clt, "Invalid RTRS message: errno %d\n",
1850			  errno);
1851		return -ECONNRESET;
1852	}
1853	if (con->c.cid == 0) {
1854		queue_depth = le16_to_cpu(msg->queue_depth);
1855
1856		if (clt_path->queue_depth > 0 && queue_depth != clt_path->queue_depth) {
1857			rtrs_err(clt, "Error: queue depth changed\n");
1858
1859			/*
1860			 * Stop any more reconnection attempts
1861			 */
1862			clt_path->reconnect_attempts = -1;
1863			rtrs_err(clt,
1864				"Disabling auto-reconnect. Trigger a manual reconnect after issue is resolved\n");
1865			return -ECONNRESET;
1866		}
1867
1868		if (!clt_path->rbufs) {
1869			clt_path->rbufs = kcalloc(queue_depth,
1870						  sizeof(*clt_path->rbufs),
1871						  GFP_KERNEL);
1872			if (!clt_path->rbufs)
1873				return -ENOMEM;
1874		}
1875		clt_path->queue_depth = queue_depth;
1876		clt_path->s.signal_interval = min_not_zero(queue_depth,
1877						(unsigned short) SERVICE_CON_QUEUE_DEPTH);
1878		clt_path->max_hdr_size = le32_to_cpu(msg->max_hdr_size);
1879		clt_path->max_io_size = le32_to_cpu(msg->max_io_size);
1880		clt_path->flags = le32_to_cpu(msg->flags);
1881		clt_path->chunk_size = clt_path->max_io_size + clt_path->max_hdr_size;
1882
1883		/*
1884		 * Global IO size is always a minimum.
1885		 * If while a reconnection server sends us a value a bit
1886		 * higher - client does not care and uses cached minimum.
1887		 *
1888		 * Since we can have several sessions (paths) restablishing
1889		 * connections in parallel, use lock.
1890		 */
1891		mutex_lock(&clt->paths_mutex);
1892		clt->queue_depth = clt_path->queue_depth;
1893		clt->max_io_size = min_not_zero(clt_path->max_io_size,
1894						clt->max_io_size);
1895		mutex_unlock(&clt->paths_mutex);
1896
1897		/*
1898		 * Cache the hca_port and hca_name for sysfs
1899		 */
1900		clt_path->hca_port = con->c.cm_id->port_num;
1901		scnprintf(clt_path->hca_name, sizeof(clt_path->hca_name),
1902			  clt_path->s.dev->ib_dev->name);
1903		clt_path->s.src_addr = con->c.cm_id->route.addr.src_addr;
1904		/* set for_new_clt, to allow future reconnect on any path */
1905		clt_path->for_new_clt = 1;
1906	}
1907
1908	return 0;
1909}
1910
1911static inline void flag_success_on_conn(struct rtrs_clt_con *con)
1912{
1913	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
1914
1915	atomic_inc(&clt_path->connected_cnt);
1916	con->cm_err = 1;
1917}
1918
1919static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con,
1920				    struct rdma_cm_event *ev)
1921{
1922	struct rtrs_path *s = con->c.path;
1923	const struct rtrs_msg_conn_rsp *msg;
1924	const char *rej_msg;
1925	int status, errno;
1926	u8 data_len;
1927
1928	status = ev->status;
1929	rej_msg = rdma_reject_msg(con->c.cm_id, status);
1930	msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len);
1931
1932	if (msg && data_len >= sizeof(*msg)) {
1933		errno = (int16_t)le16_to_cpu(msg->errno);
1934		if (errno == -EBUSY)
1935			rtrs_err(s,
1936				  "Previous session is still exists on the server, please reconnect later\n");
1937		else
1938			rtrs_err(s,
1939				  "Connect rejected: status %d (%s), rtrs errno %d\n",
1940				  status, rej_msg, errno);
1941	} else {
1942		rtrs_err(s,
1943			  "Connect rejected but with malformed message: status %d (%s)\n",
1944			  status, rej_msg);
1945	}
1946
1947	return -ECONNRESET;
1948}
1949
1950void rtrs_clt_close_conns(struct rtrs_clt_path *clt_path, bool wait)
1951{
1952	trace_rtrs_clt_close_conns(clt_path);
1953
1954	if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CLOSING, NULL))
1955		queue_work(rtrs_wq, &clt_path->close_work);
1956	if (wait)
1957		flush_work(&clt_path->close_work);
1958}
1959
1960static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err)
1961{
1962	if (con->cm_err == 1) {
1963		struct rtrs_clt_path *clt_path;
1964
1965		clt_path = to_clt_path(con->c.path);
1966		if (atomic_dec_and_test(&clt_path->connected_cnt))
1967
1968			wake_up(&clt_path->state_wq);
1969	}
1970	con->cm_err = cm_err;
1971}
1972
1973static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id,
1974				     struct rdma_cm_event *ev)
1975{
1976	struct rtrs_clt_con *con = cm_id->context;
1977	struct rtrs_path *s = con->c.path;
1978	struct rtrs_clt_path *clt_path = to_clt_path(s);
1979	int cm_err = 0;
1980
1981	switch (ev->event) {
1982	case RDMA_CM_EVENT_ADDR_RESOLVED:
1983		cm_err = rtrs_rdma_addr_resolved(con);
1984		break;
1985	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1986		cm_err = rtrs_rdma_route_resolved(con);
1987		break;
1988	case RDMA_CM_EVENT_ESTABLISHED:
1989		cm_err = rtrs_rdma_conn_established(con, ev);
1990		if (!cm_err) {
1991			/*
1992			 * Report success and wake up. Here we abuse state_wq,
1993			 * i.e. wake up without state change, but we set cm_err.
1994			 */
1995			flag_success_on_conn(con);
1996			wake_up(&clt_path->state_wq);
1997			return 0;
1998		}
1999		break;
2000	case RDMA_CM_EVENT_REJECTED:
2001		cm_err = rtrs_rdma_conn_rejected(con, ev);
2002		break;
2003	case RDMA_CM_EVENT_DISCONNECTED:
2004		/* No message for disconnecting */
2005		cm_err = -ECONNRESET;
2006		break;
2007	case RDMA_CM_EVENT_CONNECT_ERROR:
2008	case RDMA_CM_EVENT_UNREACHABLE:
2009	case RDMA_CM_EVENT_ADDR_CHANGE:
2010	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2011		rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
2012			 rdma_event_msg(ev->event), ev->status);
2013		cm_err = -ECONNRESET;
2014		break;
2015	case RDMA_CM_EVENT_ADDR_ERROR:
2016	case RDMA_CM_EVENT_ROUTE_ERROR:
2017		rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n",
2018			 rdma_event_msg(ev->event), ev->status);
2019		cm_err = -EHOSTUNREACH;
2020		break;
2021	case RDMA_CM_EVENT_DEVICE_REMOVAL:
2022		/*
2023		 * Device removal is a special case.  Queue close and return 0.
