Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Copyright (c) 2004 Topspin Communications.  All rights reserved.
   3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 */
  33
  34#include <linux/module.h>
  35#include <linux/string.h>
  36#include <linux/errno.h>
  37#include <linux/kernel.h>
  38#include <linux/slab.h>
  39#include <linux/init.h>
  40#include <linux/netdevice.h>
  41#include <net/net_namespace.h>
  42#include <linux/security.h>
  43#include <linux/notifier.h>
  44#include <linux/hashtable.h>
  45#include <rdma/rdma_netlink.h>
  46#include <rdma/ib_addr.h>
  47#include <rdma/ib_cache.h>
  48#include <rdma/rdma_counter.h>
  49
  50#include "core_priv.h"
  51#include "restrack.h"
  52
  53MODULE_AUTHOR("Roland Dreier");
  54MODULE_DESCRIPTION("core kernel InfiniBand API");
  55MODULE_LICENSE("Dual BSD/GPL");
  56
  57struct workqueue_struct *ib_comp_wq;
  58struct workqueue_struct *ib_comp_unbound_wq;
  59struct workqueue_struct *ib_wq;
  60EXPORT_SYMBOL_GPL(ib_wq);
  61static struct workqueue_struct *ib_unreg_wq;
  62
  63/*
  64 * Each of the three rwsem locks (devices, clients, client_data) protects the
  65 * xarray of the same name. Specifically it allows the caller to assert that
  66 * the MARK will/will not be changing under the lock, and for devices and
  67 * clients, that the value in the xarray is still a valid pointer. Change of
  68 * the MARK is linked to the object state, so holding the lock and testing the
  69 * MARK also asserts that the contained object is in a certain state.
  70 *
  71 * This is used to build a two stage register/unregister flow where objects
  72 * can continue to be in the xarray even though they are still in progress to
  73 * register/unregister.
  74 *
  75 * The xarray itself provides additional locking, and restartable iteration,
  76 * which is also relied on.
  77 *
  78 * Locks should not be nested, with the exception of client_data, which is
  79 * allowed to nest under the read side of the other two locks.
  80 *
  81 * The devices_rwsem also protects the device name list, any change or
  82 * assignment of device name must also hold the write side to guarantee unique
  83 * names.
  84 */
  85
  86/*
  87 * devices contains devices that have had their names assigned. The
  88 * devices may not be registered. Users that care about the registration
  89 * status need to call ib_device_try_get() on the device to ensure it is
  90 * registered, and keep it registered, for the required duration.
  91 *
  92 */
  93static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
  94static DECLARE_RWSEM(devices_rwsem);
  95#define DEVICE_REGISTERED XA_MARK_1
  96
  97static u32 highest_client_id;
  98#define CLIENT_REGISTERED XA_MARK_1
  99static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
 100static DECLARE_RWSEM(clients_rwsem);
 101
 102static void ib_client_put(struct ib_client *client)
 103{
 104	if (refcount_dec_and_test(&client->uses))
 105		complete(&client->uses_zero);
 106}
 107
 108/*
 109 * If client_data is registered then the corresponding client must also still
 110 * be registered.
 111 */
 112#define CLIENT_DATA_REGISTERED XA_MARK_1
 113
 114unsigned int rdma_dev_net_id;
 115
 116/*
 117 * A list of net namespaces is maintained in an xarray. This is necessary
 118 * because we can't get the locking right using the existing net ns list. We
 119 * would require a init_net callback after the list is updated.
 120 */
 121static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
 122/*
 123 * rwsem to protect accessing the rdma_nets xarray entries.
 124 */
 125static DECLARE_RWSEM(rdma_nets_rwsem);
 126
 127bool ib_devices_shared_netns = true;
 128module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
 129MODULE_PARM_DESC(netns_mode,
 130		 "Share device among net namespaces; default=1 (shared)");
 131/**
 132 * rdma_dev_access_netns() - Return whether an rdma device can be accessed
 133 *			     from a specified net namespace or not.
 134 * @dev:	Pointer to rdma device which needs to be checked
 135 * @net:	Pointer to net namesapce for which access to be checked
 136 *
 137 * When the rdma device is in shared mode, it ignores the net namespace.
 138 * When the rdma device is exclusive to a net namespace, rdma device net
 139 * namespace is checked against the specified one.
 140 */
 141bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
 142{
 143	return (ib_devices_shared_netns ||
 144		net_eq(read_pnet(&dev->coredev.rdma_net), net));
 145}
 146EXPORT_SYMBOL(rdma_dev_access_netns);
 147
 148/*
 149 * xarray has this behavior where it won't iterate over NULL values stored in
 150 * allocated arrays.  So we need our own iterator to see all values stored in
 151 * the array. This does the same thing as xa_for_each except that it also
 152 * returns NULL valued entries if the array is allocating. Simplified to only
 153 * work on simple xarrays.
 154 */
 155static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
 156			     xa_mark_t filter)
 157{
 158	XA_STATE(xas, xa, *indexp);
 159	void *entry;
 160
 161	rcu_read_lock();
 162	do {
 163		entry = xas_find_marked(&xas, ULONG_MAX, filter);
 164		if (xa_is_zero(entry))
 165			break;
 166	} while (xas_retry(&xas, entry));
 167	rcu_read_unlock();
 168
 169	if (entry) {
 170		*indexp = xas.xa_index;
 171		if (xa_is_zero(entry))
 172			return NULL;
 173		return entry;
 174	}
 175	return XA_ERROR(-ENOENT);
 176}
 177#define xan_for_each_marked(xa, index, entry, filter)                          \
 178	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
 179	     !xa_is_err(entry);                                                \
 180	     (index)++, entry = xan_find_marked(xa, &(index), filter))
 181
 182/* RCU hash table mapping netdevice pointers to struct ib_port_data */
 183static DEFINE_SPINLOCK(ndev_hash_lock);
 184static DECLARE_HASHTABLE(ndev_hash, 5);
 185
 186static void free_netdevs(struct ib_device *ib_dev);
 187static void ib_unregister_work(struct work_struct *work);
 188static void __ib_unregister_device(struct ib_device *device);
 189static int ib_security_change(struct notifier_block *nb, unsigned long event,
 190			      void *lsm_data);
 191static void ib_policy_change_task(struct work_struct *work);
 192static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
 193
 194static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
 195			   struct va_format *vaf)
 196{
 197	if (ibdev && ibdev->dev.parent)
 198		dev_printk_emit(level[1] - '0',
 199				ibdev->dev.parent,
 200				"%s %s %s: %pV",
 201				dev_driver_string(ibdev->dev.parent),
 202				dev_name(ibdev->dev.parent),
 203				dev_name(&ibdev->dev),
 204				vaf);
 205	else if (ibdev)
 206		printk("%s%s: %pV",
 207		       level, dev_name(&ibdev->dev), vaf);
 208	else
 209		printk("%s(NULL ib_device): %pV", level, vaf);
 210}
 211
 212void ibdev_printk(const char *level, const struct ib_device *ibdev,
 213		  const char *format, ...)
 214{
 215	struct va_format vaf;
 216	va_list args;
 217
 218	va_start(args, format);
 219
 220	vaf.fmt = format;
 221	vaf.va = &args;
 222
 223	__ibdev_printk(level, ibdev, &vaf);
 224
 225	va_end(args);
 226}
 227EXPORT_SYMBOL(ibdev_printk);
 228
 229#define define_ibdev_printk_level(func, level)                  \
 230void func(const struct ib_device *ibdev, const char *fmt, ...)  \
 231{                                                               \
 232	struct va_format vaf;                                   \
 233	va_list args;                                           \
 234								\
 235	va_start(args, fmt);                                    \
 236								\
 237	vaf.fmt = fmt;                                          \
 238	vaf.va = &args;                                         \
 239								\
 240	__ibdev_printk(level, ibdev, &vaf);                     \
 241								\
 242	va_end(args);                                           \
 243}                                                               \
 244EXPORT_SYMBOL(func);
 245
 246define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
 247define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
 248define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
 249define_ibdev_printk_level(ibdev_err, KERN_ERR);
 250define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
 251define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
 252define_ibdev_printk_level(ibdev_info, KERN_INFO);
 253
 254static struct notifier_block ibdev_lsm_nb = {
 255	.notifier_call = ib_security_change,
 256};
 257
 258static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
 259				 struct net *net);
 260
 261/* Pointer to the RCU head at the start of the ib_port_data array */
 262struct ib_port_data_rcu {
 263	struct rcu_head rcu_head;
 264	struct ib_port_data pdata[];
 265};
 266
 267static void ib_device_check_mandatory(struct ib_device *device)
 268{
 269#define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
 270	static const struct {
 271		size_t offset;
 272		char  *name;
 273	} mandatory_table[] = {
 274		IB_MANDATORY_FUNC(query_device),
 275		IB_MANDATORY_FUNC(query_port),
 276		IB_MANDATORY_FUNC(alloc_pd),
 277		IB_MANDATORY_FUNC(dealloc_pd),
 278		IB_MANDATORY_FUNC(create_qp),
 279		IB_MANDATORY_FUNC(modify_qp),
 280		IB_MANDATORY_FUNC(destroy_qp),
 281		IB_MANDATORY_FUNC(post_send),
 282		IB_MANDATORY_FUNC(post_recv),
 283		IB_MANDATORY_FUNC(create_cq),
 284		IB_MANDATORY_FUNC(destroy_cq),
 285		IB_MANDATORY_FUNC(poll_cq),
 286		IB_MANDATORY_FUNC(req_notify_cq),
 287		IB_MANDATORY_FUNC(get_dma_mr),
 288		IB_MANDATORY_FUNC(reg_user_mr),
 289		IB_MANDATORY_FUNC(dereg_mr),
 290		IB_MANDATORY_FUNC(get_port_immutable)
 291	};
 292	int i;
 293
 294	device->kverbs_provider = true;
 295	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
 296		if (!*(void **) ((void *) &device->ops +
 297				 mandatory_table[i].offset)) {
 298			device->kverbs_provider = false;
 299			break;
 300		}
 301	}
 302}
 303
 304/*
 305 * Caller must perform ib_device_put() to return the device reference count
 306 * when ib_device_get_by_index() returns valid device pointer.
 307 */
 308struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
 309{
 310	struct ib_device *device;
 311
 312	down_read(&devices_rwsem);
 313	device = xa_load(&devices, index);
 314	if (device) {
 315		if (!rdma_dev_access_netns(device, net)) {
 316			device = NULL;
 317			goto out;
 318		}
 319
 320		if (!ib_device_try_get(device))
 321			device = NULL;
 322	}
 323out:
 324	up_read(&devices_rwsem);
 325	return device;
 326}
 327
 328/**
 329 * ib_device_put - Release IB device reference
 330 * @device: device whose reference to be released
 331 *
 332 * ib_device_put() releases reference to the IB device to allow it to be
 333 * unregistered and eventually free.
 334 */
 335void ib_device_put(struct ib_device *device)
 336{
 337	if (refcount_dec_and_test(&device->refcount))
 338		complete(&device->unreg_completion);
 339}
 340EXPORT_SYMBOL(ib_device_put);
 341
 342static struct ib_device *__ib_device_get_by_name(const char *name)
 343{
 344	struct ib_device *device;
 345	unsigned long index;
 346
 347	xa_for_each (&devices, index, device)
 348		if (!strcmp(name, dev_name(&device->dev)))
 349			return device;
 350
 351	return NULL;
 352}
 353
 354/**
 355 * ib_device_get_by_name - Find an IB device by name
 356 * @name: The name to look for
 357 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
 358 *
 359 * Find and hold an ib_device by its name. The caller must call
 360 * ib_device_put() on the returned pointer.
 361 */
 362struct ib_device *ib_device_get_by_name(const char *name,
 363					enum rdma_driver_id driver_id)
 364{
 365	struct ib_device *device;
 366
 367	down_read(&devices_rwsem);
 368	device = __ib_device_get_by_name(name);
 369	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
 370	    device->ops.driver_id != driver_id)
 371		device = NULL;
 372
 373	if (device) {
 374		if (!ib_device_try_get(device))
 375			device = NULL;
 376	}
 377	up_read(&devices_rwsem);
 378	return device;
 379}
 380EXPORT_SYMBOL(ib_device_get_by_name);
 381
 382static int rename_compat_devs(struct ib_device *device)
 383{
 384	struct ib_core_device *cdev;
 385	unsigned long index;
 386	int ret = 0;
 387
 388	mutex_lock(&device->compat_devs_mutex);
 389	xa_for_each (&device->compat_devs, index, cdev) {
 390		ret = device_rename(&cdev->dev, dev_name(&device->dev));
 391		if (ret) {
 392			dev_warn(&cdev->dev,
 393				 "Fail to rename compatdev to new name %s\n",
 394				 dev_name(&device->dev));
 395			break;
 396		}
 397	}
 398	mutex_unlock(&device->compat_devs_mutex);
 399	return ret;
 400}
 401
 402int ib_device_rename(struct ib_device *ibdev, const char *name)
 403{
 404	unsigned long index;
 405	void *client_data;
 406	int ret;
 407
 408	down_write(&devices_rwsem);
 409	if (!strcmp(name, dev_name(&ibdev->dev))) {
 410		up_write(&devices_rwsem);
 411		return 0;
 412	}
 413
 414	if (__ib_device_get_by_name(name)) {
 415		up_write(&devices_rwsem);
 416		return -EEXIST;
 417	}
 418
 419	ret = device_rename(&ibdev->dev, name);
 420	if (ret) {
 421		up_write(&devices_rwsem);
 422		return ret;
 423	}
 424
 425	strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
 426	ret = rename_compat_devs(ibdev);
 427
 428	downgrade_write(&devices_rwsem);
 429	down_read(&ibdev->client_data_rwsem);
 430	xan_for_each_marked(&ibdev->client_data, index, client_data,
 431			    CLIENT_DATA_REGISTERED) {
 432		struct ib_client *client = xa_load(&clients, index);
 433
 434		if (!client || !client->rename)
 435			continue;
 436
 437		client->rename(ibdev, client_data);
 438	}
 439	up_read(&ibdev->client_data_rwsem);
 
 440	up_read(&devices_rwsem);
 441	return 0;
 442}
 443
 444int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
 445{
 446	if (use_dim > 1)
 447		return -EINVAL;
 448	ibdev->use_cq_dim = use_dim;
 449
 450	return 0;
 451}
 452
 453static int alloc_name(struct ib_device *ibdev, const char *name)
 454{
 455	struct ib_device *device;
 456	unsigned long index;
 457	struct ida inuse;
 458	int rc;
 459	int i;
 460
 461	lockdep_assert_held_write(&devices_rwsem);
 462	ida_init(&inuse);
 463	xa_for_each (&devices, index, device) {
 464		char buf[IB_DEVICE_NAME_MAX];
 465
 466		if (sscanf(dev_name(&device->dev), name, &i) != 1)
 467			continue;
 468		if (i < 0 || i >= INT_MAX)
 469			continue;
 470		snprintf(buf, sizeof buf, name, i);
 471		if (strcmp(buf, dev_name(&device->dev)) != 0)
 472			continue;
 473
 474		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
 475		if (rc < 0)
 476			goto out;
 477	}
 478
 479	rc = ida_alloc(&inuse, GFP_KERNEL);
 480	if (rc < 0)
 481		goto out;
 482
 483	rc = dev_set_name(&ibdev->dev, name, rc);
 484out:
 485	ida_destroy(&inuse);
 486	return rc;
 487}
 488
 489static void ib_device_release(struct device *device)
 490{
 491	struct ib_device *dev = container_of(device, struct ib_device, dev);
 492
 493	free_netdevs(dev);
 494	WARN_ON(refcount_read(&dev->refcount));
 495	if (dev->hw_stats_data)
 496		ib_device_release_hw_stats(dev->hw_stats_data);
 497	if (dev->port_data) {
 498		ib_cache_release_one(dev);
 499		ib_security_release_port_pkey_list(dev);
 500		rdma_counter_release(dev);
 501		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
 502				       pdata[0]),
 503			  rcu_head);
 504	}
 505
 
 506	mutex_destroy(&dev->unregistration_lock);
 507	mutex_destroy(&dev->compat_devs_mutex);
 508
 509	xa_destroy(&dev->compat_devs);
 510	xa_destroy(&dev->client_data);
 511	kfree_rcu(dev, rcu_head);
 512}
 513
 514static int ib_device_uevent(const struct device *device,
 515			    struct kobj_uevent_env *env)
 516{
 517	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
 518		return -ENOMEM;
 519
 520	/*
 521	 * It would be nice to pass the node GUID with the event...
 522	 */
 523
 524	return 0;
 525}
 526
 527static const void *net_namespace(const struct device *d)
 528{
 529	const struct ib_core_device *coredev =
 530			container_of(d, struct ib_core_device, dev);
 531
 532	return read_pnet(&coredev->rdma_net);
 533}
 534
 535static struct class ib_class = {
 536	.name    = "infiniband",
 537	.dev_release = ib_device_release,
 538	.dev_uevent = ib_device_uevent,
 539	.ns_type = &net_ns_type_operations,
 540	.namespace = net_namespace,
 541};
 542
 543static void rdma_init_coredev(struct ib_core_device *coredev,
 544			      struct ib_device *dev, struct net *net)
 545{
 546	/* This BUILD_BUG_ON is intended to catch layout change
 547	 * of union of ib_core_device and device.
 548	 * dev must be the first element as ib_core and providers
 549	 * driver uses it. Adding anything in ib_core_device before
 550	 * device will break this assumption.
 551	 */
 552	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
 553		     offsetof(struct ib_device, dev));
 554
 555	coredev->dev.class = &ib_class;
 556	coredev->dev.groups = dev->groups;
 557	device_initialize(&coredev->dev);
 558	coredev->owner = dev;
 559	INIT_LIST_HEAD(&coredev->port_list);
 560	write_pnet(&coredev->rdma_net, net);
 561}
 562
 563/**
 564 * _ib_alloc_device - allocate an IB device struct
 565 * @size:size of structure to allocate
 566 *
 567 * Low-level drivers should use ib_alloc_device() to allocate &struct
 568 * ib_device.  @size is the size of the structure to be allocated,
 569 * including any private data used by the low-level driver.
 570 * ib_dealloc_device() must be used to free structures allocated with
 571 * ib_alloc_device().
 572 */
 573struct ib_device *_ib_alloc_device(size_t size)
 574{
 575	struct ib_device *device;
 576	unsigned int i;
 577
 578	if (WARN_ON(size < sizeof(struct ib_device)))
 579		return NULL;
 580
 581	device = kzalloc(size, GFP_KERNEL);
 582	if (!device)
 583		return NULL;
 584
 585	if (rdma_restrack_init(device)) {
 586		kfree(device);
 587		return NULL;
 588	}
 589
 590	rdma_init_coredev(&device->coredev, device, &init_net);
 591
 592	INIT_LIST_HEAD(&device->event_handler_list);
 593	spin_lock_init(&device->qp_open_list_lock);
 594	init_rwsem(&device->event_handler_rwsem);
 595	mutex_init(&device->unregistration_lock);
 596	/*
 597	 * client_data needs to be alloc because we don't want our mark to be
 598	 * destroyed if the user stores NULL in the client data.
 599	 */
 600	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
 601	init_rwsem(&device->client_data_rwsem);
 602	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
 603	mutex_init(&device->compat_devs_mutex);
 604	init_completion(&device->unreg_completion);
 605	INIT_WORK(&device->unregistration_work, ib_unregister_work);
 606
 607	spin_lock_init(&device->cq_pools_lock);
 608	for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
 609		INIT_LIST_HEAD(&device->cq_pools[i]);
 610
 611	rwlock_init(&device->cache_lock);
 612
 613	device->uverbs_cmd_mask =
 614		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
 615		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
 616		BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
 617		BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
 618		BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
 619		BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
 620		BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
 621		BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
 622		BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
 623		BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
 624		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
 625		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
 626		BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
 627		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
 628		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
 629		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
 630		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
 631		BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
 632		BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
 633		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
 634		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
 635		BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
 636		BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
 637		BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
 638		BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
 639		BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
 640		BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
 641		BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
 642		BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
 643		BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
 
 
 
 
 
