Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Mellanox BlueField I2C bus driver
   4 *
   5 *  Copyright (C) 2020 Mellanox Technologies, Ltd.
   6 */
   7
   8#include <linux/acpi.h>
   9#include <linux/bitfield.h>
  10#include <linux/delay.h>
  11#include <linux/err.h>
  12#include <linux/interrupt.h>
  13#include <linux/i2c.h>
  14#include <linux/io.h>
  15#include <linux/kernel.h>
  16#include <linux/module.h>
  17#include <linux/mutex.h>
  18#include <linux/of.h>
  19#include <linux/platform_device.h>
  20#include <linux/string.h>
  21
  22/* Defines what functionality is present. */
  23#define MLXBF_I2C_FUNC_SMBUS_BLOCK \
  24	(I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL)
  25
  26#define MLXBF_I2C_FUNC_SMBUS_DEFAULT \
  27	(I2C_FUNC_SMBUS_BYTE      | I2C_FUNC_SMBUS_BYTE_DATA | \
  28	 I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_I2C_BLOCK | \
  29	 I2C_FUNC_SMBUS_PROC_CALL)
  30
  31#define MLXBF_I2C_FUNC_ALL \
  32	(MLXBF_I2C_FUNC_SMBUS_DEFAULT | MLXBF_I2C_FUNC_SMBUS_BLOCK | \
  33	 I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SLAVE)
  34
  35/* Shared resources info in BlueField platforms. */
  36
  37#define MLXBF_I2C_COALESCE_TYU_ADDR    0x02801300
  38#define MLXBF_I2C_COALESCE_TYU_SIZE    0x010
  39
  40#define MLXBF_I2C_GPIO_TYU_ADDR        0x02802000
  41#define MLXBF_I2C_GPIO_TYU_SIZE        0x100
  42
  43#define MLXBF_I2C_COREPLL_TYU_ADDR     0x02800358
  44#define MLXBF_I2C_COREPLL_TYU_SIZE     0x008
  45
  46#define MLXBF_I2C_COREPLL_YU_ADDR      0x02800c30
  47#define MLXBF_I2C_COREPLL_YU_SIZE      0x00c
  48
  49#define MLXBF_I2C_COREPLL_RSH_YU_ADDR  0x13409824
  50#define MLXBF_I2C_COREPLL_RSH_YU_SIZE  0x00c
  51
  52#define MLXBF_I2C_SHARED_RES_MAX       3
  53
  54/*
  55 * Note that the following SMBus, CAUSE, GPIO and PLL register addresses
  56 * refer to their respective offsets relative to the corresponding
  57 * memory-mapped region whose addresses are specified in either the DT or
  58 * the ACPI tables or above.
  59 */
  60
  61/*
  62 * SMBus Master core clock frequency. Timing configurations are
  63 * strongly dependent on the core clock frequency of the SMBus
  64 * Master. Default value is set to 400MHz.
  65 */
  66#define MLXBF_I2C_TYU_PLL_OUT_FREQ  (400 * 1000 * 1000)
  67/* Reference clock for Bluefield - 156 MHz. */
  68#define MLXBF_I2C_PLL_IN_FREQ       156250000ULL
  69
  70/* Constant used to determine the PLL frequency. */
  71#define MLNXBF_I2C_COREPLL_CONST    16384ULL
  72
  73#define MLXBF_I2C_FREQUENCY_1GHZ  1000000000ULL
  74
  75/* PLL registers. */
  76#define MLXBF_I2C_CORE_PLL_REG1         0x4
  77#define MLXBF_I2C_CORE_PLL_REG2         0x8
  78
  79/* OR cause register. */
  80#define MLXBF_I2C_CAUSE_OR_EVTEN0    0x14
  81#define MLXBF_I2C_CAUSE_OR_CLEAR     0x18
  82
  83/* Arbiter Cause Register. */
  84#define MLXBF_I2C_CAUSE_ARBITER      0x1c
  85
  86/*
  87 * Cause Status flags. Note that those bits might be considered
  88 * as interrupt enabled bits.
  89 */
  90
  91/* Transaction ended with STOP. */
  92#define MLXBF_I2C_CAUSE_TRANSACTION_ENDED  BIT(0)
  93/* Master arbitration lost. */
  94#define MLXBF_I2C_CAUSE_M_ARBITRATION_LOST BIT(1)
  95/* Unexpected start detected. */
  96#define MLXBF_I2C_CAUSE_UNEXPECTED_START   BIT(2)
  97/* Unexpected stop detected. */
  98#define MLXBF_I2C_CAUSE_UNEXPECTED_STOP    BIT(3)
  99/* Wait for transfer continuation. */
 100#define MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA   BIT(4)
 101/* Failed to generate STOP. */
 102#define MLXBF_I2C_CAUSE_PUT_STOP_FAILED    BIT(5)
 103/* Failed to generate START. */
 104#define MLXBF_I2C_CAUSE_PUT_START_FAILED   BIT(6)
 105/* Clock toggle completed. */
 106#define MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE    BIT(7)
 107/* Transfer timeout occurred. */
 108#define MLXBF_I2C_CAUSE_M_FW_TIMEOUT       BIT(8)
 109/* Master busy bit reset. */
 110#define MLXBF_I2C_CAUSE_M_GW_BUSY_FALL     BIT(9)
 111
 112#define MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK     GENMASK(9, 0)
 113
 114#define MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR \
 115	(MLXBF_I2C_CAUSE_M_ARBITRATION_LOST | \
 116	 MLXBF_I2C_CAUSE_UNEXPECTED_START | \
 117	 MLXBF_I2C_CAUSE_UNEXPECTED_STOP | \
 118	 MLXBF_I2C_CAUSE_PUT_STOP_FAILED | \
 119	 MLXBF_I2C_CAUSE_PUT_START_FAILED | \
 120	 MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE | \
 121	 MLXBF_I2C_CAUSE_M_FW_TIMEOUT)
 122
 123/*
 124 * Slave cause status flags. Note that those bits might be considered
 125 * as interrupt enabled bits.
 126 */
 127
 128/* Write transaction received successfully. */
 129#define MLXBF_I2C_CAUSE_WRITE_SUCCESS         BIT(0)
 130/* Read transaction received, waiting for response. */
 131#define MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE BIT(13)
 132/* Slave busy bit reset. */
 133#define MLXBF_I2C_CAUSE_S_GW_BUSY_FALL        BIT(18)
 134
 135/* Cause coalesce registers. */
 136#define MLXBF_I2C_CAUSE_COALESCE_0        0x00
 137
 138#define MLXBF_I2C_CAUSE_TYU_SLAVE_BIT   3
 139#define MLXBF_I2C_CAUSE_YU_SLAVE_BIT    1
 140
 141/* Functional enable register. */
 142#define MLXBF_I2C_GPIO_0_FUNC_EN_0    0x28
 143/* Force OE enable register. */
 144#define MLXBF_I2C_GPIO_0_FORCE_OE_EN  0x30
 145/*
 146 * Note that Smbus GWs are on GPIOs 30:25. Two pins are used to control
 147 * SDA/SCL lines:
 148 *
 149 *  SMBUS GW0 -> bits[26:25]
 150 *  SMBUS GW1 -> bits[28:27]
 151 *  SMBUS GW2 -> bits[30:29]
 152 */
 153#define MLXBF_I2C_GPIO_SMBUS_GW_PINS(num) (25 + ((num) << 1))
 154
 155/* Note that gw_id can be 0,1 or 2. */
 156#define MLXBF_I2C_GPIO_SMBUS_GW_MASK(num) \
 157	(0xffffffff & (~(0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num))))
 158
 159#define MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(num, val) \
 160	((val) & MLXBF_I2C_GPIO_SMBUS_GW_MASK(num))
 161
 162#define MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(num, val) \
 163	((val) | (0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num)))
 164
 165/*
 166 * Defines SMBus operating frequency and core clock frequency.
 167 * According to ADB files, default values are compliant to 100KHz SMBus
 168 * @ 400MHz core clock. The driver should be able to calculate core
 169 * frequency based on PLL parameters.
 170 */
 171#define MLXBF_I2C_COREPLL_FREQ          MLXBF_I2C_TYU_PLL_OUT_FREQ
 172
 173/* Core PLL TYU configuration. */
 174#define MLXBF_I2C_COREPLL_CORE_F_TYU_MASK   GENMASK(15, 3)
 175#define MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK  GENMASK(19, 16)
 176#define MLXBF_I2C_COREPLL_CORE_R_TYU_MASK   GENMASK(25, 20)
 177
 178/* Core PLL YU configuration. */
 179#define MLXBF_I2C_COREPLL_CORE_F_YU_MASK    GENMASK(25, 0)
 180#define MLXBF_I2C_COREPLL_CORE_OD_YU_MASK   GENMASK(3, 0)
 181#define MLXBF_I2C_COREPLL_CORE_R_YU_MASK    GENMASK(31, 26)
 182
 183/* SMBus timing parameters. */
 184#define MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH    0x00
 185#define MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE     0x04
 186#define MLXBF_I2C_SMBUS_TIMER_THOLD               0x08
 187#define MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP   0x0c
 188#define MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA         0x10
 189#define MLXBF_I2C_SMBUS_THIGH_MAX_TBUF            0x14
 190#define MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT           0x18
 191
 192#define MLXBF_I2C_SHIFT_0   0
 193#define MLXBF_I2C_SHIFT_8   8
 194#define MLXBF_I2C_SHIFT_16  16
 195#define MLXBF_I2C_SHIFT_24  24
 196
 197#define MLXBF_I2C_MASK_8    GENMASK(7, 0)
 198#define MLXBF_I2C_MASK_16   GENMASK(15, 0)
 199
 200#define MLXBF_I2C_MST_ADDR_OFFSET         0x200
 201
 202/* SMBus Master GW. */
 203#define MLXBF_I2C_SMBUS_MASTER_GW         0x0
 204/* Number of bytes received and sent. */
 205#define MLXBF_I2C_YU_SMBUS_RS_BYTES       0x100
 206#define MLXBF_I2C_RSH_YU_SMBUS_RS_BYTES   0x10c
 207/* Packet error check (PEC) value. */
 208#define MLXBF_I2C_SMBUS_MASTER_PEC        0x104
 209/* Status bits (ACK/NACK/FW Timeout). */
 210#define MLXBF_I2C_SMBUS_MASTER_STATUS     0x108
 211/* SMbus Master Finite State Machine. */
 212#define MLXBF_I2C_YU_SMBUS_MASTER_FSM     0x110
 213#define MLXBF_I2C_RSH_YU_SMBUS_MASTER_FSM 0x100
 214
 215/* SMBus master GW control bits offset in MLXBF_I2C_SMBUS_MASTER_GW[31:3]. */
 216#define MLXBF_I2C_MASTER_LOCK_BIT         BIT(31) /* Lock bit. */
 217#define MLXBF_I2C_MASTER_BUSY_BIT         BIT(30) /* Busy bit. */
 218#define MLXBF_I2C_MASTER_START_BIT        BIT(29) /* Control start. */
 219#define MLXBF_I2C_MASTER_CTL_WRITE_BIT    BIT(28) /* Control write phase. */
 220#define MLXBF_I2C_MASTER_CTL_READ_BIT     BIT(19) /* Control read phase. */
 221#define MLXBF_I2C_MASTER_STOP_BIT         BIT(3)  /* Control stop. */
 222
 223#define MLXBF_I2C_MASTER_ENABLE \
 224	(MLXBF_I2C_MASTER_LOCK_BIT | MLXBF_I2C_MASTER_BUSY_BIT | \
 225	 MLXBF_I2C_MASTER_START_BIT | MLXBF_I2C_MASTER_STOP_BIT)
 226
 227#define MLXBF_I2C_MASTER_ENABLE_WRITE \
 228	(MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_WRITE_BIT)
 229
 230#define MLXBF_I2C_MASTER_ENABLE_READ \
 231	(MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_READ_BIT)
 232
 233#define MLXBF_I2C_MASTER_WRITE_SHIFT      21 /* Control write bytes */
 234#define MLXBF_I2C_MASTER_SEND_PEC_SHIFT   20 /* Send PEC byte when set to 1 */
 235#define MLXBF_I2C_MASTER_PARSE_EXP_SHIFT  11 /* Control parse expected bytes */
 236#define MLXBF_I2C_MASTER_SLV_ADDR_SHIFT   12 /* Slave address */
 237#define MLXBF_I2C_MASTER_READ_SHIFT       4  /* Control read bytes */
 238
 239/* SMBus master GW Data descriptor. */
 240#define MLXBF_I2C_MASTER_DATA_DESC_ADDR   0x80
 241#define MLXBF_I2C_MASTER_DATA_DESC_SIZE   0x80 /* Size in bytes. */
 242
 243/* Maximum bytes to read/write per SMBus transaction. */
 244#define MLXBF_I2C_MASTER_DATA_R_LENGTH  MLXBF_I2C_MASTER_DATA_DESC_SIZE
 245#define MLXBF_I2C_MASTER_DATA_W_LENGTH (MLXBF_I2C_MASTER_DATA_DESC_SIZE - 1)
 246
 247/* All bytes were transmitted. */
 248#define MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE      BIT(0)
 249/* NACK received. */
 250#define MLXBF_I2C_SMBUS_STATUS_NACK_RCV           BIT(1)
 251/* Slave's byte count >128 bytes. */
 252#define MLXBF_I2C_SMBUS_STATUS_READ_ERR           BIT(2)
 253/* Timeout occurred. */
 254#define MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT         BIT(3)
 255
 256#define MLXBF_I2C_SMBUS_MASTER_STATUS_MASK        GENMASK(3, 0)
 257
 258#define MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR \
 259	(MLXBF_I2C_SMBUS_STATUS_NACK_RCV | \
 260	 MLXBF_I2C_SMBUS_STATUS_READ_ERR | \
 261	 MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT)
 262
 263#define MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK      BIT(31)
 264#define MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK  BIT(15)
 265
 266#define MLXBF_I2C_SLV_ADDR_OFFSET             0x400
 267
 268/* SMBus slave GW. */
 269#define MLXBF_I2C_SMBUS_SLAVE_GW              0x0
 270/* Number of bytes received and sent from/to master. */
 271#define MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES 0x100
 272/* Packet error check (PEC) value. */
 273#define MLXBF_I2C_SMBUS_SLAVE_PEC             0x104
 274/* SMBus slave Finite State Machine (FSM). */
 275#define MLXBF_I2C_SMBUS_SLAVE_FSM             0x110
 276/*
 277 * Should be set when all raised causes handled, and cleared by HW on
 278 * every new cause.
 279 */
 280#define MLXBF_I2C_SMBUS_SLAVE_READY           0x12c
 281
 282/* SMBus slave GW control bits offset in MLXBF_I2C_SMBUS_SLAVE_GW[31:19]. */
 283#define MLXBF_I2C_SLAVE_BUSY_BIT         BIT(30) /* Busy bit. */
 284#define MLXBF_I2C_SLAVE_WRITE_BIT        BIT(29) /* Control write enable. */
 285
 286#define MLXBF_I2C_SLAVE_ENABLE \
 287	(MLXBF_I2C_SLAVE_BUSY_BIT | MLXBF_I2C_SLAVE_WRITE_BIT)
 288
 289#define MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT 22 /* Number of bytes to write. */
 290#define MLXBF_I2C_SLAVE_SEND_PEC_SHIFT    21 /* Send PEC byte shift. */
 291
 292/* SMBus slave GW Data descriptor. */
 293#define MLXBF_I2C_SLAVE_DATA_DESC_ADDR   0x80
 294#define MLXBF_I2C_SLAVE_DATA_DESC_SIZE   0x80 /* Size in bytes. */
 295
 296/* SMbus slave configuration registers. */
 297#define MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG        0x114
 298#define MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT        16
 299#define MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT     BIT(7)
 300#define MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK       GENMASK(6, 0)
 301
 302/*
 303 * Timeout is given in microsends. Note also that timeout handling is not
 304 * exact.
 305 */
 306#define MLXBF_I2C_SMBUS_TIMEOUT   (300 * 1000) /* 300ms */
 307#define MLXBF_I2C_SMBUS_LOCK_POLL_TIMEOUT (300 * 1000) /* 300ms */
 308
 309/* Polling frequency in microseconds. */
 310#define MLXBF_I2C_POLL_FREQ_IN_USEC        200
 311
 312#define MLXBF_I2C_SMBUS_OP_CNT_1   1
 313#define MLXBF_I2C_SMBUS_OP_CNT_2   2
 314#define MLXBF_I2C_SMBUS_OP_CNT_3   3
 315#define MLXBF_I2C_SMBUS_MAX_OP_CNT MLXBF_I2C_SMBUS_OP_CNT_3
 316
 317/* Helper macro to define an I2C resource parameters. */
 318#define MLXBF_I2C_RES_PARAMS(addr, size, str) \
 319	{ \
 320		.start = (addr), \
 321		.end = (addr) + (size) - 1, \
 322		.name = (str) \
 323	}
 324
 325enum {
 326	MLXBF_I2C_TIMING_100KHZ = 100000,
 327	MLXBF_I2C_TIMING_400KHZ = 400000,
 328	MLXBF_I2C_TIMING_1000KHZ = 1000000,
 329};
 330
 331enum {
 332	MLXBF_I2C_F_READ = BIT(0),
 333	MLXBF_I2C_F_WRITE = BIT(1),
 334	MLXBF_I2C_F_NORESTART = BIT(3),
 335	MLXBF_I2C_F_SMBUS_OPERATION = BIT(4),
 336	MLXBF_I2C_F_SMBUS_BLOCK = BIT(5),
 337	MLXBF_I2C_F_SMBUS_PEC = BIT(6),
 338	MLXBF_I2C_F_SMBUS_PROCESS_CALL = BIT(7),
 339};
 340
 341/* Mellanox BlueField chip type. */
 342enum mlxbf_i2c_chip_type {
 343	MLXBF_I2C_CHIP_TYPE_1, /* Mellanox BlueField-1 chip. */
 344	MLXBF_I2C_CHIP_TYPE_2, /* Mellanox BlueField-2 chip. */
 345	MLXBF_I2C_CHIP_TYPE_3 /* Mellanox BlueField-3 chip. */
 346};
 347
 348/* List of chip resources that are being accessed by the driver. */
 349enum {
 350	MLXBF_I2C_SMBUS_RES,
 351	MLXBF_I2C_MST_CAUSE_RES,
 352	MLXBF_I2C_SLV_CAUSE_RES,
 353	MLXBF_I2C_COALESCE_RES,
 354	MLXBF_I2C_SMBUS_TIMER_RES,
 355	MLXBF_I2C_SMBUS_MST_RES,
 356	MLXBF_I2C_SMBUS_SLV_RES,
 357	MLXBF_I2C_COREPLL_RES,
 358	MLXBF_I2C_GPIO_RES,
 359	MLXBF_I2C_END_RES
 360};
 361
 362/* Encapsulates timing parameters. */
 363struct mlxbf_i2c_timings {
 364	u16 scl_high;		/* Clock high period. */
 365	u16 scl_low;		/* Clock low period. */
 366	u8 sda_rise;		/* Data rise time. */
 367	u8 sda_fall;		/* Data fall time. */
 368	u8 scl_rise;		/* Clock rise time. */
 369	u8 scl_fall;		/* Clock fall time. */
 370	u16 hold_start;		/* Hold time after (REPEATED) START. */
 371	u16 hold_data;		/* Data hold time. */
 372	u16 setup_start;	/* REPEATED START condition setup time. */
 373	u16 setup_stop;		/* STOP condition setup time. */
 374	u16 setup_data;		/* Data setup time. */
 375	u16 pad;		/* Padding. */
 376	u16 buf;		/* Bus free time between STOP and START. */
 377	u16 thigh_max;		/* Thigh max. */
 378	u32 timeout;		/* Detect clock low timeout. */
 379};
 380
 381struct mlxbf_i2c_smbus_operation {
 382	u32 flags;
 383	u32 length; /* Buffer length in bytes. */
 384	u8 *buffer;
 385};
 386
 387struct mlxbf_i2c_smbus_request {
 388	u8 slave;
 389	u8 operation_cnt;
 390	struct mlxbf_i2c_smbus_operation operation[MLXBF_I2C_SMBUS_MAX_OP_CNT];
 391};
 392
 393struct mlxbf_i2c_resource {
 394	void __iomem *io;
 395	struct resource *params;
 396	struct mutex *lock; /* Mutex to protect mlxbf_i2c_resource. */
 397	u8 type;
 398};
 399
 400struct mlxbf_i2c_chip_info {
 401	enum mlxbf_i2c_chip_type type;
 402	/* Chip shared resources that are being used by the I2C controller. */
 403	struct mlxbf_i2c_resource *shared_res[MLXBF_I2C_SHARED_RES_MAX];
 404
 405	/* Callback to calculate the core PLL frequency. */
 406	u64 (*calculate_freq)(struct mlxbf_i2c_resource *corepll_res);
 407
 408	/* Registers' address offset */
 409	u32 smbus_master_rs_bytes_off;
 410	u32 smbus_master_fsm_off;
 411};
 412
 413struct mlxbf_i2c_priv {
 414	const struct mlxbf_i2c_chip_info *chip;
 415	struct i2c_adapter adap;
 416	struct mlxbf_i2c_resource *smbus;
 417	struct mlxbf_i2c_resource *timer;
 418	struct mlxbf_i2c_resource *mst;
 419	struct mlxbf_i2c_resource *slv;
 420	struct mlxbf_i2c_resource *mst_cause;
 421	struct mlxbf_i2c_resource *slv_cause;
 422	struct mlxbf_i2c_resource *coalesce;
 423	u64 frequency; /* Core frequency in Hz. */
 424	int bus; /* Physical bus identifier. */
 425	int irq;
 426	struct i2c_client *slave[MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT];
 427	u32 resource_version;
 428};
 429
 430/* Core PLL frequency. */
 431static u64 mlxbf_i2c_corepll_frequency;
 432
 433static struct resource mlxbf_i2c_coalesce_tyu_params =
 434		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COALESCE_TYU_ADDR,
 435				     MLXBF_I2C_COALESCE_TYU_SIZE,
 436				     "COALESCE_MEM");
 437static struct resource mlxbf_i2c_corepll_tyu_params =
 438		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_TYU_ADDR,
 439				     MLXBF_I2C_COREPLL_TYU_SIZE,
 440				     "COREPLL_MEM");
 441static struct resource mlxbf_i2c_corepll_yu_params =
 442		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_YU_ADDR,
 443				     MLXBF_I2C_COREPLL_YU_SIZE,
 444				     "COREPLL_MEM");
 445static struct resource mlxbf_i2c_corepll_rsh_yu_params =
 446		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_RSH_YU_ADDR,
 447				     MLXBF_I2C_COREPLL_RSH_YU_SIZE,
 448				     "COREPLL_MEM");
 449static struct resource mlxbf_i2c_gpio_tyu_params =
 450		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_GPIO_TYU_ADDR,
 451				     MLXBF_I2C_GPIO_TYU_SIZE,
 452				     "GPIO_MEM");
 453
 454static struct mutex mlxbf_i2c_coalesce_lock;
 455static struct mutex mlxbf_i2c_corepll_lock;
 456static struct mutex mlxbf_i2c_gpio_lock;
 457
 458static struct mlxbf_i2c_resource mlxbf_i2c_coalesce_res[] = {
 459	[MLXBF_I2C_CHIP_TYPE_1] = {
 460		.params = &mlxbf_i2c_coalesce_tyu_params,
 461		.lock = &mlxbf_i2c_coalesce_lock,
 462		.type = MLXBF_I2C_COALESCE_RES
 463	},
 464	{}
 465};
 466
 467static struct mlxbf_i2c_resource mlxbf_i2c_corepll_res[] = {
 468	[MLXBF_I2C_CHIP_TYPE_1] = {
 469		.params = &mlxbf_i2c_corepll_tyu_params,
 470		.lock = &mlxbf_i2c_corepll_lock,
 471		.type = MLXBF_I2C_COREPLL_RES
 472	},
 473	[MLXBF_I2C_CHIP_TYPE_2] = {
 474		.params = &mlxbf_i2c_corepll_yu_params,
 475		.lock = &mlxbf_i2c_corepll_lock,
 476		.type = MLXBF_I2C_COREPLL_RES,
 477	},
 478	[MLXBF_I2C_CHIP_TYPE_3] = {
 479		.params = &mlxbf_i2c_corepll_rsh_yu_params,
 480		.lock = &mlxbf_i2c_corepll_lock,
 481		.type = MLXBF_I2C_COREPLL_RES,
 482	}
 483};
 484
 485static struct mlxbf_i2c_resource mlxbf_i2c_gpio_res[] = {
 486	[MLXBF_I2C_CHIP_TYPE_1] = {
 487		.params = &mlxbf_i2c_gpio_tyu_params,
 488		.lock = &mlxbf_i2c_gpio_lock,
 489		.type = MLXBF_I2C_GPIO_RES
 490	},
 491	{}
 492};
 493
 494static u8 mlxbf_i2c_bus_count;
 495
 496static struct mutex mlxbf_i2c_bus_lock;
 497
 498/*
 499 * Function to poll a set of bits at a specific address; it checks whether
 500 * the bits are equal to zero when eq_zero is set to 'true', and not equal
 501 * to zero when eq_zero is set to 'false'.