2024		 */
2025		rtrs_wrn_rl(s, "CM event: %s, status: %d\n", rdma_event_msg(ev->event),
2026			    ev->status);
2027		rtrs_clt_close_conns(clt_path, false);
2028		return 0;
2029	default:
2030		rtrs_err(s, "Unexpected RDMA CM error (CM event: %s, err: %d)\n",
2031			 rdma_event_msg(ev->event), ev->status);
2032		cm_err = -ECONNRESET;
2033		break;
2034	}
2035
2036	if (cm_err) {
2037		/*
2038		 * cm error makes sense only on connection establishing,
2039		 * in other cases we rely on normal procedure of reconnecting.
2040		 */
2041		flag_error_on_conn(con, cm_err);
2042		rtrs_rdma_error_recovery(con);
2043	}
2044
2045	return 0;
2046}
2047
2048/* The caller should do the cleanup in case of error */
2049static int create_cm(struct rtrs_clt_con *con)
2050{
2051	struct rtrs_path *s = con->c.path;
2052	struct rtrs_clt_path *clt_path = to_clt_path(s);
2053	struct rdma_cm_id *cm_id;
2054	int err;
2055
2056	cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con,
2057			       clt_path->s.dst_addr.ss_family == AF_IB ?
2058			       RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC);
2059	if (IS_ERR(cm_id)) {
2060		rtrs_err(s, "Failed to create CM ID, err: %pe\n", cm_id);
2061		return PTR_ERR(cm_id);
2062	}
2063	con->c.cm_id = cm_id;
2064	con->cm_err = 0;
2065	/* allow the port to be reused */
2066	err = rdma_set_reuseaddr(cm_id, 1);
2067	if (err != 0) {
2068		rtrs_err(s, "Set address reuse failed, err: %d\n", err);
2069		return err;
2070	}
2071	err = rdma_resolve_addr(cm_id, (struct sockaddr *)&clt_path->s.src_addr,
2072				(struct sockaddr *)&clt_path->s.dst_addr,
2073				RTRS_CONNECT_TIMEOUT_MS);
2074	if (err) {
2075		rtrs_err(s, "Failed to resolve address, err: %d\n", err);
2076		return err;
2077	}
2078	/*
2079	 * Combine connection status and session events. This is needed
2080	 * for waiting two possible cases: cm_err has something meaningful
2081	 * or session state was really changed to error by device removal.
2082	 */
2083	err = wait_event_interruptible_timeout(
2084			clt_path->state_wq,
2085			con->cm_err || clt_path->state != RTRS_CLT_CONNECTING,
2086			msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2087	if (err == 0 || err == -ERESTARTSYS) {
2088		if (err == 0)
2089			err = -ETIMEDOUT;
2090		/* Timedout or interrupted */
2091		return err;
2092	}
2093	if (con->cm_err < 0)
2094		return con->cm_err;
2095	if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTING)
2096		/* Device removal */
2097		return -ECONNABORTED;
2098
2099	return 0;
2100}
2101
2102static void rtrs_clt_path_up(struct rtrs_clt_path *clt_path)
2103{
2104	struct rtrs_clt_sess *clt = clt_path->clt;
2105	int up;
2106
2107	/*
2108	 * We can fire RECONNECTED event only when all paths were
2109	 * connected on rtrs_clt_open(), then each was disconnected
2110	 * and the first one connected again.  That's why this nasty
2111	 * game with counter value.
2112	 */
2113
2114	mutex_lock(&clt->paths_ev_mutex);
2115	up = ++clt->paths_up;
2116	/*
2117	 * Here it is safe to access paths num directly since up counter
2118	 * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is
2119	 * in progress, thus paths removals are impossible.
2120	 */
2121	if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num)
2122		clt->paths_up = clt->paths_num;
2123	else if (up == 1)
2124		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED);
2125	mutex_unlock(&clt->paths_ev_mutex);
2126
2127	/* Mark session as established */
2128	clt_path->established = true;
2129	clt_path->reconnect_attempts = 0;
2130	clt_path->stats->reconnects.successful_cnt++;
2131}
2132
2133static void rtrs_clt_path_down(struct rtrs_clt_path *clt_path)
2134{
2135	struct rtrs_clt_sess *clt = clt_path->clt;
2136
2137	if (!clt_path->established)
2138		return;
2139
2140	clt_path->established = false;
2141	mutex_lock(&clt->paths_ev_mutex);
2142	WARN_ON(!clt->paths_up);
2143	if (--clt->paths_up == 0)
2144		clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED);
2145	mutex_unlock(&clt->paths_ev_mutex);
2146}
2147
2148static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_path *clt_path)
2149{
2150	struct rtrs_clt_con *con;
2151	unsigned int cid;
2152
2153	WARN_ON(READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTED);
2154
2155	/*
2156	 * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes
2157	 * exactly in between.  Start destroying after it finishes.
2158	 */
2159	mutex_lock(&clt_path->init_mutex);
2160	mutex_unlock(&clt_path->init_mutex);
2161
2162	/*
2163	 * All IO paths must observe !CONNECTED state before we
2164	 * free everything.
2165	 */
2166	synchronize_rcu();
2167
2168	rtrs_stop_hb(&clt_path->s);
2169
2170	/*
2171	 * The order it utterly crucial: firstly disconnect and complete all
2172	 * rdma requests with error (thus set in_use=false for requests),
2173	 * then fail outstanding requests checking in_use for each, and
2174	 * eventually notify upper layer about session disconnection.
2175	 */
2176
2177	for (cid = 0; cid < clt_path->s.con_num; cid++) {
2178		if (!clt_path->s.con[cid])
2179			break;
2180		con = to_clt_con(clt_path->s.con[cid]);
2181		stop_cm(con);
2182	}
2183	fail_all_outstanding_reqs(clt_path);
2184	free_path_reqs(clt_path);
2185	rtrs_clt_path_down(clt_path);
2186
2187	/*
2188	 * Wait for graceful shutdown, namely when peer side invokes
2189	 * rdma_disconnect(). 'connected_cnt' is decremented only on
2190	 * CM events, thus if other side had crashed and hb has detected
2191	 * something is wrong, here we will stuck for exactly timeout ms,
2192	 * since CM does not fire anything.  That is fine, we are not in
2193	 * hurry.