 644	return device;
 645}
 646EXPORT_SYMBOL(_ib_alloc_device);
 647
 648/**
 649 * ib_dealloc_device - free an IB device struct
 650 * @device:structure to free
 651 *
 652 * Free a structure allocated with ib_alloc_device().
 653 */
 654void ib_dealloc_device(struct ib_device *device)
 655{
 656	if (device->ops.dealloc_driver)
 657		device->ops.dealloc_driver(device);
 658
 659	/*
 660	 * ib_unregister_driver() requires all devices to remain in the xarray
 661	 * while their ops are callable. The last op we call is dealloc_driver
 662	 * above.  This is needed to create a fence on op callbacks prior to
 663	 * allowing the driver module to unload.
 664	 */
 665	down_write(&devices_rwsem);
 666	if (xa_load(&devices, device->index) == device)
 667		xa_erase(&devices, device->index);
 668	up_write(&devices_rwsem);
 669
 670	/* Expedite releasing netdev references */
 671	free_netdevs(device);
 672
 673	WARN_ON(!xa_empty(&device->compat_devs));
 674	WARN_ON(!xa_empty(&device->client_data));
 675	WARN_ON(refcount_read(&device->refcount));
 676	rdma_restrack_clean(device);
 677	/* Balances with device_initialize */
 678	put_device(&device->dev);
 679}
 680EXPORT_SYMBOL(ib_dealloc_device);
 681
 682/*
 683 * add_client_context() and remove_client_context() must be safe against
 684 * parallel calls on the same device - registration/unregistration of both the
 685 * device and client can be occurring in parallel.
 686 *
 687 * The routines need to be a fence, any caller must not return until the add
 688 * or remove is fully completed.
 689 */
 690static int add_client_context(struct ib_device *device,
 691			      struct ib_client *client)
 692{
 693	int ret = 0;
 694
 695	if (!device->kverbs_provider && !client->no_kverbs_req)
 696		return 0;
 697
 698	down_write(&device->client_data_rwsem);
 699	/*
 700	 * So long as the client is registered hold both the client and device
 701	 * unregistration locks.
 702	 */
 703	if (!refcount_inc_not_zero(&client->uses))
 704		goto out_unlock;
 705	refcount_inc(&device->refcount);
 706
 707	/*
 708	 * Another caller to add_client_context got here first and has already
 709	 * completely initialized context.
 710	 */
 711	if (xa_get_mark(&device->client_data, client->client_id,
 712		    CLIENT_DATA_REGISTERED))
 713		goto out;
 714
 715	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
 716			      GFP_KERNEL));
 717	if (ret)
 718		goto out;
 719	downgrade_write(&device->client_data_rwsem);
 720	if (client->add) {
 721		if (client->add(device)) {
 722			/*
 723			 * If a client fails to add then the error code is
 724			 * ignored, but we won't call any more ops on this
 725			 * client.
 726			 */
 727			xa_erase(&device->client_data, client->client_id);
 728			up_read(&device->client_data_rwsem);
 729			ib_device_put(device);
 730			ib_client_put(client);
 731			return 0;
 732		}
 733	}
 734
 735	/* Readers shall not see a client until add has been completed */
 736	xa_set_mark(&device->client_data, client->client_id,
 737		    CLIENT_DATA_REGISTERED);
 738	up_read(&device->client_data_rwsem);
 739	return 0;
 740
 741out:
 742	ib_device_put(device);
 743	ib_client_put(client);
 744out_unlock:
 745	up_write(&device->client_data_rwsem);
 746	return ret;
 747}
 748
 749static void remove_client_context(struct ib_device *device,
 750				  unsigned int client_id)
 751{
 752	struct ib_client *client;
 753	void *client_data;
 754
 755	down_write(&device->client_data_rwsem);
 756	if (!xa_get_mark(&device->client_data, client_id,
 757			 CLIENT_DATA_REGISTERED)) {
 758		up_write(&device->client_data_rwsem);
 759		return;
 760	}
 761	client_data = xa_load(&device->client_data, client_id);
 762	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
 763	client = xa_load(&clients, client_id);
 764	up_write(&device->client_data_rwsem);
 765
 766	/*
 767	 * Notice we cannot be holding any exclusive locks when calling the
 768	 * remove callback as the remove callback can recurse back into any
 769	 * public functions in this module and thus try for any locks those
 770	 * functions take.
 771	 *
 772	 * For this reason clients and drivers should not call the
 773	 * unregistration functions will holdling any locks.
 774	 */
 775	if (client->remove)
 776		client->remove(device, client_data);
 777
 778	xa_erase(&device->client_data, client_id);
 779	ib_device_put(device);
 780	ib_client_put(client);
 781}
 782
 783static int alloc_port_data(struct ib_device *device)
 784{
 785	struct ib_port_data_rcu *pdata_rcu;
 786	u32 port;
 787
 788	if (device->port_data)
 789		return 0;
 790
 791	/* This can only be called once the physical port range is defined */
 792	if (WARN_ON(!device->phys_port_cnt))
 793		return -EINVAL;
 794
 795	/* Reserve U32_MAX so the logic to go over all the ports is sane */
 796	if (WARN_ON(device->phys_port_cnt == U32_MAX))
 797		return -EINVAL;
 798
 799	/*
 800	 * device->port_data is indexed directly by the port number to make
 801	 * access to this data as efficient as possible.
 802	 *
 803	 * Therefore port_data is declared as a 1 based array with potential
 804	 * empty slots at the beginning.
 805	 */
 806	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
 807					size_add(rdma_end_port(device), 1)),
 808			    GFP_KERNEL);
 809	if (!pdata_rcu)
 810		return -ENOMEM;
 811	/*
 812	 * The rcu_head is put in front of the port data array and the stored
 813	 * pointer is adjusted since we never need to see that member until
 814	 * kfree_rcu.
 815	 */
 816	device->port_data = pdata_rcu->pdata;
 817
 818	rdma_for_each_port (device, port) {
 819		struct ib_port_data *pdata = &device->port_data[port];
 820
 821		pdata->ib_dev = device;
 822		spin_lock_init(&pdata->pkey_list_lock);
 823		INIT_LIST_HEAD(&pdata->pkey_list);
 824		spin_lock_init(&pdata->netdev_lock);
 825		INIT_HLIST_NODE(&pdata->ndev_hash_link);
 826	}
 827	return 0;
 828}
 829
 830static int verify_immutable(const struct ib_device *dev, u32 port)
 831{
 832	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
 833			    rdma_max_mad_size(dev, port) != 0);
 834}
 835
 836static int setup_port_data(struct ib_device *device)
 837{
 838	u32 port;
 839	int ret;
 840
 841	ret = alloc_port_data(device);
 842	if (ret)
 843		return ret;
 844
 845	rdma_for_each_port (device, port) {
 846		struct ib_port_data *pdata = &device->port_data[port];
 847
 848		ret = device->ops.get_port_immutable(device, port,
 849						     &pdata->immutable);
 850		if (ret)
 851			return ret;
 852
 853		if (verify_immutable(device, port))
 854			return -EINVAL;
 855	}
 856	return 0;
 857}
 858
 859/**
 860 * ib_port_immutable_read() - Read rdma port's immutable data
 861 * @dev: IB device
 862 * @port: port number whose immutable data to read. It starts with index 1 and
 863 *        valid upto including rdma_end_port().
 864 */
 865const struct ib_port_immutable*
 866ib_port_immutable_read(struct ib_device *dev, unsigned int port)
 867{
 868	WARN_ON(!rdma_is_port_valid(dev, port));
 869	return &dev->port_data[port].immutable;
 870}
 871EXPORT_SYMBOL(ib_port_immutable_read);
 872
 873void ib_get_device_fw_str(struct ib_device *dev, char *str)
 874{
 875	if (dev->ops.get_dev_fw_str)
 876		dev->ops.get_dev_fw_str(dev, str);
 877	else
 878		str[0] = '\0';
 879}
 880EXPORT_SYMBOL(ib_get_device_fw_str);
 881
 882static void ib_policy_change_task(struct work_struct *work)
 883{
 884	struct ib_device *dev;
 885	unsigned long index;
 886
 887	down_read(&devices_rwsem);
 888	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
 889		unsigned int i;
 890
 891		rdma_for_each_port (dev, i) {
 892			u64 sp;
 893			ib_get_cached_subnet_prefix(dev, i, &sp);
 894			ib_security_cache_change(dev, i, sp);
 895		}
 896	}
 897	up_read(&devices_rwsem);
 898}
 899
 900static int ib_security_change(struct notifier_block *nb, unsigned long event,
 901			      void *lsm_data)
 902{
 903	if (event != LSM_POLICY_CHANGE)
 904		return NOTIFY_DONE;
 905
 906	schedule_work(&ib_policy_change_work);
 907	ib_mad_agent_security_change();
 908
 909	return NOTIFY_OK;
 910}
 911
 912static void compatdev_release(struct device *dev)
 913{
 914	struct ib_core_device *cdev =
 915		container_of(dev, struct ib_core_device, dev);
 916
 917	kfree(cdev);
 918}
 919
 920static int add_one_compat_dev(struct ib_device *device,
 921			      struct rdma_dev_net *rnet)
 922{
 923	struct ib_core_device *cdev;
 924	int ret;
 925
 926	lockdep_assert_held(&rdma_nets_rwsem);
 927	if (!ib_devices_shared_netns)
 928		return 0;
 929
 930	/*
 931	 * Create and add compat device in all namespaces other than where it
 932	 * is currently bound to.
 933	 */
 934	if (net_eq(read_pnet(&rnet->net),
 935		   read_pnet(&device->coredev.rdma_net)))
 936		return 0;
 937
 938	/*
 939	 * The first of init_net() or ib_register_device() to take the
 940	 * compat_devs_mutex wins and gets to add the device. Others will wait
 941	 * for completion here.
 942	 */
 943	mutex_lock(&device->compat_devs_mutex);
 944	cdev = xa_load(&device->compat_devs, rnet->id);
 945	if (cdev) {
 946		ret = 0;
 947		goto done;
 948	}
 949	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
 950	if (ret)
 951		goto done;
 952
 953	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
 954	if (!cdev) {
 955		ret = -ENOMEM;
 956		goto cdev_err;
 957	}
 958
 959	cdev->dev.parent = device->dev.parent;
 960	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
 961	cdev->dev.release = compatdev_release;
 962	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
 963	if (ret)
 964		goto add_err;
 965
 966	ret = device_add(&cdev->dev);
 967	if (ret)
 968		goto add_err;
 969	ret = ib_setup_port_attrs(cdev);
 970	if (ret)
 971		goto port_err;
 972
 973	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
 974			      cdev, GFP_KERNEL));
 975	if (ret)
 976		goto insert_err;
 977
 978	mutex_unlock(&device->compat_devs_mutex);
 979	return 0;
 980
 981insert_err:
 982	ib_free_port_attrs(cdev);
 983port_err:
 984	device_del(&cdev->dev);
 985add_err:
 986	put_device(&cdev->dev);
 987cdev_err:
 988	xa_release(&device->compat_devs, rnet->id);
 989done:
 990	mutex_unlock(&device->compat_devs_mutex);
 991	return ret;
 992}
 993
 994static void remove_one_compat_dev(struct ib_device *device, u32 id)
 995{
 996	struct ib_core_device *cdev;
 997
 998	mutex_lock(&device->compat_devs_mutex);
 999	cdev = xa_erase(&device->compat_devs, id);
1000	mutex_unlock(&device->compat_devs_mutex);
1001	if (cdev) {
1002		ib_free_port_attrs(cdev);
1003		device_del(&cdev->dev);
1004		put_device(&cdev->dev);
1005	}
1006}
1007
1008static void remove_compat_devs(struct ib_device *device)
1009{
1010	struct ib_core_device *cdev;
1011	unsigned long index;
1012
1013	xa_for_each (&device->compat_devs, index, cdev)
1014		remove_one_compat_dev(device, index);
1015}
1016
1017static int add_compat_devs(struct ib_device *device)
1018{
1019	struct rdma_dev_net *rnet;
1020	unsigned long index;
1021	int ret = 0;
1022
1023	lockdep_assert_held(&devices_rwsem);
1024
1025	down_read(&rdma_nets_rwsem);
1026	xa_for_each (&rdma_nets, index, rnet) {
1027		ret = add_one_compat_dev(device, rnet);
1028		if (ret)
1029			break;
1030	}
1031	up_read(&rdma_nets_rwsem);
1032	return ret;
1033}
1034
1035static void remove_all_compat_devs(void)
1036{
1037	struct ib_compat_device *cdev;
1038	struct ib_device *dev;
1039	unsigned long index;
1040
1041	down_read(&devices_rwsem);
1042	xa_for_each (&devices, index, dev) {
1043		unsigned long c_index = 0;
1044
1045		/* Hold nets_rwsem so that any other thread modifying this
1046		 * system param can sync with this thread.
1047		 */
1048		down_read(&rdma_nets_rwsem);
1049		xa_for_each (&dev->compat_devs, c_index, cdev)
1050			remove_one_compat_dev(dev, c_index);
1051		up_read(&rdma_nets_rwsem);
1052	}
1053	up_read(&devices_rwsem);
1054}
1055
1056static int add_all_compat_devs(void)
1057{
1058	struct rdma_dev_net *rnet;
1059	struct ib_device *dev;
1060	unsigned long index;
1061	int ret = 0;
1062
1063	down_read(&devices_rwsem);
1064	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1065		unsigned long net_index = 0;
1066
1067		/* Hold nets_rwsem so that any other thread modifying this
1068		 * system param can sync with this thread.
1069		 */
1070		down_read(&rdma_nets_rwsem);
1071		xa_for_each (&rdma_nets, net_index, rnet) {
1072			ret = add_one_compat_dev(dev, rnet);
1073			if (ret)
1074				break;
1075		}
1076		up_read(&rdma_nets_rwsem);
1077	}
1078	up_read(&devices_rwsem);
1079	if (ret)
1080		remove_all_compat_devs();
1081	return ret;
1082}
1083
1084int rdma_compatdev_set(u8 enable)
1085{
1086	struct rdma_dev_net *rnet;
1087	unsigned long index;
1088	int ret = 0;
1089
1090	down_write(&rdma_nets_rwsem);
1091	if (ib_devices_shared_netns == enable) {
1092		up_write(&rdma_nets_rwsem);
1093		return 0;
1094	}
1095
1096	/* enable/disable of compat devices is not supported
1097	 * when more than default init_net exists.
1098	 */
1099	xa_for_each (&rdma_nets, index, rnet) {
1100		ret++;
1101		break;
1102	}
1103	if (!ret)
1104		ib_devices_shared_netns = enable;
1105	up_write(&rdma_nets_rwsem);
1106	if (ret)
1107		return -EBUSY;
1108
1109	if (enable)
1110		ret = add_all_compat_devs();
1111	else
1112		remove_all_compat_devs();
1113	return ret;
1114}
1115
1116static void rdma_dev_exit_net(struct net *net)
1117{
1118	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1119	struct ib_device *dev;
1120	unsigned long index;
1121	int ret;
1122
1123	down_write(&rdma_nets_rwsem);
1124	/*
1125	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1126	 */
1127	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1128	WARN_ON(ret);
1129	up_write(&rdma_nets_rwsem);
1130
1131	down_read(&devices_rwsem);
1132	xa_for_each (&devices, index, dev) {
1133		get_device(&dev->dev);
1134		/*
1135		 * Release the devices_rwsem so that pontentially blocking
1136		 * device_del, doesn't hold the devices_rwsem for too long.
1137		 */
1138		up_read(&devices_rwsem);
1139
1140		remove_one_compat_dev(dev, rnet->id);
1141
1142		/*
1143		 * If the real device is in the NS then move it back to init.
1144		 */
1145		rdma_dev_change_netns(dev, net, &init_net);
1146
1147		put_device(&dev->dev);
1148		down_read(&devices_rwsem);
1149	}
1150	up_read(&devices_rwsem);
1151
1152	rdma_nl_net_exit(rnet);
1153	xa_erase(&rdma_nets, rnet->id);
1154}
1155
1156static __net_init int rdma_dev_init_net(struct net *net)
1157{
1158	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1159	unsigned long index;
1160	struct ib_device *dev;
1161	int ret;
1162
1163	write_pnet(&rnet->net, net);
1164
1165	ret = rdma_nl_net_init(rnet);
1166	if (ret)
1167		return ret;
1168
1169	/* No need to create any compat devices in default init_net. */
1170	if (net_eq(net, &init_net))
1171		return 0;
1172
1173	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1174	if (ret) {
1175		rdma_nl_net_exit(rnet);
1176		return ret;
1177	}
1178
1179	down_read(&devices_rwsem);
1180	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1181		/* Hold nets_rwsem so that netlink command cannot change
1182		 * system configuration for device sharing mode.
1183		 */
1184		down_read(&rdma_nets_rwsem);
1185		ret = add_one_compat_dev(dev, rnet);
1186		up_read(&rdma_nets_rwsem);
1187		if (ret)
1188			break;
1189	}
1190	up_read(&devices_rwsem);
1191
1192	if (ret)
1193		rdma_dev_exit_net(net);
1194
1195	return ret;
1196}
1197
1198/*
1199 * Assign the unique string device name and the unique device index. This is
1200 * undone by ib_dealloc_device.
1201 */
1202static int assign_name(struct ib_device *device, const char *name)
1203{
1204	static u32 last_id;
1205	int ret;
1206
1207	down_write(&devices_rwsem);
1208	/* Assign a unique name to the device */
1209	if (strchr(name, '%'))
1210		ret = alloc_name(device, name);
1211	else
1212		ret = dev_set_name(&device->dev, name);
1213	if (ret)
1214		goto out;
1215
1216	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1217		ret = -ENFILE;
1218		goto out;
1219	}
1220	strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1221
1222	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1223			&last_id, GFP_KERNEL);
1224	if (ret > 0)
1225		ret = 0;
1226
1227out:
1228	up_write(&devices_rwsem);
1229	return ret;
1230}
1231
1232/*
1233 * setup_device() allocates memory and sets up data that requires calling the
1234 * device ops, this is the only reason these actions are not done during
1235 * ib_alloc_device. It is undone by ib_dealloc_device().
1236 */
1237static int setup_device(struct ib_device *device)
1238{
1239	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1240	int ret;
1241
1242	ib_device_check_mandatory(device);
1243
1244	ret = setup_port_data(device);
1245	if (ret) {
1246		dev_warn(&device->dev, "Couldn't create per-port data\n");
1247		return ret;
1248	}
1249
1250	memset(&device->attrs, 0, sizeof(device->attrs));
1251	ret = device->ops.query_device(device, &device->attrs, &uhw);
1252	if (ret) {
1253		dev_warn(&device->dev,
1254			 "Couldn't query the device attributes\n");
1255		return ret;
1256	}
1257
1258	return 0;
1259}
1260
1261static void disable_device(struct ib_device *device)
1262{
1263	u32 cid;
1264
1265	WARN_ON(!refcount_read(&device->refcount));
1266
1267	down_write(&devices_rwsem);
1268	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1269	up_write(&devices_rwsem);
1270
1271	/*
1272	 * Remove clients in LIFO order, see assign_client_id. This could be
1273	 * more efficient if xarray learns to reverse iterate. Since no new
1274	 * clients can be added to this ib_device past this point we only need
1275	 * the maximum possible client_id value here.
1276	 */
1277	down_read(&clients_rwsem);
1278	cid = highest_client_id;
1279	up_read(&clients_rwsem);
1280	while (cid) {
1281		cid--;
1282		remove_client_context(device, cid);
1283	}
1284
1285	ib_cq_pool_cleanup(device);
1286
1287	/* Pairs with refcount_set in enable_device */
1288	ib_device_put(device);
1289	wait_for_completion(&device->unreg_completion);
1290
1291	/*
1292	 * compat devices must be removed after device refcount drops to zero.
1293	 * Otherwise init_net() may add more compatdevs after removing compat
1294	 * devices and before device is disabled.
1295	 */
1296	remove_compat_devs(device);
1297}
1298
1299/*
1300 * An enabled device is visible to all clients and to all the public facing
1301 * APIs that return a device pointer. This always returns with a new get, even
1302 * if it fails.
1303 */
1304static int enable_device_and_get(struct ib_device *device)
1305{
1306	struct ib_client *client;
1307	unsigned long index;
1308	int ret = 0;
1309
1310	/*
1311	 * One ref belongs to the xa and the other belongs to this
1312	 * thread. This is needed to guard against parallel unregistration.
1313	 */
1314	refcount_set(&device->refcount, 2);
1315	down_write(&devices_rwsem);
1316	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1317
1318	/*
1319	 * By using downgrade_write() we ensure that no other thread can clear
1320	 * DEVICE_REGISTERED while we are completing the client setup.
1321	 */
1322	downgrade_write(&devices_rwsem);
1323
1324	if (device->ops.enable_driver) {
1325		ret = device->ops.enable_driver(device);
1326		if (ret)
1327			goto out;
1328	}
1329
1330	down_read(&clients_rwsem);
1331	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1332		ret = add_client_context(device, client);
1333		if (ret)
1334			break;
1335	}
1336	up_read(&clients_rwsem);
1337	if (!ret)
1338		ret = add_compat_devs(device);
1339out:
1340	up_read(&devices_rwsem);
1341	return ret;
1342}
1343
1344static void prevent_dealloc_device(struct ib_device *ib_dev)
1345{
1346}
1347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1348/**
1349 * ib_register_device - Register an IB device with IB core
1350 * @device: Device to register
1351 * @name: unique string device name. This may include a '%' which will
1352 * 	  cause a unique index to be added to the passed device name.
1353 * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1354 *	        device will be used. In this case the caller should fully
1355 *		setup the ibdev for DMA. This usually means using dma_virt_ops.
1356 *
1357 * Low-level drivers use ib_register_device() to register their
1358 * devices with the IB core.  All registered clients will receive a
1359 * callback for each device that is added. @device must be allocated
1360 * with ib_alloc_device().
1361 *
1362 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1363 * asynchronously then the device pointer may become freed as soon as this
1364 * function returns.
1365 */
1366int ib_register_device(struct ib_device *device, const char *name,
1367		       struct device *dma_device)
1368{
1369	int ret;
1370
1371	ret = assign_name(device, name);
1372	if (ret)
1373		return ret;
1374
1375	/*
1376	 * If the caller does not provide a DMA capable device then the IB core
1377	 * will set up ib_sge and scatterlist structures that stash the kernel
1378	 * virtual address into the address field.
1379	 */
1380	WARN_ON(dma_device && !dma_device->dma_parms);
1381	device->dma_device = dma_device;
1382
1383	ret = setup_device(device);
1384	if (ret)
1385		return ret;
1386
1387	ret = ib_cache_setup_one(device);
1388	if (ret) {
1389		dev_warn(&device->dev,
1390			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1391		return ret;
1392	}
1393
1394	device->groups[0] = &ib_dev_attr_group;
1395	device->groups[1] = device->ops.device_group;
1396	ret = ib_setup_device_attrs(device);
1397	if (ret)
1398		goto cache_cleanup;
1399
1400	ib_device_register_rdmacg(device);
1401
1402	rdma_counter_init(device);
1403
1404	/*
1405	 * Ensure that ADD uevent is not fired because it
1406	 * is too early amd device is not initialized yet.
1407	 */
1408	dev_set_uevent_suppress(&device->dev, true);
1409	ret = device_add(&device->dev);
1410	if (ret)
1411		goto cg_cleanup;
1412
1413	ret = ib_setup_port_attrs(&device->coredev);
1414	if (ret) {
1415		dev_warn(&device->dev,
1416			 "Couldn't register device with driver model\n");
1417		goto dev_cleanup;
1418	}
1419
1420	ret = enable_device_and_get(device);
1421	if (ret) {
1422		void (*dealloc_fn)(struct ib_device *);
1423
1424		/*
1425		 * If we hit this error flow then we don't want to
1426		 * automatically dealloc the device since the caller is
1427		 * expected to call ib_dealloc_device() after
1428		 * ib_register_device() fails. This is tricky due to the
1429		 * possibility for a parallel unregistration along with this
1430		 * error flow. Since we have a refcount here we know any
1431		 * parallel flow is stopped in disable_device and will see the
1432		 * special dealloc_driver pointer, causing the responsibility to
1433		 * ib_dealloc_device() to revert back to this thread.
1434		 */
1435		dealloc_fn = device->ops.dealloc_driver;
1436		device->ops.dealloc_driver = prevent_dealloc_device;
1437		ib_device_put(device);
1438		__ib_unregister_device(device);
1439		device->ops.dealloc_driver = dealloc_fn;
1440		dev_set_uevent_suppress(&device->dev, false);
1441		return ret;
1442	}
1443	dev_set_uevent_suppress(&device->dev, false);
1444	/* Mark for userspace that device is ready */
1445	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
 
 
1446	ib_device_put(device);
1447
1448	return 0;
1449
1450dev_cleanup:
1451	device_del(&device->dev);
1452cg_cleanup:
1453	dev_set_uevent_suppress(&device->dev, false);
1454	ib_device_unregister_rdmacg(device);
1455cache_cleanup:
1456	ib_cache_cleanup_one(device);
1457	return ret;
1458}
1459EXPORT_SYMBOL(ib_register_device);
1460
1461/* Callers must hold a get on the device. */
1462static void __ib_unregister_device(struct ib_device *ib_dev)
1463{
 
 
 
 
 
 
 
 
 
 
 
 
1464	/*
1465	 * We have a registration lock so that all the calls to unregister are
1466	 * fully fenced, once any unregister returns the device is truely
1467	 * unregistered even if multiple callers are unregistering it at the
1468	 * same time. This also interacts with the registration flow and
1469	 * provides sane semantics if register and unregister are racing.
1470	 */
1471	mutex_lock(&ib_dev->unregistration_lock);
1472	if (!refcount_read(&ib_dev->refcount))
1473		goto out;
1474
1475	disable_device(ib_dev);
 