 502 * Note that the timeout is given in microseconds.
 503 */
 504static u32 mlxbf_i2c_poll(void __iomem *io, u32 addr, u32 mask,
 505			    bool eq_zero, u32  timeout)
 506{
 507	u32 bits;
 508
 509	timeout = (timeout / MLXBF_I2C_POLL_FREQ_IN_USEC) + 1;
 510
 511	do {
 512		bits = readl(io + addr) & mask;
 513		if (eq_zero ? bits == 0 : bits != 0)
 514			return eq_zero ? 1 : bits;
 515		udelay(MLXBF_I2C_POLL_FREQ_IN_USEC);
 516	} while (timeout-- != 0);
 517
 518	return 0;
 519}
 520
 521/*
 522 * SW must make sure that the SMBus Master GW is idle before starting
 523 * a transaction. Accordingly, this function polls the Master FSM stop
 524 * bit; it returns false when the bit is asserted, true if not.
 525 */
 526static bool mlxbf_i2c_smbus_master_wait_for_idle(struct mlxbf_i2c_priv *priv)
 527{
 528	u32 mask = MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK;
 529	u32 addr = priv->chip->smbus_master_fsm_off;
 530	u32 timeout = MLXBF_I2C_SMBUS_TIMEOUT;
 531
 532	if (mlxbf_i2c_poll(priv->mst->io, addr, mask, true, timeout))
 533		return true;
 534
 535	return false;
 536}
 537
 538/*
 539 * wait for the lock to be released before acquiring it.
 540 */
 541static bool mlxbf_i2c_smbus_master_lock(struct mlxbf_i2c_priv *priv)
 542{
 543	if (mlxbf_i2c_poll(priv->mst->io, MLXBF_I2C_SMBUS_MASTER_GW,
 544			   MLXBF_I2C_MASTER_LOCK_BIT, true,
 545			   MLXBF_I2C_SMBUS_LOCK_POLL_TIMEOUT))
 546		return true;
 547
 548	return false;
 549}
 550
 551static void mlxbf_i2c_smbus_master_unlock(struct mlxbf_i2c_priv *priv)
 552{
 553	/* Clear the gw to clear the lock */
 554	writel(0, priv->mst->io + MLXBF_I2C_SMBUS_MASTER_GW);
 555}
 556
 557static bool mlxbf_i2c_smbus_transaction_success(u32 master_status,
 558						u32 cause_status)
 559{
 560	/*
 561	 * When transaction ended with STOP, all bytes were transmitted,
 562	 * and no NACK received, then the transaction ended successfully.
 563	 * On the other hand, when the GW is configured with the stop bit
 564	 * de-asserted then the SMBus expects the following GW configuration
 565	 * for transfer continuation.
 566	 */
 567	if ((cause_status & MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA) ||
 568	    ((cause_status & MLXBF_I2C_CAUSE_TRANSACTION_ENDED) &&
 569	     (master_status & MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE) &&
 570	     !(master_status & MLXBF_I2C_SMBUS_STATUS_NACK_RCV)))
 571		return true;
 572
 573	return false;
 574}
 575
 576/*
 577 * Poll SMBus master status and return transaction status,
 578 * i.e. whether succeeded or failed. I2C and SMBus fault codes
 579 * are returned as negative numbers from most calls, with zero
 580 * or some positive number indicating a non-fault return.
 581 */
 582static int mlxbf_i2c_smbus_check_status(struct mlxbf_i2c_priv *priv)
 583{
 584	u32 master_status_bits;
 585	u32 cause_status_bits;
 586
 587	/*
 588	 * GW busy bit is raised by the driver and cleared by the HW
 589	 * when the transaction is completed. The busy bit is a good
 590	 * indicator of transaction status. So poll the busy bit, and
 591	 * then read the cause and master status bits to determine if
 592	 * errors occurred during the transaction.
 593	 */
 594	mlxbf_i2c_poll(priv->mst->io, MLXBF_I2C_SMBUS_MASTER_GW,
 595			 MLXBF_I2C_MASTER_BUSY_BIT, true,
 596			 MLXBF_I2C_SMBUS_TIMEOUT);
 597
 598	/* Read cause status bits. */
 599	cause_status_bits = readl(priv->mst_cause->io +
 600					MLXBF_I2C_CAUSE_ARBITER);
 601	cause_status_bits &= MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK;
 602
 603	/*
 604	 * Parse both Cause and Master GW bits, then return transaction status.
 605	 */
 606
 607	master_status_bits = readl(priv->mst->io +
 608					MLXBF_I2C_SMBUS_MASTER_STATUS);
 609	master_status_bits &= MLXBF_I2C_SMBUS_MASTER_STATUS_MASK;
 610
 611	if (mlxbf_i2c_smbus_transaction_success(master_status_bits,
 612						cause_status_bits))
 613		return 0;
 614
 615	/*
 616	 * In case of timeout on GW busy, the ISR will clear busy bit but
 617	 * transaction ended bits cause will not be set so the transaction
 618	 * fails. Then, we must check Master GW status bits.
 619	 */
 620	if ((master_status_bits & MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR) &&
 621	    (cause_status_bits & (MLXBF_I2C_CAUSE_TRANSACTION_ENDED |
 622				  MLXBF_I2C_CAUSE_M_GW_BUSY_FALL)))
 623		return -EIO;
 624
 625	if (cause_status_bits & MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR)
 626		return -EAGAIN;
 627
 628	return -ETIMEDOUT;
 629}
 630
 631static void mlxbf_i2c_smbus_write_data(struct mlxbf_i2c_priv *priv,
 632				       const u8 *data, u8 length, u32 addr,
 633				       bool is_master)
 634{
 635	u8 offset, aligned_length;
 636	u32 data32;
 637
 638	aligned_length = round_up(length, 4);
 639
 640	/*
 641	 * Copy data bytes from 4-byte aligned source buffer.
 642	 * Data copied to the Master GW Data Descriptor MUST be shifted
 643	 * left so the data starts at the MSB of the descriptor registers
 644	 * as required by the underlying hardware. Enable byte swapping
 645	 * when writing data bytes to the 32 * 32-bit HW Data registers
 646	 * a.k.a Master GW Data Descriptor.
 647	 */
 648	for (offset = 0; offset < aligned_length; offset += sizeof(u32)) {
 649		data32 = *((u32 *)(data + offset));
 650		if (is_master)
 651			iowrite32be(data32, priv->mst->io + addr + offset);
 652		else
 653			iowrite32be(data32, priv->slv->io + addr + offset);
 654	}
 655}
 656
 657static void mlxbf_i2c_smbus_read_data(struct mlxbf_i2c_priv *priv,
 658				      u8 *data, u8 length, u32 addr,
 659				      bool is_master)
 660{
 661	u32 data32, mask;
 662	u8 byte, offset;
 663
 664	mask = sizeof(u32) - 1;
 665
 666	/*
 667	 * Data bytes in the Master GW Data Descriptor are shifted left
 668	 * so the data starts at the MSB of the descriptor registers as
 669	 * set by the underlying hardware. Enable byte swapping while
 670	 * reading data bytes from the 32 * 32-bit HW Data registers
 671	 * a.k.a Master GW Data Descriptor.
 672	 */
 673
 674	for (offset = 0; offset < (length & ~mask); offset += sizeof(u32)) {
 675		if (is_master)
 676			data32 = ioread32be(priv->mst->io + addr + offset);
 677		else
 678			data32 = ioread32be(priv->slv->io + addr + offset);
 679		*((u32 *)(data + offset)) = data32;
 680	}
 681
 682	if (!(length & mask))
 683		return;
 684
 685	if (is_master)
 686		data32 = ioread32be(priv->mst->io + addr + offset);
 687	else
 688		data32 = ioread32be(priv->slv->io + addr + offset);
 689
 690	for (byte = 0; byte < (length & mask); byte++) {
 691		data[offset + byte] = data32 & GENMASK(7, 0);
 692		data32 = ror32(data32, MLXBF_I2C_SHIFT_8);
 693	}
 694}
 695
 696static int mlxbf_i2c_smbus_enable(struct mlxbf_i2c_priv *priv, u8 slave,
 697				  u8 len, u8 block_en, u8 pec_en, bool read)
 698{
 699	u32 command;
 700
 701	/* Set Master GW control word. */
 702	if (read) {
 703		command = MLXBF_I2C_MASTER_ENABLE_READ;
 704		command |= rol32(len, MLXBF_I2C_MASTER_READ_SHIFT);
 705	} else {
 706		command = MLXBF_I2C_MASTER_ENABLE_WRITE;
 707		command |= rol32(len, MLXBF_I2C_MASTER_WRITE_SHIFT);
 708	}
 709	command |= rol32(slave, MLXBF_I2C_MASTER_SLV_ADDR_SHIFT);
 710	command |= rol32(block_en, MLXBF_I2C_MASTER_PARSE_EXP_SHIFT);
 711	command |= rol32(pec_en, MLXBF_I2C_MASTER_SEND_PEC_SHIFT);
 712
 713	/* Clear status bits. */
 714	writel(0x0, priv->mst->io + MLXBF_I2C_SMBUS_MASTER_STATUS);
 715	/* Set the cause data. */
 716	writel(~0x0, priv->mst_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
 717	/* Zero PEC byte. */
 718	writel(0x0, priv->mst->io + MLXBF_I2C_SMBUS_MASTER_PEC);
 719	/* Zero byte count. */
 720	writel(0x0, priv->mst->io + priv->chip->smbus_master_rs_bytes_off);
 721
 722	/* GW activation. */
 723	writel(command, priv->mst->io + MLXBF_I2C_SMBUS_MASTER_GW);
 724
 725	/*
 726	 * Poll master status and check status bits. An ACK is sent when
 727	 * completing writing data to the bus (Master 'byte_count_done' bit
 728	 * is set to 1).
 729	 */
 730	return mlxbf_i2c_smbus_check_status(priv);
 731}
 732
 733static int
 734mlxbf_i2c_smbus_start_transaction(struct mlxbf_i2c_priv *priv,
 735				  struct mlxbf_i2c_smbus_request *request)
 736{
 737	u8 data_desc[MLXBF_I2C_MASTER_DATA_DESC_SIZE] = { 0 };
 738	u8 op_idx, data_idx, data_len, write_len, read_len;
 739	struct mlxbf_i2c_smbus_operation *operation;
 740	u8 read_en, write_en, block_en, pec_en;
 741	u8 slave, flags, addr;
 742	u8 *read_buf;
 743	int ret = 0;
 744
 745	if (request->operation_cnt > MLXBF_I2C_SMBUS_MAX_OP_CNT)
 746		return -EINVAL;
 747
 748	read_buf = NULL;
 749	data_idx = 0;
 750	read_en = 0;
 751	write_en = 0;
 752	write_len = 0;
 753	read_len = 0;
 754	block_en = 0;
 755	pec_en = 0;
 756	slave = request->slave & GENMASK(6, 0);
 757	addr = slave << 1;
 758
 759	/*
 760	 * Try to acquire the smbus gw lock before any reads of the GW register since
 761	 * a read sets the lock.
 762	 */
 763	if (WARN_ON(!mlxbf_i2c_smbus_master_lock(priv)))
 764		return -EBUSY;
 765
 766	/* Check whether the HW is idle */
 767	if (WARN_ON(!mlxbf_i2c_smbus_master_wait_for_idle(priv))) {
 768		ret = -EBUSY;
 769		goto out_unlock;
 770	}
 771
 772	/* Set first byte. */
 773	data_desc[data_idx++] = addr;
 774
 775	for (op_idx = 0; op_idx < request->operation_cnt; op_idx++) {
 776		operation = &request->operation[op_idx];
 777		flags = operation->flags;
 778
 779		/*
 780		 * Note that read and write operations might be handled by a
 781		 * single command. If the MLXBF_I2C_F_SMBUS_OPERATION is set
 782		 * then write command byte and set the optional SMBus specific
 783		 * bits such as block_en and pec_en. These bits MUST be
 784		 * submitted by the first operation only.
 785		 */
 786		if (op_idx == 0 && flags & MLXBF_I2C_F_SMBUS_OPERATION) {
 787			block_en = flags & MLXBF_I2C_F_SMBUS_BLOCK;
 788			pec_en = flags & MLXBF_I2C_F_SMBUS_PEC;
 789		}
 790
 791		if (flags & MLXBF_I2C_F_WRITE) {
 792			write_en = 1;
 793			write_len += operation->length;
 794			if (data_idx + operation->length >
 795					MLXBF_I2C_MASTER_DATA_DESC_SIZE) {
 796				ret = -ENOBUFS;
 797				goto out_unlock;
 798			}
 799			memcpy(data_desc + data_idx,
 800			       operation->buffer, operation->length);
 801			data_idx += operation->length;
 802		}
 803		/*
 804		 * We assume that read operations are performed only once per
 805		 * SMBus transaction. *TBD* protect this statement so it won't
 806		 * be executed twice? or return an error if we try to read more
 807		 * than once?
 808		 */
 809		if (flags & MLXBF_I2C_F_READ) {
 810			read_en = 1;
 811			/* Subtract 1 as required by HW. */
 812			read_len = operation->length - 1;
 813			read_buf = operation->buffer;
 814		}
 815	}
 816
 817	/* Set Master GW data descriptor. */
 818	data_len = write_len + 1; /* Add one byte of the slave address. */
 819	/*
 820	 * Note that data_len cannot be 0. Indeed, the slave address byte
 821	 * must be written to the data registers.
 822	 */
 823	mlxbf_i2c_smbus_write_data(priv, (const u8 *)data_desc, data_len,
 824				   MLXBF_I2C_MASTER_DATA_DESC_ADDR, true);
 825
 826	if (write_en) {
 827		ret = mlxbf_i2c_smbus_enable(priv, slave, write_len, block_en,
 828					 pec_en, 0);
 829		if (ret)
 830			goto out_unlock;
 831	}
 832
 833	if (read_en) {
 834		/* Write slave address to Master GW data descriptor. */
 835		mlxbf_i2c_smbus_write_data(priv, (const u8 *)&addr, 1,
 836					   MLXBF_I2C_MASTER_DATA_DESC_ADDR, true);
 837		ret = mlxbf_i2c_smbus_enable(priv, slave, read_len, block_en,
 838					 pec_en, 1);
 839		if (!ret) {
 840			/* Get Master GW data descriptor. */
 841			mlxbf_i2c_smbus_read_data(priv, data_desc, read_len + 1,
 842					     MLXBF_I2C_MASTER_DATA_DESC_ADDR, true);
 843
 844			/* Get data from Master GW data descriptor. */
 845			memcpy(read_buf, data_desc, read_len + 1);
 846		}
 847
 848		/*
 849		 * After a read operation the SMBus FSM ps (present state)
 850		 * needs to be 'manually' reset. This should be removed in
 851		 * next tag integration.
 852		 */
 853		writel(MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK,
 854			priv->mst->io + priv->chip->smbus_master_fsm_off);
 855	}
 856
 857out_unlock:
 858	mlxbf_i2c_smbus_master_unlock(priv);
 859
 860	return ret;
 861}
 862
 863/* I2C SMBus protocols. */
 864
 865static void
 866mlxbf_i2c_smbus_quick_command(struct mlxbf_i2c_smbus_request *request,
 867			      u8 read)
 868{
 869	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
 870
 871	request->operation[0].length = 0;
 872	request->operation[0].flags = MLXBF_I2C_F_WRITE;
 873	request->operation[0].flags |= read ? MLXBF_I2C_F_READ : 0;
 874}
 875
 876static void mlxbf_i2c_smbus_byte_func(struct mlxbf_i2c_smbus_request *request,
 877				      u8 *data, bool read, bool pec_check)
 878{
 879	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
 880
 881	request->operation[0].length = 1;
 882	request->operation[0].length += pec_check;
 883
 884	request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION;
 885	request->operation[0].flags |= read ?
 886				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
 887	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
 888
 889	request->operation[0].buffer = data;
 890}
 891
 892static void
 893mlxbf_i2c_smbus_data_byte_func(struct mlxbf_i2c_smbus_request *request,
 894			       u8 *command, u8 *data, bool read, bool pec_check)
 895{
 896	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
 897
 898	request->operation[0].length = 1;
 899	request->operation[0].flags =
 900			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
 901	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
 902	request->operation[0].buffer = command;
 903
 904	request->operation[1].length = 1;
 905	request->operation[1].length += pec_check;
 906	request->operation[1].flags = read ?
 907				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
 908	request->operation[1].buffer = data;
 909}
 910
 911static void
 912mlxbf_i2c_smbus_data_word_func(struct mlxbf_i2c_smbus_request *request,
 913			       u8 *command, u8 *data, bool read, bool pec_check)
 914{
 915	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
 916
 917	request->operation[0].length = 1;
 918	request->operation[0].flags =
 919			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
 920	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
 921	request->operation[0].buffer = command;
 922
 923	request->operation[1].length = 2;
 924	request->operation[1].length += pec_check;
 925	request->operation[1].flags = read ?
 926				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
 927	request->operation[1].buffer = data;
 928}
 929
 930static void
 931mlxbf_i2c_smbus_i2c_block_func(struct mlxbf_i2c_smbus_request *request,
 932			       u8 *command, u8 *data, u8 *data_len, bool read,
 933			       bool pec_check)
 934{
 935	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
 936
 937	request->operation[0].length = 1;
 938	request->operation[0].flags =
 939			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
 940	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
 941	request->operation[0].buffer = command;
 942
 943	/*
 944	 * As specified in the standard, the max number of bytes to read/write
 945	 * per block operation is 32 bytes. In Golan code, the controller can
 946	 * read up to 128 bytes and write up to 127 bytes.
 947	 */
 948	request->operation[1].length =
 949	    (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
 950	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
 951	request->operation[1].flags = read ?
 952				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
 953	/*
 954	 * Skip the first data byte, which corresponds to the number of bytes
 955	 * to read/write.
 956	 */
 957	request->operation[1].buffer = data + 1;
 958
 959	*data_len = request->operation[1].length;
 960
 961	/* Set the number of byte to read. This will be used by userspace. */
 962	if (read)
 963		data[0] = *data_len;
 964}
 965
 966static void mlxbf_i2c_smbus_block_func(struct mlxbf_i2c_smbus_request *request,
 967				       u8 *command, u8 *data, u8 *data_len,
 968				       bool read, bool pec_check)
 969{
 970	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
 971
 972	request->operation[0].length = 1;
 973	request->operation[0].flags =
 974			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
 975	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
 976	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
 977	request->operation[0].buffer = command;
 978
 979	request->operation[1].length =
 980	    (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
 981	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
 982	request->operation[1].flags = read ?
 983				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
 984	request->operation[1].buffer = data + 1;
 985
 986	*data_len = request->operation[1].length;
 987
 988	/* Set the number of bytes to read. This will be used by userspace. */
 989	if (read)
 990		data[0] = *data_len;
 991}
 992
 993static void
 994mlxbf_i2c_smbus_process_call_func(struct mlxbf_i2c_smbus_request *request,
 995				  u8 *command, u8 *data, bool pec_check)
 996{
 997	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
 998
 999	request->operation[0].length = 1;
1000	request->operation[0].flags =
1001			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
1002	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
1003	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
1004	request->operation[0].buffer = command;
1005
1006	request->operation[1].length = 2;
1007	request->operation[1].flags = MLXBF_I2C_F_WRITE;
1008	request->operation[1].buffer = data;
1009
1010	request->operation[2].length = 3;
1011	request->operation[2].flags = MLXBF_I2C_F_READ;
1012	request->operation[2].buffer = data;
1013}
1014
1015static void
1016mlxbf_i2c_smbus_blk_process_call_func(struct mlxbf_i2c_smbus_request *request,
1017				      u8 *command, u8 *data, u8 *data_len,
1018				      bool pec_check)
1019{
1020	u32 length;
1021
1022	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
1023
1024	request->operation[0].length = 1;
1025	request->operation[0].flags =
1026			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
1027	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
1028	request->operation[0].flags |= (pec_check) ? MLXBF_I2C_F_SMBUS_PEC : 0;
1029	request->operation[0].buffer = command;
1030
1031	length = (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
1032	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
1033
1034	request->operation[1].length = length - pec_check;
1035	request->operation[1].flags = MLXBF_I2C_F_WRITE;
1036	request->operation[1].buffer = data;
1037
1038	request->operation[2].length = length;
1039	request->operation[2].flags = MLXBF_I2C_F_READ;
1040	request->operation[2].buffer = data;
1041
1042	*data_len = length; /* including PEC byte. */
1043}
1044
1045/* Initialization functions. */
1046
1047static bool mlxbf_i2c_has_chip_type(struct mlxbf_i2c_priv *priv, u8 type)
1048{
1049	return priv->chip->type == type;
1050}
1051
1052static struct mlxbf_i2c_resource *
1053mlxbf_i2c_get_shared_resource(struct mlxbf_i2c_priv *priv, u8 type)
1054{
1055	const struct mlxbf_i2c_chip_info *chip = priv->chip;
1056	struct mlxbf_i2c_resource *res;
1057	u8 res_idx = 0;
1058
1059	for (res_idx = 0; res_idx < MLXBF_I2C_SHARED_RES_MAX; res_idx++) {
1060		res = chip->shared_res[res_idx];
1061		if (res && res->type == type)
1062			return res;
1063	}
1064
1065	return NULL;
1066}
1067
1068static int mlxbf_i2c_init_resource(struct platform_device *pdev,
1069				   struct mlxbf_i2c_resource **res,
1070				   u8 type)
1071{
1072	struct mlxbf_i2c_resource *tmp_res;
1073	struct device *dev = &pdev->dev;
1074
1075	if (!res || *res || type >= MLXBF_I2C_END_RES)
1076		return -EINVAL;
1077
1078	tmp_res = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource),
1079			       GFP_KERNEL);
1080	if (!tmp_res)
1081		return -ENOMEM;
1082
1083	tmp_res->io = devm_platform_get_and_ioremap_resource(pdev, type, &tmp_res->params);
1084	if (IS_ERR(tmp_res->io)) {
1085		devm_kfree(dev, tmp_res);
1086		return PTR_ERR(tmp_res->io);
1087	}
1088
1089	tmp_res->type = type;
1090
1091	*res = tmp_res;
1092
1093	return 0;
1094}
1095
1096static u32 mlxbf_i2c_get_ticks(struct mlxbf_i2c_priv *priv, u64 nanoseconds,
1097			       bool minimum)
1098{
1099	u64 frequency;
1100	u32 ticks;
1101
1102	/*
1103	 * Compute ticks as follow:
1104	 *
1105	 *           Ticks
1106	 * Time = --------- x 10^9    =>    Ticks = Time x Frequency x 10^-9
1107	 *         Frequency
1108	 */
1109	frequency = priv->frequency;
1110	ticks = (nanoseconds * frequency) / MLXBF_I2C_FREQUENCY_1GHZ;
1111	/*
1112	 * The number of ticks is rounded down and if minimum is equal to 1
1113	 * then add one tick.
1114	 */
1115	if (minimum)
1116		ticks++;
1117
1118	return ticks;
1119}
1120
1121static u32 mlxbf_i2c_set_timer(struct mlxbf_i2c_priv *priv, u64 nsec, bool opt,
1122			       u32 mask, u8 shift)
1123{
1124	u32 val = (mlxbf_i2c_get_ticks(priv, nsec, opt) & mask) << shift;
1125
1126	return val;
1127}
1128
1129static void mlxbf_i2c_set_timings(struct mlxbf_i2c_priv *priv,
1130				  const struct mlxbf_i2c_timings *timings)
1131{
1132	u32 timer;
1133
1134	timer = mlxbf_i2c_set_timer(priv, timings->scl_high,
1135				    false, MLXBF_I2C_MASK_16,
1136				    MLXBF_I2C_SHIFT_0);
1137	timer |= mlxbf_i2c_set_timer(priv, timings->scl_low,
1138				     false, MLXBF_I2C_MASK_16,
1139				     MLXBF_I2C_SHIFT_16);
1140	writel(timer, priv->timer->io +
1141		MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH);
1142
1143	timer = mlxbf_i2c_set_timer(priv, timings->sda_rise, false,
1144				    MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_0);
1145	timer |= mlxbf_i2c_set_timer(priv, timings->sda_fall, false,
1146				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_8);
1147	timer |= mlxbf_i2c_set_timer(priv, timings->scl_rise, false,
1148				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_16);
1149	timer |= mlxbf_i2c_set_timer(priv, timings->scl_fall, false,
1150				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_24);
1151	writel(timer, priv->timer->io +
1152		MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE);
1153
1154	timer = mlxbf_i2c_set_timer(priv, timings->hold_start, true,
1155				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1156	timer |= mlxbf_i2c_set_timer(priv, timings->hold_data, true,
1157				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1158	writel(timer, priv->timer->io + MLXBF_I2C_SMBUS_TIMER_THOLD);
1159
1160	timer = mlxbf_i2c_set_timer(priv, timings->setup_start, true,
1161				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1162	timer |= mlxbf_i2c_set_timer(priv, timings->setup_stop, true,
1163				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1164	writel(timer, priv->timer->io +
1165		MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP);
1166
1167	timer = mlxbf_i2c_set_timer(priv, timings->setup_data, true,
1168				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1169	writel(timer, priv->timer->io + MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA);
1170
1171	timer = mlxbf_i2c_set_timer(priv, timings->buf, false,
1172				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1173	timer |= mlxbf_i2c_set_timer(priv, timings->thigh_max, false,
1174				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1175	writel(timer, priv->timer->io + MLXBF_I2C_SMBUS_THIGH_MAX_TBUF);
1176
1177	timer = timings->timeout;
1178	writel(timer, priv->timer->io + MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT);
1179}
1180
1181enum mlxbf_i2c_timings_config {
1182	MLXBF_I2C_TIMING_CONFIG_100KHZ,
1183	MLXBF_I2C_TIMING_CONFIG_400KHZ,
1184	MLXBF_I2C_TIMING_CONFIG_1000KHZ,
1185};
1186
1187/*
1188 * Note that the mlxbf_i2c_timings->timeout value is not related to the
1189 * bus frequency, it is impacted by the time it takes the driver to
1190 * complete data transmission before transaction abort.