2194	 */
2195	wait_event_timeout(clt_path->state_wq,
2196			   !atomic_read(&clt_path->connected_cnt),
2197			   msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2198
2199	for (cid = 0; cid < clt_path->s.con_num; cid++) {
2200		if (!clt_path->s.con[cid])
2201			break;
2202		con = to_clt_con(clt_path->s.con[cid]);
2203		mutex_lock(&con->con_mutex);
2204		destroy_con_cq_qp(con);
2205		mutex_unlock(&con->con_mutex);
2206		destroy_cm(con);
2207		destroy_con(con);
2208	}
2209}
2210
2211static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_path *clt_path)
2212{
2213	struct rtrs_clt_sess *clt = clt_path->clt;
2214	struct rtrs_clt_path *next;
2215	bool wait_for_grace = false;
2216	int cpu;
2217
2218	mutex_lock(&clt->paths_mutex);
2219	list_del_rcu(&clt_path->s.entry);
2220
2221	/* Make sure everybody observes path removal. */
2222	synchronize_rcu();
2223
2224	/*
2225	 * At this point nobody sees @sess in the list, but still we have
2226	 * dangling pointer @pcpu_path which _can_ point to @sess.  Since
2227	 * nobody can observe @sess in the list, we guarantee that IO path
2228	 * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal
2229	 * to @sess, but can never again become @sess.
2230	 */
2231
2232	/*
2233	 * Decrement paths number only after grace period, because
2234	 * caller of do_each_path() must firstly observe list without
2235	 * path and only then decremented paths number.
2236	 *
2237	 * Otherwise there can be the following situation:
2238	 *    o Two paths exist and IO is coming.
2239	 *    o One path is removed:
2240	 *      CPU#0                          CPU#1
2241	 *      do_each_path():                rtrs_clt_remove_path_from_arr():
2242	 *          path = get_next_path()
2243	 *          ^^^                            list_del_rcu(path)
2244	 *          [!CONNECTED path]              clt->paths_num--
2245	 *                                              ^^^^^^^^^
2246	 *          load clt->paths_num                 from 2 to 1
2247	 *                    ^^^^^^^^^
2248	 *                    sees 1
2249	 *
2250	 *      path is observed as !CONNECTED, but do_each_path() loop
2251	 *      ends, because expression i < clt->paths_num is false.
2252	 */
2253	clt->paths_num--;
2254
2255	/*
2256	 * Get @next connection from current @sess which is going to be
2257	 * removed.  If @sess is the last element, then @next is NULL.
2258	 */
2259	rcu_read_lock();
2260	next = rtrs_clt_get_next_path_or_null(&clt->paths_list, clt_path);
2261	rcu_read_unlock();
2262
2263	/*
2264	 * @pcpu paths can still point to the path which is going to be
2265	 * removed, so change the pointer manually.
2266	 */
2267	for_each_possible_cpu(cpu) {
2268		struct rtrs_clt_path __rcu **ppcpu_path;
2269
2270		ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu);
2271		if (rcu_dereference_protected(*ppcpu_path,
2272			lockdep_is_held(&clt->paths_mutex)) != clt_path)
2273			/*
2274			 * synchronize_rcu() was called just after deleting
2275			 * entry from the list, thus IO code path cannot
2276			 * change pointer back to the pointer which is going
2277			 * to be removed, we are safe here.
2278			 */
2279			continue;
2280
2281		/*
2282		 * We race with IO code path, which also changes pointer,
2283		 * thus we have to be careful not to overwrite it.
2284		 */
2285		if (try_cmpxchg((struct rtrs_clt_path **)ppcpu_path, &clt_path,
2286				next))
2287			/*
2288			 * @ppcpu_path was successfully replaced with @next,
2289			 * that means that someone could also pick up the
2290			 * @sess and dereferencing it right now, so wait for
2291			 * a grace period is required.
2292			 */
2293			wait_for_grace = true;
2294	}
2295	if (wait_for_grace)
2296		synchronize_rcu();
2297
2298	mutex_unlock(&clt->paths_mutex);
2299}
2300
2301static void rtrs_clt_add_path_to_arr(struct rtrs_clt_path *clt_path)
2302{
2303	struct rtrs_clt_sess *clt = clt_path->clt;
2304
2305	mutex_lock(&clt->paths_mutex);
2306	clt->paths_num++;
2307
2308	list_add_tail_rcu(&clt_path->s.entry, &clt->paths_list);
2309	mutex_unlock(&clt->paths_mutex);
2310}
2311
2312static void rtrs_clt_close_work(struct work_struct *work)
2313{
2314	struct rtrs_clt_path *clt_path;
2315
2316	clt_path = container_of(work, struct rtrs_clt_path, close_work);
2317
2318	cancel_work_sync(&clt_path->err_recovery_work);
2319	cancel_delayed_work_sync(&clt_path->reconnect_dwork);
2320	rtrs_clt_stop_and_destroy_conns(clt_path);
2321	rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CLOSED, NULL);
2322}
2323
2324static int init_conns(struct rtrs_clt_path *clt_path)
2325{
2326	unsigned int cid;
2327	int err, i;
2328
2329	/*
2330	 * On every new session connections increase reconnect counter
2331	 * to avoid clashes with previous sessions not yet closed
2332	 * sessions on a server side.
2333	 */
2334	clt_path->s.recon_cnt++;
2335
2336	/* Establish all RDMA connections  */
2337	for (cid = 0; cid < clt_path->s.con_num; cid++) {
2338		err = create_con(clt_path, cid);
2339		if (err)
2340			goto destroy;
2341
2342		err = create_cm(to_clt_con(clt_path->s.con[cid]));
2343		if (err)
2344			goto destroy;
2345	}
2346
2347	/*
2348	 * Set the cid to con_num - 1, since if we fail later, we want to stay in bounds.