1476
1477	/* Expedite removing unregistered pointers from the hash table */
1478	free_netdevs(ib_dev);
1479
1480	ib_free_port_attrs(&ib_dev->coredev);
1481	device_del(&ib_dev->dev);
1482	ib_device_unregister_rdmacg(ib_dev);
1483	ib_cache_cleanup_one(ib_dev);
1484
1485	/*
1486	 * Drivers using the new flow may not call ib_dealloc_device except
1487	 * in error unwind prior to registration success.
1488	 */
1489	if (ib_dev->ops.dealloc_driver &&
1490	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1491		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1492		ib_dealloc_device(ib_dev);
1493	}
1494out:
1495	mutex_unlock(&ib_dev->unregistration_lock);
1496}
1497
1498/**
1499 * ib_unregister_device - Unregister an IB device
1500 * @ib_dev: The device to unregister
1501 *
1502 * Unregister an IB device.  All clients will receive a remove callback.
1503 *
1504 * Callers should call this routine only once, and protect against races with
1505 * registration. Typically it should only be called as part of a remove
1506 * callback in an implementation of driver core's struct device_driver and
1507 * related.
1508 *
1509 * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1510 * this function.
1511 */
1512void ib_unregister_device(struct ib_device *ib_dev)
1513{
1514	get_device(&ib_dev->dev);
1515	__ib_unregister_device(ib_dev);
1516	put_device(&ib_dev->dev);
1517}
1518EXPORT_SYMBOL(ib_unregister_device);
1519
1520/**
1521 * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1522 * @ib_dev: The device to unregister
1523 *
1524 * This is the same as ib_unregister_device(), except it includes an internal
1525 * ib_device_put() that should match a 'get' obtained by the caller.
1526 *
1527 * It is safe to call this routine concurrently from multiple threads while
1528 * holding the 'get'. When the function returns the device is fully
1529 * unregistered.
1530 *
1531 * Drivers using this flow MUST use the driver_unregister callback to clean up
1532 * their resources associated with the device and dealloc it.
1533 */
1534void ib_unregister_device_and_put(struct ib_device *ib_dev)
1535{
1536	WARN_ON(!ib_dev->ops.dealloc_driver);
1537	get_device(&ib_dev->dev);
1538	ib_device_put(ib_dev);
1539	__ib_unregister_device(ib_dev);
1540	put_device(&ib_dev->dev);
1541}
1542EXPORT_SYMBOL(ib_unregister_device_and_put);
1543
1544/**
1545 * ib_unregister_driver - Unregister all IB devices for a driver
1546 * @driver_id: The driver to unregister
1547 *
1548 * This implements a fence for device unregistration. It only returns once all
1549 * devices associated with the driver_id have fully completed their
1550 * unregistration and returned from ib_unregister_device*().
1551 *
1552 * If device's are not yet unregistered it goes ahead and starts unregistering
1553 * them.
1554 *
1555 * This does not block creation of new devices with the given driver_id, that
1556 * is the responsibility of the caller.
1557 */
1558void ib_unregister_driver(enum rdma_driver_id driver_id)
1559{
1560	struct ib_device *ib_dev;
1561	unsigned long index;
1562
1563	down_read(&devices_rwsem);
1564	xa_for_each (&devices, index, ib_dev) {
1565		if (ib_dev->ops.driver_id != driver_id)
1566			continue;
1567
1568		get_device(&ib_dev->dev);
1569		up_read(&devices_rwsem);
1570
1571		WARN_ON(!ib_dev->ops.dealloc_driver);
1572		__ib_unregister_device(ib_dev);
1573
1574		put_device(&ib_dev->dev);
1575		down_read(&devices_rwsem);
1576	}
1577	up_read(&devices_rwsem);
1578}
1579EXPORT_SYMBOL(ib_unregister_driver);
1580
1581static void ib_unregister_work(struct work_struct *work)
1582{
1583	struct ib_device *ib_dev =
1584		container_of(work, struct ib_device, unregistration_work);
1585
1586	__ib_unregister_device(ib_dev);
1587	put_device(&ib_dev->dev);
1588}
1589
1590/**
1591 * ib_unregister_device_queued - Unregister a device using a work queue
1592 * @ib_dev: The device to unregister
1593 *
1594 * This schedules an asynchronous unregistration using a WQ for the device. A
1595 * driver should use this to avoid holding locks while doing unregistration,
1596 * such as holding the RTNL lock.
1597 *
1598 * Drivers using this API must use ib_unregister_driver before module unload
1599 * to ensure that all scheduled unregistrations have completed.
1600 */
1601void ib_unregister_device_queued(struct ib_device *ib_dev)
1602{
1603	WARN_ON(!refcount_read(&ib_dev->refcount));
1604	WARN_ON(!ib_dev->ops.dealloc_driver);
1605	get_device(&ib_dev->dev);
1606	if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work))
1607		put_device(&ib_dev->dev);
1608}
1609EXPORT_SYMBOL(ib_unregister_device_queued);
1610
1611/*
1612 * The caller must pass in a device that has the kref held and the refcount
1613 * released. If the device is in cur_net and still registered then it is moved
1614 * into net.
1615 */
1616static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1617				 struct net *net)
1618{
1619	int ret2 = -EINVAL;
1620	int ret;
1621
1622	mutex_lock(&device->unregistration_lock);
1623
1624	/*
1625	 * If a device not under ib_device_get() or if the unregistration_lock
1626	 * is not held, the namespace can be changed, or it can be unregistered.
1627	 * Check again under the lock.
1628	 */
1629	if (refcount_read(&device->refcount) == 0 ||
1630	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1631		ret = -ENODEV;
1632		goto out;
1633	}
1634
1635	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1636	disable_device(device);
1637
1638	/*
1639	 * At this point no one can be using the device, so it is safe to
1640	 * change the namespace.
1641	 */
1642	write_pnet(&device->coredev.rdma_net, net);
1643
1644	down_read(&devices_rwsem);
1645	/*
1646	 * Currently rdma devices are system wide unique. So the device name
1647	 * is guaranteed free in the new namespace. Publish the new namespace
1648	 * at the sysfs level.
1649	 */
1650	ret = device_rename(&device->dev, dev_name(&device->dev));
1651	up_read(&devices_rwsem);
1652	if (ret) {
1653		dev_warn(&device->dev,
1654			 "%s: Couldn't rename device after namespace change\n",
1655			 __func__);
1656		/* Try and put things back and re-enable the device */
1657		write_pnet(&device->coredev.rdma_net, cur_net);
1658	}
1659
1660	ret2 = enable_device_and_get(device);
1661	if (ret2) {
1662		/*
1663		 * This shouldn't really happen, but if it does, let the user
1664		 * retry at later point. So don't disable the device.
1665		 */
1666		dev_warn(&device->dev,
1667			 "%s: Couldn't re-enable device after namespace change\n",
1668			 __func__);
1669	}
1670	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1671
1672	ib_device_put(device);
1673out:
1674	mutex_unlock(&device->unregistration_lock);
1675	if (ret)
1676		return ret;
1677	return ret2;
1678}
1679
1680int ib_device_set_netns_put(struct sk_buff *skb,
1681			    struct ib_device *dev, u32 ns_fd)
1682{
1683	struct net *net;
1684	int ret;
1685
1686	net = get_net_ns_by_fd(ns_fd);
1687	if (IS_ERR(net)) {
1688		ret = PTR_ERR(net);
1689		goto net_err;
1690	}
1691
1692	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1693		ret = -EPERM;
1694		goto ns_err;
1695	}
1696
1697	/*
1698	 * All the ib_clients, including uverbs, are reset when the namespace is
1699	 * changed and this cannot be blocked waiting for userspace to do
1700	 * something, so disassociation is mandatory.
1701	 */
1702	if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1703		ret = -EOPNOTSUPP;
1704		goto ns_err;
1705	}
1706
1707	get_device(&dev->dev);
1708	ib_device_put(dev);
1709	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1710	put_device(&dev->dev);
1711
1712	put_net(net);
1713	return ret;
1714
1715ns_err:
1716	put_net(net);
1717net_err:
1718	ib_device_put(dev);
1719	return ret;
1720}
1721
1722static struct pernet_operations rdma_dev_net_ops = {
1723	.init = rdma_dev_init_net,
1724	.exit = rdma_dev_exit_net,
1725	.id = &rdma_dev_net_id,
1726	.size = sizeof(struct rdma_dev_net),
1727};
1728
1729static int assign_client_id(struct ib_client *client)
1730{
1731	int ret;
1732
1733	down_write(&clients_rwsem);
1734	/*
1735	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1736	 * achieve this we assign client_ids so they are sorted in
1737	 * registration order.
1738	 */
1739	client->client_id = highest_client_id;
1740	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1741	if (ret)
1742		goto out;
1743
1744	highest_client_id++;
1745	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1746
1747out:
1748	up_write(&clients_rwsem);
1749	return ret;
1750}
1751
1752static void remove_client_id(struct ib_client *client)
1753{
1754	down_write(&clients_rwsem);
1755	xa_erase(&clients, client->client_id);
1756	for (; highest_client_id; highest_client_id--)
1757		if (xa_load(&clients, highest_client_id - 1))
1758			break;
1759	up_write(&clients_rwsem);
1760}
1761
1762/**
1763 * ib_register_client - Register an IB client
1764 * @client:Client to register
1765 *
1766 * Upper level users of the IB drivers can use ib_register_client() to
1767 * register callbacks for IB device addition and removal.  When an IB
1768 * device is added, each registered client's add method will be called
1769 * (in the order the clients were registered), and when a device is
1770 * removed, each client's remove method will be called (in the reverse
1771 * order that clients were registered).  In addition, when
1772 * ib_register_client() is called, the client will receive an add
1773 * callback for all devices already registered.
1774 */
1775int ib_register_client(struct ib_client *client)
1776{
1777	struct ib_device *device;
1778	unsigned long index;
 
1779	int ret;
1780
1781	refcount_set(&client->uses, 1);
1782	init_completion(&client->uses_zero);
 
 
 
 
 
 
 
1783	ret = assign_client_id(client);
1784	if (ret)
1785		return ret;
1786
1787	down_read(&devices_rwsem);
1788	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1789		ret = add_client_context(device, client);
1790		if (ret) {
1791			up_read(&devices_rwsem);
1792			ib_unregister_client(client);
1793			return ret;
1794		}
1795	}
1796	up_read(&devices_rwsem);
1797	return 0;
 
 
 
 
 
1798}
1799EXPORT_SYMBOL(ib_register_client);
1800
1801/**
1802 * ib_unregister_client - Unregister an IB client
1803 * @client:Client to unregister
1804 *
1805 * Upper level users use ib_unregister_client() to remove their client
1806 * registration.  When ib_unregister_client() is called, the client
1807 * will receive a remove callback for each IB device still registered.
1808 *
1809 * This is a full fence, once it returns no client callbacks will be called,
1810 * or are running in another thread.
1811 */
1812void ib_unregister_client(struct ib_client *client)
1813{
1814	struct ib_device *device;
1815	unsigned long index;
1816
1817	down_write(&clients_rwsem);
1818	ib_client_put(client);
1819	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1820	up_write(&clients_rwsem);
1821
1822	/* We do not want to have locks while calling client->remove() */
1823	rcu_read_lock();
1824	xa_for_each (&devices, index, device) {
1825		if (!ib_device_try_get(device))
1826			continue;
1827		rcu_read_unlock();
1828
1829		remove_client_context(device, client->client_id);
1830
1831		ib_device_put(device);
1832		rcu_read_lock();
1833	}
1834	rcu_read_unlock();
1835
1836	/*
1837	 * remove_client_context() is not a fence, it can return even though a
1838	 * removal is ongoing. Wait until all removals are completed.
1839	 */
1840	wait_for_completion(&client->uses_zero);
1841	remove_client_id(client);
1842}
1843EXPORT_SYMBOL(ib_unregister_client);
1844
1845static int __ib_get_global_client_nl_info(const char *client_name,
1846					  struct ib_client_nl_info *res)
1847{
1848	struct ib_client *client;
1849	unsigned long index;
1850	int ret = -ENOENT;
1851
1852	down_read(&clients_rwsem);
1853	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1854		if (strcmp(client->name, client_name) != 0)
1855			continue;
1856		if (!client->get_global_nl_info) {
1857			ret = -EOPNOTSUPP;
1858			break;
1859		}
1860		ret = client->get_global_nl_info(res);
1861		if (WARN_ON(ret == -ENOENT))
1862			ret = -EINVAL;
1863		if (!ret && res->cdev)
1864			get_device(res->cdev);
1865		break;
1866	}
1867	up_read(&clients_rwsem);
1868	return ret;
1869}
1870
1871static int __ib_get_client_nl_info(struct ib_device *ibdev,
1872				   const char *client_name,
1873				   struct ib_client_nl_info *res)
1874{
1875	unsigned long index;
1876	void *client_data;
1877	int ret = -ENOENT;
1878
1879	down_read(&ibdev->client_data_rwsem);
1880	xan_for_each_marked (&ibdev->client_data, index, client_data,
1881			     CLIENT_DATA_REGISTERED) {
1882		struct ib_client *client = xa_load(&clients, index);
1883
1884		if (!client || strcmp(client->name, client_name) != 0)
1885			continue;
1886		if (!client->get_nl_info) {
1887			ret = -EOPNOTSUPP;
1888			break;
1889		}
1890		ret = client->get_nl_info(ibdev, client_data, res);
1891		if (WARN_ON(ret == -ENOENT))
1892			ret = -EINVAL;
1893
1894		/*
1895		 * The cdev is guaranteed valid as long as we are inside the
1896		 * client_data_rwsem as remove_one can't be called. Keep it
1897		 * valid for the caller.
1898		 */
1899		if (!ret && res->cdev)
1900			get_device(res->cdev);
1901		break;
1902	}
1903	up_read(&ibdev->client_data_rwsem);
1904
1905	return ret;
1906}
1907
1908/**
1909 * ib_get_client_nl_info - Fetch the nl_info from a client
1910 * @ibdev: IB device
1911 * @client_name: Name of the client
1912 * @res: Result of the query
1913 */
1914int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1915			  struct ib_client_nl_info *res)
1916{
1917	int ret;
1918
1919	if (ibdev)
1920		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1921	else
1922		ret = __ib_get_global_client_nl_info(client_name, res);
1923#ifdef CONFIG_MODULES
1924	if (ret == -ENOENT) {
1925		request_module("rdma-client-%s", client_name);
1926		if (ibdev)
1927			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1928		else
1929			ret = __ib_get_global_client_nl_info(client_name, res);
1930	}
1931#endif
1932	if (ret) {
1933		if (ret == -ENOENT)
1934			return -EOPNOTSUPP;
1935		return ret;
1936	}
1937
1938	if (WARN_ON(!res->cdev))
1939		return -EINVAL;
1940	return 0;
1941}
1942
1943/**
1944 * ib_set_client_data - Set IB client context
1945 * @device:Device to set context for
1946 * @client:Client to set context for
1947 * @data:Context to set
1948 *
1949 * ib_set_client_data() sets client context data that can be retrieved with
1950 * ib_get_client_data(). This can only be called while the client is
1951 * registered to the device, once the ib_client remove() callback returns this
1952 * cannot be called.
1953 */
1954void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1955			void *data)
1956{
1957	void *rc;
1958
1959	if (WARN_ON(IS_ERR(data)))
1960		data = NULL;
1961
1962	rc = xa_store(&device->client_data, client->client_id, data,
1963		      GFP_KERNEL);
1964	WARN_ON(xa_is_err(rc));
1965}
1966EXPORT_SYMBOL(ib_set_client_data);
1967
1968/**
1969 * ib_register_event_handler - Register an IB event handler
1970 * @event_handler:Handler to register
1971 *
1972 * ib_register_event_handler() registers an event handler that will be
1973 * called back when asynchronous IB events occur (as defined in
1974 * chapter 11 of the InfiniBand Architecture Specification). This
1975 * callback occurs in workqueue context.
1976 */
1977void ib_register_event_handler(struct ib_event_handler *event_handler)
1978{
1979	down_write(&event_handler->device->event_handler_rwsem);
1980	list_add_tail(&event_handler->list,
1981		      &event_handler->device->event_handler_list);
1982	up_write(&event_handler->device->event_handler_rwsem);
1983}
1984EXPORT_SYMBOL(ib_register_event_handler);
1985
1986/**
1987 * ib_unregister_event_handler - Unregister an event handler
1988 * @event_handler:Handler to unregister
1989 *
1990 * Unregister an event handler registered with
1991 * ib_register_event_handler().
1992 */
1993void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1994{
1995	down_write(&event_handler->device->event_handler_rwsem);
1996	list_del(&event_handler->list);
1997	up_write(&event_handler->device->event_handler_rwsem);
1998}
1999EXPORT_SYMBOL(ib_unregister_event_handler);
2000
2001void ib_dispatch_event_clients(struct ib_event *event)
2002{
2003	struct ib_event_handler *handler;
2004
2005	down_read(&event->device->event_handler_rwsem);
2006
2007	list_for_each_entry(handler, &event->device->event_handler_list, list)
2008		handler->handler(handler, event);
2009
2010	up_read(&event->device->event_handler_rwsem);
2011}
2012
2013static int iw_query_port(struct ib_device *device,
2014			   u32 port_num,
2015			   struct ib_port_attr *port_attr)
2016{
2017	struct in_device *inetdev;
2018	struct net_device *netdev;
2019
2020	memset(port_attr, 0, sizeof(*port_attr));
2021
2022	netdev = ib_device_get_netdev(device, port_num);
2023	if (!netdev)
2024		return -ENODEV;
2025
2026	port_attr->max_mtu = IB_MTU_4096;
2027	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2028
2029	if (!netif_carrier_ok(netdev)) {
2030		port_attr->state = IB_PORT_DOWN;
2031		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2032	} else {
2033		rcu_read_lock();
2034		inetdev = __in_dev_get_rcu(netdev);
2035
2036		if (inetdev && inetdev->ifa_list) {
2037			port_attr->state = IB_PORT_ACTIVE;
2038			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2039		} else {
2040			port_attr->state = IB_PORT_INIT;
2041			port_attr->phys_state =
2042				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2043		}
2044
2045		rcu_read_unlock();
2046	}
2047
2048	dev_put(netdev);
2049	return device->ops.query_port(device, port_num, port_attr);
2050}
2051
2052static int __ib_query_port(struct ib_device *device,
2053			   u32 port_num,
2054			   struct ib_port_attr *port_attr)
2055{
2056	int err;
2057
2058	memset(port_attr, 0, sizeof(*port_attr));
2059
2060	err = device->ops.query_port(device, port_num, port_attr);
2061	if (err || port_attr->subnet_prefix)
2062		return err;
2063
2064	if (rdma_port_get_link_layer(device, port_num) !=
2065	    IB_LINK_LAYER_INFINIBAND)
2066		return 0;
2067
2068	ib_get_cached_subnet_prefix(device, port_num,
2069				    &port_attr->subnet_prefix);
2070	return 0;
2071}
2072
2073/**
2074 * ib_query_port - Query IB port attributes
2075 * @device:Device to query
2076 * @port_num:Port number to query
2077 * @port_attr:Port attributes
2078 *
2079 * ib_query_port() returns the attributes of a port through the
2080 * @port_attr pointer.
2081 */
2082int ib_query_port(struct ib_device *device,
2083		  u32 port_num,
2084		  struct ib_port_attr *port_attr)
2085{
2086	if (!rdma_is_port_valid(device, port_num))
2087		return -EINVAL;
2088
2089	if (rdma_protocol_iwarp(device, port_num))
2090		return iw_query_port(device, port_num, port_attr);
2091	else
2092		return __ib_query_port(device, port_num, port_attr);
2093}
2094EXPORT_SYMBOL(ib_query_port);
2095
2096static void add_ndev_hash(struct ib_port_data *pdata)
2097{
2098	unsigned long flags;
2099
2100	might_sleep();
2101
2102	spin_lock_irqsave(&ndev_hash_lock, flags);
2103	if (hash_hashed(&pdata->ndev_hash_link)) {
2104		hash_del_rcu(&pdata->ndev_hash_link);
2105		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2106		/*
2107		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2108		 * grace period
2109		 */
2110		synchronize_rcu();
2111		spin_lock_irqsave(&ndev_hash_lock, flags);
2112	}
2113	if (pdata->netdev)
2114		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2115			     (uintptr_t)pdata->netdev);
2116	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2117}
2118
2119/**
2120 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2121 * @ib_dev: Device to modify
2122 * @ndev: net_device to affiliate, may be NULL
2123 * @port: IB port the net_device is connected to
2124 *
2125 * Drivers should use this to link the ib_device to a netdev so the netdev
2126 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2127 * affiliated with any port.
2128 *
2129 * The caller must ensure that the given ndev is not unregistered or
2130 * unregistering, and that either the ib_device is unregistered or
2131 * ib_device_set_netdev() is called with NULL when the ndev sends a
2132 * NETDEV_UNREGISTER event.
2133 */
2134int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2135			 u32 port)
2136{
 
2137	struct net_device *old_ndev;
2138	struct ib_port_data *pdata;
2139	unsigned long flags;
2140	int ret;
2141
 
 
 
2142	/*
2143	 * Drivers wish to call this before ib_register_driver, so we have to
2144	 * setup the port data early.
2145	 */
2146	ret = alloc_port_data(ib_dev);
2147	if (ret)
2148		return ret;
2149
2150	if (!rdma_is_port_valid(ib_dev, port))
2151		return -EINVAL;
2152
2153	pdata = &ib_dev->port_data[port];
2154	spin_lock_irqsave(&pdata->netdev_lock, flags);
2155	old_ndev = rcu_dereference_protected(
2156		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2157	if (old_ndev == ndev) {
2158		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2159		return 0;
2160	}
2161
2162	if (old_ndev)
2163		netdev_tracker_free(ndev, &pdata->netdev_tracker);
2164	if (ndev)
2165		netdev_hold(ndev, &pdata->netdev_tracker, GFP_ATOMIC);
2166	rcu_assign_pointer(pdata->netdev, ndev);
 
 
2167	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2168
2169	add_ndev_hash(pdata);
2170	if (old_ndev)
2171		__dev_put(old_ndev);
 
 
 
 
 
2172
2173	return 0;
2174}
2175EXPORT_SYMBOL(ib_device_set_netdev);
2176
2177static void free_netdevs(struct ib_device *ib_dev)
2178{
2179	unsigned long flags;
2180	u32 port;
2181
2182	if (!ib_dev->port_data)
2183		return;
2184
2185	rdma_for_each_port (ib_dev, port) {
2186		struct ib_port_data *pdata = &ib_dev->port_data[port];
2187		struct net_device *ndev;
2188
2189		spin_lock_irqsave(&pdata->netdev_lock, flags);
2190		ndev = rcu_dereference_protected(
2191			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2192		if (ndev) {
2193			spin_lock(&ndev_hash_lock);
2194			hash_del_rcu(&pdata->ndev_hash_link);
2195			spin_unlock(&ndev_hash_lock);
2196
2197			/*
2198			 * If this is the last dev_put there is still a
2199			 * synchronize_rcu before the netdev is kfreed, so we
2200			 * can continue to rely on unlocked pointer
2201			 * comparisons after the put
2202			 */
2203			rcu_assign_pointer(pdata->netdev, NULL);
2204			netdev_put(ndev, &pdata->netdev_tracker);
2205		}
2206		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2207	}
2208}
2209
2210struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2211					u32 port)
2212{
2213	struct ib_port_data *pdata;
2214	struct net_device *res;
2215
2216	if (!rdma_is_port_valid(ib_dev, port))
2217		return NULL;
2218
 
 
 
2219	pdata = &ib_dev->port_data[port];
2220
2221	/*
2222	 * New drivers should use ib_device_set_netdev() not the legacy
2223	 * get_netdev().
2224	 */
2225	if (ib_dev->ops.get_netdev)
2226		res = ib_dev->ops.get_netdev(ib_dev, port);
2227	else {
2228		spin_lock(&pdata->netdev_lock);
2229		res = rcu_dereference_protected(
2230			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2231		if (res)
2232			dev_hold(res);
2233		spin_unlock(&pdata->netdev_lock);
2234	}
2235
2236	/*
2237	 * If we are starting to unregister expedite things by preventing
2238	 * propagation of an unregistering netdev.
2239	 */
2240	if (res && res->reg_state != NETREG_REGISTERED) {
2241		dev_put(res);
2242		return NULL;
2243	}
2244
2245	return res;
2246}
 