1191 */
1192static const struct mlxbf_i2c_timings mlxbf_i2c_timings[] = {
1193	[MLXBF_I2C_TIMING_CONFIG_100KHZ] = {
1194		.scl_high = 4810,
1195		.scl_low = 5000,
1196		.hold_start = 4000,
1197		.setup_start = 4800,
1198		.setup_stop = 4000,
1199		.setup_data = 250,
1200		.sda_rise = 50,
1201		.sda_fall = 50,
1202		.scl_rise = 50,
1203		.scl_fall = 50,
1204		.hold_data = 300,
1205		.buf = 20000,
1206		.thigh_max = 5000,
1207		.timeout = 106500
1208	},
1209	[MLXBF_I2C_TIMING_CONFIG_400KHZ] = {
1210		.scl_high = 1011,
1211		.scl_low = 1300,
1212		.hold_start = 600,
1213		.setup_start = 700,
1214		.setup_stop = 600,
1215		.setup_data = 100,
1216		.sda_rise = 50,
1217		.sda_fall = 50,
1218		.scl_rise = 50,
1219		.scl_fall = 50,
1220		.hold_data = 300,
1221		.buf = 20000,
1222		.thigh_max = 5000,
1223		.timeout = 106500
1224	},
1225	[MLXBF_I2C_TIMING_CONFIG_1000KHZ] = {
1226		.scl_high = 600,
1227		.scl_low = 1300,
1228		.hold_start = 600,
1229		.setup_start = 600,
1230		.setup_stop = 600,
1231		.setup_data = 100,
1232		.sda_rise = 50,
1233		.sda_fall = 50,
1234		.scl_rise = 50,
1235		.scl_fall = 50,
1236		.hold_data = 300,
1237		.buf = 20000,
1238		.thigh_max = 5000,
1239		.timeout = 106500
1240	}
1241};
1242
1243static int mlxbf_i2c_init_timings(struct platform_device *pdev,
1244				  struct mlxbf_i2c_priv *priv)
1245{
1246	enum mlxbf_i2c_timings_config config_idx;
1247	struct device *dev = &pdev->dev;
1248	u32 config_khz;
1249
1250	int ret;
1251
1252	ret = device_property_read_u32(dev, "clock-frequency", &config_khz);
1253	if (ret < 0)
1254		config_khz = I2C_MAX_STANDARD_MODE_FREQ;
1255
1256	switch (config_khz) {
1257	default:
1258		/* Default settings is 100 KHz. */
1259		pr_warn("Illegal value %d: defaulting to 100 KHz\n",
1260			config_khz);
1261		fallthrough;
1262	case I2C_MAX_STANDARD_MODE_FREQ:
1263		config_idx = MLXBF_I2C_TIMING_CONFIG_100KHZ;
1264		break;
1265
1266	case I2C_MAX_FAST_MODE_FREQ:
1267		config_idx = MLXBF_I2C_TIMING_CONFIG_400KHZ;
1268		break;
1269
1270	case I2C_MAX_FAST_MODE_PLUS_FREQ:
1271		config_idx = MLXBF_I2C_TIMING_CONFIG_1000KHZ;
1272		break;
1273	}
1274
1275	mlxbf_i2c_set_timings(priv, &mlxbf_i2c_timings[config_idx]);
1276
1277	return 0;
1278}
1279
1280static int mlxbf_i2c_get_gpio(struct platform_device *pdev,
1281			      struct mlxbf_i2c_priv *priv)
1282{
1283	struct mlxbf_i2c_resource *gpio_res;
1284	struct device *dev = &pdev->dev;
1285	struct resource	*params;
1286	resource_size_t size;
1287
1288	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1289	if (!gpio_res)
1290		return -EPERM;
1291
1292	/*
1293	 * The GPIO region in TYU space is shared among I2C busses.
1294	 * This function MUST be serialized to avoid racing when
1295	 * claiming the memory region and/or setting up the GPIO.
1296	 */
1297	lockdep_assert_held(gpio_res->lock);
1298
1299	/* Check whether the memory map exist. */
1300	if (gpio_res->io)
1301		return 0;
1302
1303	params = gpio_res->params;
1304	size = resource_size(params);
1305
1306	if (!devm_request_mem_region(dev, params->start, size, params->name))
1307		return -EFAULT;
1308
1309	gpio_res->io = devm_ioremap(dev, params->start, size);
1310	if (!gpio_res->io) {
1311		devm_release_mem_region(dev, params->start, size);
1312		return -ENOMEM;
1313	}
1314
1315	return 0;
1316}
1317
1318static int mlxbf_i2c_release_gpio(struct platform_device *pdev,
1319				  struct mlxbf_i2c_priv *priv)
1320{
1321	struct mlxbf_i2c_resource *gpio_res;
1322	struct device *dev = &pdev->dev;
1323	struct resource	*params;
1324
1325	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1326	if (!gpio_res)
1327		return 0;
1328
1329	mutex_lock(gpio_res->lock);
1330
1331	if (gpio_res->io) {
1332		/* Release the GPIO resource. */
1333		params = gpio_res->params;
1334		devm_iounmap(dev, gpio_res->io);
1335		devm_release_mem_region(dev, params->start,
1336					resource_size(params));
1337	}
1338
1339	mutex_unlock(gpio_res->lock);
1340
1341	return 0;
1342}
1343
1344static int mlxbf_i2c_get_corepll(struct platform_device *pdev,
1345				 struct mlxbf_i2c_priv *priv)
1346{
1347	struct mlxbf_i2c_resource *corepll_res;
1348	struct device *dev = &pdev->dev;
1349	struct resource *params;
1350	resource_size_t size;
1351
1352	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1353						    MLXBF_I2C_COREPLL_RES);
1354	if (!corepll_res)
1355		return -EPERM;
1356
1357	/*
1358	 * The COREPLL region in TYU space is shared among I2C busses.
1359	 * This function MUST be serialized to avoid racing when
1360	 * claiming the memory region.
1361	 */
1362	lockdep_assert_held(corepll_res->lock);
1363
1364	/* Check whether the memory map exist. */
1365	if (corepll_res->io)
1366		return 0;
1367
1368	params = corepll_res->params;
1369	size = resource_size(params);
1370
1371	if (!devm_request_mem_region(dev, params->start, size, params->name))
1372		return -EFAULT;
1373
1374	corepll_res->io = devm_ioremap(dev, params->start, size);
1375	if (!corepll_res->io) {
1376		devm_release_mem_region(dev, params->start, size);
1377		return -ENOMEM;
1378	}
1379
1380	return 0;
1381}
1382
1383static int mlxbf_i2c_release_corepll(struct platform_device *pdev,
1384				     struct mlxbf_i2c_priv *priv)
1385{
1386	struct mlxbf_i2c_resource *corepll_res;
1387	struct device *dev = &pdev->dev;
1388	struct resource *params;
1389
1390	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1391						    MLXBF_I2C_COREPLL_RES);
1392
1393	mutex_lock(corepll_res->lock);
1394
1395	if (corepll_res->io) {
1396		/* Release the CorePLL resource. */
1397		params = corepll_res->params;
1398		devm_iounmap(dev, corepll_res->io);
1399		devm_release_mem_region(dev, params->start,
1400					resource_size(params));
1401	}
1402
1403	mutex_unlock(corepll_res->lock);
1404
1405	return 0;
1406}
1407
1408static int mlxbf_i2c_init_master(struct platform_device *pdev,
1409				 struct mlxbf_i2c_priv *priv)
1410{
1411	struct mlxbf_i2c_resource *gpio_res;
1412	struct device *dev = &pdev->dev;
1413	u32 config_reg;
1414	int ret;
1415
1416	/* This configuration is only needed for BlueField 1. */
1417	if (!mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1))
1418		return 0;
1419
1420	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1421	if (!gpio_res)
1422		return -EPERM;
1423
1424	/*
1425	 * The GPIO region in TYU space is shared among I2C busses.
1426	 * This function MUST be serialized to avoid racing when
1427	 * claiming the memory region and/or setting up the GPIO.
1428	 */
1429
1430	mutex_lock(gpio_res->lock);
1431
1432	ret = mlxbf_i2c_get_gpio(pdev, priv);
1433	if (ret < 0) {
1434		dev_err(dev, "Failed to get gpio resource");
1435		mutex_unlock(gpio_res->lock);
1436		return ret;
1437	}
1438
1439	/*
1440	 * TYU - Configuration for GPIO pins. Those pins must be asserted in
1441	 * MLXBF_I2C_GPIO_0_FUNC_EN_0, i.e. GPIO 0 is controlled by HW, and must
1442	 * be reset in MLXBF_I2C_GPIO_0_FORCE_OE_EN, i.e. GPIO_OE will be driven
1443	 * instead of HW_OE.
1444	 * For now, we do not reset the GPIO state when the driver is removed.
1445	 * First, it is not necessary to disable the bus since we are using
1446	 * the same busses. Then, some busses might be shared among Linux and
1447	 * platform firmware; disabling the bus might compromise the system
1448	 * functionality.
1449	 */
1450	config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1451	config_reg = MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(priv->bus,
1452							 config_reg);
1453	writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1454
1455	config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1456	config_reg = MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(priv->bus,
1457							config_reg);
1458	writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1459
1460	mutex_unlock(gpio_res->lock);
1461
1462	return 0;
1463}
1464
1465static u64 mlxbf_i2c_calculate_freq_from_tyu(struct mlxbf_i2c_resource *corepll_res)
1466{
1467	u64 core_frequency;
1468	u8 core_od, core_r;
1469	u32 corepll_val;
1470	u16 core_f;
1471
1472	corepll_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1473
1474	/* Get Core PLL configuration bits. */
1475	core_f = FIELD_GET(MLXBF_I2C_COREPLL_CORE_F_TYU_MASK, corepll_val);
1476	core_od = FIELD_GET(MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK, corepll_val);
1477	core_r = FIELD_GET(MLXBF_I2C_COREPLL_CORE_R_TYU_MASK, corepll_val);
1478
1479	/*
1480	 * Compute PLL output frequency as follow:
1481	 *
1482	 *                                       CORE_F + 1
1483	 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1484	 *                              (CORE_R + 1) * (CORE_OD + 1)
1485	 *
1486	 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1487	 * and PadFrequency, respectively.
1488	 */
1489	core_frequency = MLXBF_I2C_PLL_IN_FREQ * (++core_f);
1490	core_frequency /= (++core_r) * (++core_od);
1491
1492	return core_frequency;
1493}
1494
1495static u64 mlxbf_i2c_calculate_freq_from_yu(struct mlxbf_i2c_resource *corepll_res)
1496{
1497	u32 corepll_reg1_val, corepll_reg2_val;
1498	u64 corepll_frequency;
1499	u8 core_od, core_r;
1500	u32 core_f;
1501
1502	corepll_reg1_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1503	corepll_reg2_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG2);
1504
1505	/* Get Core PLL configuration bits */
1506	core_f = FIELD_GET(MLXBF_I2C_COREPLL_CORE_F_YU_MASK, corepll_reg1_val);
1507	core_r = FIELD_GET(MLXBF_I2C_COREPLL_CORE_R_YU_MASK, corepll_reg1_val);
1508	core_od = FIELD_GET(MLXBF_I2C_COREPLL_CORE_OD_YU_MASK, corepll_reg2_val);
1509
1510	/*
1511	 * Compute PLL output frequency as follow:
1512	 *
1513	 *                                     CORE_F / 16384
1514	 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1515	 *                              (CORE_R + 1) * (CORE_OD + 1)
1516	 *
1517	 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1518	 * and PadFrequency, respectively.
1519	 */
1520	corepll_frequency = (MLXBF_I2C_PLL_IN_FREQ * core_f) / MLNXBF_I2C_COREPLL_CONST;
1521	corepll_frequency /= (++core_r) * (++core_od);
1522
1523	return corepll_frequency;
1524}
1525
1526static int mlxbf_i2c_calculate_corepll_freq(struct platform_device *pdev,
1527					    struct mlxbf_i2c_priv *priv)
1528{
1529	const struct mlxbf_i2c_chip_info *chip = priv->chip;
1530	struct mlxbf_i2c_resource *corepll_res;
1531	struct device *dev = &pdev->dev;
1532	u64 *freq = &priv->frequency;
1533	int ret;
1534
1535	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1536						    MLXBF_I2C_COREPLL_RES);
1537	if (!corepll_res)
1538		return -EPERM;
1539
1540	/*
1541	 * First, check whether the TYU core Clock frequency is set.
1542	 * The TYU core frequency is the same for all I2C busses; when
1543	 * the first device gets probed the frequency is determined and
1544	 * stored into a globally visible variable. So, first of all,
1545	 * check whether the frequency is already set. Here, we assume
1546	 * that the frequency is expected to be greater than 0.
1547	 */
1548	mutex_lock(corepll_res->lock);
1549	if (!mlxbf_i2c_corepll_frequency) {
1550		if (!chip->calculate_freq) {
1551			mutex_unlock(corepll_res->lock);
1552			return -EPERM;
1553		}
1554
1555		ret = mlxbf_i2c_get_corepll(pdev, priv);
1556		if (ret < 0) {
1557			dev_err(dev, "Failed to get corePLL resource");
1558			mutex_unlock(corepll_res->lock);
1559			return ret;
1560		}
1561
1562		mlxbf_i2c_corepll_frequency = chip->calculate_freq(corepll_res);
1563	}
1564	mutex_unlock(corepll_res->lock);
1565
1566	*freq = mlxbf_i2c_corepll_frequency;
1567
1568	return 0;
1569}
1570
1571static int mlxbf_i2c_slave_enable(struct mlxbf_i2c_priv *priv,
1572			      struct i2c_client *slave)
1573{
1574	u8 reg, reg_cnt, byte, addr_tmp;
1575	u32 slave_reg, slave_reg_tmp;
1576
1577	if (!priv)
1578		return -EPERM;
1579
1580	reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1581
1582	/*
1583	 * Read the slave registers. There are 4 * 32-bit slave registers.
1584	 * Each slave register can hold up to 4 * 8-bit slave configuration:
1585	 * 1) A 7-bit address
1586	 * 2) And a status bit (1 if enabled, 0 if not).
1587	 * Look for the next available slave register slot.
1588	 */
1589	for (reg = 0; reg < reg_cnt; reg++) {
1590		slave_reg = readl(priv->slv->io +
1591				MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1592		/*
1593		 * Each register holds 4 slave addresses. So, we have to keep
1594		 * the byte order consistent with the value read in order to
1595		 * update the register correctly, if needed.
1596		 */
1597		slave_reg_tmp = slave_reg;
1598		for (byte = 0; byte < 4; byte++) {
1599			addr_tmp = slave_reg_tmp & GENMASK(7, 0);
1600
1601			/*
1602			 * If an enable bit is not set in the
1603			 * MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG register, then the
1604			 * slave address slot associated with that bit is
1605			 * free. So set the enable bit and write the
1606			 * slave address bits.
1607			 */
1608			if (!(addr_tmp & MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT)) {
1609				slave_reg &= ~(MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK << (byte * 8));
1610				slave_reg |= (slave->addr << (byte * 8));
1611				slave_reg |= MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT << (byte * 8);
1612				writel(slave_reg, priv->slv->io +
1613					MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1614					(reg * 0x4));
1615
1616				/*
1617				 * Set the slave at the corresponding index.
1618				 */
1619				priv->slave[(reg * 4) + byte] = slave;
1620
1621				return 0;
1622			}
1623
1624			/* Parse next byte. */
1625			slave_reg_tmp >>= 8;
1626		}
1627	}
1628
1629	return -EBUSY;
1630}
1631
1632static int mlxbf_i2c_slave_disable(struct mlxbf_i2c_priv *priv, u8 addr)
1633{
1634	u8 addr_tmp, reg, reg_cnt, byte;
1635	u32 slave_reg, slave_reg_tmp;
1636
1637	reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1638
1639	/*
1640	 * Read the slave registers. There are 4 * 32-bit slave registers.
1641	 * Each slave register can hold up to 4 * 8-bit slave configuration:
1642	 * 1) A 7-bit address
1643	 * 2) And a status bit (1 if enabled, 0 if not).
1644	 * Check if addr is present in the registers.
1645	 */
1646	for (reg = 0; reg < reg_cnt; reg++) {
1647		slave_reg = readl(priv->slv->io +
1648				MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1649
1650		/* Check whether the address slots are empty. */
1651		if (!slave_reg)
1652			continue;
1653
1654		/*
1655		 * Check if addr matches any of the 4 slave addresses
1656		 * in the register.
1657		 */
1658		slave_reg_tmp = slave_reg;
1659		for (byte = 0; byte < 4; byte++) {
1660			addr_tmp = slave_reg_tmp & MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1661			/*
1662			 * Parse slave address bytes and check whether the
1663			 * slave address already exists.
1664			 */
1665			if (addr_tmp == addr) {
1666				/* Clear the slave address slot. */
1667				slave_reg &= ~(GENMASK(7, 0) << (byte * 8));
1668				writel(slave_reg, priv->slv->io +
1669					MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1670					(reg * 0x4));
1671				/* Free slave at the corresponding index */
1672				priv->slave[(reg * 4) + byte] = NULL;
1673
1674				return 0;
1675			}
1676
1677			/* Parse next byte. */
1678			slave_reg_tmp >>= 8;
1679		}
1680	}
1681
1682	return -ENXIO;
1683}
1684
1685static int mlxbf_i2c_init_coalesce(struct platform_device *pdev,
1686				   struct mlxbf_i2c_priv *priv)
1687{
1688	struct mlxbf_i2c_resource *coalesce_res;
1689	struct resource *params;
1690	resource_size_t size;
1691	int ret = 0;
1692
1693	/*
1694	 * Unlike BlueField-1 platform, the coalesce registers is a dedicated
1695	 * resource in the next generations of BlueField.
1696	 */
1697	if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1698		coalesce_res = mlxbf_i2c_get_shared_resource(priv,
1699						MLXBF_I2C_COALESCE_RES);
1700		if (!coalesce_res)
1701			return -EPERM;
1702
1703		/*
1704		 * The Cause Coalesce group in TYU space is shared among
1705		 * I2C busses. This function MUST be serialized to avoid
1706		 * racing when claiming the memory region.
1707		 */
1708		lockdep_assert_held(mlxbf_i2c_gpio_res->lock);
1709
1710		/* Check whether the memory map exist. */
1711		if (coalesce_res->io) {
1712			priv->coalesce = coalesce_res;
1713			return 0;
1714		}
1715
1716		params = coalesce_res->params;
1717		size = resource_size(params);
1718
1719		if (!request_mem_region(params->start, size, params->name))
1720			return -EFAULT;
1721
1722		coalesce_res->io = ioremap(params->start, size);
1723		if (!coalesce_res->io) {
1724			release_mem_region(params->start, size);
1725			return -ENOMEM;
1726		}
1727
1728		priv->coalesce = coalesce_res;
1729
1730	} else {
1731		ret = mlxbf_i2c_init_resource(pdev, &priv->coalesce,
1732					      MLXBF_I2C_COALESCE_RES);
1733	}
1734
1735	return ret;
1736}
1737
1738static int mlxbf_i2c_release_coalesce(struct platform_device *pdev,
1739				      struct mlxbf_i2c_priv *priv)
1740{
1741	struct mlxbf_i2c_resource *coalesce_res;
1742	struct device *dev = &pdev->dev;
1743	struct resource *params;
1744	resource_size_t size;
1745
1746	coalesce_res = priv->coalesce;
1747
1748	if (coalesce_res->io) {
1749		params = coalesce_res->params;
1750		size = resource_size(params);
1751		if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1752			mutex_lock(coalesce_res->lock);
1753			iounmap(coalesce_res->io);
1754			release_mem_region(params->start, size);
1755			mutex_unlock(coalesce_res->lock);
1756		} else {
1757			devm_release_mem_region(dev, params->start, size);
1758		}
1759	}
1760
1761	return 0;
1762}
1763
1764static int mlxbf_i2c_init_slave(struct platform_device *pdev,
1765				struct mlxbf_i2c_priv *priv)
1766{
1767	struct device *dev = &pdev->dev;
1768	u32 int_reg;
1769	int ret;
1770
1771	/* Reset FSM. */
1772	writel(0, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_FSM);
1773
1774	/*
1775	 * Enable slave cause interrupt bits. Drive
1776	 * MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE and
1777	 * MLXBF_I2C_CAUSE_WRITE_SUCCESS, these are enabled when an external
1778	 * masters issue a Read and Write, respectively. But, clear all
1779	 * interrupts first.
1780	 */
1781	writel(~0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1782	int_reg = MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE;
1783	int_reg |= MLXBF_I2C_CAUSE_WRITE_SUCCESS;
1784	writel(int_reg, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_EVTEN0);
1785
1786	/* Finally, set the 'ready' bit to start handling transactions. */
1787	writel(0x1, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1788
1789	/* Initialize the cause coalesce resource. */
1790	ret = mlxbf_i2c_init_coalesce(pdev, priv);
1791	if (ret < 0) {
1792		dev_err(dev, "failed to initialize cause coalesce\n");
1793		return ret;
1794	}
1795
1796	return 0;
1797}
1798
1799static bool mlxbf_i2c_has_coalesce(struct mlxbf_i2c_priv *priv, bool *read,
1800				   bool *write)
1801{
1802	const struct mlxbf_i2c_chip_info *chip = priv->chip;
1803	u32 coalesce0_reg, cause_reg;
1804	u8 slave_shift, is_set;
1805
1806	*write = false;
1807	*read = false;
1808
1809	slave_shift = chip->type != MLXBF_I2C_CHIP_TYPE_1 ?
1810				MLXBF_I2C_CAUSE_YU_SLAVE_BIT :
1811				priv->bus + MLXBF_I2C_CAUSE_TYU_SLAVE_BIT;
1812
1813	coalesce0_reg = readl(priv->coalesce->io + MLXBF_I2C_CAUSE_COALESCE_0);
1814	is_set = coalesce0_reg & (1 << slave_shift);
1815
1816	if (!is_set)
1817		return false;
1818
1819	/* Check the source of the interrupt, i.e. whether a Read or Write. */
1820	cause_reg = readl(priv->slv_cause->io + MLXBF_I2C_CAUSE_ARBITER);
1821	if (cause_reg & MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE)
1822		*read = true;
1823	else if (cause_reg & MLXBF_I2C_CAUSE_WRITE_SUCCESS)
1824		*write = true;
1825
1826	/* Clear cause bits. */
1827	writel(~0x0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1828
1829	return true;
1830}
1831
1832static bool mlxbf_i2c_slave_wait_for_idle(struct mlxbf_i2c_priv *priv,
1833					    u32 timeout)
1834{
1835	u32 mask = MLXBF_I2C_CAUSE_S_GW_BUSY_FALL;
1836	u32 addr = MLXBF_I2C_CAUSE_ARBITER;
1837
1838	if (mlxbf_i2c_poll(priv->slv_cause->io, addr, mask, false, timeout))
1839		return true;
1840
1841	return false;
1842}
1843
1844static struct i2c_client *mlxbf_i2c_get_slave_from_addr(
1845			struct mlxbf_i2c_priv *priv, u8 addr)
1846{
1847	int i;
1848
1849	for (i = 0; i < MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT; i++) {
1850		if (!priv->slave[i])
1851			continue;
1852
1853		if (priv->slave[i]->addr == addr)
1854			return priv->slave[i];
1855	}
1856
1857	return NULL;
1858}
1859
1860/*
1861 * Send byte to 'external' smbus master. This function is executed when
1862 * an external smbus master wants to read data from the BlueField.
1863 */
1864static int mlxbf_i2c_irq_send(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1865{
1866	u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1867	u8 write_size, pec_en, addr, value, byte_cnt;
1868	struct i2c_client *slave;
1869	u32 control32, data32;
1870	int ret = 0;
1871
1872	/*
1873	 * Read the first byte received from the external master to
1874	 * determine the slave address. This byte is located in the
1875	 * first data descriptor register of the slave GW.
1876	 */
1877	data32 = ioread32be(priv->slv->io +
1878				MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1879	addr = (data32 & GENMASK(7, 0)) >> 1;
1880
1881	/*
1882	 * Check if the slave address received in the data descriptor register
1883	 * matches any of the slave addresses registered. If there is a match,
1884	 * set the slave.