2349	 */
2350	cid = clt_path->s.con_num - 1;
2351
2352	err = alloc_path_reqs(clt_path);
2353	if (err)
2354		goto destroy;
2355
2356	return 0;
2357
2358destroy:
2359	/* Make sure we do the cleanup in the order they are created */
2360	for (i = 0; i <= cid; i++) {
2361		struct rtrs_clt_con *con;
2362
2363		if (!clt_path->s.con[i])
2364			break;
2365
2366		con = to_clt_con(clt_path->s.con[i]);
2367		if (con->c.cm_id) {
2368			stop_cm(con);
2369			mutex_lock(&con->con_mutex);
2370			destroy_con_cq_qp(con);
2371			mutex_unlock(&con->con_mutex);
2372			destroy_cm(con);
2373		}
2374		destroy_con(con);
2375	}
2376	/*
2377	 * If we've never taken async path and got an error, say,
2378	 * doing rdma_resolve_addr(), switch to CONNECTION_ERR state
2379	 * manually to keep reconnecting.
2380	 */
2381	rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING_ERR, NULL);
2382
2383	return err;
2384}
2385
2386static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
2387{
2388	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2389	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
2390	struct rtrs_iu *iu;
2391
2392	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2393	rtrs_iu_free(iu, clt_path->s.dev->ib_dev, 1);
2394
2395	if (wc->status != IB_WC_SUCCESS) {
2396		rtrs_err(clt_path->clt, "Path info request send failed: %s\n",
2397			  ib_wc_status_msg(wc->status));
2398		rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING_ERR, NULL);
2399		return;
2400	}
2401
2402	rtrs_clt_update_wc_stats(con);
2403}
2404
2405static int process_info_rsp(struct rtrs_clt_path *clt_path,
2406			    const struct rtrs_msg_info_rsp *msg)
2407{
2408	unsigned int sg_cnt, total_len;
2409	int i, sgi;
2410
2411	sg_cnt = le16_to_cpu(msg->sg_cnt);
2412	if (!sg_cnt || (clt_path->queue_depth % sg_cnt)) {
2413		rtrs_err(clt_path->clt,
2414			  "Incorrect sg_cnt %d, is not multiple\n",
2415			  sg_cnt);
2416		return -EINVAL;
2417	}
2418
2419	/*
2420	 * Check if IB immediate data size is enough to hold the mem_id and
2421	 * the offset inside the memory chunk.
2422	 */
2423	if ((ilog2(sg_cnt - 1) + 1) + (ilog2(clt_path->chunk_size - 1) + 1) >
2424	    MAX_IMM_PAYL_BITS) {
2425		rtrs_err(clt_path->clt,
2426			  "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n",
2427			  MAX_IMM_PAYL_BITS, sg_cnt, clt_path->chunk_size);
2428		return -EINVAL;
2429	}
2430	total_len = 0;
2431	for (sgi = 0, i = 0; sgi < sg_cnt && i < clt_path->queue_depth; sgi++) {
2432		const struct rtrs_sg_desc *desc = &msg->desc[sgi];
2433		u32 len, rkey;
2434		u64 addr;
2435
2436		addr = le64_to_cpu(desc->addr);
2437		rkey = le32_to_cpu(desc->key);
2438		len  = le32_to_cpu(desc->len);
2439
2440		total_len += len;
2441
2442		if (!len || (len % clt_path->chunk_size)) {
2443			rtrs_err(clt_path->clt, "Incorrect [%d].len %d\n",
2444				  sgi,
2445				  len);
2446			return -EINVAL;
2447		}
2448		for ( ; len && i < clt_path->queue_depth; i++) {
2449			clt_path->rbufs[i].addr = addr;
2450			clt_path->rbufs[i].rkey = rkey;
2451
2452			len  -= clt_path->chunk_size;
2453			addr += clt_path->chunk_size;
2454		}
2455	}
2456	/* Sanity check */
2457	if (sgi != sg_cnt || i != clt_path->queue_depth) {
2458		rtrs_err(clt_path->clt,
2459			 "Incorrect sg vector, not fully mapped\n");
2460		return -EINVAL;
2461	}
2462	if (total_len != clt_path->chunk_size * clt_path->queue_depth) {
2463		rtrs_err(clt_path->clt, "Incorrect total_len %d\n", total_len);
2464		return -EINVAL;
2465	}
2466
2467	return 0;
2468}
2469
2470static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
2471{
2472	struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context);
2473	struct rtrs_clt_path *clt_path = to_clt_path(con->c.path);
2474	struct rtrs_msg_info_rsp *msg;
2475	enum rtrs_clt_state state;
2476	struct rtrs_iu *iu;
2477	size_t rx_sz;
2478	int err;
2479
2480	state = RTRS_CLT_CONNECTING_ERR;
2481
2482	WARN_ON(con->c.cid);
2483	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2484	if (wc->status != IB_WC_SUCCESS) {
2485		rtrs_err(clt_path->clt, "Path info response recv failed: %s\n",
2486			  ib_wc_status_msg(wc->status));
2487		goto out;
2488	}
2489	WARN_ON(wc->opcode != IB_WC_RECV);
2490
2491	if (wc->byte_len < sizeof(*msg)) {
2492		rtrs_err(clt_path->clt, "Path info response is malformed: size %d\n",
2493			  wc->byte_len);
2494		goto out;
2495	}
2496	ib_dma_sync_single_for_cpu(clt_path->s.dev->ib_dev, iu->dma_addr,
2497				   iu->size, DMA_FROM_DEVICE);
2498	msg = iu->buf;
2499	if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP) {
2500		rtrs_err(clt_path->clt, "Path info response is malformed: type %d\n",
2501			  le16_to_cpu(msg->type));
2502		goto out;
2503	}
2504	rx_sz  = sizeof(*msg);
2505	rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt);
2506	if (wc->byte_len < rx_sz) {
2507		rtrs_err(clt_path->clt, "Path info response is malformed: size %d\n",
2508			  wc->byte_len);
2509		goto out;
2510	}
2511	err = process_info_rsp(clt_path, msg);
2512	if (err)
2513		goto out;
2514
2515	err = post_recv_path(clt_path);
2516	if (err)
2517		goto out;
2518
2519	state = RTRS_CLT_CONNECTED;
2520
2521out:
2522	rtrs_clt_update_wc_stats(con);
2523	rtrs_iu_free(iu, clt_path->s.dev->ib_dev, 1);
2524	rtrs_clt_change_state_get_old(clt_path, state, NULL);
2525}
2526
2527static int rtrs_send_path_info(struct rtrs_clt_path *clt_path)