2247
2248/**
2249 * ib_device_get_by_netdev - Find an IB device associated with a netdev
2250 * @ndev: netdev to locate
2251 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2252 *
2253 * Find and hold an ib_device that is associated with a netdev via
2254 * ib_device_set_netdev(). The caller must call ib_device_put() on the
2255 * returned pointer.
2256 */
2257struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2258					  enum rdma_driver_id driver_id)
2259{
2260	struct ib_device *res = NULL;
2261	struct ib_port_data *cur;
2262
2263	rcu_read_lock();
2264	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2265				    (uintptr_t)ndev) {
2266		if (rcu_access_pointer(cur->netdev) == ndev &&
2267		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2268		     cur->ib_dev->ops.driver_id == driver_id) &&
2269		    ib_device_try_get(cur->ib_dev)) {
2270			res = cur->ib_dev;
2271			break;
2272		}
2273	}
2274	rcu_read_unlock();
2275
2276	return res;
2277}
2278EXPORT_SYMBOL(ib_device_get_by_netdev);
2279
2280/**
2281 * ib_enum_roce_netdev - enumerate all RoCE ports
2282 * @ib_dev : IB device we want to query
2283 * @filter: Should we call the callback?
2284 * @filter_cookie: Cookie passed to filter
2285 * @cb: Callback to call for each found RoCE ports
2286 * @cookie: Cookie passed back to the callback
2287 *
2288 * Enumerates all of the physical RoCE ports of ib_dev
2289 * which are related to netdevice and calls callback() on each
2290 * device for which filter() function returns non zero.
2291 */
2292void ib_enum_roce_netdev(struct ib_device *ib_dev,
2293			 roce_netdev_filter filter,
2294			 void *filter_cookie,
2295			 roce_netdev_callback cb,
2296			 void *cookie)
2297{
2298	u32 port;
2299
2300	rdma_for_each_port (ib_dev, port)
2301		if (rdma_protocol_roce(ib_dev, port)) {
2302			struct net_device *idev =
2303				ib_device_get_netdev(ib_dev, port);
2304
2305			if (filter(ib_dev, port, idev, filter_cookie))
2306				cb(ib_dev, port, idev, cookie);
2307
2308			if (idev)
2309				dev_put(idev);
2310		}
2311}
2312
2313/**
2314 * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2315 * @filter: Should we call the callback?
2316 * @filter_cookie: Cookie passed to filter
2317 * @cb: Callback to call for each found RoCE ports
2318 * @cookie: Cookie passed back to the callback
2319 *
2320 * Enumerates all RoCE devices' physical ports which are related
2321 * to netdevices and calls callback() on each device for which
2322 * filter() function returns non zero.
2323 */
2324void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2325			      void *filter_cookie,
2326			      roce_netdev_callback cb,
2327			      void *cookie)
2328{
2329	struct ib_device *dev;
2330	unsigned long index;
2331
2332	down_read(&devices_rwsem);
2333	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2334		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2335	up_read(&devices_rwsem);
2336}
2337
2338/*
2339 * ib_enum_all_devs - enumerate all ib_devices
2340 * @cb: Callback to call for each found ib_device
2341 *
2342 * Enumerates all ib_devices and calls callback() on each device.
2343 */
2344int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2345		     struct netlink_callback *cb)
2346{
2347	unsigned long index;
2348	struct ib_device *dev;
2349	unsigned int idx = 0;
2350	int ret = 0;
2351
2352	down_read(&devices_rwsem);
2353	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2354		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2355			continue;
2356
2357		ret = nldev_cb(dev, skb, cb, idx);
2358		if (ret)
2359			break;
2360		idx++;
2361	}
2362	up_read(&devices_rwsem);
2363	return ret;
2364}
2365
2366/**
2367 * ib_query_pkey - Get P_Key table entry
2368 * @device:Device to query
2369 * @port_num:Port number to query
2370 * @index:P_Key table index to query
2371 * @pkey:Returned P_Key
2372 *
2373 * ib_query_pkey() fetches the specified P_Key table entry.
2374 */
2375int ib_query_pkey(struct ib_device *device,
2376		  u32 port_num, u16 index, u16 *pkey)
2377{
2378	if (!rdma_is_port_valid(device, port_num))
2379		return -EINVAL;
2380
2381	if (!device->ops.query_pkey)
2382		return -EOPNOTSUPP;
2383
2384	return device->ops.query_pkey(device, port_num, index, pkey);
2385}
2386EXPORT_SYMBOL(ib_query_pkey);
2387
2388/**
2389 * ib_modify_device - Change IB device attributes
2390 * @device:Device to modify
2391 * @device_modify_mask:Mask of attributes to change
2392 * @device_modify:New attribute values
2393 *
2394 * ib_modify_device() changes a device's attributes as specified by
2395 * the @device_modify_mask and @device_modify structure.
2396 */
2397int ib_modify_device(struct ib_device *device,
2398		     int device_modify_mask,
2399		     struct ib_device_modify *device_modify)
2400{
2401	if (!device->ops.modify_device)
2402		return -EOPNOTSUPP;
2403
2404	return device->ops.modify_device(device, device_modify_mask,
2405					 device_modify);
2406}
2407EXPORT_SYMBOL(ib_modify_device);
2408
2409/**
2410 * ib_modify_port - Modifies the attributes for the specified port.
2411 * @device: The device to modify.
2412 * @port_num: The number of the port to modify.
2413 * @port_modify_mask: Mask used to specify which attributes of the port
2414 *   to change.
2415 * @port_modify: New attribute values for the port.
2416 *
2417 * ib_modify_port() changes a port's attributes as specified by the
2418 * @port_modify_mask and @port_modify structure.
2419 */
2420int ib_modify_port(struct ib_device *device,
2421		   u32 port_num, int port_modify_mask,
2422		   struct ib_port_modify *port_modify)
2423{
2424	int rc;
2425
2426	if (!rdma_is_port_valid(device, port_num))
2427		return -EINVAL;
2428
2429	if (device->ops.modify_port)
2430		rc = device->ops.modify_port(device, port_num,
2431					     port_modify_mask,
2432					     port_modify);
2433	else if (rdma_protocol_roce(device, port_num) &&
2434		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2435		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2436		rc = 0;
2437	else
2438		rc = -EOPNOTSUPP;
2439	return rc;
2440}
2441EXPORT_SYMBOL(ib_modify_port);
2442
2443/**
2444 * ib_find_gid - Returns the port number and GID table index where
2445 *   a specified GID value occurs. Its searches only for IB link layer.
2446 * @device: The device to query.
2447 * @gid: The GID value to search for.
2448 * @port_num: The port number of the device where the GID value was found.
2449 * @index: The index into the GID table where the GID was found.  This
2450 *   parameter may be NULL.
2451 */
2452int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2453		u32 *port_num, u16 *index)
2454{
2455	union ib_gid tmp_gid;
2456	u32 port;
2457	int ret, i;
2458
2459	rdma_for_each_port (device, port) {
2460		if (!rdma_protocol_ib(device, port))
2461			continue;
2462
2463		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2464		     ++i) {
2465			ret = rdma_query_gid(device, port, i, &tmp_gid);
2466			if (ret)
2467				continue;
2468
2469			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2470				*port_num = port;
2471				if (index)
2472					*index = i;
2473				return 0;
2474			}
2475		}
2476	}
2477
2478	return -ENOENT;
2479}
2480EXPORT_SYMBOL(ib_find_gid);
2481
2482/**
2483 * ib_find_pkey - Returns the PKey table index where a specified
2484 *   PKey value occurs.
2485 * @device: The device to query.
2486 * @port_num: The port number of the device to search for the PKey.
2487 * @pkey: The PKey value to search for.
2488 * @index: The index into the PKey table where the PKey was found.
2489 */
2490int ib_find_pkey(struct ib_device *device,
2491		 u32 port_num, u16 pkey, u16 *index)
2492{
2493	int ret, i;
2494	u16 tmp_pkey;
2495	int partial_ix = -1;
2496
2497	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2498	     ++i) {
2499		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2500		if (ret)
2501			return ret;
2502		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2503			/* if there is full-member pkey take it.*/
2504			if (tmp_pkey & 0x8000) {
2505				*index = i;
2506				return 0;
2507			}
2508			if (partial_ix < 0)
2509				partial_ix = i;
2510		}
2511	}
2512
2513	/*no full-member, if exists take the limited*/
2514	if (partial_ix >= 0) {
2515		*index = partial_ix;
2516		return 0;
2517	}
2518	return -ENOENT;
2519}
2520EXPORT_SYMBOL(ib_find_pkey);
2521
2522/**
2523 * ib_get_net_dev_by_params() - Return the appropriate net_dev
2524 * for a received CM request
2525 * @dev:	An RDMA device on which the request has been received.
2526 * @port:	Port number on the RDMA device.
2527 * @pkey:	The Pkey the request came on.
2528 * @gid:	A GID that the net_dev uses to communicate.
2529 * @addr:	Contains the IP address that the request specified as its
2530 *		destination.
2531 *
2532 */
2533struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2534					    u32 port,
2535					    u16 pkey,
2536					    const union ib_gid *gid,
2537					    const struct sockaddr *addr)
2538{
2539	struct net_device *net_dev = NULL;
2540	unsigned long index;
2541	void *client_data;
2542
2543	if (!rdma_protocol_ib(dev, port))
2544		return NULL;
2545
2546	/*
2547	 * Holding the read side guarantees that the client will not become
2548	 * unregistered while we are calling get_net_dev_by_params()
2549	 */
2550	down_read(&dev->client_data_rwsem);
2551	xan_for_each_marked (&dev->client_data, index, client_data,
2552			     CLIENT_DATA_REGISTERED) {
2553		struct ib_client *client = xa_load(&clients, index);
2554
2555		if (!client || !client->get_net_dev_by_params)
2556			continue;
2557
2558		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2559							addr, client_data);
2560		if (net_dev)
2561			break;
2562	}
2563	up_read(&dev->client_data_rwsem);
2564
2565	return net_dev;
2566}
2567EXPORT_SYMBOL(ib_get_net_dev_by_params);
2568
2569void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2570{
2571	struct ib_device_ops *dev_ops = &dev->ops;
2572#define SET_DEVICE_OP(ptr, name)                                               \
2573	do {                                                                   \
2574		if (ops->name)                                                 \
2575			if (!((ptr)->name))				       \
2576				(ptr)->name = ops->name;                       \
2577	} while (0)
2578
2579#define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2580
2581	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2582		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2583			dev_ops->driver_id != ops->driver_id);
2584		dev_ops->driver_id = ops->driver_id;
2585	}
2586	if (ops->owner) {
2587		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2588		dev_ops->owner = ops->owner;
2589	}
2590	if (ops->uverbs_abi_ver)
2591		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2592
2593	dev_ops->uverbs_no_driver_id_binding |=
2594		ops->uverbs_no_driver_id_binding;
2595
2596	SET_DEVICE_OP(dev_ops, add_gid);
 
2597	SET_DEVICE_OP(dev_ops, advise_mr);
2598	SET_DEVICE_OP(dev_ops, alloc_dm);
2599	SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2600	SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2601	SET_DEVICE_OP(dev_ops, alloc_mr);
2602	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2603	SET_DEVICE_OP(dev_ops, alloc_mw);
2604	SET_DEVICE_OP(dev_ops, alloc_pd);
2605	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2606	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2607	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2608	SET_DEVICE_OP(dev_ops, attach_mcast);
2609	SET_DEVICE_OP(dev_ops, check_mr_status);
2610	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2611	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2612	SET_DEVICE_OP(dev_ops, counter_dealloc);
2613	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2614	SET_DEVICE_OP(dev_ops, counter_update_stats);
2615	SET_DEVICE_OP(dev_ops, create_ah);
2616	SET_DEVICE_OP(dev_ops, create_counters);
2617	SET_DEVICE_OP(dev_ops, create_cq);
2618	SET_DEVICE_OP(dev_ops, create_flow);
2619	SET_DEVICE_OP(dev_ops, create_qp);
2620	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2621	SET_DEVICE_OP(dev_ops, create_srq);
2622	SET_DEVICE_OP(dev_ops, create_user_ah);
2623	SET_DEVICE_OP(dev_ops, create_wq);
2624	SET_DEVICE_OP(dev_ops, dealloc_dm);
2625	SET_DEVICE_OP(dev_ops, dealloc_driver);
2626	SET_DEVICE_OP(dev_ops, dealloc_mw);
2627	SET_DEVICE_OP(dev_ops, dealloc_pd);
2628	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2629	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2630	SET_DEVICE_OP(dev_ops, del_gid);
 
2631	SET_DEVICE_OP(dev_ops, dereg_mr);
2632	SET_DEVICE_OP(dev_ops, destroy_ah);
2633	SET_DEVICE_OP(dev_ops, destroy_counters);
2634	SET_DEVICE_OP(dev_ops, destroy_cq);
2635	SET_DEVICE_OP(dev_ops, destroy_flow);
2636	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2637	SET_DEVICE_OP(dev_ops, destroy_qp);
2638	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2639	SET_DEVICE_OP(dev_ops, destroy_srq);
2640	SET_DEVICE_OP(dev_ops, destroy_wq);
2641	SET_DEVICE_OP(dev_ops, device_group);
2642	SET_DEVICE_OP(dev_ops, detach_mcast);
2643	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2644	SET_DEVICE_OP(dev_ops, drain_rq);
2645	SET_DEVICE_OP(dev_ops, drain_sq);
2646	SET_DEVICE_OP(dev_ops, enable_driver);
2647	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2648	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2649	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2650	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2651	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2652	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2653	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2654	SET_DEVICE_OP(dev_ops, fill_res_srq_entry);
2655	SET_DEVICE_OP(dev_ops, fill_res_srq_entry_raw);
2656	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2657	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2658	SET_DEVICE_OP(dev_ops, get_dma_mr);
2659	SET_DEVICE_OP(dev_ops, get_hw_stats);
2660	SET_DEVICE_OP(dev_ops, get_link_layer);
2661	SET_DEVICE_OP(dev_ops, get_netdev);
2662	SET_DEVICE_OP(dev_ops, get_numa_node);
2663	SET_DEVICE_OP(dev_ops, get_port_immutable);
2664	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2665	SET_DEVICE_OP(dev_ops, get_vf_config);
2666	SET_DEVICE_OP(dev_ops, get_vf_guid);
2667	SET_DEVICE_OP(dev_ops, get_vf_stats);
2668	SET_DEVICE_OP(dev_ops, iw_accept);
2669	SET_DEVICE_OP(dev_ops, iw_add_ref);
2670	SET_DEVICE_OP(dev_ops, iw_connect);
2671	SET_DEVICE_OP(dev_ops, iw_create_listen);
2672	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2673	SET_DEVICE_OP(dev_ops, iw_get_qp);
2674	SET_DEVICE_OP(dev_ops, iw_reject);
2675	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2676	SET_DEVICE_OP(dev_ops, map_mr_sg);
2677	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2678	SET_DEVICE_OP(dev_ops, mmap);
2679	SET_DEVICE_OP(dev_ops, mmap_free);
2680	SET_DEVICE_OP(dev_ops, modify_ah);
2681	SET_DEVICE_OP(dev_ops, modify_cq);
2682	SET_DEVICE_OP(dev_ops, modify_device);
2683	SET_DEVICE_OP(dev_ops, modify_hw_stat);
2684	SET_DEVICE_OP(dev_ops, modify_port);
2685	SET_DEVICE_OP(dev_ops, modify_qp);
2686	SET_DEVICE_OP(dev_ops, modify_srq);
2687	SET_DEVICE_OP(dev_ops, modify_wq);
2688	SET_DEVICE_OP(dev_ops, peek_cq);
2689	SET_DEVICE_OP(dev_ops, poll_cq);
2690	SET_DEVICE_OP(dev_ops, port_groups);
2691	SET_DEVICE_OP(dev_ops, post_recv);
2692	SET_DEVICE_OP(dev_ops, post_send);
2693	SET_DEVICE_OP(dev_ops, post_srq_recv);
2694	SET_DEVICE_OP(dev_ops, process_mad);
2695	SET_DEVICE_OP(dev_ops, query_ah);
2696	SET_DEVICE_OP(dev_ops, query_device);
2697	SET_DEVICE_OP(dev_ops, query_gid);
2698	SET_DEVICE_OP(dev_ops, query_pkey);
2699	SET_DEVICE_OP(dev_ops, query_port);
2700	SET_DEVICE_OP(dev_ops, query_qp);
2701	SET_DEVICE_OP(dev_ops, query_srq);
2702	SET_DEVICE_OP(dev_ops, query_ucontext);
2703	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2704	SET_DEVICE_OP(dev_ops, read_counters);
2705	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2706	SET_DEVICE_OP(dev_ops, reg_user_mr);
2707	SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2708	SET_DEVICE_OP(dev_ops, req_notify_cq);
2709	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2710	SET_DEVICE_OP(dev_ops, resize_cq);
2711	SET_DEVICE_OP(dev_ops, set_vf_guid);
2712	SET_DEVICE_OP(dev_ops, set_vf_link_state);
 
2713
2714	SET_OBJ_SIZE(dev_ops, ib_ah);
2715	SET_OBJ_SIZE(dev_ops, ib_counters);
2716	SET_OBJ_SIZE(dev_ops, ib_cq);
2717	SET_OBJ_SIZE(dev_ops, ib_mw);
2718	SET_OBJ_SIZE(dev_ops, ib_pd);
2719	SET_OBJ_SIZE(dev_ops, ib_qp);
2720	SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2721	SET_OBJ_SIZE(dev_ops, ib_srq);
2722	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2723	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2724}
2725EXPORT_SYMBOL(ib_set_device_ops);
2726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2727#ifdef CONFIG_INFINIBAND_VIRT_DMA
2728int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2729{
2730	struct scatterlist *s;
2731	int i;
2732
2733	for_each_sg(sg, s, nents, i) {
2734		sg_dma_address(s) = (uintptr_t)sg_virt(s);
2735		sg_dma_len(s) = s->length;
2736	}
2737	return nents;
2738}
2739EXPORT_SYMBOL(ib_dma_virt_map_sg);
2740#endif /* CONFIG_INFINIBAND_VIRT_DMA */
2741
2742static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2743	[RDMA_NL_LS_OP_RESOLVE] = {
2744		.doit = ib_nl_handle_resolve_resp,
2745		.flags = RDMA_NL_ADMIN_PERM,
2746	},
2747	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2748		.doit = ib_nl_handle_set_timeout,
2749		.flags = RDMA_NL_ADMIN_PERM,
2750	},
2751	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2752		.doit = ib_nl_handle_ip_res_resp,
2753		.flags = RDMA_NL_ADMIN_PERM,
2754	},
2755};
2756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2757static int __init ib_core_init(void)
2758{
2759	int ret = -ENOMEM;
2760
2761	ib_wq = alloc_workqueue("infiniband", 0, 0);
2762	if (!ib_wq)
2763		return -ENOMEM;
2764
2765	ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND,
2766				      WQ_UNBOUND_MAX_ACTIVE);
2767	if (!ib_unreg_wq)
2768		goto err;
2769
2770	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2771			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2772	if (!ib_comp_wq)
2773		goto err_unbound;
2774
2775	ib_comp_unbound_wq =
2776		alloc_workqueue("ib-comp-unb-wq",
2777				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2778				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2779	if (!ib_comp_unbound_wq)
2780		goto err_comp;
2781
2782	ret = class_register(&ib_class);
2783	if (ret) {
2784		pr_warn("Couldn't create InfiniBand device class\n");
2785		goto err_comp_unbound;
2786	}
2787
2788	rdma_nl_init();
2789
2790	ret = addr_init();
2791	if (ret) {
2792		pr_warn("Couldn't init IB address resolution\n");
2793		goto err_ibnl;
2794	}
2795
2796	ret = ib_mad_init();
2797	if (ret) {
2798		pr_warn("Couldn't init IB MAD\n");
2799		goto err_addr;
2800	}
2801
2802	ret = ib_sa_init();
2803	if (ret) {
2804		pr_warn("Couldn't init SA\n");
2805		goto err_mad;
2806	}
2807
2808	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2809	if (ret) {
2810		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2811		goto err_sa;
2812	}
2813
2814	ret = register_pernet_device(&rdma_dev_net_ops);
2815	if (ret) {
2816		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2817		goto err_compat;
2818	}
2819
2820	nldev_init();
2821	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2822	ret = roce_gid_mgmt_init();
2823	if (ret) {
2824		pr_warn("Couldn't init RoCE GID management\n");
2825		goto err_parent;
2826	}
2827
 
 
2828	return 0;
2829
2830err_parent:
2831	rdma_nl_unregister(RDMA_NL_LS);
2832	nldev_exit();
2833	unregister_pernet_device(&rdma_dev_net_ops);
2834err_compat:
2835	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2836err_sa:
2837	ib_sa_cleanup();
2838err_mad:
2839	ib_mad_cleanup();
2840err_addr:
2841	addr_cleanup();
2842err_ibnl:
2843	class_unregister(&ib_class);
2844err_comp_unbound:
2845	destroy_workqueue(ib_comp_unbound_wq);
2846err_comp:
2847	destroy_workqueue(ib_comp_wq);
2848err_unbound:
2849	destroy_workqueue(ib_unreg_wq);
2850err:
2851	destroy_workqueue(ib_wq);
2852	return ret;
2853}
2854
2855static void __exit ib_core_cleanup(void)
2856{
 