1885	 */
1886	slave = mlxbf_i2c_get_slave_from_addr(priv, addr);
1887	if (!slave) {
1888		ret = -ENXIO;
1889		goto clear_csr;
1890	}
1891
1892	/*
1893	 * An I2C read can consist of a WRITE bit transaction followed by
1894	 * a READ bit transaction. Indeed, slave devices often expect
1895	 * the slave address to be followed by the internal address.
1896	 * So, write the internal address byte first, and then, send the
1897	 * requested data to the master.
1898	 */
1899	if (recv_bytes > 1) {
1900		i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1901		value = (data32 >> 8) & GENMASK(7, 0);
1902		ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1903				      &value);
1904		i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1905
1906		if (ret < 0)
1907			goto clear_csr;
1908	}
1909
1910	/*
1911	 * Send data to the master. Currently, the driver supports
1912	 * READ_BYTE, READ_WORD and BLOCK READ protocols. The
1913	 * hardware can send up to 128 bytes per transfer which is
1914	 * the total size of the data registers.
1915	 */
1916	i2c_slave_event(slave, I2C_SLAVE_READ_REQUESTED, &value);
1917
1918	for (byte_cnt = 0; byte_cnt < MLXBF_I2C_SLAVE_DATA_DESC_SIZE; byte_cnt++) {
1919		data_desc[byte_cnt] = value;
1920		i2c_slave_event(slave, I2C_SLAVE_READ_PROCESSED, &value);
1921	}
1922
1923	/* Send a stop condition to the backend. */
1924	i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1925
1926	/* Set the number of bytes to write to master. */
1927	write_size = (byte_cnt - 1) & 0x7f;
1928
1929	/* Write data to Slave GW data descriptor. */
1930	mlxbf_i2c_smbus_write_data(priv, data_desc, byte_cnt,
1931				   MLXBF_I2C_SLAVE_DATA_DESC_ADDR, false);
1932
1933	pec_en = 0; /* Disable PEC since it is not supported. */
1934
1935	/* Prepare control word. */
1936	control32 = MLXBF_I2C_SLAVE_ENABLE;
1937	control32 |= rol32(write_size, MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT);
1938	control32 |= rol32(pec_en, MLXBF_I2C_SLAVE_SEND_PEC_SHIFT);
1939
1940	writel(control32, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_GW);
1941
1942	/*
1943	 * Wait until the transfer is completed; the driver will wait
1944	 * until the GW is idle, a cause will rise on fall of GW busy.
1945	 */
1946	mlxbf_i2c_slave_wait_for_idle(priv, MLXBF_I2C_SMBUS_TIMEOUT);
1947
1948clear_csr:
1949	/* Release the Slave GW. */
1950	writel(0x0, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
1951	writel(0x0, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
1952	writel(0x1, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1953
1954	return ret;
1955}
1956
1957/*
1958 * Receive bytes from 'external' smbus master. This function is executed when
1959 * an external smbus master wants to write data to the BlueField.
1960 */
1961static int mlxbf_i2c_irq_recv(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1962{
1963	u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1964	struct i2c_client *slave;
1965	u8 value, byte, addr;
1966	int ret = 0;
1967
1968	/* Read data from Slave GW data descriptor. */
1969	mlxbf_i2c_smbus_read_data(priv, data_desc, recv_bytes,
1970				  MLXBF_I2C_SLAVE_DATA_DESC_ADDR, false);
1971	addr = data_desc[0] >> 1;
1972
1973	/*
1974	 * Check if the slave address received in the data descriptor register
1975	 * matches any of the slave addresses registered.
1976	 */
1977	slave = mlxbf_i2c_get_slave_from_addr(priv, addr);
1978	if (!slave) {
1979		ret = -EINVAL;
1980		goto clear_csr;
1981	}
1982
1983	/*
1984	 * Notify the slave backend that an smbus master wants to write data
1985	 * to the BlueField.
1986	 */
1987	i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1988
1989	/* Send the received data to the slave backend. */
1990	for (byte = 1; byte < recv_bytes; byte++) {
1991		value = data_desc[byte];
1992		ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1993				      &value);
1994		if (ret < 0)
1995			break;
1996	}
1997
1998	/*
1999	 * Send a stop event to the slave backend, to signal
2000	 * the end of the write transactions.
2001	 */
2002	i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
2003
2004clear_csr:
2005	/* Release the Slave GW. */
2006	writel(0x0, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
2007	writel(0x0, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
2008	writel(0x1, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_READY);
2009
2010	return ret;
2011}
2012
2013static irqreturn_t mlxbf_i2c_irq(int irq, void *ptr)
2014{
2015	struct mlxbf_i2c_priv *priv = ptr;
2016	bool read, write, irq_is_set;
2017	u32 rw_bytes_reg;
2018	u8 recv_bytes;
2019
2020	/*
2021	 * Read TYU interrupt register and determine the source of the
2022	 * interrupt. Based on the source of the interrupt one of the
2023	 * following actions are performed:
2024	 *  - Receive data and send response to master.
2025	 *  - Send data and release slave GW.
2026	 *
2027	 * Handle read/write transaction only. CRmaster and Iarp requests
2028	 * are ignored for now.
2029	 */
2030	irq_is_set = mlxbf_i2c_has_coalesce(priv, &read, &write);
2031	if (!irq_is_set || (!read && !write)) {
2032		/* Nothing to do here, interrupt was not from this device. */
2033		return IRQ_NONE;
2034	}
2035
2036	/*
2037	 * The MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES includes the number of
2038	 * bytes from/to master. These are defined by 8-bits each. If the lower
2039	 * 8 bits are set, then the master expect to read N bytes from the
2040	 * slave, if the higher 8 bits are sent then the slave expect N bytes
2041	 * from the master.
2042	 */
2043	rw_bytes_reg = readl(priv->slv->io +
2044				MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
2045	recv_bytes = (rw_bytes_reg >> 8) & GENMASK(7, 0);
2046
2047	/*
2048	 * For now, the slave supports 128 bytes transfer. Discard remaining
2049	 * data bytes if the master wrote more than
2050	 * MLXBF_I2C_SLAVE_DATA_DESC_SIZE, i.e, the actual size of the slave
2051	 * data descriptor.
2052	 *
2053	 * Note that we will never expect to transfer more than 128 bytes; as
2054	 * specified in the SMBus standard, block transactions cannot exceed
2055	 * 32 bytes.
2056	 */
2057	recv_bytes = recv_bytes > MLXBF_I2C_SLAVE_DATA_DESC_SIZE ?
2058		MLXBF_I2C_SLAVE_DATA_DESC_SIZE : recv_bytes;
2059
2060	if (read)
2061		mlxbf_i2c_irq_send(priv, recv_bytes);
2062	else
2063		mlxbf_i2c_irq_recv(priv, recv_bytes);
2064
2065	return IRQ_HANDLED;
2066}
2067
2068/* Return negative errno on error. */
2069static s32 mlxbf_i2c_smbus_xfer(struct i2c_adapter *adap, u16 addr,
2070				unsigned short flags, char read_write,
2071				u8 command, int size,
2072				union i2c_smbus_data *data)
2073{
2074	struct mlxbf_i2c_smbus_request request = { 0 };
2075	struct mlxbf_i2c_priv *priv;
2076	bool read, pec;
2077	u8 byte_cnt;
2078
2079	request.slave = addr;
2080
2081	read = (read_write == I2C_SMBUS_READ);
2082	pec = flags & I2C_FUNC_SMBUS_PEC;
2083
2084	switch (size) {
2085	case I2C_SMBUS_QUICK:
2086		mlxbf_i2c_smbus_quick_command(&request, read);
2087		dev_dbg(&adap->dev, "smbus quick, slave 0x%02x\n", addr);
2088		break;
2089
2090	case I2C_SMBUS_BYTE:
2091		mlxbf_i2c_smbus_byte_func(&request,
2092					  read ? &data->byte : &command, read,
2093					  pec);
2094		dev_dbg(&adap->dev, "smbus %s byte, slave 0x%02x.\n",
2095			read ? "read" : "write", addr);
2096		break;
2097
2098	case I2C_SMBUS_BYTE_DATA:
2099		mlxbf_i2c_smbus_data_byte_func(&request, &command, &data->byte,
2100					       read, pec);
2101		dev_dbg(&adap->dev, "smbus %s byte data at 0x%02x, slave 0x%02x.\n",
2102			read ? "read" : "write", command, addr);
2103		break;
2104
2105	case I2C_SMBUS_WORD_DATA:
2106		mlxbf_i2c_smbus_data_word_func(&request, &command,
2107					       (u8 *)&data->word, read, pec);
2108		dev_dbg(&adap->dev, "smbus %s word data at 0x%02x, slave 0x%02x.\n",
2109			read ? "read" : "write", command, addr);
2110		break;
2111
2112	case I2C_SMBUS_I2C_BLOCK_DATA:
2113		byte_cnt = data->block[0];
2114		mlxbf_i2c_smbus_i2c_block_func(&request, &command, data->block,
2115					       &byte_cnt, read, pec);
2116		dev_dbg(&adap->dev, "i2c %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2117			read ? "read" : "write", byte_cnt, command, addr);
2118		break;
2119
2120	case I2C_SMBUS_BLOCK_DATA:
2121		byte_cnt = read ? I2C_SMBUS_BLOCK_MAX : data->block[0];
2122		mlxbf_i2c_smbus_block_func(&request, &command, data->block,
2123					   &byte_cnt, read, pec);
2124		dev_dbg(&adap->dev, "smbus %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2125			read ? "read" : "write", byte_cnt, command, addr);
2126		break;
2127
2128	case I2C_FUNC_SMBUS_PROC_CALL:
2129		mlxbf_i2c_smbus_process_call_func(&request, &command,
2130						  (u8 *)&data->word, pec);
2131		dev_dbg(&adap->dev, "process call, wr/rd at 0x%02x, slave 0x%02x.\n",
2132			command, addr);
2133		break;
2134
2135	case I2C_FUNC_SMBUS_BLOCK_PROC_CALL:
2136		byte_cnt = data->block[0];
2137		mlxbf_i2c_smbus_blk_process_call_func(&request, &command,
2138						      data->block, &byte_cnt,
2139						      pec);
2140		dev_dbg(&adap->dev, "block process call, wr/rd %d bytes, slave 0x%02x.\n",
2141			byte_cnt, addr);
2142		break;
2143
2144	default:
2145		dev_dbg(&adap->dev, "Unsupported I2C/SMBus command %d\n",
2146			size);
2147		return -EOPNOTSUPP;
2148	}
2149
2150	priv = i2c_get_adapdata(adap);
2151
2152	return mlxbf_i2c_smbus_start_transaction(priv, &request);
2153}
2154
2155static int mlxbf_i2c_reg_slave(struct i2c_client *slave)
2156{
2157	struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2158	struct device *dev = &slave->dev;
2159	int ret;
2160
2161	/*
2162	 * Do not support ten bit chip address and do not use Packet Error
2163	 * Checking (PEC).
2164	 */
2165	if (slave->flags & (I2C_CLIENT_TEN | I2C_CLIENT_PEC)) {
2166		dev_err(dev, "SMBus PEC and 10 bit address not supported\n");
2167		return -EAFNOSUPPORT;
2168	}
2169
2170	ret = mlxbf_i2c_slave_enable(priv, slave);
2171	if (ret)
2172		dev_err(dev, "Surpassed max number of registered slaves allowed\n");
2173
2174	return 0;
2175}
2176
2177static int mlxbf_i2c_unreg_slave(struct i2c_client *slave)
2178{
2179	struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2180	struct device *dev = &slave->dev;
2181	int ret;
2182
2183	/*
2184	 * Unregister slave by:
2185	 * 1) Disabling the slave address in hardware
2186	 * 2) Freeing priv->slave at the corresponding index
2187	 */
2188	ret = mlxbf_i2c_slave_disable(priv, slave->addr);
2189	if (ret)
2190		dev_err(dev, "Unable to find slave 0x%x\n", slave->addr);
2191
2192	return ret;
2193}
2194
2195static u32 mlxbf_i2c_functionality(struct i2c_adapter *adap)
2196{
2197	return MLXBF_I2C_FUNC_ALL;
2198}
2199
2200static struct mlxbf_i2c_chip_info mlxbf_i2c_chip[] = {
2201	[MLXBF_I2C_CHIP_TYPE_1] = {
2202		.type = MLXBF_I2C_CHIP_TYPE_1,
2203		.shared_res = {
2204			[0] = &mlxbf_i2c_coalesce_res[MLXBF_I2C_CHIP_TYPE_1],
2205			[1] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_1],
2206			[2] = &mlxbf_i2c_gpio_res[MLXBF_I2C_CHIP_TYPE_1]
2207		},
2208		.calculate_freq = mlxbf_i2c_calculate_freq_from_tyu,
2209		.smbus_master_rs_bytes_off = MLXBF_I2C_YU_SMBUS_RS_BYTES,
2210		.smbus_master_fsm_off = MLXBF_I2C_YU_SMBUS_MASTER_FSM
2211	},
2212	[MLXBF_I2C_CHIP_TYPE_2] = {
2213		.type = MLXBF_I2C_CHIP_TYPE_2,
2214		.shared_res = {
2215			[0] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_2]
2216		},
2217		.calculate_freq = mlxbf_i2c_calculate_freq_from_yu,
2218		.smbus_master_rs_bytes_off = MLXBF_I2C_YU_SMBUS_RS_BYTES,
2219		.smbus_master_fsm_off = MLXBF_I2C_YU_SMBUS_MASTER_FSM
2220	},
2221	[MLXBF_I2C_CHIP_TYPE_3] = {
2222		.type = MLXBF_I2C_CHIP_TYPE_3,
2223		.shared_res = {
2224			[0] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_3]
2225		},
2226		.calculate_freq = mlxbf_i2c_calculate_freq_from_yu,
2227		.smbus_master_rs_bytes_off = MLXBF_I2C_RSH_YU_SMBUS_RS_BYTES,
2228		.smbus_master_fsm_off = MLXBF_I2C_RSH_YU_SMBUS_MASTER_FSM
2229	}
2230};
2231
2232static const struct i2c_algorithm mlxbf_i2c_algo = {
2233	.smbus_xfer = mlxbf_i2c_smbus_xfer,
2234	.functionality = mlxbf_i2c_functionality,
2235	.reg_slave = mlxbf_i2c_reg_slave,
2236	.unreg_slave = mlxbf_i2c_unreg_slave,
2237};
2238
2239static struct i2c_adapter_quirks mlxbf_i2c_quirks = {
2240	.max_read_len = MLXBF_I2C_MASTER_DATA_R_LENGTH,
2241	.max_write_len = MLXBF_I2C_MASTER_DATA_W_LENGTH,
2242};
2243
2244static const struct acpi_device_id mlxbf_i2c_acpi_ids[] = {
2245	{ "MLNXBF03", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1] },
2246	{ "MLNXBF23", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2] },
2247	{ "MLNXBF31", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_3] },
2248	{},
2249};
2250
2251MODULE_DEVICE_TABLE(acpi, mlxbf_i2c_acpi_ids);
2252
2253static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2254{
2255	const struct acpi_device_id *aid;
2256	u64 bus_id;
2257	int ret;
2258
2259	if (acpi_disabled)
2260		return -ENOENT;
2261
2262	aid = acpi_match_device(mlxbf_i2c_acpi_ids, dev);
2263	if (!aid)
2264		return -ENODEV;
2265
2266	priv->chip = (struct mlxbf_i2c_chip_info *)aid->driver_data;
2267
2268	ret = acpi_dev_uid_to_integer(ACPI_COMPANION(dev), &bus_id);
2269	if (ret) {
2270		dev_err(dev, "Cannot retrieve UID\n");
2271		return ret;
2272	}
2273
2274	priv->bus = bus_id;
2275
2276	return 0;
2277}
2278
2279static int mlxbf_i2c_probe(struct platform_device *pdev)
2280{
2281	struct device *dev = &pdev->dev;
2282	struct mlxbf_i2c_priv *priv;
2283	struct i2c_adapter *adap;
2284	u32 resource_version;
2285	int irq, ret;
2286
2287	priv = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_priv), GFP_KERNEL);
2288	if (!priv)
2289		return -ENOMEM;
2290
2291	ret = mlxbf_i2c_acpi_probe(dev, priv);
2292	if (ret < 0)
2293		return ret;
2294
2295	/* This property allows the driver to stay backward compatible with older
2296	 * ACPI tables.
2297	 * Starting BlueField-3 SoC, the "smbus" resource was broken down into 3
2298	 * separate resources "timer", "master" and "slave".
2299	 */
2300	if (device_property_read_u32(dev, "resource_version", &resource_version))
2301		resource_version = 0;
2302
2303	priv->resource_version = resource_version;
2304
2305	if (priv->chip->type < MLXBF_I2C_CHIP_TYPE_3 && resource_version == 0) {
2306		priv->timer = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource), GFP_KERNEL);
2307		if (!priv->timer)
2308			return -ENOMEM;
2309
2310		priv->mst = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource), GFP_KERNEL);
2311		if (!priv->mst)
2312			return -ENOMEM;
2313
2314		priv->slv = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource), GFP_KERNEL);
2315		if (!priv->slv)
2316			return -ENOMEM;
2317
2318		ret = mlxbf_i2c_init_resource(pdev, &priv->smbus,
2319					      MLXBF_I2C_SMBUS_RES);
2320		if (ret < 0)
2321			return dev_err_probe(dev, ret, "Cannot fetch smbus resource info");
2322
2323		priv->timer->io = priv->smbus->io;
2324		priv->mst->io = priv->smbus->io + MLXBF_I2C_MST_ADDR_OFFSET;
2325		priv->slv->io = priv->smbus->io + MLXBF_I2C_SLV_ADDR_OFFSET;
2326	} else {
2327		ret = mlxbf_i2c_init_resource(pdev, &priv->timer,
2328					      MLXBF_I2C_SMBUS_TIMER_RES);
2329		if (ret < 0)
2330			return dev_err_probe(dev, ret, "Cannot fetch timer resource info");
2331
2332		ret = mlxbf_i2c_init_resource(pdev, &priv->mst,
2333					      MLXBF_I2C_SMBUS_MST_RES);
2334		if (ret < 0)
2335			return dev_err_probe(dev, ret, "Cannot fetch master resource info");
2336
2337		ret = mlxbf_i2c_init_resource(pdev, &priv->slv,
2338					      MLXBF_I2C_SMBUS_SLV_RES);
2339		if (ret < 0)
2340			return dev_err_probe(dev, ret, "Cannot fetch slave resource info");
2341	}
2342
2343	ret = mlxbf_i2c_init_resource(pdev, &priv->mst_cause,
2344				      MLXBF_I2C_MST_CAUSE_RES);
2345	if (ret < 0)
2346		return dev_err_probe(dev, ret, "Cannot fetch cause master resource info");
2347
2348	ret = mlxbf_i2c_init_resource(pdev, &priv->slv_cause,
2349				      MLXBF_I2C_SLV_CAUSE_RES);
2350	if (ret < 0)
2351		return dev_err_probe(dev, ret, "Cannot fetch cause slave resource info");
2352
2353	adap = &priv->adap;
2354	adap->owner = THIS_MODULE;
2355	adap->class = I2C_CLASS_HWMON;
2356	adap->algo = &mlxbf_i2c_algo;
2357	adap->quirks = &mlxbf_i2c_quirks;
2358	adap->dev.parent = dev;
2359	adap->dev.of_node = dev->of_node;
2360	adap->nr = priv->bus;
2361
2362	snprintf(adap->name, sizeof(adap->name), "i2c%d", adap->nr);
2363	i2c_set_adapdata(adap, priv);
2364
2365	/* Read Core PLL frequency. */
2366	ret = mlxbf_i2c_calculate_corepll_freq(pdev, priv);
2367	if (ret < 0) {
2368		dev_err(dev, "cannot get core clock frequency\n");
2369		/* Set to default value. */
2370		priv->frequency = MLXBF_I2C_COREPLL_FREQ;
2371	}
2372
2373	/*
2374	 * Initialize master.
2375	 * Note that a physical bus might be shared among Linux and firmware
2376	 * (e.g., ATF). Thus, the bus should be initialized and ready and
2377	 * bus initialization would be unnecessary. This requires additional
2378	 * knowledge about physical busses. But, since an extra initialization
2379	 * does not really hurt, then keep the code as is.
2380	 */
2381	ret = mlxbf_i2c_init_master(pdev, priv);
2382	if (ret < 0)
2383		return dev_err_probe(dev, ret, "failed to initialize smbus master %d",
2384				     priv->bus);
2385
2386	mlxbf_i2c_init_timings(pdev, priv);
2387
2388	mlxbf_i2c_init_slave(pdev, priv);
2389
2390	irq = platform_get_irq(pdev, 0);
2391	if (irq < 0)
2392		return irq;
2393	ret = devm_request_irq(dev, irq, mlxbf_i2c_irq,
2394			       IRQF_SHARED | IRQF_PROBE_SHARED,
2395			       dev_name(dev), priv);
2396	if (ret < 0)
2397		return dev_err_probe(dev, ret, "Cannot get irq %d\n", irq);
2398
2399	priv->irq = irq;
2400
2401	platform_set_drvdata(pdev, priv);
2402
2403	ret = i2c_add_numbered_adapter(adap);
2404	if (ret < 0)
2405		return ret;
2406
2407	mutex_lock(&mlxbf_i2c_bus_lock);
2408	mlxbf_i2c_bus_count++;
2409	mutex_unlock(&mlxbf_i2c_bus_lock);
2410
2411	return 0;
2412}
2413
2414static void mlxbf_i2c_remove(struct platform_device *pdev)
2415{
2416	struct mlxbf_i2c_priv *priv = platform_get_drvdata(pdev);
2417	struct device *dev = &pdev->dev;
2418	struct resource *params;
2419
2420	if (priv->chip->type < MLXBF_I2C_CHIP_TYPE_3 && priv->resource_version == 0) {
2421		params = priv->smbus->params;
2422		devm_release_mem_region(dev, params->start, resource_size(params));
2423	} else {
2424		params = priv->timer->params;
2425		devm_release_mem_region(dev, params->start, resource_size(params));
2426
2427		params = priv->mst->params;
2428		devm_release_mem_region(dev, params->start, resource_size(params));
2429
2430		params = priv->slv->params;
2431		devm_release_mem_region(dev, params->start, resource_size(params));
2432	}
2433
2434	params = priv->mst_cause->params;
2435	devm_release_mem_region(dev, params->start, resource_size(params));
2436
2437	params = priv->slv_cause->params;
2438	devm_release_mem_region(dev, params->start, resource_size(params));
2439
2440	/*
2441	 * Release shared resources. This should be done when releasing
2442	 * the I2C controller.
2443	 */
2444	mutex_lock(&mlxbf_i2c_bus_lock);
2445	if (--mlxbf_i2c_bus_count == 0) {
2446		mlxbf_i2c_release_coalesce(pdev, priv);
2447		mlxbf_i2c_release_corepll(pdev, priv);
2448		mlxbf_i2c_release_gpio(pdev, priv);
2449	}
2450	mutex_unlock(&mlxbf_i2c_bus_lock);
2451
2452	devm_free_irq(dev, priv->irq, priv);
2453
2454	i2c_del_adapter(&priv->adap);
2455}
2456
2457static struct platform_driver mlxbf_i2c_driver = {
2458	.probe = mlxbf_i2c_probe,
2459	.remove_new = mlxbf_i2c_remove,
2460	.driver = {
2461		.name = "i2c-mlxbf",
2462		.acpi_match_table = ACPI_PTR(mlxbf_i2c_acpi_ids),
2463	},
2464};
2465
2466static int __init mlxbf_i2c_init(void)
2467{
2468	mutex_init(&mlxbf_i2c_coalesce_lock);
2469	mutex_init(&mlxbf_i2c_corepll_lock);
2470	mutex_init(&mlxbf_i2c_gpio_lock);
2471
2472	mutex_init(&mlxbf_i2c_bus_lock);
2473
2474	return platform_driver_register(&mlxbf_i2c_driver);
2475}
2476module_init(mlxbf_i2c_init);
2477
2478static void __exit mlxbf_i2c_exit(void)
2479{
2480	platform_driver_unregister(&mlxbf_i2c_driver);
2481
2482	mutex_destroy(&mlxbf_i2c_bus_lock);
2483
2484	mutex_destroy(&mlxbf_i2c_gpio_lock);
2485	mutex_destroy(&mlxbf_i2c_corepll_lock);
2486	mutex_destroy(&mlxbf_i2c_coalesce_lock);
2487}
2488module_exit(mlxbf_i2c_exit);
2489
2490MODULE_DESCRIPTION("Mellanox BlueField I2C bus driver");
2491MODULE_AUTHOR("Khalil Blaiech <kblaiech@nvidia.com>");
2492MODULE_AUTHOR("Asmaa Mnebhi <asmaa@nvidia.com>");
2493MODULE_LICENSE("GPL v2");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Mellanox BlueField I2C bus driver
   4 *
   5 *  Copyright (C) 2020 Mellanox Technologies, Ltd.