2528{
2529	struct rtrs_clt_con *usr_con = to_clt_con(clt_path->s.con[0]);
2530	struct rtrs_msg_info_req *msg;
2531	struct rtrs_iu *tx_iu, *rx_iu;
2532	size_t rx_sz;
2533	int err;
2534
2535	rx_sz  = sizeof(struct rtrs_msg_info_rsp);
2536	rx_sz += sizeof(struct rtrs_sg_desc) * clt_path->queue_depth;
2537
2538	tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL,
2539			       clt_path->s.dev->ib_dev, DMA_TO_DEVICE,
2540			       rtrs_clt_info_req_done);
2541	rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, clt_path->s.dev->ib_dev,
2542			       DMA_FROM_DEVICE, rtrs_clt_info_rsp_done);
2543	if (!tx_iu || !rx_iu) {
2544		err = -ENOMEM;
2545		goto out;
2546	}
2547	/* Prepare for getting info response */
2548	err = rtrs_iu_post_recv(&usr_con->c, rx_iu);
2549	if (err) {
2550		rtrs_err(clt_path->clt, "rtrs_iu_post_recv(), err: %d\n", err);
2551		goto out;
2552	}
2553	rx_iu = NULL;
2554
2555	msg = tx_iu->buf;
2556	msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ);
2557	memcpy(msg->pathname, clt_path->s.sessname, sizeof(msg->pathname));
2558
2559	ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev,
2560				      tx_iu->dma_addr,
2561				      tx_iu->size, DMA_TO_DEVICE);
2562
2563	/* Send info request */
2564	err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL);
2565	if (err) {
2566		rtrs_err(clt_path->clt, "rtrs_iu_post_send(), err: %d\n", err);
2567		goto out;
2568	}
2569	tx_iu = NULL;
2570
2571	/* Wait for state change */
2572	wait_event_interruptible_timeout(clt_path->state_wq,
2573					 clt_path->state != RTRS_CLT_CONNECTING,
2574					 msecs_to_jiffies(
2575						 RTRS_CONNECT_TIMEOUT_MS));
2576	if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED) {
2577		if (READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTING_ERR)
2578			err = -ECONNRESET;
2579		else
2580			err = -ETIMEDOUT;
2581	}
2582
2583out:
2584	if (tx_iu)
2585		rtrs_iu_free(tx_iu, clt_path->s.dev->ib_dev, 1);
2586	if (rx_iu)
2587		rtrs_iu_free(rx_iu, clt_path->s.dev->ib_dev, 1);
2588	if (err)
2589		/* If we've never taken async path because of malloc problems */
2590		rtrs_clt_change_state_get_old(clt_path,
2591					      RTRS_CLT_CONNECTING_ERR, NULL);
2592
2593	return err;
2594}
2595
2596/**
2597 * init_path() - establishes all path connections and does handshake
2598 * @clt_path: client path.
2599 * In case of error full close or reconnect procedure should be taken,
2600 * because reconnect or close async works can be started.
2601 */
2602static int init_path(struct rtrs_clt_path *clt_path)
2603{
2604	int err;
2605	char str[NAME_MAX];
2606	struct rtrs_addr path = {
2607		.src = &clt_path->s.src_addr,
2608		.dst = &clt_path->s.dst_addr,
2609	};
2610
2611	rtrs_addr_to_str(&path, str, sizeof(str));
2612
2613	mutex_lock(&clt_path->init_mutex);
2614	err = init_conns(clt_path);
2615	if (err) {
2616		rtrs_err(clt_path->clt,
2617			 "init_conns() failed: err=%d path=%s [%s:%u]\n", err,
2618			 str, clt_path->hca_name, clt_path->hca_port);
2619		goto out;
2620	}
2621	err = rtrs_send_path_info(clt_path);
2622	if (err) {
2623		rtrs_err(clt_path->clt,
2624			 "rtrs_send_path_info() failed: err=%d path=%s [%s:%u]\n",
2625			 err, str, clt_path->hca_name, clt_path->hca_port);
2626		goto out;
2627	}
2628	rtrs_clt_path_up(clt_path);
2629	rtrs_start_hb(&clt_path->s);
2630out:
2631	mutex_unlock(&clt_path->init_mutex);
2632
2633	return err;
2634}
2635
2636static void rtrs_clt_reconnect_work(struct work_struct *work)
2637{
2638	struct rtrs_clt_path *clt_path;
2639	struct rtrs_clt_sess *clt;
2640	int err;
2641
2642	clt_path = container_of(to_delayed_work(work), struct rtrs_clt_path,
2643				reconnect_dwork);
2644	clt = clt_path->clt;
2645
2646	trace_rtrs_clt_reconnect_work(clt_path);
2647
2648	if (READ_ONCE(clt_path->state) != RTRS_CLT_RECONNECTING)
2649		return;
2650
2651	if (clt_path->reconnect_attempts >= clt->max_reconnect_attempts) {
2652		/* Close a path completely if max attempts is reached */
2653		rtrs_clt_close_conns(clt_path, false);
2654		return;
2655	}
2656	clt_path->reconnect_attempts++;
2657
2658	msleep(RTRS_RECONNECT_BACKOFF);
2659	if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING, NULL)) {
2660		err = init_path(clt_path);
2661		if (err)
2662			goto reconnect_again;
2663	}
2664
2665	return;
2666
2667reconnect_again:
2668	if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_RECONNECTING, NULL)) {
2669		clt_path->stats->reconnects.fail_cnt++;
2670		queue_work(rtrs_wq, &clt_path->err_recovery_work);
2671	}
2672}
2673
2674static void rtrs_clt_dev_release(struct device *dev)
2675{
2676	struct rtrs_clt_sess *clt = container_of(dev, struct rtrs_clt_sess,
2677						 dev);
2678
2679	mutex_destroy(&clt->paths_ev_mutex);
2680	mutex_destroy(&clt->paths_mutex);
2681	kfree(clt);
2682}
2683
2684static struct rtrs_clt_sess *alloc_clt(const char *sessname, size_t paths_num,
2685				  u16 port, size_t pdu_sz, void *priv,
2686				  void	(*link_ev)(void *priv,
2687						   enum rtrs_clt_link_ev ev),
2688				  unsigned int reconnect_delay_sec,
2689				  unsigned int max_reconnect_attempts)
2690{
2691	struct rtrs_clt_sess *clt;
2692	int err;
2693
2694	if (!paths_num || paths_num > MAX_PATHS_NUM)
2695		return ERR_PTR(-EINVAL);
2696
2697	if (strlen(sessname) >= sizeof(clt->sessname))
2698		return ERR_PTR(-EINVAL);
2699
2700	clt = kzalloc(sizeof(*clt), GFP_KERNEL);