2857	roce_gid_mgmt_cleanup();
2858	rdma_nl_unregister(RDMA_NL_LS);
2859	nldev_exit();
2860	unregister_pernet_device(&rdma_dev_net_ops);
2861	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2862	ib_sa_cleanup();
2863	ib_mad_cleanup();
2864	addr_cleanup();
2865	rdma_nl_exit();
2866	class_unregister(&ib_class);
2867	destroy_workqueue(ib_comp_unbound_wq);
2868	destroy_workqueue(ib_comp_wq);
2869	/* Make sure that any pending umem accounting work is done. */
2870	destroy_workqueue(ib_wq);
2871	destroy_workqueue(ib_unreg_wq);
2872	WARN_ON(!xa_empty(&clients));
2873	WARN_ON(!xa_empty(&devices));
2874}
2875
2876MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2877
2878/* ib core relies on netdev stack to first register net_ns_type_operations
2879 * ns kobject type before ib_core initialization.
2880 */
2881fs_initcall(ib_core_init);
2882module_exit(ib_core_cleanup);
v6.13.7
   1/*
   2 * Copyright (c) 2004 Topspin Communications.  All rights reserved.
   3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 */
  33
  34#include <linux/module.h>
  35#include <linux/string.h>
  36#include <linux/errno.h>
  37#include <linux/kernel.h>
  38#include <linux/slab.h>
  39#include <linux/init.h>
  40#include <linux/netdevice.h>
  41#include <net/net_namespace.h>
  42#include <linux/security.h>
  43#include <linux/notifier.h>
  44#include <linux/hashtable.h>
  45#include <rdma/rdma_netlink.h>
  46#include <rdma/ib_addr.h>
  47#include <rdma/ib_cache.h>
  48#include <rdma/rdma_counter.h>
  49
  50#include "core_priv.h"
  51#include "restrack.h"
  52
  53MODULE_AUTHOR("Roland Dreier");
  54MODULE_DESCRIPTION("core kernel InfiniBand API");
  55MODULE_LICENSE("Dual BSD/GPL");
  56
  57struct workqueue_struct *ib_comp_wq;
  58struct workqueue_struct *ib_comp_unbound_wq;
  59struct workqueue_struct *ib_wq;
  60EXPORT_SYMBOL_GPL(ib_wq);
  61static struct workqueue_struct *ib_unreg_wq;
  62
  63/*
  64 * Each of the three rwsem locks (devices, clients, client_data) protects the
  65 * xarray of the same name. Specifically it allows the caller to assert that
  66 * the MARK will/will not be changing under the lock, and for devices and
  67 * clients, that the value in the xarray is still a valid pointer. Change of
  68 * the MARK is linked to the object state, so holding the lock and testing the
  69 * MARK also asserts that the contained object is in a certain state.
  70 *
  71 * This is used to build a two stage register/unregister flow where objects
  72 * can continue to be in the xarray even though they are still in progress to
  73 * register/unregister.
  74 *
  75 * The xarray itself provides additional locking, and restartable iteration,
  76 * which is also relied on.
  77 *
  78 * Locks should not be nested, with the exception of client_data, which is
  79 * allowed to nest under the read side of the other two locks.
  80 *
  81 * The devices_rwsem also protects the device name list, any change or
  82 * assignment of device name must also hold the write side to guarantee unique
  83 * names.
  84 */
  85
  86/*
  87 * devices contains devices that have had their names assigned. The
  88 * devices may not be registered. Users that care about the registration
  89 * status need to call ib_device_try_get() on the device to ensure it is
  90 * registered, and keep it registered, for the required duration.
  91 *
  92 */
  93static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
  94static DECLARE_RWSEM(devices_rwsem);
  95#define DEVICE_REGISTERED XA_MARK_1
  96
  97static u32 highest_client_id;
  98#define CLIENT_REGISTERED XA_MARK_1
  99static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
 100static DECLARE_RWSEM(clients_rwsem);
 101
 102static void ib_client_put(struct ib_client *client)
 103{
 104	if (refcount_dec_and_test(&client->uses))
 105		complete(&client->uses_zero);
 106}
 107
 108/*
 109 * If client_data is registered then the corresponding client must also still
 110 * be registered.
 111 */
 112#define CLIENT_DATA_REGISTERED XA_MARK_1
 113
 114unsigned int rdma_dev_net_id;
 115
 116/*
 117 * A list of net namespaces is maintained in an xarray. This is necessary
 118 * because we can't get the locking right using the existing net ns list. We
 119 * would require a init_net callback after the list is updated.
 120 */
 121static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
 122/*
 123 * rwsem to protect accessing the rdma_nets xarray entries.
 124 */
 125static DECLARE_RWSEM(rdma_nets_rwsem);
 126
 127bool ib_devices_shared_netns = true;
 128module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
 129MODULE_PARM_DESC(netns_mode,
 130		 "Share device among net namespaces; default=1 (shared)");
 131/**
 132 * rdma_dev_access_netns() - Return whether an rdma device can be accessed
 133 *			     from a specified net namespace or not.
 134 * @dev:	Pointer to rdma device which needs to be checked
 135 * @net:	Pointer to net namesapce for which access to be checked
 136 *
 137 * When the rdma device is in shared mode, it ignores the net namespace.
 138 * When the rdma device is exclusive to a net namespace, rdma device net
 139 * namespace is checked against the specified one.
 140 */
 141bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
 142{
 143	return (ib_devices_shared_netns ||
 144		net_eq(read_pnet(&dev->coredev.rdma_net), net));
 145}
 146EXPORT_SYMBOL(rdma_dev_access_netns);
 147
 148/*
 149 * xarray has this behavior where it won't iterate over NULL values stored in
 150 * allocated arrays.  So we need our own iterator to see all values stored in
 151 * the array. This does the same thing as xa_for_each except that it also
 152 * returns NULL valued entries if the array is allocating. Simplified to only
 153 * work on simple xarrays.
 154 */
 155static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
 156			     xa_mark_t filter)
 157{
 158	XA_STATE(xas, xa, *indexp);
 159	void *entry;
 160
 161	rcu_read_lock();
 162	do {
 163		entry = xas_find_marked(&xas, ULONG_MAX, filter);
 164		if (xa_is_zero(entry))
 165			break;
 166	} while (xas_retry(&xas, entry));
 167	rcu_read_unlock();
 168
 169	if (entry) {
 170		*indexp = xas.xa_index;
 171		if (xa_is_zero(entry))
 172			return NULL;
 173		return entry;
 174	}
 175	return XA_ERROR(-ENOENT);
 176}
 177#define xan_for_each_marked(xa, index, entry, filter)                          \
 178	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
 179	     !xa_is_err(entry);                                                \
 180	     (index)++, entry = xan_find_marked(xa, &(index), filter))
 181
 182/* RCU hash table mapping netdevice pointers to struct ib_port_data */
 183static DEFINE_SPINLOCK(ndev_hash_lock);
 184static DECLARE_HASHTABLE(ndev_hash, 5);
 185
 186static void free_netdevs(struct ib_device *ib_dev);
 187static void ib_unregister_work(struct work_struct *work);
 188static void __ib_unregister_device(struct ib_device *device);
 189static int ib_security_change(struct notifier_block *nb, unsigned long event,
 190			      void *lsm_data);
 191static void ib_policy_change_task(struct work_struct *work);
 192static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
 193
 194static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
 195			   struct va_format *vaf)
 196{
 197	if (ibdev && ibdev->dev.parent)
 198		dev_printk_emit(level[1] - '0',
 199				ibdev->dev.parent,
 200				"%s %s %s: %pV",
 201				dev_driver_string(ibdev->dev.parent),
 202				dev_name(ibdev->dev.parent),
 203				dev_name(&ibdev->dev),
 204				vaf);
 205	else if (ibdev)
 206		printk("%s%s: %pV",
 207		       level, dev_name(&ibdev->dev), vaf);
 208	else
 209		printk("%s(NULL ib_device): %pV", level, vaf);
 210}
 211
 212void ibdev_printk(const char *level, const struct ib_device *ibdev,
 213		  const char *format, ...)
 214{
 215	struct va_format vaf;
 216	va_list args;
 217
 218	va_start(args, format);
 219
 220	vaf.fmt = format;
 221	vaf.va = &args;
 222
 223	__ibdev_printk(level, ibdev, &vaf);
 224
 225	va_end(args);
 226}
 227EXPORT_SYMBOL(ibdev_printk);
 228
 229#define define_ibdev_printk_level(func, level)                  \
 230void func(const struct ib_device *ibdev, const char *fmt, ...)  \
 231{                                                               \
 232	struct va_format vaf;                                   \
 233	va_list args;                                           \
 234								\
 235	va_start(args, fmt);                                    \
 236								\
 237	vaf.fmt = fmt;                                          \
 238	vaf.va = &args;                                         \
 239								\
 240	__ibdev_printk(level, ibdev, &vaf);                     \
 241								\
 242	va_end(args);                                           \
 243}                                                               \
 244EXPORT_SYMBOL(func);
 245
 246define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
 247define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
 248define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
 249define_ibdev_printk_level(ibdev_err, KERN_ERR);
 250define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
 251define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
 252define_ibdev_printk_level(ibdev_info, KERN_INFO);
 253
 254static struct notifier_block ibdev_lsm_nb = {
 255	.notifier_call = ib_security_change,
 256};
 257
 258static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
 259				 struct net *net);
 260
 261/* Pointer to the RCU head at the start of the ib_port_data array */
 262struct ib_port_data_rcu {
 263	struct rcu_head rcu_head;
 264	struct ib_port_data pdata[];
 265};
 266
 267static void ib_device_check_mandatory(struct ib_device *device)
 268{
 269#define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
 270	static const struct {
 271		size_t offset;
 272		char  *name;
 273	} mandatory_table[] = {
 274		IB_MANDATORY_FUNC(query_device),
 275		IB_MANDATORY_FUNC(query_port),
 276		IB_MANDATORY_FUNC(alloc_pd),
 277		IB_MANDATORY_FUNC(dealloc_pd),
 278		IB_MANDATORY_FUNC(create_qp),
 279		IB_MANDATORY_FUNC(modify_qp),
 280		IB_MANDATORY_FUNC(destroy_qp),
 281		IB_MANDATORY_FUNC(post_send),
 282		IB_MANDATORY_FUNC(post_recv),
 283		IB_MANDATORY_FUNC(create_cq),
 284		IB_MANDATORY_FUNC(destroy_cq),
 285		IB_MANDATORY_FUNC(poll_cq),
 286		IB_MANDATORY_FUNC(req_notify_cq),
 287		IB_MANDATORY_FUNC(get_dma_mr),
 288		IB_MANDATORY_FUNC(reg_user_mr),
 289		IB_MANDATORY_FUNC(dereg_mr),
 290		IB_MANDATORY_FUNC(get_port_immutable)
 291	};
 292	int i;
 293
 294	device->kverbs_provider = true;
 295	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
 296		if (!*(void **) ((void *) &device->ops +
 297				 mandatory_table[i].offset)) {
 298			device->kverbs_provider = false;
 299			break;
 300		}
 301	}
 302}
 303
 304/*
 305 * Caller must perform ib_device_put() to return the device reference count
 306 * when ib_device_get_by_index() returns valid device pointer.
 307 */
 308struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
 309{
 310	struct ib_device *device;
 311
 312	down_read(&devices_rwsem);
 313	device = xa_load(&devices, index);
 314	if (device) {
 315		if (!rdma_dev_access_netns(device, net)) {
 316			device = NULL;
 317			goto out;
 318		}
 319
 320		if (!ib_device_try_get(device))
 321			device = NULL;
 322	}
 323out:
 324	up_read(&devices_rwsem);
 325	return device;
 326}
 327
 328/**
 329 * ib_device_put - Release IB device reference
 330 * @device: device whose reference to be released
 331 *
 332 * ib_device_put() releases reference to the IB device to allow it to be
 333 * unregistered and eventually free.
 334 */
 335void ib_device_put(struct ib_device *device)
 336{
 337	if (refcount_dec_and_test(&device->refcount))
 338		complete(&device->unreg_completion);
 339}
 340EXPORT_SYMBOL(ib_device_put);
 341
 342static struct ib_device *__ib_device_get_by_name(const char *name)
 343{
 344	struct ib_device *device;
 345	unsigned long index;
 346
 347	xa_for_each (&devices, index, device)
 348		if (!strcmp(name, dev_name(&device->dev)))
 349			return device;
 350
 351	return NULL;
 352}
 353
 354/**
 355 * ib_device_get_by_name - Find an IB device by name
 356 * @name: The name to look for
 357 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
 358 *
 359 * Find and hold an ib_device by its name. The caller must call
 360 * ib_device_put() on the returned pointer.
 361 */
 362struct ib_device *ib_device_get_by_name(const char *name,
 363					enum rdma_driver_id driver_id)
 364{
 365	struct ib_device *device;
 366
 367	down_read(&devices_rwsem);
 368	device = __ib_device_get_by_name(name);
 369	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
 370	    device->ops.driver_id != driver_id)
 371		device = NULL;
 372
 373	if (device) {
 374		if (!ib_device_try_get(device))
 375			device = NULL;
 376	}
 377	up_read(&devices_rwsem);
 378	return device;
 379}
 380EXPORT_SYMBOL(ib_device_get_by_name);
 381
 382static int rename_compat_devs(struct ib_device *device)
 383{
 384	struct ib_core_device *cdev;
 385	unsigned long index;
 386	int ret = 0;
 387
 388	mutex_lock(&device->compat_devs_mutex);
 389	xa_for_each (&device->compat_devs, index, cdev) {
 390		ret = device_rename(&cdev->dev, dev_name(&device->dev));
 391		if (ret) {
 392			dev_warn(&cdev->dev,
 393				 "Fail to rename compatdev to new name %s\n",
 394				 dev_name(&device->dev));
 395			break;
 396		}
 397	}
 398	mutex_unlock(&device->compat_devs_mutex);
 399	return ret;
 400}
 401
 402int ib_device_rename(struct ib_device *ibdev, const char *name)
 403{
 404	unsigned long index;
 405	void *client_data;
 406	int ret;
 407
 408	down_write(&devices_rwsem);
 409	if (!strcmp(name, dev_name(&ibdev->dev))) {
 410		up_write(&devices_rwsem);
 411		return 0;
 412	}
 413
 414	if (__ib_device_get_by_name(name)) {
 415		up_write(&devices_rwsem);
 416		return -EEXIST;
 417	}
 418
 419	ret = device_rename(&ibdev->dev, name);
 420	if (ret) {
 421		up_write(&devices_rwsem);
 422		return ret;
 423	}
 424
 425	strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
 426	ret = rename_compat_devs(ibdev);
 427
 428	downgrade_write(&devices_rwsem);
 429	down_read(&ibdev->client_data_rwsem);
 430	xan_for_each_marked(&ibdev->client_data, index, client_data,
 431			    CLIENT_DATA_REGISTERED) {
 432		struct ib_client *client = xa_load(&clients, index);
 433
 434		if (!client || !client->rename)
 435			continue;
 436
 437		client->rename(ibdev, client_data);
 438	}
 439	up_read(&ibdev->client_data_rwsem);
 440	rdma_nl_notify_event(ibdev, 0, RDMA_RENAME_EVENT);
 441	up_read(&devices_rwsem);
 442	return 0;
 443}
 444
 445int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
 446{
 447	if (use_dim > 1)
 448		return -EINVAL;
 449	ibdev->use_cq_dim = use_dim;
 450
 451	return 0;
 452}
 453
 454static int alloc_name(struct ib_device *ibdev, const char *name)
 455{
 456	struct ib_device *device;
 457	unsigned long index;
 458	struct ida inuse;
 459	int rc;
 460	int i;
 461
 462	lockdep_assert_held_write(&devices_rwsem);
 463	ida_init(&inuse);
 464	xa_for_each (&devices, index, device) {
 465		char buf[IB_DEVICE_NAME_MAX];
 466
 467		if (sscanf(dev_name(&device->dev), name, &i) != 1)
 468			continue;
 469		if (i < 0 || i >= INT_MAX)
 470			continue;
 471		snprintf(buf, sizeof buf, name, i);
 472		if (strcmp(buf, dev_name(&device->dev)) != 0)
 473			continue;
 474
 475		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
 476		if (rc < 0)
 477			goto out;
 478	}
 479
 480	rc = ida_alloc(&inuse, GFP_KERNEL);
 481	if (rc < 0)
 482		goto out;
 483
 484	rc = dev_set_name(&ibdev->dev, name, rc);
 485out:
 486	ida_destroy(&inuse);
 487	return rc;
 488}
 489
 490static void ib_device_release(struct device *device)
 491{
 492	struct ib_device *dev = container_of(device, struct ib_device, dev);
 493
 494	free_netdevs(dev);
 495	WARN_ON(refcount_read(&dev->refcount));
 496	if (dev->hw_stats_data)
 497		ib_device_release_hw_stats(dev->hw_stats_data);
 498	if (dev->port_data) {
 499		ib_cache_release_one(dev);
 500		ib_security_release_port_pkey_list(dev);
 501		rdma_counter_release(dev);
 502		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
 503				       pdata[0]),
 504			  rcu_head);
 505	}
 506
 507	mutex_destroy(&dev->subdev_lock);
 508	mutex_destroy(&dev->unregistration_lock);
 509	mutex_destroy(&dev->compat_devs_mutex);
 510
 511	xa_destroy(&dev->compat_devs);
 512	xa_destroy(&dev->client_data);
 513	kfree_rcu(dev, rcu_head);
 514}
 515
 516static int ib_device_uevent(const struct device *device,
 517			    struct kobj_uevent_env *env)
 518{
 519	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
 520		return -ENOMEM;
 521
 522	/*
 523	 * It would be nice to pass the node GUID with the event...
 524	 */
 525
 526	return 0;
 527}
 528
 529static const void *net_namespace(const struct device *d)
 530{
 531	const struct ib_core_device *coredev =
 532			container_of(d, struct ib_core_device, dev);
 533
 534	return read_pnet(&coredev->rdma_net);
 535}
 536
 537static struct class ib_class = {
 538	.name    = "infiniband",
 539	.dev_release = ib_device_release,
 540	.dev_uevent = ib_device_uevent,
 541	.ns_type = &net_ns_type_operations,
 542	.namespace = net_namespace,
 543};
 544
 545static void rdma_init_coredev(struct ib_core_device *coredev,
 546			      struct ib_device *dev, struct net *net)
 547{
 548	/* This BUILD_BUG_ON is intended to catch layout change
 549	 * of union of ib_core_device and device.
 550	 * dev must be the first element as ib_core and providers
 551	 * driver uses it. Adding anything in ib_core_device before
 552	 * device will break this assumption.
 553	 */
 554	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
 555		     offsetof(struct ib_device, dev));
 556
 557	coredev->dev.class = &ib_class;
 558	coredev->dev.groups = dev->groups;
 559	device_initialize(&coredev->dev);
 560	coredev->owner = dev;
 561	INIT_LIST_HEAD(&coredev->port_list);
 562	write_pnet(&coredev->rdma_net, net);
 563}
 564
 565/**
 566 * _ib_alloc_device - allocate an IB device struct
 567 * @size:size of structure to allocate
 568 *
 569 * Low-level drivers should use ib_alloc_device() to allocate &struct
 570 * ib_device.  @size is the size of the structure to be allocated,
 571 * including any private data used by the low-level driver.
 572 * ib_dealloc_device() must be used to free structures allocated with
 573 * ib_alloc_device().
 574 */
 575struct ib_device *_ib_alloc_device(size_t size)
 576{
 577	struct ib_device *device;
 578	unsigned int i;
 579
 580	if (WARN_ON(size < sizeof(struct ib_device)))
 581		return NULL;
 582
 583	device = kzalloc(size, GFP_KERNEL);
 584	if (!device)
 585		return NULL;
 586
 587	if (rdma_restrack_init(device)) {
 588		kfree(device);
 589		return NULL;
 590	}
 591
 592	rdma_init_coredev(&device->coredev, device, &init_net);
 593
 594	INIT_LIST_HEAD(&device->event_handler_list);
 595	spin_lock_init(&device->qp_open_list_lock);
 596	init_rwsem(&device->event_handler_rwsem);
 597	mutex_init(&device->unregistration_lock);
 598	/*
 599	 * client_data needs to be alloc because we don't want our mark to be
 600	 * destroyed if the user stores NULL in the client data.
 601	 */
 602	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
 603	init_rwsem(&device->client_data_rwsem);
 604	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
 605	mutex_init(&device->compat_devs_mutex);
 606	init_completion(&device->unreg_completion);
 607	INIT_WORK(&device->unregistration_work, ib_unregister_work);
 608
 609	spin_lock_init(&device->cq_pools_lock);
 610	for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
 611		INIT_LIST_HEAD(&device->cq_pools[i]);
 612
 613	rwlock_init(&device->cache_lock);
 614
 615	device->uverbs_cmd_mask =
 616		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
 617		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
 618		BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
 619		BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
 620		BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
 621		BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
 622		BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
 623		BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
 624		BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
 625		BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
 626		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
 627		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
 628		BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
 629		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
 630		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
 631		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
 632		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
 633		BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
 634		BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
 635		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
 636		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
 637		BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
 638		BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
 639		BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
 640		BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
 641		BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
 642		BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
 643		BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
 644		BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
 645		BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
 646
 647	mutex_init(&device->subdev_lock);
 648	INIT_LIST_HEAD(&device->subdev_list_head);
 649	INIT_LIST_HEAD(&device->subdev_list);
 650
 651	return device;
 652}
 653EXPORT_SYMBOL(_ib_alloc_device);
 654
 655/**
 656 * ib_dealloc_device - free an IB device struct
 657 * @device:structure to free
 658 *
 659 * Free a structure allocated with ib_alloc_device().
 660 */
 661void ib_dealloc_device(struct ib_device *device)
 662{
 663	if (device->ops.dealloc_driver)
 664		device->ops.dealloc_driver(device);
 665
 666	/*
 667	 * ib_unregister_driver() requires all devices to remain in the xarray
 668	 * while their ops are callable. The last op we call is dealloc_driver
 669	 * above.  This is needed to create a fence on op callbacks prior to
 670	 * allowing the driver module to unload.
 671	 */
 672	down_write(&devices_rwsem);
 673	if (xa_load(&devices, device->index) == device)
 674		xa_erase(&devices, device->index);
 675	up_write(&devices_rwsem);
 676
 677	/* Expedite releasing netdev references */
 678	free_netdevs(device);
 679
 680	WARN_ON(!xa_empty(&device->compat_devs));
 681	WARN_ON(!xa_empty(&device->client_data));
 682	WARN_ON(refcount_read(&device->refcount));
 683	rdma_restrack_clean(device);
 684	/* Balances with device_initialize */
 685	put_device(&device->dev);
 686}
 687EXPORT_SYMBOL(ib_dealloc_device);
 688
 689/*
 690 * add_client_context() and remove_client_context() must be safe against
 691 * parallel calls on the same device - registration/unregistration of both the
 692 * device and client can be occurring in parallel.
 693 *
 694 * The routines need to be a fence, any caller must not return until the add
 695 * or remove is fully completed.
 696 */
 697static int add_client_context(struct ib_device *device,
 698			      struct ib_client *client)
 699{
 700	int ret = 0;
 701
 702	if (!device->kverbs_provider && !client->no_kverbs_req)
 703		return 0;
 704
 705	down_write(&device->client_data_rwsem);
 706	/*
 707	 * So long as the client is registered hold both the client and device
 708	 * unregistration locks.
 709	 */
 710	if (!refcount_inc_not_zero(&client->uses))
 711		goto out_unlock;
 712	refcount_inc(&device->refcount);
 713
 714	/*
 715	 * Another caller to add_client_context got here first and has already
 716	 * completely initialized context.
 717	 */
 718	if (xa_get_mark(&device->client_data, client->client_id,
 719		    CLIENT_DATA_REGISTERED))
 720		goto out;
 721
 722	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
 723			      GFP_KERNEL));
 724	if (ret)
 725		goto out;
 726	downgrade_write(&device->client_data_rwsem);
 727	if (client->add) {
 728		if (client->add(device)) {
 729			/*
 730			 * If a client fails to add then the error code is
 731			 * ignored, but we won't call any more ops on this
 732			 * client.
 733			 */
 734			xa_erase(&device->client_data, client->client_id);
 735			up_read(&device->client_data_rwsem);
 736			ib_device_put(device);
 737			ib_client_put(client);
 738			return 0;
 739		}
 740	}
 741
 742	/* Readers shall not see a client until add has been completed */
 743	xa_set_mark(&device->client_data, client->client_id,
 744		    CLIENT_DATA_REGISTERED);
 745	up_read(&device->client_data_rwsem);
 746	return 0;
 747
 748out:
 749	ib_device_put(device);
 750	ib_client_put(client);
 751out_unlock:
 752	up_write(&device->client_data_rwsem);
 753	return ret;
 754}
 755
 756static void remove_client_context(struct ib_device *device,
 757				  unsigned int client_id)
 758{
 759	struct ib_client *client;
 760	void *client_data;
 761
 762	down_write(&device->client_data_rwsem);
 763	if (!xa_get_mark(&device->client_data, client_id,
 764			 CLIENT_DATA_REGISTERED)) {
 765		up_write(&device->client_data_rwsem);
 766		return;
 767	}
 768	client_data = xa_load(&device->client_data, client_id);
 769	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
 770	client = xa_load(&clients, client_id);
 771	up_write(&device->client_data_rwsem);
 772
 773	/*
 774	 * Notice we cannot be holding any exclusive locks when calling the
 775	 * remove callback as the remove callback can recurse back into any
 776	 * public functions in this module and thus try for any locks those
 777	 * functions take.
 778	 *
 779	 * For this reason clients and drivers should not call the
 780	 * unregistration functions will holdling any locks.
 781	 */
 782	if (client->remove)
 783		client->remove(device, client_data);
 784
 785	xa_erase(&device->client_data, client_id);
 786	ib_device_put(device);
 787	ib_client_put(client);
 788}
 789
 790static int alloc_port_data(struct ib_device *device)
 791{
 792	struct ib_port_data_rcu *pdata_rcu;
 793	u32 port;
 794
 795	if (device->port_data)
 796		return 0;
 797
 798	/* This can only be called once the physical port range is defined */
 799	if (WARN_ON(!device->phys_port_cnt))
 800		return -EINVAL;
 801
 802	/* Reserve U32_MAX so the logic to go over all the ports is sane */
 803	if (WARN_ON(device->phys_port_cnt == U32_MAX))
 804		return -EINVAL;
 805
 806	/*
 807	 * device->port_data is indexed directly by the port number to make
 808	 * access to this data as efficient as possible.
 809	 *
 810	 * Therefore port_data is declared as a 1 based array with potential
 811	 * empty slots at the beginning.
 812	 */
 813	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
 814					size_add(rdma_end_port(device), 1)),
 815			    GFP_KERNEL);
 816	if (!pdata_rcu)
 817		return -ENOMEM;
 818	/*
 819	 * The rcu_head is put in front of the port data array and the stored
 820	 * pointer is adjusted since we never need to see that member until
 821	 * kfree_rcu.
 822	 */
 823	device->port_data = pdata_rcu->pdata;
 824
 825	rdma_for_each_port (device, port) {
 826		struct ib_port_data *pdata = &device->port_data[port];
 827
 828		pdata->ib_dev = device;
 829		spin_lock_init(&pdata->pkey_list_lock);
 830		INIT_LIST_HEAD(&pdata->pkey_list);
 831		spin_lock_init(&pdata->netdev_lock);
 832		INIT_HLIST_NODE(&pdata->ndev_hash_link);
 833	}