   6 */
   7
   8#include <linux/acpi.h>
   9#include <linux/bitfield.h>
  10#include <linux/delay.h>
  11#include <linux/err.h>
  12#include <linux/interrupt.h>
  13#include <linux/i2c.h>
  14#include <linux/io.h>
  15#include <linux/kernel.h>
  16#include <linux/module.h>
  17#include <linux/mutex.h>
  18#include <linux/of.h>
  19#include <linux/platform_device.h>
  20#include <linux/string.h>
  21
  22/* Defines what functionality is present. */
  23#define MLXBF_I2C_FUNC_SMBUS_BLOCK \
  24	(I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL)
  25
  26#define MLXBF_I2C_FUNC_SMBUS_DEFAULT \
  27	(I2C_FUNC_SMBUS_BYTE      | I2C_FUNC_SMBUS_BYTE_DATA | \
  28	 I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_I2C_BLOCK | \
  29	 I2C_FUNC_SMBUS_PROC_CALL)
  30
  31#define MLXBF_I2C_FUNC_ALL \
  32	(MLXBF_I2C_FUNC_SMBUS_DEFAULT | MLXBF_I2C_FUNC_SMBUS_BLOCK | \
  33	 I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SLAVE)
  34
  35/* Shared resources info in BlueField platforms. */
  36
  37#define MLXBF_I2C_COALESCE_TYU_ADDR    0x02801300
  38#define MLXBF_I2C_COALESCE_TYU_SIZE    0x010
  39
  40#define MLXBF_I2C_GPIO_TYU_ADDR        0x02802000
  41#define MLXBF_I2C_GPIO_TYU_SIZE        0x100
  42
  43#define MLXBF_I2C_COREPLL_TYU_ADDR     0x02800358
  44#define MLXBF_I2C_COREPLL_TYU_SIZE     0x008
  45
  46#define MLXBF_I2C_COREPLL_YU_ADDR      0x02800c30
  47#define MLXBF_I2C_COREPLL_YU_SIZE      0x00c
  48
  49#define MLXBF_I2C_COREPLL_RSH_YU_ADDR  0x13409824
  50#define MLXBF_I2C_COREPLL_RSH_YU_SIZE  0x00c
  51
  52#define MLXBF_I2C_SHARED_RES_MAX       3
  53
  54/*
  55 * Note that the following SMBus, CAUSE, GPIO and PLL register addresses
  56 * refer to their respective offsets relative to the corresponding
  57 * memory-mapped region whose addresses are specified in either the DT or
  58 * the ACPI tables or above.
  59 */
  60
  61/*
  62 * SMBus Master core clock frequency. Timing configurations are
  63 * strongly dependent on the core clock frequency of the SMBus
  64 * Master. Default value is set to 400MHz.
  65 */
  66#define MLXBF_I2C_TYU_PLL_OUT_FREQ  (400 * 1000 * 1000)
  67/* Reference clock for Bluefield - 156 MHz. */
  68#define MLXBF_I2C_PLL_IN_FREQ       156250000ULL
  69
  70/* Constant used to determine the PLL frequency. */
  71#define MLNXBF_I2C_COREPLL_CONST    16384ULL
  72
  73#define MLXBF_I2C_FREQUENCY_1GHZ  1000000000ULL
  74
  75/* PLL registers. */
  76#define MLXBF_I2C_CORE_PLL_REG1         0x4
  77#define MLXBF_I2C_CORE_PLL_REG2         0x8
  78
  79/* OR cause register. */
  80#define MLXBF_I2C_CAUSE_OR_EVTEN0    0x14
  81#define MLXBF_I2C_CAUSE_OR_CLEAR     0x18
  82
  83/* Arbiter Cause Register. */
  84#define MLXBF_I2C_CAUSE_ARBITER      0x1c
  85
  86/*
  87 * Cause Status flags. Note that those bits might be considered
  88 * as interrupt enabled bits.
  89 */
  90
  91/* Transaction ended with STOP. */
  92#define MLXBF_I2C_CAUSE_TRANSACTION_ENDED  BIT(0)
  93/* Master arbitration lost. */
  94#define MLXBF_I2C_CAUSE_M_ARBITRATION_LOST BIT(1)
  95/* Unexpected start detected. */
  96#define MLXBF_I2C_CAUSE_UNEXPECTED_START   BIT(2)
  97/* Unexpected stop detected. */
  98#define MLXBF_I2C_CAUSE_UNEXPECTED_STOP    BIT(3)
  99/* Wait for transfer continuation. */
 100#define MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA   BIT(4)
 101/* Failed to generate STOP. */
 102#define MLXBF_I2C_CAUSE_PUT_STOP_FAILED    BIT(5)
 103/* Failed to generate START. */
 104#define MLXBF_I2C_CAUSE_PUT_START_FAILED   BIT(6)
 105/* Clock toggle completed. */
 106#define MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE    BIT(7)
 107/* Transfer timeout occurred. */
 108#define MLXBF_I2C_CAUSE_M_FW_TIMEOUT       BIT(8)
 109/* Master busy bit reset. */
 110#define MLXBF_I2C_CAUSE_M_GW_BUSY_FALL     BIT(9)
 111
 112#define MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK     GENMASK(9, 0)
 113
 114#define MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR \
 115	(MLXBF_I2C_CAUSE_M_ARBITRATION_LOST | \
 116	 MLXBF_I2C_CAUSE_UNEXPECTED_START | \
 117	 MLXBF_I2C_CAUSE_UNEXPECTED_STOP | \
 118	 MLXBF_I2C_CAUSE_PUT_STOP_FAILED | \
 119	 MLXBF_I2C_CAUSE_PUT_START_FAILED | \
 120	 MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE | \
 121	 MLXBF_I2C_CAUSE_M_FW_TIMEOUT)
 122
 123/*
 124 * Slave cause status flags. Note that those bits might be considered
 125 * as interrupt enabled bits.
 126 */
 127
 128/* Write transaction received successfully. */
 129#define MLXBF_I2C_CAUSE_WRITE_SUCCESS         BIT(0)
 130/* Read transaction received, waiting for response. */
 131#define MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE BIT(13)
 132/* Slave busy bit reset. */
 133#define MLXBF_I2C_CAUSE_S_GW_BUSY_FALL        BIT(18)
 134
 135/* Cause coalesce registers. */
 136#define MLXBF_I2C_CAUSE_COALESCE_0        0x00
 137
 138#define MLXBF_I2C_CAUSE_TYU_SLAVE_BIT   3
 139#define MLXBF_I2C_CAUSE_YU_SLAVE_BIT    1
 140
 141/* Functional enable register. */
 142#define MLXBF_I2C_GPIO_0_FUNC_EN_0    0x28
 143/* Force OE enable register. */
 144#define MLXBF_I2C_GPIO_0_FORCE_OE_EN  0x30
 145/*
 146 * Note that Smbus GWs are on GPIOs 30:25. Two pins are used to control
 147 * SDA/SCL lines:
 148 *
 149 *  SMBUS GW0 -> bits[26:25]
 150 *  SMBUS GW1 -> bits[28:27]
 151 *  SMBUS GW2 -> bits[30:29]
 152 */
 153#define MLXBF_I2C_GPIO_SMBUS_GW_PINS(num) (25 + ((num) << 1))
 154
 155/* Note that gw_id can be 0,1 or 2. */
 156#define MLXBF_I2C_GPIO_SMBUS_GW_MASK(num) \
 157	(0xffffffff & (~(0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num))))
 158
 159#define MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(num, val) \
 160	((val) & MLXBF_I2C_GPIO_SMBUS_GW_MASK(num))
 161
 162#define MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(num, val) \
 163	((val) | (0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num)))
 164
 165/*
 166 * Defines SMBus operating frequency and core clock frequency.
 167 * According to ADB files, default values are compliant to 100KHz SMBus
 168 * @ 400MHz core clock. The driver should be able to calculate core
 169 * frequency based on PLL parameters.
 170 */
 171#define MLXBF_I2C_COREPLL_FREQ          MLXBF_I2C_TYU_PLL_OUT_FREQ
 172
 173/* Core PLL TYU configuration. */
 174#define MLXBF_I2C_COREPLL_CORE_F_TYU_MASK   GENMASK(15, 3)
 175#define MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK  GENMASK(19, 16)
 176#define MLXBF_I2C_COREPLL_CORE_R_TYU_MASK   GENMASK(25, 20)
 177
 178/* Core PLL YU configuration. */
 179#define MLXBF_I2C_COREPLL_CORE_F_YU_MASK    GENMASK(25, 0)
 180#define MLXBF_I2C_COREPLL_CORE_OD_YU_MASK   GENMASK(3, 0)
 181#define MLXBF_I2C_COREPLL_CORE_R_YU_MASK    GENMASK(31, 26)
 182
 183/* SMBus timing parameters. */
 184#define MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH    0x00
 185#define MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE     0x04
 186#define MLXBF_I2C_SMBUS_TIMER_THOLD               0x08
 187#define MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP   0x0c
 188#define MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA         0x10
 189#define MLXBF_I2C_SMBUS_THIGH_MAX_TBUF            0x14
 190#define MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT           0x18
 191
 192#define MLXBF_I2C_SHIFT_0   0
 193#define MLXBF_I2C_SHIFT_8   8
 194#define MLXBF_I2C_SHIFT_16  16
 195#define MLXBF_I2C_SHIFT_24  24
 196
 197#define MLXBF_I2C_MASK_8    GENMASK(7, 0)
 198#define MLXBF_I2C_MASK_16   GENMASK(15, 0)
 199
 200#define MLXBF_I2C_MST_ADDR_OFFSET         0x200
 201
 202/* SMBus Master GW. */
 203#define MLXBF_I2C_SMBUS_MASTER_GW         0x0
 204/* Number of bytes received and sent. */
 205#define MLXBF_I2C_YU_SMBUS_RS_BYTES       0x100
 206#define MLXBF_I2C_RSH_YU_SMBUS_RS_BYTES   0x10c
 207/* Packet error check (PEC) value. */
 208#define MLXBF_I2C_SMBUS_MASTER_PEC        0x104
 209/* Status bits (ACK/NACK/FW Timeout). */
 210#define MLXBF_I2C_SMBUS_MASTER_STATUS     0x108
 211/* SMbus Master Finite State Machine. */
 212#define MLXBF_I2C_YU_SMBUS_MASTER_FSM     0x110
 213#define MLXBF_I2C_RSH_YU_SMBUS_MASTER_FSM 0x100
 214
 215/* SMBus master GW control bits offset in MLXBF_I2C_SMBUS_MASTER_GW[31:3]. */
 216#define MLXBF_I2C_MASTER_LOCK_BIT         BIT(31) /* Lock bit. */
 217#define MLXBF_I2C_MASTER_BUSY_BIT         BIT(30) /* Busy bit. */
 218#define MLXBF_I2C_MASTER_START_BIT        BIT(29) /* Control start. */
 219#define MLXBF_I2C_MASTER_CTL_WRITE_BIT    BIT(28) /* Control write phase. */
 220#define MLXBF_I2C_MASTER_CTL_READ_BIT     BIT(19) /* Control read phase. */
 221#define MLXBF_I2C_MASTER_STOP_BIT         BIT(3)  /* Control stop. */
 222
 223#define MLXBF_I2C_MASTER_ENABLE \
 224	(MLXBF_I2C_MASTER_LOCK_BIT | MLXBF_I2C_MASTER_BUSY_BIT | \
 225	 MLXBF_I2C_MASTER_START_BIT | MLXBF_I2C_MASTER_STOP_BIT)
 226
 227#define MLXBF_I2C_MASTER_ENABLE_WRITE \
 228	(MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_WRITE_BIT)
 229
 230#define MLXBF_I2C_MASTER_ENABLE_READ \
 231	(MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_READ_BIT)
 232
 233#define MLXBF_I2C_MASTER_WRITE_SHIFT      21 /* Control write bytes */
 234#define MLXBF_I2C_MASTER_SEND_PEC_SHIFT   20 /* Send PEC byte when set to 1 */
 235#define MLXBF_I2C_MASTER_PARSE_EXP_SHIFT  11 /* Control parse expected bytes */
 236#define MLXBF_I2C_MASTER_SLV_ADDR_SHIFT   12 /* Slave address */
 237#define MLXBF_I2C_MASTER_READ_SHIFT       4  /* Control read bytes */
 238
 239/* SMBus master GW Data descriptor. */
 240#define MLXBF_I2C_MASTER_DATA_DESC_ADDR   0x80
 241#define MLXBF_I2C_MASTER_DATA_DESC_SIZE   0x80 /* Size in bytes. */
 242
 243/* Maximum bytes to read/write per SMBus transaction. */
 244#define MLXBF_I2C_MASTER_DATA_R_LENGTH  MLXBF_I2C_MASTER_DATA_DESC_SIZE
 245#define MLXBF_I2C_MASTER_DATA_W_LENGTH (MLXBF_I2C_MASTER_DATA_DESC_SIZE - 1)
 246
 247/* All bytes were transmitted. */
 248#define MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE      BIT(0)
 249/* NACK received. */
 250#define MLXBF_I2C_SMBUS_STATUS_NACK_RCV           BIT(1)
 251/* Slave's byte count >128 bytes. */
 252#define MLXBF_I2C_SMBUS_STATUS_READ_ERR           BIT(2)
 253/* Timeout occurred. */
 254#define MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT         BIT(3)
 255
 256#define MLXBF_I2C_SMBUS_MASTER_STATUS_MASK        GENMASK(3, 0)
 257
 258#define MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR \
 259	(MLXBF_I2C_SMBUS_STATUS_NACK_RCV | \
 260	 MLXBF_I2C_SMBUS_STATUS_READ_ERR | \
 261	 MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT)
 262
 263#define MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK      BIT(31)
 264#define MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK  BIT(15)
 265
 266#define MLXBF_I2C_SLV_ADDR_OFFSET             0x400
 267
 268/* SMBus slave GW. */
 269#define MLXBF_I2C_SMBUS_SLAVE_GW              0x0
 270/* Number of bytes received and sent from/to master. */
 271#define MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES 0x100
 272/* Packet error check (PEC) value. */
 273#define MLXBF_I2C_SMBUS_SLAVE_PEC             0x104
 274/* SMBus slave Finite State Machine (FSM). */
 275#define MLXBF_I2C_SMBUS_SLAVE_FSM             0x110
 276/*
 277 * Should be set when all raised causes handled, and cleared by HW on
 278 * every new cause.
 279 */
 280#define MLXBF_I2C_SMBUS_SLAVE_READY           0x12c
 281
 282/* SMBus slave GW control bits offset in MLXBF_I2C_SMBUS_SLAVE_GW[31:19]. */
 283#define MLXBF_I2C_SLAVE_BUSY_BIT         BIT(30) /* Busy bit. */
 284#define MLXBF_I2C_SLAVE_WRITE_BIT        BIT(29) /* Control write enable. */
 285
 286#define MLXBF_I2C_SLAVE_ENABLE \
 287	(MLXBF_I2C_SLAVE_BUSY_BIT | MLXBF_I2C_SLAVE_WRITE_BIT)
 288
 289#define MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT 22 /* Number of bytes to write. */
 290#define MLXBF_I2C_SLAVE_SEND_PEC_SHIFT    21 /* Send PEC byte shift. */
 291
 292/* SMBus slave GW Data descriptor. */
 293#define MLXBF_I2C_SLAVE_DATA_DESC_ADDR   0x80
 294#define MLXBF_I2C_SLAVE_DATA_DESC_SIZE   0x80 /* Size in bytes. */
 295
 296/* SMbus slave configuration registers. */
 297#define MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG        0x114
 298#define MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT        16
 299#define MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT     BIT(7)
 300#define MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK       GENMASK(6, 0)
 301
 302/*
 303 * Timeout is given in microsends. Note also that timeout handling is not
 304 * exact.
 305 */
 306#define MLXBF_I2C_SMBUS_TIMEOUT   (300 * 1000) /* 300ms */
 307#define MLXBF_I2C_SMBUS_LOCK_POLL_TIMEOUT (300 * 1000) /* 300ms */
 308
 309/* Polling frequency in microseconds. */
 310#define MLXBF_I2C_POLL_FREQ_IN_USEC        200
 311
 312#define MLXBF_I2C_SMBUS_OP_CNT_1   1
 313#define MLXBF_I2C_SMBUS_OP_CNT_2   2
 314#define MLXBF_I2C_SMBUS_OP_CNT_3   3
 315#define MLXBF_I2C_SMBUS_MAX_OP_CNT MLXBF_I2C_SMBUS_OP_CNT_3
 316
 317/* Helper macro to define an I2C resource parameters. */
 318#define MLXBF_I2C_RES_PARAMS(addr, size, str) \
 319	{ \
 320		.start = (addr), \
 321		.end = (addr) + (size) - 1, \
 322		.name = (str) \
 323	}
 324
 325enum {
 326	MLXBF_I2C_TIMING_100KHZ = 100000,
 327	MLXBF_I2C_TIMING_400KHZ = 400000,
 328	MLXBF_I2C_TIMING_1000KHZ = 1000000,
 329};
 330
 331enum {
 332	MLXBF_I2C_F_READ = BIT(0),
 333	MLXBF_I2C_F_WRITE = BIT(1),
 334	MLXBF_I2C_F_NORESTART = BIT(3),
 335	MLXBF_I2C_F_SMBUS_OPERATION = BIT(4),
 336	MLXBF_I2C_F_SMBUS_BLOCK = BIT(5),
 337	MLXBF_I2C_F_SMBUS_PEC = BIT(6),
 338	MLXBF_I2C_F_SMBUS_PROCESS_CALL = BIT(7),
 339};
 340
 341/* Mellanox BlueField chip type. */
 342enum mlxbf_i2c_chip_type {
 343	MLXBF_I2C_CHIP_TYPE_1, /* Mellanox BlueField-1 chip. */
 344	MLXBF_I2C_CHIP_TYPE_2, /* Mellanox BlueField-2 chip. */
 345	MLXBF_I2C_CHIP_TYPE_3 /* Mellanox BlueField-3 chip. */
 346};
 347
 348/* List of chip resources that are being accessed by the driver. */
 349enum {
 350	MLXBF_I2C_SMBUS_RES,
 351	MLXBF_I2C_MST_CAUSE_RES,
 352	MLXBF_I2C_SLV_CAUSE_RES,
 353	MLXBF_I2C_COALESCE_RES,
 354	MLXBF_I2C_SMBUS_TIMER_RES,
 355	MLXBF_I2C_SMBUS_MST_RES,
 356	MLXBF_I2C_SMBUS_SLV_RES,
 357	MLXBF_I2C_COREPLL_RES,
 358	MLXBF_I2C_GPIO_RES,
 359	MLXBF_I2C_END_RES
 360};
 361
 362/* Encapsulates timing parameters. */
 363struct mlxbf_i2c_timings {
 364	u16 scl_high;		/* Clock high period. */
 365	u16 scl_low;		/* Clock low period. */
 366	u8 sda_rise;		/* Data rise time. */
 367	u8 sda_fall;		/* Data fall time. */
 368	u8 scl_rise;		/* Clock rise time. */
 369	u8 scl_fall;		/* Clock fall time. */
 370	u16 hold_start;		/* Hold time after (REPEATED) START. */
 371	u16 hold_data;		/* Data hold time. */
 372	u16 setup_start;	/* REPEATED START condition setup time. */
 373	u16 setup_stop;		/* STOP condition setup time. */
 374	u16 setup_data;		/* Data setup time. */
 375	u16 pad;		/* Padding. */
 376	u16 buf;		/* Bus free time between STOP and START. */
 377	u16 thigh_max;		/* Thigh max. */
 378	u32 timeout;		/* Detect clock low timeout. */
 379};
 380
 381struct mlxbf_i2c_smbus_operation {
 382	u32 flags;
 383	u32 length; /* Buffer length in bytes. */
 384	u8 *buffer;
 385};
 386
 387struct mlxbf_i2c_smbus_request {
 388	u8 slave;
 389	u8 operation_cnt;
 390	struct mlxbf_i2c_smbus_operation operation[MLXBF_I2C_SMBUS_MAX_OP_CNT];
 391};
 392
 393struct mlxbf_i2c_resource {
 394	void __iomem *io;
 395	struct resource *params;
 396	struct mutex *lock; /* Mutex to protect mlxbf_i2c_resource. */
 397	u8 type;
 398};
 399
 400struct mlxbf_i2c_chip_info {
 401	enum mlxbf_i2c_chip_type type;
 402	/* Chip shared resources that are being used by the I2C controller. */
 403	struct mlxbf_i2c_resource *shared_res[MLXBF_I2C_SHARED_RES_MAX];
 404
 405	/* Callback to calculate the core PLL frequency. */
 406	u64 (*calculate_freq)(struct mlxbf_i2c_resource *corepll_res);
 407
 408	/* Registers' address offset */
 409	u32 smbus_master_rs_bytes_off;
 410	u32 smbus_master_fsm_off;
 411};
 412
 413struct mlxbf_i2c_priv {
 414	const struct mlxbf_i2c_chip_info *chip;
 415	struct i2c_adapter adap;
 416	struct mlxbf_i2c_resource *smbus;
 417	struct mlxbf_i2c_resource *timer;
 418	struct mlxbf_i2c_resource *mst;
 419	struct mlxbf_i2c_resource *slv;
 420	struct mlxbf_i2c_resource *mst_cause;
 421	struct mlxbf_i2c_resource *slv_cause;
 422	struct mlxbf_i2c_resource *coalesce;
 423	u64 frequency; /* Core frequency in Hz. */
 424	int bus; /* Physical bus identifier. */
 425	int irq;
 426	struct i2c_client *slave[MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT];
 427	u32 resource_version;
 428};
 429
 430/* Core PLL frequency. */
 431static u64 mlxbf_i2c_corepll_frequency;
 432
 433static struct resource mlxbf_i2c_coalesce_tyu_params =
 434		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COALESCE_TYU_ADDR,
 435				     MLXBF_I2C_COALESCE_TYU_SIZE,
 436				     "COALESCE_MEM");
 437static struct resource mlxbf_i2c_corepll_tyu_params =
 438		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_TYU_ADDR,
 439				     MLXBF_I2C_COREPLL_TYU_SIZE,
 440				     "COREPLL_MEM");
 441static struct resource mlxbf_i2c_corepll_yu_params =
 442		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_YU_ADDR,
 443				     MLXBF_I2C_COREPLL_YU_SIZE,
 444				     "COREPLL_MEM");
 445static struct resource mlxbf_i2c_corepll_rsh_yu_params =
 446		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_RSH_YU_ADDR,
 447				     MLXBF_I2C_COREPLL_RSH_YU_SIZE,
 448				     "COREPLL_MEM");
 449static struct resource mlxbf_i2c_gpio_tyu_params =
 450		MLXBF_I2C_RES_PARAMS(MLXBF_I2C_GPIO_TYU_ADDR,
 451				     MLXBF_I2C_GPIO_TYU_SIZE,
 452				     "GPIO_MEM");
 453
 454static struct mutex mlxbf_i2c_coalesce_lock;
 455static struct mutex mlxbf_i2c_corepll_lock;
 456static struct mutex mlxbf_i2c_gpio_lock;
 457
 458static struct mlxbf_i2c_resource mlxbf_i2c_coalesce_res[] = {
 459	[MLXBF_I2C_CHIP_TYPE_1] = {
 460		.params = &mlxbf_i2c_coalesce_tyu_params,
 461		.lock = &mlxbf_i2c_coalesce_lock,
 462		.type = MLXBF_I2C_COALESCE_RES
 463	},
 464	{}
 465};
 466
 467static struct mlxbf_i2c_resource mlxbf_i2c_corepll_res[] = {
 468	[MLXBF_I2C_CHIP_TYPE_1] = {
 469		.params = &mlxbf_i2c_corepll_tyu_params,
 470		.lock = &mlxbf_i2c_corepll_lock,
 471		.type = MLXBF_I2C_COREPLL_RES
 472	},
 473	[MLXBF_I2C_CHIP_TYPE_2] = {
 474		.params = &mlxbf_i2c_corepll_yu_params,
 475		.lock = &mlxbf_i2c_corepll_lock,
 476		.type = MLXBF_I2C_COREPLL_RES,
 477	},
 478	[MLXBF_I2C_CHIP_TYPE_3] = {
 479		.params = &mlxbf_i2c_corepll_rsh_yu_params,
 480		.lock = &mlxbf_i2c_corepll_lock,
 481		.type = MLXBF_I2C_COREPLL_RES,
 482	}
 483};
 484
 485static struct mlxbf_i2c_resource mlxbf_i2c_gpio_res[] = {
 486	[MLXBF_I2C_CHIP_TYPE_1] = {
 487		.params = &mlxbf_i2c_gpio_tyu_params,
 488		.lock = &mlxbf_i2c_gpio_lock,
 489		.type = MLXBF_I2C_GPIO_RES
 490	},
 491	{}
 492};
 493
 494static u8 mlxbf_i2c_bus_count;
 495
 496static struct mutex mlxbf_i2c_bus_lock;
 497
 498/*
 499 * Function to poll a set of bits at a specific address; it checks whether
 500 * the bits are equal to zero when eq_zero is set to 'true', and not equal
 501 * to zero when eq_zero is set to 'false'.