2701	if (!clt)
2702		return ERR_PTR(-ENOMEM);
2703
2704	clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path));
2705	if (!clt->pcpu_path) {
2706		kfree(clt);
2707		return ERR_PTR(-ENOMEM);
2708	}
2709
2710	clt->dev.class = &rtrs_clt_dev_class;
2711	clt->dev.release = rtrs_clt_dev_release;
2712	uuid_gen(&clt->paths_uuid);
2713	INIT_LIST_HEAD_RCU(&clt->paths_list);
2714	clt->paths_num = paths_num;
2715	clt->paths_up = MAX_PATHS_NUM;
2716	clt->port = port;
2717	clt->pdu_sz = pdu_sz;
2718	clt->max_segments = RTRS_MAX_SEGMENTS;
2719	clt->reconnect_delay_sec = reconnect_delay_sec;
2720	clt->max_reconnect_attempts = max_reconnect_attempts;
2721	clt->priv = priv;
2722	clt->link_ev = link_ev;
2723	clt->mp_policy = MP_POLICY_MIN_INFLIGHT;
2724	strscpy(clt->sessname, sessname, sizeof(clt->sessname));
2725	init_waitqueue_head(&clt->permits_wait);
2726	mutex_init(&clt->paths_ev_mutex);
2727	mutex_init(&clt->paths_mutex);
2728	device_initialize(&clt->dev);
2729
2730	err = dev_set_name(&clt->dev, "%s", sessname);
2731	if (err)
2732		goto err_put;
2733
2734	/*
2735	 * Suppress user space notification until
2736	 * sysfs files are created
2737	 */
2738	dev_set_uevent_suppress(&clt->dev, true);
2739	err = device_add(&clt->dev);
2740	if (err)
2741		goto err_put;
2742
2743	clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj);
2744	if (!clt->kobj_paths) {
2745		err = -ENOMEM;
2746		goto err_del;
2747	}
2748	err = rtrs_clt_create_sysfs_root_files(clt);
2749	if (err) {
2750		kobject_del(clt->kobj_paths);
2751		kobject_put(clt->kobj_paths);
2752		goto err_del;
2753	}
2754	dev_set_uevent_suppress(&clt->dev, false);
2755	kobject_uevent(&clt->dev.kobj, KOBJ_ADD);
2756
2757	return clt;
2758err_del:
2759	device_del(&clt->dev);
2760err_put:
2761	free_percpu(clt->pcpu_path);
2762	put_device(&clt->dev);
2763	return ERR_PTR(err);
2764}
2765
2766static void free_clt(struct rtrs_clt_sess *clt)
2767{
2768	free_percpu(clt->pcpu_path);
2769
2770	/*
2771	 * release callback will free clt and destroy mutexes in last put
2772	 */
2773	device_unregister(&clt->dev);
2774}
2775
2776/**
2777 * rtrs_clt_open() - Open a path to an RTRS server
2778 * @ops: holds the link event callback and the private pointer.
2779 * @pathname: name of the path to an RTRS server
2780 * @paths: Paths to be established defined by their src and dst addresses
2781 * @paths_num: Number of elements in the @paths array
2782 * @port: port to be used by the RTRS session
2783 * @pdu_sz: Size of extra payload which can be accessed after permit allocation.
2784 * @reconnect_delay_sec: time between reconnect tries
2785 * @max_reconnect_attempts: Number of times to reconnect on error before giving
2786 *			    up, 0 for * disabled, -1 for forever
2787 * @nr_poll_queues: number of polling mode connection using IB_POLL_DIRECT flag
2788 *
2789 * Starts session establishment with the rtrs_server. The function can block
2790 * up to ~2000ms before it returns.
2791 *
2792 * Return a valid pointer on success otherwise PTR_ERR.
2793 */
2794struct rtrs_clt_sess *rtrs_clt_open(struct rtrs_clt_ops *ops,
2795				 const char *pathname,
2796				 const struct rtrs_addr *paths,
2797				 size_t paths_num, u16 port,
2798				 size_t pdu_sz, u8 reconnect_delay_sec,
2799				 s16 max_reconnect_attempts, u32 nr_poll_queues)
2800{
2801	struct rtrs_clt_path *clt_path, *tmp;
2802	struct rtrs_clt_sess *clt;
2803	int err, i;
2804
2805	if (strchr(pathname, '/') || strchr(pathname, '.')) {
2806		pr_err("pathname cannot contain / and .\n");
2807		err = -EINVAL;
2808		goto out;
2809	}
2810
2811	clt = alloc_clt(pathname, paths_num, port, pdu_sz, ops->priv,
2812			ops->link_ev,
2813			reconnect_delay_sec,
2814			max_reconnect_attempts);
2815	if (IS_ERR(clt)) {
2816		err = PTR_ERR(clt);
2817		goto out;
2818	}
2819	for (i = 0; i < paths_num; i++) {
2820		struct rtrs_clt_path *clt_path;
2821
2822		clt_path = alloc_path(clt, &paths[i], nr_cpu_ids,
2823				  nr_poll_queues);
2824		if (IS_ERR(clt_path)) {
2825			err = PTR_ERR(clt_path);
2826			goto close_all_path;
2827		}
2828		if (!i)
2829			clt_path->for_new_clt = 1;
2830		list_add_tail_rcu(&clt_path->s.entry, &clt->paths_list);
2831
2832		err = init_path(clt_path);
2833		if (err) {
2834			list_del_rcu(&clt_path->s.entry);
2835			rtrs_clt_close_conns(clt_path, true);
2836			free_percpu(clt_path->stats->pcpu_stats);
2837			kfree(clt_path->stats);
2838			free_path(clt_path);
2839			goto close_all_path;
2840		}
2841
2842		err = rtrs_clt_create_path_files(clt_path);
2843		if (err) {
2844			list_del_rcu(&clt_path->s.entry);
2845			rtrs_clt_close_conns(clt_path, true);
2846			free_percpu(clt_path->stats->pcpu_stats);
2847			kfree(clt_path->stats);
2848			free_path(clt_path);
2849			goto close_all_path;
2850		}
2851	}
2852	err = alloc_permits(clt);
2853	if (err)
2854		goto close_all_path;
2855
2856	return clt;
2857
2858close_all_path:
2859	list_for_each_entry_safe(clt_path, tmp, &clt->paths_list, s.entry) {
2860		rtrs_clt_destroy_path_files(clt_path, NULL);
2861		rtrs_clt_close_conns(clt_path, true);
2862		kobject_put(&clt_path->kobj);
2863	}
2864	rtrs_clt_destroy_sysfs_root(clt);
2865	free_clt(clt);
2866
2867out:
2868	return ERR_PTR(err);
2869}
2870EXPORT_SYMBOL(rtrs_clt_open);
2871
2872/**
2873 * rtrs_clt_close() - Close a path
2874 * @clt: Session handle. Session is freed upon return.