 834	return 0;
 835}
 836
 837static int verify_immutable(const struct ib_device *dev, u32 port)
 838{
 839	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
 840			    rdma_max_mad_size(dev, port) != 0);
 841}
 842
 843static int setup_port_data(struct ib_device *device)
 844{
 845	u32 port;
 846	int ret;
 847
 848	ret = alloc_port_data(device);
 849	if (ret)
 850		return ret;
 851
 852	rdma_for_each_port (device, port) {
 853		struct ib_port_data *pdata = &device->port_data[port];
 854
 855		ret = device->ops.get_port_immutable(device, port,
 856						     &pdata->immutable);
 857		if (ret)
 858			return ret;
 859
 860		if (verify_immutable(device, port))
 861			return -EINVAL;
 862	}
 863	return 0;
 864}
 865
 866/**
 867 * ib_port_immutable_read() - Read rdma port's immutable data
 868 * @dev: IB device
 869 * @port: port number whose immutable data to read. It starts with index 1 and
 870 *        valid upto including rdma_end_port().
 871 */
 872const struct ib_port_immutable*
 873ib_port_immutable_read(struct ib_device *dev, unsigned int port)
 874{
 875	WARN_ON(!rdma_is_port_valid(dev, port));
 876	return &dev->port_data[port].immutable;
 877}
 878EXPORT_SYMBOL(ib_port_immutable_read);
 879
 880void ib_get_device_fw_str(struct ib_device *dev, char *str)
 881{
 882	if (dev->ops.get_dev_fw_str)
 883		dev->ops.get_dev_fw_str(dev, str);
 884	else
 885		str[0] = '\0';
 886}
 887EXPORT_SYMBOL(ib_get_device_fw_str);
 888
 889static void ib_policy_change_task(struct work_struct *work)
 890{
 891	struct ib_device *dev;
 892	unsigned long index;
 893
 894	down_read(&devices_rwsem);
 895	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
 896		unsigned int i;
 897
 898		rdma_for_each_port (dev, i) {
 899			u64 sp;
 900			ib_get_cached_subnet_prefix(dev, i, &sp);
 901			ib_security_cache_change(dev, i, sp);
 902		}
 903	}
 904	up_read(&devices_rwsem);
 905}
 906
 907static int ib_security_change(struct notifier_block *nb, unsigned long event,
 908			      void *lsm_data)
 909{
 910	if (event != LSM_POLICY_CHANGE)
 911		return NOTIFY_DONE;
 912
 913	schedule_work(&ib_policy_change_work);
 914	ib_mad_agent_security_change();
 915
 916	return NOTIFY_OK;
 917}
 918
 919static void compatdev_release(struct device *dev)
 920{
 921	struct ib_core_device *cdev =
 922		container_of(dev, struct ib_core_device, dev);
 923
 924	kfree(cdev);
 925}
 926
 927static int add_one_compat_dev(struct ib_device *device,
 928			      struct rdma_dev_net *rnet)
 929{
 930	struct ib_core_device *cdev;
 931	int ret;
 932
 933	lockdep_assert_held(&rdma_nets_rwsem);
 934	if (!ib_devices_shared_netns)
 935		return 0;
 936
 937	/*
 938	 * Create and add compat device in all namespaces other than where it
 939	 * is currently bound to.
 940	 */
 941	if (net_eq(read_pnet(&rnet->net),
 942		   read_pnet(&device->coredev.rdma_net)))
 943		return 0;
 944
 945	/*
 946	 * The first of init_net() or ib_register_device() to take the
 947	 * compat_devs_mutex wins and gets to add the device. Others will wait
 948	 * for completion here.
 949	 */
 950	mutex_lock(&device->compat_devs_mutex);
 951	cdev = xa_load(&device->compat_devs, rnet->id);
 952	if (cdev) {
 953		ret = 0;
 954		goto done;
 955	}
 956	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
 957	if (ret)
 958		goto done;
 959
 960	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
 961	if (!cdev) {
 962		ret = -ENOMEM;
 963		goto cdev_err;
 964	}
 965
 966	cdev->dev.parent = device->dev.parent;
 967	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
 968	cdev->dev.release = compatdev_release;
 969	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
 970	if (ret)
 971		goto add_err;
 972
 973	ret = device_add(&cdev->dev);
 974	if (ret)
 975		goto add_err;
 976	ret = ib_setup_port_attrs(cdev);
 977	if (ret)
 978		goto port_err;
 979
 980	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
 981			      cdev, GFP_KERNEL));
 982	if (ret)
 983		goto insert_err;
 984
 985	mutex_unlock(&device->compat_devs_mutex);
 986	return 0;
 987
 988insert_err:
 989	ib_free_port_attrs(cdev);
 990port_err:
 991	device_del(&cdev->dev);
 992add_err:
 993	put_device(&cdev->dev);
 994cdev_err:
 995	xa_release(&device->compat_devs, rnet->id);
 996done:
 997	mutex_unlock(&device->compat_devs_mutex);
 998	return ret;
 999}
1000
1001static void remove_one_compat_dev(struct ib_device *device, u32 id)
1002{
1003	struct ib_core_device *cdev;
1004
1005	mutex_lock(&device->compat_devs_mutex);
1006	cdev = xa_erase(&device->compat_devs, id);
1007	mutex_unlock(&device->compat_devs_mutex);
1008	if (cdev) {
1009		ib_free_port_attrs(cdev);
1010		device_del(&cdev->dev);
1011		put_device(&cdev->dev);
1012	}
1013}
1014
1015static void remove_compat_devs(struct ib_device *device)
1016{
1017	struct ib_core_device *cdev;
1018	unsigned long index;
1019
1020	xa_for_each (&device->compat_devs, index, cdev)
1021		remove_one_compat_dev(device, index);
1022}
1023
1024static int add_compat_devs(struct ib_device *device)
1025{
1026	struct rdma_dev_net *rnet;
1027	unsigned long index;
1028	int ret = 0;
1029
1030	lockdep_assert_held(&devices_rwsem);
1031
1032	down_read(&rdma_nets_rwsem);
1033	xa_for_each (&rdma_nets, index, rnet) {
1034		ret = add_one_compat_dev(device, rnet);
1035		if (ret)
1036			break;
1037	}
1038	up_read(&rdma_nets_rwsem);
1039	return ret;
1040}
1041
1042static void remove_all_compat_devs(void)
1043{
1044	struct ib_compat_device *cdev;
1045	struct ib_device *dev;
1046	unsigned long index;
1047
1048	down_read(&devices_rwsem);
1049	xa_for_each (&devices, index, dev) {
1050		unsigned long c_index = 0;
1051
1052		/* Hold nets_rwsem so that any other thread modifying this
1053		 * system param can sync with this thread.
1054		 */
1055		down_read(&rdma_nets_rwsem);
1056		xa_for_each (&dev->compat_devs, c_index, cdev)
1057			remove_one_compat_dev(dev, c_index);
1058		up_read(&rdma_nets_rwsem);
1059	}
1060	up_read(&devices_rwsem);
1061}
1062
1063static int add_all_compat_devs(void)
1064{
1065	struct rdma_dev_net *rnet;
1066	struct ib_device *dev;
1067	unsigned long index;
1068	int ret = 0;
1069
1070	down_read(&devices_rwsem);
1071	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1072		unsigned long net_index = 0;
1073
1074		/* Hold nets_rwsem so that any other thread modifying this
1075		 * system param can sync with this thread.
1076		 */
1077		down_read(&rdma_nets_rwsem);
1078		xa_for_each (&rdma_nets, net_index, rnet) {
1079			ret = add_one_compat_dev(dev, rnet);
1080			if (ret)
1081				break;
1082		}
1083		up_read(&rdma_nets_rwsem);
1084	}
1085	up_read(&devices_rwsem);
1086	if (ret)
1087		remove_all_compat_devs();
1088	return ret;
1089}
1090
1091int rdma_compatdev_set(u8 enable)
1092{
1093	struct rdma_dev_net *rnet;
1094	unsigned long index;
1095	int ret = 0;
1096
1097	down_write(&rdma_nets_rwsem);
1098	if (ib_devices_shared_netns == enable) {
1099		up_write(&rdma_nets_rwsem);
1100		return 0;
1101	}
1102
1103	/* enable/disable of compat devices is not supported
1104	 * when more than default init_net exists.
1105	 */
1106	xa_for_each (&rdma_nets, index, rnet) {
1107		ret++;
1108		break;
1109	}
1110	if (!ret)
1111		ib_devices_shared_netns = enable;
1112	up_write(&rdma_nets_rwsem);
1113	if (ret)
1114		return -EBUSY;
1115
1116	if (enable)
1117		ret = add_all_compat_devs();
1118	else
1119		remove_all_compat_devs();
1120	return ret;
1121}
1122
1123static void rdma_dev_exit_net(struct net *net)
1124{
1125	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1126	struct ib_device *dev;
1127	unsigned long index;
1128	int ret;
1129
1130	down_write(&rdma_nets_rwsem);
1131	/*
1132	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1133	 */
1134	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1135	WARN_ON(ret);
1136	up_write(&rdma_nets_rwsem);
1137
1138	down_read(&devices_rwsem);
1139	xa_for_each (&devices, index, dev) {
1140		get_device(&dev->dev);
1141		/*
1142		 * Release the devices_rwsem so that pontentially blocking
1143		 * device_del, doesn't hold the devices_rwsem for too long.
1144		 */
1145		up_read(&devices_rwsem);
1146
1147		remove_one_compat_dev(dev, rnet->id);
1148
1149		/*
1150		 * If the real device is in the NS then move it back to init.
1151		 */
1152		rdma_dev_change_netns(dev, net, &init_net);
1153
1154		put_device(&dev->dev);
1155		down_read(&devices_rwsem);
1156	}
1157	up_read(&devices_rwsem);
1158
1159	rdma_nl_net_exit(rnet);
1160	xa_erase(&rdma_nets, rnet->id);
1161}
1162
1163static __net_init int rdma_dev_init_net(struct net *net)
1164{
1165	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1166	unsigned long index;
1167	struct ib_device *dev;
1168	int ret;
1169
1170	write_pnet(&rnet->net, net);
1171
1172	ret = rdma_nl_net_init(rnet);
1173	if (ret)
1174		return ret;
1175
1176	/* No need to create any compat devices in default init_net. */
1177	if (net_eq(net, &init_net))
1178		return 0;
1179
1180	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1181	if (ret) {
1182		rdma_nl_net_exit(rnet);
1183		return ret;
1184	}
1185
1186	down_read(&devices_rwsem);
1187	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1188		/* Hold nets_rwsem so that netlink command cannot change
1189		 * system configuration for device sharing mode.
1190		 */
1191		down_read(&rdma_nets_rwsem);
1192		ret = add_one_compat_dev(dev, rnet);
1193		up_read(&rdma_nets_rwsem);
1194		if (ret)
1195			break;
1196	}
1197	up_read(&devices_rwsem);
1198
1199	if (ret)
1200		rdma_dev_exit_net(net);
1201
1202	return ret;
1203}
1204
1205/*
1206 * Assign the unique string device name and the unique device index. This is
1207 * undone by ib_dealloc_device.
1208 */
1209static int assign_name(struct ib_device *device, const char *name)
1210{
1211	static u32 last_id;
1212	int ret;
1213
1214	down_write(&devices_rwsem);
1215	/* Assign a unique name to the device */
1216	if (strchr(name, '%'))
1217		ret = alloc_name(device, name);
1218	else
1219		ret = dev_set_name(&device->dev, name);
1220	if (ret)
1221		goto out;
1222
1223	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1224		ret = -ENFILE;
1225		goto out;
1226	}
1227	strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1228
1229	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1230			&last_id, GFP_KERNEL);
1231	if (ret > 0)
1232		ret = 0;
1233
1234out:
1235	up_write(&devices_rwsem);
1236	return ret;
1237}
1238
1239/*
1240 * setup_device() allocates memory and sets up data that requires calling the
1241 * device ops, this is the only reason these actions are not done during
1242 * ib_alloc_device. It is undone by ib_dealloc_device().
1243 */
1244static int setup_device(struct ib_device *device)
1245{
1246	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1247	int ret;
1248
1249	ib_device_check_mandatory(device);
1250
1251	ret = setup_port_data(device);
1252	if (ret) {
1253		dev_warn(&device->dev, "Couldn't create per-port data\n");
1254		return ret;
1255	}
1256
1257	memset(&device->attrs, 0, sizeof(device->attrs));
1258	ret = device->ops.query_device(device, &device->attrs, &uhw);
1259	if (ret) {
1260		dev_warn(&device->dev,
1261			 "Couldn't query the device attributes\n");
1262		return ret;
1263	}
1264
1265	return 0;
1266}
1267
1268static void disable_device(struct ib_device *device)
1269{
1270	u32 cid;
1271
1272	WARN_ON(!refcount_read(&device->refcount));
1273
1274	down_write(&devices_rwsem);
1275	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1276	up_write(&devices_rwsem);
1277
1278	/*
1279	 * Remove clients in LIFO order, see assign_client_id. This could be
1280	 * more efficient if xarray learns to reverse iterate. Since no new
1281	 * clients can be added to this ib_device past this point we only need
1282	 * the maximum possible client_id value here.
1283	 */
1284	down_read(&clients_rwsem);
1285	cid = highest_client_id;
1286	up_read(&clients_rwsem);
1287	while (cid) {
1288		cid--;
1289		remove_client_context(device, cid);
1290	}
1291
1292	ib_cq_pool_cleanup(device);
1293
1294	/* Pairs with refcount_set in enable_device */
1295	ib_device_put(device);
1296	wait_for_completion(&device->unreg_completion);
1297
1298	/*
1299	 * compat devices must be removed after device refcount drops to zero.
1300	 * Otherwise init_net() may add more compatdevs after removing compat
1301	 * devices and before device is disabled.
1302	 */
1303	remove_compat_devs(device);
1304}
1305
1306/*
1307 * An enabled device is visible to all clients and to all the public facing
1308 * APIs that return a device pointer. This always returns with a new get, even
1309 * if it fails.
1310 */
1311static int enable_device_and_get(struct ib_device *device)
1312{
1313	struct ib_client *client;
1314	unsigned long index;
1315	int ret = 0;
1316
1317	/*
1318	 * One ref belongs to the xa and the other belongs to this
1319	 * thread. This is needed to guard against parallel unregistration.
1320	 */
1321	refcount_set(&device->refcount, 2);
1322	down_write(&devices_rwsem);
1323	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1324
1325	/*
1326	 * By using downgrade_write() we ensure that no other thread can clear
1327	 * DEVICE_REGISTERED while we are completing the client setup.
1328	 */
1329	downgrade_write(&devices_rwsem);
1330
1331	if (device->ops.enable_driver) {
1332		ret = device->ops.enable_driver(device);
1333		if (ret)
1334			goto out;
1335	}
1336
1337	down_read(&clients_rwsem);
1338	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1339		ret = add_client_context(device, client);
1340		if (ret)
1341			break;
1342	}
1343	up_read(&clients_rwsem);
1344	if (!ret)
1345		ret = add_compat_devs(device);
1346out:
1347	up_read(&devices_rwsem);
1348	return ret;
1349}
1350
1351static void prevent_dealloc_device(struct ib_device *ib_dev)
1352{
1353}
1354
1355static void ib_device_notify_register(struct ib_device *device)
1356{
1357	struct net_device *netdev;
1358	u32 port;
1359	int ret;
1360
1361	ret = rdma_nl_notify_event(device, 0, RDMA_REGISTER_EVENT);
1362	if (ret)
1363		return;
1364
1365	rdma_for_each_port(device, port) {
1366		netdev = ib_device_get_netdev(device, port);
1367		if (!netdev)
1368			continue;
1369
1370		ret = rdma_nl_notify_event(device, port,
1371					   RDMA_NETDEV_ATTACH_EVENT);
1372		dev_put(netdev);
1373		if (ret)
1374			return;
1375	}
1376}
1377
1378/**
1379 * ib_register_device - Register an IB device with IB core
1380 * @device: Device to register
1381 * @name: unique string device name. This may include a '%' which will
1382 * 	  cause a unique index to be added to the passed device name.
1383 * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1384 *	        device will be used. In this case the caller should fully
1385 *		setup the ibdev for DMA. This usually means using dma_virt_ops.
1386 *
1387 * Low-level drivers use ib_register_device() to register their
1388 * devices with the IB core.  All registered clients will receive a
1389 * callback for each device that is added. @device must be allocated
1390 * with ib_alloc_device().
1391 *
1392 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1393 * asynchronously then the device pointer may become freed as soon as this
1394 * function returns.
1395 */
1396int ib_register_device(struct ib_device *device, const char *name,
1397		       struct device *dma_device)
1398{
1399	int ret;
1400
1401	ret = assign_name(device, name);
1402	if (ret)
1403		return ret;
1404
1405	/*
1406	 * If the caller does not provide a DMA capable device then the IB core
1407	 * will set up ib_sge and scatterlist structures that stash the kernel
1408	 * virtual address into the address field.
1409	 */
1410	WARN_ON(dma_device && !dma_device->dma_parms);
1411	device->dma_device = dma_device;
1412
1413	ret = setup_device(device);
1414	if (ret)
1415		return ret;
1416
1417	ret = ib_cache_setup_one(device);
1418	if (ret) {
1419		dev_warn(&device->dev,
1420			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1421		return ret;
1422	}
1423
1424	device->groups[0] = &ib_dev_attr_group;
1425	device->groups[1] = device->ops.device_group;
1426	ret = ib_setup_device_attrs(device);
1427	if (ret)
1428		goto cache_cleanup;
1429
1430	ib_device_register_rdmacg(device);
1431
1432	rdma_counter_init(device);
1433
1434	/*
1435	 * Ensure that ADD uevent is not fired because it
1436	 * is too early amd device is not initialized yet.
1437	 */
1438	dev_set_uevent_suppress(&device->dev, true);
1439	ret = device_add(&device->dev);
1440	if (ret)
1441		goto cg_cleanup;
1442
1443	ret = ib_setup_port_attrs(&device->coredev);
1444	if (ret) {
1445		dev_warn(&device->dev,
1446			 "Couldn't register device with driver model\n");
1447		goto dev_cleanup;
1448	}
1449
1450	ret = enable_device_and_get(device);
1451	if (ret) {
1452		void (*dealloc_fn)(struct ib_device *);
1453
1454		/*
1455		 * If we hit this error flow then we don't want to
1456		 * automatically dealloc the device since the caller is
1457		 * expected to call ib_dealloc_device() after
1458		 * ib_register_device() fails. This is tricky due to the
1459		 * possibility for a parallel unregistration along with this
1460		 * error flow. Since we have a refcount here we know any
1461		 * parallel flow is stopped in disable_device and will see the
1462		 * special dealloc_driver pointer, causing the responsibility to
1463		 * ib_dealloc_device() to revert back to this thread.
1464		 */
1465		dealloc_fn = device->ops.dealloc_driver;
1466		device->ops.dealloc_driver = prevent_dealloc_device;
1467		ib_device_put(device);
1468		__ib_unregister_device(device);
1469		device->ops.dealloc_driver = dealloc_fn;
1470		dev_set_uevent_suppress(&device->dev, false);
1471		return ret;
1472	}
1473	dev_set_uevent_suppress(&device->dev, false);
1474	/* Mark for userspace that device is ready */
1475	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1476
1477	ib_device_notify_register(device);
1478	ib_device_put(device);
1479
1480	return 0;
1481
1482dev_cleanup:
1483	device_del(&device->dev);
1484cg_cleanup:
1485	dev_set_uevent_suppress(&device->dev, false);
1486	ib_device_unregister_rdmacg(device);
1487cache_cleanup:
1488	ib_cache_cleanup_one(device);
1489	return ret;
1490}
1491EXPORT_SYMBOL(ib_register_device);
1492
1493/* Callers must hold a get on the device. */
1494static void __ib_unregister_device(struct ib_device *ib_dev)
1495{
1496	struct ib_device *sub, *tmp;
1497
1498	mutex_lock(&ib_dev->subdev_lock);
1499	list_for_each_entry_safe_reverse(sub, tmp,
1500					 &ib_dev->subdev_list_head,
1501					 subdev_list) {
1502		list_del(&sub->subdev_list);
1503		ib_dev->ops.del_sub_dev(sub);
1504		ib_device_put(ib_dev);
1505	}
1506	mutex_unlock(&ib_dev->subdev_lock);
1507
1508	/*
1509	 * We have a registration lock so that all the calls to unregister are
1510	 * fully fenced, once any unregister returns the device is truely
1511	 * unregistered even if multiple callers are unregistering it at the
1512	 * same time. This also interacts with the registration flow and
1513	 * provides sane semantics if register and unregister are racing.
1514	 */
1515	mutex_lock(&ib_dev->unregistration_lock);
1516	if (!refcount_read(&ib_dev->refcount))
1517		goto out;
1518
1519	disable_device(ib_dev);
1520	rdma_nl_notify_event(ib_dev, 0, RDMA_UNREGISTER_EVENT);
1521
1522	/* Expedite removing unregistered pointers from the hash table */
1523	free_netdevs(ib_dev);
1524
1525	ib_free_port_attrs(&ib_dev->coredev);
1526	device_del(&ib_dev->dev);
1527	ib_device_unregister_rdmacg(ib_dev);
1528	ib_cache_cleanup_one(ib_dev);
1529
1530	/*
1531	 * Drivers using the new flow may not call ib_dealloc_device except
1532	 * in error unwind prior to registration success.
1533	 */
1534	if (ib_dev->ops.dealloc_driver &&
1535	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1536		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1537		ib_dealloc_device(ib_dev);
1538	}
1539out:
1540	mutex_unlock(&ib_dev->unregistration_lock);
1541}
1542
1543/**
1544 * ib_unregister_device - Unregister an IB device
1545 * @ib_dev: The device to unregister
1546 *
1547 * Unregister an IB device.  All clients will receive a remove callback.
1548 *
1549 * Callers should call this routine only once, and protect against races with
1550 * registration. Typically it should only be called as part of a remove
1551 * callback in an implementation of driver core's struct device_driver and
1552 * related.
1553 *
1554 * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1555 * this function.
1556 */
1557void ib_unregister_device(struct ib_device *ib_dev)
1558{
1559	get_device(&ib_dev->dev);
1560	__ib_unregister_device(ib_dev);
1561	put_device(&ib_dev->dev);
1562}
1563EXPORT_SYMBOL(ib_unregister_device);
1564
1565/**
1566 * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1567 * @ib_dev: The device to unregister
1568 *
1569 * This is the same as ib_unregister_device(), except it includes an internal
1570 * ib_device_put() that should match a 'get' obtained by the caller.
1571 *
1572 * It is safe to call this routine concurrently from multiple threads while
1573 * holding the 'get'. When the function returns the device is fully
1574 * unregistered.
1575 *
1576 * Drivers using this flow MUST use the driver_unregister callback to clean up
1577 * their resources associated with the device and dealloc it.
1578 */
1579void ib_unregister_device_and_put(struct ib_device *ib_dev)
1580{
1581	WARN_ON(!ib_dev->ops.dealloc_driver);
1582	get_device(&ib_dev->dev);
1583	ib_device_put(ib_dev);
1584	__ib_unregister_device(ib_dev);
1585	put_device(&ib_dev->dev);
1586}
1587EXPORT_SYMBOL(ib_unregister_device_and_put);
1588
1589/**
1590 * ib_unregister_driver - Unregister all IB devices for a driver
1591 * @driver_id: The driver to unregister
1592 *
1593 * This implements a fence for device unregistration. It only returns once all
1594 * devices associated with the driver_id have fully completed their
1595 * unregistration and returned from ib_unregister_device*().
1596 *
1597 * If device's are not yet unregistered it goes ahead and starts unregistering
1598 * them.
1599 *
1600 * This does not block creation of new devices with the given driver_id, that
1601 * is the responsibility of the caller.
1602 */
1603void ib_unregister_driver(enum rdma_driver_id driver_id)
1604{
1605	struct ib_device *ib_dev;
1606	unsigned long index;
1607
1608	down_read(&devices_rwsem);
1609	xa_for_each (&devices, index, ib_dev) {
1610		if (ib_dev->ops.driver_id != driver_id)
1611			continue;
1612
1613		get_device(&ib_dev->dev);
1614		up_read(&devices_rwsem);
1615
1616		WARN_ON(!ib_dev->ops.dealloc_driver);
1617		__ib_unregister_device(ib_dev);
1618
1619		put_device(&ib_dev->dev);
1620		down_read(&devices_rwsem);
1621	}
1622	up_read(&devices_rwsem);
1623}
1624EXPORT_SYMBOL(ib_unregister_driver);
1625
1626static void ib_unregister_work(struct work_struct *work)
1627{
1628	struct ib_device *ib_dev =
1629		container_of(work, struct ib_device, unregistration_work);
1630
1631	__ib_unregister_device(ib_dev);
1632	put_device(&ib_dev->dev);
1633}
1634
1635/**
1636 * ib_unregister_device_queued - Unregister a device using a work queue
1637 * @ib_dev: The device to unregister
1638 *
1639 * This schedules an asynchronous unregistration using a WQ for the device. A
1640 * driver should use this to avoid holding locks while doing unregistration,
1641 * such as holding the RTNL lock.
1642 *
1643 * Drivers using this API must use ib_unregister_driver before module unload
1644 * to ensure that all scheduled unregistrations have completed.
1645 */
1646void ib_unregister_device_queued(struct ib_device *ib_dev)
1647{
1648	WARN_ON(!refcount_read(&ib_dev->refcount));
1649	WARN_ON(!ib_dev->ops.dealloc_driver);
1650	get_device(&ib_dev->dev);
1651	if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work))
1652		put_device(&ib_dev->dev);
1653}
1654EXPORT_SYMBOL(ib_unregister_device_queued);
1655
1656/*
1657 * The caller must pass in a device that has the kref held and the refcount
1658 * released. If the device is in cur_net and still registered then it is moved
1659 * into net.
1660 */
1661static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1662				 struct net *net)
1663{
1664	int ret2 = -EINVAL;
1665	int ret;
1666
1667	mutex_lock(&device->unregistration_lock);
1668
1669	/*
1670	 * If a device not under ib_device_get() or if the unregistration_lock
1671	 * is not held, the namespace can be changed, or it can be unregistered.
1672	 * Check again under the lock.
1673	 */
1674	if (refcount_read(&device->refcount) == 0 ||
1675	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1676		ret = -ENODEV;
1677		goto out;
1678	}
1679
1680	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1681	disable_device(device);
1682
1683	/*
1684	 * At this point no one can be using the device, so it is safe to
1685	 * change the namespace.
1686	 */
1687	write_pnet(&device->coredev.rdma_net, net);
1688
1689	down_read(&devices_rwsem);
1690	/*
1691	 * Currently rdma devices are system wide unique. So the device name
1692	 * is guaranteed free in the new namespace. Publish the new namespace
1693	 * at the sysfs level.
1694	 */
1695	ret = device_rename(&device->dev, dev_name(&device->dev));
1696	up_read(&devices_rwsem);
1697	if (ret) {
1698		dev_warn(&device->dev,
1699			 "%s: Couldn't rename device after namespace change\n",
1700			 __func__);
1701		/* Try and put things back and re-enable the device */
1702		write_pnet(&device->coredev.rdma_net, cur_net);
1703	}
1704
1705	ret2 = enable_device_and_get(device);
1706	if (ret2) {
1707		/*
1708		 * This shouldn't really happen, but if it does, let the user
1709		 * retry at later point. So don't disable the device.
1710		 */
1711		dev_warn(&device->dev,
1712			 "%s: Couldn't re-enable device after namespace change\n",
1713			 __func__);
1714	}
1715	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1716
1717	ib_device_put(device);
1718out:
1719	mutex_unlock(&device->unregistration_lock);
1720	if (ret)
1721		return ret;
1722	return ret2;
1723}
1724
1725int ib_device_set_netns_put(struct sk_buff *skb,
1726			    struct ib_device *dev, u32 ns_fd)
1727{
1728	struct net *net;
1729	int ret;
1730
1731	net = get_net_ns_by_fd(ns_fd);
1732	if (IS_ERR(net)) {
1733		ret = PTR_ERR(net);
1734		goto net_err;
1735	}
1736
1737	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1738		ret = -EPERM;
1739		goto ns_err;
1740	}
1741
1742	/*
1743	 * All the ib_clients, including uverbs, are reset when the namespace is
1744	 * changed and this cannot be blocked waiting for userspace to do
1745	 * something, so disassociation is mandatory.
1746	 */
1747	if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1748		ret = -EOPNOTSUPP;
1749		goto ns_err;
1750	}
1751
1752	get_device(&dev->dev);
1753	ib_device_put(dev);
1754	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1755	put_device(&dev->dev);
1756
1757	put_net(net);
1758	return ret;
1759
1760ns_err:
1761	put_net(net);
1762net_err:
1763	ib_device_put(dev);
1764	return ret;
1765}
1766
1767static struct pernet_operations rdma_dev_net_ops = {
1768	.init = rdma_dev_init_net,
1769	.exit = rdma_dev_exit_net,
1770	.id = &rdma_dev_net_id,
1771	.size = sizeof(struct rdma_dev_net),
1772};
1773
1774static int assign_client_id(struct ib_client *client)
1775{
1776	int ret;
1777
1778	lockdep_assert_held(&clients_rwsem);
1779	/*
1780	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1781	 * achieve this we assign client_ids so they are sorted in
1782	 * registration order.
1783	 */
1784	client->client_id = highest_client_id;
1785	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1786	if (ret)
1787		return ret;
1788
1789	highest_client_id++;
1790	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1791	return 0;
 