 502 * Note that the timeout is given in microseconds.
 503 */
 504static u32 mlxbf_i2c_poll(void __iomem *io, u32 addr, u32 mask,
 505			    bool eq_zero, u32  timeout)
 506{
 507	u32 bits;
 508
 509	timeout = (timeout / MLXBF_I2C_POLL_FREQ_IN_USEC) + 1;
 510
 511	do {
 512		bits = readl(io + addr) & mask;
 513		if (eq_zero ? bits == 0 : bits != 0)
 514			return eq_zero ? 1 : bits;
 515		udelay(MLXBF_I2C_POLL_FREQ_IN_USEC);
 516	} while (timeout-- != 0);
 517
 518	return 0;
 519}
 520
 521/*
 522 * SW must make sure that the SMBus Master GW is idle before starting
 523 * a transaction. Accordingly, this function polls the Master FSM stop
 524 * bit; it returns false when the bit is asserted, true if not.
 525 */
 526static bool mlxbf_i2c_smbus_master_wait_for_idle(struct mlxbf_i2c_priv *priv)
 527{
 528	u32 mask = MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK;
 529	u32 addr = priv->chip->smbus_master_fsm_off;
 530	u32 timeout = MLXBF_I2C_SMBUS_TIMEOUT;
 531
 532	if (mlxbf_i2c_poll(priv->mst->io, addr, mask, true, timeout))
 533		return true;
 534
 535	return false;
 536}
 537
 538/*
 539 * wait for the lock to be released before acquiring it.
 540 */
 541static bool mlxbf_i2c_smbus_master_lock(struct mlxbf_i2c_priv *priv)
 542{
 543	if (mlxbf_i2c_poll(priv->mst->io, MLXBF_I2C_SMBUS_MASTER_GW,
 544			   MLXBF_I2C_MASTER_LOCK_BIT, true,
 545			   MLXBF_I2C_SMBUS_LOCK_POLL_TIMEOUT))
 546		return true;
 547
 548	return false;
 549}
 550
 551static void mlxbf_i2c_smbus_master_unlock(struct mlxbf_i2c_priv *priv)
 552{
 553	/* Clear the gw to clear the lock */
 554	writel(0, priv->mst->io + MLXBF_I2C_SMBUS_MASTER_GW);
 555}
 556
 557static bool mlxbf_i2c_smbus_transaction_success(u32 master_status,
 558						u32 cause_status)
 559{
 560	/*
 561	 * When transaction ended with STOP, all bytes were transmitted,
 562	 * and no NACK received, then the transaction ended successfully.
 563	 * On the other hand, when the GW is configured with the stop bit
 564	 * de-asserted then the SMBus expects the following GW configuration
 565	 * for transfer continuation.
 566	 */
 567	if ((cause_status & MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA) ||
 568	    ((cause_status & MLXBF_I2C_CAUSE_TRANSACTION_ENDED) &&
 569	     (master_status & MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE) &&
 570	     !(master_status & MLXBF_I2C_SMBUS_STATUS_NACK_RCV)))
 571		return true;
 572
 573	return false;
 574}
 575
 576/*
 577 * Poll SMBus master status and return transaction status,
 578 * i.e. whether succeeded or failed. I2C and SMBus fault codes
 579 * are returned as negative numbers from most calls, with zero
 580 * or some positive number indicating a non-fault return.
 581 */
 582static int mlxbf_i2c_smbus_check_status(struct mlxbf_i2c_priv *priv)
 583{
 584	u32 master_status_bits;
 585	u32 cause_status_bits;
 586
 587	/*
 588	 * GW busy bit is raised by the driver and cleared by the HW
 589	 * when the transaction is completed. The busy bit is a good
 590	 * indicator of transaction status. So poll the busy bit, and
 591	 * then read the cause and master status bits to determine if
 592	 * errors occurred during the transaction.
 593	 */
 594	mlxbf_i2c_poll(priv->mst->io, MLXBF_I2C_SMBUS_MASTER_GW,
 595			 MLXBF_I2C_MASTER_BUSY_BIT, true,
 596			 MLXBF_I2C_SMBUS_TIMEOUT);
 597
 598	/* Read cause status bits. */
 599	cause_status_bits = readl(priv->mst_cause->io +
 600					MLXBF_I2C_CAUSE_ARBITER);
 601	cause_status_bits &= MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK;
 602
 603	/*
 604	 * Parse both Cause and Master GW bits, then return transaction status.
 605	 */
 606
 607	master_status_bits = readl(priv->mst->io +
 608					MLXBF_I2C_SMBUS_MASTER_STATUS);
 609	master_status_bits &= MLXBF_I2C_SMBUS_MASTER_STATUS_MASK;
 610
 611	if (mlxbf_i2c_smbus_transaction_success(master_status_bits,
 612						cause_status_bits))
 613		return 0;
 614
 615	/*
 616	 * In case of timeout on GW busy, the ISR will clear busy bit but
 617	 * transaction ended bits cause will not be set so the transaction
 618	 * fails. Then, we must check Master GW status bits.
 619	 */
 620	if ((master_status_bits & MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR) &&
 621	    (cause_status_bits & (MLXBF_I2C_CAUSE_TRANSACTION_ENDED |
 622				  MLXBF_I2C_CAUSE_M_GW_BUSY_FALL)))
 623		return -EIO;
 624
 625	if (cause_status_bits & MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR)
 626		return -EAGAIN;
 627
 628	return -ETIMEDOUT;
 629}
 630
 631static void mlxbf_i2c_smbus_write_data(struct mlxbf_i2c_priv *priv,
 632				       const u8 *data, u8 length, u32 addr,
 633				       bool is_master)
 634{
 635	u8 offset, aligned_length;
 636	u32 data32;
 637
 638	aligned_length = round_up(length, 4);
 639
 640	/*
 641	 * Copy data bytes from 4-byte aligned source buffer.
 642	 * Data copied to the Master GW Data Descriptor MUST be shifted
 643	 * left so the data starts at the MSB of the descriptor registers
 644	 * as required by the underlying hardware. Enable byte swapping
 645	 * when writing data bytes to the 32 * 32-bit HW Data registers
 646	 * a.k.a Master GW Data Descriptor.
 647	 */
 648	for (offset = 0; offset < aligned_length; offset += sizeof(u32)) {
 649		data32 = *((u32 *)(data + offset));
 650		if (is_master)
 651			iowrite32be(data32, priv->mst->io + addr + offset);
 652		else
 653			iowrite32be(data32, priv->slv->io + addr + offset);
 654	}
 655}
 656
 657static void mlxbf_i2c_smbus_read_data(struct mlxbf_i2c_priv *priv,
 658				      u8 *data, u8 length, u32 addr,
 659				      bool is_master)
 660{
 661	u32 data32, mask;
 662	u8 byte, offset;
 663
 664	mask = sizeof(u32) - 1;
 665
 666	/*
 667	 * Data bytes in the Master GW Data Descriptor are shifted left
 668	 * so the data starts at the MSB of the descriptor registers as
 669	 * set by the underlying hardware. Enable byte swapping while
 670	 * reading data bytes from the 32 * 32-bit HW Data registers
 671	 * a.k.a Master GW Data Descriptor.
 672	 */
 673
 674	for (offset = 0; offset < (length & ~mask); offset += sizeof(u32)) {
 675		if (is_master)
 676			data32 = ioread32be(priv->mst->io + addr + offset);
 677		else
 678			data32 = ioread32be(priv->slv->io + addr + offset);
 679		*((u32 *)(data + offset)) = data32;
 680	}
 681
 682	if (!(length & mask))
 683		return;
 684
 685	if (is_master)
 686		data32 = ioread32be(priv->mst->io + addr + offset);
 687	else
 688		data32 = ioread32be(priv->slv->io + addr + offset);
 689
 690	for (byte = 0; byte < (length & mask); byte++) {
 691		data[offset + byte] = data32 & GENMASK(7, 0);
 692		data32 = ror32(data32, MLXBF_I2C_SHIFT_8);
 693	}
 694}
 695
 696static int mlxbf_i2c_smbus_enable(struct mlxbf_i2c_priv *priv, u8 slave,
 697				  u8 len, u8 block_en, u8 pec_en, bool read)
 698{
 699	u32 command;
 700
 701	/* Set Master GW control word. */
 702	if (read) {
 703		command = MLXBF_I2C_MASTER_ENABLE_READ;
 704		command |= rol32(len, MLXBF_I2C_MASTER_READ_SHIFT);
 705	} else {
 706		command = MLXBF_I2C_MASTER_ENABLE_WRITE;
 707		command |= rol32(len, MLXBF_I2C_MASTER_WRITE_SHIFT);
 708	}
 709	command |= rol32(slave, MLXBF_I2C_MASTER_SLV_ADDR_SHIFT);
 710	command |= rol32(block_en, MLXBF_I2C_MASTER_PARSE_EXP_SHIFT);
 711	command |= rol32(pec_en, MLXBF_I2C_MASTER_SEND_PEC_SHIFT);
 712
 713	/* Clear status bits. */
 714	writel(0x0, priv->mst->io + MLXBF_I2C_SMBUS_MASTER_STATUS);
 715	/* Set the cause data. */
 716	writel(~0x0, priv->mst_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
 717	/* Zero PEC byte. */
 718	writel(0x0, priv->mst->io + MLXBF_I2C_SMBUS_MASTER_PEC);
 719	/* Zero byte count. */
 720	writel(0x0, priv->mst->io + priv->chip->smbus_master_rs_bytes_off);
 721
 722	/* GW activation. */
 723	writel(command, priv->mst->io + MLXBF_I2C_SMBUS_MASTER_GW);
 724
 725	/*
 726	 * Poll master status and check status bits. An ACK is sent when
 727	 * completing writing data to the bus (Master 'byte_count_done' bit
 728	 * is set to 1).
 729	 */
 730	return mlxbf_i2c_smbus_check_status(priv);
 731}
 732
 733static int
 734mlxbf_i2c_smbus_start_transaction(struct mlxbf_i2c_priv *priv,
 735				  struct mlxbf_i2c_smbus_request *request)
 736{
 737	u8 data_desc[MLXBF_I2C_MASTER_DATA_DESC_SIZE] = { 0 };
 738	u8 op_idx, data_idx, data_len, write_len, read_len;
 739	struct mlxbf_i2c_smbus_operation *operation;
 740	u8 read_en, write_en, block_en, pec_en;
 741	u8 slave, flags, addr;
 742	u8 *read_buf;
 743	int ret = 0;
 744
 745	if (request->operation_cnt > MLXBF_I2C_SMBUS_MAX_OP_CNT)
 746		return -EINVAL;
 747
 748	read_buf = NULL;
 749	data_idx = 0;
 750	read_en = 0;
 751	write_en = 0;
 752	write_len = 0;
 753	read_len = 0;
 754	block_en = 0;
 755	pec_en = 0;
 756	slave = request->slave & GENMASK(6, 0);
 757	addr = slave << 1;
 758
 759	/*
 760	 * Try to acquire the smbus gw lock before any reads of the GW register since
 761	 * a read sets the lock.
 762	 */
 763	if (WARN_ON(!mlxbf_i2c_smbus_master_lock(priv)))
 764		return -EBUSY;
 765
 766	/* Check whether the HW is idle */
 767	if (WARN_ON(!mlxbf_i2c_smbus_master_wait_for_idle(priv))) {
 768		ret = -EBUSY;
 769		goto out_unlock;
 770	}
 771
 772	/* Set first byte. */
 773	data_desc[data_idx++] = addr;
 774
 775	for (op_idx = 0; op_idx < request->operation_cnt; op_idx++) {
 776		operation = &request->operation[op_idx];
 777		flags = operation->flags;
 778
 779		/*
 780		 * Note that read and write operations might be handled by a
 781		 * single command. If the MLXBF_I2C_F_SMBUS_OPERATION is set
 782		 * then write command byte and set the optional SMBus specific
 783		 * bits such as block_en and pec_en. These bits MUST be
 784		 * submitted by the first operation only.
 785		 */
 786		if (op_idx == 0 && flags & MLXBF_I2C_F_SMBUS_OPERATION) {
 787			block_en = flags & MLXBF_I2C_F_SMBUS_BLOCK;
 788			pec_en = flags & MLXBF_I2C_F_SMBUS_PEC;
 789		}
 790
 791		if (flags & MLXBF_I2C_F_WRITE) {
 792			write_en = 1;
 793			write_len += operation->length;
 794			if (data_idx + operation->length >
 795					MLXBF_I2C_MASTER_DATA_DESC_SIZE) {
 796				ret = -ENOBUFS;
 797				goto out_unlock;
 798			}
 799			memcpy(data_desc + data_idx,
 800			       operation->buffer, operation->length);
 801			data_idx += operation->length;
 802		}
 803		/*
 804		 * We assume that read operations are performed only once per
 805		 * SMBus transaction. *TBD* protect this statement so it won't
 806		 * be executed twice? or return an error if we try to read more
 807		 * than once?
 808		 */
 809		if (flags & MLXBF_I2C_F_READ) {
 810			read_en = 1;
 811			/* Subtract 1 as required by HW. */
 812			read_len = operation->length - 1;
 813			read_buf = operation->buffer;
 814		}
 815	}
 816
 817	/* Set Master GW data descriptor. */
 818	data_len = write_len + 1; /* Add one byte of the slave address. */
 819	/*
 820	 * Note that data_len cannot be 0. Indeed, the slave address byte
 821	 * must be written to the data registers.
 822	 */
 823	mlxbf_i2c_smbus_write_data(priv, (const u8 *)data_desc, data_len,
 824				   MLXBF_I2C_MASTER_DATA_DESC_ADDR, true);
 825
 826	if (write_en) {
 827		ret = mlxbf_i2c_smbus_enable(priv, slave, write_len, block_en,
 828					 pec_en, 0);
 829		if (ret)
 830			goto out_unlock;
 831	}
 832
 833	if (read_en) {
 834		/* Write slave address to Master GW data descriptor. */
 835		mlxbf_i2c_smbus_write_data(priv, (const u8 *)&addr, 1,
 836					   MLXBF_I2C_MASTER_DATA_DESC_ADDR, true);
 837		ret = mlxbf_i2c_smbus_enable(priv, slave, read_len, block_en,
 838					 pec_en, 1);
 839		if (!ret) {
 840			/* Get Master GW data descriptor. */
 841			mlxbf_i2c_smbus_read_data(priv, data_desc, read_len + 1,
 842					     MLXBF_I2C_MASTER_DATA_DESC_ADDR, true);
 843
 844			/* Get data from Master GW data descriptor. */
 845			memcpy(read_buf, data_desc, read_len + 1);
 846		}
 847
 848		/*
 849		 * After a read operation the SMBus FSM ps (present state)
 850		 * needs to be 'manually' reset. This should be removed in
 851		 * next tag integration.
 852		 */
 853		writel(MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK,
 854			priv->mst->io + priv->chip->smbus_master_fsm_off);
 855	}
 856
 857out_unlock:
 858	mlxbf_i2c_smbus_master_unlock(priv);
 859
 860	return ret;
 861}
 862
 863/* I2C SMBus protocols. */
 864
 865static void
 866mlxbf_i2c_smbus_quick_command(struct mlxbf_i2c_smbus_request *request,
 867			      u8 read)
 868{
 869	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
 870
 871	request->operation[0].length = 0;
 872	request->operation[0].flags = MLXBF_I2C_F_WRITE;
 873	request->operation[0].flags |= read ? MLXBF_I2C_F_READ : 0;
 874}
 875
 876static void mlxbf_i2c_smbus_byte_func(struct mlxbf_i2c_smbus_request *request,
 877				      u8 *data, bool read, bool pec_check)
 878{
 879	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
 880
 881	request->operation[0].length = 1;
 882	request->operation[0].length += pec_check;
 883
 884	request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION;
 885	request->operation[0].flags |= read ?
 886				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
 887	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
 888
 889	request->operation[0].buffer = data;
 890}
 891
 892static void
 893mlxbf_i2c_smbus_data_byte_func(struct mlxbf_i2c_smbus_request *request,
 894			       u8 *command, u8 *data, bool read, bool pec_check)
 895{
 896	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
 897
 898	request->operation[0].length = 1;
 899	request->operation[0].flags =
 900			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
 901	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
 902	request->operation[0].buffer = command;
 903
 904	request->operation[1].length = 1;
 905	request->operation[1].length += pec_check;
 906	request->operation[1].flags = read ?
 907				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
 908	request->operation[1].buffer = data;
 909}
 910
 911static void
 912mlxbf_i2c_smbus_data_word_func(struct mlxbf_i2c_smbus_request *request,
 913			       u8 *command, u8 *data, bool read, bool pec_check)
 914{
 915	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
 916
 917	request->operation[0].length = 1;
 918	request->operation[0].flags =
 919			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
 920	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
 921	request->operation[0].buffer = command;
 922
 923	request->operation[1].length = 2;
 924	request->operation[1].length += pec_check;
 925	request->operation[1].flags = read ?
 926				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
 927	request->operation[1].buffer = data;
 928}
 929
 930static void
 931mlxbf_i2c_smbus_i2c_block_func(struct mlxbf_i2c_smbus_request *request,
 932			       u8 *command, u8 *data, u8 *data_len, bool read,
 933			       bool pec_check)
 934{
 935	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
 936
 937	request->operation[0].length = 1;
 938	request->operation[0].flags =
 939			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
 940	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
 941	request->operation[0].buffer = command;
 942
 943	/*
 944	 * As specified in the standard, the max number of bytes to read/write
 945	 * per block operation is 32 bytes. In Golan code, the controller can
 946	 * read up to 128 bytes and write up to 127 bytes.
 947	 */
 948	request->operation[1].length =
 949	    (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
 950	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
 951	request->operation[1].flags = read ?
 952				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
 953	/*
 954	 * Skip the first data byte, which corresponds to the number of bytes
 955	 * to read/write.
 956	 */
 957	request->operation[1].buffer = data + 1;
 958
 959	*data_len = request->operation[1].length;
 960
 961	/* Set the number of byte to read. This will be used by userspace. */
 962	if (read)
 963		data[0] = *data_len;
 964}
 965
 966static void mlxbf_i2c_smbus_block_func(struct mlxbf_i2c_smbus_request *request,
 967				       u8 *command, u8 *data, u8 *data_len,
 968				       bool read, bool pec_check)
 969{
 970	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
 971
 972	request->operation[0].length = 1;
 973	request->operation[0].flags =
 974			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
 975	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
 976	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
 977	request->operation[0].buffer = command;
 978
 979	request->operation[1].length =
 980	    (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
 981	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
 982	request->operation[1].flags = read ?
 983				MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
 984	request->operation[1].buffer = data + 1;
 985
 986	*data_len = request->operation[1].length;
 987
 988	/* Set the number of bytes to read. This will be used by userspace. */
 989	if (read)
 990		data[0] = *data_len;
 991}
 992
 993static void
 994mlxbf_i2c_smbus_process_call_func(struct mlxbf_i2c_smbus_request *request,
 995				  u8 *command, u8 *data, bool pec_check)
 996{
 997	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
 998
 999	request->operation[0].length = 1;
1000	request->operation[0].flags =
1001			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
1002	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
1003	request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
1004	request->operation[0].buffer = command;
1005
1006	request->operation[1].length = 2;
1007	request->operation[1].flags = MLXBF_I2C_F_WRITE;
1008	request->operation[1].buffer = data;
1009
1010	request->operation[2].length = 3;
1011	request->operation[2].flags = MLXBF_I2C_F_READ;
1012	request->operation[2].buffer = data;
1013}
1014
1015static void
1016mlxbf_i2c_smbus_blk_process_call_func(struct mlxbf_i2c_smbus_request *request,
1017				      u8 *command, u8 *data, u8 *data_len,
1018				      bool pec_check)
1019{
1020	u32 length;
1021
1022	request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
1023
1024	request->operation[0].length = 1;
1025	request->operation[0].flags =
1026			MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
1027	request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
1028	request->operation[0].flags |= (pec_check) ? MLXBF_I2C_F_SMBUS_PEC : 0;
1029	request->operation[0].buffer = command;
1030
1031	length = (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
1032	    I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
1033
1034	request->operation[1].length = length - pec_check;
1035	request->operation[1].flags = MLXBF_I2C_F_WRITE;
1036	request->operation[1].buffer = data;
1037
1038	request->operation[2].length = length;
1039	request->operation[2].flags = MLXBF_I2C_F_READ;
1040	request->operation[2].buffer = data;
1041
1042	*data_len = length; /* including PEC byte. */
1043}
1044
1045/* Initialization functions. */
1046
1047static bool mlxbf_i2c_has_chip_type(struct mlxbf_i2c_priv *priv, u8 type)
1048{
1049	return priv->chip->type == type;
1050}
1051
1052static struct mlxbf_i2c_resource *
1053mlxbf_i2c_get_shared_resource(struct mlxbf_i2c_priv *priv, u8 type)
1054{
1055	const struct mlxbf_i2c_chip_info *chip = priv->chip;
1056	struct mlxbf_i2c_resource *res;
1057	u8 res_idx = 0;
1058
1059	for (res_idx = 0; res_idx < MLXBF_I2C_SHARED_RES_MAX; res_idx++) {
1060		res = chip->shared_res[res_idx];
1061		if (res && res->type == type)
1062			return res;
1063	}
1064
1065	return NULL;
1066}
1067
1068static int mlxbf_i2c_init_resource(struct platform_device *pdev,
1069				   struct mlxbf_i2c_resource **res,
1070				   u8 type)
1071{
1072	struct mlxbf_i2c_resource *tmp_res;
1073	struct device *dev = &pdev->dev;
1074
1075	if (!res || *res || type >= MLXBF_I2C_END_RES)
1076		return -EINVAL;
1077
1078	tmp_res = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource),
1079			       GFP_KERNEL);
1080	if (!tmp_res)
1081		return -ENOMEM;
1082
1083	tmp_res->io = devm_platform_get_and_ioremap_resource(pdev, type, &tmp_res->params);
1084	if (IS_ERR(tmp_res->io)) {
1085		devm_kfree(dev, tmp_res);
1086		return PTR_ERR(tmp_res->io);
1087	}
1088
1089	tmp_res->type = type;
1090
1091	*res = tmp_res;
1092
1093	return 0;
1094}
1095
1096static u32 mlxbf_i2c_get_ticks(struct mlxbf_i2c_priv *priv, u64 nanoseconds,
1097			       bool minimum)
1098{
1099	u64 frequency;
1100	u32 ticks;
1101
1102	/*
1103	 * Compute ticks as follow:
1104	 *
1105	 *           Ticks
1106	 * Time = --------- x 10^9    =>    Ticks = Time x Frequency x 10^-9
1107	 *         Frequency
1108	 */
1109	frequency = priv->frequency;
1110	ticks = (nanoseconds * frequency) / MLXBF_I2C_FREQUENCY_1GHZ;
1111	/*
1112	 * The number of ticks is rounded down and if minimum is equal to 1
1113	 * then add one tick.
1114	 */
1115	if (minimum)
1116		ticks++;
1117
1118	return ticks;
1119}
1120
1121static u32 mlxbf_i2c_set_timer(struct mlxbf_i2c_priv *priv, u64 nsec, bool opt,
1122			       u32 mask, u8 shift)
1123{
1124	u32 val = (mlxbf_i2c_get_ticks(priv, nsec, opt) & mask) << shift;
1125
1126	return val;
1127}
1128
1129static void mlxbf_i2c_set_timings(struct mlxbf_i2c_priv *priv,
1130				  const struct mlxbf_i2c_timings *timings)
1131{
1132	u32 timer;
1133
1134	timer = mlxbf_i2c_set_timer(priv, timings->scl_high,
1135				    false, MLXBF_I2C_MASK_16,
1136				    MLXBF_I2C_SHIFT_0);
1137	timer |= mlxbf_i2c_set_timer(priv, timings->scl_low,
1138				     false, MLXBF_I2C_MASK_16,
1139				     MLXBF_I2C_SHIFT_16);
1140	writel(timer, priv->timer->io +
1141		MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH);
1142
1143	timer = mlxbf_i2c_set_timer(priv, timings->sda_rise, false,
1144				    MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_0);
1145	timer |= mlxbf_i2c_set_timer(priv, timings->sda_fall, false,
1146				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_8);
1147	timer |= mlxbf_i2c_set_timer(priv, timings->scl_rise, false,
1148				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_16);
1149	timer |= mlxbf_i2c_set_timer(priv, timings->scl_fall, false,
1150				     MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_24);
1151	writel(timer, priv->timer->io +
1152		MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE);
1153
1154	timer = mlxbf_i2c_set_timer(priv, timings->hold_start, true,
1155				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1156	timer |= mlxbf_i2c_set_timer(priv, timings->hold_data, true,
1157				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1158	writel(timer, priv->timer->io + MLXBF_I2C_SMBUS_TIMER_THOLD);
1159
1160	timer = mlxbf_i2c_set_timer(priv, timings->setup_start, true,
1161				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1162	timer |= mlxbf_i2c_set_timer(priv, timings->setup_stop, true,
1163				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1164	writel(timer, priv->timer->io +
1165		MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP);
1166
1167	timer = mlxbf_i2c_set_timer(priv, timings->setup_data, true,
1168				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1169	writel(timer, priv->timer->io + MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA);
1170
1171	timer = mlxbf_i2c_set_timer(priv, timings->buf, false,
1172				    MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1173	timer |= mlxbf_i2c_set_timer(priv, timings->thigh_max, false,
1174				     MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1175	writel(timer, priv->timer->io + MLXBF_I2C_SMBUS_THIGH_MAX_TBUF);
1176
1177	timer = timings->timeout;
1178	writel(timer, priv->timer->io + MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT);
1179}
1180
1181enum mlxbf_i2c_timings_config {
1182	MLXBF_I2C_TIMING_CONFIG_100KHZ,
1183	MLXBF_I2C_TIMING_CONFIG_400KHZ,
1184	MLXBF_I2C_TIMING_CONFIG_1000KHZ,
1185};
1186
1187/*
1188 * Note that the mlxbf_i2c_timings->timeout value is not related to the
1189 * bus frequency, it is impacted by the time it takes the driver to
1190 * complete data transmission before transaction abort.