2875 */
2876void rtrs_clt_close(struct rtrs_clt_sess *clt)
2877{
2878	struct rtrs_clt_path *clt_path, *tmp;
2879
2880	/* Firstly forbid sysfs access */
2881	rtrs_clt_destroy_sysfs_root(clt);
2882
2883	/* Now it is safe to iterate over all paths without locks */
2884	list_for_each_entry_safe(clt_path, tmp, &clt->paths_list, s.entry) {
2885		rtrs_clt_close_conns(clt_path, true);
2886		rtrs_clt_destroy_path_files(clt_path, NULL);
2887		kobject_put(&clt_path->kobj);
2888	}
2889	free_permits(clt);
2890	free_clt(clt);
2891}
2892EXPORT_SYMBOL(rtrs_clt_close);
2893
2894int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_path *clt_path)
2895{
2896	enum rtrs_clt_state old_state;
2897	int err = -EBUSY;
2898	bool changed;
2899
2900	changed = rtrs_clt_change_state_get_old(clt_path,
2901						 RTRS_CLT_RECONNECTING,
2902						 &old_state);
2903	if (changed) {
2904		clt_path->reconnect_attempts = 0;
2905		rtrs_clt_stop_and_destroy_conns(clt_path);
2906		queue_delayed_work(rtrs_wq, &clt_path->reconnect_dwork, 0);
2907	}
2908	if (changed || old_state == RTRS_CLT_RECONNECTING) {
2909		/*
2910		 * flush_delayed_work() queues pending work for immediate
2911		 * execution, so do the flush if we have queued something
2912		 * right now or work is pending.
2913		 */
2914		flush_delayed_work(&clt_path->reconnect_dwork);
2915		err = (READ_ONCE(clt_path->state) ==
2916		       RTRS_CLT_CONNECTED ? 0 : -ENOTCONN);
2917	}
2918
2919	return err;
2920}
2921
2922int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_path *clt_path,
2923				     const struct attribute *sysfs_self)
2924{
2925	enum rtrs_clt_state old_state;
2926	bool changed;
2927
2928	/*
2929	 * Continue stopping path till state was changed to DEAD or
2930	 * state was observed as DEAD:
2931	 * 1. State was changed to DEAD - we were fast and nobody
2932	 *    invoked rtrs_clt_reconnect(), which can again start
2933	 *    reconnecting.
2934	 * 2. State was observed as DEAD - we have someone in parallel
2935	 *    removing the path.
2936	 */
2937	do {
2938		rtrs_clt_close_conns(clt_path, true);
2939		changed = rtrs_clt_change_state_get_old(clt_path,
2940							RTRS_CLT_DEAD,
2941							&old_state);
2942	} while (!changed && old_state != RTRS_CLT_DEAD);
2943
2944	if (changed) {
2945		rtrs_clt_remove_path_from_arr(clt_path);
2946		rtrs_clt_destroy_path_files(clt_path, sysfs_self);
2947		kobject_put(&clt_path->kobj);
2948	}
2949
2950	return 0;
2951}
2952
2953void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt_sess *clt, int value)
2954{
2955	clt->max_reconnect_attempts = (unsigned int)value;
2956}
2957
2958int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt_sess *clt)
2959{
2960	return (int)clt->max_reconnect_attempts;
2961}
2962
2963/**
2964 * rtrs_clt_request() - Request data transfer to/from server via RDMA.
2965 *
2966 * @dir:	READ/WRITE
2967 * @ops:	callback function to be called as confirmation, and the pointer.
2968 * @clt:	Session
2969 * @permit:	Preallocated permit
2970 * @vec:	Message that is sent to server together with the request.
2971 *		Sum of len of all @vec elements limited to <= IO_MSG_SIZE.
2972 *		Since the msg is copied internally it can be allocated on stack.
2973 * @nr:		Number of elements in @vec.
2974 * @data_len:	length of data sent to/from server
2975 * @sg:		Pages to be sent/received to/from server.
2976 * @sg_cnt:	Number of elements in the @sg
2977 *
2978 * Return:
2979 * 0:		Success
2980 * <0:		Error
2981 *
2982 * On dir=READ rtrs client will request a data transfer from Server to client.
2983 * The data that the server will respond with will be stored in @sg when
2984 * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event.
2985 * On dir=WRITE rtrs client will rdma write data in sg to server side.