 
 
1792}
1793
1794static void remove_client_id(struct ib_client *client)
1795{
1796	down_write(&clients_rwsem);
1797	xa_erase(&clients, client->client_id);
1798	for (; highest_client_id; highest_client_id--)
1799		if (xa_load(&clients, highest_client_id - 1))
1800			break;
1801	up_write(&clients_rwsem);
1802}
1803
1804/**
1805 * ib_register_client - Register an IB client
1806 * @client:Client to register
1807 *
1808 * Upper level users of the IB drivers can use ib_register_client() to
1809 * register callbacks for IB device addition and removal.  When an IB
1810 * device is added, each registered client's add method will be called
1811 * (in the order the clients were registered), and when a device is
1812 * removed, each client's remove method will be called (in the reverse
1813 * order that clients were registered).  In addition, when
1814 * ib_register_client() is called, the client will receive an add
1815 * callback for all devices already registered.
1816 */
1817int ib_register_client(struct ib_client *client)
1818{
1819	struct ib_device *device;
1820	unsigned long index;
1821	bool need_unreg = false;
1822	int ret;
1823
1824	refcount_set(&client->uses, 1);
1825	init_completion(&client->uses_zero);
1826
1827	/*
1828	 * The devices_rwsem is held in write mode to ensure that a racing
1829	 * ib_register_device() sees a consisent view of clients and devices.
1830	 */
1831	down_write(&devices_rwsem);
1832	down_write(&clients_rwsem);
1833	ret = assign_client_id(client);
1834	if (ret)
1835		goto out;
1836
1837	need_unreg = true;
1838	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1839		ret = add_client_context(device, client);
1840		if (ret)
1841			goto out;
 
 
 
1842	}
1843	ret = 0;
1844out:
1845	up_write(&clients_rwsem);
1846	up_write(&devices_rwsem);
1847	if (need_unreg && ret)
1848		ib_unregister_client(client);
1849	return ret;
1850}
1851EXPORT_SYMBOL(ib_register_client);
1852
1853/**
1854 * ib_unregister_client - Unregister an IB client
1855 * @client:Client to unregister
1856 *
1857 * Upper level users use ib_unregister_client() to remove their client
1858 * registration.  When ib_unregister_client() is called, the client
1859 * will receive a remove callback for each IB device still registered.
1860 *
1861 * This is a full fence, once it returns no client callbacks will be called,
1862 * or are running in another thread.
1863 */
1864void ib_unregister_client(struct ib_client *client)
1865{
1866	struct ib_device *device;
1867	unsigned long index;
1868
1869	down_write(&clients_rwsem);
1870	ib_client_put(client);
1871	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1872	up_write(&clients_rwsem);
1873
1874	/* We do not want to have locks while calling client->remove() */
1875	rcu_read_lock();
1876	xa_for_each (&devices, index, device) {
1877		if (!ib_device_try_get(device))
1878			continue;
1879		rcu_read_unlock();
1880
1881		remove_client_context(device, client->client_id);
1882
1883		ib_device_put(device);
1884		rcu_read_lock();
1885	}
1886	rcu_read_unlock();
1887
1888	/*
1889	 * remove_client_context() is not a fence, it can return even though a
1890	 * removal is ongoing. Wait until all removals are completed.
1891	 */
1892	wait_for_completion(&client->uses_zero);
1893	remove_client_id(client);
1894}
1895EXPORT_SYMBOL(ib_unregister_client);
1896
1897static int __ib_get_global_client_nl_info(const char *client_name,
1898					  struct ib_client_nl_info *res)
1899{
1900	struct ib_client *client;
1901	unsigned long index;
1902	int ret = -ENOENT;
1903
1904	down_read(&clients_rwsem);
1905	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1906		if (strcmp(client->name, client_name) != 0)
1907			continue;
1908		if (!client->get_global_nl_info) {
1909			ret = -EOPNOTSUPP;
1910			break;
1911		}
1912		ret = client->get_global_nl_info(res);
1913		if (WARN_ON(ret == -ENOENT))
1914			ret = -EINVAL;
1915		if (!ret && res->cdev)
1916			get_device(res->cdev);
1917		break;
1918	}
1919	up_read(&clients_rwsem);
1920	return ret;
1921}
1922
1923static int __ib_get_client_nl_info(struct ib_device *ibdev,
1924				   const char *client_name,
1925				   struct ib_client_nl_info *res)
1926{
1927	unsigned long index;
1928	void *client_data;
1929	int ret = -ENOENT;
1930
1931	down_read(&ibdev->client_data_rwsem);
1932	xan_for_each_marked (&ibdev->client_data, index, client_data,
1933			     CLIENT_DATA_REGISTERED) {
1934		struct ib_client *client = xa_load(&clients, index);
1935
1936		if (!client || strcmp(client->name, client_name) != 0)
1937			continue;
1938		if (!client->get_nl_info) {
1939			ret = -EOPNOTSUPP;
1940			break;
1941		}
1942		ret = client->get_nl_info(ibdev, client_data, res);
1943		if (WARN_ON(ret == -ENOENT))
1944			ret = -EINVAL;
1945
1946		/*
1947		 * The cdev is guaranteed valid as long as we are inside the
1948		 * client_data_rwsem as remove_one can't be called. Keep it
1949		 * valid for the caller.
1950		 */
1951		if (!ret && res->cdev)
1952			get_device(res->cdev);
1953		break;
1954	}
1955	up_read(&ibdev->client_data_rwsem);
1956
1957	return ret;
1958}
1959
1960/**
1961 * ib_get_client_nl_info - Fetch the nl_info from a client
1962 * @ibdev: IB device
1963 * @client_name: Name of the client
1964 * @res: Result of the query
1965 */
1966int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1967			  struct ib_client_nl_info *res)
1968{
1969	int ret;
1970
1971	if (ibdev)
1972		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1973	else
1974		ret = __ib_get_global_client_nl_info(client_name, res);
1975#ifdef CONFIG_MODULES
1976	if (ret == -ENOENT) {
1977		request_module("rdma-client-%s", client_name);
1978		if (ibdev)
1979			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1980		else
1981			ret = __ib_get_global_client_nl_info(client_name, res);
1982	}
1983#endif
1984	if (ret) {
1985		if (ret == -ENOENT)
1986			return -EOPNOTSUPP;
1987		return ret;
1988	}
1989
1990	if (WARN_ON(!res->cdev))
1991		return -EINVAL;
1992	return 0;
1993}
1994
1995/**
1996 * ib_set_client_data - Set IB client context
1997 * @device:Device to set context for
1998 * @client:Client to set context for
1999 * @data:Context to set
2000 *
2001 * ib_set_client_data() sets client context data that can be retrieved with
2002 * ib_get_client_data(). This can only be called while the client is
2003 * registered to the device, once the ib_client remove() callback returns this
2004 * cannot be called.
2005 */
2006void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2007			void *data)
2008{
2009	void *rc;
2010
2011	if (WARN_ON(IS_ERR(data)))
2012		data = NULL;
2013
2014	rc = xa_store(&device->client_data, client->client_id, data,
2015		      GFP_KERNEL);
2016	WARN_ON(xa_is_err(rc));
2017}
2018EXPORT_SYMBOL(ib_set_client_data);
2019
2020/**
2021 * ib_register_event_handler - Register an IB event handler
2022 * @event_handler:Handler to register
2023 *
2024 * ib_register_event_handler() registers an event handler that will be
2025 * called back when asynchronous IB events occur (as defined in
2026 * chapter 11 of the InfiniBand Architecture Specification). This
2027 * callback occurs in workqueue context.
2028 */
2029void ib_register_event_handler(struct ib_event_handler *event_handler)
2030{
2031	down_write(&event_handler->device->event_handler_rwsem);
2032	list_add_tail(&event_handler->list,
2033		      &event_handler->device->event_handler_list);
2034	up_write(&event_handler->device->event_handler_rwsem);
2035}
2036EXPORT_SYMBOL(ib_register_event_handler);
2037
2038/**
2039 * ib_unregister_event_handler - Unregister an event handler
2040 * @event_handler:Handler to unregister
2041 *
2042 * Unregister an event handler registered with
2043 * ib_register_event_handler().
2044 */
2045void ib_unregister_event_handler(struct ib_event_handler *event_handler)
2046{
2047	down_write(&event_handler->device->event_handler_rwsem);
2048	list_del(&event_handler->list);
2049	up_write(&event_handler->device->event_handler_rwsem);
2050}
2051EXPORT_SYMBOL(ib_unregister_event_handler);
2052
2053void ib_dispatch_event_clients(struct ib_event *event)
2054{
2055	struct ib_event_handler *handler;
2056
2057	down_read(&event->device->event_handler_rwsem);
2058
2059	list_for_each_entry(handler, &event->device->event_handler_list, list)
2060		handler->handler(handler, event);
2061
2062	up_read(&event->device->event_handler_rwsem);
2063}
2064
2065static int iw_query_port(struct ib_device *device,
2066			   u32 port_num,
2067			   struct ib_port_attr *port_attr)
2068{
2069	struct in_device *inetdev;
2070	struct net_device *netdev;
2071
2072	memset(port_attr, 0, sizeof(*port_attr));
2073
2074	netdev = ib_device_get_netdev(device, port_num);
2075	if (!netdev)
2076		return -ENODEV;
2077
2078	port_attr->max_mtu = IB_MTU_4096;
2079	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2080
2081	if (!netif_carrier_ok(netdev)) {
2082		port_attr->state = IB_PORT_DOWN;
2083		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2084	} else {
2085		rcu_read_lock();
2086		inetdev = __in_dev_get_rcu(netdev);
2087
2088		if (inetdev && inetdev->ifa_list) {
2089			port_attr->state = IB_PORT_ACTIVE;
2090			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2091		} else {
2092			port_attr->state = IB_PORT_INIT;
2093			port_attr->phys_state =
2094				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2095		}
2096
2097		rcu_read_unlock();
2098	}
2099
2100	dev_put(netdev);
2101	return device->ops.query_port(device, port_num, port_attr);
2102}
2103
2104static int __ib_query_port(struct ib_device *device,
2105			   u32 port_num,
2106			   struct ib_port_attr *port_attr)
2107{
2108	int err;
2109
2110	memset(port_attr, 0, sizeof(*port_attr));
2111
2112	err = device->ops.query_port(device, port_num, port_attr);
2113	if (err || port_attr->subnet_prefix)
2114		return err;
2115
2116	if (rdma_port_get_link_layer(device, port_num) !=
2117	    IB_LINK_LAYER_INFINIBAND)
2118		return 0;
2119
2120	ib_get_cached_subnet_prefix(device, port_num,
2121				    &port_attr->subnet_prefix);
2122	return 0;
2123}
2124
2125/**
2126 * ib_query_port - Query IB port attributes
2127 * @device:Device to query
2128 * @port_num:Port number to query
2129 * @port_attr:Port attributes
2130 *
2131 * ib_query_port() returns the attributes of a port through the
2132 * @port_attr pointer.
2133 */
2134int ib_query_port(struct ib_device *device,
2135		  u32 port_num,
2136		  struct ib_port_attr *port_attr)
2137{
2138	if (!rdma_is_port_valid(device, port_num))
2139		return -EINVAL;
2140
2141	if (rdma_protocol_iwarp(device, port_num))
2142		return iw_query_port(device, port_num, port_attr);
2143	else
2144		return __ib_query_port(device, port_num, port_attr);
2145}
2146EXPORT_SYMBOL(ib_query_port);
2147
2148static void add_ndev_hash(struct ib_port_data *pdata)
2149{
2150	unsigned long flags;
2151
2152	might_sleep();
2153
2154	spin_lock_irqsave(&ndev_hash_lock, flags);
2155	if (hash_hashed(&pdata->ndev_hash_link)) {
2156		hash_del_rcu(&pdata->ndev_hash_link);
2157		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2158		/*
2159		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2160		 * grace period
2161		 */
2162		synchronize_rcu();
2163		spin_lock_irqsave(&ndev_hash_lock, flags);
2164	}
2165	if (pdata->netdev)
2166		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2167			     (uintptr_t)pdata->netdev);
2168	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2169}
2170
2171/**
2172 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2173 * @ib_dev: Device to modify
2174 * @ndev: net_device to affiliate, may be NULL
2175 * @port: IB port the net_device is connected to
2176 *
2177 * Drivers should use this to link the ib_device to a netdev so the netdev
2178 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2179 * affiliated with any port.
2180 *
2181 * The caller must ensure that the given ndev is not unregistered or
2182 * unregistering, and that either the ib_device is unregistered or
2183 * ib_device_set_netdev() is called with NULL when the ndev sends a
2184 * NETDEV_UNREGISTER event.
2185 */
2186int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2187			 u32 port)
2188{
2189	enum rdma_nl_notify_event_type etype;
2190	struct net_device *old_ndev;
2191	struct ib_port_data *pdata;
2192	unsigned long flags;
2193	int ret;
2194
2195	if (!rdma_is_port_valid(ib_dev, port))
2196		return -EINVAL;
2197
2198	/*
2199	 * Drivers wish to call this before ib_register_driver, so we have to
2200	 * setup the port data early.
2201	 */
2202	ret = alloc_port_data(ib_dev);
2203	if (ret)
2204		return ret;
2205
 
 
 
2206	pdata = &ib_dev->port_data[port];
2207	spin_lock_irqsave(&pdata->netdev_lock, flags);
2208	old_ndev = rcu_dereference_protected(
2209		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2210	if (old_ndev == ndev) {
2211		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2212		return 0;
2213	}
2214
 
 
 
 
2215	rcu_assign_pointer(pdata->netdev, ndev);
2216	netdev_put(old_ndev, &pdata->netdev_tracker);
2217	netdev_hold(ndev, &pdata->netdev_tracker, GFP_ATOMIC);
2218	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2219
2220	add_ndev_hash(pdata);
2221
2222	/* Make sure that the device is registered before we send events */
2223	if (xa_load(&devices, ib_dev->index) != ib_dev)
2224		return 0;
2225
2226	etype = ndev ? RDMA_NETDEV_ATTACH_EVENT : RDMA_NETDEV_DETACH_EVENT;
2227	rdma_nl_notify_event(ib_dev, port, etype);
2228
2229	return 0;
2230}
2231EXPORT_SYMBOL(ib_device_set_netdev);
2232
2233static void free_netdevs(struct ib_device *ib_dev)
2234{
2235	unsigned long flags;
2236	u32 port;
2237
2238	if (!ib_dev->port_data)
2239		return;
2240
2241	rdma_for_each_port (ib_dev, port) {
2242		struct ib_port_data *pdata = &ib_dev->port_data[port];
2243		struct net_device *ndev;
2244
2245		spin_lock_irqsave(&pdata->netdev_lock, flags);
2246		ndev = rcu_dereference_protected(
2247			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2248		if (ndev) {
2249			spin_lock(&ndev_hash_lock);
2250			hash_del_rcu(&pdata->ndev_hash_link);
2251			spin_unlock(&ndev_hash_lock);
2252
2253			/*
2254			 * If this is the last dev_put there is still a
2255			 * synchronize_rcu before the netdev is kfreed, so we
2256			 * can continue to rely on unlocked pointer
2257			 * comparisons after the put
2258			 */
2259			rcu_assign_pointer(pdata->netdev, NULL);
2260			netdev_put(ndev, &pdata->netdev_tracker);
2261		}
2262		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2263	}
2264}
2265
2266struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2267					u32 port)
2268{
2269	struct ib_port_data *pdata;
2270	struct net_device *res;
2271
2272	if (!rdma_is_port_valid(ib_dev, port))
2273		return NULL;
2274
2275	if (!ib_dev->port_data)
2276		return NULL;
2277
2278	pdata = &ib_dev->port_data[port];
2279
2280	/*
2281	 * New drivers should use ib_device_set_netdev() not the legacy
2282	 * get_netdev().
2283	 */
2284	if (ib_dev->ops.get_netdev)
2285		res = ib_dev->ops.get_netdev(ib_dev, port);
2286	else {
2287		spin_lock(&pdata->netdev_lock);
2288		res = rcu_dereference_protected(
2289			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2290		dev_hold(res);
 
2291		spin_unlock(&pdata->netdev_lock);
2292	}
2293
 
 
 
 
 
 
 
 
 
2294	return res;
2295}
2296EXPORT_SYMBOL(ib_device_get_netdev);
2297
2298/**
2299 * ib_device_get_by_netdev - Find an IB device associated with a netdev
2300 * @ndev: netdev to locate
2301 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2302 *
2303 * Find and hold an ib_device that is associated with a netdev via
2304 * ib_device_set_netdev(). The caller must call ib_device_put() on the
2305 * returned pointer.
2306 */
2307struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2308					  enum rdma_driver_id driver_id)
2309{
2310	struct ib_device *res = NULL;
2311	struct ib_port_data *cur;
2312
2313	rcu_read_lock();
2314	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2315				    (uintptr_t)ndev) {
2316		if (rcu_access_pointer(cur->netdev) == ndev &&
2317		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2318		     cur->ib_dev->ops.driver_id == driver_id) &&
2319		    ib_device_try_get(cur->ib_dev)) {
2320			res = cur->ib_dev;
2321			break;
2322		}
2323	}
2324	rcu_read_unlock();
2325
2326	return res;
2327}
2328EXPORT_SYMBOL(ib_device_get_by_netdev);
2329
2330/**
2331 * ib_enum_roce_netdev - enumerate all RoCE ports
2332 * @ib_dev : IB device we want to query
2333 * @filter: Should we call the callback?
2334 * @filter_cookie: Cookie passed to filter
2335 * @cb: Callback to call for each found RoCE ports
2336 * @cookie: Cookie passed back to the callback
2337 *
2338 * Enumerates all of the physical RoCE ports of ib_dev
2339 * which are related to netdevice and calls callback() on each
2340 * device for which filter() function returns non zero.
2341 */
2342void ib_enum_roce_netdev(struct ib_device *ib_dev,
2343			 roce_netdev_filter filter,
2344			 void *filter_cookie,
2345			 roce_netdev_callback cb,
2346			 void *cookie)
2347{
2348	u32 port;
2349
2350	rdma_for_each_port (ib_dev, port)
2351		if (rdma_protocol_roce(ib_dev, port)) {
2352			struct net_device *idev =
2353				ib_device_get_netdev(ib_dev, port);
2354
2355			if (filter(ib_dev, port, idev, filter_cookie))
2356				cb(ib_dev, port, idev, cookie);
2357			dev_put(idev);
 