1191 */
1192static const struct mlxbf_i2c_timings mlxbf_i2c_timings[] = {
1193	[MLXBF_I2C_TIMING_CONFIG_100KHZ] = {
1194		.scl_high = 4810,
1195		.scl_low = 5000,
1196		.hold_start = 4000,
1197		.setup_start = 4800,
1198		.setup_stop = 4000,
1199		.setup_data = 250,
1200		.sda_rise = 50,
1201		.sda_fall = 50,
1202		.scl_rise = 50,
1203		.scl_fall = 50,
1204		.hold_data = 300,
1205		.buf = 20000,
1206		.thigh_max = 5000,
1207		.timeout = 106500
1208	},
1209	[MLXBF_I2C_TIMING_CONFIG_400KHZ] = {
1210		.scl_high = 1011,
1211		.scl_low = 1300,
1212		.hold_start = 600,
1213		.setup_start = 700,
1214		.setup_stop = 600,
1215		.setup_data = 100,
1216		.sda_rise = 50,
1217		.sda_fall = 50,
1218		.scl_rise = 50,
1219		.scl_fall = 50,
1220		.hold_data = 300,
1221		.buf = 20000,
1222		.thigh_max = 5000,
1223		.timeout = 106500
1224	},
1225	[MLXBF_I2C_TIMING_CONFIG_1000KHZ] = {
1226		.scl_high = 600,
1227		.scl_low = 1300,
1228		.hold_start = 600,
1229		.setup_start = 600,
1230		.setup_stop = 600,
1231		.setup_data = 100,
1232		.sda_rise = 50,
1233		.sda_fall = 50,
1234		.scl_rise = 50,
1235		.scl_fall = 50,
1236		.hold_data = 300,
1237		.buf = 20000,
1238		.thigh_max = 5000,
1239		.timeout = 106500
1240	}
1241};
1242
1243static int mlxbf_i2c_init_timings(struct platform_device *pdev,
1244				  struct mlxbf_i2c_priv *priv)
1245{
1246	enum mlxbf_i2c_timings_config config_idx;
1247	struct device *dev = &pdev->dev;
1248	u32 config_khz;
1249
1250	int ret;
1251
1252	ret = device_property_read_u32(dev, "clock-frequency", &config_khz);
1253	if (ret < 0)
1254		config_khz = I2C_MAX_STANDARD_MODE_FREQ;
1255
1256	switch (config_khz) {
1257	default:
1258		/* Default settings is 100 KHz. */
1259		pr_warn("Illegal value %d: defaulting to 100 KHz\n",
1260			config_khz);
1261		fallthrough;
1262	case I2C_MAX_STANDARD_MODE_FREQ:
1263		config_idx = MLXBF_I2C_TIMING_CONFIG_100KHZ;
1264		break;
1265
1266	case I2C_MAX_FAST_MODE_FREQ:
1267		config_idx = MLXBF_I2C_TIMING_CONFIG_400KHZ;
1268		break;
1269
1270	case I2C_MAX_FAST_MODE_PLUS_FREQ:
1271		config_idx = MLXBF_I2C_TIMING_CONFIG_1000KHZ;
1272		break;
1273	}
1274
1275	mlxbf_i2c_set_timings(priv, &mlxbf_i2c_timings[config_idx]);
1276
1277	return 0;
1278}
1279
1280static int mlxbf_i2c_get_gpio(struct platform_device *pdev,
1281			      struct mlxbf_i2c_priv *priv)
1282{
1283	struct mlxbf_i2c_resource *gpio_res;
1284	struct device *dev = &pdev->dev;
1285	struct resource	*params;
1286	resource_size_t size;
1287
1288	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1289	if (!gpio_res)
1290		return -EPERM;
1291
1292	/*
1293	 * The GPIO region in TYU space is shared among I2C busses.
1294	 * This function MUST be serialized to avoid racing when
1295	 * claiming the memory region and/or setting up the GPIO.
1296	 */
1297	lockdep_assert_held(gpio_res->lock);
1298
1299	/* Check whether the memory map exist. */
1300	if (gpio_res->io)
1301		return 0;
1302
1303	params = gpio_res->params;
1304	size = resource_size(params);
1305
1306	if (!devm_request_mem_region(dev, params->start, size, params->name))
1307		return -EFAULT;
1308
1309	gpio_res->io = devm_ioremap(dev, params->start, size);
1310	if (!gpio_res->io) {
1311		devm_release_mem_region(dev, params->start, size);
1312		return -ENOMEM;
1313	}
1314
1315	return 0;
1316}
1317
1318static int mlxbf_i2c_release_gpio(struct platform_device *pdev,
1319				  struct mlxbf_i2c_priv *priv)
1320{
1321	struct mlxbf_i2c_resource *gpio_res;
1322	struct device *dev = &pdev->dev;
1323	struct resource	*params;
1324
1325	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1326	if (!gpio_res)
1327		return 0;
1328
1329	mutex_lock(gpio_res->lock);
1330
1331	if (gpio_res->io) {
1332		/* Release the GPIO resource. */
1333		params = gpio_res->params;
1334		devm_iounmap(dev, gpio_res->io);
1335		devm_release_mem_region(dev, params->start,
1336					resource_size(params));
1337	}
1338
1339	mutex_unlock(gpio_res->lock);
1340
1341	return 0;
1342}
1343
1344static int mlxbf_i2c_get_corepll(struct platform_device *pdev,
1345				 struct mlxbf_i2c_priv *priv)
1346{
1347	struct mlxbf_i2c_resource *corepll_res;
1348	struct device *dev = &pdev->dev;
1349	struct resource *params;
1350	resource_size_t size;
1351
1352	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1353						    MLXBF_I2C_COREPLL_RES);
1354	if (!corepll_res)
1355		return -EPERM;
1356
1357	/*
1358	 * The COREPLL region in TYU space is shared among I2C busses.
1359	 * This function MUST be serialized to avoid racing when
1360	 * claiming the memory region.
1361	 */
1362	lockdep_assert_held(corepll_res->lock);
1363
1364	/* Check whether the memory map exist. */
1365	if (corepll_res->io)
1366		return 0;
1367
1368	params = corepll_res->params;
1369	size = resource_size(params);
1370
1371	if (!devm_request_mem_region(dev, params->start, size, params->name))
1372		return -EFAULT;
1373
1374	corepll_res->io = devm_ioremap(dev, params->start, size);
1375	if (!corepll_res->io) {
1376		devm_release_mem_region(dev, params->start, size);
1377		return -ENOMEM;
1378	}
1379
1380	return 0;
1381}
1382
1383static int mlxbf_i2c_release_corepll(struct platform_device *pdev,
1384				     struct mlxbf_i2c_priv *priv)
1385{
1386	struct mlxbf_i2c_resource *corepll_res;
1387	struct device *dev = &pdev->dev;
1388	struct resource *params;
1389
1390	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1391						    MLXBF_I2C_COREPLL_RES);
1392
1393	mutex_lock(corepll_res->lock);
1394
1395	if (corepll_res->io) {
1396		/* Release the CorePLL resource. */
1397		params = corepll_res->params;
1398		devm_iounmap(dev, corepll_res->io);
1399		devm_release_mem_region(dev, params->start,
1400					resource_size(params));
1401	}
1402
1403	mutex_unlock(corepll_res->lock);
1404
1405	return 0;
1406}
1407
1408static int mlxbf_i2c_init_master(struct platform_device *pdev,
1409				 struct mlxbf_i2c_priv *priv)
1410{
1411	struct mlxbf_i2c_resource *gpio_res;
1412	struct device *dev = &pdev->dev;
1413	u32 config_reg;
1414	int ret;
1415
1416	/* This configuration is only needed for BlueField 1. */
1417	if (!mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1))
1418		return 0;
1419
1420	gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES);
1421	if (!gpio_res)
1422		return -EPERM;
1423
1424	/*
1425	 * The GPIO region in TYU space is shared among I2C busses.
1426	 * This function MUST be serialized to avoid racing when
1427	 * claiming the memory region and/or setting up the GPIO.
1428	 */
1429
1430	mutex_lock(gpio_res->lock);
1431
1432	ret = mlxbf_i2c_get_gpio(pdev, priv);
1433	if (ret < 0) {
1434		dev_err(dev, "Failed to get gpio resource");
1435		mutex_unlock(gpio_res->lock);
1436		return ret;
1437	}
1438
1439	/*
1440	 * TYU - Configuration for GPIO pins. Those pins must be asserted in
1441	 * MLXBF_I2C_GPIO_0_FUNC_EN_0, i.e. GPIO 0 is controlled by HW, and must
1442	 * be reset in MLXBF_I2C_GPIO_0_FORCE_OE_EN, i.e. GPIO_OE will be driven
1443	 * instead of HW_OE.
1444	 * For now, we do not reset the GPIO state when the driver is removed.
1445	 * First, it is not necessary to disable the bus since we are using
1446	 * the same busses. Then, some busses might be shared among Linux and
1447	 * platform firmware; disabling the bus might compromise the system
1448	 * functionality.
1449	 */
1450	config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1451	config_reg = MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(priv->bus,
1452							 config_reg);
1453	writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1454
1455	config_reg = readl(gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1456	config_reg = MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(priv->bus,
1457							config_reg);
1458	writel(config_reg, gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1459
1460	mutex_unlock(gpio_res->lock);
1461
1462	return 0;
1463}
1464
1465static u64 mlxbf_i2c_calculate_freq_from_tyu(struct mlxbf_i2c_resource *corepll_res)
1466{
1467	u64 core_frequency;
1468	u8 core_od, core_r;
1469	u32 corepll_val;
1470	u16 core_f;
1471
1472	corepll_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1473
1474	/* Get Core PLL configuration bits. */
1475	core_f = FIELD_GET(MLXBF_I2C_COREPLL_CORE_F_TYU_MASK, corepll_val);
1476	core_od = FIELD_GET(MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK, corepll_val);
1477	core_r = FIELD_GET(MLXBF_I2C_COREPLL_CORE_R_TYU_MASK, corepll_val);
1478
1479	/*
1480	 * Compute PLL output frequency as follow:
1481	 *
1482	 *                                       CORE_F + 1
1483	 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1484	 *                              (CORE_R + 1) * (CORE_OD + 1)
1485	 *
1486	 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1487	 * and PadFrequency, respectively.
1488	 */
1489	core_frequency = MLXBF_I2C_PLL_IN_FREQ * (++core_f);
1490	core_frequency /= (++core_r) * (++core_od);
1491
1492	return core_frequency;
1493}
1494
1495static u64 mlxbf_i2c_calculate_freq_from_yu(struct mlxbf_i2c_resource *corepll_res)
1496{
1497	u32 corepll_reg1_val, corepll_reg2_val;
1498	u64 corepll_frequency;
1499	u8 core_od, core_r;
1500	u32 core_f;
1501
1502	corepll_reg1_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1503	corepll_reg2_val = readl(corepll_res->io + MLXBF_I2C_CORE_PLL_REG2);
1504
1505	/* Get Core PLL configuration bits */
1506	core_f = FIELD_GET(MLXBF_I2C_COREPLL_CORE_F_YU_MASK, corepll_reg1_val);
1507	core_r = FIELD_GET(MLXBF_I2C_COREPLL_CORE_R_YU_MASK, corepll_reg1_val);
1508	core_od = FIELD_GET(MLXBF_I2C_COREPLL_CORE_OD_YU_MASK, corepll_reg2_val);
1509
1510	/*
1511	 * Compute PLL output frequency as follow:
1512	 *
1513	 *                                     CORE_F / 16384
1514	 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1515	 *                              (CORE_R + 1) * (CORE_OD + 1)
1516	 *
1517	 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1518	 * and PadFrequency, respectively.
1519	 */
1520	corepll_frequency = (MLXBF_I2C_PLL_IN_FREQ * core_f) / MLNXBF_I2C_COREPLL_CONST;
1521	corepll_frequency /= (++core_r) * (++core_od);
1522
1523	return corepll_frequency;
1524}
1525
1526static int mlxbf_i2c_calculate_corepll_freq(struct platform_device *pdev,
1527					    struct mlxbf_i2c_priv *priv)
1528{
1529	const struct mlxbf_i2c_chip_info *chip = priv->chip;
1530	struct mlxbf_i2c_resource *corepll_res;
1531	struct device *dev = &pdev->dev;
1532	u64 *freq = &priv->frequency;
1533	int ret;
1534
1535	corepll_res = mlxbf_i2c_get_shared_resource(priv,
1536						    MLXBF_I2C_COREPLL_RES);
1537	if (!corepll_res)
1538		return -EPERM;
1539
1540	/*
1541	 * First, check whether the TYU core Clock frequency is set.
1542	 * The TYU core frequency is the same for all I2C busses; when
1543	 * the first device gets probed the frequency is determined and
1544	 * stored into a globally visible variable. So, first of all,
1545	 * check whether the frequency is already set. Here, we assume
1546	 * that the frequency is expected to be greater than 0.
1547	 */
1548	mutex_lock(corepll_res->lock);
1549	if (!mlxbf_i2c_corepll_frequency) {
1550		if (!chip->calculate_freq) {
1551			mutex_unlock(corepll_res->lock);
1552			return -EPERM;
1553		}
1554
1555		ret = mlxbf_i2c_get_corepll(pdev, priv);
1556		if (ret < 0) {
1557			dev_err(dev, "Failed to get corePLL resource");
1558			mutex_unlock(corepll_res->lock);
1559			return ret;
1560		}
1561
1562		mlxbf_i2c_corepll_frequency = chip->calculate_freq(corepll_res);
1563	}
1564	mutex_unlock(corepll_res->lock);
1565
1566	*freq = mlxbf_i2c_corepll_frequency;
1567
1568	return 0;
1569}
1570
1571static int mlxbf_i2c_slave_enable(struct mlxbf_i2c_priv *priv,
1572			      struct i2c_client *slave)
1573{
1574	u8 reg, reg_cnt, byte, addr_tmp;
1575	u32 slave_reg, slave_reg_tmp;
1576
1577	if (!priv)
1578		return -EPERM;
1579
1580	reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1581
1582	/*
1583	 * Read the slave registers. There are 4 * 32-bit slave registers.
1584	 * Each slave register can hold up to 4 * 8-bit slave configuration:
1585	 * 1) A 7-bit address
1586	 * 2) And a status bit (1 if enabled, 0 if not).
1587	 * Look for the next available slave register slot.
1588	 */
1589	for (reg = 0; reg < reg_cnt; reg++) {
1590		slave_reg = readl(priv->slv->io +
1591				MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1592		/*
1593		 * Each register holds 4 slave addresses. So, we have to keep
1594		 * the byte order consistent with the value read in order to
1595		 * update the register correctly, if needed.
1596		 */
1597		slave_reg_tmp = slave_reg;
1598		for (byte = 0; byte < 4; byte++) {
1599			addr_tmp = slave_reg_tmp & GENMASK(7, 0);
1600
1601			/*
1602			 * If an enable bit is not set in the
1603			 * MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG register, then the
1604			 * slave address slot associated with that bit is
1605			 * free. So set the enable bit and write the
1606			 * slave address bits.
1607			 */
1608			if (!(addr_tmp & MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT)) {
1609				slave_reg &= ~(MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK << (byte * 8));
1610				slave_reg |= (slave->addr << (byte * 8));
1611				slave_reg |= MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT << (byte * 8);
1612				writel(slave_reg, priv->slv->io +
1613					MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1614					(reg * 0x4));
1615
1616				/*
1617				 * Set the slave at the corresponding index.
1618				 */
1619				priv->slave[(reg * 4) + byte] = slave;
1620
1621				return 0;
1622			}
1623
1624			/* Parse next byte. */
1625			slave_reg_tmp >>= 8;
1626		}
1627	}
1628
1629	return -EBUSY;
1630}
1631
1632static int mlxbf_i2c_slave_disable(struct mlxbf_i2c_priv *priv, u8 addr)
1633{
1634	u8 addr_tmp, reg, reg_cnt, byte;
1635	u32 slave_reg, slave_reg_tmp;
1636
1637	reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1638
1639	/*
1640	 * Read the slave registers. There are 4 * 32-bit slave registers.
1641	 * Each slave register can hold up to 4 * 8-bit slave configuration:
1642	 * 1) A 7-bit address
1643	 * 2) And a status bit (1 if enabled, 0 if not).
1644	 * Check if addr is present in the registers.
1645	 */
1646	for (reg = 0; reg < reg_cnt; reg++) {
1647		slave_reg = readl(priv->slv->io +
1648				MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1649
1650		/* Check whether the address slots are empty. */
1651		if (!slave_reg)
1652			continue;
1653
1654		/*
1655		 * Check if addr matches any of the 4 slave addresses
1656		 * in the register.
1657		 */
1658		slave_reg_tmp = slave_reg;
1659		for (byte = 0; byte < 4; byte++) {
1660			addr_tmp = slave_reg_tmp & MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1661			/*
1662			 * Parse slave address bytes and check whether the
1663			 * slave address already exists.
1664			 */
1665			if (addr_tmp == addr) {
1666				/* Clear the slave address slot. */
1667				slave_reg &= ~(GENMASK(7, 0) << (byte * 8));
1668				writel(slave_reg, priv->slv->io +
1669					MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1670					(reg * 0x4));
1671				/* Free slave at the corresponding index */
1672				priv->slave[(reg * 4) + byte] = NULL;
1673
1674				return 0;
1675			}
1676
1677			/* Parse next byte. */
1678			slave_reg_tmp >>= 8;
1679		}
1680	}
1681
1682	return -ENXIO;
1683}
1684
1685static int mlxbf_i2c_init_coalesce(struct platform_device *pdev,
1686				   struct mlxbf_i2c_priv *priv)
1687{
1688	struct mlxbf_i2c_resource *coalesce_res;
1689	struct resource *params;
1690	resource_size_t size;
1691	int ret = 0;
1692
1693	/*
1694	 * Unlike BlueField-1 platform, the coalesce registers is a dedicated
1695	 * resource in the next generations of BlueField.
1696	 */
1697	if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1698		coalesce_res = mlxbf_i2c_get_shared_resource(priv,
1699						MLXBF_I2C_COALESCE_RES);
1700		if (!coalesce_res)
1701			return -EPERM;
1702
1703		/*
1704		 * The Cause Coalesce group in TYU space is shared among
1705		 * I2C busses. This function MUST be serialized to avoid
1706		 * racing when claiming the memory region.
1707		 */
1708		lockdep_assert_held(mlxbf_i2c_gpio_res->lock);
1709
1710		/* Check whether the memory map exist. */
1711		if (coalesce_res->io) {
1712			priv->coalesce = coalesce_res;
1713			return 0;
1714		}
1715
1716		params = coalesce_res->params;
1717		size = resource_size(params);
1718
1719		if (!request_mem_region(params->start, size, params->name))
1720			return -EFAULT;
1721
1722		coalesce_res->io = ioremap(params->start, size);
1723		if (!coalesce_res->io) {
1724			release_mem_region(params->start, size);
1725			return -ENOMEM;
1726		}
1727
1728		priv->coalesce = coalesce_res;
1729
1730	} else {
1731		ret = mlxbf_i2c_init_resource(pdev, &priv->coalesce,
1732					      MLXBF_I2C_COALESCE_RES);
1733	}
1734
1735	return ret;
1736}
1737
1738static int mlxbf_i2c_release_coalesce(struct platform_device *pdev,
1739				      struct mlxbf_i2c_priv *priv)
1740{
1741	struct mlxbf_i2c_resource *coalesce_res;
1742	struct device *dev = &pdev->dev;
1743	struct resource *params;
1744	resource_size_t size;
1745
1746	coalesce_res = priv->coalesce;
1747
1748	if (coalesce_res->io) {
1749		params = coalesce_res->params;
1750		size = resource_size(params);
1751		if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) {
1752			mutex_lock(coalesce_res->lock);
1753			iounmap(coalesce_res->io);
1754			release_mem_region(params->start, size);
1755			mutex_unlock(coalesce_res->lock);
1756		} else {
1757			devm_release_mem_region(dev, params->start, size);
1758		}
1759	}
1760
1761	return 0;
1762}
1763
1764static int mlxbf_i2c_init_slave(struct platform_device *pdev,
1765				struct mlxbf_i2c_priv *priv)
1766{
1767	struct device *dev = &pdev->dev;
1768	u32 int_reg;
1769	int ret;
1770
1771	/* Reset FSM. */
1772	writel(0, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_FSM);
1773
1774	/*
1775	 * Enable slave cause interrupt bits. Drive
1776	 * MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE and
1777	 * MLXBF_I2C_CAUSE_WRITE_SUCCESS, these are enabled when an external
1778	 * masters issue a Read and Write, respectively. But, clear all
1779	 * interrupts first.
1780	 */
1781	writel(~0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1782	int_reg = MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE;
1783	int_reg |= MLXBF_I2C_CAUSE_WRITE_SUCCESS;
1784	writel(int_reg, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_EVTEN0);
1785
1786	/* Finally, set the 'ready' bit to start handling transactions. */
1787	writel(0x1, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1788
1789	/* Initialize the cause coalesce resource. */
1790	ret = mlxbf_i2c_init_coalesce(pdev, priv);
1791	if (ret < 0) {
1792		dev_err(dev, "failed to initialize cause coalesce\n");
1793		return ret;
1794	}
1795
1796	return 0;
1797}
1798
1799static bool mlxbf_i2c_has_coalesce(struct mlxbf_i2c_priv *priv, bool *read,
1800				   bool *write)
1801{
1802	const struct mlxbf_i2c_chip_info *chip = priv->chip;
1803	u32 coalesce0_reg, cause_reg;
1804	u8 slave_shift, is_set;
1805
1806	*write = false;
1807	*read = false;
1808
1809	slave_shift = chip->type != MLXBF_I2C_CHIP_TYPE_1 ?
1810				MLXBF_I2C_CAUSE_YU_SLAVE_BIT :
1811				priv->bus + MLXBF_I2C_CAUSE_TYU_SLAVE_BIT;
1812
1813	coalesce0_reg = readl(priv->coalesce->io + MLXBF_I2C_CAUSE_COALESCE_0);
1814	is_set = coalesce0_reg & (1 << slave_shift);
1815
1816	if (!is_set)
1817		return false;
1818
1819	/* Check the source of the interrupt, i.e. whether a Read or Write. */
1820	cause_reg = readl(priv->slv_cause->io + MLXBF_I2C_CAUSE_ARBITER);
1821	if (cause_reg & MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE)
1822		*read = true;
1823	else if (cause_reg & MLXBF_I2C_CAUSE_WRITE_SUCCESS)
1824		*write = true;
1825
1826	/* Clear cause bits. */
1827	writel(~0x0, priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1828
1829	return true;
1830}
1831
1832static bool mlxbf_i2c_slave_wait_for_idle(struct mlxbf_i2c_priv *priv,
1833					    u32 timeout)
1834{
1835	u32 mask = MLXBF_I2C_CAUSE_S_GW_BUSY_FALL;
1836	u32 addr = MLXBF_I2C_CAUSE_ARBITER;
1837
1838	if (mlxbf_i2c_poll(priv->slv_cause->io, addr, mask, false, timeout))
1839		return true;
1840
1841	return false;
1842}
1843
1844static struct i2c_client *mlxbf_i2c_get_slave_from_addr(
1845			struct mlxbf_i2c_priv *priv, u8 addr)
1846{
1847	int i;
1848
1849	for (i = 0; i < MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT; i++) {
1850		if (!priv->slave[i])
1851			continue;
1852
1853		if (priv->slave[i]->addr == addr)
1854			return priv->slave[i];
1855	}
1856
1857	return NULL;
1858}
1859
1860/*
1861 * Send byte to 'external' smbus master. This function is executed when
1862 * an external smbus master wants to read data from the BlueField.
1863 */
1864static int mlxbf_i2c_irq_send(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1865{
1866	u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1867	u8 write_size, pec_en, addr, value, byte_cnt;
1868	struct i2c_client *slave;
1869	u32 control32, data32;
1870	int ret = 0;
1871
1872	/*
1873	 * Read the first byte received from the external master to
1874	 * determine the slave address. This byte is located in the
1875	 * first data descriptor register of the slave GW.