2986 */
2987int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops,
2988		     struct rtrs_clt_sess *clt, struct rtrs_permit *permit,
2989		     const struct kvec *vec, size_t nr, size_t data_len,
2990		     struct scatterlist *sg, unsigned int sg_cnt)
2991{
2992	struct rtrs_clt_io_req *req;
2993	struct rtrs_clt_path *clt_path;
2994
2995	enum dma_data_direction dma_dir;
2996	int err = -ECONNABORTED, i;
2997	size_t usr_len, hdr_len;
2998	struct path_it it;
2999
3000	/* Get kvec length */
3001	for (i = 0, usr_len = 0; i < nr; i++)
3002		usr_len += vec[i].iov_len;
3003
3004	if (dir == READ) {
3005		hdr_len = sizeof(struct rtrs_msg_rdma_read) +
3006			  sg_cnt * sizeof(struct rtrs_sg_desc);
3007		dma_dir = DMA_FROM_DEVICE;
3008	} else {
3009		hdr_len = sizeof(struct rtrs_msg_rdma_write);
3010		dma_dir = DMA_TO_DEVICE;
3011	}
3012
3013	rcu_read_lock();
3014	for (path_it_init(&it, clt);
3015	     (clt_path = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
3016		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
3017			continue;
3018
3019		if (usr_len + hdr_len > clt_path->max_hdr_size) {
3020			rtrs_wrn_rl(clt_path->clt,
3021				     "%s request failed, user message size is %zu and header length %zu, but max size is %u\n",
3022				     dir == READ ? "Read" : "Write",
3023				     usr_len, hdr_len, clt_path->max_hdr_size);
3024			err = -EMSGSIZE;
3025			break;
3026		}
3027		req = rtrs_clt_get_req(clt_path, ops->conf_fn, permit, ops->priv,
3028				       vec, usr_len, sg, sg_cnt, data_len,
3029				       dma_dir);
3030		if (dir == READ)
3031			err = rtrs_clt_read_req(req);
3032		else
3033			err = rtrs_clt_write_req(req);
3034		if (err) {
3035			req->in_use = false;
3036			continue;
3037		}
3038		/* Success path */
3039		break;
3040	}
3041	path_it_deinit(&it);
3042	rcu_read_unlock();
3043
3044	return err;
3045}
3046EXPORT_SYMBOL(rtrs_clt_request);
3047
3048int rtrs_clt_rdma_cq_direct(struct rtrs_clt_sess *clt, unsigned int index)
3049{
3050	/* If no path, return -1 for block layer not to try again */
3051	int cnt = -1;
3052	struct rtrs_con *con;
3053	struct rtrs_clt_path *clt_path;
3054	struct path_it it;
3055
3056	rcu_read_lock();
3057	for (path_it_init(&it, clt);
3058	     (clt_path = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
3059		if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED)
3060			continue;
3061
3062		con = clt_path->s.con[index + 1];
3063		cnt = ib_process_cq_direct(con->cq, -1);
3064		if (cnt)
3065			break;
3066	}
3067	path_it_deinit(&it);
3068	rcu_read_unlock();
3069
3070	return cnt;
3071}
3072EXPORT_SYMBOL(rtrs_clt_rdma_cq_direct);
3073
3074/**
3075 * rtrs_clt_query() - queries RTRS session attributes
3076 *@clt: session pointer
3077 *@attr: query results for session attributes.
3078 * Returns:
3079 *    0 on success
3080 *    -ECOMM		no connection to the server
3081 */
3082int rtrs_clt_query(struct rtrs_clt_sess *clt, struct rtrs_attrs *attr)
3083{
3084	if (!rtrs_clt_is_connected(clt))
3085		return -ECOMM;
3086
3087	attr->queue_depth      = clt->queue_depth;
3088	attr->max_segments     = clt->max_segments;
3089	/* Cap max_io_size to min of remote buffer size and the fr pages */
3090	attr->max_io_size = min_t(int, clt->max_io_size,
3091				  clt->max_segments * SZ_4K);
3092
3093	return 0;
3094}
3095EXPORT_SYMBOL(rtrs_clt_query);
3096
3097int rtrs_clt_create_path_from_sysfs(struct rtrs_clt_sess *clt,
3098				     struct rtrs_addr *addr)
3099{
3100	struct rtrs_clt_path *clt_path;
3101	int err;
3102
3103	clt_path = alloc_path(clt, addr, nr_cpu_ids, 0);
3104	if (IS_ERR(clt_path))
3105		return PTR_ERR(clt_path);
3106
3107	mutex_lock(&clt->paths_mutex);
3108	if (clt->paths_num == 0) {
3109		/*
3110		 * When all the paths are removed for a session,
3111		 * the addition of the first path is like a new session for
3112		 * the storage server
3113		 */
3114		clt_path->for_new_clt = 1;
3115	}
3116
3117	mutex_unlock(&clt->paths_mutex);
3118
3119	/*
3120	 * It is totally safe to add path in CONNECTING state: coming
3121	 * IO will never grab it.  Also it is very important to add
3122	 * path before init, since init fires LINK_CONNECTED event.
3123	 */
3124	rtrs_clt_add_path_to_arr(clt_path);
3125
3126	err = init_path(clt_path);
3127	if (err)
3128		goto close_path;
3129
3130	err = rtrs_clt_create_path_files(clt_path);
3131	if (err)
3132		goto close_path;
3133
3134	return 0;
3135
3136close_path:
3137	rtrs_clt_remove_path_from_arr(clt_path);
3138	rtrs_clt_close_conns(clt_path, true);
3139	free_percpu(clt_path->stats->pcpu_stats);
3140	kfree(clt_path->stats);
3141	free_path(clt_path);
3142
3143	return err;
3144}
3145
3146void rtrs_clt_ib_event_handler(struct ib_event_handler *handler,
3147			       struct ib_event *ibevent)
3148{
3149	pr_info("Handling event: %s (%d).\n", ib_event_msg(ibevent->event),
3150		ibevent->event);
3151}
3152
3153
3154static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev)
3155{
3156	INIT_IB_EVENT_HANDLER(&dev->event_handler, dev->ib_dev,
3157			      rtrs_clt_ib_event_handler);
3158	ib_register_event_handler(&dev->event_handler);
3159
3160	if (!(dev->ib_dev->attrs.device_cap_flags &
3161	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
3162		pr_err("Memory registrations not supported.\n");
3163		return -ENOTSUPP;
3164	}
3165
3166	return 0;
3167}
3168
3169static void rtrs_clt_ib_dev_deinit(struct rtrs_ib_dev *dev)
3170{
3171	ib_unregister_event_handler(&dev->event_handler);
3172}
3173
3174
3175static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = {
3176	.init = rtrs_clt_ib_dev_init,
3177	.deinit = rtrs_clt_ib_dev_deinit
3178};
3179
3180static int __init rtrs_client_init(void)
3181{
3182	int ret = 0;
3183
3184	rtrs_rdma_dev_pd_init(0, &dev_pd);
3185	ret = class_register(&rtrs_clt_dev_class);
3186	if (ret) {
3187		pr_err("Failed to create rtrs-client dev class\n");
3188		return ret;
3189	}
3190	rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0);
3191	if (!rtrs_wq) {
3192		class_unregister(&rtrs_clt_dev_class);
3193		return -ENOMEM;
3194	}
3195
3196	return 0;
3197}
3198
3199static void __exit rtrs_client_exit(void)
3200{
3201	destroy_workqueue(rtrs_wq);
3202	class_unregister(&rtrs_clt_dev_class);
3203	rtrs_rdma_dev_pd_deinit(&dev_pd);
3204}
3205
3206module_init(rtrs_client_init);
3207module_exit(rtrs_client_exit);