 
2358		}
2359}
2360
2361/**
2362 * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2363 * @filter: Should we call the callback?
2364 * @filter_cookie: Cookie passed to filter
2365 * @cb: Callback to call for each found RoCE ports
2366 * @cookie: Cookie passed back to the callback
2367 *
2368 * Enumerates all RoCE devices' physical ports which are related
2369 * to netdevices and calls callback() on each device for which
2370 * filter() function returns non zero.
2371 */
2372void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2373			      void *filter_cookie,
2374			      roce_netdev_callback cb,
2375			      void *cookie)
2376{
2377	struct ib_device *dev;
2378	unsigned long index;
2379
2380	down_read(&devices_rwsem);
2381	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2382		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2383	up_read(&devices_rwsem);
2384}
2385
2386/*
2387 * ib_enum_all_devs - enumerate all ib_devices
2388 * @cb: Callback to call for each found ib_device
2389 *
2390 * Enumerates all ib_devices and calls callback() on each device.
2391 */
2392int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2393		     struct netlink_callback *cb)
2394{
2395	unsigned long index;
2396	struct ib_device *dev;
2397	unsigned int idx = 0;
2398	int ret = 0;
2399
2400	down_read(&devices_rwsem);
2401	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2402		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2403			continue;
2404
2405		ret = nldev_cb(dev, skb, cb, idx);
2406		if (ret)
2407			break;
2408		idx++;
2409	}
2410	up_read(&devices_rwsem);
2411	return ret;
2412}
2413
2414/**
2415 * ib_query_pkey - Get P_Key table entry
2416 * @device:Device to query
2417 * @port_num:Port number to query
2418 * @index:P_Key table index to query
2419 * @pkey:Returned P_Key
2420 *
2421 * ib_query_pkey() fetches the specified P_Key table entry.
2422 */
2423int ib_query_pkey(struct ib_device *device,
2424		  u32 port_num, u16 index, u16 *pkey)
2425{
2426	if (!rdma_is_port_valid(device, port_num))
2427		return -EINVAL;
2428
2429	if (!device->ops.query_pkey)
2430		return -EOPNOTSUPP;
2431
2432	return device->ops.query_pkey(device, port_num, index, pkey);
2433}
2434EXPORT_SYMBOL(ib_query_pkey);
2435
2436/**
2437 * ib_modify_device - Change IB device attributes
2438 * @device:Device to modify
2439 * @device_modify_mask:Mask of attributes to change
2440 * @device_modify:New attribute values
2441 *
2442 * ib_modify_device() changes a device's attributes as specified by
2443 * the @device_modify_mask and @device_modify structure.
2444 */
2445int ib_modify_device(struct ib_device *device,
2446		     int device_modify_mask,
2447		     struct ib_device_modify *device_modify)
2448{
2449	if (!device->ops.modify_device)
2450		return -EOPNOTSUPP;
2451
2452	return device->ops.modify_device(device, device_modify_mask,
2453					 device_modify);
2454}
2455EXPORT_SYMBOL(ib_modify_device);
2456
2457/**
2458 * ib_modify_port - Modifies the attributes for the specified port.
2459 * @device: The device to modify.
2460 * @port_num: The number of the port to modify.
2461 * @port_modify_mask: Mask used to specify which attributes of the port
2462 *   to change.
2463 * @port_modify: New attribute values for the port.
2464 *
2465 * ib_modify_port() changes a port's attributes as specified by the
2466 * @port_modify_mask and @port_modify structure.
2467 */
2468int ib_modify_port(struct ib_device *device,
2469		   u32 port_num, int port_modify_mask,
2470		   struct ib_port_modify *port_modify)
2471{
2472	int rc;
2473
2474	if (!rdma_is_port_valid(device, port_num))
2475		return -EINVAL;
2476
2477	if (device->ops.modify_port)
2478		rc = device->ops.modify_port(device, port_num,
2479					     port_modify_mask,
2480					     port_modify);
2481	else if (rdma_protocol_roce(device, port_num) &&
2482		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2483		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2484		rc = 0;
2485	else
2486		rc = -EOPNOTSUPP;
2487	return rc;
2488}
2489EXPORT_SYMBOL(ib_modify_port);
2490
2491/**
2492 * ib_find_gid - Returns the port number and GID table index where
2493 *   a specified GID value occurs. Its searches only for IB link layer.
2494 * @device: The device to query.
2495 * @gid: The GID value to search for.
2496 * @port_num: The port number of the device where the GID value was found.
2497 * @index: The index into the GID table where the GID was found.  This
2498 *   parameter may be NULL.
2499 */
2500int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2501		u32 *port_num, u16 *index)
2502{
2503	union ib_gid tmp_gid;
2504	u32 port;
2505	int ret, i;
2506
2507	rdma_for_each_port (device, port) {
2508		if (!rdma_protocol_ib(device, port))
2509			continue;
2510
2511		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2512		     ++i) {
2513			ret = rdma_query_gid(device, port, i, &tmp_gid);
2514			if (ret)
2515				continue;
2516
2517			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2518				*port_num = port;
2519				if (index)
2520					*index = i;
2521				return 0;
2522			}
2523		}
2524	}
2525
2526	return -ENOENT;
2527}
2528EXPORT_SYMBOL(ib_find_gid);
2529
2530/**
2531 * ib_find_pkey - Returns the PKey table index where a specified
2532 *   PKey value occurs.
2533 * @device: The device to query.
2534 * @port_num: The port number of the device to search for the PKey.
2535 * @pkey: The PKey value to search for.
2536 * @index: The index into the PKey table where the PKey was found.
2537 */
2538int ib_find_pkey(struct ib_device *device,
2539		 u32 port_num, u16 pkey, u16 *index)
2540{
2541	int ret, i;
2542	u16 tmp_pkey;
2543	int partial_ix = -1;
2544
2545	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2546	     ++i) {
2547		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2548		if (ret)
2549			return ret;
2550		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2551			/* if there is full-member pkey take it.*/
2552			if (tmp_pkey & 0x8000) {
2553				*index = i;
2554				return 0;
2555			}
2556			if (partial_ix < 0)
2557				partial_ix = i;
2558		}
2559	}
2560
2561	/*no full-member, if exists take the limited*/
2562	if (partial_ix >= 0) {
2563		*index = partial_ix;
2564		return 0;
2565	}
2566	return -ENOENT;
2567}
2568EXPORT_SYMBOL(ib_find_pkey);
2569
2570/**
2571 * ib_get_net_dev_by_params() - Return the appropriate net_dev
2572 * for a received CM request
2573 * @dev:	An RDMA device on which the request has been received.
2574 * @port:	Port number on the RDMA device.
2575 * @pkey:	The Pkey the request came on.
2576 * @gid:	A GID that the net_dev uses to communicate.
2577 * @addr:	Contains the IP address that the request specified as its
2578 *		destination.
2579 *
2580 */
2581struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2582					    u32 port,
2583					    u16 pkey,
2584					    const union ib_gid *gid,
2585					    const struct sockaddr *addr)
2586{
2587	struct net_device *net_dev = NULL;
2588	unsigned long index;
2589	void *client_data;
2590
2591	if (!rdma_protocol_ib(dev, port))
2592		return NULL;
2593
2594	/*
2595	 * Holding the read side guarantees that the client will not become
2596	 * unregistered while we are calling get_net_dev_by_params()
2597	 */
2598	down_read(&dev->client_data_rwsem);
2599	xan_for_each_marked (&dev->client_data, index, client_data,
2600			     CLIENT_DATA_REGISTERED) {
2601		struct ib_client *client = xa_load(&clients, index);
2602
2603		if (!client || !client->get_net_dev_by_params)
2604			continue;
2605
2606		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2607							addr, client_data);
2608		if (net_dev)
2609			break;
2610	}
2611	up_read(&dev->client_data_rwsem);
2612
2613	return net_dev;
2614}
2615EXPORT_SYMBOL(ib_get_net_dev_by_params);
2616
2617void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2618{
2619	struct ib_device_ops *dev_ops = &dev->ops;
2620#define SET_DEVICE_OP(ptr, name)                                               \
2621	do {                                                                   \
2622		if (ops->name)                                                 \
2623			if (!((ptr)->name))				       \
2624				(ptr)->name = ops->name;                       \
2625	} while (0)
2626
2627#define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2628
2629	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2630		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2631			dev_ops->driver_id != ops->driver_id);
2632		dev_ops->driver_id = ops->driver_id;
2633	}
2634	if (ops->owner) {
2635		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2636		dev_ops->owner = ops->owner;
2637	}
2638	if (ops->uverbs_abi_ver)
2639		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2640
2641	dev_ops->uverbs_no_driver_id_binding |=
2642		ops->uverbs_no_driver_id_binding;
2643
2644	SET_DEVICE_OP(dev_ops, add_gid);
2645	SET_DEVICE_OP(dev_ops, add_sub_dev);
2646	SET_DEVICE_OP(dev_ops, advise_mr);
2647	SET_DEVICE_OP(dev_ops, alloc_dm);
2648	SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2649	SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2650	SET_DEVICE_OP(dev_ops, alloc_mr);
2651	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2652	SET_DEVICE_OP(dev_ops, alloc_mw);
2653	SET_DEVICE_OP(dev_ops, alloc_pd);
2654	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2655	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2656	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2657	SET_DEVICE_OP(dev_ops, attach_mcast);
2658	SET_DEVICE_OP(dev_ops, check_mr_status);
2659	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2660	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2661	SET_DEVICE_OP(dev_ops, counter_dealloc);
2662	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2663	SET_DEVICE_OP(dev_ops, counter_update_stats);
2664	SET_DEVICE_OP(dev_ops, create_ah);
2665	SET_DEVICE_OP(dev_ops, create_counters);
2666	SET_DEVICE_OP(dev_ops, create_cq);
2667	SET_DEVICE_OP(dev_ops, create_flow);
2668	SET_DEVICE_OP(dev_ops, create_qp);
2669	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2670	SET_DEVICE_OP(dev_ops, create_srq);
2671	SET_DEVICE_OP(dev_ops, create_user_ah);
2672	SET_DEVICE_OP(dev_ops, create_wq);
2673	SET_DEVICE_OP(dev_ops, dealloc_dm);
2674	SET_DEVICE_OP(dev_ops, dealloc_driver);
2675	SET_DEVICE_OP(dev_ops, dealloc_mw);
2676	SET_DEVICE_OP(dev_ops, dealloc_pd);
2677	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2678	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2679	SET_DEVICE_OP(dev_ops, del_gid);
2680	SET_DEVICE_OP(dev_ops, del_sub_dev);
2681	SET_DEVICE_OP(dev_ops, dereg_mr);
2682	SET_DEVICE_OP(dev_ops, destroy_ah);
2683	SET_DEVICE_OP(dev_ops, destroy_counters);
2684	SET_DEVICE_OP(dev_ops, destroy_cq);
2685	SET_DEVICE_OP(dev_ops, destroy_flow);
2686	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2687	SET_DEVICE_OP(dev_ops, destroy_qp);
2688	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2689	SET_DEVICE_OP(dev_ops, destroy_srq);
2690	SET_DEVICE_OP(dev_ops, destroy_wq);
2691	SET_DEVICE_OP(dev_ops, device_group);
2692	SET_DEVICE_OP(dev_ops, detach_mcast);
2693	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2694	SET_DEVICE_OP(dev_ops, drain_rq);
2695	SET_DEVICE_OP(dev_ops, drain_sq);
2696	SET_DEVICE_OP(dev_ops, enable_driver);
2697	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2698	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2699	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2700	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2701	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2702	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2703	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2704	SET_DEVICE_OP(dev_ops, fill_res_srq_entry);
2705	SET_DEVICE_OP(dev_ops, fill_res_srq_entry_raw);
2706	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2707	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2708	SET_DEVICE_OP(dev_ops, get_dma_mr);
2709	SET_DEVICE_OP(dev_ops, get_hw_stats);
2710	SET_DEVICE_OP(dev_ops, get_link_layer);
2711	SET_DEVICE_OP(dev_ops, get_netdev);
2712	SET_DEVICE_OP(dev_ops, get_numa_node);
2713	SET_DEVICE_OP(dev_ops, get_port_immutable);
2714	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2715	SET_DEVICE_OP(dev_ops, get_vf_config);
2716	SET_DEVICE_OP(dev_ops, get_vf_guid);
2717	SET_DEVICE_OP(dev_ops, get_vf_stats);
2718	SET_DEVICE_OP(dev_ops, iw_accept);
2719	SET_DEVICE_OP(dev_ops, iw_add_ref);
2720	SET_DEVICE_OP(dev_ops, iw_connect);
2721	SET_DEVICE_OP(dev_ops, iw_create_listen);
2722	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2723	SET_DEVICE_OP(dev_ops, iw_get_qp);
2724	SET_DEVICE_OP(dev_ops, iw_reject);
2725	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2726	SET_DEVICE_OP(dev_ops, map_mr_sg);
2727	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2728	SET_DEVICE_OP(dev_ops, mmap);
2729	SET_DEVICE_OP(dev_ops, mmap_free);
2730	SET_DEVICE_OP(dev_ops, modify_ah);
2731	SET_DEVICE_OP(dev_ops, modify_cq);
2732	SET_DEVICE_OP(dev_ops, modify_device);
2733	SET_DEVICE_OP(dev_ops, modify_hw_stat);
2734	SET_DEVICE_OP(dev_ops, modify_port);
2735	SET_DEVICE_OP(dev_ops, modify_qp);
2736	SET_DEVICE_OP(dev_ops, modify_srq);
2737	SET_DEVICE_OP(dev_ops, modify_wq);
2738	SET_DEVICE_OP(dev_ops, peek_cq);
2739	SET_DEVICE_OP(dev_ops, poll_cq);
2740	SET_DEVICE_OP(dev_ops, port_groups);
2741	SET_DEVICE_OP(dev_ops, post_recv);
2742	SET_DEVICE_OP(dev_ops, post_send);
2743	SET_DEVICE_OP(dev_ops, post_srq_recv);
2744	SET_DEVICE_OP(dev_ops, process_mad);
2745	SET_DEVICE_OP(dev_ops, query_ah);
2746	SET_DEVICE_OP(dev_ops, query_device);
2747	SET_DEVICE_OP(dev_ops, query_gid);
2748	SET_DEVICE_OP(dev_ops, query_pkey);
2749	SET_DEVICE_OP(dev_ops, query_port);
2750	SET_DEVICE_OP(dev_ops, query_qp);
2751	SET_DEVICE_OP(dev_ops, query_srq);
2752	SET_DEVICE_OP(dev_ops, query_ucontext);
2753	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2754	SET_DEVICE_OP(dev_ops, read_counters);
2755	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2756	SET_DEVICE_OP(dev_ops, reg_user_mr);
2757	SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2758	SET_DEVICE_OP(dev_ops, req_notify_cq);
2759	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2760	SET_DEVICE_OP(dev_ops, resize_cq);
2761	SET_DEVICE_OP(dev_ops, set_vf_guid);
2762	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2763	SET_DEVICE_OP(dev_ops, ufile_hw_cleanup);
2764
2765	SET_OBJ_SIZE(dev_ops, ib_ah);
2766	SET_OBJ_SIZE(dev_ops, ib_counters);
2767	SET_OBJ_SIZE(dev_ops, ib_cq);
2768	SET_OBJ_SIZE(dev_ops, ib_mw);
2769	SET_OBJ_SIZE(dev_ops, ib_pd);
2770	SET_OBJ_SIZE(dev_ops, ib_qp);
2771	SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2772	SET_OBJ_SIZE(dev_ops, ib_srq);
2773	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2774	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2775}
2776EXPORT_SYMBOL(ib_set_device_ops);
2777
2778int ib_add_sub_device(struct ib_device *parent,
2779		      enum rdma_nl_dev_type type,
2780		      const char *name)
2781{
2782	struct ib_device *sub;
2783	int ret = 0;
2784
2785	if (!parent->ops.add_sub_dev || !parent->ops.del_sub_dev)
2786		return -EOPNOTSUPP;
2787
2788	if (!ib_device_try_get(parent))
2789		return -EINVAL;
2790
2791	sub = parent->ops.add_sub_dev(parent, type, name);
2792	if (IS_ERR(sub)) {
2793		ib_device_put(parent);
2794		return PTR_ERR(sub);
2795	}
2796
2797	sub->type = type;
2798	sub->parent = parent;
2799
2800	mutex_lock(&parent->subdev_lock);
2801	list_add_tail(&parent->subdev_list_head, &sub->subdev_list);
2802	mutex_unlock(&parent->subdev_lock);
2803
2804	return ret;
2805}
2806EXPORT_SYMBOL(ib_add_sub_device);
2807
2808int ib_del_sub_device_and_put(struct ib_device *sub)
2809{
2810	struct ib_device *parent = sub->parent;
2811
2812	if (!parent)
2813		return -EOPNOTSUPP;
2814
2815	mutex_lock(&parent->subdev_lock);
2816	list_del(&sub->subdev_list);
2817	mutex_unlock(&parent->subdev_lock);
2818
2819	ib_device_put(sub);
2820	parent->ops.del_sub_dev(sub);
2821	ib_device_put(parent);
2822
2823	return 0;
2824}
2825EXPORT_SYMBOL(ib_del_sub_device_and_put);
2826
2827#ifdef CONFIG_INFINIBAND_VIRT_DMA
2828int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2829{
2830	struct scatterlist *s;
2831	int i;
2832
2833	for_each_sg(sg, s, nents, i) {
2834		sg_dma_address(s) = (uintptr_t)sg_virt(s);
2835		sg_dma_len(s) = s->length;
2836	}
2837	return nents;
2838}
2839EXPORT_SYMBOL(ib_dma_virt_map_sg);
2840#endif /* CONFIG_INFINIBAND_VIRT_DMA */
2841
2842static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2843	[RDMA_NL_LS_OP_RESOLVE] = {
2844		.doit = ib_nl_handle_resolve_resp,
2845		.flags = RDMA_NL_ADMIN_PERM,
2846	},
2847	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2848		.doit = ib_nl_handle_set_timeout,
2849		.flags = RDMA_NL_ADMIN_PERM,
2850	},
2851	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2852		.doit = ib_nl_handle_ip_res_resp,
2853		.flags = RDMA_NL_ADMIN_PERM,
2854	},
2855};
2856
2857static int ib_netdevice_event(struct notifier_block *this,
2858			      unsigned long event, void *ptr)
2859{
2860	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
2861	struct net_device *ib_ndev;
2862	struct ib_device *ibdev;
2863	u32 port;
2864
2865	switch (event) {
2866	case NETDEV_CHANGENAME:
2867		ibdev = ib_device_get_by_netdev(ndev, RDMA_DRIVER_UNKNOWN);
2868		if (!ibdev)
2869			return NOTIFY_DONE;
2870
2871		rdma_for_each_port(ibdev, port) {
2872			ib_ndev = ib_device_get_netdev(ibdev, port);
2873			if (ndev == ib_ndev)
2874				rdma_nl_notify_event(ibdev, port,
2875						     RDMA_NETDEV_RENAME_EVENT);
2876			dev_put(ib_ndev);
2877		}
2878		ib_device_put(ibdev);
2879		break;
2880	default:
2881		break;
2882	}
2883
2884	return NOTIFY_DONE;
2885}
2886
2887static struct notifier_block nb_netdevice = {
2888	.notifier_call = ib_netdevice_event,
2889};
2890
2891static int __init ib_core_init(void)
2892{
2893	int ret = -ENOMEM;
2894
2895	ib_wq = alloc_workqueue("infiniband", 0, 0);
2896	if (!ib_wq)
2897		return -ENOMEM;
2898
2899	ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND,
2900				      WQ_UNBOUND_MAX_ACTIVE);
2901	if (!ib_unreg_wq)
2902		goto err;
2903
2904	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2905			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2906	if (!ib_comp_wq)
2907		goto err_unbound;
2908
2909	ib_comp_unbound_wq =
2910		alloc_workqueue("ib-comp-unb-wq",
2911				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2912				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2913	if (!ib_comp_unbound_wq)
2914		goto err_comp;
2915
2916	ret = class_register(&ib_class);
2917	if (ret) {
2918		pr_warn("Couldn't create InfiniBand device class\n");
2919		goto err_comp_unbound;
2920	}
2921
2922	rdma_nl_init();
2923
2924	ret = addr_init();
2925	if (ret) {
2926		pr_warn("Couldn't init IB address resolution\n");
2927		goto err_ibnl;
2928	}
2929
2930	ret = ib_mad_init();
2931	if (ret) {
2932		pr_warn("Couldn't init IB MAD\n");
2933		goto err_addr;
2934	}
2935
2936	ret = ib_sa_init();
2937	if (ret) {
2938		pr_warn("Couldn't init SA\n");
2939		goto err_mad;
2940	}
2941
2942	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2943	if (ret) {
2944		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2945		goto err_sa;
2946	}
2947
2948	ret = register_pernet_device(&rdma_dev_net_ops);
2949	if (ret) {
2950		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2951		goto err_compat;
2952	}
2953
2954	nldev_init();
2955	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2956	ret = roce_gid_mgmt_init();
2957	if (ret) {
2958		pr_warn("Couldn't init RoCE GID management\n");
2959		goto err_parent;
2960	}
2961
2962	register_netdevice_notifier(&nb_netdevice);
2963
2964	return 0;
2965
2966err_parent:
2967	rdma_nl_unregister(RDMA_NL_LS);
2968	nldev_exit();
2969	unregister_pernet_device(&rdma_dev_net_ops);
2970err_compat:
2971	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2972err_sa:
2973	ib_sa_cleanup();
2974err_mad:
2975	ib_mad_cleanup();
2976err_addr:
2977	addr_cleanup();
2978err_ibnl:
2979	class_unregister(&ib_class);
2980err_comp_unbound:
2981	destroy_workqueue(ib_comp_unbound_wq);
2982err_comp:
2983	destroy_workqueue(ib_comp_wq);
2984err_unbound:
2985	destroy_workqueue(ib_unreg_wq);
2986err:
2987	destroy_workqueue(ib_wq);
2988	return ret;
2989}
2990
2991static void __exit ib_core_cleanup(void)
2992{
2993	unregister_netdevice_notifier(&nb_netdevice);
2994	roce_gid_mgmt_cleanup();
2995	rdma_nl_unregister(RDMA_NL_LS);
2996	nldev_exit();
2997	unregister_pernet_device(&rdma_dev_net_ops);
2998	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2999	ib_sa_cleanup();
3000	ib_mad_cleanup();
3001	addr_cleanup();
3002	rdma_nl_exit();
3003	class_unregister(&ib_class);
3004	destroy_workqueue(ib_comp_unbound_wq);
3005	destroy_workqueue(ib_comp_wq);
3006	/* Make sure that any pending umem accounting work is done. */
3007	destroy_workqueue(ib_wq);
3008	destroy_workqueue(ib_unreg_wq);
3009	WARN_ON(!xa_empty(&clients));
3010	WARN_ON(!xa_empty(&devices));
3011}
3012
3013MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
3014
3015/* ib core relies on netdev stack to first register net_ns_type_operations
3016 * ns kobject type before ib_core initialization.
3017 */
3018fs_initcall(ib_core_init);
3019module_exit(ib_core_cleanup);