1876	 */
1877	data32 = ioread32be(priv->slv->io +
1878				MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1879	addr = (data32 & GENMASK(7, 0)) >> 1;
1880
1881	/*
1882	 * Check if the slave address received in the data descriptor register
1883	 * matches any of the slave addresses registered. If there is a match,
1884	 * set the slave.
1885	 */
1886	slave = mlxbf_i2c_get_slave_from_addr(priv, addr);
1887	if (!slave) {
1888		ret = -ENXIO;
1889		goto clear_csr;
1890	}
1891
1892	/*
1893	 * An I2C read can consist of a WRITE bit transaction followed by
1894	 * a READ bit transaction. Indeed, slave devices often expect
1895	 * the slave address to be followed by the internal address.
1896	 * So, write the internal address byte first, and then, send the
1897	 * requested data to the master.
1898	 */
1899	if (recv_bytes > 1) {
1900		i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1901		value = (data32 >> 8) & GENMASK(7, 0);
1902		ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1903				      &value);
1904		i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1905
1906		if (ret < 0)
1907			goto clear_csr;
1908	}
1909
1910	/*
1911	 * Send data to the master. Currently, the driver supports
1912	 * READ_BYTE, READ_WORD and BLOCK READ protocols. The
1913	 * hardware can send up to 128 bytes per transfer which is
1914	 * the total size of the data registers.
1915	 */
1916	i2c_slave_event(slave, I2C_SLAVE_READ_REQUESTED, &value);
1917
1918	for (byte_cnt = 0; byte_cnt < MLXBF_I2C_SLAVE_DATA_DESC_SIZE; byte_cnt++) {
1919		data_desc[byte_cnt] = value;
1920		i2c_slave_event(slave, I2C_SLAVE_READ_PROCESSED, &value);
1921	}
1922
1923	/* Send a stop condition to the backend. */
1924	i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
1925
1926	/* Set the number of bytes to write to master. */
1927	write_size = (byte_cnt - 1) & 0x7f;
1928
1929	/* Write data to Slave GW data descriptor. */
1930	mlxbf_i2c_smbus_write_data(priv, data_desc, byte_cnt,
1931				   MLXBF_I2C_SLAVE_DATA_DESC_ADDR, false);
1932
1933	pec_en = 0; /* Disable PEC since it is not supported. */
1934
1935	/* Prepare control word. */
1936	control32 = MLXBF_I2C_SLAVE_ENABLE;
1937	control32 |= rol32(write_size, MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT);
1938	control32 |= rol32(pec_en, MLXBF_I2C_SLAVE_SEND_PEC_SHIFT);
1939
1940	writel(control32, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_GW);
1941
1942	/*
1943	 * Wait until the transfer is completed; the driver will wait
1944	 * until the GW is idle, a cause will rise on fall of GW busy.
1945	 */
1946	mlxbf_i2c_slave_wait_for_idle(priv, MLXBF_I2C_SMBUS_TIMEOUT);
1947
1948clear_csr:
1949	/* Release the Slave GW. */
1950	writel(0x0, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
1951	writel(0x0, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
1952	writel(0x1, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1953
1954	return ret;
1955}
1956
1957/*
1958 * Receive bytes from 'external' smbus master. This function is executed when
1959 * an external smbus master wants to write data to the BlueField.
1960 */
1961static int mlxbf_i2c_irq_recv(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1962{
1963	u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1964	struct i2c_client *slave;
1965	u8 value, byte, addr;
1966	int ret = 0;
1967
1968	/* Read data from Slave GW data descriptor. */
1969	mlxbf_i2c_smbus_read_data(priv, data_desc, recv_bytes,
1970				  MLXBF_I2C_SLAVE_DATA_DESC_ADDR, false);
1971	addr = data_desc[0] >> 1;
1972
1973	/*
1974	 * Check if the slave address received in the data descriptor register
1975	 * matches any of the slave addresses registered.
1976	 */
1977	slave = mlxbf_i2c_get_slave_from_addr(priv, addr);
1978	if (!slave) {
1979		ret = -EINVAL;
1980		goto clear_csr;
1981	}
1982
1983	/*
1984	 * Notify the slave backend that an smbus master wants to write data
1985	 * to the BlueField.
1986	 */
1987	i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
1988
1989	/* Send the received data to the slave backend. */
1990	for (byte = 1; byte < recv_bytes; byte++) {
1991		value = data_desc[byte];
1992		ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED,
1993				      &value);
1994		if (ret < 0)
1995			break;
1996	}
1997
1998	/*
1999	 * Send a stop event to the slave backend, to signal
2000	 * the end of the write transactions.
2001	 */
2002	i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
2003
2004clear_csr:
2005	/* Release the Slave GW. */
2006	writel(0x0, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
2007	writel(0x0, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
2008	writel(0x1, priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_READY);
2009
2010	return ret;
2011}
2012
2013static irqreturn_t mlxbf_i2c_irq(int irq, void *ptr)
2014{
2015	struct mlxbf_i2c_priv *priv = ptr;
2016	bool read, write, irq_is_set;
2017	u32 rw_bytes_reg;
2018	u8 recv_bytes;
2019
2020	/*
2021	 * Read TYU interrupt register and determine the source of the
2022	 * interrupt. Based on the source of the interrupt one of the
2023	 * following actions are performed:
2024	 *  - Receive data and send response to master.
2025	 *  - Send data and release slave GW.
2026	 *
2027	 * Handle read/write transaction only. CRmaster and Iarp requests
2028	 * are ignored for now.
2029	 */
2030	irq_is_set = mlxbf_i2c_has_coalesce(priv, &read, &write);
2031	if (!irq_is_set || (!read && !write)) {
2032		/* Nothing to do here, interrupt was not from this device. */
2033		return IRQ_NONE;
2034	}
2035
2036	/*
2037	 * The MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES includes the number of
2038	 * bytes from/to master. These are defined by 8-bits each. If the lower
2039	 * 8 bits are set, then the master expect to read N bytes from the
2040	 * slave, if the higher 8 bits are sent then the slave expect N bytes
2041	 * from the master.
2042	 */
2043	rw_bytes_reg = readl(priv->slv->io +
2044				MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
2045	recv_bytes = (rw_bytes_reg >> 8) & GENMASK(7, 0);
2046
2047	/*
2048	 * For now, the slave supports 128 bytes transfer. Discard remaining
2049	 * data bytes if the master wrote more than
2050	 * MLXBF_I2C_SLAVE_DATA_DESC_SIZE, i.e, the actual size of the slave
2051	 * data descriptor.
2052	 *
2053	 * Note that we will never expect to transfer more than 128 bytes; as
2054	 * specified in the SMBus standard, block transactions cannot exceed
2055	 * 32 bytes.
2056	 */
2057	recv_bytes = recv_bytes > MLXBF_I2C_SLAVE_DATA_DESC_SIZE ?
2058		MLXBF_I2C_SLAVE_DATA_DESC_SIZE : recv_bytes;
2059
2060	if (read)
2061		mlxbf_i2c_irq_send(priv, recv_bytes);
2062	else
2063		mlxbf_i2c_irq_recv(priv, recv_bytes);
2064
2065	return IRQ_HANDLED;
2066}
2067
2068/* Return negative errno on error. */
2069static s32 mlxbf_i2c_smbus_xfer(struct i2c_adapter *adap, u16 addr,
2070				unsigned short flags, char read_write,
2071				u8 command, int size,
2072				union i2c_smbus_data *data)
2073{
2074	struct mlxbf_i2c_smbus_request request = { 0 };
2075	struct mlxbf_i2c_priv *priv;
2076	bool read, pec;
2077	u8 byte_cnt;
2078
2079	request.slave = addr;
2080
2081	read = (read_write == I2C_SMBUS_READ);
2082	pec = flags & I2C_FUNC_SMBUS_PEC;
2083
2084	switch (size) {
2085	case I2C_SMBUS_QUICK:
2086		mlxbf_i2c_smbus_quick_command(&request, read);
2087		dev_dbg(&adap->dev, "smbus quick, slave 0x%02x\n", addr);
2088		break;
2089
2090	case I2C_SMBUS_BYTE:
2091		mlxbf_i2c_smbus_byte_func(&request,
2092					  read ? &data->byte : &command, read,
2093					  pec);
2094		dev_dbg(&adap->dev, "smbus %s byte, slave 0x%02x.\n",
2095			read ? "read" : "write", addr);
2096		break;
2097
2098	case I2C_SMBUS_BYTE_DATA:
2099		mlxbf_i2c_smbus_data_byte_func(&request, &command, &data->byte,
2100					       read, pec);
2101		dev_dbg(&adap->dev, "smbus %s byte data at 0x%02x, slave 0x%02x.\n",
2102			read ? "read" : "write", command, addr);
2103		break;
2104
2105	case I2C_SMBUS_WORD_DATA:
2106		mlxbf_i2c_smbus_data_word_func(&request, &command,
2107					       (u8 *)&data->word, read, pec);
2108		dev_dbg(&adap->dev, "smbus %s word data at 0x%02x, slave 0x%02x.\n",
2109			read ? "read" : "write", command, addr);
2110		break;
2111
2112	case I2C_SMBUS_I2C_BLOCK_DATA:
2113		byte_cnt = data->block[0];
2114		mlxbf_i2c_smbus_i2c_block_func(&request, &command, data->block,
2115					       &byte_cnt, read, pec);
2116		dev_dbg(&adap->dev, "i2c %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2117			read ? "read" : "write", byte_cnt, command, addr);
2118		break;
2119
2120	case I2C_SMBUS_BLOCK_DATA:
2121		byte_cnt = read ? I2C_SMBUS_BLOCK_MAX : data->block[0];
2122		mlxbf_i2c_smbus_block_func(&request, &command, data->block,
2123					   &byte_cnt, read, pec);
2124		dev_dbg(&adap->dev, "smbus %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2125			read ? "read" : "write", byte_cnt, command, addr);
2126		break;
2127
2128	case I2C_FUNC_SMBUS_PROC_CALL:
2129		mlxbf_i2c_smbus_process_call_func(&request, &command,
2130						  (u8 *)&data->word, pec);
2131		dev_dbg(&adap->dev, "process call, wr/rd at 0x%02x, slave 0x%02x.\n",
2132			command, addr);
2133		break;
2134
2135	case I2C_FUNC_SMBUS_BLOCK_PROC_CALL:
2136		byte_cnt = data->block[0];
2137		mlxbf_i2c_smbus_blk_process_call_func(&request, &command,
2138						      data->block, &byte_cnt,
2139						      pec);
2140		dev_dbg(&adap->dev, "block process call, wr/rd %d bytes, slave 0x%02x.\n",
2141			byte_cnt, addr);
2142		break;
2143
2144	default:
2145		dev_dbg(&adap->dev, "Unsupported I2C/SMBus command %d\n",
2146			size);
2147		return -EOPNOTSUPP;
2148	}
2149
2150	priv = i2c_get_adapdata(adap);
2151
2152	return mlxbf_i2c_smbus_start_transaction(priv, &request);
2153}
2154
2155static int mlxbf_i2c_reg_slave(struct i2c_client *slave)
2156{
2157	struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2158	struct device *dev = &slave->dev;
2159	int ret;
2160
2161	/*
2162	 * Do not support ten bit chip address and do not use Packet Error
2163	 * Checking (PEC).
2164	 */
2165	if (slave->flags & (I2C_CLIENT_TEN | I2C_CLIENT_PEC)) {
2166		dev_err(dev, "SMBus PEC and 10 bit address not supported\n");
2167		return -EAFNOSUPPORT;
2168	}
2169
2170	ret = mlxbf_i2c_slave_enable(priv, slave);
2171	if (ret)
2172		dev_err(dev, "Surpassed max number of registered slaves allowed\n");
2173
2174	return 0;
2175}
2176
2177static int mlxbf_i2c_unreg_slave(struct i2c_client *slave)
2178{
2179	struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
2180	struct device *dev = &slave->dev;
2181	int ret;
2182
2183	/*
2184	 * Unregister slave by:
2185	 * 1) Disabling the slave address in hardware
2186	 * 2) Freeing priv->slave at the corresponding index
2187	 */
2188	ret = mlxbf_i2c_slave_disable(priv, slave->addr);
2189	if (ret)
2190		dev_err(dev, "Unable to find slave 0x%x\n", slave->addr);
2191
2192	return ret;
2193}
2194
2195static u32 mlxbf_i2c_functionality(struct i2c_adapter *adap)
2196{
2197	return MLXBF_I2C_FUNC_ALL;
2198}
2199
2200static struct mlxbf_i2c_chip_info mlxbf_i2c_chip[] = {
2201	[MLXBF_I2C_CHIP_TYPE_1] = {
2202		.type = MLXBF_I2C_CHIP_TYPE_1,
2203		.shared_res = {
2204			[0] = &mlxbf_i2c_coalesce_res[MLXBF_I2C_CHIP_TYPE_1],
2205			[1] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_1],
2206			[2] = &mlxbf_i2c_gpio_res[MLXBF_I2C_CHIP_TYPE_1]
2207		},
2208		.calculate_freq = mlxbf_i2c_calculate_freq_from_tyu,
2209		.smbus_master_rs_bytes_off = MLXBF_I2C_YU_SMBUS_RS_BYTES,
2210		.smbus_master_fsm_off = MLXBF_I2C_YU_SMBUS_MASTER_FSM
2211	},
2212	[MLXBF_I2C_CHIP_TYPE_2] = {
2213		.type = MLXBF_I2C_CHIP_TYPE_2,
2214		.shared_res = {
2215			[0] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_2]
2216		},
2217		.calculate_freq = mlxbf_i2c_calculate_freq_from_yu,
2218		.smbus_master_rs_bytes_off = MLXBF_I2C_YU_SMBUS_RS_BYTES,
2219		.smbus_master_fsm_off = MLXBF_I2C_YU_SMBUS_MASTER_FSM
2220	},
2221	[MLXBF_I2C_CHIP_TYPE_3] = {
2222		.type = MLXBF_I2C_CHIP_TYPE_3,
2223		.shared_res = {
2224			[0] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_3]
2225		},
2226		.calculate_freq = mlxbf_i2c_calculate_freq_from_yu,
2227		.smbus_master_rs_bytes_off = MLXBF_I2C_RSH_YU_SMBUS_RS_BYTES,
2228		.smbus_master_fsm_off = MLXBF_I2C_RSH_YU_SMBUS_MASTER_FSM
2229	}
2230};
2231
2232static const struct i2c_algorithm mlxbf_i2c_algo = {
2233	.smbus_xfer = mlxbf_i2c_smbus_xfer,
2234	.functionality = mlxbf_i2c_functionality,
2235	.reg_slave = mlxbf_i2c_reg_slave,
2236	.unreg_slave = mlxbf_i2c_unreg_slave,
2237};
2238
2239static struct i2c_adapter_quirks mlxbf_i2c_quirks = {
2240	.max_read_len = MLXBF_I2C_MASTER_DATA_R_LENGTH,
2241	.max_write_len = MLXBF_I2C_MASTER_DATA_W_LENGTH,
2242};
2243
2244static const struct acpi_device_id mlxbf_i2c_acpi_ids[] = {
2245	{ "MLNXBF03", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1] },
2246	{ "MLNXBF23", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2] },
2247	{ "MLNXBF31", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_3] },
2248	{},
2249};
2250
2251MODULE_DEVICE_TABLE(acpi, mlxbf_i2c_acpi_ids);
2252
2253static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2254{
2255	const struct acpi_device_id *aid;
2256	u64 bus_id;
2257	int ret;
2258
2259	if (acpi_disabled)
2260		return -ENOENT;
2261
2262	aid = acpi_match_device(mlxbf_i2c_acpi_ids, dev);
2263	if (!aid)
2264		return -ENODEV;
2265
2266	priv->chip = (struct mlxbf_i2c_chip_info *)aid->driver_data;
2267
2268	ret = acpi_dev_uid_to_integer(ACPI_COMPANION(dev), &bus_id);
2269	if (ret) {
2270		dev_err(dev, "Cannot retrieve UID\n");
2271		return ret;
2272	}
2273
2274	priv->bus = bus_id;
2275
2276	return 0;
2277}
2278
2279static int mlxbf_i2c_probe(struct platform_device *pdev)
2280{
2281	struct device *dev = &pdev->dev;
2282	struct mlxbf_i2c_priv *priv;
2283	struct i2c_adapter *adap;
2284	u32 resource_version;
2285	int irq, ret;
2286
2287	priv = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_priv), GFP_KERNEL);
2288	if (!priv)
2289		return -ENOMEM;
2290
2291	ret = mlxbf_i2c_acpi_probe(dev, priv);
2292	if (ret < 0)
2293		return ret;
2294
2295	/* This property allows the driver to stay backward compatible with older
2296	 * ACPI tables.
2297	 * Starting BlueField-3 SoC, the "smbus" resource was broken down into 3
2298	 * separate resources "timer", "master" and "slave".
2299	 */
2300	if (device_property_read_u32(dev, "resource_version", &resource_version))
2301		resource_version = 0;
2302
2303	priv->resource_version = resource_version;
2304
2305	if (priv->chip->type < MLXBF_I2C_CHIP_TYPE_3 && resource_version == 0) {
2306		priv->timer = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource), GFP_KERNEL);
2307		if (!priv->timer)
2308			return -ENOMEM;
2309
2310		priv->mst = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource), GFP_KERNEL);
2311		if (!priv->mst)
2312			return -ENOMEM;
2313
2314		priv->slv = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource), GFP_KERNEL);
2315		if (!priv->slv)
2316			return -ENOMEM;
2317
2318		ret = mlxbf_i2c_init_resource(pdev, &priv->smbus,
2319					      MLXBF_I2C_SMBUS_RES);
2320		if (ret < 0)
2321			return dev_err_probe(dev, ret, "Cannot fetch smbus resource info");
2322
2323		priv->timer->io = priv->smbus->io;
2324		priv->mst->io = priv->smbus->io + MLXBF_I2C_MST_ADDR_OFFSET;
2325		priv->slv->io = priv->smbus->io + MLXBF_I2C_SLV_ADDR_OFFSET;
2326	} else {
2327		ret = mlxbf_i2c_init_resource(pdev, &priv->timer,
2328					      MLXBF_I2C_SMBUS_TIMER_RES);
2329		if (ret < 0)
2330			return dev_err_probe(dev, ret, "Cannot fetch timer resource info");
2331
2332		ret = mlxbf_i2c_init_resource(pdev, &priv->mst,
2333					      MLXBF_I2C_SMBUS_MST_RES);
2334		if (ret < 0)
2335			return dev_err_probe(dev, ret, "Cannot fetch master resource info");
2336
2337		ret = mlxbf_i2c_init_resource(pdev, &priv->slv,
2338					      MLXBF_I2C_SMBUS_SLV_RES);
2339		if (ret < 0)
2340			return dev_err_probe(dev, ret, "Cannot fetch slave resource info");
2341	}
2342
2343	ret = mlxbf_i2c_init_resource(pdev, &priv->mst_cause,
2344				      MLXBF_I2C_MST_CAUSE_RES);
2345	if (ret < 0)
2346		return dev_err_probe(dev, ret, "Cannot fetch cause master resource info");
2347
2348	ret = mlxbf_i2c_init_resource(pdev, &priv->slv_cause,
2349				      MLXBF_I2C_SLV_CAUSE_RES);
2350	if (ret < 0)
2351		return dev_err_probe(dev, ret, "Cannot fetch cause slave resource info");
2352
2353	adap = &priv->adap;
2354	adap->owner = THIS_MODULE;
2355	adap->class = I2C_CLASS_HWMON;
2356	adap->algo = &mlxbf_i2c_algo;
2357	adap->quirks = &mlxbf_i2c_quirks;
2358	adap->dev.parent = dev;
2359	adap->dev.of_node = dev->of_node;
2360	adap->nr = priv->bus;
2361
2362	snprintf(adap->name, sizeof(adap->name), "i2c%d", adap->nr);
2363	i2c_set_adapdata(adap, priv);
2364
2365	/* Read Core PLL frequency. */
2366	ret = mlxbf_i2c_calculate_corepll_freq(pdev, priv);
2367	if (ret < 0) {
2368		dev_err(dev, "cannot get core clock frequency\n");
2369		/* Set to default value. */
2370		priv->frequency = MLXBF_I2C_COREPLL_FREQ;
2371	}
2372
2373	/*
2374	 * Initialize master.
2375	 * Note that a physical bus might be shared among Linux and firmware
2376	 * (e.g., ATF). Thus, the bus should be initialized and ready and
2377	 * bus initialization would be unnecessary. This requires additional
2378	 * knowledge about physical busses. But, since an extra initialization
2379	 * does not really hurt, then keep the code as is.
2380	 */
2381	ret = mlxbf_i2c_init_master(pdev, priv);
2382	if (ret < 0)
2383		return dev_err_probe(dev, ret, "failed to initialize smbus master %d",
2384				     priv->bus);
2385
2386	mlxbf_i2c_init_timings(pdev, priv);
2387
2388	mlxbf_i2c_init_slave(pdev, priv);
2389
2390	irq = platform_get_irq(pdev, 0);
2391	if (irq < 0)
2392		return irq;
2393	ret = devm_request_irq(dev, irq, mlxbf_i2c_irq,
2394			       IRQF_SHARED | IRQF_PROBE_SHARED,
2395			       dev_name(dev), priv);
2396	if (ret < 0)
2397		return dev_err_probe(dev, ret, "Cannot get irq %d\n", irq);
2398
2399	priv->irq = irq;
2400
2401	platform_set_drvdata(pdev, priv);
2402
2403	ret = i2c_add_numbered_adapter(adap);
2404	if (ret < 0)
2405		return ret;
2406
2407	mutex_lock(&mlxbf_i2c_bus_lock);
2408	mlxbf_i2c_bus_count++;
2409	mutex_unlock(&mlxbf_i2c_bus_lock);
2410
2411	return 0;
2412}
2413
2414static void mlxbf_i2c_remove(struct platform_device *pdev)
2415{
2416	struct mlxbf_i2c_priv *priv = platform_get_drvdata(pdev);
2417	struct device *dev = &pdev->dev;
2418	struct resource *params;
2419
2420	if (priv->chip->type < MLXBF_I2C_CHIP_TYPE_3 && priv->resource_version == 0) {
2421		params = priv->smbus->params;
2422		devm_release_mem_region(dev, params->start, resource_size(params));
2423	} else {
2424		params = priv->timer->params;
2425		devm_release_mem_region(dev, params->start, resource_size(params));
2426
2427		params = priv->mst->params;
2428		devm_release_mem_region(dev, params->start, resource_size(params));
2429
2430		params = priv->slv->params;
2431		devm_release_mem_region(dev, params->start, resource_size(params));
2432	}
2433
2434	params = priv->mst_cause->params;
2435	devm_release_mem_region(dev, params->start, resource_size(params));
2436
2437	params = priv->slv_cause->params;
2438	devm_release_mem_region(dev, params->start, resource_size(params));
2439
2440	/*
2441	 * Release shared resources. This should be done when releasing
2442	 * the I2C controller.
2443	 */
2444	mutex_lock(&mlxbf_i2c_bus_lock);
2445	if (--mlxbf_i2c_bus_count == 0) {
2446		mlxbf_i2c_release_coalesce(pdev, priv);
2447		mlxbf_i2c_release_corepll(pdev, priv);
2448		mlxbf_i2c_release_gpio(pdev, priv);
2449	}
2450	mutex_unlock(&mlxbf_i2c_bus_lock);
2451
2452	devm_free_irq(dev, priv->irq, priv);
2453
2454	i2c_del_adapter(&priv->adap);
2455}
2456
2457static struct platform_driver mlxbf_i2c_driver = {
2458	.probe = mlxbf_i2c_probe,
2459	.remove = mlxbf_i2c_remove,
2460	.driver = {
2461		.name = "i2c-mlxbf",
2462		.acpi_match_table = ACPI_PTR(mlxbf_i2c_acpi_ids),
2463	},
2464};
2465
2466static int __init mlxbf_i2c_init(void)
2467{
2468	mutex_init(&mlxbf_i2c_coalesce_lock);
2469	mutex_init(&mlxbf_i2c_corepll_lock);
2470	mutex_init(&mlxbf_i2c_gpio_lock);
2471
2472	mutex_init(&mlxbf_i2c_bus_lock);
2473
2474	return platform_driver_register(&mlxbf_i2c_driver);
2475}
2476module_init(mlxbf_i2c_init);
2477
2478static void __exit mlxbf_i2c_exit(void)
2479{
2480	platform_driver_unregister(&mlxbf_i2c_driver);
2481
2482	mutex_destroy(&mlxbf_i2c_bus_lock);
2483
2484	mutex_destroy(&mlxbf_i2c_gpio_lock);
2485	mutex_destroy(&mlxbf_i2c_corepll_lock);
2486	mutex_destroy(&mlxbf_i2c_coalesce_lock);
2487}
2488module_exit(mlxbf_i2c_exit);
2489
2490MODULE_DESCRIPTION("Mellanox BlueField I2C bus driver");
2491MODULE_AUTHOR("Khalil Blaiech <kblaiech@nvidia.com>");
2492MODULE_AUTHOR("Asmaa Mnebhi <asmaa@nvidia.com>");
2493MODULE_LICENSE("GPL v2");